WO2020235496A1 - ガラス容器 - Google Patents

ガラス容器 Download PDF

Info

Publication number
WO2020235496A1
WO2020235496A1 PCT/JP2020/019490 JP2020019490W WO2020235496A1 WO 2020235496 A1 WO2020235496 A1 WO 2020235496A1 JP 2020019490 W JP2020019490 W JP 2020019490W WO 2020235496 A1 WO2020235496 A1 WO 2020235496A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass container
glass
cleaning
strain
container
Prior art date
Application number
PCT/JP2020/019490
Other languages
English (en)
French (fr)
Inventor
宮本 憲一
Original Assignee
大和特殊硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大和特殊硝子株式会社 filed Critical 大和特殊硝子株式会社
Priority to JP2020528068A priority Critical patent/JP6768179B1/ja
Publication of WO2020235496A1 publication Critical patent/WO2020235496A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/02Linings or internal coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/02Annealing glass products in a discontinuous way
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments

Definitions

  • the present invention relates to a glass container for storing, for example, pharmaceuticals, foods, cosmetic products, etc., such as ampoules and tube bottles.
  • Glass containers such as tube bottles, vials, ampoules, and syringes for storing pharmaceuticals, foods, cosmetics, etc. are often manufactured by molding glass tubes under heating.
  • a typical molding processing method there is a vertical molding method.
  • a glass tube having a constant diameter and open at both ends is erected vertically, and the lower end portion to be the mouth portion is heated to soften and processed into a desired shape to form the glass tube. Is cut to a desired length, and then the bottom of the glass container is formed to manufacture the target glass container.
  • the remaining glass tube that has been cut is shortened by the amount of one glass container manufactured, and the glass container can be mass-produced by repeating the above operation.
  • This method is performed automatically using a machine, and a vertical molding machine is usually used.
  • a method of reducing the processing deterioration of the glass by keeping the heating temperature during the molding process as low as possible is adopted, or a method of coating the inner surface of the glass after manufacturing the glass container (for example,).
  • (See Patent Document 1) was adopted, or a method of subjecting the inner surface of the glass to a sulfer treatment using ammonium sulfate was adopted.
  • the coating treatment of the glass surface, the sulfer treatment, or the processing of the glass tube by low-temperature heating has caused the process to be complicated and the manufacturing cost of the glass container to be high.
  • Patent Document 2 a glass container manufacturing process for obtaining a glass container by molding a glass tube under heating, a cleaning step for cleaning the inner surface of the glass container obtained in the glass container manufacturing process with a cleaning liquid, and cleaning A method for manufacturing a glass container including a strain-removing step of heating and heating a glass container washed in the step and then cooling the glass container to distort the strain is described.
  • Patent Document 2 describes that when the inner surface of a glass container was washed with a cleaning liquid before performing a strain-removing operation, it was found that a glass container in which alkaline components were hardly eluted from the glass surface of the inner surface could be manufactured. There is. Therefore, Patent Document 2 describes that the cleaning step is an important step for suppressing the elution of the alkaline component from the inner surface of the glass container. However, even if it is simply said that the inner surface of the glass container is cleaned, there are various cleaning means, and a sufficient cleaning effect cannot be obtained unless the cleaning process takes into consideration the surface characteristics of the glass. In this respect, Patent Document 2 does not describe that sufficient studies have been made on the cleaning process.
  • the strain removal step is necessary to remove strain due to thermal history when obtaining a glass container from a glass tube.
  • the strain-removing step is an extremely important step not only for removing strain but also for obtaining a glass container having excellent chemical durability, as will be described later.
  • Patent Document 2 does not describe this point at all.
  • a heat sterilization step after filling the manufactured glass container with a chemical solution or the like, or an alkaline component from the glass surface due to a reaction with the solution during storage. It is desired to provide a glass container in which such elution components do not elute or elute very little.
  • the present invention has been made in view of the problems of such conventional techniques, and an object of the present invention is to provide a glass container having extremely excellent chemical durability.
  • the present inventors have made extensive studies to solve the above problems.
  • the lower end of the vertically erected glass tube is heated with, for example, a gas burner to soften it, and when it is molded into a desired shape, the glass quality is altered by heating, and the volatile components of the glass from the heated glass (for example, Na 2 O, K 2 O, when the B etc. 2 0 3) is generated, these volatile components is increased by the chimney effect space between the open lower end and an upper end of the glass tube, these It was found that an alkaline component is formed by adhering a volatile component to the inner surface of a glass tube, and the adhering alkaline component is eluted from the glass surface after manufacturing a glass container.
  • the present inventors have obtained a glass container from a glass tube by the above-mentioned vertical molding method, and then washed the inner surface of the glass container with a cleaning liquid before performing a strain-removing operation for removing distortion due to thermal history. , It has been found that it is possible to manufacture a glass container in which the elution of alkaline components from the inner glass surface is extremely small.
  • glass generally refers to a substance that is in a glassy state, but usually refers to silicate glass.
  • Alkaline metals (Na, K, Li) and alkaline earth metals (Na, K, Li) and alkaline earth metals (Na, K, Li), which are network-like polymers and are called network-modified bodies or network-modified ions, are contained in the network-like structure of silicon oxide (SiO 2 ) which is a network-forming body.
  • SiO 2 silicon oxide
  • Ca, Mg, Ba etc. are partially contained to form a stable structure. With the exception of crystallized glass, the regularity extends only over very narrow meshes.
  • the network-forming body (ion) includes B, P, Ge, As, V and the like in addition to Si, and there is a borosilicate-based glass in which these oxides and silicon oxide are combined. Further, as the ions of the intermediate oxide that play a role of both network formation and network modification, there are Al, Ti, Zr and the like. There are many types of glass, more than 700. Among them, commonly used glass can be classified into the following five categories. Quartz glass, soda-lime glass, borosilicate glass, lead glass, and fluoride glass.
  • borosilicate glass has a network in which boric acid and silicic acid are copolymerized, and vitrification is facilitated even if the amount of alkali metal is small as compared with the case of silicate alone.
  • Low alkaline glass borosilicate has a small expansion coefficient of 3 ⁇ 10-6 / K, a Mohs hardness of about 7, is relatively hard, and has high corrosion resistance, so it is suitable for physics and chemistry instruments, medical instruments, chemical containers, etc. is there.
  • Borosilicate glass is preferable as the material of the glass container of the present invention.
  • the surface of glass is originally hydrophilic, rich in chemical activity, and has a strong ability to adsorb water and dirt by intermolecular suction force such as hydrogen bond.
  • it since it is an electrically defective conductor, it has a strong ability to adsorb dirt.
  • the surface of the glass reacts with the external atmosphere, and the deterioration accompanied by the composition change of the surface layer occurs. As a result, the transparency of the glass is impaired. This phenomenon has long been known as the "burnt" of glass. Therefore, it can be said that it is not easy to obtain a glass container having a desired cleanliness by cleaning without adversely affecting the glass substrate.
  • an acid or an alkali can be typically used as the cleaning liquid for such a glass container.
  • Table 2 below shows the weight loss (95 ° C., 24 hours (mg / cm 2 )) of soda-lime glass, borosilicate glass, and quartz glass having the glass composition (% by weight) shown in Table 1 due to acid and alkali. Shown.
  • borosilicate glass has the largest weight loss with respect to 5% sodium hydroxide. This is because silica, which is the main component, becomes sodium silicate and elutes.
  • the rate of elution into alkali is directly proportional to time, about doubling as the pH rises by 1, and doubling as the temperature rises by 10 ° C. Therefore, at 100 ° C., the elution rate is about 250 times that of room temperature.
  • what elutes in 5% hydrochloric acid is mainly the alkaline and alkaline earth components contained in the glass, and the silica component is hardly dissolved. Therefore, unlike elution with sodium hydroxide, the amount of elution is small.
  • the elution rate to acid is proportional to the square root of time and is much slower than the elution rate to alkali. Even if the pH drops by 1, the elution rate is only about 1.2 times. It can be seen from Table 2 that acid erosion is slower than that of alkaline. Further, it is known that the amount of elution into an organic acid is smaller than that of hydrochloric acid and an organic acid. Therefore, in the present invention, it is preferable to use an organic acid whose glass component is relatively slowly eroded as the cleaning liquid.
  • a hydroxyl group typified by a silanol group (SiOH) is present on the glass surface, and it is considered that this hydroxyl group acts as an adsorption base point of the substance. Therefore, if the time from the cleaning step of cleaning the inner surface of the glass container with the cleaning liquid to the subsequent strain-removing step is long, the surface characteristics of the glass may change. That is, the time between the cleaning step and the strain removing step is preferably 30 minutes or less. Further, in order to improve the cleaning effect, the spray pressure of the cleaning liquid is preferably 0.05 MPa or more.
  • FIG. 6A is a schematic view showing an example of a cross section of borosilicate glass before being heated to a temperature equal to or higher than the glass transition point for a long time.
  • the constituent components of the glass are homogeneous, and the network structure of the network-forming body is shown. It has a stable structure with a network modifier partially contained in it.
  • FIG. 6A is a schematic view showing an example of a cross section of borosilicate glass before being heated to a temperature equal to or higher than the glass transition point for a long time.
  • the constituent components of the glass are homogeneous, and the network structure of the network-forming body is shown. It has a stable structure with a network modifier partially contained in it.
  • FIG. 6B is a schematic view showing an example of a cross section of the borosilicate glass in a phase-separated state.
  • the portion indicated by the thick black line indicates the polar phase (Na 2 O, B 2 O 3, etc.), and the region excluding this polar phase is the silica phase. Glass separated into a two-phase structure has low chemical durability.
  • the present inventor has repeatedly studied the conditions that make it difficult for phase separation to occur.
  • the glass container washed in the washing step is heated and then cooled to remove strain. It was found that the heating temperature of the strain removing step is extremely important.
  • the present inventor properly controls the heating temperature in the strain-removing step to ensure that the temperature is homogeneous and contains a large amount of chemically stable SiO 2 without generating phase separation and free radicals. It was found that a film was formed on the inner surface of the glass container.
  • the borosilicate glass container having extremely excellent chemical durability of the present invention can be manufactured, for example, as follows.
  • a glass container made of borosilicate glass is molded under heating to obtain a glass container, and the inner surface of the glass container obtained in the glass container manufacturing process is coated with water, an aqueous solution of acid, an aqueous solution of a surfactant, or an aqueous solution of a surfactant.
  • a method for manufacturing a glass container which includes a cleaning step of cleaning with a cleaning solution consisting of an aqueous solution of an acid to which a surfactant is added, and a strain-removing step of heating and heating the glass container washed in the cleaning step and then cooling to distort the strain.
  • the temperature of the glass container in the cleaning step is 30 to 150 ° C.
  • the cleaning time with the cleaning liquid having a spray pressure of 0.05 MPa or more is 10 to 15 seconds
  • the time between the cleaning step and the strain removing step is 30 minutes or less.
  • the borosilicate glass container of the present invention having extremely excellent chemical durability is composed of the following inventions.
  • a borosilicate glass container characterized in that the oxide film formed on the inner surface is an oxide film mainly composed of SiO 2 .
  • the inner surface means a detection depth (about 1 to 10 nm) in X-ray photoelectron spectroscopy (XPS). This is because the component composition of the inner surface layer of the glass container is decisively important for enhancing the chemical durability.
  • the SiO 2 in the oxide film formed on the inner surface is preferably 80 to 92% by weight. If the SiO 2 coating is less than 80% by weight, sufficient chemical durability cannot be obtained. More preferably, the SiO 2 coating is 85% by weight or more.
  • the oxide film other than SiO 2 formed on the inner surface is a film of one or more oxides selected from Na 2 O, K 2 O, CaO, BaO, B 2 O 3 and Al 2 O 3. Is preferable. (5) It is preferable that no phase separation is generated on the inner surface of the borosilicate glass container and no free radicals are present.
  • the main body of the container has the characteristics of borosilicate glass, but the inner surface of the container has a siloxane structure in which silicon and oxygen are bonded by a siloxane bond which is a strong covalent bond, such as alkali metal or alkaline earth metal. Is preferably fixed by an ionic bond in a state where the oxygen radical freed in the siloxane structure is completely neutralized. (See FIG. 7 (c)) (6)
  • the borosilicate glass container is preferably for storing pharmaceuticals, foods or cosmetics.
  • a glass container made of borosilicate glass is molded under heating to obtain a glass container, and the inner surface of the glass container obtained in the glass container manufacturing process is coated with water, an aqueous solution of acid, and surface activity.
  • Manufactured by a manufacturing method including a cleaning step of cleaning with a cleaning solution consisting of an aqueous agent solution or an aqueous solution of an acid to which a surfactant is added, and a strain-removing step of heating and heating the glass container washed in the cleaning step and then cooling to distort the strain.
  • the temperature of the glass container in the cleaning step is 30 to 150 ° C.
  • the cleaning time with a cleaning liquid having a spray pressure of 0.05 MPa or more is 10 to 15 seconds
  • the period between the cleaning step and the strain removing step is set.
  • the borosilicate glass container of the present invention has no phase separation on the inner surface, no free radicals, no flakes or delamination, and silicon and oxygen existing on the inner surface are bonded by a siloxane bond. Therefore, the amount of the alkaline component eluted from the inner surface of the glass is extremely small, deterioration of the chemicals and the like as the contents is suppressed, and a predetermined quality can be reliably maintained.
  • FIG. 1A is a schematic view showing a state in which an alkaline eluent component is attached to the inner surface of the glass container
  • FIG. 1B is a glass container after removing the alkaline eluent component adhering to the inner surface.
  • the schematic diagram shown, FIG. 1 (c), is a schematic diagram showing a state after heating the glass container having the inner surface shown in FIG. 1 (b).
  • FIG. 2 is a schematic view showing an example of the method for manufacturing the borosilicate glass container of the present invention for each small step.
