WO2020235357A1 - Sealing agent for liquid crystal dropping methods, liquid crystal display panel using same, and method for producing same - Google Patents

Sealing agent for liquid crystal dropping methods, liquid crystal display panel using same, and method for producing same Download PDF

Info

Publication number
WO2020235357A1
WO2020235357A1 PCT/JP2020/018662 JP2020018662W WO2020235357A1 WO 2020235357 A1 WO2020235357 A1 WO 2020235357A1 JP 2020018662 W JP2020018662 W JP 2020018662W WO 2020235357 A1 WO2020235357 A1 WO 2020235357A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
epoxy resin
display panel
crystal display
mass
Prior art date
Application number
PCT/JP2020/018662
Other languages
French (fr)
Japanese (ja)
Inventor
祐司 溝部
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2021520701A priority Critical patent/JP7145329B2/en
Priority to KR1020217035720A priority patent/KR20210151125A/en
Priority to CN202080027407.7A priority patent/CN113661437A/en
Publication of WO2020235357A1 publication Critical patent/WO2020235357A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a sealing agent for a liquid crystal dropping method, a liquid crystal display panel using the sealant, and a method for manufacturing the same.
  • a liquid crystal display panel usually has a pair of substrates, a frame-shaped sealing member arranged between them, and a pair of substrates and a liquid crystal filled in an area surrounded by a sealing agent.
  • a liquid crystal dropping method has been widely used as a liquid crystal filling method.
  • a sealing agent is applied to one of the pair of substrates to form a frame-shaped seal pattern.
  • the liquid crystal is dropped into the seal pattern without curing the seal pattern.
  • the pair of substrates are overlapped with the seal pattern sandwiched between them, and the seal pattern is irradiated with light or heated to cure the seal pattern (for example, Patent Document 1 and Patent Document 2).
  • the cured product of the sealant hereinafter, also referred to as “seal member” not only prevents leakage of liquid crystal, but also has a function of bonding a pair of substrates.
  • the uncured sealant comes into contact with the liquid crystal. Therefore, a part of the components contained in the sealing agent may be eluted into the liquid crystal and contaminate the liquid crystal. Further, if the adhesive strength between the substrate and the cured product (sealing member) of the sealing agent is low, peeling may occur between them, and liquid crystal leakage or the like may occur.
  • the present invention is a sealing agent for the liquid crystal dropping method that can be used in the liquid crystal dropping method, and is difficult to elute into the liquid crystal when the liquid crystal display panel is manufactured, and when cured, the substrate of the liquid crystal display panel.
  • a sealant having high adhesiveness with.
  • the present invention provides the following encapsulants.
  • the (A) epoxy resin contains a photopolymerization initiator and (D) a thermosetting agent, and has an epoxy equivalent of 350 or more. 100 parts by mass of the (A) epoxy resin and methylhexahydroanan anhydride.
  • a cured product obtained by mixing a chemical equivalent of phthalic acid with respect to the epoxy resin (A) and 1 part by mass of dimethylbenzyldiamine, heating at 110 ° C. for 3 hours, and further heating at 165 ° C.
  • a sealant for the liquid crystal dropping method wherein the wavelength at which the absorbance becomes 0.1 or more is 400 nm or more for the first time, and the content of the epoxy resin (A) is 5% by mass or more and less than 20% by mass.
  • thermosetting agent is selected from the group consisting of dihydrazide-based thermosetting, imidazole-based thermosetting, amine adduct-based thermosetting, and polyamine-based thermosetting.
  • the present invention provides the following method for manufacturing a liquid crystal display panel.
  • a liquid crystal display having a pair of substrates, a frame-shaped seal member arranged between the pair of substrates, and a liquid crystal filled between the pair of substrates and inside the frame-shaped seal member.
  • the sealing agent for the liquid crystal dropping method according to any one of [1] to [3] is applied on one of the pair of substrates to form a frame-shaped seal pattern.
  • It includes a liquid crystal dropping step of dropping a liquid crystal on the region, a stacking step of superimposing the one substrate and the other substrate via the seal pattern, and a curing step of curing the seal pattern.
  • Manufacturing method of liquid crystal display panel [5] The method for manufacturing a liquid crystal display panel according to [4], wherein the seal pattern is irradiated with light in the curing step. [6] The method for manufacturing a liquid crystal display panel according to [5], wherein in the curing step, heating is further performed after irradiation with light.
  • the present invention provides the following liquid crystal display panels. [7] It has a pair of substrates, a frame-shaped sealing member arranged between the pair of substrates, and a liquid crystal filled between the pair of substrates and inside the frame-shaped sealing member.
  • the sealing agent for the liquid crystal dropping method of the present invention when the liquid crystal display panel is manufactured by the liquid crystal dropping method, the liquid crystal is less likely to be contaminated, and the substrates can be firmly adhered to each other. Therefore, it is possible to manufacture a high-quality liquid crystal display panel.
  • the sealing agent for liquid crystal dropping method of the present invention is used for producing a sealing member for a liquid crystal display panel.
  • the sealing member is manufactured by the liquid crystal dropping method, the uncured sealant and the liquid crystal come into contact with each other as described above. Therefore, the components in the sealant may elute into the liquid crystal and contaminate the liquid crystal. Further, if the adhesive strength between the cured product (sealing member) of the sealing agent and the substrate is low, these are easily peeled off when the liquid crystal display panel is used, and liquid crystal leakage or the like is likely to occur.
  • the sealing agent for the liquid crystal dropping method of the present invention (hereinafter, also simply referred to as “sealing agent”) has an epoxy equivalent of 350 or more and a glass transition temperature of the cured product of 100 ° C. or less (hereinafter, also referred to as “sealing agent”).
  • A) Contains a certain amount of epoxy resin.
  • epoxy resin has high compatibility with liquid crystal and is likely to cause liquid crystal contamination.
  • compatibility with liquid crystal can be lowered, and a sealant can be used. It becomes difficult to dissolve in the liquid crystal.
  • the cured product of the sealing agent is unlikely to contain a hydroxyl group, and when the substrate is hydrophobic, the adhesiveness tends to be particularly good. Further, when the glass transition temperature of the cured product of the epoxy resin (A) is 100 ° C. or lower, it is unlikely to become excessively hard, and the adhesive strength between the sealing member and the substrate of the liquid crystal display panel tends to be good.
  • the encapsulant of the present invention contains (C) a photopolymerization initiator having high absorbance for light having a wavelength of 400 nm or more.
  • the sealant is photocured, the longer the wavelength of light, the more likely it is to become scattered light. Therefore, when the (C) photopolymerization initiator has absorption at a wavelength of 400 nm or more, such scattered light can also be used to cure the encapsulant. And, for example, even when the sealing agent is arranged under the metal wiring or the like, it can be sufficiently cured. That is, when the absorbance of the (C) photopolymerization initiator with respect to long-wavelength light is high, photocuring can be sufficiently performed, and the components in the encapsulant are difficult to dissolve in the liquid crystal.
  • the liquid crystal when a liquid crystal display panel is produced by the liquid crystal dropping method, the liquid crystal is less likely to be contaminated by (A) epoxy resin or (C) photopolymerization initiator, and the substrates are further strengthened. Can be adhered to.
  • A epoxy resin
  • C photopolymerization initiator
  • the epoxy resin is a resin containing one or more epoxy groups in the molecule.
  • the resin corresponding to the (B) curable resin described later that is, the resin having a (meth) acryloyl group in the molecule is not included in the (A) epoxy resin.
  • the number of epoxy groups contained in the epoxy group is preferably 2 to 3, more preferably 2.
  • the epoxy equivalent of the (A) epoxy resin tends to be 350 or more, and the glass transition temperature of the cured product tends to fall within a desired range.
  • the epoxy equivalent of the epoxy resin (A) may be 350 or more, but is preferably 350 to 1000, more preferably 350 to 500.
  • the epoxy equivalent is the mass of the epoxy resin per equivalent of the epoxy group, and is calculated by (average molecular weight of the resin) / (number of epoxy groups in one molecule). The epoxy equivalent can be measured in accordance with JIS K7236 (2009).
  • the weight average molecular weight of the (A) epoxy resin is preferably 700 to 2000, more preferably 700 to 1000.
  • the viscosity of the encapsulant tends to be in the desired range, and the encapsulant can be easily applied in a desired pattern.
  • the glass transition temperature of the cured product is 100 ° C. or lower, more preferably 50 to 100 ° C., still more preferably 60 to 90 ° C.
  • the adhesive strength between the sealing member and the substrate of the liquid crystal display panel tends to increase.
  • the glass transition temperature is measured as follows.
  • the structure of the epoxy resin (A) is not particularly limited as long as it satisfies the above-mentioned epoxy equivalent and the glass transition temperature of the cured product, but two or more epoxy groups or glycidyl groups are linked by a linking group.
  • the structure is preferable.
  • the linking group preferably has a chain structure (hereinafter, also referred to as “chain block”) such as an aliphatic hydrocarbon chain. Further, the linking group preferably further contains a structure containing an aromatic ring (hereinafter, also referred to as “aromatic block”), and it is particularly preferable that the chain block and the aromatic block are alternately bonded.
  • the chain block may contain an aliphatic hydrocarbon chain having 2 or more carbon atoms, and may be linear or branched.
  • chain blocks include alkylene and alkyleneoxy groups.
  • the chain block has a structure in which a plurality of alkylene groups and alkyleneoxy groups are bonded via an ether bond, a thioether bond, an ester bond, an amide bond, a carbon-carbon double bond, a carbon-carbon triple bond, or the like. You may.
  • the number of carbons contained in each chain block is preferably 3 or more, more preferably 4 or more, further preferably 5 to 30, and particularly preferably 6 to 20.
  • the aromatic block may be composed of only an aromatic ring, and has a structure in which a plurality of aromatic rings are bonded via a methylene group, a dimethylmethylene group, an ether bond, a thioether bond, an ester bond, an amide bond, or the like.
  • the aromatic block include a phenylene group, a naphthalene group, an anthracene group, a biphenyl group, a bisphenol A type structure, a bisphenol F type structure and the like.
  • the epoxy resin (A) has any structure represented by the following general formula.
  • k is an integer of 1 to 20, preferably 1 to 5.
  • the epoxy resin (A) has any structure represented by the following general formula.
  • h is an integer of 0 to 20, preferably 0 to 5.
  • i and j represent integers of 1 to 20, preferably 1 to 5.
  • i + j is preferably 2 to 10.
  • the epoxy resin (A) may be a resin polymerized by a known method, or may be a commercially available product.
  • the sealing agent may contain only one type of (A) epoxy resin, or may contain two or more types of epoxy resin.
  • Examples of commercially available epoxy resins (A) include EXA-4850-150, EXA-4816, and EXA-4822 (all manufactured by DIC Corporation); EP-4003S, EP-4010S, EP-4010L, EP-4011S. (All manufactured by ADEKA Corporation); BEO-60E, BPO-20E (all manufactured by New Japan Chemical Co., Ltd.); YL7175-500, YL7175-1000, YL7410 (all manufactured by Mitsubishi Chemical Corporation) and the like are included.
  • the amount of the epoxy resin (A) with respect to the total amount of the encapsulant is 5% by mass or more and less than 20% by mass, preferably 7.5 to 17.5% by mass, and more preferably 10 to 15% by mass.
  • the amount of the epoxy resin (A) is 5% by mass or more, the adhesive strength between the cured product of the sealing agent and the substrate of the liquid crystal display panel becomes high.
  • the amount of the (A) epoxy resin is less than 20% by mass, the amount of the (A) epoxy resin dissolved in the liquid crystal can be reduced.
  • Curable Resin is a resin having at least one (meth) acryloyl group in the molecule and is cured by irradiation with light.
  • the curable resin include a (meth) acrylic resin and a (meth) acrylic-modified epoxy resin having an epoxy group and a (meth) acrylic group in one molecule.
  • the sealant may contain only one kind of these, or may contain two or more kinds of these.
  • the (meth) acrylic resin is a resin containing a (meth) acryloyl group in the molecule and not containing an epoxy group.
  • (meth) acryloyl represents meta-acryloyl, acryloyl, or both.
  • the (meth) acrylic resin may be a monomer, an oligomer or a polymer.
  • Examples of (meth) acrylic resins include diacrylates and / or dimethacrylates such as polyethylene glycol, propylene glycol, polypropylene glycol; diacrylates and / or dimethacrylates of tris (2-hydroxyethyl) isocyanurate; neopentyl glycol 1 Diacrylate and / or dimethacrylate of diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to a mole; diacrylate and / or dimethacrylate of a diol obtained by adding 2 mol of ethylene oxide or propylene oxide to 1 mol of bisphenol A / Or dimethacrylate; di or triacrylate and / or di or trimethacrylate of triol obtained by adding 3 mol or more of ethylene oxide or propylene oxide to 1 mol of trimethylolpropane; 4 mol or more of ethylene oxide to 1 mol of bisphenol A.
  • diacrylates and / or dimethacrylates such as poly
  • the weight average molecular weight of the (meth) acrylic resin is preferably 300 to 1000.
  • the weight average molecular weight of the (meth) acrylic resin can be measured (in terms of polystyrene) by, for example, gel permeation chromatography (GPC).
  • the (meth) acrylic-modified epoxy resin is a resin having a (meth) acryloyl group and an epoxy group in the molecule, and examples thereof include an epoxy resin and (meth) acrylic acid, for example, a basic catalyst. Includes resins obtained by reacting in the presence. Since the (meth) acrylic-modified epoxy resin has an epoxy group and a (meth) acryloyl group in the molecule, it has both photocurability and thermosetting property.
  • the epoxy resin used as a raw material for the (meth) acrylic-modified epoxy resin may be a bifunctional or higher epoxy resin having two or more epoxy groups in the molecule, and may be bisphenol A type, bisphenol F type, or 2,2'-diallyl.
  • Bisphenol type epoxy resins such as bisphenol A type, bisphenol AD type, and hydrogenated bisphenol type; novolak type epoxy resins such as phenol novolac type, cresol novolac type, biphenyl novolac type, and trisphenol novolac type; biphenyl type epoxy resin; naphthalene Includes type epoxy resin and the like.
  • the (meth) acrylic-modified epoxy resin obtained by (meth) acrylic modification of a trifunctional or tetrafunctional polyfunctional epoxy resin has a high crosslink density and adheres the cured product (sealing member) of the sealant to the substrate. The strength tends to decrease. Therefore, a (meth) acrylic-modified epoxy resin obtained by modifying a bifunctional epoxy resin with (meth) acrylic is preferable.
  • the bifunctional epoxy resin a biphenyl type epoxy resin, a naphthalene type epoxy resin, and a bisphenol type epoxy resin are preferable.
  • the (meth) acrylic-modified epoxy resin is made from a bisphenol type epoxy resin such as bisphenol A type or bisphenol F type, the viscosity of the sealant tends to be in a desired range, and the sealant Is easier to apply.
  • the epoxy resin used as a raw material may be one type or a combination of two or more types. Further, the epoxy resin used as a raw material is preferably highly purified by a molecular distillation method, a cleaning method or the like.
  • the weight average molecular weight of the (meth) acrylic-modified epoxy resin is preferably 300 to 1000.
  • the weight average molecular weight of the (meth) acrylic-modified epoxy resin can be measured (in terms of polystyrene) by, for example, gel permeation chromatography (GPC).
  • the amount of the (B) curable resin in the sealant is preferably 30% by mass to 70% by mass, more preferably 50 to 65% by mass. (B) When the amount of the curable resin is within the above range, the photocurability of the sealant tends to be good.
  • the photopolymerization initiator may be a compound capable of generating an active species by irradiation with light, may be a self-cleaving type photopolymerization initiator, or is a hydrogen abstraction type. It may be a photopolymerization initiator of.
  • the encapsulant may contain only one type of (C) photopolymerization initiator, or may contain two or more types.
  • the (C) photopolymerization initiator is measured on the long wavelength side in the ultraviolet-visible absorption spectrum measured by dissolving only the (C) photopolymerization initiator in tetrahydrofuran so as to have a concentration of 0.15% by mass.
  • the wavelength at which the absorbance becomes 0.1 or more is 400 nm or more for the first time when confirmed from. That is, (C) the photopolymerization initiator has sufficient absorption in the region of the ultraviolet-visible absorption spectrum having a wavelength of 400 nm or more.
  • the ultraviolet-visible absorption spectrum can be measured with an ultraviolet-visible spectrophotometer UV-2550 (manufactured by Shimadzu Corporation).
  • C photopolymerization initiator examples include acylphosphine oxide compounds (eg 2,4,6-trimethylbenzoindiphenylphosphine oxide) and titanosen compounds (eg bis ( ⁇ 5-2,4-).
  • acylphosphine oxide compounds eg 2,4,6-trimethylbenzoindiphenylphosphine oxide
  • titanosen compounds eg bis ( ⁇ 5-2,4-).
  • Cyclopentadiene-1-yl) -bis (2,6-difluoro-3- (1H-pyrrole-1-yl) -phenyl) titanium (Irgacure 784 (manufactured by BASF)
  • oxime ester compounds for example) 1,2-octanedione-1- [4- (phenylthio) -2- (O-benzoyloxime)] (IRGACURE OXE01 manufactured by BASF), Etanone-1- [9-ethyl-6- (2-methylbenzoyl)) -9H-carbazole-3-yl] -1- (0-acetyloxime) (IRGACURE OXE02 manufactured by BASF, etc.) is included.
  • Examples of hydrogen abstraction type (C) photopolymerization initiators include thioxathraquinone compounds (eg, thioxanthraquinone, 2-chlorothioxanthraquinone (manufactured by Tokyo Kasei Kogyo Co., Ltd.), 1-chloro-4-propoxythioxanthone, 1-chloro-4-.
  • thioxathraquinone compounds eg, thioxanthraquinone, 2-chlorothioxanthraquinone (manufactured by Tokyo Kasei Kogyo Co., Ltd.)
  • 1-chloro-4-propoxythioxanthone 1-chloro-4-.
  • Ethoxythioxanthone (Lambson Limited Speedcure CPTX), 2-isopropylxantone (Lambson Limited Speedcure ITX), 4-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone (Lambson Limited), Lambson Limited 2,4-Dichlorothioxanthone, Omnipol-TX (manufactured by IGM), anthraquinone compounds (eg 2-methylanthraquinone, 2-ethylanthraquinone, 2-t-butyl anthraquinone, 1-chloroanthraquinone, etc., 2-hydroxyanthraquinone (2-Hydroxyanthraquinone manufactured by Tokyo Kasei Kogyo Co., Ltd.), 2,6-dihydroxyanthraquinone (Anthraquinone manufactured by Tokyo Kasei Kogyo
  • oxime ester compounds thioxanthone compounds, anthraquinone compounds, and titanocene compounds are preferable.
  • the molecular weight of the photopolymerization initiator is preferably 200 or more and 5000 or less.
  • the molecular weight of the photopolymerization initiator is more preferably 230 or more and 3000 or less, and further preferably 230 or more and 1500 or less.
  • the content of the (C) photopolymerization initiator in the encapsulant is preferably 0.05 to 5% by mass, more preferably 0.1 to 2% by mass.
  • the amount of the (C) photopolymerization initiator is in the above range, the above-mentioned (B) curable resin can be sufficiently photocured.
  • thermosetting agent may be a compound that reacts with the epoxy group of the above-mentioned (A) epoxy resin or (B) curable resin and cures them, for example, by heating. It is preferably a compound that reacts with an epoxy group.
  • the melting point of the (D) thermosetting agent is preferably 50 ° C. or higher and 250 ° C. or lower, and more preferably 50 ° C. or higher and 150 ° C. or lower. When the melting point of the (D) thermosetting agent is within the above range, the (D) thermosetting agent is difficult to react at room temperature, and the storage stability of the encapsulant is enhanced.
  • thermosetting agent is at least one selected from the group consisting of dihydrazide-based thermosetting agents, imidazole-based thermosetting agents, amine adduct-based thermosetting agents, and polyamine-based thermosetting agents. It is preferably a thermosetting agent.
  • the thermosetting agent may contain only one kind of these, or may contain two or more kinds of them.
  • dihydrazide-based thermal latent curing agents examples include adipic acid dihydrazide (melting point 181 ° C.), 1,3-bis (hydrazinocarboethyl) -5-isopropylhydranthin (melting point 120 ° C.), 7,11-octadecadien. -1,18-dicarbohydrazide (melting point 160 ° C.), dodecane diic acid dihydrazide (melting point 190 ° C.), sebacic acid dihydrazide (melting point 189 ° C.) and the like are included.
  • imidazole-based thermal latent curing agents examples include 2,4-diamino-6- [2'-ethylimidazolyl- (1')]-ethyltriazine (melting point 215 to 225 ° C.) and 2-phenylimidazole (melting point 137 to 137 to). 147 ° C.) and the like.
  • the amine adduct-based thermal latent curing agent is a thermal latent curing agent composed of an additional compound obtained by reacting an amine-based compound having catalytic activity with an arbitrary compound, and an example thereof is Amicure PN-40 (Amicure PN-40).
  • Amicure PN-23 melting point 100 ° C
  • Amicure PN-31 melting point 115 ° C
  • Amicure PN-H melting point 115 ° C
  • Amicure MY-24 melting point 120 ° C
  • Amicure MY-H Melting point 110 ° C
  • Melting point 131 ° C. both manufactured by Ajinomoto Fine Techno Co., Ltd.
  • the polyamine-based thermal latent curing agent is a thermal latent curing agent having a polymer structure obtained by reacting an amine with an epoxy, and examples thereof include ADEKA Hardener EH4339S (softening point 120 to 130 ° C.) and ADEKA Hardener. EH4357S (softening point 73 to 83 ° C.) (both manufactured by ADEKA Corporation) and the like are included.
  • the amount of the (D) thermosetting agent in the encapsulant is preferably 15% by mass or less, more preferably 10% by mass or less. (D) When the amount of the thermosetting agent is in the above range, the encapsulant is sufficiently cured by heating.
  • the encapsulant may contain inorganic particles, organic particles, other additives and the like as long as the object and effect of the present invention are not impaired.
  • the sealant contains inorganic particles, the viscosity of the sealant tends to be in an appropriate range. It is also possible to adjust the strength of the cured product of the encapsulant and the linear expandability of the cured product with the inorganic particles. On the other hand, when the sealing agent contains organic particles, it is easy to adjust the elastic modulus of the cured product of the sealing agent.
  • inorganic particles include calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, zirconium silicate, iron oxide, titanium oxide, aluminum oxide (alumina), zinc oxide, silicon dioxide (silica), potassium titanate, Includes kaolin, talc, glass beads, sericite-activated clay, bentonite, aluminum oxide, silicon dioxide and the like. Of these, silicon dioxide (silica) or talc is preferred.
  • the sealing agent may contain only one kind of inorganic particles, or may contain two or more kinds of inorganic particles.
  • the shape of the inorganic particles is not particularly limited, and may be a fixed shape such as a spherical shape, a plate shape, a needle shape, or a non-fixed shape.
  • the average primary particle diameter of the inorganic particles is preferably 1.5 ⁇ m or less, and the specific surface area thereof is preferably 0.5 m 2 / g to 20 m 2 / g.
  • the average primary particle diameter of the inorganic particles can be measured by the laser diffraction method described in JIS Z8825-1.
  • the specific surface area can be measured by the BET method described in JIS Z8830.
  • the content of the inorganic particles in the encapsulant is preferably 20% by mass or less, more preferably 15% by mass or less.
  • the amount of the inorganic particles is in the above range, the viscosity of the encapsulant or the like tends to fall within the desired range.
  • examples of organic particles include silicone particles, acrylic particles, styrene particles such as a styrene / divinylbenzene copolymer, and polyolefin particles.
  • the encapsulant may contain only one type of organic particles, or may contain two or more types of organic particles.
  • the average primary particle size of the organic particles is preferably 0.05 to 13 ⁇ m, more preferably 0.1 to 10 ⁇ m, and even more preferably 0.1 to 8 ⁇ m.
  • the shape of the organic particles is not particularly limited, but is preferably spherical, and more preferably true spherical.
  • the average primary particle size of organic particles can be measured by microscopy, specifically image analysis with an electron microscope.
  • it is preferable that the surface of the organic particles is smooth. If the surface is smooth, the specific surface area decreases and the amount of organic particles that can be added to the encapsulant increases.
  • the amount of organic particles in the encapsulant is preferably 15% by mass or less, more preferably 10% by mass or less.
  • the elastic modulus of the encapsulant after curing tends to be in the desired range.
  • the sealant may further contain a spacer or the like in order to adjust the gap of the liquid crystal display panel.
  • the viscosity of the sealant E-type viscometer at 25 ° C. and 2.5 rpm is preferably 200 to 450 Pa ⁇ s, more preferably 300 to 400 Pa ⁇ s.
  • the viscosity is in the above range, it is easy to apply the sealant in a pattern, and when the sealant (seal pattern) is sandwiched and the pair of substrates are overlapped, the sealant has a gap between them. It is easy to deform to fill. Therefore, the gap width between the pair of substrates of the liquid crystal display panel can be appropriately controlled.
  • the thixotropy index (TI value) of the encapsulant of the present invention is preferably 1.0 to 1.5, more preferably 1.0 to 1.3, from the viewpoint of the applicability of the encapsulant.
  • TI value the viscosity ⁇ 1 of the sealant at room temperature (25 ° C.) and 0.5 rpm was measured using an E-type viscometer, and the viscosity ⁇ 2 of the sealant at 5 rpm was measured, and these measured values were calculated by the following formula (1). ) Is the value obtained.
  • TI value (viscosity ⁇ 1 (25 ° C) at 0.5 rpm) / (viscosity ⁇ 2 (25 ° C) at 5 rpm) ... (1)
  • the method for producing the above-mentioned encapsulant is not particularly limited, and (A) epoxy resin, (B) curable resin, (C) photopolymerization initiator, and (D) thermosetting agent, if necessary, (E). ) It suffices if it can be mixed uniformly with other components. Mixing can be performed by, for example, three rolls or the like.
  • the liquid crystal display panel of the present invention includes a pair of substrates, a frame-shaped seal member arranged between the substrates, and a liquid crystal filled between the pair of substrates and inside the frame-shaped seal member.
  • the sealing member is a cured product of the above-mentioned sealing agent. As described above, the sealing member has good adhesive strength with the substrate and is difficult to elute into the liquid crystal.
  • the pair of substrates are both transparent substrates.
  • transparent substrate materials include glass or polycarbonate, polyethylene terephthalate, polyether sulfone, PMMA and the like.
  • a matrix-like TFT, a color filter, a black matrix, etc. are arranged on the surface of the display board or the facing board.
  • An alignment film is further formed on the surface of the display substrate or the facing substrate.
  • the alignment film includes known organic alignment agents, inorganic alignment agents, and the like. Further, a known liquid crystal can be used as the liquid crystal.
  • the liquid crystal display panel manufacturing method generally includes a liquid crystal dropping method and a liquid crystal injection method, but the liquid crystal display panel manufacturing method of the present invention is preferably the liquid crystal dropping method.
  • the manufacturing method of the liquid crystal display panel by the liquid crystal dropping method is as follows: 1) a seal pattern forming step of applying the above-mentioned sealing agent to one substrate to form a frame-shaped seal pattern, and 2) the seal pattern is uncured. Liquid crystal that drops liquid crystal on one substrate and in the area surrounded by the seal pattern, or on the other substrate and in the area surrounded by the seal pattern when the other substrate and one substrate face each other. It includes a dropping step, a superposition step of 3) superimposing one substrate and the other substrate via a seal pattern, and 4) a curing step of curing the seal pattern.
  • the above-mentioned sealing agent is applied to one of the substrates.
  • the method of applying the sealant is not particularly limited as long as it is a method capable of forming a seal pattern with a desired thickness and width, such as screen printing or application with a dispenser. It is the same as the coating method.
  • the shape of the seal pattern to be formed may be appropriately selected according to the application of the liquid crystal display panel and the like so that the liquid crystal does not leak.
  • it may have a rectangular frame shape, but is not limited to the shape.
  • the line width of the seal pattern is preferably 0.2 to 1.0 mm, more preferably 0.2 to 0.7 mm.
  • the pair of substrates are opposed to each other with the seal pattern uncured.
  • the state in which the seal pattern is uncured means a state in which the curing reaction of the sealant has not progressed to the gel point.
  • the seal pattern may be semi-cured by irradiating or heating the seal pattern in order to suppress the dissolution of the sealing agent in the liquid crystal.
  • the liquid crystal dropping method is the same as the known liquid crystal dropping method, and the liquid crystal may be dropped on the substrate on which the seal pattern is formed, and the liquid crystal may be dropped on the substrate on which the seal pattern is not formed (the other substrate). May be dropped.
  • one substrate and the other substrate are laminated so as to face each other via a seal pattern. At this time, the gap between the substrates is controlled to be within a desired range.
  • the seal pattern is cured.
  • the method for curing the seal pattern is not particularly limited, but it is preferable that the seal pattern is temporarily cured by irradiation with light having a predetermined wavelength and then finally cured by heating. By light irradiation, the seal pattern can be instantly cured, and the components in the sealant can be suppressed from being dissolved in the liquid crystal.
  • the wavelength of the light to be irradiated is appropriately selected according to the type of the photopolymerization initiator, and light having a wavelength of 350 to 600 nm is preferable.
  • the light irradiation time is, for example, about 10 minutes, although it depends on the composition of the encapsulant.
  • the amount of energy to be irradiated at this time may be an amount of energy that can cure (B) the curable resin or the like.
  • the heating temperature is, for example, 100 to 150 ° C., although it depends on the composition of the encapsulant, and the heating time is preferably about 2 hours.
  • C1 Photopolymerization Initiator-Photoinitiator
  • C2 Omnipol-TX, manufactured by IGM, thioxanthone-based compound, specified by the following method, wavelength at which the absorbance is 0.1% or more: 437 nm.
  • C3 Photopolymerization initiator (C3): The thioxanthone-based compound obtained in Synthesis Example 2 below, a wavelength having an absorbance of 0.1% or more specified by the following method: 439 nm.
  • -Photopolymerization initiator (C4) Anthraquinone-based compound obtained in the following Synthesis Example 3, a wavelength having an absorbance of 0.1% or more specified by the following method: 483 nm.
  • -Photopolymerization initiator (C5) Irgacure 784, manufactured by BASF, titanocene compound, wavelength specified by the following method, having an absorbance of 0.1% or more: 531 nm.
  • Thermosetting agent-Thermosetting agent (D1) adipic acid dihydrazide, ADH, manufactured by Nihon Kasei Co., Ltd., melting point 177 to 184 ° C.
  • Tg glass transition temperature
  • DMA dynamic viscoelasticity measurement
  • Each photopolymerization initiator was dissolved in tetrahydrofuran so as to have a concentration of 0.15% by mass. Then, the ultraviolet-visible absorption spectrum was specified by an ultraviolet-visible spectrophotometer UV-2550 (manufactured by Shimadzu Corporation). Then, in the absorption spectrum, when confirmed from the long wavelength side, the wavelength at which the absorbance was 0.1 or more for the first time was confirmed.
  • Example 1 100 parts by mass of epoxy resin (A1), 600 parts by mass of curable resin (B1) obtained in Synthesis Example 1, 60 parts by mass of thermosetting agent (D1), 130 parts by mass of silica particles, 70 parts by mass of thermoplastic resin particles, 20 parts by mass of the silane coupling agent and 20 parts by mass of the photopolymerization initiator (C1) were sufficiently mixed using three rolls so as to form a uniform liquid to obtain a sealing agent for the liquid crystal dropping method. ..
  • Examples 2 to 9 and Comparative Examples 1 to 7 A liquid crystal dropping method encapsulant was obtained in the same manner as in Example 1 except that each component was changed to the component shown in Table 1 below.
  • ⁇ Adhesive strength test> A 40 mm ⁇ 45 mm glass substrate (RT-) in which a transparent electrode and an alignment film were previously formed using a dispenser (Shotmaster, manufactured by Musashi Engineering Co., Ltd.) using the sealant for the liquid crystal dropping method obtained in Examples and Comparative Examples.
  • a 38 mm ⁇ 38 mm quadrangular seal pattern (cross-sectional area 2500 ⁇ m 2 ) was formed on the DM88-PIN (manufactured by EHC).
  • the paired glass substrates were stacked under reduced pressure so as to be perpendicular to the glass substrate on which the above-mentioned seal pattern was formed, and then opened to the atmosphere for bonding. Then, the two laminated glass substrates are held in a light-shielding box for 1 minute, and then light including visible light (light having a wavelength of 350 to 450 nm) is irradiated so as to have an integrated irradiation amount of 3000 mJ / cm 2. The seal was cured by heating at 120 ° C. for 1 hour to obtain a test piece.
  • Adhesive strength is 15 N / mm or more
  • Adhesive strength is 7 N / mm or more and less than 15 N / mm
  • Adhesive strength is less than 7 N / mm
  • ⁇ Liquid crystal display panel display characteristic test> A 40 mm ⁇ 45 mm glass substrate (RT-DM88-PIN, EHC) in which a transparent electrode and an alignment film were previously formed using a dispenser (Shotmaster, manufactured by Musashi Engineering Co., Ltd.) for the obtained sealing material for the liquid crystal dropping method.
  • a 35 mm ⁇ 35 mm quadrangular seal pattern (cross-sectional area 3500 ⁇ m 2 ) was formed on the main seal, and a 38 mm ⁇ 38 mm quadrangular seal pattern was formed on the outer periphery thereof.
  • a liquid crystal material (MLC-6609-000, manufactured by Merck & Co., Inc.) corresponding to the capacity of the panel after bonding was precisely dropped into the frame of the main seal using a dispenser.
  • the paired glass substrates were laminated under reduced pressure, opened to the atmosphere, and bonded.
  • the main seal is masked with a substrate coated with a 36 mm ⁇ 36 mm square black matrix, and light containing visible light (wavelength 350).
  • Light of up to 450 nm) was irradiated so as to have an integrated irradiation amount of 500 mJ / cm 2, and further heated at 120 ° C.
  • When the liquid crystal is oriented up to the main seal of the liquid crystal display panel and there is no color unevenness ⁇ : When color unevenness occurs in the vicinity of the main seal over a range of less than 1 mm ⁇ : 1 mm from the vicinity of the main seal When color unevenness occurs over the above range
  • Examples 1 to 9 which include (C) a photopolymerization initiator having an absorbance of 0.1 or more even at a wavelength of 400 nm or more, and (D) a thermosetting agent, the adhesive strength is high. It was high and the result of the display characteristic test was also good.
  • the liquid crystal when a liquid crystal display panel is manufactured by the liquid crystal dropping method, the liquid crystal is less likely to be contaminated, and the substrates can be firmly adhered to each other. Therefore, it is very useful for manufacturing a high quality liquid crystal display panel.

