WO2012132203A1 - Liquid crystal sealing agent, method for producing liquid crystal display device using same, and liquid crystal display panel - Google Patents

Liquid crystal sealing agent, method for producing liquid crystal display device using same, and liquid crystal display panel Download PDF

Info

Publication number
WO2012132203A1
WO2012132203A1 PCT/JP2012/001114 JP2012001114W WO2012132203A1 WO 2012132203 A1 WO2012132203 A1 WO 2012132203A1 JP 2012001114 W JP2012001114 W JP 2012001114W WO 2012132203 A1 WO2012132203 A1 WO 2012132203A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
mass
parts
curing agent
epoxy resin
Prior art date
Application number
PCT/JP2012/001114
Other languages
French (fr)
Japanese (ja)
Inventor
康司 水田
祐司 溝部
知也 宮崎
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to KR1020137025370A priority Critical patent/KR101486689B1/en
Priority to CN201280015718.7A priority patent/CN103477274B/en
Priority to JP2013507093A priority patent/JP5986987B2/en
Publication of WO2012132203A1 publication Critical patent/WO2012132203A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0645Macromolecular organic compounds, e.g. prepolymers obtained otherwise than by reactions involving carbon-to-carbon unsaturated bonds
    • C09K2200/0647Polyepoxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a liquid crystal sealant, a method for producing a liquid crystal display panel using the same, and a liquid crystal display panel.
  • a liquid crystal display panel has a structure in which a liquid crystal material (hereinafter simply referred to as “liquid crystal”) is sandwiched between two transparent substrates having electrodes provided on the surface, and the periphery thereof is sealed with a liquid crystal sealant.
  • liquid crystal a liquid crystal material
  • the liquid crystal dropping method includes (1) applying a liquid crystal sealant on a transparent substrate to form a frame, (2) dropping a small amount of liquid crystal in the frame, and (3) superimposing two substrates, (4) A method for producing a panel by curing a liquid crystal sealant.
  • a liquid crystal sealant that is cured by light and heat is usually used. For example, after the liquid crystal sealing agent is irradiated with light such as ultraviolet rays and temporarily cured in the step (3), post-curing by heating is performed in the step (4).
  • liquid crystal sealant As the liquid crystal sealant, there has been proposed a liquid crystal sealant containing a resin component having both ultraviolet curing properties and thermosetting properties (for example, see Patent Documents 1 and 2).
  • a resin component having both ultraviolet curing properties and thermosetting properties for example, see Patent Documents 1 and 2.
  • the liquid crystal sealant be a one-component type from the viewpoint of workability.
  • curing agent are included in 1 liquid, these will react at the time of a preservation
  • the powdery curing agent reacts with the resin composition in a solid liquid. That is, the reaction between the resin composition and the curing agent during storage can be suppressed, and storage stability is improved.
  • liquid crystal sealants are required to have storage stability, in recent years, thinning of seal members in liquid crystal panels has been desired. From the viewpoint of thinning the seal member, it is preferable that the liquid crystal sealant does not contain many powder components. When many powder components are contained, the line width at the time of application is affected by the particle size of the powder. If the powder component is included, the viscosity is likely to increase, and it is difficult to apply the liquid crystal sealant in a straight line. Therefore, it is difficult to form a seal member having a thin line width.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a liquid crystal sealant that can form a seal member with a thin line width and is excellent in storage stability.
  • the present inventors paid attention to the combination of curing agent components.
  • Stable storage stability when selected from solid primary polyamine curing agent, polyhydric phenol curing agent with softening point in the specified range, and secondary polyhydric thiol that is liquid at room temperature. It was found that the property is good. It has also been found that the coating stability is improved because the amount of the powder component can be reduced. The present invention has been made based on such findings.
  • the first of the present invention relates to a liquid crystal sealant.
  • a liquid crystal sealant comprising (1) a (meth) acryl-modified epoxy resin containing an epoxy group and a (meth) acryl group in the molecule, (2) a curing agent, and (3) a photoinitiator.
  • the component (2) is a polyhydric phenol curing agent having a softening point of 50 to 90 ° C., a secondary polyvalent thiol curing agent having a melting point of 23 ° C. or less, and a primary polyvalent amine having a melting point of 60 to 180 ° C.
  • a liquid crystal sealing agent comprising two or more kinds of curing agents selected from the group consisting of curing agents and containing 4 to 30 parts by mass of the component (2) with respect to 100 parts by mass of the liquid crystal sealing agent.
  • the resin further includes an epoxy resin having two or more epoxy groups in the molecule, and the epoxy resin is selected from the group consisting of a bisphenol type epoxy resin, a biphenyl type epoxy resin, a biphenyl ether type epoxy resin, and a trisphenol type epoxy resin.
  • thermoplastic polymer fine particle containing a thermoplastic polymer having a softening point temperature of 50 to 120 ° C. measured by a ring and ball method and having a number average particle diameter of 0.05 to 5 ⁇ m is further included.
  • the liquid crystal sealant according to any one of [1] to [5] which contains 1 to 50 parts by mass of a filler with respect to 100 parts by mass of the liquid crystal sealant.
  • the liquid crystal sealant according to any one of [1] to [6] which contains 0.1 to 5 parts by mass of an epoxy resin curing catalyst with respect to 100 parts by mass of the liquid crystal sealant.
  • the liquid crystal sealant according to any one of [1] to [7] which is used for manufacturing a liquid crystal display panel by a liquid crystal dropping method.
  • the second aspect of the present invention relates to a method for manufacturing a liquid crystal display panel.
  • a method for producing a liquid crystal display panel comprising a step of photocuring a pattern and then thermally curing the pattern.
  • the method for manufacturing a liquid crystal display panel according to [9] wherein the step of forming the seal pattern is a step of forming only the seal pattern without forming a dummy pattern using the liquid crystal sealant.
  • the third aspect of the present invention relates to a liquid crystal display panel.
  • a display substrate, a counter substrate paired with the display substrate, a frame-shaped sealing member interposed between the display substrate and the counter substrate, and between the display substrate and the counter substrate A liquid crystal layer filled in a space surrounded by the seal member, wherein the seal member is a cured liquid crystal sealant according to any one of [1] to [8] A liquid crystal display panel.
  • the liquid crystal sealant of the present invention includes (1) a (meth) acryl-modified epoxy resin containing an epoxy group and a (meth) acryl group in the molecule, (2) a curing agent, and (3) photo initiation. Agent. If necessary, the liquid crystal sealant may further include (1-2) an epoxy resin having two or more epoxy groups in the molecule, (4) (meth) acrylate monomer and / or oligomer, (5) thermoplastic polymer fine particles, (6) A filler, (7) an epoxy resin curing catalyst, and the like may be included.
  • the (meth) acryl-modified epoxy resin may be a resin in which the epoxy group of the epoxy resin is modified with a (meth) acryl group.
  • it is a (meth) acryl-modified epoxy resin obtained by reacting an epoxy resin and (meth) acrylic acid, for example, in the presence of a basic catalyst.
  • the epoxy resin used as a raw material may be a bifunctional or higher functional epoxy resin having two or more epoxy groups in the molecule, for example, bisphenol A type, bisphenol F type, 2,2′-diallyl bisphenol A type, bisphenol AD type.
  • Bisphenol type epoxy resins such as hydrogenated bisphenol type; novolak type epoxy resins such as phenol novolak type, cresol novolak type, biphenyl novolak type, and trisphenol novolak type; biphenyl type epoxy resin; naphthalene type epoxy resin .
  • the number of functional groups of the epoxy resin used as a raw material is not particularly limited, but the cured product of a (meth) acryl-modified epoxy resin obtained by (meth) acryl modification of a trifunctional or tetrafunctional polyfunctional epoxy resin has a crosslinking density. It is high and the adhesion strength tends to decrease. Therefore, the epoxy resin used as a raw material is preferably a bifunctional epoxy resin.
  • bisphenol type epoxy resins such as bisphenol A type and bisphenol F type are particularly preferable.
  • the bisphenol type epoxy resin has lower crystallinity than the biphenyl ether type epoxy resin and is excellent in coating stability.
  • the epoxy resin used as a raw material is a bifunctional epoxy resin such as a bisphenol A type epoxy resin or a bisphenol F type epoxy resin
  • the ratio of the (meth) acrylic group to the epoxy group is 1 or more, preferably 2 or more.
  • a (meth) acryl-modified epoxy resin having a low (meth) acryl modification rate and a high epoxy group content tends to be easily dissolved in a liquid crystal.
  • a (meth) acryl-modified epoxy resin having an excessively high (meth) acryl modification rate and an epoxy group content that is too low may have low moisture resistance.
  • the weight average molecular weight of the (meth) acrylic-modified epoxy resin can be about 300 to about 500.
  • the weight average molecular weight of the (meth) acryl-modified epoxy resin is measured by GPC.
  • the liquid crystal sealant containing it has both photocuring properties and thermosetting properties.
  • the blending amount of the (meth) acryl-modified epoxy resin is preferably 5 to 95 parts by mass and more preferably 10 to 60 parts by mass with respect to 100 parts by mass of the liquid crystal sealant. If it is less than the lower limit, the resin component in the sealing member is small, and the liquid crystal sealability may be insufficient. On the other hand, when the amount is larger than the upper limit, the amount of other components is relatively small, and the curability may be insufficient.
  • the liquid crystal sealing agent of the present invention may contain an epoxy resin having two or more epoxy groups in the molecule, if necessary.
  • the epoxy resin having two or more epoxy groups in the molecule include at least one kind of 2 selected from the group consisting of a bisphenol type epoxy resin, a biphenyl type epoxy resin, a biphenyl ether type epoxy resin, and a trisphenol type epoxy resin. Functional or trifunctional epoxy resins are included. Only one type of the epoxy resin may be included, or two or more types may be included.
  • the above epoxy resin preferably has a softening point of 40 ° C or higher and 150 ° C or lower.
  • Such a solid epoxy resin has low solubility and diffusibility in the liquid crystal, and the display characteristics of the obtained liquid crystal panel are good. Furthermore, the moisture resistance of the sealing member obtained by curing the liquid crystal sealing agent is increased.
  • the weight average molecular weight of the epoxy resin is 1000 to 10,000, preferably 500 to 5,000. Among these, an aromatic epoxy resin having the above weight average molecular weight is preferable. The weight average molecular weight of the epoxy resin is measured in the same manner as described above.
  • aromatic epoxy resin examples include aromatic diols represented by bisphenol A, bisphenol S, bisphenol F, bisphenol AD, and the like; and diols obtained by modifying them with ethylene glycol, propylene glycol, alkylene glycol, and epichlorohydrin.
  • the above aromatic epoxy resins include, among others, cresol novolac type epoxy resins, phenol novolac type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, triphenolmethane type epoxy resins, triphenolethane type epoxy resins, trisphenol type epoxy resins.
  • Resin, dicyclopentadiene type epoxy resin, diphenyl ether type epoxy resin, and biphenyl type epoxy resin are preferable. One of these may be included, or two or more may be included.
  • the compounding amount of the epoxy resin having two or more epoxy groups in the molecule is preferably 1 to 30 parts by mass, and more preferably 3 to 20 parts by mass with respect to 100 parts by mass of the liquid crystal sealant.
  • the curing agent is a polyhydric phenol curing agent having a softening point of 50 to 90 ° C., a secondary polyvalent thiol curing agent having a melting point of 23 ° C. or less, and a primary polyvalent amine having a melting point of 60 to 180 ° C. Two or more are selected from the group consisting of curing agents.
  • curing agents include the polyhydric phenol curing agent and the secondary polyvalent thiol curing agent; the polyhydric phenol curing agent and the primary polyvalent amine curing agent; and the secondary polyvalent thiol curing agent.
  • the primary polyvalent amine curing agent; the polyhydric phenol curing agent, the secondary polyvalent thiol curing agent, and the primary polyvalent amine curing agent may contain a curing agent other than these as long as the effects and objects of the present invention are not impaired.
  • the secondary polythiol curing agent is liquid at room temperature, and the polyhydric phenol curing agent can be dissolved in other components contained in the liquid crystal sealant. Therefore, when the polyhydric phenol curing agent and the secondary polyvalent thiol curing agent are combined, the liquid crystal sealant does not contain a powder curing agent, and the amount of the powder component can be greatly reduced. Moreover, since these hardening
  • the polyhydric phenol curing agent can be dissolved in other components contained in the liquid crystal sealant. Therefore, when the polyhydric phenol curing agent and the primary polyvalent amine curing agent are combined, the amount of the powder component in the liquid crystal sealant can be reduced as compared with the case where only the primary polyvalent amine curing agent is added. .
  • the secondary polyvalent thiol curing agent is also liquid at room temperature, when the secondary polyvalent thiol curing agent and the primary polyvalent amine curing agent are combined, only the primary polyvalent amine curing agent is obtained. Compared with the case where it adds, the amount of powder components can be reduced.
  • the amount of the powder component in the liquid crystal sealant is increased for the reasons described above. Can be reduced.
  • the total amount of the curing agent in the liquid crystal sealant is 4 to 30 parts by mass, and more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the liquid crystal sealant.
  • the viscosity stability may be lowered.
  • the resin is not sufficiently cured, and the uncured component may be eluted into the liquid crystal, and the display quality and the adhesive strength may be lowered.
  • the polyhydric phenol curing agent used in the present invention is a compound having two or more aromatic hydroxyl groups in one molecule, and its softening point is 50 to 90 ° C., preferably 60 to 80 ° C.
  • the softening point is within this range, the liquid crystal sealant softens during thermal curing, and (1) (meth) acryl-modified epoxy resin or (1-2) cures an epoxy resin having two or more epoxy groups in the molecule. Can contribute.
  • the softening point is less than the lower limit, the viscosity stability of the liquid crystal sealant may be affected. Moreover, when exceeding an upper limit, the said resin may not fully be hardened
  • polyhydric phenol curing agent examples include phenol novolac resin and phenol aralkyl resin.
  • the phenol novolac resin may be a condensate obtained by condensing phenol or cresol and formalin.
  • the phenol aralkyl resin may be a condensate obtained by condensing phenol or cresol and p-xylene diol in the presence of an acid catalyst or a basic catalyst.
  • the curing agent may be a product obtained by purifying the above condensate, or may be a commercially available phenol novolac resin or phenol aralkyl resin. These may be included singly or in combination of two or more.
  • the blending amount of the polyhydric phenol curing agent is preferably set based on the adhesive strength of the cured product of the liquid crystal sealant and the photocurability of the liquid crystal sealant.
  • the polyvalent thiol curing agent is a compound having two or more secondary thiol groups in one molecule, and its melting point is 23 ° C. or less.
  • secondary polyvalent thiol compounds examples include mercaptoesters which are ester-based thiol compounds obtained by esterifying a mercaptocarboxylic acid having a secondary mercapto group and a polyhydric alcohol; , Aromatic polythiols; thiol-modified reactive silicone oils and the like. Among these, only 1 type may be contained and 2 or more types may be contained.
  • the secondary polyvalent thiol curing agent is preferably a mercaptoester obtained by an esterification reaction of a mercaptocarboxylic acid having a secondary mercapto group and a polyhydric alcohol.