  • FIG. 3 is a schematic view showing an example of a manufacturing apparatus preferably used in the method for manufacturing a borosilicate glass container of the present invention.
  • FIG. 4 is a schematic configuration diagram showing a state in which a vial is washed with a washing machine.
  • FIG. 5A is a schematic cross-sectional view of an embodiment of the borosilicate glass container of the present invention
  • FIG. 5B is a schematic cross-sectional view of a glass container of a comparative example.
  • FIG. 6A is a schematic view showing an example of a cross section of the borosilicate glass before heating to a temperature equal to or higher than the glass transition point for a long time
  • FIG. 6B is an example of a cross section of the borosilicate glass in a phase-separated state. It is a schematic diagram which shows.
  • FIG. 6A is a schematic view showing an example of a cross section of the borosilicate glass before heating to a temperature equal to or higher than the glass transition point for a long time
  • FIG. 6B is an example of a cross section of the borosilicate glass in a phase-separated
  • FIG. 7 (a) is a diagram schematically showing the structure of commonly used silica-containing glass in a planar state
  • FIG. 7 (b) shows the glass shown in FIG. 7 (a) subjected to sulfer treatment.
  • FIG. 7 (c) is a diagram schematically showing the structure of the subsequent glass in a planar state
  • FIG. 7 (c) is a diagram schematically showing the structure of the inner surface of the borosilicate glass container of the present invention in a planar state.
  • FIG. 8 is a diagram comparing the amount of Na eluted with respect to the heating temperature in the strain removing step in the case of manufacturing the borosilicate glass container of the present invention.
  • the glass tube used as the material of the borosilicate glass container of the present invention is not particularly limited, but for example, a glass tube made of borosilicate glass is preferable.
  • the cross section of the glass tube is usually a perfect circle, but other shapes such as an elliptical shape may be used.
  • the diameter of the glass tube is not particularly limited, but is usually about 10 to 100 mm.
  • the length of the glass tube is not particularly limited, but usually it may be about 1 to 5 m.
  • the glass tube may be colorless and transparent, or may be colored, for example, brown.
  • the borosilicate glass container of the present invention can also be manufactured according to the method.
  • a glass tube having a constant diameter and open at both ends is erected vertically, and the lower end is inserted into a vertical molding machine usually equipped with a heating means, for example, with a gas burner having a temperature of about 1500 to 1800 ° C. It is heated to form a desired tube bottle shape, and then the molded product and the glass tube extending above the rest are separated under heating to form a glass bottle and a bottom. Next, the lower end of the separated glass tube is molded so that the cross section becomes the original perfect circle.
  • the temperature of the glass container after the molding process is usually about 300 to 400 ° C.
  • glass containers can be mass-produced.
  • the glass quality is usually altered by heating, and the volatile components of the glass (for example, Na 2 O and K 2 O) form a chimney in the space between the open lower end and the upper end of the glass tube. It is considered that it rises due to the effect and adheres to the inner surface of the glass tube to form an alkaline evaporative component.
  • the present invention removes or reduces the alkaline elution component adhering to the inner surface of the glass tube by going through the glass container cleaning step described in detail below after the glass container manufacturing step, and further, the cleaning step.
  • a strain-removing step within 30 minutes and subjecting the glass container to a strain-removing treatment controlled to an appropriate heating temperature, no phase separation is generated on the inner surface and free radicals are not present. It is possible to provide a borosilicate glass container in which silicon and oxygen existing on the inner surface are bonded by a siloxane bond without flakes or delamination.
  • a cleaning solution such as water, an aqueous solution of an acid, an aqueous solution containing a surfactant, or an aqueous solution of an acid to which a surfactant is added is applied to the inner surface of the glass container obtained in the process of manufacturing the glass container. It is preferable to use and wash.
  • the glass container If necessary, cool the glass container at about 300 to 400 ° C. after the molding process to, for example, an atmospheric temperature, and preferably wash the glass container at 150 ° C. or lower with a cleaning liquid. It is considered that the higher the temperature of the glass container, the higher the effect of removing or reducing the eluent component adhering to the inner surface of the glass container, but if the cleaning liquid is brought into contact with the high temperature glass container, the glass container may be damaged. Further, the lower limit temperature of the glass container at the time of cleaning is preferably 30 ° C. or higher in consideration of cleaning efficiency. Further, the washing time is preferably about 10 to 15 seconds because the washing is insufficient if it is less than 10 seconds and the productivity is lowered if it exceeds 15 seconds.
  • the temperature of the cleaning liquid in the cleaning step is not limited, but it is preferable to use a cleaning liquid of about 30 to 100 ° C, and more preferably to use a cleaning liquid of about 40 to 70 ° C. Within this range, a glass container having extremely excellent chemical durability, which is the object of the present invention, can be obtained.
  • the cleaning liquid water, an aqueous solution of acid, an aqueous solution containing a surfactant or an aqueous solution of an acid to which a surfactant is added are preferably used, and the solubility of the alkaline eluent component adhering to the inner surface of the glass container is high.
  • an aqueous acid solution or an acid aqueous solution to which a surfactant is added is more preferable.
  • Acids used in aqueous acid solutions are roughly classified into organic acids and inorganic acids.
  • organic acids include formic acid, acetic acid, oxalic acid, phthalic acid, citric acid and the like
  • inorganic acids include hydrochloric acid, sulfuric acid, nitric acid and the like. These acids may be used alone or in combination of two or more.
  • organic acids are preferable, and citric acid and oxalic acid are preferably used from the viewpoint of cleaning effect and handleability.
  • the organic acid is preferable in that the glass surface is kept very clean because it is burnt and decomposed into carbon dioxide and water in the strain removing step even if a residue is generated, and citric acid is particularly preferably used.
  • the acid concentration is usually about 0.005 to 1.0 mol / L, preferably about 0.005 to 1.0 mol / L. Is about 0.01 to 0.1 mol / L.
  • the surfactant used in the aqueous solution containing a surfactant or the aqueous solution of an acid to which a surfactant is added in the above cleaning liquid is not particularly limited, but a preferable surfactant is a nonionic surfactant. Agents can be mentioned.
  • Nonionic surfactants are roughly classified into polyethylene glycol type and polyhydric alcohol type, and the polyethylene glycol type includes higher alcohols, fatty acids, fats and oils, ethylene oxide adducts of polypropylene glycol or alkylphenol, and polyhydric alcohol fatty acid esters.
  • Examples thereof include ethylene oxide adducts of higher alkylamines and fatty acid amides, and examples of polyvalent alcohol types include fatty acid esters of glycerol, pentaerythritol, sorbitol or sucrose, and alkyl ethers of polyhydric alcohols.
  • concentration of the surfactant may be appropriately selected within a range that does not interfere with the object and effect of the present invention.
  • the glass container is inserted into an appropriate jig or suspended from the mouth to the bottom of the glass container, for example, from a nozzle.
  • the cleaning solution is usually blown up and sprayed under pressure. It is preferable to increase the spray pressure of the cleaning liquid by allowing the cleaning liquid spray port of the nozzle to discharge compressed air at the same time as the cleaning liquid (also referred to as jet spray cleaning).
  • the spray pressure of the cleaning liquid is preferably 0.05 MPa or more. Even if the spray pressure is too high, the cleaning effect is saturated, so the upper limit of the spray pressure is about 0.5 MPa.
  • the cleaning process is completed after cleaning with the cleaning liquid, a rinsing step with clean water, and a sufficient draining step by blowing air, for example.
  • the inner surface of the glass container may be cleaned by ultrasonic cleaning with the above cleaning liquid.
  • ultrasonic cleaning usually, not only the inner surface but the entire glass container is cleaned using the above-mentioned cleaning liquid, and rinse cleaning is performed. Whether or not to adopt ultrasonic cleaning is determined in consideration of the layout of the entire production line such as a vertical molding machine, a cleaning machine, and a strain-removing furnace, which will be described later.
  • the glass container washed in the cleaning step is fed to a strain-removing furnace controlled so that the target maximum atmospheric temperature is 685 to 700 ° C. It is carried out by heating and raising the temperature so as to secure a time of 1 minute from 685 ° C. to 710 ° C. and then cooling.
  • the entire time of the strain-removing treatment which consists of heating and heating the glass container at about 30 to 80 ° C. after cleaning to about 300 ° C., that is, the time spent in the strain-removing furnace ( Distortion time) is 3 to 40 minutes.
  • the borosilicate glass container of the present invention is characterized by an inner surface structure, and the process for obtaining a borosilicate glass container having an inner surface having a characteristic structure can be explained in an easy-to-understand manner as follows.
  • FIG. 1A is a schematic view showing a state in which the alkaline eluent component 3 is attached to the inner surface 2 of the glass tube 1.
  • Residual strain can be removed by heating the glass container after removing the alkaline eluent component. Further, as shown in FIG. 1C, the flatness of the inner surface 5 of the glass container 4 is also improved by the diffusion of atoms. However, depending on the heating conditions of the glass container, a phase separation state as shown in FIG. 6B is generated. Therefore, the heating conditions of the glass container are very important so as not to generate a phase separation state.
  • Borosilicate glass may undergo phase separation when heated to a temperature above the glass transition point for a long time. If the heating temperature is too high, the glass container will be deformed or wrinkled. Therefore, the selection of heating conditions is extremely important.
  • the time when the actual temperature of the glass container is 685 to 710 ° C. is controlled to be secured for 1 minute.
  • the glass container of the present invention can be manufactured. If the time at 685 to 710 ° C. is 1 minute, no phase separation is generated on the inner surface, no free radicals are present, silicon and oxygen existing on the inner surface are bonded by a siloxane bond, and the glass. It is possible to produce a glass container having a substantially smooth inner and outer surfaces by removing residual strain based on the thermal history without deforming or wrinkling the surface.
  • the temperature of the glass container itself exceeds 700 ° C for a long time (10 minutes or more), the glass surface may be deformed or wrinkles may occur.
  • the maximum atmospheric temperature of the strain-removing furnace is controlled below 650 ° C., the temperature of the glass container itself tends to fall below 600 ° C., and vitrification may be insufficient.
  • the present invention provides a glass container in which the amount of elution of alkaline components and the like is extremely small.
  • Pharmaceuticals, foods, and cosmetics stored in the manufactured glass container may have any shape.
  • it may be solid, liquid, or gaseous, and taking pharmaceuticals as an example, any shape and properties such as tablets, liquids, granules, powders, powders, ointments, sprays, powders, gels, etc. It may be.
  • foods and cosmetics may have any shape and properties.
  • the conductivity of the contained content liquid is extremely low.
  • a container for purified water Suitable as a container for sterile purified water or a container for injection water.
  • the 16th revision of the Japanese Pharmacopoeia, page 731 describes the conductivity of purified water in a container, sterilized purified water in a container, or water for injection in a container in the case of a container with an internal volume of 10 mL or less (25 ° C).
  • Example 1 A vial having a capacity of 2 mL was obtained by the following method using a glass tube made of borosilicate glass having an outer diameter of 16 mm and a length of 1 m and 60 cm. First, as shown in FIG. 2 (1), the glass tube 11 is inserted into the vertical molding machine 12 of the tube bottle with the end end facing up, and the lower end is heated with a gas burner to soften the glass and of the bottle. It was molded so that it had the shape of the opening.
  • the process order will be described in more detail based on FIG.
  • the lower end of the glass tube 11 was heated with a fishtail burner 13 at 1200 to 2000 ° C.
  • the shoulder portion was formed using the roller 14 and the plunger 15.
  • Heating was performed with a point burner 16 at 1200 to 2000 ° C.
  • the mouth portion was formed by the roller 14 and the plunger 15.
  • the bottle height was determined using the total height plate 17.
  • Cutting was performed using a cut burner 18 having a temperature of 1200 to 2000 ° C.
  • the bottom was homogenized using a point burner 16.
  • Air 19 was blown in, and the bottom molding of the vial 20 was completed using the point burner 16 at 1200 to 2000 ° C.
  • the vial 20 thus obtained is conveyed to the washing machine 22 in a state of being inserted into a jig placed on the net conveyor 21 (FIG. 3), and allowed to cool under a large temperature ((in FIG. 2). 9) Cooling step), the inner surface of the vial at about 30 ° C. was blown up and washed with 10 mL of a cleaning solution (citrate) at 25 ° C. for 10 seconds (spray pressure of citric acid 0.2 MPa) using a syringe (Fig. 2). (10) Washing step in FIG. 2), and after performing blow-up washing (0.2 MPa) with purified water for 10 seconds, air 19 was blown to sufficiently drain the water ((11) Draining step in FIG. 2). Although details are omitted in FIG. 3, the vial 20 can be conveyed to the washing machine 22 and the strain-removing furnace 24 by the net conveyor 21.
  • FIG. 4 is a schematic configuration diagram showing a state in which the vial 20 is washed by the washing machine 22.
  • 31 is a manifold
  • 32 is a nozzle
  • 33 is a needle valve
  • 34 is a flow meter
  • 35 is a pressure gauge
  • 36 is a pump
  • 37 is a storage tank for cleaning liquid.
  • strain removal step the target maximum atmospheric temperature in the strain removal furnace is controlled to be 670 ° C, and the strain is removed for 25 minutes (the time when the atmospheric temperature is 670 ° C or higher is 108 seconds, and the actual temperature of the glass container is 108 seconds.
  • the inlet side and the outlet side of the strain-removing furnace 24 are open, the inlet can be set to, for example, 670 to 700 ° C., even if the atmospheric temperature in the strain-removing furnace sensed by the thermocouple provided in the strain-removing furnace is set to 670 to 700 ° C. The side and outlet side will be lower than this temperature.
  • the ambient temperature in the strain-removing furnace was measured with thermocouples installed at three locations, and the burner heater 23 was turned on and off so that the temperature measured with one of the thermocouples became the target temperature. Furthermore, the actual temperature of the glass container was measured by a thermocouple fused to the glass container.
  • a glass container made of borosilicate glass of Comparative Example 1 was obtained through the same steps as in Example 1 except that washing with citric acid and purified water described in paragraph 0055 was not performed.
  • Table 3 below shows the atomic number ratios of the inner surfaces of the glass container of Example 1 and the glass container of Comparative Example 1 measured by X-ray photoelectron spectroscopy, and Table 4 below shows the base material boro.
  • the composition (% by weight) of the silicate glass and the ratio of the oxide film formed on the inner surface of the glass container obtained based on the atomic number ratio in Table 3 for the glass container of Example 1 and the glass container of Comparative Example 1. (% by weight) is shown.