Abstract

The present invention addresses the problem of providing a sealing agent for liquid crystal dropping methods, which is not likely to dissolve into liquid crystals during the production of a liquid crystal display panel, and which exhibits high adhesion to a substrate of the liquid crystal display panel after curing. A sealing agent for liquid crystal dropping methods according to the present invention, which solves the above-described problem, contains (A) an epoxy resin, (B) a curable resin that contains at least one (meth)acryloyl group in each molecule, (C) a photopolymerization initiator, and (D) a thermal curing agent. The epoxy resin (A) has an epoxy equivalent weight of 350 or more; a cured product of the epoxy resin (A) has a glass transition temperature of 100°C or less; in the ultraviolet-visible absorption spectrum as determined by dissolving only the photopolymerization initiator (C) in tetrahydrofuran, the wavelength at which the absorbance is 0.1 or more when affirmed from the long wavelength side is 400 nm or more; and the content of the epoxy resin (A) is 5% by mass or more but less than 20% by mass.

Description

液晶滴下工法用封止剤、これを用いた液晶表示パネル、およびその製造方法Sealant for liquid crystal dropping method, liquid crystal display panel using this, and its manufacturing method
 本発明は、液晶滴下工法用封止剤、これを用いた液晶表示パネル、およびその製造方法に関する。 The present invention relates to a sealing agent for a liquid crystal dropping method, a liquid crystal display panel using the sealant, and a method for manufacturing the same.
 液晶表示パネルは通常、一対の基板と、これらの間に配置された枠状のシール部材と、一対の基板およびシール剤に囲まれた領域に充填された液晶と、を有する。近年、液晶の充填方法として、液晶滴下工法が多用されている。液晶滴下工法では、一対の基板の一方に、封止剤を塗布して枠状のシールパターンを形成する。そして、シールパターンを硬化させることなく、シールパターン内に液晶を滴下する。その後、一対の基板を、シールパターンを挟んで重ね合わせ、シールパターンに光を照射したり、加熱したりすることで、シールパターンを硬化させる(例えば特許文献1、および特許文献2)。封止剤の硬化物(以下「シール部材」とも称する)は、液晶の漏出を防ぐだけでなく、一対の基板を貼り合わせる機能も担う。 A liquid crystal display panel usually has a pair of substrates, a frame-shaped sealing member arranged between them, and a pair of substrates and a liquid crystal filled in an area surrounded by a sealing agent. In recent years, a liquid crystal dropping method has been widely used as a liquid crystal filling method. In the liquid crystal dropping method, a sealing agent is applied to one of the pair of substrates to form a frame-shaped seal pattern. Then, the liquid crystal is dropped into the seal pattern without curing the seal pattern. After that, the pair of substrates are overlapped with the seal pattern sandwiched between them, and the seal pattern is irradiated with light or heated to cure the seal pattern (for example, Patent Document 1 and Patent Document 2). The cured product of the sealant (hereinafter, also referred to as “seal member”) not only prevents leakage of liquid crystal, but also has a function of bonding a pair of substrates.
特許第5584801号公報Japanese Patent No. 5584801 特開2017-90931号公報JP-A-2017-90931
 液晶滴下工法では、未硬化の封止剤と液晶とが接触する。そのため、封止剤が含む成分の一部が液晶内に溶出し、液晶を汚染することがあった。また、基板と封止剤の硬化物(シール部材)との接着強度が低いと、これらの間で剥離が生じ、液晶漏れ等が生じたりすることがあった。 In the liquid crystal dropping method, the uncured sealant comes into contact with the liquid crystal. Therefore, a part of the components contained in the sealing agent may be eluted into the liquid crystal and contaminate the liquid crystal. Further, if the adhesive strength between the substrate and the cured product (sealing member) of the sealing agent is low, peeling may occur between them, and liquid crystal leakage or the like may occur.
 そこで、本発明は、液晶滴下工法に使用可能な液晶滴下工法用封止剤であって、液晶表示パネルを製造する際に液晶に溶出し難く、かつ硬化させたときに、液晶表示パネルの基板との接着性が高い封止剤を提供する。 Therefore, the present invention is a sealing agent for the liquid crystal dropping method that can be used in the liquid crystal dropping method, and is difficult to elute into the liquid crystal when the liquid crystal display panel is manufactured, and when cured, the substrate of the liquid crystal display panel. Provided is a sealant having high adhesiveness with.
 本発明は、以下の封止剤を提供する。
 [1](A)エポキシ樹脂(ただし、分子内に(メタ)アクリロイル基を有する樹脂は除く)と、(B)分子内に(メタ)アクリロイル基を少なくとも1つ以上有する硬化性樹脂と、(C)光重合開始剤と、(D)熱硬化剤と、を含み、前記(A)エポキシ樹脂は、エポキシ当量が350以上であり、前記(A)エポキシ樹脂100質量部と、メチルヘキサヒドロ無水フタル酸を前記(A)エポキシ樹脂に対して化学当量と、ジメチルベンジルジアミン1質量部と、を混合し、110℃で3時間加熱し、さらに165℃で2時間加熱して得られる硬化物のガラス転移温度が100℃以下であり、前記(C)光重合開始剤のみを、濃度が0.15質量%となるようにテトラヒドロフランに溶解させて測定した紫外可視吸収スペクトルにおいて、長波長側から確認したときにはじめて吸光度が0.1以上となる波長が400nm以上であり、前記(A)エポキシ樹脂の含有量が、5質量%以上20質量%未満である、液晶滴下工法用封止剤。
The present invention provides the following encapsulants.
[1] (A) Epoxy resin (excluding resins having (meth) acryloyl groups in the molecule), (B) Curable resin having at least one (meth) acryloyl group in the molecule, and ( The (A) epoxy resin contains a photopolymerization initiator and (D) a thermosetting agent, and has an epoxy equivalent of 350 or more. 100 parts by mass of the (A) epoxy resin and methylhexahydroanan anhydride. A cured product obtained by mixing a chemical equivalent of phthalic acid with respect to the epoxy resin (A) and 1 part by mass of dimethylbenzyldiamine, heating at 110 ° C. for 3 hours, and further heating at 165 ° C. for 2 hours. Confirmed from the long wavelength side in the ultraviolet visible absorption spectrum measured by dissolving only the (C) photopolymerization initiator in tetrahydrofuran so that the glass transition temperature is 100 ° C. or lower and the concentration is 0.15% by mass. A sealant for the liquid crystal dropping method, wherein the wavelength at which the absorbance becomes 0.1 or more is 400 nm or more for the first time, and the content of the epoxy resin (A) is 5% by mass or more and less than 20% by mass.
 [2]前記(C)光重合開始剤が、オキシムエステル系化合物、チオキサントン系化合物、アントラセン系化合物、およびチタノセン系化合物からなる群より選ばれる1つ以上の化合物である、[1]に記載の液晶滴下工法用封止剤。
 [3]前記(D)熱硬化剤が、ジヒドラジド系熱潜在性硬化性、イミダゾール系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、およびポリアミン系熱潜在性硬化剤からなる群より選ばれる1つ以上の潜在性熱硬化剤である、[1]または[2]に記載の液晶滴下工法用封止剤。
[2] The compound according to [1], wherein the (C) photopolymerization initiator is one or more compounds selected from the group consisting of an oxime ester compound, a thioxanthone compound, an anthracene compound, and a titanosen compound. Encapsulant for liquid crystal dropping method.
[3] The (D) thermosetting agent is selected from the group consisting of dihydrazide-based thermosetting, imidazole-based thermosetting, amine adduct-based thermosetting, and polyamine-based thermosetting. The sealant for the liquid crystal dropping method according to [1] or [2], which is one or more latent thermosetting agents.
 本発明は、以下の液晶表示パネルの製造方法を提供する。
 [4]一対の基板と、前記一対の基板の間に配置された枠状のシール部材と、前記一対の基板間かつ前記枠状のシール部材の内部に充填された液晶と、を有する液晶表示パネルの製造方法であって、一対の基板のうち、一方の基板上に、[1]~[3]のいずれかに記載の液晶滴下工法用封止剤を塗布し、枠状のシールパターンを形成するシールパターン形成工程と、前記一方の基板上かつ前記シールパターンに囲まれた領域、もしくは他方の基板上かつ前記他方の基板と前記一方の基板とを対向させたときに前記シールパターンに囲まれる領域に、液晶を滴下する液晶滴下工程と、前記一方の基板および前記他方の基板を、前記シールパターンを介して重ね合わせる重ね合わせ工程と、前記シールパターンを硬化させる硬化工程と、を含む、液晶表示パネルの製造方法。
 [5]前記硬化工程において、前記シールパターンに光を照射する、[4]に記載の液晶表示パネルの製造方法。
 [6]前記硬化工程において、光の照射後、加熱をさらに行う、[5]に記載の液晶表示パネルの製造方法。
The present invention provides the following method for manufacturing a liquid crystal display panel.
[4] A liquid crystal display having a pair of substrates, a frame-shaped seal member arranged between the pair of substrates, and a liquid crystal filled between the pair of substrates and inside the frame-shaped seal member. In the panel manufacturing method, the sealing agent for the liquid crystal dropping method according to any one of [1] to [3] is applied on one of the pair of substrates to form a frame-shaped seal pattern. When the seal pattern forming step to be formed and the region on the one substrate and surrounded by the seal pattern, or on the other substrate and the other substrate and the one substrate are opposed to each other, the seal pattern is surrounded. It includes a liquid crystal dropping step of dropping a liquid crystal on the region, a stacking step of superimposing the one substrate and the other substrate via the seal pattern, and a curing step of curing the seal pattern. Manufacturing method of liquid crystal display panel.
[5] The method for manufacturing a liquid crystal display panel according to [4], wherein the seal pattern is irradiated with light in the curing step.
[6] The method for manufacturing a liquid crystal display panel according to [5], wherein in the curing step, heating is further performed after irradiation with light.
 本発明は、以下の液晶表示パネルを提供する。
 [7]一対の基板と、前記一対の基板の間に配置された枠状のシール部材と、前記一対の基板間かつ前記枠状のシール部材の内部に充填された液晶と、を有し、前記シール部材が、[1]~[3]のいずれかに記載の液晶滴下工法用封止剤の硬化物である、液晶表示パネル。
The present invention provides the following liquid crystal display panels.
[7] It has a pair of substrates, a frame-shaped sealing member arranged between the pair of substrates, and a liquid crystal filled between the pair of substrates and inside the frame-shaped sealing member. A liquid crystal display panel in which the sealing member is a cured product of the sealing agent for the liquid crystal dropping method according to any one of [1] to [3].
 本発明の液晶滴下工法用封止剤によれば、液晶滴下工法で液晶表示パネルを作製する際、液晶を汚染し難く、さらには基板どうしを強固に接着できる。したがって、高品質な液晶表示パネルの製造が可能である。 According to the sealing agent for the liquid crystal dropping method of the present invention, when the liquid crystal display panel is manufactured by the liquid crystal dropping method, the liquid crystal is less likely to be contaminated, and the substrates can be firmly adhered to each other. Therefore, it is possible to manufacture a high-quality liquid crystal display panel.
 1.液晶滴下工法用封止剤
 本発明の液晶滴下工法用封止剤は、液晶表示パネルのシール部材を作製するために使用される。液晶滴下工法でシール部材を作製する場合、前述のように、未硬化の状態の封止剤と液晶とが接触する。そのため、封止剤中の成分が液晶内に溶出し、液晶を汚染することがあった。また、封止剤の硬化物(シール部材)と基板との接着強度が低いと、液晶表示パネルの使用時にこれらが剥離して、液晶漏れ等が生じやすかった。
1. 1. Sealing agent for liquid crystal dropping method The sealing agent for liquid crystal dropping method of the present invention is used for producing a sealing member for a liquid crystal display panel. When the sealing member is manufactured by the liquid crystal dropping method, the uncured sealant and the liquid crystal come into contact with each other as described above. Therefore, the components in the sealant may elute into the liquid crystal and contaminate the liquid crystal. Further, if the adhesive strength between the cured product (sealing member) of the sealing agent and the substrate is low, these are easily peeled off when the liquid crystal display panel is used, and liquid crystal leakage or the like is likely to occur.
 これに対し、本発明の液晶滴下工法用封止剤(以下、単に「封止剤」とも称する)は、エポキシ当量が350以上であり、かつ硬化物のガラス転移温度が100℃以下である(A)エポキシ樹脂を一定量含む。一般的に、エポキシ樹脂は液晶との相溶性が高く、液晶汚染の原因となりやすいが、本発明のように、エポキシ当量を大きくすることで、液晶との相溶性を低くでき、封止剤が液晶に溶解し難くなる。また、エポキシ当量が高いと、封止剤の硬化物が水酸基を含み難く、基板が疎水性である場合に、特に接着性が良好になりやすい。また、(A)エポキシ樹脂の硬化物のガラス転移温度が100℃以下であると、過度に硬くなり難く、シール部材と液晶表示パネルの基板との接着強度が良好になりやすい。 On the other hand, the sealing agent for the liquid crystal dropping method of the present invention (hereinafter, also simply referred to as “sealing agent”) has an epoxy equivalent of 350 or more and a glass transition temperature of the cured product of 100 ° C. or less (hereinafter, also referred to as “sealing agent”). A) Contains a certain amount of epoxy resin. In general, epoxy resin has high compatibility with liquid crystal and is likely to cause liquid crystal contamination. However, as in the present invention, by increasing the epoxy equivalent, compatibility with liquid crystal can be lowered, and a sealant can be used. It becomes difficult to dissolve in the liquid crystal. Further, when the epoxy equivalent is high, the cured product of the sealing agent is unlikely to contain a hydroxyl group, and when the substrate is hydrophobic, the adhesiveness tends to be particularly good. Further, when the glass transition temperature of the cured product of the epoxy resin (A) is 100 ° C. or lower, it is unlikely to become excessively hard, and the adhesive strength between the sealing member and the substrate of the liquid crystal display panel tends to be good.
 また、本発明の封止剤は、波長400nm以上の光に対する吸光度が高い(C)光重合開始剤を含む。封止剤を光硬化させる際、長波長の光ほど散乱光になりやすい。したがって、(C)光重合開始剤が波長400nm以上に吸収を有すると、このような散乱光も利用して封止剤を硬化させることができる。そして例えば、金属配線等の下に封止剤が配置されている場合にも、十分に硬化させることができる。つまり、(C)光重合開始剤の長波長の光に対する吸光度が高いと、光硬化を十分に行うことが可能となり、封止剤中の成分が液晶に溶解し難くなる。 Further, the encapsulant of the present invention contains (C) a photopolymerization initiator having high absorbance for light having a wavelength of 400 nm or more. When the sealant is photocured, the longer the wavelength of light, the more likely it is to become scattered light. Therefore, when the (C) photopolymerization initiator has absorption at a wavelength of 400 nm or more, such scattered light can also be used to cure the encapsulant. And, for example, even when the sealing agent is arranged under the metal wiring or the like, it can be sufficiently cured. That is, when the absorbance of the (C) photopolymerization initiator with respect to long-wavelength light is high, photocuring can be sufficiently performed, and the components in the encapsulant are difficult to dissolve in the liquid crystal.
 したがって、本発明の封止剤によれば、液晶滴下工法で液晶表示パネルを作製する際、(A)エポキシ樹脂や(C)光重合開始剤によって液晶を汚染し難く、さらには基板どうしを強固に接着できる。以下、本発明の封止剤の各成分やその物性について説明する。 Therefore, according to the encapsulant of the present invention, when a liquid crystal display panel is produced by the liquid crystal dropping method, the liquid crystal is less likely to be contaminated by (A) epoxy resin or (C) photopolymerization initiator, and the substrates are further strengthened. Can be adhered to. Hereinafter, each component of the encapsulant of the present invention and its physical properties will be described.
 (A)エポキシ樹脂
 エポキシ樹脂は、分子内にエポキシ基を1つ以上含む樹脂である。なお、本明細書において、後述の(B)硬化性樹脂に相当する樹脂、すなわち分子内に(メタ)アクリロイル基を有する樹脂は、(A)エポキシ樹脂に含まないものとする。
(A) Epoxy resin The epoxy resin is a resin containing one or more epoxy groups in the molecule. In the present specification, the resin corresponding to the (B) curable resin described later, that is, the resin having a (meth) acryloyl group in the molecule is not included in the (A) epoxy resin.
 当該エポキシ基が含むエポキシ基の数は、2~3が好ましく、2がより好ましい。(A)エポキシ樹脂が含むエポキシ基の数が上記範囲であると、(A)エポキシ樹脂のエポキシ当量が350以上になりやすく、硬化物のガラス転移温度も所望の範囲に収まりやすい。 The number of epoxy groups contained in the epoxy group is preferably 2 to 3, more preferably 2. When the number of epoxy groups contained in the (A) epoxy resin is in the above range, the epoxy equivalent of the (A) epoxy resin tends to be 350 or more, and the glass transition temperature of the cured product tends to fall within a desired range.