  • mercaptocarboxylic acids having a secondary mercapto group include 2-mercaptopropionic acid, 3-mercapbutanoic acid, 2-mercaptobutanoic acid and the like.
  • polyhydric alcohols examples include ethanediol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, sorbitol, etc. .
  • Specific examples of mercaptoesters include pentaerythritol tetrakis (3-mercaptobutyrate) and the like.
  • the blending amount of the secondary polyvalent thiol curing agent is preferably set based on the viscosity stability of the liquid crystal sealing agent.
  • the primary polyamine curing agent is a compound having two or more primary amino groups (—NH 2 ) in the molecule, and has a melting point of 60 to 180 ° C., preferably 70 to 140 ° C.
  • the primary amino group also includes a hydrazinyl group.
  • the primary polyvalent amine curing agent is solid when the liquid crystal sealant is stored, and is usually powdery.
  • Examples of primary polyvalent amine curing agents include organic acid dihydrazide compounds, amine / urea adducts, dicyandiamides, imidazole derivatives, aromatic amines, epoxy-modified polyamines and polyaminoureas. Among these, only 1 type may be contained and 2 or more types may be contained.
  • organic acid dihydrazide compounds include adipic acid dihydrazide (melting point 180 ° C.), 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin (melting point 120 ° C.), 7,11-octadecadien-1, 18-dicarbohydrazide (melting point 160 ° C.) and the like are included.
  • amine / urea adducts include curing agents commercially available as the Fujicure FXR series.
  • the blending amount of the primary polyvalent amine curing agent is preferably set based on the curing rate of the liquid crystal sealant.
  • the number average particle diameter is preferably 0.1 to 5 ⁇ m, more preferably 0.5 to 3 ⁇ m.
  • the coating stability of the liquid crystal sealant is improved, and a seal member can be formed with a narrow line width.
  • it shall be more than a lower limit it can suppress that a primary polyvalent amine hardening
  • the number average particle diameter can be specified with a dry particle size distribution meter.
  • the photoinitiator is an initiator for photocuring reaction of (1) (meth) acryl-modified epoxy resin, (4) (meth) acrylate monomer and / or oligomer described later.
  • the sealant can be temporarily cured by photocuring when manufacturing a liquid crystal panel, and the work becomes easy.
  • the photoinitiator can be a known one.
  • photoinitiators include alkylphenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin compounds, acetophenone compounds, benzophenone compounds, thioxanthone compounds, ⁇ -acyloxime esters Compounds, phenylglyoxylate compounds, benzyl compounds, azo compounds, diphenyl sulfide compounds, organic dye compounds, iron-phthalocyanine compounds, benzoin ether compounds, anthraquinone compounds, and the like.
  • alkylphenone compounds include benzyl dimethyl ketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one (IRGACURE 651); 2-methyl-2-morpholino (4-thiomethylphenyl) propane ⁇ -aminoalkylphenones such as 1-one (IIRGACURE 907); ⁇ -hydroxyalkylphenones such as 1-hydroxy-cyclohexyl-phenyl-ketone (IRGACURE 184) and the like.
  • acylphosphine oxide-based compound include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide.
  • the titanocene-based compound includes bis ( ⁇ 5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium and the like.
  • oxime ester compounds include 1.2-octanedione-1- [4- (phenylthio) -2- (0-benzoyloxime)] (IRGACURE OXE 01).
  • the compounding amount of the photoinitiator is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the liquid crystal sealant.
  • curability of (1) (meth) acryl-modified epoxy resin and (4) (meth) acrylate monomer and / or oligomer described later is improved.
  • coating of a liquid-crystal sealing compound becomes favorable by setting it as below an upper limit.
  • the liquid crystal sealant of the present invention may contain a (meth) acrylate monomer and / or oligomer, if necessary.
  • the (meth) acrylate monomer and / or oligomer is contained in the liquid crystal sealing agent, the liquid curing of the liquid crystal sealing agent becomes good, and the workability at the time of manufacturing the liquid crystal panel is improved.
  • the type of (meth) acrylate monomer and / or oligomer is not particularly limited as long as the object and effect of the present invention are not impaired.
  • Examples of the (meth) acrylate monomer and / or oligomer include the following (meth) acrylate monomer or oligomer.
  • Diacrylates and / or dimethacrylates such as polyethylene glycol, propylene glycol and polypropylene glycol; diacrylates and / or dimethacrylates of tris (2-hydroxyethyl) isocyanurate; 4 moles or more of ethylene oxide or propylene per mole of neopentyl glycol Diacrylate and / or dimethacrylate of diol obtained by addition of oxide; diacrylate and / or dimethacrylate of diol obtained by addition of 2 mole of ethylene oxide or propylene oxide to 1 mole of bisphenol A; 1 mole of trimethylolpropane Diol or triacrylate of triol obtained by adding 3 mol or more of ethylene oxide or propylene oxide to Or di- or trimethacrylate; diacrylate and / or dimethacrylate of diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of bisphenol A; tris (2-hydroxyethyl) isocyan
  • the blending amount of the (meth) acrylate monomer and / or oligomer is preferably 1 to 50 parts by mass, more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the liquid crystal sealant.
  • the liquid crystal sealant of the present invention contains a thermoplastic polymer having a softening point temperature measured by a ring and ball method of 50 to 120 ° C., preferably 70 to 100 ° C., if necessary, and Thermoplastic polymer fine particles having a number average particle diameter of 0.05 to 5 ⁇ m, preferably 0.1 to 3 ⁇ m may be included.
  • the number average particle diameter is set to the upper limit value or less, it is possible to prevent the coating stability from being lowered by the thermoplastic polymer fine particles when forming a seal member having a narrow line width.
  • the method for measuring the number average particle diameter is the same as that described above.
  • thermoplastic polymer fine particles include fine particles obtained by suspension polymerization of a resin containing an epoxy group and a double bond group with a monomer capable of radical polymerization.
  • the resin containing an epoxy group and a double bond group include a resin obtained by reacting a bisphenol F type epoxy resin and methacrylic acid in the presence of a tertiary amine.
  • radically polymerizable monomers include butyl acrylate, glycidyl methacrylate, and divinylbenzene.
  • the blending amount of the thermoplastic polymer fine particles is preferably 5 to 40 parts by mass, more preferably 7 to 30 parts by mass with respect to 100 parts by mass of the liquid crystal sealant. By setting it as such a range, the thermoplastic polymer fine particle can relieve the shrinkage stress at the time of heat-hardening of a liquid-crystal sealing compound, and can form a sealing member with the target line width.
  • the liquid crystal sealant of the present invention may further contain a filler.
  • the filler can control the viscosity of the liquid crystal sealant, the strength of the seal member obtained by curing the liquid crystal sealant, the linear expansion property, and the like.
  • the filler is not particularly limited, and examples thereof include calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, zirconium silicate, iron oxide, titanium oxide, aluminum oxide (alumina), zinc oxide, silicon dioxide, Inorganic fillers such as potassium titanate, kaolin, talc, glass beads, sericite activated clay, bentonite, aluminum nitride, silicon nitride are included. Preferred are silicon dioxide and talc.
  • the shape of the filler is not particularly limited, and may be a regular shape such as a spherical shape, a plate shape, or a needle shape, or an irregular shape.
  • the filler preferably has an average primary particle size of 1.5 ⁇ m or less and a specific surface area of 0.5 m 2 / g to 20 m 2 / g.
  • the average primary particle diameter of the filler is measured by a laser diffraction method described in JIS Z8825-1.
  • the specific surface area is measured by the BET method described in JIS Z8830.
  • the filling amount of the filler is preferably 1 to 50 parts by mass and more preferably 10 to 30 parts by mass with respect to 100 parts by mass of the liquid crystal sealant.
  • the upper limit is exceeded, the amount of the powder component in the liquid crystal sealant increases, and the coating stability may be lowered.
  • Epoxy resin curing catalyst The liquid crystal sealant of the present invention may contain an epoxy resin curing catalyst, if necessary.
  • the epoxy resin curing catalyst is contained in the liquid crystal sealant, the curability of the seal member obtained by curing the liquid crystal sealant is improved, and the adhesive strength of the seal member is also increased.
  • the epoxy resin curing catalyst is not particularly limited as long as it does not impair the object and effect of the present invention, and examples thereof include imidazole and derivatives thereof, amines and adducts thereof, and the like.
  • the blending amount of the curing catalyst is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the liquid crystal sealant.
  • the liquid crystal sealant of the present invention may further include a thermal radical polymerization initiator, a coupling agent such as a silane coupling agent, an ion trapping agent, an ion exchange agent, a leveling agent, and a pigment as necessary. Additives such as dyes, plasticizers and antifoaming agents may be included. In addition, a spacer or the like may be blended to adjust the gap of the liquid crystal panel.
  • liquid crystal sealing agent of the present invention contains (1) (meth) acryl-modified epoxy resin, (2) curing agent, and (3) photoinitiator, liquid crystal dripping is often used in combination with photocuring and thermosetting. It is preferably used for a liquid crystal sealant for a construction method.
  • the liquid crystal sealing agent for the liquid crystal dropping method preferably further comprises (1-2) an epoxy resin having two or more epoxy groups in the molecule and (4) a (meth) acrylate monomer and / or oligomer, and more preferably ( 5) further includes thermoplastic polymer fine particles, and (6) a filler.
  • the viscosity of the liquid crystal sealant of the present invention at 25 ° C. and 2.5 rpm by an E-type viscometer is preferably 30 to 400 Pa ⁇ s, more preferably 50 to 350 Pa ⁇ s.
  • a liquid crystal sealant having a viscosity in the above range is excellent in coating stability.
  • the liquid crystal sealant of the present invention includes (1) a (meth) acryl-modified epoxy resin containing an epoxy group and a (meth) acryl group in the molecule, (2) a curing agent, (3) A photoinitiator and other components as necessary are uniformly mixed and manufactured.
  • the method of uniformly mixing is not particularly limited, but for example, it is preferable to sufficiently knead using three rolls. At that time, it is preferable that the liquid crystal sealant is sufficiently defoamed so that bubbles are not included therein.
  • the liquid crystal display panel of the present invention is a display substrate, a counter substrate that is paired with the display substrate, a frame-shaped sealing member interposed between the display substrate and the counter substrate, and a display substrate. And a liquid crystal layer filled in a space surrounded by a seal member between the substrate and the substrate.
  • the cured product of the liquid crystal sealant of the present invention can be used as a seal member.
  • the display substrate and the counter substrate are both transparent substrates.
  • the material of the transparent substrate is not particularly limited, and examples thereof include glass or plastics such as polycarbonate, polyethylene terephthalate, polyethersulfone, and PMMA.
  • a matrix-like TFT, a color filter, a black matrix, or the like can be disposed on the surface of the display substrate or the counter substrate.
  • An alignment film is further formed on the surface of the display substrate or the counter substrate.
  • the alignment film includes a known organic alignment agent or inorganic alignment agent.
  • the manufacturing method of the liquid crystal display panel by the liquid crystal dropping method is a1) a first step of forming a seal pattern of the liquid crystal sealant of the present invention on one substrate; a2) a second step of dropping liquid crystal in a region surrounded by the seal pattern of the substrate or a region of the other substrate facing the region surrounded by the seal pattern in a state where the seal pattern is uncured; , a3) a third step of superimposing one substrate and the other substrate via a seal pattern; a4) a fourth step of curing the seal pattern.
  • the state in which the seal pattern is uncured means a state in which the curing reaction of the liquid crystal sealant has not progressed to the gel point. Therefore, in the step a2), the seal pattern may be semi-cured by light irradiation or heating in order to suppress dissolution of the liquid crystal sealant in the liquid crystal.
  • One substrate and the other substrate are a display substrate or a counter substrate, respectively.
  • the liquid crystal sealant of the present invention has a small amount of powder in the curing agent, it is possible to make the seal pattern finer.
  • the cross-sectional area of the seal pattern using the liquid crystal sealant of the present invention may be about 1500 to 3000 ⁇ m 2 .
  • step a4) only curing by heating may be performed, but it is preferable to perform curing by heating (main curing) after curing by light irradiation (temporary curing).
  • main curing main curing
  • temporary curing temporary curing
  • the photocuring time is, for example, about 10 minutes although it depends on the composition of the liquid crystal sealant.
  • the light irradiation energy may be energy that can cure (1) (meth) acryl-modified epoxy resin, (4) (meth) acrylate monomer, and / or oligomer.
  • the light is preferably ultraviolet light.
  • the thermosetting temperature is 120 ° C., for example, although it depends on the composition of the liquid crystal sealant, and the thermosetting time is about 2 hours.
  • the step a3) is often performed under reduced pressure, and the step a4) is often performed at atmospheric pressure.
  • the liquid crystal display panel is returned to atmospheric pressure.
  • the region surrounded by the two substrates and the liquid crystal sealant is sealed, and a reduced pressure state is maintained. Therefore, in the region surrounded by the liquid crystal sealant, a force acts on the two substrates in the direction in which the substrates are close to each other.
  • the atmospheric pressure is released outside the frame of the liquid crystal sealant, no force acts on the two substrates in the direction in which the substrates are close to each other. For this reason, there is a problem that the substrate is bent and the gap becomes wider from the center of the liquid crystal display panel toward the outside of the frame of the liquid crystal sealant. When the gap is uneven in the liquid crystal display panel, the display reliability is lowered.
  • a method of providing another frame (dummy seal) outside the frame (main seal) made of a liquid crystal sealant is generally used (for example, Japanese Patent Laid-Open No. 2002-2002). -328382).
  • the area outside the main seal that is, the region between the main seal and the dummy seal is also in a reduced pressure state.
  • the liquid crystal sealant contains many powder components, the liquid crystal sealant is hard, and it is difficult to deform as described above.
  • the liquid crystal sealant of the present invention has a low powder component content and high flexibility of the liquid crystal sealant. Therefore, it is possible to manufacture a liquid crystal display panel by forming only a seal pattern necessary for sealing a liquid crystal without forming a dummy seal pattern.
  • the liquid crystal sealant of the present invention can be used not only for the method for producing a liquid crystal surface panel by the liquid crystal dropping method described above but also for the method for producing a liquid crystal display panel by a liquid crystal injection method.
  • the manufacturing method of the liquid crystal display panel by the liquid crystal injection method is b1) a first step of forming a seal pattern of the liquid crystal sealant of the present invention on one substrate; b2) a second step of superimposing one substrate and the other substrate via a seal pattern; b3) a third step of thermosetting the seal pattern to obtain a liquid crystal injection cell having an injection port for injecting liquid crystal; b4) a fourth step of injecting the liquid crystal into the liquid crystal injection cell through the injection port; b5) a fifth step of sealing the inlet.
  • a liquid crystal injection cell is prepared. First, two transparent substrates (for example, glass plates) are prepared. Then, a seal pattern is formed on one substrate with a liquid crystal sealant. After the other substrate is superimposed on the surface of the substrate where the seal pattern is formed, the seal pattern may be cured. At this time, it is necessary to provide an injection port for injecting liquid crystal in a part of the liquid crystal injection cell, but the injection port may be provided with a part of the opening when drawing the seal pattern. Moreover, after forming the seal pattern, the seal pattern at a desired location may be removed to provide an injection port.