  • X-ray photoelectron spectroscopy is an element on the sample surface that observes the kinetic energy of photoelectrons emitted from the sample surface into a vacuum by the photoelectric effect by irradiating the sample surface with soft X-rays under ultra-high vacuum. It is an analytical method that can obtain information on the composition and chemical state. Specifically, the necessary information can be obtained by the following equation.
  • E b hv-E kin- ⁇
  • E b the binding energy of bound electrons
  • hv the energy of soft X-rays
  • E kin the kinetic energy of photoelectrons
  • the work function of the spectroscope
  • Example 2 After injecting 0.7 mL of purified water 40a into the glass container 40 of Example 1 made of borosilicate glass obtained by allowing to cool to room temperature in Example 1 above. , The autoclave treatment was carried out at 121 ° C. for 60 minutes. 41 is a rubber stopper. Further, a comparison of a cylindrical capacity of 2 mL as shown in FIG. 5 (b) obtained from a glass tube made of borosilicate glass having an outer diameter of 16 mm and a length of 1 m 60 cm in the same manner as described in paragraphs 0053 and 0054. 0.7 mL of purified water 50a was also injected into the glass container 50 made of borosilicate glass of Example 2.
  • Purified water is injected into a glass container, for example, in order to estimate how long the inner surface of the glass container deteriorates when a drug (for example, a liquid agent, a lyophilized product, a powder agent) is stored in the glass container. It has the meaning of an accelerated test, 1 hour after the injection of purified water corresponds to 1.6 years, 4 hours after the injection of purified water corresponds to 8 years, and 8 hours after the injection of purified water. Is equivalent to 13 years.
  • a drug for example, a liquid agent, a lyophilized product, a powder agent
  • the borosilicate glass container of Example 1 of the present invention in which an oxide film mainly composed of SiO 2 is formed on the inner surface has an extremely small amount of alkaline component eluted and has excellent chemical durability. It turns out to be extremely good. Further, it was confirmed by an electron microscope that no phase separation was generated on the inner surface of the glass container of the example, no free radicals were present, and there were no flakes or delamination.
  • FIG. 7A is a diagram schematically showing the structure of commonly used silica-containing glass in a planar state.
  • the ideal glass is 100% silica glass, which is generally called quartz glass, but 100% silica glass has a very high melting point of 2000 ° C. or higher and is difficult to mold. Therefore, in order to improve this, glass containing silica, which is generally used, is formed by adding an alkali metal such as sodium or potassium to break the siloxane bond of silica to lower the melting point and mold it. I'm trying to make it easier. Furthermore, in order to stably retain the added alkali metal in the glass, elements such as calcium and aluminum are added.
  • FIG. 7A is a diagram schematically showing the structure of commonly used silica-containing glass in a planar state. In FIG.
  • 100 is silicon, 101 is oxygen, 102a is an alkali metal, 102b is an alkaline earth metal, 103 is a covalent bond, and 104 is an ionic bond. That is, the silicon 100 and the oxygen 101 are connected by a covalent bond 103, and the alkali metal 102a or the alkaline earth metal 102b and the oxygen 101 are connected by an ionic bond 104. However, not all alkali metals 102a or alkaline earth metals 102b are bound to oxygen, and there are also free alkali metals 102a or alkaline earth metals 102b.
  • Silica which is the main component of glass, exhibits a strong siloxane bond in which silicon and oxygen are bonded by a covalent bond in which the outermost electrons of the atom are shared with each other.
  • the alkali metal breaks this covalent bond and exists in the state of an ionic bond in which the alkali metal neutralizes the free radical of oxygen.
  • the ionic bond has a weaker bond strength than the covalent bond, and as described above, in the glass container, the added alkali metal or alkaline earth metal elutes into the content liquid in the container over time. To do.
  • the amount of alkaline elution of glass containers used for pharmaceuticals is strictly specified by the Japanese Pharmacopoeia because the eluted alkali metals and the like affect the drug components.
  • FIG. 7 (b) is a diagram schematically showing the structure of the glass shown in FIG. 7 (a) after being subjected to the sulfer treatment in a planar state.
  • the sulfer treatment produces many free radicals 105 and causes many deficiencies in the siloxane bond.
  • the generation of free radicals 105 causes problems such as flakes (delamination) in which the physical strength of the glass surface deteriorates and the surface of the glass container peels off.
  • the method disclosed in the previous application is as follows. That is, the vials 20 having a capacity of 2 mL obtained as described in paragraphs 0053 and 0054 are subjected to the cleaning treatment as described in paragraph 0055 with two cleaning times of 10 seconds and 3 seconds selected. And, for those that were not cleaned, the maximum atmospheric temperature in the strain-removing furnace was controlled to be 670 ° C, and the strain was removed for 25 minutes (the time when the atmospheric temperature was 670 ° C or higher was 90 seconds, actually The temperature of the glass container was 670 to 700 ° C.), and the mixture was allowed to cool to room temperature.
  • the washing time is 10 seconds
  • the amount of eluted Na is 1/27 to 1/31 as compared with the case without washing.
  • the strain removal treatment (atmosphere temperature is 670 ° C.) is controlled for 25 minutes by controlling the target maximum atmospheric temperature in the strain relief furnace to be 670 ° C.
  • the above time is 108 seconds
  • the actual temperature of the glass container is 670 to 700 ° C.
  • the actual temperature of the glass container is 690 to 700 ° C. for 1 minute) with the glass container of Example 1.
  • Table 3 showing the atomic number ratio of the inner surface of the glass container of the comparative example in which the same heat treatment as in Example 1 was performed except that the cleaning treatment was not performed, and the table showing the weight ratio (% by weight) of the oxide film. 4 shows a result significantly different from that in Table 6. That is, in Table 3, Na has been shown to be reduced by 27% by performing the cleaning process, in Table 4, Na 2 O is to be decreased by 32% by performing the cleaning process shown Has been done. By comparing Tables 3 and 4 with Table 6, the temperature difference between "670 to 700 ° C.” disclosed in the previous application and "690 to 700 ° C.” in Example 1 of the present application is extremely large in the surface structure of the glass. It can be seen that it had a great influence on.
  • the difference between Tables 3 and 4 and Table 6 is considered to be derived from the actual temperature of the glass container after the cleaning treatment. That is, the siloxane bond between silicon and oxygen on the inner surface of the glass is strengthened by performing the heat treatment in which the actual temperature of the glass container is 690 to 700 ° C. for 1 minute, and the inner surface of free sodium inside the glass container is strengthened. It seems that the diffusion to the glass was suppressed.
  • Example 2 Therefore, in order to investigate the effect of the heating temperature on the structure of the glass, a glass tube made of borosilicate glass having a diameter of 16 mm and a length of 1 m 60 cm was used, and a vial having a capacity of 2 mL was obtained by the same method as in Example 1. .. Then, this vial was washed by the same method as in Example 1 except that the spray pressure of citric acid was set to 0.15 MPa or 0.10 MPa.
  • Strain elimination treatment for 25 minutes (the time when the atmospheric temperature is 655 ° C or higher is 180 seconds, the actual temperature of the glass container is 655 to 670 ° C, and the actual temperature of the glass container is 655 to 670 ° C.
  • the actual temperature of the glass container was 685 to 700 ° C.
  • the actual temperature of the glass container was 685 to 700 ° C. for 60 seconds)
  • the target in the strain-removing furnace In 180 seconds, the actual temperature of the glass container was 685 to 700 ° C., and the actual temperature of the glass container was 685 to 700 ° C. for 60 seconds), and 4) the target in the strain-removing furnace.
  • Distortion treatment for 25 minutes by controlling the maximum atmospheric temperature to 700 ° C (the time when the atmospheric temperature is 700 ° C or higher is 180 seconds, the actual temperature of the glass container is 700 to 710 ° C, the actual glass container.
  • the temperature of the glass container was 700 to 710 ° C. for 60 seconds), and 5) the target maximum atmospheric temperature in the strain-removing furnace was controlled to be 715 ° C for 25 minutes of strain-removing treatment (atmospheric temperature).
  • the time when the temperature is 715 ° C. or higher is 180 seconds, the actual temperature of the glass container is 715 to 730 ° C., and the actual temperature of the glass container is 715 to 730 ° C. for 60 seconds).
  • FIG. 8 is a diagram in which the heating temperature (° C.) is on the horizontal axis and the amount of Na eluted (ppm) is on the vertical axis based on the numerical values shown in Tables 7 and 8.
  • the heating temperature (° C.) on the horizontal axis of FIG. 8 indicates the target maximum atmospheric temperature (° C.) in the strain-removing furnace described in paragraph 0072.
  • the bar graph shown by the diagonal line on the left side shows the case where the citric acid spray pressure is 0.15 MPa
  • the bar graph shown by the dotted line on the right side shows the citric acid spray pressure. This is the case of 0.10 MPa.
  • FIG. 8 shows the case of 0.10 MPa.
  • the melting temperature of pure silica (SiO 2 ) represented by quartz is 2000 ° C. or higher, and it is extremely difficult to mold it into a glass container or the like. Therefore, in the production of practical glass, a certain amount of alkali metal such as sodium and potassium is added to cut the siloxane structure in silica everywhere to lower the melting temperature, and other materials such as boron, aluminum, calcium and barium. Together with the metal component, it is designed to impart temperature-viscosity characteristics that facilitate the molding of glass such as blow molding.
  • the behavior of the metal added for the production of practical glass as described above will be described below.
  • the added metal such as sodium cuts the siloxane structure everywhere and stays in the cut part in the state of ions to maintain the stability of the glass structure, but the ionic bond is as strong as the siloxane bond. Since it is not a bond, the movement of metals such as sodium becomes active at temperatures above the glass transition point.
  • the borosilicate glass used in the glass container of the present invention has excellent heat resistance and chemical resistance.
  • the molten glass surface is rich in silica.
  • a phenomenon called phase separation occurs that separates into phases of other metal oxides (oxides such as boron, sodium, and aluminum).
  • Metal oxides other than silica are concentrated and deposited on the glass surface where the phase separation phenomenon has occurred, which leads to deterioration of the glass surface.
  • a porous silicon dioxide (silica) phase exists on the glass surface where processing deterioration has occurred, and sodium, other metals, and their oxides are unevenly distributed in an island shape.
  • the glass container is heat-treated at 685 ° C to 710 ° C to vitrify the porous silica phase (siloxane bond between silicon and oxygen) and remain.
  • a metal such as sodium in the glass surface layer and immobilizing it in the siloxane structure of the surface layer portion in an ionic bond state, it is possible to obtain a structure having extremely little elution and high chemical durability.
  • the temperature is lower than 630 ° C to 650 ° C, the smoothing of the porous glass surface is insufficient, so that the metal such as sodium on the surface of the remaining pores is completely immobilized in the siloxane structure.
  • the temperature is higher than 730 ° C to 750 ° C, it is considered that the movement of metal ions from the deep layer of the glass container becomes active and the amount of alkali elution increases.
  • aluminum and boron which are other constituents of the borosilicate glass container of the present invention, are easily volatilized by heating during molding, like alkali metals and alkaline earth metals, so a considerable amount of aluminum and boron can be used. It adheres to and accumulates on the inner surface of glass during container molding. Aluminum and boron deposited on the inner surface of the glass are removed by a cleaning process under appropriate conditions, but aluminum and boron remaining in the container without being removed are subjected to a strain-removing process under appropriate conditions to form a glass network. It is firmly fixed in the glass structure.
  • the inner surface of the borosilicate glass container of the present invention is rich in silicic acid component and has a surface structure similar to that of quartz glass. Therefore, the borosilicate glass container of the present invention has no flakes or delamination on the surface, and the amount of alkaline component eluted from the glass surface is extremely small.
  • Example 3 Therefore, in order to confirm that the inner surface of the borosilicate glass container of the present invention does not generate phase separation and free radicals, and that silicon and oxygen existing on the inner surface are connected by a siloxane bond, further. , The following experiment was carried out.
  • the borosilicate glass container of the present invention is often used for storing medicines, and the medicines contain many chemical substances.
  • the amine compound has a high affinity for the borosilicate glass component and easily reacts with free radicals on the inner surface of the glass container.
  • a glass tube made of borosilicate glass having a diameter of 16 mm and a length of 1 m 60 cm was used, and a vial having a capacity of 2 mL was obtained by the same method as in Example 1. .. Then, this vial was washed by the same method as in Example 1 except that the spray pressure of citric acid was set to 0.2 MPa.
  • the target maximum atmospheric temperature in the strain removal furnace is controlled to be 685 ° C, and the strain is removed for 25 minutes (the time when the atmospheric temperature is 685 ° C or higher is 180 seconds, and the actual temperature of the glass container is 180 seconds. Is 685 to 700 ° C., and the actual temperature of the glass container is 685 to 700 ° C. for 60 seconds).
  • the glass container of Example 3-1 and Example 3-2 of the present invention and citric acid.
  • the glass containers of Comparative Example 3-1 and Comparative Example 3-2 were subjected to the same treatment except that they were not washed with purified water and drained, and these glass containers were allowed to cool to room temperature.
  • a constant concentration of low molecular weight (molecular weight is 100 or less) amine solution is injected into each glass container, and immediately after the injection of the low molecular weight amine solution (within 5 minutes), 1 week, 1 month, and 3 months later.
  • the amine concentration (%) in the glass container was measured with an infrared spectrophotometer.
  • Table 9 for low molecular weight amine solution A
  • Table 10 for low molecular weight amine solution B
  • the low amine concentration of the amine solution in the container measured by the infrared spectrophotometer means that the amine in the solution decreased due to the combination of free radicals abundant on the inner surface of the container and the amine in the solution. Is shown.
  • the high amine concentration of the amine solution in the container measured by the infrared spectrophotometer means that the amine in the solution is preserved because there are no free radicals on the inner surface of the glass container, and at the time of the first injection. Indicates that the state of is maintained or is very close to the state at the time of the first injection.
  • the borosilicate glass container of the present invention has an amine concentration of 100% in the amine solution immediately after injection of the low molecular weight amine solution (within 5 minutes). It can be seen that there are no free radicals on the inner surface of the borosilicate glass container.
  • Example 3 No phase separation was observed on the inner surface of the body of the glass containers of -1 and 3-2, but on the inner surface of the body of the glass containers of Comparative Examples 3-1 and 3-2, as shown in FIG. 6 (b). It was confirmed that a good phase was seen.
  • a glass container suitable as a container for storing pharmaceuticals, foods or cosmetics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Hematology (AREA)
  • Mechanical Engineering (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