 (A)エポキシ樹脂のエポキシ当量は、350以上であればよいが、350~1000が好ましく、350~500がより好ましい。(A)エポキシ樹脂のエポキシ当量が高いほど(A)エポキシ樹脂が液晶に溶解し難くなる。また上述のように、硬化物中の水酸基の量が少なくなるため、疎水性の基板との密着性が良好になりやすい。なお、エポキシ当量は、エポキシ基1当量当たりのエポキシ樹脂の質量であり、(樹脂の平均分子量)/(一分子中のエポキシ基の数)で求められる。当該エポキシ当量は、JIS K7236(2009)に準拠して測定できる。 The epoxy equivalent of the epoxy resin (A) may be 350 or more, but is preferably 350 to 1000, more preferably 350 to 500. The higher the epoxy equivalent of the (A) epoxy resin, the more difficult it is for the (A) epoxy resin to dissolve in the liquid crystal. Further, as described above, since the amount of hydroxyl groups in the cured product is reduced, the adhesion to the hydrophobic substrate tends to be good. The epoxy equivalent is the mass of the epoxy resin per equivalent of the epoxy group, and is calculated by (average molecular weight of the resin) / (number of epoxy groups in one molecule). The epoxy equivalent can be measured in accordance with JIS K7236 (2009).
 また、(A)エポキシ樹脂の重量平均分子量は、700~2000が好ましく、700~1000がより好ましい。エポキシ樹脂の重量平均分子量が当該範囲であると、封止剤の粘度が所望の範囲になりやすく、封止剤を所望のパターン状に塗布しやすくなる。 The weight average molecular weight of the (A) epoxy resin is preferably 700 to 2000, more preferably 700 to 1000. When the weight average molecular weight of the epoxy resin is in the above range, the viscosity of the encapsulant tends to be in the desired range, and the encapsulant can be easily applied in a desired pattern.
 また、(A)エポキシ樹脂を後述の条件で硬化させたときの、硬化物のガラス転移温度は100℃以下であり、50~100℃がより好ましく、60~90℃がさらに好ましい。(A)エポキシ樹脂の硬化物のガラス転移温度が100℃以下であると、シール部材と液晶表示パネルの基板との接着強度が高まりやすい。上記ガラス転移温度は、以下のように測定される。 Further, when the epoxy resin (A) is cured under the conditions described below, the glass transition temperature of the cured product is 100 ° C. or lower, more preferably 50 to 100 ° C., still more preferably 60 to 90 ° C. (A) When the glass transition temperature of the cured product of the epoxy resin is 100 ° C. or lower, the adhesive strength between the sealing member and the substrate of the liquid crystal display panel tends to increase. The glass transition temperature is measured as follows.
 まず、(A)エポキシ樹脂100質量部と、メチルヘキサヒドロ無水フタル酸を(A)エポキシ樹脂に対して化学当量と、ジメチルベンジルジアミン1質量部と、を混合する。そして、当該混合物を110℃で3時間加熱し、さらに165℃で2時間加熱する。そして、硬化物を100μmのフィルム状とし、動的粘弾性測定(DMA)により以下の条件ガラス転移温度を測定する。本明細書における数値は、以下の装置および条件で測定した値である。
 装置名:DMA7100(日立ハイテクサイエンス)
 試料形状:幅10mm×厚み0.1mm×長さ20mm
 温度範囲:25-200℃
 昇温速度:5℃/min
 測定間隔:3秒
 測定周波数:10Hz
 測定モード:引っ張り
First, 100 parts by mass of (A) epoxy resin, chemical equivalent of methylhexahydrophthalic anhydride with respect to (A) epoxy resin, and 1 part by mass of dimethylbenzyldiamine are mixed. Then, the mixture is heated at 110 ° C. for 3 hours, and further heated at 165 ° C. for 2 hours. Then, the cured product is formed into a film of 100 μm, and the glass transition temperature under the following conditions is measured by dynamic viscoelasticity measurement (DMA). The numerical values in the present specification are values measured under the following devices and conditions.
Device name: DMA7100 (Hitachi High-Tech Science)
Sample shape: width 10 mm x thickness 0.1 mm x length 20 mm
Temperature range: 25-200 ° C
Heating rate: 5 ° C / min
Measurement interval: 3 seconds Measurement frequency: 10 Hz
Measurement mode: pull
 ここで、(A)エポキシ樹脂は、上述のエポキシ当量および硬化物のガラス転移温度を満たす限りにおいて、その構造は特に制限されないが、2つ以上のエポキシ基もしくはグリシジル基が、連結基によって連結された構造であることが好ましい。連結基は、脂肪族炭化水素鎖等の鎖状構造(以下、「鎖状ブロック」とも称する)を有することが好ましい。また、連結基は、芳香環を含む構造(以下、「芳香族ブロック」とも称する)をさらに含むことが好ましく、鎖状ブロックおよび芳香族ブロックが交互に結合していることが特に好ましい。 Here, the structure of the epoxy resin (A) is not particularly limited as long as it satisfies the above-mentioned epoxy equivalent and the glass transition temperature of the cured product, but two or more epoxy groups or glycidyl groups are linked by a linking group. The structure is preferable. The linking group preferably has a chain structure (hereinafter, also referred to as “chain block”) such as an aliphatic hydrocarbon chain. Further, the linking group preferably further contains a structure containing an aromatic ring (hereinafter, also referred to as “aromatic block”), and it is particularly preferable that the chain block and the aromatic block are alternately bonded.
 鎖状ブロックは、炭素数が2以上の脂肪族炭化水素鎖を含んでいればよく、直鎖状であってもよく、分岐鎖状であってもよい。鎖状ブロックの例には、アルキレン基やアルキレンオキシ基が含まれる。また、鎖状ブロックは、複数のアルキレン基やアルキレンオキシ基が、エーテル結合、チオエーテル結合、エステル結合、アミド結合、炭素-炭素二重結合、炭素-炭素三重結合等を介して結合した構造であってもよい。各鎖状ブロックが含む炭素の数は、3以上が好ましく、4以上がより好ましく、5~30がさらに好ましく、6~20が特に好ましい。 The chain block may contain an aliphatic hydrocarbon chain having 2 or more carbon atoms, and may be linear or branched. Examples of chain blocks include alkylene and alkyleneoxy groups. The chain block has a structure in which a plurality of alkylene groups and alkyleneoxy groups are bonded via an ether bond, a thioether bond, an ester bond, an amide bond, a carbon-carbon double bond, a carbon-carbon triple bond, or the like. You may. The number of carbons contained in each chain block is preferably 3 or more, more preferably 4 or more, further preferably 5 to 30, and particularly preferably 6 to 20.
 一方、上記芳香族ブロックは、芳香環のみから構成されてもよく、複数の芳香環が、メチレン基やジメチルメチレン基、エーテル結合、チオエーテル結合、エステル結合、アミド結合等を介して結合した構造であってもよい。芳香族ブロックの例には、フェニレン基、ナフタレン基、アントラセン基、ビフェニル基、ビスフェノールA型構造、ビスフェノールF型構造等が含まれる。 On the other hand, the aromatic block may be composed of only an aromatic ring, and has a structure in which a plurality of aromatic rings are bonded via a methylene group, a dimethylmethylene group, an ether bond, a thioether bond, an ester bond, an amide bond, or the like. There may be. Examples of the aromatic block include a phenylene group, a naphthalene group, an anthracene group, a biphenyl group, a bisphenol A type structure, a bisphenol F type structure and the like.
 より具体的には、上記(A)エポキシ樹脂が、下記一般式で表されるいずれかの構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000001
 上記一般式において、kは1~20の整数であり、好ましくは1~5である。
More specifically, it is preferable that the epoxy resin (A) has any structure represented by the following general formula.
Figure JPOXMLDOC01-appb-C000001
In the above general formula, k is an integer of 1 to 20, preferably 1 to 5.
 また、上記(A)エポキシ樹脂が下記一般式で表されるいずれかの構造を有することも好ましい。
Figure JPOXMLDOC01-appb-C000002
 上記一般式において、hは0~20の整数であり、好ましくは0~5である。また、iおよびjは1~20の整数を表し、好ましくは1~5である。さらにi+jは好ましくは2~10である。
It is also preferable that the epoxy resin (A) has any structure represented by the following general formula.
Figure JPOXMLDOC01-appb-C000002
In the above general formula, h is an integer of 0 to 20, preferably 0 to 5. Further, i and j represent integers of 1 to 20, preferably 1 to 5. Further, i + j is preferably 2 to 10.
 上記(A)エポキシ樹脂は、公知の方法により重合した樹脂であってもよく、市販品であってもよい。封止剤は(A)エポキシ樹脂を一種のみ含んでいてもよく、二種以上含んでいてもよい。(A)エポキシ樹脂の市販品の例には、EXA-4850-150、EXA-4816、及びEXA-4822(いずれもDIC社製);EP-4003S、EP-4010S、EP-4010L、EP-4011S(いずれもADEKA社製);BEO-60E、BPO-20E(いずれも新日本理化社製);YL7175-500、YL7175-1000、YL7410(いずれも三菱ケミカル社製)等が含まれる。 The epoxy resin (A) may be a resin polymerized by a known method, or may be a commercially available product. The sealing agent may contain only one type of (A) epoxy resin, or may contain two or more types of epoxy resin. Examples of commercially available epoxy resins (A) include EXA-4850-150, EXA-4816, and EXA-4822 (all manufactured by DIC Corporation); EP-4003S, EP-4010S, EP-4010L, EP-4011S. (All manufactured by ADEKA Corporation); BEO-60E, BPO-20E (all manufactured by New Japan Chemical Co., Ltd.); YL7175-500, YL7175-1000, YL7410 (all manufactured by Mitsubishi Chemical Corporation) and the like are included.
 封止剤の総量に対する(A)エポキシ樹脂の量は、5質量%以上20質量%未満であり、7.5~17.5質量%が好ましく、10~15質量%がより好ましい。(A)エポキシ樹脂の量が5質量%以上であると、封止剤の硬化物と液晶表示パネルの基板との接着強度が高くなる。一方で、(A)エポキシ樹脂の量が20質量%未満であると、液晶に溶解する(A)エポキシ樹脂の量を低減できる。 The amount of the epoxy resin (A) with respect to the total amount of the encapsulant is 5% by mass or more and less than 20% by mass, preferably 7.5 to 17.5% by mass, and more preferably 10 to 15% by mass. When the amount of the epoxy resin (A) is 5% by mass or more, the adhesive strength between the cured product of the sealing agent and the substrate of the liquid crystal display panel becomes high. On the other hand, when the amount of the (A) epoxy resin is less than 20% by mass, the amount of the (A) epoxy resin dissolved in the liquid crystal can be reduced.
 (B)硬化性樹脂
 (B)硬化性樹脂は、分子内に(メタ)アクリロイル基を少なくとも1つ以上有する樹脂であり、光の照射によって硬化する樹脂である。当該硬化性樹脂の例には、(メタ)アクリル樹脂や、1分子内にエポキシ基と(メタ)アクリル基とを有する(メタ)アクリル変性エポキシ樹脂が含まれる。封止剤は、これらを一種のみ含んでいてもよく、二種以上含んでいてもよい。
(B) Curable Resin (B) Curable Resin is a resin having at least one (meth) acryloyl group in the molecule and is cured by irradiation with light. Examples of the curable resin include a (meth) acrylic resin and a (meth) acrylic-modified epoxy resin having an epoxy group and a (meth) acrylic group in one molecule. The sealant may contain only one kind of these, or may contain two or more kinds of these.
 本明細書において(メタ)アクリル樹脂は、分子内に(メタ)アクリロイル基を含み、かつエポキシ基を含まない樹脂とする。また、(メタ)アクリロイルとは、メタアクリロイルまたはアクリロイル、もしくはこれらの両方を表す。また(メタ)アクリル樹脂は、モノマーであってもよく、オリゴマーやポリマーであってもよい。 In the present specification, the (meth) acrylic resin is a resin containing a (meth) acryloyl group in the molecule and not containing an epoxy group. In addition, (meth) acryloyl represents meta-acryloyl, acryloyl, or both. Further, the (meth) acrylic resin may be a monomer, an oligomer or a polymer.
 (メタ)アクリル樹脂の例には、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール等のジアクリレートおよび/またはジメタクリレート;トリス(2-ヒドロキシエチル)イソシアヌレートのジアクリレートおよび/またはジメタクリレート;ネオペンチルグリコール1モルに4モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得たジオールのジアクリレートおよび/またはジメタクリレート;ビスフェノールA1モルに2モルのエチレンオキサイド若しくはプロピレンオキサイドを付加して得たジオールのジアクリレートおよび/またはジメタクリレート;トリメチロールプロパン1モルに3モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得たトリオールのジまたはトリアクリレートおよび/またはジまたはトリメタクリレート;ビスフェノールA1モルに4モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得たジオールのジアクリレートおよび/またはジメタクリレート;トリス(2-ヒドロキシエチル)イソシアヌレートのトリアクリレートおよび/またはトリメタクリレート;トリメチロールプロパンのトリアクリレートおよび/またはトリメタクリレート、またはそのオリゴマー;ペンタエリスリトールのトリアクリレートおよび/またはトリメタクリレート、またはそのオリゴマー;ジペンタエリスリトールのポリアクリレートおよび/またはポリメタクリレート;トリス(アクリロキシエチル)イソシアヌレート;カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート;カプロラクトン変性トリス(メタクリロキシエチル)イソシアヌレート;アルキル変性ジペンタエリスリトールのポリアクリレートおよび/またはポリメタクリレート;カプロラクトン変性ジペンタエリスリトールのポリアクリレートおよび/またはポリメタクリレート;ヒドロキシピバリン酸ネオペンチルグリコールのジアクリレートおよび/またはジメタクリレート;カプロラクトン変性ヒドロキシピバリン酸ネオペンチルグリコールのジアクリレートおよび/またはジメタクリレート;エチレンオキサイド変性リン酸アクリレートおよび/またはジメタクリレート;エチレンオキサイド変性アルキル化リン酸のアクリレートおよび/またはジメタクリレート;ネオペンチルグルコール、トリメチロールプロパン、ペンタエリスリトールのオリゴアクリレートおよび/またはオリゴメタクリレート;もしくはこれらの重合体が含まれる。 Examples of (meth) acrylic resins include diacrylates and / or dimethacrylates such as polyethylene glycol, propylene glycol, polypropylene glycol; diacrylates and / or dimethacrylates of tris (2-hydroxyethyl) isocyanurate; neopentyl glycol 1 Diacrylate and / or dimethacrylate of diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to a mole; diacrylate and / or dimethacrylate of a diol obtained by adding 2 mol of ethylene oxide or propylene oxide to 1 mol of bisphenol A / Or dimethacrylate; di or triacrylate and / or di or trimethacrylate of triol obtained by adding 3 mol or more of ethylene oxide or propylene oxide to 1 mol of trimethylolpropane; 4 mol or more of ethylene oxide to 1 mol of bisphenol A. Or diacrylate and / or dimethacrylate of the diol obtained by adding propylene oxide; triacrylate and / or trimethacrylate of tris (2-hydroxyethyl) isocyanurate; triacrylate and / or trimethacrylate of trimethylolpropane, or The oligomer; triacrylate and / or trimethacrylate of pentaerythritol, or an oligomer thereof; polyacrylate and / or polymethacrylate of dipentaerythritol; tris (acryloxyethyl) isocyanurate; caprolactone-modified tris (acryroxyethyl) isocyanurate; Caprolactone-modified tris (methacryloxyethyl) isocyanurate; alkyl-modified dipentaerythritol polyacrylate and / or polymethacrylate; caprolactone-modified dipentaerythritol polyacrylate and / or polymethacrylate; hydroxypivalate neopentyl glycol diacrylate and / Or dimethacrylate; diacrylate and / or dimethacrylate of caprolactone-modified hydroxypivalate neopentyl glycol; ethylene oxide-modified phosphate acrylate and / or dimethacrylate; acrylate and / or dimethacrylate of ethylene oxide-modified alkylated phosphate; neopentyl Glucol, Trimethylol Propane , Pentaerythritol oligoacrylates and / or oligomethacrylates; or polymers thereof.
 (メタ)アクリル樹脂の重量平均分子量は、300~1000が好ましい。(メタ)アクリル樹脂の重量平均分子量は、例えばゲルパーミエーションクロマトグラフィー(GPC)により測定(ポリスチレン換算)できる。 The weight average molecular weight of the (meth) acrylic resin is preferably 300 to 1000. The weight average molecular weight of the (meth) acrylic resin can be measured (in terms of polystyrene) by, for example, gel permeation chromatography (GPC).
 一方、(メタ)アクリル変性エポキシ樹脂は、分子内に(メタ)アクリロイル基とエポキシ基とを有する樹脂であり、その例には、エポキシ樹脂と(メタ)アクリル酸とを、例えば塩基性触媒の存在下で反応させることにより得られる樹脂が含まれる。(メタ)アクリル変性エポキシ樹脂は、分子内にエポキシ基と(メタ)アクリロイル基とを有するため、光硬化性と熱硬化性とを併せ持つ。 On the other hand, the (meth) acrylic-modified epoxy resin is a resin having a (meth) acryloyl group and an epoxy group in the molecule, and examples thereof include an epoxy resin and (meth) acrylic acid, for example, a basic catalyst. Includes resins obtained by reacting in the presence. Since the (meth) acrylic-modified epoxy resin has an epoxy group and a (meth) acryloyl group in the molecule, it has both photocurability and thermosetting property.
 (メタ)アクリル変性エポキシ樹脂の原料となるエポキシ樹脂は、分子内にエポキシ基を2つ以上有する2官能以上のエポキシ樹脂であればよく、ビスフェノールA型、ビスフェノールF型、2,2’-ジアリルビスフェノールA型、ビスフェノールAD型、および水添ビスフェノール型等のビスフェノール型エポキシ樹脂;フェノールノボラック型、クレゾールノボラック型、ビフェニルノボラック型、およびトリスフェノールノボラック型等のノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂;ナフタレン型エポキシ樹脂等が含まれる。3官能や4官能等の多官能エポキシ樹脂を(メタ)アクリル変性して得られる(メタ)アクリル変性エポキシ樹脂は、架橋密度が高く、封止剤の硬化物(シール部材)と基板との接着強度が低下し易い。したがって、2官能エポキシ樹脂を(メタ)アクリル変性して得られる(メタ)アクリル変性エポキシ樹脂が好ましい。 The epoxy resin used as a raw material for the (meth) acrylic-modified epoxy resin may be a bifunctional or higher epoxy resin having two or more epoxy groups in the molecule, and may be bisphenol A type, bisphenol F type, or 2,2'-diallyl. Bisphenol type epoxy resins such as bisphenol A type, bisphenol AD type, and hydrogenated bisphenol type; novolak type epoxy resins such as phenol novolac type, cresol novolac type, biphenyl novolac type, and trisphenol novolac type; biphenyl type epoxy resin; naphthalene Includes type epoxy resin and the like. The (meth) acrylic-modified epoxy resin obtained by (meth) acrylic modification of a trifunctional or tetrafunctional polyfunctional epoxy resin has a high crosslink density and adheres the cured product (sealing member) of the sealant to the substrate. The strength tends to decrease. Therefore, a (meth) acrylic-modified epoxy resin obtained by modifying a bifunctional epoxy resin with (meth) acrylic is preferable.