  • thermosetting conditions in step b3) are, for example, about 2 to 5 hours at 150 ° C., depending on the composition of the liquid crystal sealant.
  • the step b4) can be performed according to a known method in which the inside of the liquid crystal injection cell obtained in the steps b1) to b3) is evacuated and the liquid crystal is sucked from the injection port of the liquid crystal injection cell. Good.
  • the liquid crystal sealant may be cured after being sealed in the injection port of the liquid crystal injection cell.
  • the liquid crystal sealant of the present invention has good coatability and can form a seal member in a thin pattern.
  • the adhesive strength is good, and the viscosity stability during storage is also excellent.
  • a liquid crystal display panel having excellent gap stability between substrates can be obtained by forming only a seal pattern necessary for sealing liquid crystal without forming a dummy seal pattern. It is also possible.
  • the number of epoxy groups contained in the raw material bisphenol F type epoxy resin is 1 mol.
  • the number of methacryl groups contained in the methacrylic acid to be reacted is 0.70 mol. Therefore, the methacrylic acid-modified bisphenol F type epoxy resin obtained is a 70% partially methacrylic product.
  • Example 1 50 parts by mass of a methacrylic acid-modified bisphenol F type epoxy resin (70% partially methacrylic product) obtained in Synthesis Example 1, 4 parts by mass of a polyhydric phenol curing agent A (Mitsui Chemicals Co., Ltd .: Millex 3L, softening point 71 ° C.) Parts, secondary polyvalent thiol curing agent B (manufactured by Showa Denko KK: PE-1) 8 parts by mass, primary polyvalent amine curing agent D (manufactured by ADEKA; EH-5057, melting point 80 ° C.) 4 parts by mass, light
  • an initiator 1 part by mass of a photo radical polymerization initiator (Ciba Geigy: Irgacure 651), 2 parts by mass of a curing catalyst (Shikoku Kasei Co., Ltd .: 2MAOK), 20 parts by mass of thermoplastic polymer fine particles (G351: F351), and filling
  • Example 2 Liquid crystal seal in the same manner as in Example 1 except that 8 parts by mass of the polyhydric phenol curing agent A, 8 parts by mass of the primary polyvalent amine curing agent D, and 0 parts by mass of the secondary polyvalent thiol curing agent. An agent was obtained. Moreover, it was 320 Pa.s when the viscosity (initial viscosity) was measured by the method mentioned later.
  • Example 3 Liquid crystal seal in the same manner as in Example 1 except that 8 parts by mass of the polyhydric phenol curing agent A, 8 parts by mass of the secondary polyvalent thiol curing agent B, and 0 parts by mass of the primary polyvalent amine curing agent. An agent was obtained. Moreover, it was 250 Pa.s when the viscosity (initial viscosity) was measured by the method mentioned later.
  • Example 4 A liquid crystal sealant was obtained in the same manner as in Example 1 except that 8 parts by mass of the secondary polyvalent thiol curing agent B and 8 parts by mass of the primary polyvalent amine curing agent D were used. Moreover, it was 260 Pa.s when the viscosity (initial viscosity) was measured by the method mentioned later.
  • Example 5 The amount of the methacrylic acid-modified bisphenol F-type epoxy resin (70% partially methacrylic product) obtained in Synthesis Example 1 is 40 parts by mass, the amount of the polyhydric phenol curing agent A is 7 parts by mass, and the secondary polyvalent thiol. Except for the amount of curing agent B being 14 parts by mass, the amount of primary polyvalent amine curing agent D being 7 parts by mass, the amount of thermoplastic polymer fine particles being 19 parts by mass, and the amount of filler being 9 parts by mass. A liquid crystal sealant was obtained in the same manner as in Example 1. Further, the viscosity (initial viscosity) measured by the method described later was 210 Pa ⁇ s.
  • Example 6 The amount of the methacrylic acid-modified bisphenol F type epoxy resin (70% partially methacrylic product) obtained in Synthesis Example 1 is 56 parts by mass, the amount of polyhydric phenol curing agent A is 1 part by mass, and the secondary polyvalent thiol.
  • a liquid crystal sealant was obtained. Moreover, it was 300 Pa.s when the viscosity (initial viscosity) was measured by the method mentioned later.
  • Example 7 Instead of polyhydric phenol curing agent A, 4 parts by mass of polyhydric phenol curing agent B (manufactured by DIC: TD2131, softening point 80 ° C.) is used, and the amount of secondary polyhydric thiol curing agent B is 8 parts by mass.
  • a liquid crystal sealant was obtained in the same manner as in Example 1 except that the amount of the polyvalent amine curing agent D was 4 parts by mass. Moreover, it was 250 Pa.s when the viscosity (initial viscosity) was measured by the method mentioned later.
  • Example 8 Instead of the polyhydric phenol curing agent A, 4 parts by mass of the polyhydric phenol curing agent C (manufactured by Mitsubishi Chemical Corporation: 170 softening point 90 ° C.) is used, and the amount of the secondary polyhydric thiol curing agent B is 8 parts by mass.
  • a liquid crystal sealing agent was obtained in the same manner as in Example 1 except that the amount of the polyvalent amine curing agent D was changed to 4 parts by mass. Further, when the viscosity (initial viscosity) was measured by the method described later, it was 255 Pa ⁇ s.
  • Example 9 The amount of the phenol curing agent A is 4 parts by mass, the amount of the secondary polyvalent thiol curing agent B is 8 parts by mass, and the polyvalent amine curing agent A (manufactured by Nippon Hydrazine: ADH, melting point) as the primary polyvalent amine curing agent.
  • a liquid crystal sealant was obtained in the same manner as in Example 1 except that 4 parts by mass of 180 ° C.) and 4 parts by mass of the polyvalent amine curing agent D were used. Moreover, it was 270 Pa.s when the viscosity (initial viscosity) was measured by the method mentioned later.
  • Example 10 The amount of the phenol curing agent A is 4 parts by mass, the amount of the secondary polyvalent thiol curing agent B is 8 parts by mass, and the polyvalent amine curing agent B (manufactured by Fuji Kasei Kogyo: Fujicure FXR- 1020, melting point 125 ° C.) was used in the same manner as in Example 1 except that 4 parts by mass and 4 parts by mass of polyvalent amine curing agent D were used to obtain a liquid crystal sealant. Moreover, it was 260 Pa.s when the viscosity (initial viscosity) was measured by the method mentioned later.
  • the viscosity initial viscosity
  • Example 11 4 parts by mass of phenol curing agent A, 8 parts by mass of secondary polyvalent thiol curing agent B, polyvalent amine curing agent C as a primary polyvalent amine curing agent (manufactured by Ajinomoto Fine Techno Co .: VDH, melting point)
  • a liquid crystal sealant was obtained in the same manner as in Example 1 except that 4 parts by mass of 120 ° C. was used. Moreover, it was 250 Pa.s when the viscosity (initial viscosity) was measured by the method mentioned later.
  • Example 1 A liquid crystal sealant was obtained in the same manner as in Example 1 except that 16 parts by mass of the phenol curing agent A as a curing agent and 0 parts by mass of the secondary polyvalent thiol curing agent and the primary polyvalent amine curing agent were obtained. . Moreover, it was 350 Pa.s when the viscosity (initial viscosity) was measured by the method mentioned later.
  • Example 2 A liquid crystal sealant was prepared in the same manner as in Example 1 except that 16 parts by mass of the secondary polyvalent thiol curing agent B as the curing agent and 0 parts by mass of the polyhydric phenol curing agent and the primary polyvalent amine curing agent were used. Obtained. Further, the viscosity (initial viscosity) measured by the method described later was 210 Pa ⁇ s.
  • Example 3 A liquid crystal sealant was prepared in the same manner as in Example 1 except that the primary polyvalent amine curing agent D was 16 parts by mass and the polyhydric phenol curing agent and the secondary polyvalent thiol curing agent were 0 parts by mass. Obtained. Further, when the viscosity (initial viscosity) was measured by the method described later, it was 370 Pa ⁇ s.
  • Example 6 A liquid crystal sealant was obtained in the same manner as in Example 1 except that 8 parts by mass of a primary polyvalent thiol curing agent (manufactured by Sakai Chemical Co., Ltd .: TMMP (trimethylolpropane mercaptopropionic acid)) was used as the polyvalent thiol curing agent. Further, when the viscosity (initial viscosity) was measured by the method described later, it was 260 Pa ⁇ s.
  • TMMP trimethylolpropane mercaptopropionic acid
  • Example 7 A liquid crystal sealing agent was obtained in the same manner as in Example 1 except that the phenol curing agent D (manufactured by DIC: TD2090, softening point 100 ° C.) was used as the polyhydric phenol curing agent. Moreover, it was 270 Pa.s when the viscosity (initial viscosity) was measured by the method mentioned later.
  • the phenol curing agent D manufactured by DIC: TD2090, softening point 100 ° C.
  • the discharge pressure was 0.3 MPa
  • the cross-sectional area was 3000 ⁇ m 2
  • the coating speed was 100 mm / s.
  • the shape of the obtained seal pattern was evaluated as follows. 50 frame types with no seal breakage or seal fading: ⁇ (Excellent) 48-49 frame molds with no seal breakage or seal fading: ⁇ (Excellent) Less than 48 frame molds with no seal breakage or seal fading: ⁇ (Inferior)
  • the liquid crystal sealant obtained in the above examples and comparative examples was prepared by using a dispenser (shot master: manufactured by Musashi Engineering Co., Ltd.) with a transparent electrode and an alignment film formed in advance.
  • a 35 mm ⁇ 40 mm square seal pattern (cross-sectional area 3500 ⁇ m 2 ) (main seal) was formed on a glass substrate (EHC, RT-DM88-PIN).
  • a square seal pattern 38 mm ⁇ 43 mm square seal pattern
  • a liquid crystal material (MLC-119000-000: manufactured by Merck & Co., Inc.) corresponding to the internal volume of the panel after bonding was precisely dropped into the main seal frame with a dispenser.
  • a pair of glass substrates was bonded together under reduced pressure, and then bonded to the atmosphere. Then, the two bonded glass substrates were held in a light shielding box for 3 minutes, then irradiated with 2000 mJ / cm 2 of ultraviolet light, and further heated at 100 ° C. for 1 hour.
  • the obtained liquid crystal display panel was stored in a thermostatic bath at 70 ° C. and 95% RH for 500 hours. Color unevenness generated in the liquid crystal around the seal portion before and after storage was visually observed. The case where no color unevenness was confirmed was rated as ⁇ (very excellent); the case where almost no color unevenness was confirmed was evaluated as ⁇ (excellent); the confirmed result as ⁇ ;
  • the taken out liquid crystal display panel was driven with an applied voltage of 5 V by a DC power supply device.
  • the display characteristics of the liquid crystal display panel were evaluated depending on whether the liquid crystal display function in the vicinity of the liquid crystal sealant functions normally from the beginning of driving. As for the display characteristics, ⁇ (excellent) when the liquid crystal display function can be exhibited normally until sealing, ⁇ (good) when abnormality of the liquid crystal display function is confirmed near 0.1 mm when sealing, ⁇ (slightly inferior) when the liquid crystal display function abnormality is confirmed in the vicinity of 0.1 mm and less than 0.3 mm, and the display function abnormality is confirmed in the vicinity of 0.3 mm when the seal is exceeded.
  • X Inferior).
  • Adhesive strength In the above 3), the plane tensile strength of the liquid crystal display panel sample after storage in a thermostat was measured at a tensile speed of 2 m / min using a tensile tester (manufactured by Intesco). Adhesiveness was evaluated as follows. Adhesive strength of 20 MPa or more: ⁇ (Excellent) Adhesive strength is 15 MPa or more and less than 20 MPa: ⁇ (excellent) Adhesive strength is 7 MPa or more and less than 15 MPa: ⁇ (slightly inferior) Adhesive strength is less than 7 MPa: x (inferior)
  • a polyhydric phenol curing agent having a softening point of 50 to 90 ° C. a secondary polyvalent thiol curing agent having a melting point of 23 ° C. or less, and a primary polyvalent amine curing agent having a melting point of 60 to 180 ° C.
  • a polyhydric phenol curing agent having a softening point of 50 to 90 ° C. a secondary polyvalent thiol curing agent having a melting point of 23 ° C. or less
  • a primary polyvalent amine curing agent having a melting point of 60 to 180 ° C When two or more kinds of curing agents selected from the group are used, it can be seen that the viscosity stability, seal coatability, adhesive strength, display state, high temperature and high humidity reliability, and gap accuracy are all excellent. examples 1 to 11).
  • Example 1 when only the polyhydric phenol curing agent having a softening point of 50 to 90 ° C. is used (Comparative Example 1), the adhesive strength is low, and the display state and the high temperature and high humidity reliability are slightly higher than those of Examples 1 to 11. Ya inferior.
  • Comparative Example 2 when only a secondary polyvalent thiol curing agent having a melting point of 23 ° C. or less was used (Comparative Example 2), all of Example 1 were used for viscosity stability, adhesive strength, display state, and high temperature and high humidity reliability. inferior to 11.
  • Comparative Example 3 when only a primary polyvalent amine curing agent having a melting point of 60 to 180 ° C. is used (Comparative Example 3), the viscosity stability is low, and the seal coating property and the gap accuracy are lowered.
  • a polyhydric phenol curing agent having a softening point of 50 to 90 ° C selected from the group consisting of a polyhydric phenol curing agent having a softening point of 50 to 90 ° C, a secondary polyvalent thiol curing agent having a melting point of 23 ° C or lower, and a primary polyvalent amine curing agent having a melting point of 60 to 180 ° C.
  • a polyhydric phenol curing agent having a softening point of 50 to 90 ° C a secondary polyvalent thiol curing agent having a melting point of 23 ° C or lower
  • a primary polyvalent amine curing agent having a melting point of 60 to 180 ° C Even when two or more kinds of curing agents are used, when the amount is less than 4 parts by mass with respect to 100 parts by mass of the liquid crystal sealant (Comparative Example 5), the adhesive strength, the display state, In addition, high temperature and high humidity reliability is reduced.
  • the liquid crystal sealant of the present invention has few powder components derived from the curing agent, the coating stability can be improved even when the liquid crystal sealant is applied to form a thin seal member. Moreover, since it is excellent in adhesive strength and viscosity stability, a liquid crystal panel excellent in display reliability can be provided. For this reason, the liquid-crystal sealing compound of this invention is suitable for manufacture of a liquid crystal display panel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Sealing Material Composition (AREA)

Abstract

The purpose of the present invention is to provide a liquid crystal sealing agent which has good shelf life and is capable of forming a seal member of a fine line width. The invention is a liquid crystal sealing agent comprising (1) a (meth)acrylic-modified epoxy resin the molecules of which have epoxy groups and (meth)acrylic groups, (2) a curing agent, and (3) a photoinitiator, wherein component (2) is two or more curing agents selected from the group consisting of polyvalent phenol curing agents having a softening point of 50 to 90ºC, secondary polyvalent thiol curing agents having a melting point of 23ºC or less, and primary polyvalent amine curing agents having a melting point of 60 to 180ºC, and the component (2) content is 4 to 30 parts by mass per 100 parts by mass of liquid crystal sealing agent.