化学的耐久性に優れたガラス容器を提供する。内表面に形成された酸化物被膜がSiOを主とする酸化物被膜である。

Description

ガラス容器
 本発明は、例えばアンプル、管瓶などの例えば医薬品、食品又は化粧品製品等を収納するガラス容器に関する。
 医薬品、食品、化粧品等を収納する管瓶、バイアル、アンプル、シリンジ等のガラス容器はガラス管を加熱下に成形加工して製造される場合が多い。その典型的な成形加工法として、縦型成形方法がある。この方法は、一定の径を有し、両端が開放されたガラス管を垂直に立て、口部となる下端部を加熱して軟化させ所望の形状に加工して成形し、次いで、該ガラス管を所望の長さに切断後、ガラス容器の底部を形成して目的とするガラス容器を製造するものである。切断された残部のガラス管はガラス容器を1個製造した分だけ短くなり、前記作業を繰り返すことによって、ガラス容器を大量生産することができる。この方法は機械を用いて自動的に行われ、通常は縦型成型機が用いられる。
 しかしながら、このようにして製造されるガラス容器に、例えば液状の医薬等を収納すると、ガラス容器の内側のガラス表面からガラスの構成成分が溶出して、医薬品等が汚染され、例えば、ガラス構成成分中のアルカリ金属がpH値を上昇させるなど、また場合によってはガラス表面から溶出したガラス構成成分が内容液と反応して沈殿物が発生することで、内容液の品質が損なわれるという問題があった。
 これらの問題を解決するために、成形加工時の加熱温度をできるだけ低く抑えることでガラスの加工劣化を少なくする方法を採用したり、ガラス容器を製造後、ガラス内表面をコーティングする方法(例えば、特許文献1参照)を採用したり、ガラス内表面に硫酸アンモニウムを用いたサルファー処理を施す方法を採用したりしていた。
 しかし、これらのガラス表面のコーティング処理、サルファー処理あるいは低温加熱によるガラス管の加工は工程が煩雑化したり、ガラス容器の製造原価が高くなる原因となっていた。また、従来から行われている方法では、化学的耐久性に優れたガラス容器を得ることはできなかった。
 そこで、本発明者は、化学的耐久性に優れたガラス容器の製造方法について、先に出願した(特許文献2)。この特許文献2には、ガラス管を加熱下に成形加工してガラス容器を得るガラス容器の製造工程と、ガラス容器の製造工程で得たガラス容器の内面を洗浄液で洗浄する洗浄工程と、洗浄工程で洗浄したガラス容器を加熱昇温した後に冷却して除歪する除歪工程からなるガラス容器の製造方法が記載されている。特許文献2には、除歪操作を行う前にガラス容器の内面を洗浄液で洗浄したところ、内面のガラス表面からのアルカリ成分の溶出が極めて少ないガラス容器を製造しうることを見出したと記載されている。従って、特許文献2には、洗浄工程は、ガラス容器の内表面からのアルカリ成分の溶出を抑制するために重要な工程であることは記載されている。しかし、単に、ガラス容器の内面を洗浄するといっても、洗浄手段は多岐にわたり、しかも、ガラスの表面特性を考慮した洗浄プロセスでなければ、十分な洗浄効果を挙げることはできない。この点で特許文献2には、洗浄プロセスに関する充分な検討がなされたことが記載されていない。また、除歪工程は、ガラス管からガラス容器を得るときの熱履歴による歪みを除去するために必要であることは記載されている。しかし、除歪工程はガラス容器を一定時間加熱する以上、単に歪みを除去するだけでなく、後記するように、化学的耐久性に優れたガラス容器を得るうえで極めて重要な工程であるが、特許文献2には、その点について全く記載されていない。
特開平5-132065号公報 特許第6159304号公報
 医薬用や食品用や化粧品用のガラス容器の製造においては、製造されたガラス容器に、例えば、薬液等を充填した後の加熱滅菌工程や、保管中に液との反応によりガラス表面からアルカリ成分等の溶離成分が溶出しないかあるいは極くわずかしか溶出しないガラス容器の提供が望まれる。
 本発明は、このような従来の技術の有する問題点に鑑みてなされたものであって、その目的は、化学的耐久性に極めて優れたガラス容器を提供することにある。
 本発明者等は、上記の課題を解決するために鋭意検討を重ねた。その結果、垂直に立てたガラス管の下端を例えばガスバーナー等で加熱して軟化させ、所望の形状に成形加工するときに加熱によってガラス質が変質し、加熱されたガラスからガラスの揮発成分(例えば、NaO、KO、Bなど)が発生し、これらの揮発成分がガラス管の開放された下端と上端の間の空間部を煙突効果によって上昇する際に、これらの揮発成分がガラス管内面に付着することでアルカリ成分を形成し、この付着したアルカリ成分がガラス容器製造後にガラス表面から溶出するとの知見を得た。
 さらに本発明者等は、上記縦型成形方法によりガラス管からガラス容器を得た後、熱履歴による歪みを除去するための除歪操作を行う前に、ガラス容器の内面を洗浄液で洗浄したところ、内面のガラス表面からのアルカリ成分の溶出が極めて少ないガラス容器を製造しうることを見出した。
 しかし、ガラス容器の内面を洗浄するといっても、洗浄手段は多岐にわたり、ガラスの表面特性を考慮した洗浄プロセスでなければ、十分な洗浄効果を挙げることはできない。
 本発明はガラス容器に関するものであるから、まず、ガラスについて説明する。ガラスという言葉は、一般にガラス状態にある物質をいうが、普通は珪酸塩ガラスを指していることが多い。網目状高分子であって、網目形成体となる酸化珪素(SiO)の網目状構造の中に網目修飾体あるいは網目修飾イオンといわれるアルカリ金属(Na、K、Li)やアルカリ土類金属(Ca、Mg、Ba)などが部分的に入って安定な構造をとる。結晶化ガラスを除いて、規則性は網目のごく狭い距離にしか及んでいない。網目形成体(イオン)はSi以外にB、P、Ge、As、Vなどがあり、これらの酸化物と酸化珪素がいっしょになった硼珪酸系ガラスなどがある。また、網目形成と網目修飾の両方の役割をする中間酸化物のイオンとして、Al、Ti、Zrなどがある。ガラスの種類は多く、700以上ある。その中で、一般的に使われているガラスは、以下の5つに分類することができる。石英ガラス、ソーダ石灰ガラス、硼珪酸ガラス、鉛ガラス、フッ化物ガラスである。この中で、硼珪酸ガラスは硼酸と珪酸が共重合した網目をもち、珪酸だけの場合に比べてアルカリ金属が少なくてもガラス化が容易となる。硼珪酸低アルカリガラスは膨張係数が3×10-6/Kで小さく、モース硬さは約7で比較的硬く、耐食性が大きいため、理化学器具用、医学器具用、薬品容器用などに好適である。本発明のガラス容器の素材としては、硼珪酸ガラスが好ましい。
 このようにガラスの種類は多く、多岐にわたる用途が存在し、一般的には化学的に安定であると考えられている。しかしながら、ガラスの表面は本来親水性であって、化学的活性に富み、また水素結合などの分子間吸引力によって水分や汚れを吸着する力が強い。また、電気的不良導体であるため、汚れを吸着する力が強い。例えば、ガラスを大気中に放置するとガラスの表面が外部雰囲気と反応し、表面層の組成変化を伴う変質が生じる。その結果、ガラスの透明性が損なわれることになる。この現象は、ガラスの“やけ”として古くから知られている。従って、ガラスの素地に悪影響を与えないで所望の清浄度のガラス容器を洗浄によって得ることは容易でないと言える。
 このようなガラス容器の洗浄液としては、代表的には、酸又はアルカリを用いることができる。以下の表2は、表1に示すガラス組成(重量%)を有する、ソーダ石灰ガラスと硼珪酸ガラスと石英ガラスの酸とアルカリによる重量減少(95℃、24時間(mg/cm))を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、5%水酸化ナトリウムに対する重量減少が最も多いのは、硼珪酸ガラスである。これは、主成分であるシリカが珪酸ナトリウムになって溶出するためである。アルカリへの溶出速度は時間に正比例し、pHが1上がるごとに約2倍となり、温度が10℃上がるごとに約2倍となる。従って、100℃では、室温の約250倍の溶出速度になる。
 一方、5%塩酸に溶出するのは、主にガラス中に含まれるアルカリ、アルカリ土類成分であり、シリカ成分はほとんど溶解しない。このため、水酸化ナトリウムへの溶出と違い、溶出量は少ない。酸への溶出速度は時間の平方根に比例し、アルカリへの溶出速度よりかなりゆるやかである。pHが1下がっても、溶出速度は1.2倍程度にしかならない。酸による浸食がアルカリのそれよりも遅いことは、表2から分かる。また、塩酸と有機酸を比べると、有機酸への溶出量が少ないことが知られている。
 従って、本発明においては、洗浄液として、ガラス成分の浸食が比較的ゆるやかな有機酸を用いるのが好ましい。
 また、一般に、ガラス表面には、シラノール基(SiOH)に代表される水酸基が存在し、この水酸基が物質の吸着基点として作用すると考えられる。従って、ガラス容器の内面を洗浄液で洗浄する洗浄工程の後、引き続く除歪工程までの時間が長いとガラスの表面特性が変化することがある。すなわち、洗浄工程と除歪工程のあいだの時間は、30分以内とするのが好ましい。さらに、洗浄効果を上げるために、洗浄液の噴霧圧は、0.05MPa以上とするのが好ましい。
 さらに、硼珪酸ガラスは、ガラス転移点以上の温度に長時間加熱すると、イオン結合が支配的な極性相(NaO、Bなど)と共有結合が支配的なシリカ相の2相に分かれることがある(分相)。図6(a)は、ガラス転移点以上の温度に長時間加熱する前の硼珪酸ガラスの断面の一例を示す概略図であり、ガラスの構成成分は均質であり、網目形成体の網目状構造の中に網目修飾体が部分的に入っている、安定な構造を有する。図6(b)は、硼珪酸ガラスが分相化した状態の断面の一例を示す概略図である。図6(b)において、太い黒線で示した部分は極性相(NaO、Bなど)を示し、この極性相を除く領域がシリカ相である。2相構造に分相したガラスは化学的耐久性が低い。
 そこで、本発明者は、分相を生じにくくさせる条件について検討を重ねた。その結果、化学的耐久性に優れたガラス容器を得るためには、特許文献2に記載されたガラス容器の製造方法において、洗浄工程で洗浄したガラス容器を加熱昇温した後に冷却して除歪する除歪工程の加熱温度が極めて重要であることを知見した。
 本発明者は、上記知見に基づいて、除歪工程の加熱温度を適正に管理することによって、分相及びフリーラジカルを生じることなく、化学的に安定であるSiOを多量に含有する均質な被膜がガラス容器の内表面に形成されることを知見した。
 すなわち、本発明の化学的耐久性に極めて優れた硼珪酸ガラス容器は、例えば、以下のようにして製造することができる。硼珪酸ガラスからなるガラス管を加熱下に成形加工してガラス容器を得るガラス容器の製造工程、ガラス容器の製造工程で得たガラス容器の内面を、水、酸の水溶液、界面活性剤水溶液または界面活性剤を添加した酸の水溶液からなる洗浄液で洗浄する洗浄工程、および洗浄工程で洗浄したガラス容器を加熱昇温した後に冷却して除歪する除歪工程を含むガラス容器の製造方法において、洗浄工程におけるガラス容器の温度を30~150℃、噴霧圧が0.05MPa以上である洗浄液による洗浄時間を10~15秒とし、洗浄工程と除歪工程の間の時間を30分以内とし、除歪工程におけるガラス容器の実際の温度が685℃から710℃である時間を1分間確保するように制御することによって、本発明の化学的耐久性に極めて優れた硼珪酸ガラス容器を製造することができる。
 このように化学的耐久性に極めて優れた本発明の硼珪酸ガラス容器は、以下の発明から構成される。
(1)内表面に形成された酸化物被膜がSiOを主とする酸化物被膜であることを特徴とする硼珪酸ガラス容器である。
(2)本発明において内表面とは、X線光電子分光分析法(XPS)における検出深さ(1~10nm程度)をいう。ガラス容器内面表層部の成分組成が化学的耐久性を高めるうえで、決定的に重要だからである。
(3)内表面に形成される酸化物被膜中のSiOは、80~92重量%であることが好ましい。SiO被膜が80重量%未満では、十分な化学的耐久性が得られない。より好ましくは、SiO被膜は85重量%以上である。ガラス容器が硼珪酸ガラス製である場合、SiO以外の酸化物被膜がガラス容器内表面に8重量%程度存在することは避けられないので、内表面に形成される酸化物被膜中のSiOの上限値は92重量%である。
(4)内表面に形成されるSiO以外の酸化物被膜は、NaO、KO、CaO、BaO、BおよびAlから選択される1以上の酸化物の被膜であることが好ましい。
(5)硼珪酸ガラス容器の内表面に分相が生成せず、フリーラジカルが存在しないことが好ましい。すなわち、容器本体は硼珪酸ガラスの特性を有するが、容器の内表面は、珪素と酸素が強固な共有結合であるシロキサン結合で結合されたシロキサン構造であって、アルカリ金属又はアルカリ土類金属等は上記シロキサン構造中でフリーとなった酸素のラジカルを完全に中和する状態で、イオン結合で固定されていることが好ましい。(図7(c)参照)
(6)硼珪酸ガラス容器は、医薬品、食品または化粧品収納用であることが好ましい。