 2官能エポキシ樹脂としては、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、およびビスフェノール型エポキシ樹脂が好ましい。またこれらのなかでも、ビスフェノールA型やビスフェノールF型等のビスフェノール型エポキシ樹脂を原料とする(メタ)アクリル変性エポキシ樹脂であると、封止剤の粘度が所望の範囲になりやすく、封止剤を塗布しやすくなる。 As the bifunctional epoxy resin, a biphenyl type epoxy resin, a naphthalene type epoxy resin, and a bisphenol type epoxy resin are preferable. Among these, if the (meth) acrylic-modified epoxy resin is made from a bisphenol type epoxy resin such as bisphenol A type or bisphenol F type, the viscosity of the sealant tends to be in a desired range, and the sealant Is easier to apply.
 原料となるエポキシ樹脂は、一種類であってもよく、二種類以上を組み合わせてもよい。また、原料となるエポキシ樹脂は、分子蒸留法、洗浄法等により高純度化されていることが好ましい。 The epoxy resin used as a raw material may be one type or a combination of two or more types. Further, the epoxy resin used as a raw material is preferably highly purified by a molecular distillation method, a cleaning method or the like.
 (メタ)アクリル変性エポキシ樹脂の重量平均分子量は300~1000が好ましい。(メタ)アクリル変性エポキシ樹脂の重量平均分子量は、例えばゲルパーミエーションクロマトグラフィー(GPC)により測定(ポリスチレン換算)できる。 The weight average molecular weight of the (meth) acrylic-modified epoxy resin is preferably 300 to 1000. The weight average molecular weight of the (meth) acrylic-modified epoxy resin can be measured (in terms of polystyrene) by, for example, gel permeation chromatography (GPC).
 封止剤中の(B)硬化性樹脂の量は、30質量%~70質量%が好ましく、50~65質量%がより好ましい。(B)硬化性樹脂の量が当該範囲であると、封止剤の光硬化性が良好になりやすい。 The amount of the (B) curable resin in the sealant is preferably 30% by mass to 70% by mass, more preferably 50 to 65% by mass. (B) When the amount of the curable resin is within the above range, the photocurability of the sealant tends to be good.
 (C)光重合開始剤
 (C)光重合開始剤は、光の照射によって、活性種を発生可能な化合物であればよく、自己開裂型の光重合開始剤であってもよく、水素引き抜き型の光重合開始剤であってもよい。封止剤は、(C)光重合開始剤を一種のみ含んでいてもよく、二種以上含んでいてもよい。
(C) Photopolymerization Initiator (C) The photopolymerization initiator may be a compound capable of generating an active species by irradiation with light, may be a self-cleaving type photopolymerization initiator, or is a hydrogen abstraction type. It may be a photopolymerization initiator of. The encapsulant may contain only one type of (C) photopolymerization initiator, or may contain two or more types.
 ここで、(C)光重合開始剤は、当該(C)光重合開始剤のみを、濃度が0.15質量%となるようにテトラヒドロフランに溶解させて測定した紫外可視吸収スペクトルにおいて、長波長側から確認したときにはじめて吸光度が0.1以上となる波長が400nm以上である。つまり、(C)光重合開始剤が、紫外可視吸収スペクトルの波長400nm以上の領域に十分な吸収を有する。(C)光重合開始剤の波長400nm以上の領域における吸光度が高いと、上述のように封止剤による液晶汚染が少なくなる。上記紫外可視吸収スペクトルは、紫外可視分光光度計UV-2550(島津製作所製)で測定できる。 Here, the (C) photopolymerization initiator is measured on the long wavelength side in the ultraviolet-visible absorption spectrum measured by dissolving only the (C) photopolymerization initiator in tetrahydrofuran so as to have a concentration of 0.15% by mass. The wavelength at which the absorbance becomes 0.1 or more is 400 nm or more for the first time when confirmed from. That is, (C) the photopolymerization initiator has sufficient absorption in the region of the ultraviolet-visible absorption spectrum having a wavelength of 400 nm or more. (C) When the absorbance of the photopolymerization initiator in the wavelength region of 400 nm or more is high, the liquid crystal contamination by the encapsulant is reduced as described above. The ultraviolet-visible absorption spectrum can be measured with an ultraviolet-visible spectrophotometer UV-2550 (manufactured by Shimadzu Corporation).
 自己開裂型の(C)光重合開始剤の例には、アシルホスフィンオキサイド系化合物(例えば2,4,6-トリメチルベンゾインジフェニルホスフィンオキシド等)、チタノセン系化合物(例えばビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム(Irgacure 784(BASF社製))等)、およびオキシムエステル系化合物(例えば1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)](BASF社製 IRGACURE OXE01)、エタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(0-アセチルオキシム)(BASF社製 IRGACURE OXE02)等)が含まれる。 Examples of the self-cleaving (C) photopolymerization initiator include acylphosphine oxide compounds (eg 2,4,6-trimethylbenzoindiphenylphosphine oxide) and titanosen compounds (eg bis (η5-2,4-). Cyclopentadiene-1-yl) -bis (2,6-difluoro-3- (1H-pyrrole-1-yl) -phenyl) titanium (Irgacure 784 (manufactured by BASF)), and oxime ester compounds (for example) 1,2-octanedione-1- [4- (phenylthio) -2- (O-benzoyloxime)] (IRGACURE OXE01 manufactured by BASF), Etanone-1- [9-ethyl-6- (2-methylbenzoyl)) -9H-carbazole-3-yl] -1- (0-acetyloxime) (IRGACURE OXE02 manufactured by BASF, etc.) is included.
 水素引き抜き型の(C)光重合開始剤の例には、チオキサトン系化合物(例えばチオキサントン、2-クロロチオキサントン(東京化成工業社製)、1-クロロ-4-プロポキシチオキサントン、1-クロロ-4-エトキシチオキサントン(Lambson Limited製 Speedcure CPTX)、2-イソプロピルキサントン(Lambson Limited社製 Speedcure ITX)、4-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン(Lambson Limited社製 Speedcure DETX)、2,4-ジクロロチオキサントン、Omnipol-TX(IGM社製)等)、アントラキノン系化合物(例えば2-メチルアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノン等、2-ヒドロキシアントラキノン(東京化成工業社製 2-Hydroxyanthraquinone)、2,6-ジヒドロキシアントラキノン(東京化成工業社製 Anthraflavic Acid)、2-ヒドロキシメチルアントラキノン(純正化学社製 2-(Hydroxymethyl)anthraquinone)等)、およびベンジル系化合物が含まれる。 Examples of hydrogen abstraction type (C) photopolymerization initiators include thioxathraquinone compounds (eg, thioxanthraquinone, 2-chlorothioxanthraquinone (manufactured by Tokyo Kasei Kogyo Co., Ltd.), 1-chloro-4-propoxythioxanthone, 1-chloro-4-. Ethoxythioxanthone (Lambson Limited Speedcure CPTX), 2-isopropylxantone (Lambson Limited Speedcure ITX), 4-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone (Lambson Limited), Lambson Limited 2,4-Dichlorothioxanthone, Omnipol-TX (manufactured by IGM), anthraquinone compounds (eg 2-methylanthraquinone, 2-ethylanthraquinone, 2-t-butyl anthraquinone, 1-chloroanthraquinone, etc., 2-hydroxyanthraquinone (2-Hydroxyanthraquinone manufactured by Tokyo Kasei Kogyo Co., Ltd.), 2,6-dihydroxyanthraquinone (Anthraquinone manufactured by Tokyo Kasei Kogyo Co., Ltd.), 2-hydroxymethylanthraquinone (2- (Hydroxymethyl) anthraquinone manufactured by Genuine Chemical Co., Ltd.), and benzyl type. Contains compounds.
 上記の中でも、オキシムエステル系化合物、チオキサントン系化合物、アントラキノン系化合物、およびチタノセン系化合物が好ましい。 Among the above, oxime ester compounds, thioxanthone compounds, anthraquinone compounds, and titanocene compounds are preferable.
 (C)光重合開始剤の分子量は、200以上5000以下が好ましい。(C)光重合開始剤の分子量が200以上であると、液晶に溶出し難い。一方で、(C)光重合開始剤の分子量が5000以下であると、(B)硬化性樹脂等との相溶性が高まり、十分な硬化性が得られやすい。(C)光重合開始剤の分子量は、230以上3000以下がより好ましく、230以上1500以下がさらに好ましい。 (C) The molecular weight of the photopolymerization initiator is preferably 200 or more and 5000 or less. (C) When the molecular weight of the photopolymerization initiator is 200 or more, it is difficult to elute into the liquid crystal. On the other hand, when the molecular weight of the (C) photopolymerization initiator is 5000 or less, the compatibility with the (B) curable resin or the like is enhanced, and sufficient curability is likely to be obtained. The molecular weight of the photopolymerization initiator (C) is more preferably 230 or more and 3000 or less, and further preferably 230 or more and 1500 or less.
 封止剤中の(C)光重合開始剤の含有量は、0.05~5質量%が好ましく、0.1~2質量%がより好ましい。(C)光重合開始剤の量が当該範囲であると、上述の(B)硬化性樹脂を十分に光硬化させやすい。 The content of the (C) photopolymerization initiator in the encapsulant is preferably 0.05 to 5% by mass, more preferably 0.1 to 2% by mass. When the amount of the (C) photopolymerization initiator is in the above range, the above-mentioned (B) curable resin can be sufficiently photocured.
 (D)熱硬化剤
 (D)熱硬化剤は、上述の(A)エポキシ樹脂や、(B)硬化性樹脂のエポキシ基と反応し、これらを硬化させる化合物であればよく、例えば加熱によって、エポキシ基と反応する化合物であることが好ましい。
(D) Thermosetting agent (D) The thermosetting agent may be a compound that reacts with the epoxy group of the above-mentioned (A) epoxy resin or (B) curable resin and cures them, for example, by heating. It is preferably a compound that reacts with an epoxy group.
 (D)熱硬化剤の融点は、50℃以上250℃以下が好ましく、50℃以上150℃以下がより好ましい。(D)熱硬化剤の融点が当該範囲であると、(D)熱硬化剤が常温では反応し難く、封止剤の保存安定性が高まる。 The melting point of the (D) thermosetting agent is preferably 50 ° C. or higher and 250 ° C. or lower, and more preferably 50 ° C. or higher and 150 ° C. or lower. When the melting point of the (D) thermosetting agent is within the above range, the (D) thermosetting agent is difficult to react at room temperature, and the storage stability of the encapsulant is enhanced.
 (D)熱硬化剤は、ジヒドラジド系熱潜在性硬化剤、イミダゾール系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、およびポリアミン系熱潜在性硬化剤からなる群から選ばれる少なくとも一種の熱硬化剤であることが好ましい。(D)熱硬化剤は、これらを一種のみ含んでいてもよく、二種以上含んでいてもよい。 (D) The thermosetting agent is at least one selected from the group consisting of dihydrazide-based thermosetting agents, imidazole-based thermosetting agents, amine adduct-based thermosetting agents, and polyamine-based thermosetting agents. It is preferably a thermosetting agent. (D) The thermosetting agent may contain only one kind of these, or may contain two or more kinds of them.
 ジヒドラジド系熱潜在性硬化剤の例には、アジピン酸ジヒドラジド(融点181℃)、1,3-ビス(ヒドラジノカルボエチル)-5-イソプロピルヒダントイン(融点120℃)、7,11-オクタデカジエン-1,18-ジカルボヒドラジド(融点160℃)、ドデカン二酸ジヒドラジド(融点190℃)、セバシン酸ジヒドラジド(融点189℃)等が含まれる。 Examples of dihydrazide-based thermal latent curing agents include adipic acid dihydrazide (melting point 181 ° C.), 1,3-bis (hydrazinocarboethyl) -5-isopropylhydranthin (melting point 120 ° C.), 7,11-octadecadien. -1,18-dicarbohydrazide (melting point 160 ° C.), dodecane diic acid dihydrazide (melting point 190 ° C.), sebacic acid dihydrazide (melting point 189 ° C.) and the like are included.
 イミダゾール系熱潜在硬化剤の例には、2,4-ジアミノ-6-[2’-エチルイミダゾリル-(1’)]-エチルトリアジン(融点215~225℃)、2-フェニルイミダゾール(融点137~147℃)等が含まれる。 Examples of imidazole-based thermal latent curing agents include 2,4-diamino-6- [2'-ethylimidazolyl- (1')]-ethyltriazine (melting point 215 to 225 ° C.) and 2-phenylimidazole (melting point 137 to 137 to). 147 ° C.) and the like.
 アミンアダクト系熱潜在性硬化剤は、触媒活性を有するアミン系化合物と任意の化合物とを反応させて得られる付加化合物からなる熱潜在性硬化剤であり、その例には、アミキュアPN-40(融点110℃)、アミキュアPN-23(融点100℃)、アミキュアPN-31(融点115℃)、アミキュアPN-H(融点115℃)、アミキュアMY-24(融点120℃)、アミキュアMY-H(融点131℃)(いずれも味の素ファインテクノ社製)等が含まれる。 The amine adduct-based thermal latent curing agent is a thermal latent curing agent composed of an additional compound obtained by reacting an amine-based compound having catalytic activity with an arbitrary compound, and an example thereof is Amicure PN-40 (Amicure PN-40). Amicure PN-23 (melting point 100 ° C), Amicure PN-31 (melting point 115 ° C), Amicure PN-H (melting point 115 ° C), Amicure MY-24 (melting point 120 ° C), Amicure MY-H (melting point 110 ° C) Melting point 131 ° C.) (both manufactured by Ajinomoto Fine Techno Co., Ltd.) and the like are included.
 ポリアミン系熱潜在性硬化剤は、アミンとエポキシとを反応させて得られるポリマー構造を有する熱潜在性硬化剤であり、その例には、アデカハードナーEH4339S(軟化点120~130℃)、アデカハードナーEH4357S(軟化点73~83℃)(いずれもADEKA社製)等が含まれる。 The polyamine-based thermal latent curing agent is a thermal latent curing agent having a polymer structure obtained by reacting an amine with an epoxy, and examples thereof include ADEKA Hardener EH4339S (softening point 120 to 130 ° C.) and ADEKA Hardener. EH4357S (softening point 73 to 83 ° C.) (both manufactured by ADEKA Corporation) and the like are included.
 封止剤中の(D)熱硬化剤の量は、15質量%以下が好ましく、10質量%以下がより好ましい。(D)熱硬化剤の量が当該範囲であると、封止剤が加熱によって十分に硬化する。 The amount of the (D) thermosetting agent in the encapsulant is preferably 15% by mass or less, more preferably 10% by mass or less. (D) When the amount of the thermosetting agent is in the above range, the encapsulant is sufficiently cured by heating.
 (E)その他の成分
 封止剤は、本発明の目的および効果を損なわない範囲において、無機粒子や有機粒子、その他の添加剤等を含んでいてもよい。
(E) Other components The encapsulant may contain inorganic particles, organic particles, other additives and the like as long as the object and effect of the present invention are not impaired.
 封止剤が無機粒子を含むと、封止剤の粘度が適度な範囲になりやすい。また、無機粒子によって封止剤の硬化物の強度や硬化物の線膨張性を調整することも可能である。一方、封止剤が有機粒子を含むと、封止剤の硬化物の弾性率を調整しやすい。 If the sealant contains inorganic particles, the viscosity of the sealant tends to be in an appropriate range. It is also possible to adjust the strength of the cured product of the encapsulant and the linear expandability of the cured product with the inorganic particles. On the other hand, when the sealing agent contains organic particles, it is easy to adjust the elastic modulus of the cured product of the sealing agent.
 無機粒子の例には、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸マグネシウム、珪酸アルミニウム、珪酸ジルコニウム、酸化鉄、酸化チタン、酸化アルミニウム(アルミナ)、酸化亜鉛、二酸化ケイ素(シリカ)、チタン酸カリウム、カオリン、タルク、ガラスビーズ、セリサイト活性白土、ベントナイト、窒化アルミニウム、窒化ケイ素等が含まれる。これらの中でも、二酸化ケイ素(シリカ)またはタルクが好ましい。封止剤は、無機粒子を一種のみ含んでもよく、二種以上含んでもよい。 Examples of inorganic particles include calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, zirconium silicate, iron oxide, titanium oxide, aluminum oxide (alumina), zinc oxide, silicon dioxide (silica), potassium titanate, Includes kaolin, talc, glass beads, sericite-activated clay, bentonite, aluminum oxide, silicon dioxide and the like. Of these, silicon dioxide (silica) or talc is preferred. The sealing agent may contain only one kind of inorganic particles, or may contain two or more kinds of inorganic particles.
 無機粒子の形状は、特に限定されず、球状、板状、針状等の定形状あるいは非定形状のいずれであってもよい。無機粒子の平均一次粒子径は、1.5μm以下が好ましく、かつその比表面積は0.5m/g~20m/gが好ましい。無機粒子の平均一次粒子径は、JIS Z8825-1に記載のレーザー回折法で測定できる。また、比表面積測定は、JIS Z8830に記載のBET法により測定できる。 The shape of the inorganic particles is not particularly limited, and may be a fixed shape such as a spherical shape, a plate shape, a needle shape, or a non-fixed shape. The average primary particle diameter of the inorganic particles is preferably 1.5 μm or less, and the specific surface area thereof is preferably 0.5 m 2 / g to 20 m 2 / g. The average primary particle diameter of the inorganic particles can be measured by the laser diffraction method described in JIS Z8825-1. The specific surface area can be measured by the BET method described in JIS Z8830.
 封止剤中の無機粒子の含有量は、20質量%以下が好ましく、15質量%以下がより好ましい。無機粒子の量が当該範囲であると、封止剤の粘度等が所望の範囲に収まりやすい。 The content of the inorganic particles in the encapsulant is preferably 20% by mass or less, more preferably 15% by mass or less. When the amount of the inorganic particles is in the above range, the viscosity of the encapsulant or the like tends to fall within the desired range.
 一方、有機粒子の例には、シリコーン粒子、アクリル粒子、スチレン・ジビニルベンゼン共重合体等のスチレン粒子、およびポリオレフィン粒子等が含まれる。封止剤は、有機粒子を一種のみ含んでもよく、二種以上含んでもよい。有機粒子の平均一次粒子径は、0.05~13μmが好ましく、0.1~10μmがより好ましく、0.1~8μmがさらに好ましい。 On the other hand, examples of organic particles include silicone particles, acrylic particles, styrene particles such as a styrene / divinylbenzene copolymer, and polyolefin particles. The encapsulant may contain only one type of organic particles, or may contain two or more types of organic particles. The average primary particle size of the organic particles is preferably 0.05 to 13 μm, more preferably 0.1 to 10 μm, and even more preferably 0.1 to 8 μm.