Description

液晶シール剤、それを用いた液晶表示パネルの製造方法、および液晶表示パネルLiquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
 本発明は、液晶シール剤、それを用いた液晶表示パネルの製造方法、および液晶表示パネルに関する。 The present invention relates to a liquid crystal sealant, a method for producing a liquid crystal display panel using the same, and a liquid crystal display panel.
 近年、携帯電話やパーソナルコンピュータをはじめとする各種電子機器の画像表示パネルとして、液晶表示パネルが広く使用されている。液晶表示パネルは、表面に電極が設けられた2枚の透明基板の間に液晶材料(以下、単に「液晶」という)を挟み込み、その周りを液晶シール剤によってシールした構造を有する。 In recent years, liquid crystal display panels have been widely used as image display panels for various electronic devices such as mobile phones and personal computers. A liquid crystal display panel has a structure in which a liquid crystal material (hereinafter simply referred to as “liquid crystal”) is sandwiched between two transparent substrates having electrodes provided on the surface, and the periphery thereof is sealed with a liquid crystal sealant.
 生産性の向上が見込まれる液晶表示パネルの製造方法の一つに、液晶滴下工法がある。液晶滴下工法は、(1)透明な基板上に液晶シール剤を塗布して枠を形成し、(2)前記枠内に微小の液晶を滴下し、(3)2枚の基板を重ね合わせ、(4)液晶シール剤を硬化させてパネルを製造する方法である。この方法では、通常、光および熱で硬化する液晶シール剤を使用する。例えば、上記(3)の工程で、液晶シール剤に紫外線などの光を照射して仮硬化させた後、(4)の工程で、加熱による後硬化を行う。 One liquid crystal display panel manufacturing method that is expected to improve productivity is a liquid crystal dropping method. The liquid crystal dropping method includes (1) applying a liquid crystal sealant on a transparent substrate to form a frame, (2) dropping a small amount of liquid crystal in the frame, and (3) superimposing two substrates, (4) A method for producing a panel by curing a liquid crystal sealant. In this method, a liquid crystal sealant that is cured by light and heat is usually used. For example, after the liquid crystal sealing agent is irradiated with light such as ultraviolet rays and temporarily cured in the step (3), post-curing by heating is performed in the step (4).
 上記液晶シール剤として、紫外線硬化性と熱硬化性とを併せ持つ樹脂成分を含有する液晶シール剤が提案されている(例えば、特許文献1、2参照)。上記樹脂成分を含む液晶シール剤では、紫外線硬化用の光開始剤、及び熱硬化用の硬化剤を、上記樹脂成分と共に添加するのが一般的である。 As the liquid crystal sealant, there has been proposed a liquid crystal sealant containing a resin component having both ultraviolet curing properties and thermosetting properties (for example, see Patent Documents 1 and 2). In the liquid crystal sealant containing the resin component, it is common to add a photoinitiator for ultraviolet curing and a curing agent for heat curing together with the resin component.
 液晶シール剤は、作業性の観点から、1液型とすることが望まれる。しかし、上記樹脂成分と硬化剤とを1液に含む場合、これらが保存時に反応してしまう。そこで、粉体状の硬化剤を、1液型の液晶シール剤に配合することが提案されている。粉体状の硬化剤は、樹脂組成物と固液で反応する。つまり、保存時の樹脂組成物と硬化剤との反応を抑制でき、保存安定性が良好となる。 It is desirable that the liquid crystal sealant be a one-component type from the viewpoint of workability. However, when the said resin component and hardening | curing agent are included in 1 liquid, these will react at the time of a preservation | save. Therefore, it has been proposed to blend a powdery curing agent into a one-pack type liquid crystal sealing agent. The powdery curing agent reacts with the resin composition in a solid liquid. That is, the reaction between the resin composition and the curing agent during storage can be suppressed, and storage stability is improved.
特開2001-133794号公報JP 2001-133794 A 特開2002-214626号公報JP 2002-214626 JP
 液晶シール剤に保存安定性が求められる一方、近年、液晶パネルにおけるシール部材の細線化が望まれている。シール部材を細線化する観点からは、液晶シール剤に多く粉体成分を含まないことが好ましい。粉体成分を多く含むと、塗布時の線幅が粉体の粒径に影響を受ける。また粉体成分を含むと、粘度が上昇しやすく、直線状に液晶シール剤を塗布することが難しい。そのため、細い線幅のシール部材を形成することが困難である。 While liquid crystal sealants are required to have storage stability, in recent years, thinning of seal members in liquid crystal panels has been desired. From the viewpoint of thinning the seal member, it is preferable that the liquid crystal sealant does not contain many powder components. When many powder components are contained, the line width at the time of application is affected by the particle size of the powder. If the powder component is included, the viscosity is likely to increase, and it is difficult to apply the liquid crystal sealant in a straight line. Therefore, it is difficult to form a seal member having a thin line width.
 本発明は、上記事情に鑑みなされたものであり、細い線幅でシール部材を形成可能であり、かつ保存安定性にも優れた液晶シール剤の提供を目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a liquid crystal sealant that can form a seal member with a thin line width and is excellent in storage stability.
 前述の通り、シール部材を細線化するためには、液晶シール剤中の粉体成分量を低減することが重要となる。一方で、液晶シール剤中の硬化剤量を低減すると、樹脂成分の硬化性が低下する。また、粉体状の硬化剤を、融点や軟化点が低い硬化剤に替えることも考えられるが、この場合、保存安定性が低下しやすい。 As described above, it is important to reduce the amount of the powder component in the liquid crystal sealant in order to make the seal member thin. On the other hand, when the amount of the curing agent in the liquid crystal sealant is reduced, the curability of the resin component is lowered. In addition, it is conceivable to replace the powdery curing agent with a curing agent having a low melting point or softening point, but in this case, the storage stability tends to decrease.
 これに対して、本発明者らは、硬化剤成分の組み合わせに着目した。固形の1級多価アミン硬化剤、軟化点が所定の範囲の多価フェノール硬化剤、及び室温で液状の2級多価チオールの中から少なくとも2種を選択し、これらを組み合わせると、保存安定性が良好となることを見出した。また粉体成分量を低減できるため、塗工安定性が良好となることも見出した。本発明は、このような知見に基づきなされたものである。 On the other hand, the present inventors paid attention to the combination of curing agent components. Stable storage stability when selected from solid primary polyamine curing agent, polyhydric phenol curing agent with softening point in the specified range, and secondary polyhydric thiol that is liquid at room temperature. It was found that the property is good. It has also been found that the coating stability is improved because the amount of the powder component can be reduced. The present invention has been made based on such findings.
 本発明の第1は、液晶シール剤に関する。
[1] (1)分子内にエポキシ基と(メタ)アクリル基とを含む(メタ)アクリル変性エポキシ樹脂と、(2)硬化剤と、(3)光開始剤と、を含む液晶シール剤であって、前記成分(2)が、軟化点が50~90℃の多価フェノール硬化剤、融点が23℃以下の2級多価チオール硬化剤、融点が60~180℃の1級多価アミン硬化剤からなる群から選択される2種類以上の硬化剤であり、かつ前記成分(2)を、前記液晶シール剤100質量部に対して4~30質量部含有する、液晶シール剤。
[2] 前記液晶シール剤100質量部に対して、前記成分(1)を5~95質量部、前記成分(3)を0.01~5質量部、含有する[1]に記載の液晶シール剤。
The first of the present invention relates to a liquid crystal sealant.
[1] A liquid crystal sealant comprising (1) a (meth) acryl-modified epoxy resin containing an epoxy group and a (meth) acryl group in the molecule, (2) a curing agent, and (3) a photoinitiator. The component (2) is a polyhydric phenol curing agent having a softening point of 50 to 90 ° C., a secondary polyvalent thiol curing agent having a melting point of 23 ° C. or less, and a primary polyvalent amine having a melting point of 60 to 180 ° C. A liquid crystal sealing agent comprising two or more kinds of curing agents selected from the group consisting of curing agents and containing 4 to 30 parts by mass of the component (2) with respect to 100 parts by mass of the liquid crystal sealing agent.
[2] The liquid crystal seal according to [1], containing 5 to 95 parts by mass of the component (1) and 0.01 to 5 parts by mass of the component (3) with respect to 100 parts by mass of the liquid crystal sealant. Agent.
[3] さらに、前記液晶シール剤100質量部に対して、(メタ)アクリレートモノマーおよび/またはオリゴマーを1~50質量部、含有する[1]または[2]に記載の液晶シール剤。
[4] 分子内に2以上のエポキシ基を有するエポキシ樹脂をさらに含み、前記エポキシ樹脂がビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルエーテル型エポキシ樹脂、およびトリスフェノール型エポキシ樹脂からなる群より選ばれる少なくとも1種類の2官能または3官能のエポキシ樹脂である[1]~[3]のいずれかに記載の液晶シール剤。
[3] The liquid crystal sealant according to [1] or [2], further containing 1 to 50 parts by mass of a (meth) acrylate monomer and / or oligomer with respect to 100 parts by mass of the liquid crystal sealant.
[4] The resin further includes an epoxy resin having two or more epoxy groups in the molecule, and the epoxy resin is selected from the group consisting of a bisphenol type epoxy resin, a biphenyl type epoxy resin, a biphenyl ether type epoxy resin, and a trisphenol type epoxy resin. The liquid crystal sealing agent according to any one of [1] to [3], which is at least one kind of bifunctional or trifunctional epoxy resin.
[5] 環球法により測定される軟化点温度が50~120℃の熱可塑性ポリマーを含み、かつ数平均粒子径が0.05~5μmである熱可塑性ポリマー微粒子をさらに含有する、[1]~[4]のいずれかに記載の液晶シール剤。
[6] 前記液晶シール剤100質量部に対して、充填剤を1~50質量部含有する[1]~[5]のいずれかに記載の液晶シール剤。
[7] 前記液晶シール剤100質量部に対して、エポキシ樹脂の硬化触媒を0.1~5質量部含有する[1]~[6]のいずれかに記載の液晶シール剤。
[8] 液晶滴下工法による液晶表示パネルの製造に用いられる、[1]~[7]のいずれかに記載の液晶シール剤。
[5] A thermoplastic polymer fine particle containing a thermoplastic polymer having a softening point temperature of 50 to 120 ° C. measured by a ring and ball method and having a number average particle diameter of 0.05 to 5 μm is further included. The liquid crystal sealant according to any one of [4].
[6] The liquid crystal sealant according to any one of [1] to [5], which contains 1 to 50 parts by mass of a filler with respect to 100 parts by mass of the liquid crystal sealant.
[7] The liquid crystal sealant according to any one of [1] to [6], which contains 0.1 to 5 parts by mass of an epoxy resin curing catalyst with respect to 100 parts by mass of the liquid crystal sealant.
[8] The liquid crystal sealant according to any one of [1] to [7], which is used for manufacturing a liquid crystal display panel by a liquid crystal dropping method.
 本発明の第2は、液晶表示パネルの製造方法に関する。
[9] 表示基板及び、それと対になる対向基板を準備し、一方の基板に[1]~[8]のいずれかに記載の液晶シール剤を用いてシールパターンを形成する工程、前記シールパターンが未硬化の状態において前記基板のシールパターン領域内、または前記基板と対になる他方の基板に液晶を滴下する工程、前記一方の基板と、前記他方の基板とを重ね合わせる工程、および前記シールパターンを光硬化させた後、熱硬化させる工程、を含む液晶表示パネルの製造方法。
[10] 前記シールパターンを形成する工程が、前記液晶シール剤を用いて、ダミーパターンを形成せずに前記シールパターンのみを形成する工程である[9]に記載の液晶表示パネルの製造方法。
The second aspect of the present invention relates to a method for manufacturing a liquid crystal display panel.
[9] A step of preparing a display substrate and a counter substrate to be paired therewith, and forming a seal pattern on one substrate using the liquid crystal sealant according to any one of [1] to [8], the seal pattern In a seal pattern region of the substrate in the uncured state or a step of dropping liquid crystal on the other substrate paired with the substrate, a step of superimposing the one substrate on the other substrate, and the seal A method for producing a liquid crystal display panel, comprising a step of photocuring a pattern and then thermally curing the pattern.
[10] The method for manufacturing a liquid crystal display panel according to [9], wherein the step of forming the seal pattern is a step of forming only the seal pattern without forming a dummy pattern using the liquid crystal sealant.
 本発明の第3は、液晶表示パネルに関する。
[11] 表示基板と、前記表示基板と対になる対向基板と、前記表示基板と、前記対向基板との間に介在する、枠状のシール部材と、前記表示基板と前記対向基板との間の、前記シール部材で囲まれた空間に充填された液晶層と、を含む液晶表示パネルであって、前記シール部材は、[1]~[8]のいずれかに記載の液晶シール剤の硬化物である、液晶表示パネル。
The third aspect of the present invention relates to a liquid crystal display panel.
[11] A display substrate, a counter substrate paired with the display substrate, a frame-shaped sealing member interposed between the display substrate and the counter substrate, and between the display substrate and the counter substrate A liquid crystal layer filled in a space surrounded by the seal member, wherein the seal member is a cured liquid crystal sealant according to any one of [1] to [8] A liquid crystal display panel.
 本発明によれば、保存安定性及び接着強度に優れ、かつ細い線幅のシールパターンが形成可能な1液型の液晶シール剤を提供できる。 According to the present invention, it is possible to provide a one-component liquid crystal sealant that is excellent in storage stability and adhesive strength and that can form a seal pattern with a narrow line width.
 1.液晶シール剤
 本発明の液晶シール剤には、(1)分子内にエポキシ基と(メタ)アクリル基とを含む(メタ)アクリル変性エポキシ樹脂と、(2)硬化剤と、(3)光開始剤とが含まれる。液晶シール剤には、必要に応じてさらに(1-2)分子内に2以上のエポキシ基を有するエポキシ樹脂、(4)(メタ)アクリレートモノマーおよび/またはオリゴマー、(5)熱可塑性ポリマー微粒子、(6)充填剤、(7)エポキシ樹脂の硬化触媒などが含まれてもよい。
1. Liquid crystal sealant The liquid crystal sealant of the present invention includes (1) a (meth) acryl-modified epoxy resin containing an epoxy group and a (meth) acryl group in the molecule, (2) a curing agent, and (3) photo initiation. Agent. If necessary, the liquid crystal sealant may further include (1-2) an epoxy resin having two or more epoxy groups in the molecule, (4) (meth) acrylate monomer and / or oligomer, (5) thermoplastic polymer fine particles, (6) A filler, (7) an epoxy resin curing catalyst, and the like may be included.