(7)硼珪酸ガラスからなるガラス管を加熱下に成形加工してガラス容器を得るガラス容器の製造工程、ガラス容器の製造工程で得たガラス容器の内面を、水、酸の水溶液、界面活性剤水溶液または界面活性剤を添加した酸の水溶液からなる洗浄液で洗浄する洗浄工程、および洗浄工程で洗浄したガラス容器を加熱昇温した後に冷却して除歪する除歪工程を含む製造方法によって製造されるガラス容器であって、洗浄工程におけるガラス容器の温度を30~150℃、噴霧圧が0.05MPa以上である洗浄液による洗浄時間を10~15秒とし、洗浄工程と除歪工程の間の時間を30分以内とし、除歪工程におけるガラス容器の実際の温度が685℃から710℃である時間を1分間確保するように制御することによって製造される(1)ないし(6)のいずれかに記載のガラス容器である。
 本発明の硼珪酸ガラス容器は、内表面に分相が生成せず、且つフリーラジカルが存在せず、フレークスやデラミネーションがなく、内表面に存在する珪素と酸素がシロキサン結合で結合されているので、ガラス内表面からのアルカリ成分の溶出量が極めて少なく、内容物である薬剤等の変質が抑制されて、所定の品質を確実に保持することができる。
図1(a)はガラス容器の内面にアルカリ質の溶離性成分が付着した状態を示す模式図、図1(b)は内面に付着したアルカリ質の溶離性成分を除去した後のガラス容器を示す模式図、図1(c)は図1(b)に示す内面を有するガラス容器を加熱した後の状態を示す模式図である。 図2は、本発明の硼珪酸ガラス容器を製造する方法の一例を小工程毎に示す模式図である。 図3は、本発明の硼珪酸ガラス容器を製造する方法に好適に用いられる製造装置の一例を示す模式図である。 図4は、洗浄機でバイアルを洗浄する様子を示す概略構成図である。 図5(a)は本発明の硼珪酸ガラス容器の一実施形態の概略断面図、図5(b)は比較例のガラス容器の概略断面図である。 図6(a)はガラス転移点以上の温度に長時間加熱する前の硼珪酸ガラスの断面の一例を示す概略図、図6(b)は硼珪酸ガラスが分相化した状態の断面の一例を示す概略図である。 図7(a)は一般的に使用されているシリカを含有するガラスの構造を平面状態で模式的に示す図、図7(b)は図7(a)に示すガラスにサルファー処理を施した後のガラスの構造を平面状態で模式的に示す図、図7(c)は本発明の硼珪酸ガラス容器の内表面の構造を平面状態で模式的に示す図である。 図8は、本発明の硼珪酸ガラス容器を製造する場合の除歪工程の加熱温度によるNa溶出量を比較する図である。
 本発明の硼珪酸ガラス容器の材料として使用されるガラス管は、特に制限はないが、例えば硼珪酸ガラスからなるガラス管が好ましい。ガラス管の断面は、通常真円状であるが、楕円形状等その他の形状でもよい。ガラス管の直径は特に制限はないが、通常は10~100mm程度である。ガラス管の長さも特に制限はないが、通常1~5m程度でよい。ガラス管は無色透明でもよいし、例えば褐色等に着色されていてもよい。
 このようなガラス管を用いてガラス容器を製造する方法は従来充分に確立されているので、本発明の硼珪酸ガラス容器もそれに従って製造することができる。
 例えば、一定の直径を有し両端が開放されたガラス管を垂直に立て、通常は加熱手段を備えた縦型成型機に下端部を挿入し、例えば、温度約1500~1800℃のガスバーナーで加熱して、所望の管瓶の形状に成形し、次いで成形物と残部の上方に延びているガラス管とを加熱下に切り離すと共にガラス瓶と底部を形成する。次いで、切り離されたガラス管の下端を断面がもとの真円となるように成形加工する。成形加工後のガラス容器の温度は通常約300~400℃となる。
 この操作を繰り返すことによって、ガラス容器を量産することができる。この際、通常、上記したように、加熱によってガラス質が変質してガラスの揮発成分(例えばNaO、KO)が、ガラス管の開放された下端と上端の間の空間部を煙突効果によって上昇してガラス管内面に付着し、アルカリ質の溶離性成分を形成すると考えられる。
 本発明は、上記ガラス容器の製造工程の後、次に詳述するガラス容器の洗浄工程を経ることによって、ガラス管内面に付着したアルカリ質の溶離性成分を除去又は低減し、さらに、洗浄工程後のガラス容器を30分以内に除歪工程に付し、適切な加熱温度に制御した除歪処理をガラス容器に施すことによって、内表面に分相が生成せず、且つフリーラジカルが存在せず、フレークスやデラミネーションがなく、内表面に存在する珪素と酸素がシロキサン結合で結合されている硼珪酸ガラス容器を提供することができる。
 本発明の硼珪酸ガラス容器は、ガラス容器の製造工程で得たガラス容器の内面を、水、酸の水溶液、界面活性剤を含有する水溶液または界面活性剤を添加した酸の水溶液などの洗浄液を用いて洗浄することが好ましい。
 成形加工後の上記約300~400℃のガラス容器を、必要により、例えば大気温度下に放冷し、好ましくは150℃以下のガラス容器を洗浄液で洗浄する。ガラス容器の温度が高い程、ガラス容器内面に付着した溶離性成分の除去又は低減効果は高いと考えられるが、高温のガラス容器に洗浄液を接触させるとガラス容器が破損するおそれがある。また、洗浄時のガラス容器の下限温度は、洗浄効率を考慮して、好ましくは30℃以上とされる。また、洗浄時間は、10秒未満では洗浄が不十分であり、15秒を超えると生産性が低下するので、約10~15秒が好ましい。
 洗浄工程における洗浄液の温度は限定されないが、約30~100℃の洗浄液を用いることが好ましく、約40~70℃の洗浄液を用いることがより好ましい。この範囲内であれば、本発明の目的とする化学的耐久性に極めて優れたガラス容器を得ることができる。
 洗浄液としては、水、酸の水溶液、界面活性剤を含有する水溶液または界面活性剤を添加した酸の水溶液が好ましく用いられ、ガラス容器内表面に付着したアルカリ質の溶離性成分の溶解性が高い点で、酸の水溶液または界面活性剤を添加した酸の水溶液がより好ましい。
 酸の水溶液に用いられる酸は有機酸と無機酸に大別される。有機酸の例としては、蟻酸、酢酸、シュウ酸、フタル酸およびクエン酸等を挙げることができ、また、無機酸の例としては、塩酸、硫酸および硝酸等を挙げることができる。これらの酸は、1種または2種以上を併用してもよい。上記した理由により、有機酸が好ましく、洗浄効果および取扱い性の面からクエン酸、シュウ酸が好ましく用いられる。有機酸は、残滓が生じても除歪工程で二酸化炭素と水に燃焼分解するため、ガラス表面が非常に清浄に保たれる点で好ましく、中でもクエン酸が好ましく用いられる。
 酸の濃度が高いほど、アルカリ成分の溶解性が高い傾向にあるが、廃液の処理を含めた取扱い性の点から、通常、酸の濃度は約0.005~1.0モル/L、好ましくは約0.01~0.1モル/Lとされる。
 上記洗浄液の中で界面活性剤を含有する水溶液または界面活性剤を添加した酸の水溶液に用いられる界面活性剤は、特に限定されるものではないが、好ましい界面活性剤としては、ノニオン系界面活性剤が挙げられる。ノニオン系界面活性剤は、ポリエチレングリコール型と多価アルコール型に大別され、ポリエチレングリコール型としては、高級アルコール、脂肪酸、油脂、ポリプロピレングリコールもしくはアルキルフェノールのエチレンオキサイド付加物や、多価アルコール脂肪酸エステル、高級アルキルアミンもしくは脂肪酸アミドのエチレンオキサイド付加物等が挙げられ、多価アルコール型としては、グリセロール、ペンタエリスリトール、ソルビトールもしくはショ糖の脂肪酸エステルや多価アルコールのアルキルエーテル等が挙げられる。界面活性剤の濃度は本発明の目的と効果を妨げない範囲で適宜選択すればよい。
 上記洗浄液を用いてガラス容器の内面を洗浄液で洗浄するには、通常、ガラス容器を適宜の治具に挿入又は吊り下げなどした状態で、ガラス容器の口部から底部に向けて、例えばノズルから洗浄液を、通常、圧力をかけて吹き上げ噴霧することにより行う。ノズルの洗浄液噴霧口を、例えば、洗浄液と同時に圧搾空気を吐出し得るようにして、洗浄液の噴霧圧を高めるのが好ましい(ジェット噴霧洗浄とも称される)。具体的には、洗浄液の噴霧圧は、0.05MPa以上であるのが好ましい。噴霧圧が高すぎても洗浄効果が飽和するので、噴霧圧の上限は0.5MPa程度である。
 洗浄液として水以外の洗浄液を用いる場合は、洗浄液による洗浄後、清浄な水によるすすぎの工程、及び、例えば空気の吹き込みによる十分な水切りの工程を経て、洗浄工程が終了する。
 また、上記ガラス容器の製造工程では、微量ではあるがガラス容器の外面に上記ガラスの揮発成分が付着することもあり得るので、洗浄液による洗浄をガラス容器の内面の他に、ガラス容器の外面に行ってもよい。
 なお、上記洗浄液によるガラス容器の内面の洗浄は、超音波洗浄で行ってもよい。超音波洗浄の場合、通常、上記の洗浄液を用いて、内面だけでなくガラス容器全体を洗浄し、すすぎ洗浄を行う。超音波洗浄を採用するか否かは、後述する縦型成型機、洗浄機および除歪炉などの生産ライン全体のレイアウトを考慮して決定される。
 本発明におけるガラス容器の除歪工程は、洗浄工程で洗浄したガラス容器を、目標最高雰囲気温度が685~700℃となるように制御されている除歪炉に送給して、ガラス容器の実際の温度が685℃から710℃である時間を1分間確保するように加熱昇温した後に冷却することにより行われる。洗浄後の約30~80℃のガラス容器を除歪炉内で加熱昇温した後に約300℃まで冷却することからなる除歪処理の全時間、すなわち、除歪炉内での在炉時間(除歪時間)は、3分~40分とされる。このような除歪処理により、ガラス管からガラス容器に成形加工した際の熱履歴に基づくガラス容器に残存する歪みが除去されると同時に、ガラス内表面に分相が生成せず、且つフリーラジカルが存在することなく、化学的に安定であるSiOを多量に含有する均質な被膜を内表面に形成し、フレークスやデラミネーションがなく、内表面に存在する珪素と酸素がシロキサン結合で結合されているガラス容器を得ることができる。
 本発明の硼珪酸ガラス容器は内表面の構造に特徴があり、特徴ある構造の内表面を備えた硼珪酸ガラス容器を得るためのプロセスを分かりやすく説明すれば、次のとおりである。
(1)ガラス管内面へのアルカリ質の溶離性成分の付着
 上記のように、ガラス管を温度約1500~1800℃のガスバーナーで加熱して、所望の管瓶の形状に成形するときに、加熱によってガラス質が変質してガラスの揮発成分(例えばNaO、KO)が、ガラス管の開放された下端と上端の間の空間部を煙突効果によって上昇してガラス管内面に付着し、アルカリ質の溶離性成分を形成する。図1(a)は、ガラス管1の内面2にアルカリ質の溶離性成分3が付着した状態を示す模式図である。
(2)洗浄によるアルカリ質の溶離性成分の除去
 洗浄によってアルカリ質の溶離性成分を除去することはできるが、洗浄の結果、図1(b)に示すように、ガラス容器4の内面5は微視的に平坦でなくなる。
(3)成形加工時の熱履歴に基づく残存歪みの除去
 アルカリ質の溶離性成分を除去した後のガラス容器を加熱することによって残存歪みを除去することができる。また、原子の拡散によって、図1(c)に示すように、ガラス容器4の内面5の平坦度も改善される。しかし、ガラス容器の加熱条件によっては、図6(b)に示すような分相状態が生成する。そこで、分相状態を生成しないために、ガラス容器の加熱条件が非常に重要である。
(4)ガラス容器の内面の形成
 硼珪酸ガラスは、ガラス転移点以上の温度に長時間加熱すると、分相化することがある。また、加熱温度が高すぎると、ガラス容器に変形やシワが発生する。そこで、加熱条件の選択が極めて重要である。
 そこで、685~700℃の目標最高雰囲気温度となるように制御されている除歪炉において、ガラス容器の実際の温度が685~710℃である時間を1分間確保するように制御することによって、本発明のガラス容器を製造することができる。685~710℃である時間が1分間であれば、内表面に分相が生成せず、且つフリーラジカルが存在せず、内表面に存在する珪素と酸素がシロキサン結合で結合されており、ガラス表面が変形したり、シワが発生することなく、熱履歴に基づく残存歪みが除去されて、内外表面がほぼ平滑なガラス容器を製造することができる。
 ガラス容器自体の温度が長時間(10分以上)にわたって700℃を超えると、ガラス表面が変形したり、シワが発生することがある。一方、除歪炉の最高雰囲気温度が650℃未満で制御されると、ガラス容器自体の温度が600℃を下回りやすく、ガラス化が不十分となることがある。
 本発明によって、アルカリ成分等の溶出量が極めて少ないガラス容器が提供される。
 製造されたガラス容器に収納される医薬品、食品、化粧品はどのような形状でもよい。例えば、固状、液状、気体状のいずれでもよく、医薬品を例にとると、錠剤、液剤、顆粒剤、散剤、粉剤、軟膏剤、スプレー剤、パウダー剤、ジェル剤等どのような形状、性状でもよい。食品や化粧品についても同様にどのような形状、性状でもよい。
 本発明の硼珪酸ガラス容器は化学的耐久性に極めて優れており、ガラス表面からのアルカリ成分の溶出量が極めて少ないので、収納される内容液の導電率は極めて低く、例えば、精製水用容器、滅菌精製水用容器または注射用水用容器として好適である。第16改正日本薬局方の第731頁には、容器入精製水、容器入滅菌精製水または容器入注射用水の導電率に関して、内容量が10mL以下の容器の場合、その導電率(25℃)は25μS/cm以下と規定され、内容量が10mLを超える容器の場合、その導電率(25℃)は5μS/cm以下と規定されているが、本発明の硼珪酸ガラス容器によれば、上記規定を充分に満足することが可能である。