 また、有機粒子の形状は特に制限されないが、好ましくは球状であり、さらに好ましくは真球状である。球状であるとは、各粒子の直径の最大値(a)に対する最小値(b)の比b/a=0.9~1.0であることをいう。有機粒子の平均一次粒径は、顕微鏡法、具体的には電子顕微鏡の画像解析により測定することができる。また、有機粒子の表面は平滑であることが好ましい。表面が平滑であると比表面積が低下して、封止剤に添加可能な有機粒子の量が増加する。 The shape of the organic particles is not particularly limited, but is preferably spherical, and more preferably true spherical. The spherical shape means that the ratio of the minimum value (b) to the maximum value (a) of the diameter of each particle is b / a = 0.9 to 1.0. The average primary particle size of organic particles can be measured by microscopy, specifically image analysis with an electron microscope. Moreover, it is preferable that the surface of the organic particles is smooth. If the surface is smooth, the specific surface area decreases and the amount of organic particles that can be added to the encapsulant increases.
 封止剤中の有機粒子の量は、15質量%以下が好ましく、10質量%以下がより好ましい。有機粒子の量が当該範囲であると、封止剤の硬化後の弾性率が所望の範囲になりやすい。 The amount of organic particles in the encapsulant is preferably 15% by mass or less, more preferably 10% by mass or less. When the amount of organic particles is in the above range, the elastic modulus of the encapsulant after curing tends to be in the desired range.
 その他の添加剤の例には、シランカップリング剤等のカップリング剤、イオントラップ剤、イオン交換剤、レベリング剤、顔料、染料、可塑剤、消泡剤等が含まれる。また、封止剤は、液晶表示パネルのギャップを調整するためにスペーサー等をさらに含んでいてもよい。 Examples of other additives include coupling agents such as silane coupling agents, ion trapping agents, ion exchangers, leveling agents, pigments, dyes, plasticizers, defoamers and the like. In addition, the sealant may further contain a spacer or the like in order to adjust the gap of the liquid crystal display panel.
 (F)封止剤の物性および製造方法
 封止剤のE型粘度計の25℃、2.5rpmにおける粘度は、200~450Pa・sが好ましく、300~400Pa・sがより好ましい。粘度が上記範囲にあると、封止剤をパターン状に塗布しやすく、さらには当該封止剤(シールパターン)を挟んで、一対の基板を重ね合わせたときに、封止剤がこれらの隙間を埋めるように変形しやすい。そのため、液晶表示パネルの一対の基板間のギャップ幅を適正に制御できる。
(F) Physical Properties and Manufacturing Method of Sealant The viscosity of the sealant E-type viscometer at 25 ° C. and 2.5 rpm is preferably 200 to 450 Pa · s, more preferably 300 to 400 Pa · s. When the viscosity is in the above range, it is easy to apply the sealant in a pattern, and when the sealant (seal pattern) is sandwiched and the pair of substrates are overlapped, the sealant has a gap between them. It is easy to deform to fill. Therefore, the gap width between the pair of substrates of the liquid crystal display panel can be appropriately controlled.
 また、本発明の封止剤のチクソトロピーインデックス(TI値)は、封止剤の塗布性の観点から、1.0~1.5が好ましく、1.0~1.3がより好ましい。TI値は、E型粘度計を用い、室温(25℃)、0.5rpmにおける封止剤の粘度η1、5rpmにおける封止剤の粘度η2を測定し、これらの測定値を、下記式(1)に当てはめて得られる値である。
 TI値=(0.5rpmにおける粘度η1(25℃))/(5rpmにおける粘度η2(25℃))・・・(1)
The thixotropy index (TI value) of the encapsulant of the present invention is preferably 1.0 to 1.5, more preferably 1.0 to 1.3, from the viewpoint of the applicability of the encapsulant. For the TI value, the viscosity η1 of the sealant at room temperature (25 ° C.) and 0.5 rpm was measured using an E-type viscometer, and the viscosity η2 of the sealant at 5 rpm was measured, and these measured values were calculated by the following formula (1). ) Is the value obtained.
TI value = (viscosity η1 (25 ° C) at 0.5 rpm) / (viscosity η2 (25 ° C) at 5 rpm) ... (1)
 上述の封止剤の製造方法は特に制限されず、(A)エポキシ樹脂、(B)硬化性樹脂、(C)光重合開始剤、および(D)熱硬化剤と、必要に応じて(E)その他の成分とを均一に混合可能であればよい。混合は、例えば三本ロール等により行うことができる。 The method for producing the above-mentioned encapsulant is not particularly limited, and (A) epoxy resin, (B) curable resin, (C) photopolymerization initiator, and (D) thermosetting agent, if necessary, (E). ) It suffices if it can be mixed uniformly with other components. Mixing can be performed by, for example, three rolls or the like.
 2.液晶表示パネル
 本発明の液晶表示パネルは、一対の基板と、当該基板の間に配置された枠状のシール部材と、一対の基板間かつ枠状のシール部材の内部に充填された液晶と、を有する。当該液晶表示パネルでは、シール部材が、前述の封止剤の硬化物である。前述のように、シール部材は、基板との接着強度が良好であり、かつ液晶に溶出し難い。
2. 2. Liquid crystal display panel The liquid crystal display panel of the present invention includes a pair of substrates, a frame-shaped seal member arranged between the substrates, and a liquid crystal filled between the pair of substrates and inside the frame-shaped seal member. Has. In the liquid crystal display panel, the sealing member is a cured product of the above-mentioned sealing agent. As described above, the sealing member has good adhesive strength with the substrate and is difficult to elute into the liquid crystal.
 一対の基板(「表示基板および対向基板」とも称する)は、いずれも透明基板である。透明基板の材質の例には、ガラス、または、ポリカーボネート、ポリエチレンテレフタレート、ポリエーテルサルフォンおよびPMMA等が含まれる。 The pair of substrates (also referred to as "display substrate and opposed substrate") are both transparent substrates. Examples of transparent substrate materials include glass or polycarbonate, polyethylene terephthalate, polyether sulfone, PMMA and the like.
 表示基板または対向基板の表面には、マトリックス状のTFT、カラーフィルタ、ブラックマトリクス等が配置される。表示基板または対向基板の表面には、さらに配向膜が形成される。配向膜には、公知の有機配向剤や無機配向剤等が含まれる。また、液晶は公知の液晶を用いることが可能である。 A matrix-like TFT, a color filter, a black matrix, etc. are arranged on the surface of the display board or the facing board. An alignment film is further formed on the surface of the display substrate or the facing substrate. The alignment film includes known organic alignment agents, inorganic alignment agents, and the like. Further, a known liquid crystal can be used as the liquid crystal.
 液晶表示パネルの製造方法には、一般に、液晶滴下工法と、液晶注入工法とがあるが、本発明の液晶表示パネルの製造方法は、液晶滴下工法であることが好ましい。 The liquid crystal display panel manufacturing method generally includes a liquid crystal dropping method and a liquid crystal injection method, but the liquid crystal display panel manufacturing method of the present invention is preferably the liquid crystal dropping method.
 液晶滴下工法による液晶表示パネルの製造方法は、1)一方の基板に、前述の封止剤を塗布し、枠状のシールパターンを形成するシールパターン形成工程と、2)シールパターンが未硬化の状態で、一方の基板上かつシールパターンで囲まれた領域内、もしくは他方の基板上かつ他方の基板と一方の基板とを対向させたときにシールパターンに囲まれる領域に、液晶を滴下する液晶滴下工程と、3)一方の基板および他方の基板を、シールパターンを介して重ね合わせる重ね合わせ工程と、4)シールパターンを硬化させる硬化工程と、を含む。  The manufacturing method of the liquid crystal display panel by the liquid crystal dropping method is as follows: 1) a seal pattern forming step of applying the above-mentioned sealing agent to one substrate to form a frame-shaped seal pattern, and 2) the seal pattern is uncured. Liquid crystal that drops liquid crystal on one substrate and in the area surrounded by the seal pattern, or on the other substrate and in the area surrounded by the seal pattern when the other substrate and one substrate face each other. It includes a dropping step, a superposition step of 3) superimposing one substrate and the other substrate via a seal pattern, and 4) a curing step of curing the seal pattern.
 1)シールパターン形成工程では、一方の基板に、前述の封止剤を塗布する。封止剤を塗布する方法は特に制限されず、例えばスクリーン印刷や、ディスペンサによる塗布等、所望の厚みや幅でシールパターンを形成可能な方法であれば特に制限されず、公知の封止剤の塗布方法と同様である。 1) In the seal pattern forming step, the above-mentioned sealing agent is applied to one of the substrates. The method of applying the sealant is not particularly limited as long as it is a method capable of forming a seal pattern with a desired thickness and width, such as screen printing or application with a dispenser. It is the same as the coating method.
 また、形成するシールパターンの形状は、液晶表示パネルの用途等に合わせて適宜選択され、液晶が漏出しない形状であればよい。例えば矩形状の枠状とすることができるが、当該形状に制限されない。シールパターンの線幅は、0.2~1.0mmが好ましく、0.2~0.7mmがより好ましい。 Further, the shape of the seal pattern to be formed may be appropriately selected according to the application of the liquid crystal display panel and the like so that the liquid crystal does not leak. For example, it may have a rectangular frame shape, but is not limited to the shape. The line width of the seal pattern is preferably 0.2 to 1.0 mm, more preferably 0.2 to 0.7 mm.
 2)液晶滴下工程では、シールパターンが未硬化の状態で、一対の基板を対向させる。ここで、シールパターンが未硬化の状態とは、封止剤の硬化反応がゲル化点までは進行していない状態を意味する。なお、液晶滴下工程前に、封止剤の液晶への溶解を抑制するために、シールパターンを光照射または加熱して半硬化させてもよい。また、液晶の滴下方法は、公知の液晶の滴下方法と同様であり、シールパターンが形成された基板に液晶を滴下してもよく、シールパターンが形成されていない基板(他方の基板)に液晶を滴下してもよい。 2) In the liquid crystal dropping step, the pair of substrates are opposed to each other with the seal pattern uncured. Here, the state in which the seal pattern is uncured means a state in which the curing reaction of the sealant has not progressed to the gel point. Before the liquid crystal dropping step, the seal pattern may be semi-cured by irradiating or heating the seal pattern in order to suppress the dissolution of the sealing agent in the liquid crystal. The liquid crystal dropping method is the same as the known liquid crystal dropping method, and the liquid crystal may be dropped on the substrate on which the seal pattern is formed, and the liquid crystal may be dropped on the substrate on which the seal pattern is not formed (the other substrate). May be dropped.
 3)重ね合わせ工程では、シールパターンを介して一方の基板と他方の基板とが対向するように重ね合わせる。このとき、基板間のギャップが所望の範囲となるように制御する。 3) In the stacking process, one substrate and the other substrate are laminated so as to face each other via a seal pattern. At this time, the gap between the substrates is controlled to be within a desired range.
 4)硬化工程では、シールパターンを硬化させる。シールパターンの硬化方法は特に制限されないが、所定の波長の光の照射によって仮硬化させた後、加熱により本硬化させることが好ましい。光照射によれば、シールパターンを瞬時に硬化させることができ、封止剤中の成分が液晶に溶解することを抑制できる。 4) In the curing process, the seal pattern is cured. The method for curing the seal pattern is not particularly limited, but it is preferable that the seal pattern is temporarily cured by irradiation with light having a predetermined wavelength and then finally cured by heating. By light irradiation, the seal pattern can be instantly cured, and the components in the sealant can be suppressed from being dissolved in the liquid crystal.
 照射する光の波長は、光重合開始剤の種類に応じて適宜選択され、波長350~600nmの光が好ましい。また、光照射時間は、封止剤の組成にもよるが、例えば10分程度である。このとき照射するエネルギー量は、(B)硬化性樹脂等を硬化させることができる程度のエネルギー量であればよい。 The wavelength of the light to be irradiated is appropriately selected according to the type of the photopolymerization initiator, and light having a wavelength of 350 to 600 nm is preferable. The light irradiation time is, for example, about 10 minutes, although it depends on the composition of the encapsulant. The amount of energy to be irradiated at this time may be an amount of energy that can cure (B) the curable resin or the like.
 一方、加熱温度は、封止剤の組成にもよるが、例えば100~150℃であり、加熱時間は2時間程度が好ましい。 On the other hand, the heating temperature is, for example, 100 to 150 ° C., although it depends on the composition of the encapsulant, and the heating time is preferably about 2 hours.
 本発明を実施例に基づき詳細に説明するが、本発明はこれらの実施例に限定されない。 The present invention will be described in detail based on examples, but the present invention is not limited to these examples.
 [材料]
 実施例および比較例では、以下の材料を用いた。
[material]
In the examples and comparative examples, the following materials were used.
 (A)エポキシ樹脂
 ・エポキシ樹脂(A1):EPICLON EXA-4850-150、DIC社製、エポキシ当量:450、下記方法で測定される硬化物のガラス転移温度:70℃
 ・エポキシ樹脂(A2):EPICLON EXA-4816、DIC社製、エポキシ当量:403、下記方法で測定される硬化物のガラス転移温度:90℃
 ・エポキシ樹脂(A3):EP-4010S、ADEKA社製、エポキシ当量:350、下記方法で測定される硬化物のガラス転移温度:60℃
 ・エポキシ樹脂(A4):YL-980、三菱ケミカル社製、エポキシ当量:190、下記方法で測定される硬化物のガラス転移温度:150℃
 ・エポキシ樹脂(A5):YL-983U、三菱ケミカル社製、エポキシ当量:170、下記方法で測定される硬化物のガラス転移温度:140℃
(A) Epoxy resin-Epoxy resin (A1): EPICLON EXA-4850-150, manufactured by DIC, epoxy equivalent: 450, glass transition temperature of cured product measured by the following method: 70 ° C.
-Epoxy resin (A2): EPICLON EXA-4816, manufactured by DIC, epoxy equivalent: 403, glass transition temperature of cured product measured by the following method: 90 ° C.
Epoxy resin (A3): EP-4010S, manufactured by ADEKA, epoxy equivalent: 350, glass transition temperature of cured product measured by the following method: 60 ° C.
-Epoxy resin (A4): YL-980, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 190, glass transition temperature of cured product measured by the following method: 150 ° C.
-Epoxy resin (A5): YL-983U, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 170, glass transition temperature of cured product measured by the following method: 140 ° C.
 (B)硬化性樹脂
 ・硬化性樹脂(B1)以下の合成例1で得られたメタクリル酸変性ビスフェノールF型エポキシ樹脂(50%部分メタクリル化物)
(B) Curable resin-Curable resin (B1) Methacrylic acid-modified bisphenol F-type epoxy resin (50% partially methacrylic acid) obtained in Synthesis Example 1 below.
 (C)光重合開始剤
 ・光重合開始剤(C1):Irgacure OXE01、BASF社製、オキシムエステル系化合物、下記方法で特定される、吸光度が0.1%以上となる波長:410nm
 ・光重合開始剤(C2):Omnipol-TX、IGM社製、チオキサントン系化合物、下記方法で特定される、吸光度が0.1%以上となる波長:437nm
 ・光重合開始剤(C3):以下の合成例2で得られたチオキサントン系化合物、下記方法で特定される、吸光度が0.1%以上となる波長:439nm
 ・光重合開始剤(C4):以下の合成例3で得られたアントラキノン系化合物、下記方法で特定される、吸光度が0.1%以上となる波長:483nm
 ・光重合開始剤(C5):Irgacure 784、BASF社製、チタノセン系化合物、下記方法で特定される、吸光度が0.1%以上となる波長:531nm
 ・光重合開始剤(C6):Irgacure 651、BASF社製、ベンジルケタール系化合物、下記方法で特定される、吸光度が0.1%以上となる波長:377nm
(C) Photopolymerization Initiator-Photoinitiator (C1): Irgacure OXE01, manufactured by BASF, an oxime ester compound, a wavelength having an absorbance of 0.1% or more specified by the following method: 410 nm.
-Photopolymerization initiator (C2): Omnipol-TX, manufactured by IGM, thioxanthone-based compound, specified by the following method, wavelength at which the absorbance is 0.1% or more: 437 nm.
-Photopolymerization initiator (C3): The thioxanthone-based compound obtained in Synthesis Example 2 below, a wavelength having an absorbance of 0.1% or more specified by the following method: 439 nm.
-Photopolymerization initiator (C4): Anthraquinone-based compound obtained in the following Synthesis Example 3, a wavelength having an absorbance of 0.1% or more specified by the following method: 483 nm.
-Photopolymerization initiator (C5): Irgacure 784, manufactured by BASF, titanocene compound, wavelength specified by the following method, having an absorbance of 0.1% or more: 531 nm.
-Photopolymerization initiator (C6): Irgacure 651, manufactured by BASF, benzyl ketal compound, specified by the following method, wavelength at which the absorbance is 0.1% or more: 377 nm.
 (D)熱硬化剤
 ・熱硬化剤(D1):アジピン酸ジヒドラジド、ADH、日本化成社製、融点177~184℃
(D) Thermosetting agent-Thermosetting agent (D1): adipic acid dihydrazide, ADH, manufactured by Nihon Kasei Co., Ltd., melting point 177 to 184 ° C.
 (E)その他
 ・シリカ粒子:S-100、日本触媒化学社製
 ・熱可塑性樹脂粒子:微粒子ポリマーF351、アイカ工業社製
 ・シランカップリング剤:KBM-403、信越化学工業社製
(E) Others-Silica particles: S-100, manufactured by Nippon Catalytic Chemical Co., Ltd.-Thermoplastic resin particles: Fine particle polymer F351, manufactured by Aica Kogyo Co., Ltd.-Silane coupling agent: KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.
 <合成例1>(硬化性樹脂(B1)の合成)
 液状ビスフェノールF型エポキシ樹脂(エポトートYDF-8170C、東都化成社製、エポキシ当量160g/eq)160gと、重合禁止剤(p-メトキシフェノール)0.1g、触媒(トリエタノールアミン)0.2gと、メタアクリル酸43.0gと、をフラスコ内に仕込み、乾燥空気を送り込んで90℃で還流攪拌しながら5時間反応させた。得られた化合物を、超純水にて20回洗浄し、メタアクリル酸変性ビスフェノールF型エポキシ樹脂(50%部分メタクリル化物)(硬化性樹脂(B1))を得た。
<Synthesis Example 1> (Synthesis of curable resin (B1))
Liquid bisphenol F type epoxy resin (Epototo YDF-8170C, manufactured by Toto Kasei Co., Ltd., epoxy equivalent 160 g / eq) 160 g, polymerization inhibitor (p-methoxyphenol) 0.1 g, catalyst (triethanolamine) 0.2 g, 43.0 g of methacrylic acid and 43.0 g of methacrylic acid were charged in a flask, and dry air was blown into the flask, and the mixture was reacted at 90 ° C. with reflux stirring for 5 hours. The obtained compound was washed with ultrapure water 20 times to obtain a methacrylic acid-modified bisphenol F type epoxy resin (50% partially methacrylic acid) (curable resin (B1)).