 (1)(メタ)アクリル変性エポキシ樹脂
 (メタ)アクリル変性エポキシ樹脂は、エポキシ樹脂のエポキシ基が(メタ)アクリル基で変性されている樹脂であればよい。好ましくはエポキシ樹脂と(メタ)アクリル酸とを、例えば塩基性触媒の存在下で反応させて得られる(メタ)アクリル変性エポキシ樹脂である。
(1) (Meth) acryl-modified epoxy resin The (meth) acryl-modified epoxy resin may be a resin in which the epoxy group of the epoxy resin is modified with a (meth) acryl group. Preferably, it is a (meth) acryl-modified epoxy resin obtained by reacting an epoxy resin and (meth) acrylic acid, for example, in the presence of a basic catalyst.
 原料となるエポキシ樹脂は、分子内にエポキシ基を2つ以上有する2官能以上のエポキシ樹脂であればよく、例えばビスフェノールA型、ビスフェノールF型、2,2’-ジアリルビスフェノールA型、ビスフェノールAD型、および水添ビスフェノール型等のビスフェノール型エポキシ樹脂;フェノールノボラック型、クレゾールノボラック型、ビフェニルノボラック型、およびトリスフェノールノボラック型等のノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂;ナフタレン型エポキシ樹脂等が挙げられる。
 原料となるエポキシ樹脂の官能基数は特に制限はないが、3官能や4官能の多官能エポキシ樹脂を(メタ)アクリル変性して得られる(メタ)アクリル変性エポキシ樹脂の硬化物は、架橋密度が高く、密着強度が低下し易い。したがって、原料となるエポキシ樹脂は、2官能エポキシ樹脂が好ましい。
The epoxy resin used as a raw material may be a bifunctional or higher functional epoxy resin having two or more epoxy groups in the molecule, for example, bisphenol A type, bisphenol F type, 2,2′-diallyl bisphenol A type, bisphenol AD type. Bisphenol type epoxy resins such as hydrogenated bisphenol type; novolak type epoxy resins such as phenol novolak type, cresol novolak type, biphenyl novolak type, and trisphenol novolak type; biphenyl type epoxy resin; naphthalene type epoxy resin .
The number of functional groups of the epoxy resin used as a raw material is not particularly limited, but the cured product of a (meth) acryl-modified epoxy resin obtained by (meth) acryl modification of a trifunctional or tetrafunctional polyfunctional epoxy resin has a crosslinking density. It is high and the adhesion strength tends to decrease. Therefore, the epoxy resin used as a raw material is preferably a bifunctional epoxy resin.
 2官能エポキシ樹脂のなかでも特に、ビスフェノールA型およびビスフェノールF型等のビスフェノール型エポキシ樹脂が好ましい。ビスフェノール型エポキシ樹脂は、ビフェニルエーテル型等のエポキシ樹脂と比べて結晶性が低く、塗工安定性に優れる。 Among the bifunctional epoxy resins, bisphenol type epoxy resins such as bisphenol A type and bisphenol F type are particularly preferable. The bisphenol type epoxy resin has lower crystallinity than the biphenyl ether type epoxy resin and is excellent in coating stability.
 原料となるエポキシ樹脂を、ビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂等の2官能のエポキシ樹脂とする場合、エポキシ基に対する(メタ)アクリル基の比率が1以上、好ましくは2以上となるように、(メタ)アクリル酸で変性することが好ましい。(メタ)アクリル変性率が低く、エポキシ基の含有率が高い(メタ)アクリル変性エポキシ樹脂は、液晶に溶解しやすい傾向がある。一方で、(メタ)アクリル変性率が過剰に高く、エポキシ基の含有率が低すぎる(メタ)アクリル変性エポキシ樹脂は、耐湿性が低い場合がある。 When the epoxy resin used as a raw material is a bifunctional epoxy resin such as a bisphenol A type epoxy resin or a bisphenol F type epoxy resin, the ratio of the (meth) acrylic group to the epoxy group is 1 or more, preferably 2 or more. Furthermore, it is preferable to modify with (meth) acrylic acid. A (meth) acryl-modified epoxy resin having a low (meth) acryl modification rate and a high epoxy group content tends to be easily dissolved in a liquid crystal. On the other hand, a (meth) acryl-modified epoxy resin having an excessively high (meth) acryl modification rate and an epoxy group content that is too low may have low moisture resistance.
 (メタ)アクリル変性エポキシ樹脂の重量平均分子量は、約300~約500であり得る。(メタ)アクリル変性エポキシ樹脂の重量平均分子量は、GPCにより測定する。 The weight average molecular weight of the (meth) acrylic-modified epoxy resin can be about 300 to about 500. The weight average molecular weight of the (meth) acryl-modified epoxy resin is measured by GPC.
 (メタ)アクリル変性エポキシ樹脂は、分子内にエポキシ基と(メタ)アクリル基とを有するため、それを含む液晶シール剤は、光硬化性と熱硬化性とを併せ持つ。 Since the (meth) acryl-modified epoxy resin has an epoxy group and a (meth) acryl group in the molecule, the liquid crystal sealant containing it has both photocuring properties and thermosetting properties.
 (メタ)アクリル変性エポキシ樹脂の配合量は、液晶シール剤100質量部に対して、5~95質量部とすることが好ましく、10~60質量部とすることがより好ましい。下限値未満では、シール部材中の樹脂成分が少なく、液晶のシール性が不十分となる可能性がある。また上限値より多い場合には、相対的に他の成分量が少なくなり、硬化性が不十分となる可能性がある。 The blending amount of the (meth) acryl-modified epoxy resin is preferably 5 to 95 parts by mass and more preferably 10 to 60 parts by mass with respect to 100 parts by mass of the liquid crystal sealant. If it is less than the lower limit, the resin component in the sealing member is small, and the liquid crystal sealability may be insufficient. On the other hand, when the amount is larger than the upper limit, the amount of other components is relatively small, and the curability may be insufficient.
 (1-2)分子内に2以上のエポキシ基を有するエポキシ樹脂
 本発明の液晶シール剤には、必要に応じて分子内に2以上のエポキシ基を有するエポキシ樹脂が含まれてもよい。分子内に2以上のエポキシ基を有するエポキシ樹脂の例には、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルエーテル型エポキシ樹脂、およびトリスフェノール型エポキシ樹脂からなる群より選ばれる少なくとも1種類の2官能または3官能のエポキシ樹脂が含まれる。上記エポキシ樹脂は、1種類のみ含まれてもよく、2種類以上が含まれてもよい。
(1-2) Epoxy Resin Having Two or More Epoxy Groups in the Molecule The liquid crystal sealing agent of the present invention may contain an epoxy resin having two or more epoxy groups in the molecule, if necessary. Examples of the epoxy resin having two or more epoxy groups in the molecule include at least one kind of 2 selected from the group consisting of a bisphenol type epoxy resin, a biphenyl type epoxy resin, a biphenyl ether type epoxy resin, and a trisphenol type epoxy resin. Functional or trifunctional epoxy resins are included. Only one type of the epoxy resin may be included, or two or more types may be included.
 上記エポキシ樹脂は、軟化点が40℃以上150℃以下であることが好ましい。このような固形エポキシ樹脂は、液晶に対する溶解性、拡散性が低く、得られる液晶パネルの表示特性が良好となる。さらに、液晶シール剤を硬化して得られるシール部材の耐湿性が高まる。 The above epoxy resin preferably has a softening point of 40 ° C or higher and 150 ° C or lower. Such a solid epoxy resin has low solubility and diffusibility in the liquid crystal, and the display characteristics of the obtained liquid crystal panel are good. Furthermore, the moisture resistance of the sealing member obtained by curing the liquid crystal sealing agent is increased.
 上記エポキシ樹脂は、重量平均分子量が1000~10000、好ましくは500~5000であることが好ましい。中でも上記重量平均分子量を有する芳香族エポキシ樹脂が好ましい。エポキシ樹脂の重量平均分子量は、前述と同様に測定する。 The weight average molecular weight of the epoxy resin is 1000 to 10,000, preferably 500 to 5,000. Among these, an aromatic epoxy resin having the above weight average molecular weight is preferable. The weight average molecular weight of the epoxy resin is measured in the same manner as described above.
 芳香族エポキシ樹脂の例には、ビスフェノールA、ビスフェノールS、ビスフェノールF、ビスフェノールAD等で代表される芳香族ジオール類;およびそれらをエチレングリコール、プロピレングリコール、アルキレングリコール変性したジオール類と、エピクロルヒドリンとの反応で得られた芳香族多価グリシジルエーテル化合物;フェノールまたはクレゾールとホルムアルデヒドとから誘導されたノボラック樹脂;ポリアルケニルフェノールやそのコポリマー等で代表されるポリフェノール類と、エピクロルヒドリンとの反応で得られたノボラック型多価グリシジルエーテル化合物;キシリレンフェノール樹脂のグリシジルエーテル化合物類等が含まれる。 Examples of the aromatic epoxy resin include aromatic diols represented by bisphenol A, bisphenol S, bisphenol F, bisphenol AD, and the like; and diols obtained by modifying them with ethylene glycol, propylene glycol, alkylene glycol, and epichlorohydrin. Aromatic polyvalent glycidyl ether compound obtained by reaction; novolak resin derived from phenol or cresol and formaldehyde; novolak obtained by reaction of polyphenol represented by polyalkenylphenol or its copolymer with epichlorohydrin Type polyvalent glycidyl ether compounds; glycidyl ether compounds of xylylene phenol resin, and the like.
 上記芳香族エポキシ樹脂は、中でもクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、トリフェノールエタン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂が好ましい。これらは、1種類のみ含まれてもよく、2種類以上が含まれてもよい。 The above aromatic epoxy resins include, among others, cresol novolac type epoxy resins, phenol novolac type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, triphenolmethane type epoxy resins, triphenolethane type epoxy resins, trisphenol type epoxy resins. Resin, dicyclopentadiene type epoxy resin, diphenyl ether type epoxy resin, and biphenyl type epoxy resin are preferable. One of these may be included, or two or more may be included.
 分子内に2以上のエポキシ基を有するエポキシ樹脂の配合量は、液晶シール剤100質量部に対して、1~30質量部とすることが好ましく、3~20質量部とすることがより好ましい。 The compounding amount of the epoxy resin having two or more epoxy groups in the molecule is preferably 1 to 30 parts by mass, and more preferably 3 to 20 parts by mass with respect to 100 parts by mass of the liquid crystal sealant.
 (2)硬化剤
 硬化剤は、軟化点が50~90℃の多価フェノール硬化剤、融点が23℃以下の2級多価チオール硬化剤、及び融点が60~180℃の1級多価アミン硬化剤からなる群から2種以上選択される。
(2) Curing agent The curing agent is a polyhydric phenol curing agent having a softening point of 50 to 90 ° C., a secondary polyvalent thiol curing agent having a melting point of 23 ° C. or less, and a primary polyvalent amine having a melting point of 60 to 180 ° C. Two or more are selected from the group consisting of curing agents.
 硬化剤の具体的な組み合わせには、上記多価フェノール硬化剤及び上記2級多価チオール硬化剤;上記多価フェノール硬化剤及び上記1級多価アミン硬化剤;上記2級多価チオール硬化剤及び上記1級多価アミン硬化剤;上記多価フェノール硬化剤、上記2級多価チオール硬化剤、及び上記1級多価アミン硬化剤;の4通りが含まれる。液晶シール剤には、これら以外の硬化剤が、本発明の効果及び目的を損なわない範囲で、含まれてもよい。 Specific combinations of curing agents include the polyhydric phenol curing agent and the secondary polyvalent thiol curing agent; the polyhydric phenol curing agent and the primary polyvalent amine curing agent; and the secondary polyvalent thiol curing agent. And the primary polyvalent amine curing agent; the polyhydric phenol curing agent, the secondary polyvalent thiol curing agent, and the primary polyvalent amine curing agent. The liquid crystal sealant may contain a curing agent other than these as long as the effects and objects of the present invention are not impaired.
 上記2級多価チオール硬化剤は室温で液状であり、上記多価フェノール硬化剤は、液晶シール剤中に含有される他の成分に溶解可能である。したがって、上記多価フェノール硬化剤と上記2級多価チオール硬化剤とを組み合わせると、液晶シール剤に粉体の硬化剤が含まれず、粉体成分の量を大幅に低減できる。また、これらの硬化剤は、エポキシ樹脂に均質に溶解しやすいため、液晶シール剤を硬化して得られるシール部材に高い接着強度が発現する。 The secondary polythiol curing agent is liquid at room temperature, and the polyhydric phenol curing agent can be dissolved in other components contained in the liquid crystal sealant. Therefore, when the polyhydric phenol curing agent and the secondary polyvalent thiol curing agent are combined, the liquid crystal sealant does not contain a powder curing agent, and the amount of the powder component can be greatly reduced. Moreover, since these hardening | curing agents are easy to melt | dissolve uniformly in an epoxy resin, high adhesive strength expresses in the sealing member obtained by hardening | curing a liquid-crystal sealing compound.
 上述したように、上記多価フェノール硬化剤は、液晶シール剤中に含有される他の成分に溶解可能である。そこで、上記多価フェノール硬化剤と上記1級多価アミン硬化剤とを組み合わせると、1級多価アミン硬化剤のみを添加する場合と比べて、液晶シール剤中の粉体成分量を低減できる。 As described above, the polyhydric phenol curing agent can be dissolved in other components contained in the liquid crystal sealant. Therefore, when the polyhydric phenol curing agent and the primary polyvalent amine curing agent are combined, the amount of the powder component in the liquid crystal sealant can be reduced as compared with the case where only the primary polyvalent amine curing agent is added. .
 また、上記2級多価チオール硬化剤も室温で液状であるため、上記2級多価チオール硬化剤と上記1級多価アミン硬化剤とを組み合わせると、上記1級多価アミン硬化剤のみを添加する場合と比べて、粉体成分量を低減できる。 Further, since the secondary polyvalent thiol curing agent is also liquid at room temperature, when the secondary polyvalent thiol curing agent and the primary polyvalent amine curing agent are combined, only the primary polyvalent amine curing agent is obtained. Compared with the case where it adds, the amount of powder components can be reduced.
 上記1級多価アミン硬化剤と、上記2級多価チオール硬化剤と、上記1級多価アミン硬化剤とを組み合わせる場合には、上述した理由から、液晶シール剤中の粉体成分量を低減できる。 When the primary polyvalent amine curing agent, the secondary polyvalent thiol curing agent, and the primary polyvalent amine curing agent are combined, the amount of the powder component in the liquid crystal sealant is increased for the reasons described above. Can be reduced.
 液晶シール剤中の硬化剤全体の配合量は、液晶シール剤100質量部に対して、4~30質量部であり、5~20質量部であることがより好ましい。硬化剤の総量が上限を超えると、粘度安定性が低下する可能性がある。一方で、硬化剤の総量が下限を下回ると、樹脂の硬化が不十分となり、未硬化成分が液晶に溶出する等して、表示品質や、接着強度が低下する場合がある。 The total amount of the curing agent in the liquid crystal sealant is 4 to 30 parts by mass, and more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the liquid crystal sealant. When the total amount of the curing agent exceeds the upper limit, the viscosity stability may be lowered. On the other hand, when the total amount of the curing agent is lower than the lower limit, the resin is not sufficiently cured, and the uncured component may be eluted into the liquid crystal, and the display quality and the adhesive strength may be lowered.