 以下に本発明の実施例を説明するが、本発明の技術的範囲を逸脱しない範囲において、様々な変更や修正が可能であることは言うまでもない。
[実施例1]
 外径16mm、長さ1m60cmの硼珪酸ガラス製のガラス管を使用し、以下の方法により、容量2mLのバイアルを得た。まず、図2の(1)に示すようにガラス管11の端部を上にして管瓶の縦型成型機12に挿入し、下端部をガスバーナーで加熱してガラスを軟化させ、瓶の開口部分の形状となるように成形加工した。以下、より詳しく図2に基づいて工程順に説明する。
(1)ガラス管11の下端部を1200~2000℃のフィッシュテールバーナー13で加熱した。
(2)ローラー14とプランジャー15とを用いて肩部を成形した。
(3)1200~2000℃のポイントバーナー16で加熱した。
(4)ローラー14とプランジャー15とで口部を成形した。
(5)全高板17を用いて瓶高さを決定した。
(6)温度1200~2000℃のカットバーナー18を用いてカットした。
(7)ポイントバーナー16を用いて底部を均質化した。
(8)エアー19を吹き込み、1200~2000℃のポイントバーナー16を用いてバイアル20の底部成形を完成した。
 このようにして得られたバイアル20を、ネットコンベアー21上に載置された治具に挿入した状態(図3)で洗浄機22に搬送し、大気温下に放冷し(図2における(9)冷却工程)、約30℃のバイアルの内表面をシリンジを使用して10mLの25℃の洗浄液(クエン酸)で10秒間吹き上げ洗浄(クエン酸の噴霧圧0.2MPa)を行い(図2における(10)洗浄工程)、さらに、精製水で10秒間吹き上げ洗浄(0.2MPa)を行った後、エアー19を吹き込んで十分に水を切った(図2における(11)水切り工程)。尚、図3では細部を省略しているが、バイアル20は、ネットコンベアー21によって洗浄機22および除歪炉24に搬送可能とされている。
 図4は、洗浄機22でバイアル20を洗浄する様子を示す概略構成図である。図4において、31はマニホールド、32はノズル、33はニードルバルブ、34は流量計、35は圧力計、36はポンプ、37は洗浄液の貯槽である。ニードルバルブ33の開度を調整することにより、洗浄液の噴霧圧を調節することができる。
 クエン酸と精製水による洗浄及び水切りが終了した約25℃のバイアル20を、30分以内にバーナーヒーター23を備えた加熱炉有効長5mの除歪炉24に搬送し(図2における(12)除歪工程)、除歪炉内の目標最高雰囲気温度が670℃となるように制御して25分間除歪処理(雰囲気温度が670℃以上である時間は108秒で、ガラス容器の実際の温度は670~700℃で、ガラス容器の実際の温度が690~700℃である時間が1分間)を行った硼珪酸ガラス製の実施例1のガラス容器を得、このガラス容器を常温まで放冷した。なお、除歪炉24は、入口側と出口側が開放されているので、除歪炉内に設けた熱電対で感知される除歪炉内の雰囲気温度を、例えば670~700℃としても、入口側や出口側はこの温度よりも低くなる。また、除歪炉内の雰囲気温度は3箇所に設置した熱電対で測定し、そのうちの1つの熱電対で測定した温度が目標温度となるように、バーナーヒーター23をオン・オフ制御した。さらに、ガラス容器の実際の温度はガラス容器に融着させた熱電対により測定した。
 また、段落0055に記載したクエン酸と精製水による洗浄を行わなかった以外は、実施例1と同じ工程を経て、比較例1の硼珪酸ガラス製のガラス容器を得た。以下の表3は、X線光電子分光分析法によって測定された実施例1のガラス容器と比較例1のガラス容器の内表面の原子数比を示し、以下の表4は、母材である硼珪酸ガラスの成分組成(重量%)と、実施例1のガラス容器と比較例1のガラス容器について表3の原子数比に基づいて求められたガラス容器内表面に形成された酸化物被膜の比率(重量%)を示す。表4に示すように、本発明の実施例1のガラス容器内表面に形成された酸化物被膜の88.6重量%がSiO被膜であって、酸化物被膜のほとんどを占めることが分かる。X線光電子分光分析法とは、超高真空下で試料表面に軟X線を照射することによって光電効果により試料表面から真空中に放出された光電子の運動エネルギーを観測して、試料表面の元素組成や化学状態に関する情報を得ることができる分析法である。具体的には、次式によって必要な情報を得ることができる。E=hv-Ekin-φ(Eは束縛電子の結合エネルギー、hvは軟X線のエネルギー、Ekinは光電子の運動エネルギー、φは分光器の仕事関数である)。ここで、束縛電子の結合エネルギー(E)は元素固有のものであるから、光電子のエネルギースペクトルを解析すれば、物質表面に存在する元素の同定が可能となる。さらに、ピーク面積比を用いることにより、元素を定量することができる。光電子が物質中を非弾性散乱することなく進む距離(平均自由工程)は1~10nm程度であるため、本分析手法による検出深さは1~10nm程度である。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 その後、図5(a)に示すように、上記実施例1において常温まで放冷することによって得た硼珪酸ガラス製の実施例1のガラス容器40に0.7mLの精製水40aを注入した後、121℃で60分間、オートクレーブ処理を行った。41はゴム栓である。また、外径16mm、長さ1m60cmの硼珪酸ガラス製のガラス管から段落0053と0054に記載したのと同じようにして得た、図5(b)に示すような円柱形状の容量2mLの比較例2の硼珪酸ガラス製のガラス容器50にも0.7mLの精製水50aを注入した。51aと51bはゴム栓である。そして、これらのガラス容器内の精製水について、精製水注入後1時間経過時点、精製水注入後4時間経過時点および精製水注入後8時間経過時点において、原子吸光分光光度計を用いて、溶出Na量(ppm)を測定し、誘導結合プラズマ発光分光分析計を用いて、溶出B量(ppm)と溶出Al量(ppm)と溶出Si量(ppm)と溶出Ca量(ppm)と溶出Ba量(ppm)を測定した。その結果、以下の表5に示すような測定結果を得た。精製水をガラス容器に注入するのは、例えば、ガラス容器に医薬品(例えば、液剤、凍結乾燥製剤、粉剤)を収納したときに、ガラス容器内面がどの程度の期間で劣化するかを見積もるための加速試験の意味を有しており、精製水注入後1時間経過時点は1.6年に相当し、精製水注入後4時間経過時点は8年に相当し、精製水注入後8時間経過時点は13年に相当する。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、内表面にSiOを主とする酸化物被膜が形成された本発明の実施例1の硼珪酸ガラス容器は、アルカリ成分の溶出量が極めて少なく、化学的耐久性に極めて優れていることが分かる。また、実施例のガラス容器の内表面に分相が生成せず、且つフリーラジカルが存在せず、フレークスやデラミネーションがないことを電子顕微鏡によって確認した。
《シリカを含有するガラスの構造》
 理想的なガラスは、石英ガラスと総称されるシリカ100%のガラスであるが、シリカ100%のガラスは融点が2000℃以上と非常に高温で成形も困難である。そこで、一般的に使用されているシリカを含有するガラスは、これを改善するために、ナトリウムやカリウムなどのアルカリ金属を添加することでシリカのシロキサン結合を切断し、融点を下げるとともに成形がしやすいようにしている。さらに、添加したアルカリ金属を安定的にガラス中に保持するために、カルシウムやアルミニウムなどの元素を加えている。図7(a)は、一般的に使用されているシリカを含有するガラスの構造を平面状態で模式的に示す図である。図7(a)において、100は珪素、101は酸素、102aはアルカリ金属、102bはアルカリ土類金属、103は共有結合、104はイオン結合を示す。すなわち、珪素100と酸素101は共有結合103で結ばれ、アルカリ金属102a又はアルカリ土類金属102bと酸素101はイオン結合104で結ばれている。しかし、すべてのアルカリ金属102a又はアルカリ土類金属102bが酸素と結ばれているのでなく、遊離しているアルカリ金属102a又はアルカリ土類金属102bも存在する。
《サルファー処理を施した後のガラスの構造》
 ガラスの主成分であるシリカは珪素と酸素が原子の最外殻電子を互いに共有する共有結合で結合し、強固なシロキサン結合を呈している。アルカリ金属はこの共有結合を切断し、フリーとなった酸素のラジカルをアルカリ金属が中和するイオン結合の状態で存在している。イオン結合は共有結合と比較して結合の強度が弱く、上記のように、ガラス容器においては、添加されたアルカリ金属やアルカリ土類金属が経時的に容器内の内容液に溶出する現象が発生する。医薬品用容器の場合、この溶出するアルカリ金属類等が薬剤成分に影響を与えるため、日本薬局方にて医薬品用として使用するガラス容器のアルカリ溶出量は厳密に規定されている。
 そのため、医薬品用容器においては、このアルカリ溶出を防止するために、様々な対策が実施されている。現在、一般的に行われている最も効果的な方法は、アルカリ金属成分を亜硫酸ガスと反応させ、水に可溶な硫酸ナトリウムの状態にして選択除去するサルファー処理である。しかしながら、このサルファー処理では、除去されたアルカリ金属成分の痕跡として、切断された非架橋のフリーラジカルが生成する。図7(b)は図7(a)に示すガラスにサルファー処理を施した後のガラスの構造を平面状態で模式的に示す図である。図7(b)に示すように、サルファー処理を施すことによって多くのフリーラジカル105が生成し、シロキサン結合に多くの欠損が発生する。フリーラジカル105が生成することによって、ガラス表面の物理的な強度が劣化してガラス容器の表面が剥離するフレークス(デラミネーション)などの問題が発生する。
《ガラスの構造と加熱温度》
 シリカを含有するガラスは、その強固なシロキサン結合が粘性流動を開始するガラス転移点から軟化点までの領域(ガラスにより異なるが、約520℃から785℃の温度領域)でその物性が大きく変化する。ガラス転移点以上の温度領域ではガラス構造が流動的に変化し、アルカリ金属イオン等の修飾酸化物の動きが活発になる。このアルカリ金属イオンの移動速度は温度に大きく依存し、低温領域のガラス転移点付近での移動速度は時間単位であるが、高温領域である軟化点に近い温度領域では秒単位で生じることもある。ガラスの化学的耐久性を向上させるためには、分相現象により劣化した表面のアルカリ金属イオンを除去した後、ガラス表面の温度を上昇させ、ケイ酸成分に富んだ均一なガラス表面とする必要がある。しかし、温度が比較的低い領域(550~650℃)であるとケイ酸成分に富んだ均一相とならない。また温度が高すぎる(710℃以上)と一旦均一化された表面層に深層からのアルカリ金属イオンが拡散することによって表面層の組成が変化する。そのため、ガラス転移点から軟化点までの領域におけるガラス温度の10℃~30℃の差はガラス表面に大きな影響を与える。以下に、この点について説明する。
 そこで、本発明の特徴を理解するために必要であると思われるので、先の出願に開示した方法を以下に記載する。すなわち、本発明者は、加熱下においてガラス表面に析出したアルカリ金属類等を適切な条件の洗浄工程で除去した後、適切な条件の除歪工程を経ることによって、このような欠陥の少ないガラス容器を得る方法を、先の出願(特願2014-190753号、特許第6159304号)に開示した。
《先の出願の開示》
 先の出願に開示した方法は、以下のとおりである。すなわち、段落0053及び0054に記載したようにして得られた容量2mLのバイアル20に、洗浄時間を10秒と3秒の2種類を選択して段落0055に記載したように洗浄処理を行ったものと、洗浄処理を行わなかったものについて、除歪炉内の最高雰囲気温度が670℃となるように制御して25分間除歪処理(雰囲気温度が670℃以上である時間は90秒で、実際のガラス容器の温度は670~700℃)を行って、常温まで放冷した。その後、これら各ガラス容器に1.8mLの精製水を注入した後、121℃で60分間、オートクレーブ処理を行った。このガラス容器内の精製水について、原子吸光分光光度計を用いて、溶出Na量(ppm)を測定した。その結果、以下の表6の結果を得た。
Figure JPOXMLDOC01-appb-T000006
 洗浄時間が10秒の場合、洗浄なしのものに比べて、溶出Na量は、1/27~1/31になっている。一方、段落0055と0057に記載した、10秒間の洗浄処理を行った後、除歪炉内の目標最高雰囲気温度が670℃となるように制御して25分間除歪処理(雰囲気温度が670℃以上である時間は108秒で、ガラス容器の実際の温度は670~700℃で、ガラス容器の実際の温度が690~700℃である時間が1分間)を行った実施例1のガラス容器と、洗浄処理を行わなかった以外は実施例1と同様の加熱処理を行った比較例のガラス容器の内表面の原子数比を示す表3と酸化物被膜の重量比率(重量%)を示す表4は、表6とは大きく異なる結果を示している。すなわち、表3では、Naは洗浄処理を行うことによって27%減少していることが示されており、表4では、NaOは洗浄処理を行うことによって32%減少していることが示されている。表3及び表4と、表6とを比べることによって、先の出願に開示された「670~700℃」と本願実施例1の「690~700℃」の温度差がガラスの表面構造に非常に大きな影響を与えたことが分かる。表3及び表4と、表6との差は、洗浄処理後のガラス容器の実際の温度に由来すると考えられる。すなわち、ガラス容器の実際の温度が690~700℃である時間が1分間である加熱処理を行うことによってガラス内表面の珪素と酸素のシロキサン結合が強化され、ガラス容器内部の遊離ナトリウムの内表面への拡散が抑制されたものと思われる。