 <合成例2>(光重合開始剤(C3)の合成)
 2-クロロチオキサントン5.6g(0.0225モル)と、2-メルカプトエタノールのカリウム塩2.6g(0.0225モル)とを、20mlのN,N-ジメチルアセトアミド中で、100℃で18時間攪拌した。次いで、得られた反応混合物を2N塩酸に添加し、酢酸エチルで抽出した。当該抽出物を後処理し、クロマトグラフィー精製した。これにより、2-(2-ヒドロキシエチルチオ)-チオキサンテン-9-オン3.5gを得た。
<Synthesis Example 2> (Synthesis of Photopolymerization Initiator (C3))
5.6 g (0.0225 mol) of 2-chlorothioxanthone and 2.6 g (0.0225 mol) of potassium salt of 2-mercaptoethanol were placed in 20 ml of N, N-dimethylacetamide at 100 ° C. for 18 hours. Stirred. The resulting reaction mixture was then added to 2N hydrochloric acid and extracted with ethyl acetate. The extract was post-treated and chromatographically purified. As a result, 3.5 g of 2- (2-hydroxyethylthio) -thioxanthene-9-one was obtained.
 次いで、攪拌機、窒素ガス導入管、還流冷却管、および温度計を備えた4つ口フラスコ中に、上記で合成した2-(2-ヒドロキシエチルチオ)-チオキサンテン-9-オン5.00g(1.74×10-2モル)とトルエン50gとを加えて80℃で撹拌した後、ジブチル錫を触媒として1滴添加した。次いで、ヘキサメチレンジイソシアネートアロファネート変性体(三井化学社製、タケネートD-178NL、イソシアネート当量216.1g/eq)4.51gをトルエン10gに溶解させた溶液を30分かけて滴下し、そのまま窒素雰囲気下80℃で3時間撹拌した。反応終了後、4つ口フラスコを室温で放冷し、固体成分を分離した。回収した固体成分をオーブンで十分に乾燥させて、光重合開始剤(C3)を得た。 Then, 5.00 g of 2- (2-hydroxyethylthio) -thioxanthene-9-one synthesized above was placed in a four-necked flask equipped with a stirrer, a nitrogen gas introduction tube, a reflux condenser, and a thermometer. 1.74 × 10-2 mol) and 50 g of toluene were added and stirred at 80 ° C., and then 1 drop of dibutyltin was added as a catalyst. Next, a solution prepared by dissolving 4.51 g of a modified hexamethylene diisocyanate allophanate (Mitsui Chemicals, Inc., Takenate D-178NL, isocyanate equivalent 216.1 g / eq) in 10 g of toluene was added dropwise over 30 minutes, and the solution was added under a nitrogen atmosphere as it was. The mixture was stirred at 80 ° C. for 3 hours. After completion of the reaction, the four-necked flask was allowed to cool at room temperature to separate solid components. The recovered solid component was sufficiently dried in an oven to obtain a photopolymerization initiator (C3).
 <合成例3>(光重合開始剤(C4)の合成)
 攪拌機、窒素ガス導入管、還流冷却管、および温度計を備えた4つ口フラスコ中へ、2-(2-ヒドロキシエチルチオ)-9,10-アントラキノン5.0g(1.76×10-2モル)とトルエン150gとを加えて、80℃で撹拌した後、ジブチル錫を触媒として1滴添加した。次いで、ヘキサメチレンジイソシアネートアロファネート変性体(三井化学社製、タケネートD-178NL、イソシアネート当量216.1g/eq)3.98gをトルエン10gに溶解させた溶液を30分かけて滴下した。その後、そのまま窒素雰囲気下80℃で2時間撹拌した。反応終了後、4つ口フラスコを氷浴で冷却し、析出した結晶成分を分離した。得られた結晶成分を再びトルエンと混合し、100℃で1時間撹拌した後、再度氷冷して不純成分を除去した。回収した結晶成分をオーブンで十分に乾燥させて、光重合開始剤(C3)を得た。
<Synthesis Example 3> (Synthesis of Photopolymerization Initiator (C4))
In a four-necked flask equipped with a stirrer, nitrogen gas introduction tube, reflux condenser, and thermometer, 5.0 g (1.76 × 10 -2 ) of 2- (2-hydroxyethylthio) -9,10-anthraquinone. (Mol) and 150 g of toluene were added, and the mixture was stirred at 80 ° C., and then 1 drop of dibutyltin was added as a catalyst. Next, a solution prepared by dissolving 3.98 g of a modified hexamethylene diisocyanate allophanate (Mitsui Chemicals, Inc., Takenate D-178NL, isocyanate equivalent 216.1 g / eq) in 10 g of toluene was added dropwise over 30 minutes. Then, the mixture was stirred as it was at 80 ° C. for 2 hours in a nitrogen atmosphere. After completion of the reaction, the four-necked flask was cooled in an ice bath to separate the precipitated crystal components. The obtained crystalline component was mixed with toluene again, stirred at 100 ° C. for 1 hour, and then ice-cooled again to remove the impure component. The recovered crystal components were sufficiently dried in an oven to obtain a photopolymerization initiator (C3).
 <エポキシ樹脂のガラス転移温度(Tg)の測定方法>
 エポキシ樹脂100質量部と、メチルヘキサヒドロ無水フタル酸をエポキシ樹脂に対して化学当量と、ジメチルベンジルジアミン1質量部と、を混合し、110℃で3時間加熱し、さらに165℃で2時間加熱した。そして、得られた硬化物を100μmのフィルム状に加工し、ガラス転移温度を動的粘弾性測定(DMA)により測定した。具体的には、以下の装置および条件で測定した。
 装置名:DMA7100(日立ハイテクサイエンス)
 試料形状:幅10mm×厚み0.1mm×長さ20mm
 温度範囲:25-200℃
 昇温速度:5℃/min
 測定間隔:3秒
 測定周波数:10Hz
 測定モード:引っ張り
<Measurement method of glass transition temperature (Tg) of epoxy resin>
100 parts by mass of epoxy resin, a chemical equivalent of methylhexahydrophthalic anhydride to the epoxy resin, and 1 part by mass of dimethylbenzyldiamine are mixed and heated at 110 ° C. for 3 hours, and further heated at 165 ° C. for 2 hours. did. Then, the obtained cured product was processed into a film of 100 μm, and the glass transition temperature was measured by dynamic viscoelasticity measurement (DMA). Specifically, the measurement was performed with the following devices and conditions.
Device name: DMA7100 (Hitachi High-Tech Science)
Sample shape: width 10 mm x thickness 0.1 mm x length 20 mm
Temperature range: 25-200 ° C
Heating rate: 5 ° C / min
Measurement interval: 3 seconds Measurement frequency: 10 Hz
Measurement mode: pull
 <光重合開始剤の吸光度の測定方法>
 各光重合開始剤をテトラヒドロフランに、濃度が0.15質量%となるように溶解させた。そして、紫外可視分光光度計UV-2550(島津製作所製)により紫外可視吸収スペクトルを特定した。そして、当該吸収スペクトルにおいて、長波長側から確認したときに、吸光度がはじめて0.1以上となる波長を確認した。
<Method for measuring absorbance of photopolymerization initiator>
Each photopolymerization initiator was dissolved in tetrahydrofuran so as to have a concentration of 0.15% by mass. Then, the ultraviolet-visible absorption spectrum was specified by an ultraviolet-visible spectrophotometer UV-2550 (manufactured by Shimadzu Corporation). Then, in the absorption spectrum, when confirmed from the long wavelength side, the wavelength at which the absorbance was 0.1 or more for the first time was confirmed.
 [実施例1]
 エポキシ樹脂(A1)100質量部、合成例1で得られた硬化性樹脂(B1)600質量部、熱硬化剤(D1)60質量部、シリカ粒子130質量部、熱可塑性樹脂粒子70質量部、シランカップリング剤20質量部、および光重合開始剤(C1)20質量部を、三本ロールを用いて均一な液となるように十分に混合して、液晶滴下工法用封止剤を得た。
[Example 1]
100 parts by mass of epoxy resin (A1), 600 parts by mass of curable resin (B1) obtained in Synthesis Example 1, 60 parts by mass of thermosetting agent (D1), 130 parts by mass of silica particles, 70 parts by mass of thermoplastic resin particles, 20 parts by mass of the silane coupling agent and 20 parts by mass of the photopolymerization initiator (C1) were sufficiently mixed using three rolls so as to form a uniform liquid to obtain a sealing agent for the liquid crystal dropping method. ..
 [実施例2~9、および比較例1~7]
 各成分を、下記表1に示す成分に変更した以外は、実施例1と同様に液晶滴下工法用封止剤を得た。
[Examples 2 to 9 and Comparative Examples 1 to 7]
A liquid crystal dropping method encapsulant was obtained in the same manner as in Example 1 except that each component was changed to the component shown in Table 1 below.
 [評価]
 実施例1~9、および比較例1~7の液晶滴下工法用封止剤について、接着強度および表示特性を以下の方法で特定した。結果を表1に示す。
[Evaluation]
The adhesive strength and display characteristics of the liquid crystal dropping method sealants of Examples 1 to 9 and Comparative Examples 1 to 7 were specified by the following methods. The results are shown in Table 1.
 <接着強度テスト>
 実施例および比較例で得られた液晶滴下工法用封止剤を、ディスペンサー(ショットマスター、武蔵エンジニアリング社製)を用いて、透明電極と配向膜が予め形成された40mm×45mmガラス基板(RT-DM88-PIN、EHC社製)上に、38mm×38mmの四角形のシールパターン(断面積2500μm)を形成した。
<Adhesive strength test>
A 40 mm × 45 mm glass substrate (RT-) in which a transparent electrode and an alignment film were previously formed using a dispenser (Shotmaster, manufactured by Musashi Engineering Co., Ltd.) using the sealant for the liquid crystal dropping method obtained in Examples and Comparative Examples. A 38 mm × 38 mm quadrangular seal pattern (cross-sectional area 2500 μm 2 ) was formed on the DM88-PIN (manufactured by EHC).
 次いで、上述のシールパターンを形成したガラス基板に対して垂直になるように、対になるガラス基板を減圧下で重ね、その後大気開放して貼り合わせた。そして、貼り合わせた2枚のガラス基板を1分間遮光ボックス内で保持した後、可視光を含む光(波長350~450nmの光)を積算照射量3000mJ/cmとなるように照射し、さらに120℃で1時間加熱してシールを硬化させ、試験片を得た。 Next, the paired glass substrates were stacked under reduced pressure so as to be perpendicular to the glass substrate on which the above-mentioned seal pattern was formed, and then opened to the atmosphere for bonding. Then, the two laminated glass substrates are held in a light-shielding box for 1 minute, and then light including visible light (light having a wavelength of 350 to 450 nm) is irradiated so as to have an integrated irradiation amount of 3000 mJ / cm 2. The seal was cured by heating at 120 ° C. for 1 hour to obtain a test piece.
 得られた試験片のシールパターン隅から4.5mmの部分を、万能試験機(Model210、インテスコ社製)を用い5mm/分の速度で垂直に押込み、シールが剥がれた時の応力を測定した。接着強度はその応力を封止剤で描画されたシール線幅で割ることにより求めた。評価は以下の基準とした。
 ○:接着強度が15N/mm以上
 △:接着強度が7N/mm以上15N/mm未満
 ×:接着強度が7N/mm未満
A portion 4.5 mm from the corner of the seal pattern of the obtained test piece was vertically pressed at a speed of 5 mm / min using a universal testing machine (Model210, manufactured by Intesco), and the stress when the seal was peeled off was measured. The adhesive strength was determined by dividing the stress by the seal line width drawn with the sealant. The evaluation was based on the following criteria.
◯: Adhesive strength is 15 N / mm or more Δ: Adhesive strength is 7 N / mm or more and less than 15 N / mm ×: Adhesive strength is less than 7 N / mm
 <液晶表示パネル表示特性テスト>
 得られた液晶滴下工法用封止材を、ディスペンサー(ショットマスター、武蔵エンジニアリング社製)を用いて、透明電極と配向膜が予め形成された40mm×45mmガラス基板(RT-DM88-PIN、EHC社製)上に、メインシールとして35mm×35mmの四角形のシールパターン(断面積3500μm)と、その外周に38mm×38mmの四角形のシールパターンとを形成した。
<Liquid crystal display panel display characteristic test>
A 40 mm × 45 mm glass substrate (RT-DM88-PIN, EHC) in which a transparent electrode and an alignment film were previously formed using a dispenser (Shotmaster, manufactured by Musashi Engineering Co., Ltd.) for the obtained sealing material for the liquid crystal dropping method. A 35 mm × 35 mm quadrangular seal pattern (cross-sectional area 3500 μm 2 ) was formed on the main seal, and a 38 mm × 38 mm quadrangular seal pattern was formed on the outer periphery thereof.
 次いで、貼り合せ後のパネル内容量に相当する液晶材料(MLC-6609-000、メルク社製)を、メインシールの枠内にディスペンサーを用いて精密に滴下した。次いで、対になるガラス基板を減圧下で重ね合わせ、大気開放して貼り合わせた。そして、貼り合わせた2枚のガラス基板を1分間遮光ボックス内で保持した後、メインシールを36mm×36mmの四角形のブラックマトリックスを塗布した基板でマスクした状態で、可視光を含む光(波長350~450nmの光)を積算照射量500mJ/cmとなるように照射し、さらに120℃で1時間加熱して、メインシールを硬化させた。その後、得られた液晶セルの両面に偏光フィルムを貼り付けて、液晶表示パネルを得た。評価は以下の基準で行った。
 ○:液晶表示パネルのメインシール際まで液晶が配向されて色ムラが全くない場合
 △:メインシール際の近傍に1mm未満の範囲にわたり色ムラが発生している場合
 ×:メインシール際近傍から1mm以上の範囲にわたり色ムラが発生している場合
Next, a liquid crystal material (MLC-6609-000, manufactured by Merck & Co., Inc.) corresponding to the capacity of the panel after bonding was precisely dropped into the frame of the main seal using a dispenser. Next, the paired glass substrates were laminated under reduced pressure, opened to the atmosphere, and bonded. Then, after holding the two bonded glass substrates in a light-shielding box for 1 minute, the main seal is masked with a substrate coated with a 36 mm × 36 mm square black matrix, and light containing visible light (wavelength 350). Light of up to 450 nm) was irradiated so as to have an integrated irradiation amount of 500 mJ / cm 2, and further heated at 120 ° C. for 1 hour to cure the main seal. Then, polarizing films were attached to both sides of the obtained liquid crystal cell to obtain a liquid crystal display panel. The evaluation was performed according to the following criteria.
◯: When the liquid crystal is oriented up to the main seal of the liquid crystal display panel and there is no color unevenness Δ: When color unevenness occurs in the vicinity of the main seal over a range of less than 1 mm ×: 1 mm from the vicinity of the main seal When color unevenness occurs over the above range
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示されるように、エポキシ当量が350以上であり、かつ硬化物のガラス転移温度が100℃以下である(A)エポキシ樹脂と、(B)分子内に(メタ)アクリロイル基を少なくとも1つ以上有する硬化性樹脂と、(C)波長400nm以上にも0.1以上の吸光度を有する光重合開始剤と、(D)熱硬化剤と、を含む実施例1~9では、接着強度が高く、かつ表示特性テストの結果も良好であった。 As shown in Table 1, (A) an epoxy resin having an epoxy equivalent of 350 or more and a cured product having a glass transition temperature of 100 ° C. or less, and (B) at least one (meth) acryloyl group in the molecule. In Examples 1 to 9, which include (C) a photopolymerization initiator having an absorbance of 0.1 or more even at a wavelength of 400 nm or more, and (D) a thermosetting agent, the adhesive strength is high. It was high and the result of the display characteristic test was also good.
 これに対し、エポキシ当量が350未満かつ硬化物のガラス転移温度が100℃超のエポキシ樹脂を用いた比較例1~4では、実施例1~3、および5と比較して、接着強度が低く、かつ表示特性テストの結果も悪かった。エポキシ当量が低いため、液晶に溶解しやすく、液晶が汚染されたと考えられる。また、硬化物のガラス転移温度が高すぎるため、シール部材が硬くなり、接着強度が低下したと考えられる。 On the other hand, in Comparative Examples 1 to 4 using an epoxy resin having an epoxy equivalent of less than 350 and a cured product having a glass transition temperature of more than 100 ° C., the adhesive strength was lower than that of Examples 1 to 3 and 5. Moreover, the result of the display characteristic test was also bad. Since the epoxy equivalent is low, it is easily dissolved in the liquid crystal, and it is considered that the liquid crystal is contaminated. Further, it is considered that the glass transition temperature of the cured product is too high, so that the sealing member becomes hard and the adhesive strength decreases.
 なお、(A)エポキシ樹脂のエポキシ当量が350以上であり、かつ硬化物のガラス転移温度が100℃以下であったとしても、その量が5質量%未満となると十分な接着強度が得られなかった(比較例5)。一方、20質量%を超えると、表示特性テストが低下した(比較例6)。(A)エポキシ樹脂の量が多くなることで、液晶に溶解する(A)エポキシ樹脂の量が多くなったと考えられる。 Even if the epoxy equivalent of the epoxy resin (A) is 350 or more and the glass transition temperature of the cured product is 100 ° C. or less, sufficient adhesive strength cannot be obtained if the amount is less than 5% by mass. (Comparative example 5). On the other hand, when it exceeded 20% by mass, the display characteristic test deteriorated (Comparative Example 6). It is considered that as the amount of the epoxy resin (A) increased, the amount of the epoxy resin (A) dissolved in the liquid crystal increased.
 また、波長400nm以上における吸光度が低い光重合開始剤を用いた場合、封止剤の硬化性が低下し、表示特性テストの結果が低下した(比較例7)。 Further, when a photopolymerization initiator having a low absorbance at a wavelength of 400 nm or more was used, the curability of the encapsulant was lowered, and the result of the display characteristic test was lowered (Comparative Example 7).
 本出願は、2019年5月17日出願の特願2019-093781号に基づく優先権を主張する。これらの出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2019-093781 filed on May 17, 2019. All the contents described in these application specifications and drawings are incorporated herein by reference.
 本発明の封止剤によれば、液晶滴下工法で液晶表示パネルを作製する際、液晶を汚染し難く、さらには基板どうしを強固に接着できる。したがって、高品質な液晶表示パネルの製造に非常に有用である。 According to the encapsulant of the present invention, when a liquid crystal display panel is manufactured by the liquid crystal dropping method, the liquid crystal is less likely to be contaminated, and the substrates can be firmly adhered to each other. Therefore, it is very useful for manufacturing a high quality liquid crystal display panel.