 以下、各硬化剤について説明する。 Hereinafter, each curing agent will be described.
(多価フェノール硬化剤)
 本発明に使用する多価フェノール硬化剤は、1分子中に2以上の芳香族性水酸基を有する化合物であり、その軟化点は50~90℃、好ましくは60℃~80℃である。軟化点がこの範囲であると、液晶シール剤の熱硬化時に軟化し、(1)(メタ)アクリル変性エポキシ樹脂や(1-2)分子内に2以上のエポキシ基を有するエポキシ樹脂の硬化に寄与可能となる。一方、軟化点が下限未満であると、液晶シール剤の粘度安定性に影響を与える可能性がある。また、上限を超える場合には、上記樹脂を十分に硬化できない可能性がある。
(Polyhydric phenol curing agent)
The polyhydric phenol curing agent used in the present invention is a compound having two or more aromatic hydroxyl groups in one molecule, and its softening point is 50 to 90 ° C., preferably 60 to 80 ° C. When the softening point is within this range, the liquid crystal sealant softens during thermal curing, and (1) (meth) acryl-modified epoxy resin or (1-2) cures an epoxy resin having two or more epoxy groups in the molecule. Can contribute. On the other hand, if the softening point is less than the lower limit, the viscosity stability of the liquid crystal sealant may be affected. Moreover, when exceeding an upper limit, the said resin may not fully be hardened | cured.
 多価フェノール硬化剤の例には、フェノールノボラック樹脂やフェノールアラルキル樹脂などが含まれる。フェノールノボラック樹脂とは、フェノールまたはクレゾールとホルマリンとを縮合した縮合物であり得る。フェノールアラルキル樹脂とは、フェノールまたはクレゾールとp-キシレンジオールとを酸触媒あるいは塩基性触媒の存在下で縮合した縮合物であり得る。硬化剤は、上記縮合物を精製したものであってもよく、市販のフェノールノボラック樹脂やフェノールアラルキル樹脂などであってもよい。これらは1種単独で含まれてもよく、2種以上が含まれてもよい。 Examples of the polyhydric phenol curing agent include phenol novolac resin and phenol aralkyl resin. The phenol novolac resin may be a condensate obtained by condensing phenol or cresol and formalin. The phenol aralkyl resin may be a condensate obtained by condensing phenol or cresol and p-xylene diol in the presence of an acid catalyst or a basic catalyst. The curing agent may be a product obtained by purifying the above condensate, or may be a commercially available phenol novolac resin or phenol aralkyl resin. These may be included singly or in combination of two or more.
 多価フェノール硬化剤が過剰に含まれる場合、液晶シール剤の硬化物の接着強度が十分でなくなる可能性がある。また、硬化剤中の多価フェノール硬化剤の割合が多すぎると液晶シール剤の光硬化性を阻害する可能性がある。したがって、多価フェノール硬化剤の配合量は、液晶シール剤の硬化物の接着強度、及び液晶シール剤の光硬化性に基づいて設定することが好ましい。 If the polyhydric phenol curing agent is excessively contained, the adhesive strength of the cured product of the liquid crystal sealant may not be sufficient. Moreover, when there are too many ratios of the polyhydric phenol hardening | curing agent in a hardening | curing agent, there exists a possibility of inhibiting the photocurability of a liquid-crystal sealing compound. Therefore, the blending amount of the polyhydric phenol curing agent is preferably set based on the adhesive strength of the cured product of the liquid crystal sealant and the photocurability of the liquid crystal sealant.
(2級多価チオール硬化剤)
 多価チオール硬化剤は、1分子内に2級のチオール基を2個以上有する化合物であり、その融点は23℃以下である。
(Secondary polyvalent thiol curing agent)
The polyvalent thiol curing agent is a compound having two or more secondary thiol groups in one molecule, and its melting point is 23 ° C. or less.
 上記2級多価チオール化合物の例には、2級メルカプト基を有するメルカプトカルボン酸と、多価アルコールとをエステル化反応させて得られたエステル系チオール化合物であるメルカプトエステル類;、脂肪族ポリチオール類;、芳香族ポリチオール類;、チオール変性反応性シリコンオイル類等が含まれる。これらのうち、1種のみが含まれてもよく、2種以上が含まれてもよい。 Examples of the secondary polyvalent thiol compounds include mercaptoesters which are ester-based thiol compounds obtained by esterifying a mercaptocarboxylic acid having a secondary mercapto group and a polyhydric alcohol; , Aromatic polythiols; thiol-modified reactive silicone oils and the like. Among these, only 1 type may be contained and 2 or more types may be contained.
 2級多価チオール硬化剤は、2級メルカプト基を有するメルカプトカルボン酸と多価アルコールとのエステル化反応によって得られるメルカプトエステル類が好適である。2級メルカプト基を有するメルカプトカルボン酸の例には、2-メルカプトプロピオン酸,3-メルカブタン酸,2-メルカプトブタン酸などが含まれる。多価アルコールの例には、エタンジオール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、グリセリン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、ソルビトールなどが含まれる。メルカプトエステル類の具体例には、ペンタエリスリトールテトラキス(3-メルカプトブチレート)等が含まれる。 The secondary polyvalent thiol curing agent is preferably a mercaptoester obtained by an esterification reaction of a mercaptocarboxylic acid having a secondary mercapto group and a polyhydric alcohol. Examples of mercaptocarboxylic acids having a secondary mercapto group include 2-mercaptopropionic acid, 3-mercapbutanoic acid, 2-mercaptobutanoic acid and the like. Examples of polyhydric alcohols include ethanediol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, sorbitol, etc. . Specific examples of mercaptoesters include pentaerythritol tetrakis (3-mercaptobutyrate) and the like.
 2級多価チオール硬化剤が過剰に含まれると、液晶シール剤の保存安定性が十分でなくなる可能性がある。したがって、2級多価チオール硬化剤の配合量は、液晶シール剤の粘度安定性に基づいて設定することが好ましい。 If the secondary polyvalent thiol curing agent is excessively contained, the storage stability of the liquid crystal sealant may not be sufficient. Accordingly, the blending amount of the secondary polyvalent thiol curing agent is preferably set based on the viscosity stability of the liquid crystal sealing agent.
(1級多価アミン硬化剤)
 1級多価アミン硬化剤は、分子内に1級アミノ基(-NH)を2個以上有する化合物であり、融点は60~180℃、好ましくは70~140℃である。1級アミノ基には、ヒドラジニル基も含まれる。1級多価アミン硬化剤は、液晶シール剤の保存時に固体であり、通常粉体状である。
(Primary polyamine curing agent)
The primary polyamine curing agent is a compound having two or more primary amino groups (—NH 2 ) in the molecule, and has a melting point of 60 to 180 ° C., preferably 70 to 140 ° C. The primary amino group also includes a hydrazinyl group. The primary polyvalent amine curing agent is solid when the liquid crystal sealant is stored, and is usually powdery.
 1級多価アミン硬化剤の例には、有機酸ジヒドラジド化合物、アミン/尿素アダクト、ジシアンジアミド類、イミダゾール誘導体、芳香族アミン、エポキシ変性ポリアミンならびにポリアミノウレアが含まれる。これらのうち、1種のみが含まれてもよく、2種以上が含まれてもよい。 Examples of primary polyvalent amine curing agents include organic acid dihydrazide compounds, amine / urea adducts, dicyandiamides, imidazole derivatives, aromatic amines, epoxy-modified polyamines and polyaminoureas. Among these, only 1 type may be contained and 2 or more types may be contained.
 有機酸ジヒドラジド化合物の例には、アジピン酸ジヒドラジド(融点180℃)、1,3-ビス(ヒドラジノカルボエチル)-5-イソプロピルヒダントイン(融点120℃)、7,11-オクタデカジエン-1,18-ジカルボヒドラジド(融点160℃)などが含まれる。アミン/尿素アダクトの例には、フジキュアFXRシリーズとして市販されている硬化剤などが含まれる。 Examples of organic acid dihydrazide compounds include adipic acid dihydrazide (melting point 180 ° C.), 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin (melting point 120 ° C.), 7,11-octadecadien-1, 18-dicarbohydrazide (melting point 160 ° C.) and the like are included. Examples of amine / urea adducts include curing agents commercially available as the Fujicure FXR series.
 上記1級多価アミン硬化剤が過剰に含まれると、液晶シール剤の粘度が上昇し、塗工安定性が低下する場合がある。1級多価アミン硬化剤の配合量は、液晶シール剤の硬化速度に基づいて設定することが好ましい。 When the primary polyvalent amine curing agent is excessively contained, the viscosity of the liquid crystal sealant may increase and the coating stability may decrease. The blending amount of the primary polyvalent amine curing agent is preferably set based on the curing rate of the liquid crystal sealant.
 1級多価アミン硬化剤が粉体状である場合、その数平均粒子径が0.1~5μmであることが好ましく、より好ましくは0.5~3μmである。上限値以下とすることにより、液晶シール剤の塗工安定性が良好となり、細い線幅でシール部材を形成可能となる。また下限値以上とすれば、液晶シール剤の保存時に、1級多価アミン硬化剤とエポキシ樹脂とが反応することを抑制できる。数平均粒子径は、乾式粒度分布計で特定可能である。 When the primary polyvalent amine curing agent is in a powder form, the number average particle diameter is preferably 0.1 to 5 μm, more preferably 0.5 to 3 μm. By setting it to the upper limit value or less, the coating stability of the liquid crystal sealant is improved, and a seal member can be formed with a narrow line width. Moreover, if it shall be more than a lower limit, it can suppress that a primary polyvalent amine hardening | curing agent and an epoxy resin react at the time of the preservation | save of a liquid-crystal sealing compound. The number average particle diameter can be specified with a dry particle size distribution meter.
 (3)光開始剤
 光開始剤は、(1)(メタ)アクリル変性エポキシ樹脂や、後述の(4)(メタ)アクリレートモノマーおよび/またはオリゴマーなどを光硬化反応させるための開始剤である。液晶シール剤が光開始剤を含むと、液晶パネルを製造する際に光硬化によるシール剤の仮硬化が可能となり、作業が容易になる。
(3) Photoinitiator The photoinitiator is an initiator for photocuring reaction of (1) (meth) acryl-modified epoxy resin, (4) (meth) acrylate monomer and / or oligomer described later. When the liquid crystal sealant contains a photoinitiator, the sealant can be temporarily cured by photocuring when manufacturing a liquid crystal panel, and the work becomes easy.
 光開始剤は公知のものであり得る。光開始剤の例には、アルキルフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾイン系化合物、アセトフェノン系化合物、ベンゾフェノン系化合物、チオキサトン系化合物、α-アシロキシムエステル系化合物、フェニルグリオキシレート系化合物、ベンジル系化合物、アゾ系化合物、ジフェニルスルフィド系化合物、有機色素系化合物、鉄-フタロシアニン系化合物、ベンゾインエーテル系化合物、アントラキノン系化合物等が含まれる。 The photoinitiator can be a known one. Examples of photoinitiators include alkylphenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin compounds, acetophenone compounds, benzophenone compounds, thioxanthone compounds, α-acyloxime esters Compounds, phenylglyoxylate compounds, benzyl compounds, azo compounds, diphenyl sulfide compounds, organic dye compounds, iron-phthalocyanine compounds, benzoin ether compounds, anthraquinone compounds, and the like.
 アルキルフェノン系化合物の例には、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(IRGACURE 651)等のベンジルジメチルケタール;2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン(IIRGACURE 907)等のα-アミノアルキルフェノン;1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(IRGACURE 184)等のα-ヒドロキシアルキルフェノンなどが含まれる。アシルフォスフィンオキサイド系化合物の例には、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド等が含まれる。チタノセン系化合物には、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム等が含まれる。オキシムエステル化合物の例には、1.2-オクタンジオン-1-[4-(フェニルチオ)-2-(0-ベンゾイルオキシム)](IRGACURE OXE 01)などが含まれる。 Examples of alkylphenone compounds include benzyl dimethyl ketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one (IRGACURE 651); 2-methyl-2-morpholino (4-thiomethylphenyl) propane Α-aminoalkylphenones such as 1-one (IIRGACURE 907); α-hydroxyalkylphenones such as 1-hydroxy-cyclohexyl-phenyl-ketone (IRGACURE 184) and the like. Examples of the acylphosphine oxide-based compound include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide. The titanocene-based compound includes bis (η5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium and the like. Examples of oxime ester compounds include 1.2-octanedione-1- [4- (phenylthio) -2- (0-benzoyloxime)] (IRGACURE OXE 01).
 光開始剤の配合量は、液晶シール剤100質量部に対して、0.01~5質量部であることが好ましく、より好ましくは0.1~3質量部である。下限値以上とすることにより、(1)(メタ)アクリル変性エポキシ樹脂や、後述の(4)(メタ)アクリレートモノマーおよび/またはオリゴマーなどの硬化性が良好となる。また上限値以下とすることにより、液晶シール剤の塗布時の安定性が良好となる。 The compounding amount of the photoinitiator is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the liquid crystal sealant. By setting it to the lower limit value or more, curability of (1) (meth) acryl-modified epoxy resin and (4) (meth) acrylate monomer and / or oligomer described later is improved. Moreover, stability at the time of application | coating of a liquid-crystal sealing compound becomes favorable by setting it as below an upper limit.
 (4)(メタ)アクリレートモノマーおよび/またはオリゴマー
 本発明の液晶シール剤には、必要に応じて(メタ)アクリレートモノマーおよび/またはオリゴマーが含まれてもよい。
 液晶シール剤に(メタ)アクリレートモノマーおよび/またはオリゴマーが含まれると、液晶シール剤の光硬化が良好となり、液晶パネル製造時の作業性が向上する。
(4) (Meth) acrylate monomer and / or oligomer The liquid crystal sealant of the present invention may contain a (meth) acrylate monomer and / or oligomer, if necessary.
When the (meth) acrylate monomer and / or oligomer is contained in the liquid crystal sealing agent, the liquid curing of the liquid crystal sealing agent becomes good, and the workability at the time of manufacturing the liquid crystal panel is improved.
 (メタ)アクリレートモノマーおよび/またはオリゴマーの種類は、本発明の目的及び効果を損なわない限り特に制限はない。(メタ)アクリレートモノマーおよび/またはオリゴマーの例には、下記の(メタ)アクリレートモノマーもしくはオリゴマーが含まれる。 The type of (meth) acrylate monomer and / or oligomer is not particularly limited as long as the object and effect of the present invention are not impaired. Examples of the (meth) acrylate monomer and / or oligomer include the following (meth) acrylate monomer or oligomer.
 ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール等のジアクリレートおよび/またはジメタクリレート;トリス(2-ヒドロキシエチル)イソシアヌレートのジアクリレートおよび/またはジメタクリレート;ネオペンチルグリコール1モルに4モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得たジオールのジアクリレートおよび/またはジメタクリレート;ビスフェノールA1モルに2モルのエチレンオキサイド若しくはプロピレンオキサイドを付加して得たジオールのジアクリレートおよび/またはジメタクリレート;トリメチロールプロパン1モルに3モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得たトリオールのジまたはトリアクリレートおよび/またはジまたはトリメタクリレート;ビスフェノールA1モルに4モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得たジオールのジアクリレートおよび/またはジメタクリレート;トリス(2-ヒドロキシエチル)イソシアヌレートトリアクリレートおよび/またはトリメタクリレート;トリメチロールプロパントリアクリレートおよび/またはトリメタクリレート、またはそのオリゴマー;ペンタエリスリトールトリアクリレートおよび/またはトリメタクリレート、またはそのオリゴマー;ジペンタエリスリトールのポリアクリレートおよび/またはポリメタクリレート;トリス(アクリロキシエチル)イソシアヌレート;カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート;カプロラクトン変性トリス(メタクリロキシエチル)イソシアヌレート;アルキル変性ジペンタエリスリトールのポリアクリレートおよび/またはポリメタクリレート;カプロラクトン変性ジペンタエリスリトールのポリアクリレートおよび/またはポリメタクリレート;ヒドロキシピバリン酸ネオペンチルグリコールジアクリレートおよび/またはジメタクリレート;カプロラクトン変性ヒドロキシピバリン酸ネオペンチルグリコールジアクリレートおよび/またはジメタクリレート;エチレンオキサイド変性リン酸アクリレートおよび/またはジメタクリレート;エチレンオキサイド変性アルキル化リン酸アクリレートおよび/またはジメタクリレート;ネオペンチルグルコール、トリメチロールプロパン、ペンタエリスリトールのオリゴアクリレートおよび/またはオリゴメタクリレート等が挙げられる。 Diacrylates and / or dimethacrylates such as polyethylene glycol, propylene glycol and polypropylene glycol; diacrylates and / or dimethacrylates of tris (2-hydroxyethyl) isocyanurate; 4 moles or more of ethylene oxide or propylene per mole of neopentyl glycol Diacrylate and / or dimethacrylate of diol obtained by addition of oxide; diacrylate and / or dimethacrylate of diol obtained by addition of 2 mole of ethylene oxide or propylene oxide to 1 mole of bisphenol A; 1 mole of trimethylolpropane Diol or triacrylate of triol obtained by adding 3 mol or more of ethylene oxide or propylene oxide to Or di- or trimethacrylate; diacrylate and / or dimethacrylate of diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of bisphenol A; tris (2-hydroxyethyl) isocyanurate triacrylate and / or Trimethylolpropane triacrylate and / or trimethacrylate, or oligomer thereof; pentaerythritol triacrylate and / or trimethacrylate, or oligomer thereof; polyacrylate and / or polymethacrylate of dipentaerythritol; tris (acryloxyethyl) isocyanate Nuproate; caprolactone-modified tris (acryloxyethyl) isocyanurate; caprolact Modified tris (methacryloxyethyl) isocyanurate; polyacrylate and / or polymethacrylate of alkyl-modified dipentaerythritol; polyacrylate and / or polymethacrylate of caprolactone-modified dipentaerythritol; neopentyl glycol diacrylate and / or dihydroxy hydroxypivalate Caprolactone modified hydroxypivalate neopentyl glycol diacrylate and / or dimethacrylate; ethylene oxide modified phosphate acrylate and / or dimethacrylate; ethylene oxide modified alkylated phosphate acrylate and / or dimethacrylate; neopentyl glycol, trimethacrylate Methylolpropane, pentaerythritol oligoacrylate And / or oligomethacrylate and the like.
 (メタ)アクリレートモノマーおよび/またはオリゴマーの配合量は、液晶シール剤100質量部に対して1~50質量部とすることが好ましく、より好ましくは5~20質量部である。 The blending amount of the (meth) acrylate monomer and / or oligomer is preferably 1 to 50 parts by mass, more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the liquid crystal sealant.
 (5)熱可塑性ポリマー微粒子
 本発明の液晶シール剤には、必要に応じて、環球法により測定される軟化点温度が50~120℃、好ましくは70~100℃の熱可塑性ポリマーを含み、かつ数平均粒子径が0.05~5μm、好ましくは0.1~3μmである熱可塑性ポリマー微粒子が含まれてもよい。液晶シール剤中に、熱可塑性ポリマー微粒子が含まれることにより、液晶シール剤の硬化物に発生する収縮応力を緩和できる。また、数平均粒子径を上限値以下とすることにより、線幅の細いシール部材を形成する際に、熱可塑性ポリマー微粒子によって、塗工安定性が低下することを防ぐことができる。数平均粒子径の測定方法は、上述した方法と同様とする。
(5) Thermoplastic polymer fine particles The liquid crystal sealant of the present invention contains a thermoplastic polymer having a softening point temperature measured by a ring and ball method of 50 to 120 ° C., preferably 70 to 100 ° C., if necessary, and Thermoplastic polymer fine particles having a number average particle diameter of 0.05 to 5 μm, preferably 0.1 to 3 μm may be included. By containing the thermoplastic polymer fine particles in the liquid crystal sealant, the shrinkage stress generated in the cured product of the liquid crystal sealant can be relaxed. Moreover, when the number average particle diameter is set to the upper limit value or less, it is possible to prevent the coating stability from being lowered by the thermoplastic polymer fine particles when forming a seal member having a narrow line width. The method for measuring the number average particle diameter is the same as that described above.
 熱可塑性ポリマー微粒子の例には、エポキシ基と二重結合基とを含む樹脂を、ラジカル重合可能なモノマーと懸濁重合して得られる微粒子が含まれる。エポキシ基と二重結合基とを含む樹脂の例には、ビスフェノールF型エポキシ樹脂とメタアクリル酸を三級アミン存在下で反応させた樹脂が含まれる。ラジカル重合可能なモノマーの例には、ブチルアクリレート、グリシジルメタクリレート、およびジビニルベンゼンが含まれる。 Examples of thermoplastic polymer fine particles include fine particles obtained by suspension polymerization of a resin containing an epoxy group and a double bond group with a monomer capable of radical polymerization. Examples of the resin containing an epoxy group and a double bond group include a resin obtained by reacting a bisphenol F type epoxy resin and methacrylic acid in the presence of a tertiary amine. Examples of radically polymerizable monomers include butyl acrylate, glycidyl methacrylate, and divinylbenzene.
 熱可塑性ポリマー微粒子の配合量は、液晶シール剤100質量部に対して、5~40質量部が好ましく、7~30質量部がより好ましい。このような範囲とすることで、熱可塑性ポリマー微粒子が液晶シール剤の加熱硬化の際の収縮応力を緩和でき、目的とする線幅でシール部材を形成することができる。 The blending amount of the thermoplastic polymer fine particles is preferably 5 to 40 parts by mass, more preferably 7 to 30 parts by mass with respect to 100 parts by mass of the liquid crystal sealant. By setting it as such a range, the thermoplastic polymer fine particle can relieve the shrinkage stress at the time of heat-hardening of a liquid-crystal sealing compound, and can form a sealing member with the target line width.
 (6)充填剤
 本発明の液晶シール剤には、さらに充填剤が含まれてもよい。充填剤により、液晶シール剤の粘度、液晶シール剤を硬化して得られるシール部材の強度、および線膨張性等が制御できる。
(6) Filler The liquid crystal sealant of the present invention may further contain a filler. The filler can control the viscosity of the liquid crystal sealant, the strength of the seal member obtained by curing the liquid crystal sealant, the linear expansion property, and the like.
 充填剤は、特に制限されず、その例には、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸マグネシウム、珪酸アルミニウム、珪酸ジルコニウム、酸化鉄、酸化チタン、酸化アルミニウム(アルミナ)、酸化亜鉛、二酸化ケイ素、チタン酸カリウム、カオリン、タルク、ガラスビーズ、セリサイト活性白土、ベントナイト、窒化アルミニウム、窒化ケイ素等の無機充填剤が含まれる。好ましくは二酸化ケイ素、タルクである。 The filler is not particularly limited, and examples thereof include calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, zirconium silicate, iron oxide, titanium oxide, aluminum oxide (alumina), zinc oxide, silicon dioxide, Inorganic fillers such as potassium titanate, kaolin, talc, glass beads, sericite activated clay, bentonite, aluminum nitride, silicon nitride are included. Preferred are silicon dioxide and talc.
 充填剤の形状は、特に限定されず、球状、板状、針状等の定形状あるいは非定形状のいずれであってもよい。充填剤は平均一次粒子径が1.5μm以下であることが好ましく、かつその比表面積が0.5m/g~20m/gであることが好ましい。充填剤の平均一次粒子径は、JIS Z8825-1に記載のレーザー回折法で測定する。また、比表面積測定は、JIS Z8830に記載のBET法により測定する。 The shape of the filler is not particularly limited, and may be a regular shape such as a spherical shape, a plate shape, or a needle shape, or an irregular shape. The filler preferably has an average primary particle size of 1.5 μm or less and a specific surface area of 0.5 m 2 / g to 20 m 2 / g. The average primary particle diameter of the filler is measured by a laser diffraction method described in JIS Z8825-1. The specific surface area is measured by the BET method described in JIS Z8830.
 充填剤の充填量は、液晶シール剤100質量部に対して、1~50質量部であることが好ましく、10~30質量部であることがより好ましい。上限を超えると、液晶シール剤中の粉体成分量が多くなり、塗工安定性の低下が生じる可能性がある。 The filling amount of the filler is preferably 1 to 50 parts by mass and more preferably 10 to 30 parts by mass with respect to 100 parts by mass of the liquid crystal sealant. When the upper limit is exceeded, the amount of the powder component in the liquid crystal sealant increases, and the coating stability may be lowered.
 (7)エポキシ樹脂の硬化触媒
 本発明の液晶シール剤には、必要に応じて、エポキシ樹脂の硬化触媒が含まれてもよい。液晶シール剤にエポキシ樹脂の硬化触媒が含まれると、液晶シール剤を硬化させて得られるシール部材の硬化性が良好となり、シール部材の接着強度も高まる。
 エポキシ樹脂の硬化触媒は、本発明の目的及び効果を損なわないものであれば特に制限されず、例えば、イミダゾールおよびその誘導体等、アミンおよびその付加物等が挙げられる。
(7) Epoxy resin curing catalyst The liquid crystal sealant of the present invention may contain an epoxy resin curing catalyst, if necessary. When the epoxy resin curing catalyst is contained in the liquid crystal sealant, the curability of the seal member obtained by curing the liquid crystal sealant is improved, and the adhesive strength of the seal member is also increased.
The epoxy resin curing catalyst is not particularly limited as long as it does not impair the object and effect of the present invention, and examples thereof include imidazole and derivatives thereof, amines and adducts thereof, and the like.
 硬化触媒の配合量は、液晶シール剤100質量部に対して、0.1~5質量部が好ましく、より好ましくは0.5~3質量部である。 The blending amount of the curing catalyst is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the liquid crystal sealant.
 (8)その他の添加剤
 本発明の液晶シール剤には、必要に応じてさらに、熱ラジカル重合開始剤、シランカップリング剤等のカップリング剤、イオントラップ剤、イオン交換剤、レベリング剤、顔料、染料、可塑剤、消泡剤等の添加剤が含まれてもよい。また、液晶パネルのギャップを調整するためにスペーサー等が配合されていてもよい。
(8) Other additives The liquid crystal sealant of the present invention may further include a thermal radical polymerization initiator, a coupling agent such as a silane coupling agent, an ion trapping agent, an ion exchange agent, a leveling agent, and a pigment as necessary. Additives such as dyes, plasticizers and antifoaming agents may be included. In addition, a spacer or the like may be blended to adjust the gap of the liquid crystal panel.
 本発明の液晶シール剤は、(1)(メタ)アクリル変性エポキシ樹脂、(2)硬化剤、および(3)光開始剤を含むことから、光硬化と熱硬化を併用することが多い液晶滴下工法用の液晶シール剤に好ましく用いられる。液晶滴下工法用の液晶シール剤は、好ましくは(1-2)分子内に2以上のエポキシ基を有するエポキシ樹脂および(4)(メタ)アクリレートモノマーおよび/またはオリゴマーをさらに含み、さらに好ましくは(5)熱可塑性ポリマー微粒子、及び(6)充填剤をさらに含む。 Since the liquid crystal sealing agent of the present invention contains (1) (meth) acryl-modified epoxy resin, (2) curing agent, and (3) photoinitiator, liquid crystal dripping is often used in combination with photocuring and thermosetting. It is preferably used for a liquid crystal sealant for a construction method. The liquid crystal sealing agent for the liquid crystal dropping method preferably further comprises (1-2) an epoxy resin having two or more epoxy groups in the molecule and (4) a (meth) acrylate monomer and / or oligomer, and more preferably ( 5) further includes thermoplastic polymer fine particles, and (6) a filler.
 本発明の液晶シール剤のE型粘度計による25℃、2.5rpmでの粘度は、30~400Pa・sであることが好ましく、より好ましくは50~350Pa・sである。粘度が上記範囲にある液晶シール剤は、塗工安定性に優れる。 The viscosity of the liquid crystal sealant of the present invention at 25 ° C. and 2.5 rpm by an E-type viscometer is preferably 30 to 400 Pa · s, more preferably 50 to 350 Pa · s. A liquid crystal sealant having a viscosity in the above range is excellent in coating stability.
 (9)液晶シール剤の製造方法
 本発明の液晶シール剤は、(1)分子内にエポキシ基と(メタ)アクリル基とを含む(メタ)アクリル変性エポキシ樹脂と、(2)硬化剤と、(3)光開始剤と、必要に応じて他の成分とを均一に混合し、製造する。均一に混合する方法は特に制限はないが、例えば3本ロールを用いて十分に混練を行うことが好ましい。又その際、液晶シール剤中に気泡が含まれないよう、十分に脱泡することが好ましい。
(9) Method for Producing Liquid Crystal Sealant The liquid crystal sealant of the present invention includes (1) a (meth) acryl-modified epoxy resin containing an epoxy group and a (meth) acryl group in the molecule, (2) a curing agent, (3) A photoinitiator and other components as necessary are uniformly mixed and manufactured. The method of uniformly mixing is not particularly limited, but for example, it is preferable to sufficiently knead using three rolls. At that time, it is preferable that the liquid crystal sealant is sufficiently defoamed so that bubbles are not included therein.
 2.液晶表示パネルの製造方法
 本発明の液晶表示パネルは、表示基板と、それと対になる対向基板と、表示基板と対向基板との間に介在している枠状のシール部材と、表示基板と対向基板との間の、シール部材で囲まれた空間に充填された液晶層とを含む。本発明の液晶シール剤の硬化物を、シール部材とすることができる。
2. Manufacturing method of liquid crystal display panel The liquid crystal display panel of the present invention is a display substrate, a counter substrate that is paired with the display substrate, a frame-shaped sealing member interposed between the display substrate and the counter substrate, and a display substrate. And a liquid crystal layer filled in a space surrounded by a seal member between the substrate and the substrate. The cured product of the liquid crystal sealant of the present invention can be used as a seal member.