[実施例2]
 そこで、加熱温度がガラスの構造に与える影響を調査するために、直径16mm、長さ1m60cmの硼珪酸ガラス製のガラス管を使用し、実施例1と同じ方法により、容量2mLのバイアルを得た。そして、このバイアルを、クエン酸の噴霧圧を0.15MPa又は0.10MPaにした以外は実施例1と同じ方法により洗浄した。クエン酸と精製水による洗浄及び水切りが終了した約25℃のバイアル20を、30分以内にバーナーヒーター23を備えた加熱炉有効長5mの除歪炉24に搬送し(図2における(12)除歪工程)、1)除歪炉内の目標最高雰囲気温度が635℃となるように制御して25分間除歪処理(雰囲気温度が635℃以上である時間は180秒で、ガラス容器の実際の温度は635~650℃で、ガラス容器の実際の温度が635~650℃である時間が60秒)を行ったガラス容器と、2)除歪炉内の目標最高雰囲気温度が655℃となるように制御して25分間除歪処理(雰囲気温度が655℃以上である時間は180秒で、ガラス容器の実際の温度は655~670℃で、ガラス容器の実際の温度が655~670℃である時間が60秒)を行ったガラス容器と、3)除歪炉内の目標最高雰囲気温度が685℃となるように制御して25分間除歪処理(雰囲気温度が685℃以上である時間は180秒で、ガラス容器の実際の温度は685~700℃で、ガラス容器の実際の温度が685~700℃である時間が60秒)を行ったガラス容器と、4)除歪炉内の目標最高雰囲気温度が700℃となるように制御して25分間除歪処理(雰囲気温度が700℃以上である時間は180秒で、ガラス容器の実際の温度は700~710℃で、ガラス容器の実際の温度が700~710℃である時間が60秒)を行ったガラス容器と、5)除歪炉内の目標最高雰囲気温度が715℃となるように制御して25分間除歪処理(雰囲気温度が715℃以上である時間は180秒で、ガラス容器の実際の温度は715~730℃で、ガラス容器の実際の温度が715~730℃である時間が60秒)を行ったガラス容器と、6)除歪炉内の目標最高雰囲気温度が735℃となるように制御して25分間除歪処理(雰囲気温度が735℃以上である時間は180秒で、ガラス容器の実際の温度は735~750℃で、ガラス容器の実際の温度が735~750℃である時間が60秒)を行ったガラス容器とを得、これらのガラス容器を常温まで放冷した。その後、各ガラス容器に0.7mLの精製水を注入した後、121℃で60分間オートクレーブ処理を行った。この各ガラス容器内の精製水について原子吸光分光光度計を用いて、溶出Na量(ppm)を測定した。その結果を以下の表7(クエン酸の噴霧圧が0.15MPaの場合)と表8(クエン酸の噴霧圧が0.10MPaの場合)に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 図8は、表7と表8に示す数値に基づいて、加熱温度(℃)を横軸とし、Naの溶出量(ppm)を縦軸とする図である。図8の横軸の加熱温度(℃)とは、段落0072に記載した除歪炉内の目標最高雰囲気温度(℃)を示す。図8の横軸の各目標最高雰囲気温度(℃)において、左側の斜線で示す棒グラフはクエン酸の噴霧圧が0.15MPaの場合であり、右側の点線で示す棒グラフはクエン酸の噴霧圧が0.10MPaの場合である。図8に示すように、目標最高雰囲気温度が685~700(℃)において、Naの溶出量(ppm)は最も少なくなっている。すなわち、ガラス容器の実際の温度が685~710℃である場合に、Naの溶出量(ppm)は最も少なくなっている。そこで、この図8の結果について、以下に考察する。
 石英に代表される純粋なシリカ(SiO)の溶融温度は2000℃以上であり、ガラス容器等に成形する操作が極めて困難である。そのため、実用ガラスの作製においてはナトリウム、カリウムなどのアルカリ金属を一定量添加して、シリカ中のシロキサン構造を随所で切断し、溶融温度を低下させると共に、ホウ素、アルミニウム、カルシウム、バリウム等その他の金属成分と合わせて、ブロー成形などのガラスの成形が容易になるような温度-粘度特性を付与するようにしている。
 上記のように実用ガラスの作製のために添加される金属の挙動を以下に説明する。添加されたナトリウム等の金属はシロキサン構造を随所で切断し、切断された部位にイオンの状態で滞留することでガラス構造の安定性を保っているが、イオン結合はシロキサン結合のように強固な結合でないため、ガラス転移点以上の温度ではこのナトリウム等の金属の移動が活発になる。
 本発明のガラス容器に使用される硼珪酸ガラスは耐熱性、耐薬品性に優れているが、硼珪酸ガラスの特性として、ガラス容器の成形加工時、溶融されたガラス表面がシリカに富む相とそれ以外の金属酸化物(ホウ素、ナトリウム、アルミニウム等の酸化物)の相に分離する分相と称される現象が発生する。分相現象が発生したガラス表面にはシリカ以外の金属酸化物が濃縮して堆積し、それがガラス表面の劣化に繋がっている。具体的には、加工劣化が発生したガラス表面には、ポーラス状の二酸化ケイ素(シリカ)の相が存在し、ナトリウム、その他金属及びその酸化物が島状に偏在化している。洗浄によってこの偏在しているナトリウム等の金属は除去されるが、除去された直後のガラス表面はポーラス状であるため、シリカ細孔の内部表面には除去しきれなかったナトリウム等の金属が表面部に付着した状態で残存し、これがナトリウム溶出量の増加の原因となっている。
 本発明においては、ガラス容器内面を洗浄後、ガラス容器を685℃~710℃で熱処理を行うことによって、このポーラス状となったシリカ相をガラス化(珪素と酸素のシロキサン結合)し、残存するナトリウム等の金属をガラス表層中に均一に分散すると共に、表層部のシロキサン構造中にイオン結合状態で固定化させることで、極めて溶出が少ない化学的耐久性の高い構造とすることができる。
 630℃~650℃より低い温度であれば、ポーラス状となったガラス表面の平滑化が不十分なため、残存する細孔の表面にあるナトリウム等の金属はシロキサン構造中に完全に固定化されることが無く、また、730℃~750℃よりも高い温度であれば、ガラス容器深層部からの金属イオンの移動が活発となり、アルカリ溶出量が増加すると考えられる。685℃~710℃でガラス容器を加熱することにより、単に内表面の二酸化ケイ素の濃度を上げることだけで無く、表面に付着している金属酸化物成分を、偏在化が無い状態で、言い換えればミクロな領域でその濃度に差が出ない状態で二酸化ケイ素の構造中に固定化することができる。
 このように、本発明の硼珪酸ガラス容器によれば、シロキサン結合に欠損が発生することはない。すなわち、加熱下においてガラス表面に析出したアルカリ金属類等を適切な条件の洗浄工程で除去した後、適切な条件の除歪工程を経ることによって、分相及び非架橋のフリーラジカルが生成することなく、図7(c)に示すように、内表面に存在する珪素100と酸素101がシロキサン結合で結ばれた、石英ガラスに近い構造を得ることができ、アルカリ金属102a又はアルカリ土類金属102bは上記シロキサン構造中にイオン結合104で固定されている。また、本発明の硼珪酸ガラス容器の他の構成成分であるアルミニウムや硼素は、アルカリ金属、アルカリ土類金属などと同様に成形加工時の加熱によって揮発しやすいので、相当量のアルミニウムや硼素は容器成形時にガラス内面に付着して堆積する。このガラス内面に堆積したアルミニウムや硼素は適切な条件の洗浄工程で除去されるが、除去されずに容器内に残留したアルミニウムや硼素は適切な条件の除歪工程を経てガラスの網目形成体としてガラス構造中に強固に固定される。そのため、本発明の硼珪酸ガラス容器内表面は珪酸成分に富み、石英ガラスに近い表面構造となっている。従って、本発明の硼珪酸ガラス容器は、表面にフレークスやデラミネーションがなく、ガラス表面からのアルカリ成分の溶出量が極めて少ないのである。
[実施例3]
 そこで、本発明の硼珪酸ガラス容器の内表面に分相及びフリーラジカルが生成せず、内表面に存在する珪素と酸素がシロキサン結合で結ばれている構造であることを確認するために、さらに、以下の実験を行った。本発明の硼珪酸ガラス容器は医薬品収納用として使用されることが多く、医薬品は多くの化学物質を含んでいる。その多くの化学物質の中でアミン化合物は硼珪酸ガラス成分との親和性が高く、ガラス容器の内表面のフリーラジカルと反応しやすい。
 そこで、加熱温度がガラスの構造に与える影響を調査するために、直径16mm、長さ1m60cmの硼珪酸ガラス製のガラス管を使用し、実施例1と同じ方法により、容量2mLのバイアルを得た。そして、このバイアルを、クエン酸の噴霧圧を0.2MPaにした以外は実施例1と同じ方法により洗浄した。クエン酸と精製水による洗浄及び水切りが終了した約25℃のバイアル20を、30分以内にバーナーヒーター23を備えた加熱炉有効長5mの除歪炉24に搬送し(図2における(12)除歪工程)、除歪炉内の目標最高雰囲気温度が685℃となるように制御して25分間除歪処理(雰囲気温度が685℃以上である時間は180秒で、ガラス容器の実際の温度は685~700℃で、ガラス容器の実際の温度が685~700℃である時間が60秒)を行った本発明の実施例3-1と実施例3-2のガラス容器と、クエン酸と精製水による洗浄及び水切りを行わなかった以外は同じ処理をした比較例3-1と比較例3-2のガラス容器とを得、これらのガラス容器を常温まで放冷した。その後、各ガラス容器に一定濃度の低分子(分子量が100以下)アミン溶液を注入し、低分子アミン溶液の注入直後(5分以内)と、1週間後と、1カ月後と、3カ月後において、ガラス容器内のアミン濃度(%)を赤外分光光度計により測定した。その結果を以下の表9(低分子アミン溶液Aの場合)と表10(低分子アミン溶液Bの場合)に示す。低分子アミン溶液Aは、一級アミンであるメチルアミン化合物溶液をいい、低分子アミン溶液Bは、三級アミンであるトリエチルアミン化合物溶液をいう。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 赤外分光光度計により測定した容器内のアミン溶液のアミン濃度が低いということは、容器の内表面に多く存在するフリーラジカルと溶液中のアミンが結合したことによって溶液中のアミンが減少したことを示す。逆に、赤外分光光度計により測定した容器内のアミン溶液のアミン濃度が高いということは、ガラス容器の内表面にフリーラジカルが存在しないので、溶液中のアミンは温存され、最初の注入時の状態を維持するか、最初の注入時の状態に極めて近いことを示す。このように、ガラス容器内のアミン溶液のアミン濃度の変化を知ることによって、間接的にガラス容器の内表面のフリーラジカルの存在を推定することが可能である。表9と表10に示すように、本発明の硼珪酸ガラス容器は、低分子アミン溶液の注入直後(5分以内)における、容器内のアミン溶液のアミン濃度は100%であるから、本発明の硼珪酸ガラス容器の内表面にはフリーラジカルが存在しないことが分かる。
 また、実施例3-1と3-2のガラス容器の胴部内面と、比較例3-1と3-2のガラス容器の胴部内面とを走査型電子顕微鏡で観察した結果、実施例3-1と3-2のガラス容器の胴部内面に分相は見られなかったが、比較例3-1と3-2のガラス容器の胴部内面には、図6(b)に示すような分相が見られたことを確認した。
 本発明によれば、医薬品、食品または化粧品収納用容器として好適なガラス容器を提供することができる。
   1  ガラス管
   2  内面
   3  溶離性成分
   4  ガラス容器
   5  内面
   11 ガラス管
   12 縦型成型機
   13  フィッシュテールバーナー
   14  ローラー
   15  プランジャー
   16  ポイントバーナー
   17  全高板
   18  カットバーナー
   19  エアー
   20  バイアル(ガラス容器)
   21  ネットコンベアー
   22  洗浄機
   23  バーナーヒーター
   24  除歪炉
   31  マニホールド
   32  ノズル
   33  ニードルバルブ
   34  流量計
   35  圧力計
   36  ポンプ
   37  洗浄液の貯槽
   40  ガラス容器
   40a 精製水
   41  ゴム栓
   50  ガラス容器
   50a 精製水
   51a ゴム栓
   51b ゴム栓
   100 珪素
   101 酸素
   102a アルカリ金属、
   102b アルカリ土類金属
   103 共有結合
   104 イオン結合
   105 フリーラジカル