Claims (7)

  1.  (A)エポキシ樹脂(ただし、分子内に(メタ)アクリロイル基を有する樹脂は除く)と、
     (B)分子内に(メタ)アクリロイル基を少なくとも1つ以上有する硬化性樹脂と、
     (C)光重合開始剤と、
     (D)熱硬化剤と、
     を含み、
     前記(A)エポキシ樹脂は、エポキシ当量が350以上であり、
     前記(A)エポキシ樹脂100質量部と、メチルヘキサヒドロ無水フタル酸を前記(A)エポキシ樹脂に対して化学当量と、ジメチルベンジルジアミン1質量部と、を混合し、110℃で3時間加熱し、さらに165℃で2時間加熱して得られる硬化物のガラス転移温度が100℃以下であり、
     前記(C)光重合開始剤のみを、濃度が0.15質量%となるようにテトラヒドロフランに溶解させて測定した紫外可視吸収スペクトルにおいて、長波長側から確認したときにはじめて吸光度が0.1以上となる波長が400nm以上であり、
     前記(A)エポキシ樹脂の含有量が、5質量%以上20質量%未満である、
     液晶滴下工法用封止剤。
    (A) Epoxy resin (excluding resins having a (meth) acryloyl group in the molecule),
    (B) A curable resin having at least one (meth) acryloyl group in the molecule, and
    (C) Photopolymerization initiator and
    (D) Thermosetting agent and
    Including
    The epoxy resin (A) has an epoxy equivalent of 350 or more.
    100 parts by mass of the (A) epoxy resin, a chemical equivalent of methylhexahydrophthalic anhydride to the (A) epoxy resin, and 1 part by mass of dimethylbenzyldiamine are mixed and heated at 110 ° C. for 3 hours. The glass transition temperature of the cured product obtained by further heating at 165 ° C. for 2 hours is 100 ° C. or lower.
    In the ultraviolet-visible absorption spectrum measured by dissolving only the photopolymerization initiator (C) in tetrahydrofuran so as to have a concentration of 0.15% by mass, the absorbance is 0.1 or more only when confirmed from the long wavelength side. The wavelength is 400 nm or more,
    The content of the epoxy resin (A) is 5% by mass or more and less than 20% by mass.
    Sealant for liquid crystal dripping method.
  2.  前記(C)光重合開始剤が、オキシムエステル系化合物、チオキサントン系化合物、アントラセン系化合物、およびチタノセン系化合物からなる群より選ばれる1つ以上の化合物である、
     請求項1に記載の液晶滴下工法用封止剤。
    The (C) photopolymerization initiator is one or more compounds selected from the group consisting of oxime ester compounds, thioxanthone compounds, anthracene compounds, and titanosen compounds.
    The sealing agent for the liquid crystal dropping method according to claim 1.
  3.  前記(D)熱硬化剤が、ジヒドラジド系熱潜在性硬化性、イミダゾール系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、およびポリアミン系熱潜在性硬化剤からなる群より選ばれる1つ以上の潜在性熱硬化剤である、
     請求項1または2に記載の液晶滴下工法用封止剤。
    The (D) thermosetting agent is one selected from the group consisting of dihydrazide-based thermosetting, imidazole-based thermosetting, amine adduct-based thermosetting, and polyamine-based thermosetting. The above latent thermosetting agent,
    The sealing agent for the liquid crystal dropping method according to claim 1 or 2.
  4.  一対の基板と、前記一対の基板の間に配置された枠状のシール部材と、前記一対の基板間かつ前記枠状のシール部材の内部に充填された液晶と、を有する液晶表示パネルの製造方法であって、
     一対の基板のうち、一方の基板上に、請求項1~3のいずれか一項に記載の液晶滴下工法用封止剤を塗布し、枠状のシールパターンを形成するシールパターン形成工程と、
     前記一方の基板上かつ前記シールパターンに囲まれた領域、もしくは他方の基板上かつ前記他方の基板と前記一方の基板とを対向させたときに前記シールパターンに囲まれる領域に、液晶を滴下する液晶滴下工程と、
     前記一方の基板および前記他方の基板を、前記シールパターンを介して重ね合わせる重ね合わせ工程と、
     前記シールパターンを硬化させる硬化工程と、
     を含む、
     液晶表示パネルの製造方法。
    Manufacture of a liquid crystal display panel having a pair of substrates, a frame-shaped sealing member arranged between the pair of substrates, and a liquid crystal filled between the pair of substrates and inside the frame-shaped sealing member. It's a method
    A seal pattern forming step of applying the sealing agent for the liquid crystal dropping method according to any one of claims 1 to 3 onto one of the pair of substrates to form a frame-shaped seal pattern.
    The liquid crystal is dropped on the one substrate and the region surrounded by the seal pattern, or on the other substrate and on the region surrounded by the seal pattern when the other substrate and the one substrate are opposed to each other. Liquid crystal dropping process and
    A stacking step of superimposing the one substrate and the other substrate via the seal pattern,
    A curing step of curing the seal pattern and
    including,
    Manufacturing method of liquid crystal display panel.
  5.  前記硬化工程において、前記シールパターンに光を照射する、
     請求項4に記載の液晶表示パネルの製造方法。
    In the curing step, the seal pattern is irradiated with light.
    The method for manufacturing a liquid crystal display panel according to claim 4.
  6.  前記硬化工程において、光の照射後、加熱をさらに行う、
     請求項5に記載の液晶表示パネルの製造方法。
    In the curing step, after irradiation with light, further heating is performed.
    The method for manufacturing a liquid crystal display panel according to claim 5.
  7.  一対の基板と、
     前記一対の基板の間に配置された枠状のシール部材と、
     前記一対の基板間かつ前記枠状のシール部材の内部に充填された液晶と、
     を有し、
     前記シール部材が、請求項1~3のいずれか一項に記載の液晶滴下工法用封止剤の硬化物である、
     液晶表示パネル。
    A pair of boards and
    A frame-shaped sealing member arranged between the pair of substrates,
    A liquid crystal filled between the pair of substrates and inside the frame-shaped sealing member,
    Have,
    The sealing member is a cured product of the sealing agent for the liquid crystal dropping method according to any one of claims 1 to 3.
    Liquid crystal display panel.
PCT/JP2020/018662 2019-05-17 2020-05-08 Sealing agent for liquid crystal dropping methods, liquid crystal display panel using same, and method for producing same WO2020235357A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021520701A JP7145329B2 (en) 2019-05-17 2020-05-08 Sealing agent for liquid crystal dripping method, liquid crystal display panel using the same, and method for manufacturing the same
KR1020217035720A KR20210151125A (en) 2019-05-17 2020-05-08 Sealing agent for liquid crystal dropping method, liquid crystal display panel using same, and manufacturing method thereof
CN202080027407.7A CN113661437A (en) 2019-05-17 2020-05-08 Sealant for liquid crystal dropping process, liquid crystal display panel using same, and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-093781 2019-05-17
JP2019093781 2019-05-17