Claims (7)

  1.  内表面に形成された酸化物被膜がSiOを主とする酸化物被膜であることを特徴とする硼珪酸ガラス容器。
  2.  内表面が、X線光電子分光分析法における検出深さである請求項1記載の硼珪酸ガラス容器。
  3.  内表面に形成される酸化物被膜中のSiOは、80~92重量%である請求項1または2記載の硼珪酸ガラス容器。
  4.  内表面に形成されるSiO以外の酸化物被膜は、NaO、KO、CaO、BaO、BおよびAlから選択される1以上の酸化物の被膜である請求項1ないし3のいずれかに記載の硼珪酸ガラス容器。
  5.  最表面からX線光電子分光分析法における検出深さである10nmまでの内表面は、SiOが80~92重量%であって、SiO以外にNaO、KO、CaO、BaO、BおよびAlから選択される1以上の酸化物が形成されて、硼珪酸ガラス容器の内表面は、珪素と酸素がシロキサン結合で結合されたシロキサン構造であって、アルカリ金属又はアルカリ土類金属は上記シロキサン構造中にイオン結合で固定されていることを特徴とする硼珪酸ガラス容器。
  6.  硼珪酸ガラス容器が、医薬品、食品または化粧品収納用である請求項1ないし5のいずれかに記載の硼珪酸ガラス容器。
  7.  硼珪酸ガラスからなるガラス管を加熱下に成形加工してガラス容器を得るガラス容器の製造工程、ガラス容器の製造工程で得たガラス容器の内面を、水、酸の水溶液、界面活性剤水溶液または界面活性剤を添加した酸の水溶液からなる洗浄液で洗浄する洗浄工程、および洗浄工程で洗浄したガラス容器を加熱昇温した後に冷却して除歪する除歪工程を含む製造方法によって製造されるガラス容器であって、洗浄工程におけるガラス容器の温度を30~150℃、噴霧圧が0.05MPa以上である洗浄液による洗浄時間を10~15秒とし、洗浄工程と除歪工程の間の時間を30分以内とし、除歪工程におけるガラス容器の実際の温度が685℃から710℃である時間を1分間確保するように制御することによって製造される1ないし6のいずれかに記載の硼珪酸ガラス容器。
PCT/JP2020/019490 2019-05-17 2020-05-15 ガラス容器 WO2020235496A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020528068A JP6768179B1 (ja) 2019-05-17 2020-05-15 ガラス容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-093911 2019-05-17
JP2019093911 2019-05-17

Publications (1)

Publication Number Publication Date
WO2020235496A1 true WO2020235496A1 (ja) 2020-11-26

Family

ID=73458332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019490 WO2020235496A1 (ja) 2019-05-17 2020-05-15 ガラス容器

Country Status (1)

Country Link
WO (1) WO2020235496A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153846A (ja) * 1988-12-07 1990-06-13 Murase Glass Kk 低アルカリガラス容器の製法
JPH0437632A (ja) * 1990-05-30 1992-02-07 Nippon Glass Sangyo Kk ガラスアンプルまたは管瓶の製造方法
JPH0741335A (ja) * 1993-07-30 1995-02-10 Nippon Sheet Glass Co Ltd ガラス容器の処理方法
JPH10258110A (ja) * 1997-02-18 1998-09-29 Carl Zeiss:Fa 医療目的、特に薬剤または診断用の生成物の貯蔵のために滅菌し得るガラス容器
JP2003128439A (ja) * 2001-10-17 2003-05-08 Nippon Electric Glass Co Ltd ガラス容器及びその処理方法
JP2005289711A (ja) * 2004-03-31 2005-10-20 Nippon Glass Sangyo Kk アンプルまたはバイアル、およびその製造方法
WO2009116300A1 (ja) * 2008-03-21 2009-09-24 大和特殊硝子株式会社 低アルカリガラス容器の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153846A (ja) * 1988-12-07 1990-06-13 Murase Glass Kk 低アルカリガラス容器の製法
JPH0437632A (ja) * 1990-05-30 1992-02-07 Nippon Glass Sangyo Kk ガラスアンプルまたは管瓶の製造方法
JPH0741335A (ja) * 1993-07-30 1995-02-10 Nippon Sheet Glass Co Ltd ガラス容器の処理方法
JPH10258110A (ja) * 1997-02-18 1998-09-29 Carl Zeiss:Fa 医療目的、特に薬剤または診断用の生成物の貯蔵のために滅菌し得るガラス容器
JP2003128439A (ja) * 2001-10-17 2003-05-08 Nippon Electric Glass Co Ltd ガラス容器及びその処理方法
JP2005289711A (ja) * 2004-03-31 2005-10-20 Nippon Glass Sangyo Kk アンプルまたはバイアル、およびその製造方法
WO2009116300A1 (ja) * 2008-03-21 2009-09-24 大和特殊硝子株式会社 低アルカリガラス容器の製造方法

Similar Documents

Publication Publication Date Title
WO2009116300A1 (ja) 低アルカリガラス容器の製造方法
EP2546205B1 (en) Method for producing vials
EP3006411B1 (en) Method for manufacturing tubular glass containers for pharmaceutical use
JP6159304B2 (ja) ガラス容器の製造方法
US20100089097A1 (en) Method for the production of pharmaceutical packaging
US20070232066A1 (en) Method and device for the plasma treatment of surfaces containing alkali and alkaline-earth metals
EP3102173B1 (en) Method for making a pharmaceutical packaging from fused quartz tubing
WO2020235496A1 (ja) ガラス容器
JP6768179B1 (ja) ガラス容器
JP2019089691A (ja) ガラス容器
US6595029B1 (en) Process for devices for the production of internally-hardened glass tubes as well as their use
WO2010038776A1 (ja) ガラス製品の製造装置
JP5970166B2 (ja) カルシウムイオン溶出抑制酒類用ガラス容器の製造方法
JPH02153846A (ja) 低アルカリガラス容器の製法
WO2019136113A1 (en) Method of preventing lamellar silica formation in glass container
Zuccato et al. Glass for Pharmaceutical Use
Bora et al. World Journal of Pharmaceutical Science & Technology
CN116181974A (zh) 用于药物容器的玻璃管及生产玻璃管的方法
Bora et al. A Review on Glass: Packing Component
WO2024112548A1 (en) Methods of removing metal contaminants from glass syringes
JP2007091524A (ja) モールドプレス成形用ガラス素材、及びガラス光学素子の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020528068

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809610

Country of ref document: EP

Kind code of ref document: A1