Publications (1)

Publication Number Publication Date
WO2020235357A1 true WO2020235357A1 (en) 2020-11-26

Family

ID=73459197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018662 WO2020235357A1 (en) 2019-05-17 2020-05-08 Sealing agent for liquid crystal dropping methods, liquid crystal display panel using same, and method for producing same

Country Status (5)

Country Link
JP (1) JP7145329B2 (en)
KR (1) KR20210151125A (en)
CN (1) CN113661437A (en)
TW (1) TW202106794A (en)
WO (1) WO2020235357A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032543A1 (en) * 2021-09-03 2023-03-09 積水化学工業株式会社 Liquid crystal display element sealant and liquid crystal display element
WO2023182358A1 (en) * 2022-03-25 2023-09-28 三井化学株式会社 Thermosetting resin composition, sealant for display devices, and display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110120A (en) * 2015-12-17 2017-06-22 三井化学株式会社 Photocurable resin composition, display element sealing agent and liquid crystal display panel and method for manufacturing the same
JP2017219565A (en) * 2016-06-02 2017-12-14 三井化学株式会社 Sealant for liquid crystal dropping method, liquid crystal display panel, and method for manufacturing liquid crystal display panel
JP2017223828A (en) * 2016-06-15 2017-12-21 三井化学株式会社 Sealant for liquid crystal dropping method, liquid crystal display panel, and method for manufacturing liquid crystal display panel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119688A1 (en) 2008-03-26 2009-10-01 積水化学工業株式会社 Sealing material for liquid-crystal dropping process, vertical-conduction material, and liquid-crystal display element
WO2010038431A1 (en) * 2008-09-30 2010-04-08 三井化学株式会社 Liquid crystal sealing agent, liquid crystal display panel using same, method for producing the liquid crystal display panel, and liquid crystal display device
KR101343156B1 (en) * 2010-03-25 2013-12-19 미쓰이 가가쿠 가부시키가이샤 Liquid crystal sealing agent, method for producing liquid crystal display panel using same, and liquid crystal display panel
WO2016067582A1 (en) * 2014-10-30 2016-05-06 三井化学株式会社 Method for producing liquid crystal display panel, liquid crystal display panel and liquid crystal sealing agent composition
WO2016074184A1 (en) * 2014-11-13 2016-05-19 Ablestik (Shanghai) Ltd. Thermally curable sealant composition and use thereof
JP6097454B1 (en) 2015-09-02 2017-03-15 積水化学工業株式会社 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP2017149794A (en) * 2016-02-22 2017-08-31 三井化学株式会社 Photocurable resin composition, display element sealant, liquid crystal sealant and liquid crystal display panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110120A (en) * 2015-12-17 2017-06-22 三井化学株式会社 Photocurable resin composition, display element sealing agent and liquid crystal display panel and method for manufacturing the same
JP2017219565A (en) * 2016-06-02 2017-12-14 三井化学株式会社 Sealant for liquid crystal dropping method, liquid crystal display panel, and method for manufacturing liquid crystal display panel
JP2017223828A (en) * 2016-06-15 2017-12-21 三井化学株式会社 Sealant for liquid crystal dropping method, liquid crystal display panel, and method for manufacturing liquid crystal display panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032543A1 (en) * 2021-09-03 2023-03-09 積水化学工業株式会社 Liquid crystal display element sealant and liquid crystal display element
WO2023182358A1 (en) * 2022-03-25 2023-09-28 三井化学株式会社 Thermosetting resin composition, sealant for display devices, and display device

Also Published As

Publication number Publication date
KR20210151125A (en) 2021-12-13
JP7145329B2 (en) 2022-09-30
JPWO2020235357A1 (en) 2020-11-26
CN113661437A (en) 2021-11-16
TW202106794A (en) 2021-02-16

Similar Documents

Publication Publication Date Title
JP5571436B2 (en) Liquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
WO2012132203A1 (en) Liquid crystal sealing agent, method for producing liquid crystal display device using same, and liquid crystal display panel
WO2011118192A1 (en) Liquid crystal sealing agent, method for producing liquid crystal display panel using same, and liquid crystal display panel
JP7145329B2 (en) Sealing agent for liquid crystal dripping method, liquid crystal display panel using the same, and method for manufacturing the same
JP6893486B2 (en) Display adhesive
JP4845667B2 (en) Liquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
WO2016013214A1 (en) Liquid crystal sealing agent and production method for liquid crystal display panel
JP7048314B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6805372B2 (en) Sealing agent for liquid crystal display element, cured product, vertical conductive material, and liquid crystal display element
JP6667042B2 (en) Sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
JP6906860B2 (en) Display adhesive
KR102509153B1 (en) Light-shielding sealing agent for liquid crystal dropping method, and manufacturing method of liquid crystal display panel using the same
WO2013005692A1 (en) Liquid crystal sealing material and liquid crystal display cell using same
WO2020230678A1 (en) Liquid crystal sealant, liquid crystal display panel using same, and production method therefor
JP7411693B2 (en) Photothermosetting resin composition, liquid crystal sealant containing the same, liquid crystal display panel, and manufacturing method thereof
WO2021177111A1 (en) Sealing agent for liquid crystal dropping methods and method for producing liquid crystal display panel
KR20190032222A (en) Adhesive for display
JP6452194B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
WO2022181498A1 (en) Photocurable resin composition, liquid crystal sealing agent, liquid crystal display panel using same, and production method therefor
WO2021200220A1 (en) Sealing agent for one-drop fill method, manufacturing method for liquid crystal display panel, and liquid crystal display panel
CN115380246A (en) Liquid crystal sealing agent, method for manufacturing liquid crystal display panel, and liquid crystal display panel
TW202007751A (en) Sealant for electronic components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810286

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520701

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217035720

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20810286

Country of ref document: EP

Kind code of ref document: A1