 表示基板及び対向基板は、いずれも透明基板である。透明基板の材質は、特に制限されず、例えばガラス、もしくはポリカーボネート、ポリエチレンテレフタレート、ポリエーテルサルフォン、及びPMMA等のプラスチックが挙げられる。 The display substrate and the counter substrate are both transparent substrates. The material of the transparent substrate is not particularly limited, and examples thereof include glass or plastics such as polycarbonate, polyethylene terephthalate, polyethersulfone, and PMMA.
 表示基板または対向基板の表面には、マトリックス状のTFT、カラーフィルタ、ブラックマトリクスなどが配置されうる。表示基板または対向基板の表面には、さらに配向膜が形成される。配向膜には、公知の有機配向剤や無機配向剤などが含まれる。 A matrix-like TFT, a color filter, a black matrix, or the like can be disposed on the surface of the display substrate or the counter substrate. An alignment film is further formed on the surface of the display substrate or the counter substrate. The alignment film includes a known organic alignment agent or inorganic alignment agent.
 液晶滴下工法による液晶表示パネルの製造方法は、
 a1)一方の基板に、本発明の液晶シール剤のシールパターンを形成する第1の工程と、
 a2)シールパターンが未硬化の状態において、前記基板のシールパターンで囲まれた領域、または該シールパターンで囲まれた領域に対向する他方の基板の領域に、液晶を滴下する第2の工程と、
 a3)一方の基板と、他方の基板とを、シールパターンを介して重ね合わせる第3の工程と、
 a4)シールパターンを硬化させる第4の工程と、を含む。
The manufacturing method of the liquid crystal display panel by the liquid crystal dropping method is
a1) a first step of forming a seal pattern of the liquid crystal sealant of the present invention on one substrate;
a2) a second step of dropping liquid crystal in a region surrounded by the seal pattern of the substrate or a region of the other substrate facing the region surrounded by the seal pattern in a state where the seal pattern is uncured; ,
a3) a third step of superimposing one substrate and the other substrate via a seal pattern;
a4) a fourth step of curing the seal pattern.
 a2)の工程における、シールパターンが未硬化の状態とは、液晶シール剤の硬化反応がゲル化点までは進行していない状態を意味する。このため、a2)の工程では、液晶シール剤の液晶への溶解を抑制するために、シールパターンを光照射または加熱して半硬化させてもよい。一方の基板および他方の基板は、それぞれ表示基板または対向基板である。 In the step a2), the state in which the seal pattern is uncured means a state in which the curing reaction of the liquid crystal sealant has not progressed to the gel point. Therefore, in the step a2), the seal pattern may be semi-cured by light irradiation or heating in order to suppress dissolution of the liquid crystal sealant in the liquid crystal. One substrate and the other substrate are a display substrate or a counter substrate, respectively.
 本発明の液晶シール剤は、硬化剤中の粉体量が少ないことから、シールパターンの細線化が可能である。本発明の液晶シール剤を用いたシールパターンの断面積は、1500~3000μm程度であり得る。 Since the liquid crystal sealant of the present invention has a small amount of powder in the curing agent, it is possible to make the seal pattern finer. The cross-sectional area of the seal pattern using the liquid crystal sealant of the present invention may be about 1500 to 3000 μm 2 .
 a4)の工程では、加熱による硬化のみを行ってもよいが、光照射による硬化(仮硬化)を行った後、加熱による硬化(本硬化)を行うことが好ましい。光照射による仮硬化で液晶シール剤を瞬時に硬化させることで、各成分が液晶へ溶解することを抑制できる。 In the step a4), only curing by heating may be performed, but it is preferable to perform curing by heating (main curing) after curing by light irradiation (temporary curing). By instantly curing the liquid crystal sealant by temporary curing by light irradiation, it is possible to suppress each component from dissolving in the liquid crystal.
 光硬化時間は、液晶シール剤の組成にもよるが、例えば10分程度である。光照射エネルギーは、(1)(メタ)アクリル変性エポキシ樹脂や(4)(メタ)アクリレートモノマーおよび/またはオリゴマーなどを硬化できる程度のエネルギーであればよい。光は、好ましくは紫外線である。熱硬化温度は、液晶シール剤の組成にもよるが、例えば120℃であり、熱硬化時間は2時間程度である。 The photocuring time is, for example, about 10 minutes although it depends on the composition of the liquid crystal sealant. The light irradiation energy may be energy that can cure (1) (meth) acryl-modified epoxy resin, (4) (meth) acrylate monomer, and / or oligomer. The light is preferably ultraviolet light. The thermosetting temperature is 120 ° C., for example, although it depends on the composition of the liquid crystal sealant, and the thermosetting time is about 2 hours.
 ここで、液晶滴下工法により液晶表示パネルを製造する場合、a3)の工程は減圧状態で行われ、a4)の工程は大気圧開放して行われることが多い。具体的には、a3)の工程で2枚の基板を重ね合わせた後、この液晶表示パネルを大気圧に戻す。この際、2枚の基板及び液晶シール剤で囲まれた領域は密封されており、減圧状態が保たれる。したがって、液晶シール剤で囲まれた領域では、2枚の基板に、基板同士が相互に近接する方向に力が働く。一方、液晶シール剤の枠外は、大気圧開放されているため、2枚の基板に、基板同士が近接する方向に力が働かない。そのため、基板が撓み、液晶表示パネルの中心部から液晶シール剤の枠外方向に向かって、ギャップが広くなるという問題があった。液晶表示パネル内でギャップにムラが生じると、表示信頼性が低下する。 Here, when a liquid crystal display panel is manufactured by the liquid crystal dropping method, the step a3) is often performed under reduced pressure, and the step a4) is often performed at atmospheric pressure. Specifically, after the two substrates are superposed in the step a3), the liquid crystal display panel is returned to atmospheric pressure. At this time, the region surrounded by the two substrates and the liquid crystal sealant is sealed, and a reduced pressure state is maintained. Therefore, in the region surrounded by the liquid crystal sealant, a force acts on the two substrates in the direction in which the substrates are close to each other. On the other hand, since the atmospheric pressure is released outside the frame of the liquid crystal sealant, no force acts on the two substrates in the direction in which the substrates are close to each other. For this reason, there is a problem that the substrate is bent and the gap becomes wider from the center of the liquid crystal display panel toward the outside of the frame of the liquid crystal sealant. When the gap is uneven in the liquid crystal display panel, the display reliability is lowered.
 このような問題を解決するため、従来、液晶シール剤による枠(メインシール)の外側に、さらに別の枠(ダミーシール)を設ける方法が、一般的に用いられている(例えば、特開2002-328382号公報参照)。この方法によれば、メインシールの枠外、すなわちメインシールとダミーシールとの間の領域も減圧状態となる。これにより、メインシールの外側でも2枚の基板に、基板同士が近接する方向に力が働き、基板が撓むことを抑制できる。したがって、この方法によれば、液晶表示パネル内でのギャップを均一なものとすることができる。 In order to solve such a problem, a method of providing another frame (dummy seal) outside the frame (main seal) made of a liquid crystal sealant is generally used (for example, Japanese Patent Laid-Open No. 2002-2002). -328382). According to this method, the area outside the main seal, that is, the region between the main seal and the dummy seal is also in a reduced pressure state. Thereby, even if it is outside the main seal, a force is exerted on the two substrates in a direction in which the substrates are close to each other, and the substrate can be prevented from being bent. Therefore, according to this method, the gap in the liquid crystal display panel can be made uniform.
 しかし、液晶表示パネルの製造効率の向上のためには、ダミーシールを形成しないことが望ましい。そこで、ダミーシールを形成せずに、2枚の基板のギャップを均一にする方法として、例えば液晶シール剤の柔軟性を向上させることが考えられる。液晶充填後、液晶表示パネルを大気圧開放した際、メインシールの内側の基板の移動(基板同士が近接する方向への移動)に伴って、液晶シール剤が変形可能であれば、基板が撓むことを抑制でき、ダミーシールを形成する必要がなくなる。 However, it is desirable not to form a dummy seal in order to improve the manufacturing efficiency of the liquid crystal display panel. Therefore, as a method of making the gap between the two substrates uniform without forming a dummy seal, for example, improving the flexibility of the liquid crystal sealant is conceivable. After the liquid crystal is filled, when the liquid crystal display panel is opened to atmospheric pressure, if the liquid crystal sealant can be deformed along with the movement of the substrate inside the main seal (movement in the direction in which the substrates are close to each other), the substrate is bent. This eliminates the need to form a dummy seal.
 ただし、従来の液晶シール剤では、液晶シール剤中に粉体成分が多く含まれ、液晶シール剤が固く、上述したような変形が困難である。一方、本発明の液晶シール剤は、粉体成分の含有量が少なく、液晶シール剤の柔軟性が高い。そのため、ダミーシールパターンを形成することなく、液晶の封止に必要なシールパターンのみを形成し、液晶表示パネルを製造することが可能である。 However, in the conventional liquid crystal sealant, the liquid crystal sealant contains many powder components, the liquid crystal sealant is hard, and it is difficult to deform as described above. On the other hand, the liquid crystal sealant of the present invention has a low powder component content and high flexibility of the liquid crystal sealant. Therefore, it is possible to manufacture a liquid crystal display panel by forming only a seal pattern necessary for sealing a liquid crystal without forming a dummy seal pattern.
 なお、本発明の液晶シール剤は、上述の液晶滴下工法による液晶表パネルの製造方法のみではなく、液晶注入工法による液晶表示パネルの製造方法にも用いることができる。 The liquid crystal sealant of the present invention can be used not only for the method for producing a liquid crystal surface panel by the liquid crystal dropping method described above but also for the method for producing a liquid crystal display panel by a liquid crystal injection method.
 液晶注入工法による液晶表示パネルの製造方法は、
 b1)一方の基板に、本発明の液晶シール剤のシールパターンを形成する第1の工程と、
 b2)一方の基板と、他方の基板とを、シールパターンを介して重ね合わせる第2の工程と、
 b3)シールパターンを熱硬化させて、液晶を注入するための注入口を有する液晶注入用セルを得る第3の工程と、
 b4)液晶を、注入口を介して液晶注入用セルに注入する第4の工程と、
 b5)注入口を封止する第5の工程と、を含む。
The manufacturing method of the liquid crystal display panel by the liquid crystal injection method is
b1) a first step of forming a seal pattern of the liquid crystal sealant of the present invention on one substrate;
b2) a second step of superimposing one substrate and the other substrate via a seal pattern;
b3) a third step of thermosetting the seal pattern to obtain a liquid crystal injection cell having an injection port for injecting liquid crystal;
b4) a fourth step of injecting the liquid crystal into the liquid crystal injection cell through the injection port;
b5) a fifth step of sealing the inlet.
 b1)~b3)の工程では、液晶注入用セルを準備する。まず、2枚の透明な基板(例えば、ガラス板)を準備する。そして、一方の基板に液晶シール剤でシールパターンを形成する。基板のシールパターンが形成された面に、他方の基板を重ね合わせた後、シールパターンを硬化させればよい。この際、液晶注入用セルの一部に、液晶を注入するための注入口を設ける必要があるが、注入口はシールパターンを描画する際に、一部に開口部を設ければよい。また、シールパターンを形成した後に、所望の箇所のシールパターンを除去して注入口を設けてもよい。 In the steps b1) to b3), a liquid crystal injection cell is prepared. First, two transparent substrates (for example, glass plates) are prepared. Then, a seal pattern is formed on one substrate with a liquid crystal sealant. After the other substrate is superimposed on the surface of the substrate where the seal pattern is formed, the seal pattern may be cured. At this time, it is necessary to provide an injection port for injecting liquid crystal in a part of the liquid crystal injection cell, but the injection port may be provided with a part of the opening when drawing the seal pattern. Moreover, after forming the seal pattern, the seal pattern at a desired location may be removed to provide an injection port.
 b3)の工程における熱硬化条件は、液晶シール剤の組成にもよるが、例えば150℃で2~5時間程度である。 The thermosetting conditions in step b3) are, for example, about 2 to 5 hours at 150 ° C., depending on the composition of the liquid crystal sealant.
 b4)の工程は、b1)~b3)の工程で得られた液晶注入用セルの内部を真空状態にして、液晶注入用セルの注入口から液晶を吸い込ませるという公知の方法に準じて行えばよい。b5)の工程では、液晶シール剤を、液晶注入用セルの注入口に封入した後、硬化させてもよい。 The step b4) can be performed according to a known method in which the inside of the liquid crystal injection cell obtained in the steps b1) to b3) is evacuated and the liquid crystal is sucked from the injection port of the liquid crystal injection cell. Good. In the step b5), the liquid crystal sealant may be cured after being sealed in the injection port of the liquid crystal injection cell.
 本発明の液晶シール剤は、塗工性が良好であり、細いパターン状にシール部材を形成可能である。また、接着強度も良好であり、さらに保存時の粘度安定性にも優れる。
 また、本発明の液晶シール剤を用いることにより、ダミーシールパターンを形成することなく、液晶の封止に必要なシールパターンのみを形成し、基板間のギャップ安定性に優れた液晶表示パネルを得ることも可能である。
The liquid crystal sealant of the present invention has good coatability and can form a seal member in a thin pattern. In addition, the adhesive strength is good, and the viscosity stability during storage is also excellent.
Further, by using the liquid crystal sealant of the present invention, a liquid crystal display panel having excellent gap stability between substrates can be obtained by forming only a seal pattern necessary for sealing liquid crystal without forming a dummy seal pattern. It is also possible.
[合成例1]
 メタアクリル酸変性ビスフェノールF型エポキシ樹脂の合成(70%部分メタアクリル化物)
 160gの液状ビスフェノールF型エポキシ樹脂(エポトートYDF-8170C 東都化成社製 エポキシ当量160g/eq)、重合禁止剤として0.1gのp-メトキシフェノール、触媒として0.2gのトリエタノールアミン、および70.0gのメタアクリル酸をフラスコ内に仕込み、乾燥空気を送り込んで90℃で還流攪拌しながら5時間反応させた。得られた化合物を、超純水にて20回洗浄し、メタアクリル酸変性ビスフェノールF型エポキシ樹脂を得た。
[Synthesis Example 1]
Synthesis of methacrylic acid-modified bisphenol F epoxy resin (70% partially methacrylic product)
160 g of liquid bisphenol F type epoxy resin (Epototo YDF-8170C manufactured by Toto Kasei Co., Ltd., epoxy equivalent 160 g / eq), 0.1 g of p-methoxyphenol as a polymerization inhibitor, 0.2 g of triethanolamine as a catalyst, and 70. 0 g of methacrylic acid was charged into the flask, dried air was fed in, and the mixture was reacted at 90 ° C. with reflux stirring for 5 hours. The obtained compound was washed 20 times with ultrapure water to obtain a methacrylic acid-modified bisphenol F type epoxy resin.
 ここで、原料となるビスフェノールF型エポキシ樹脂に含まれるエポキシ基の数は、1モルである。反応させるメタアクリル酸に含まれるメタアクリル基の数は、0.70モルである。よって、得られるメタアクリル酸変性ビスフェノールF型エポキシ樹脂は、70%部分メタアクリル化物となる。 Here, the number of epoxy groups contained in the raw material bisphenol F type epoxy resin is 1 mol. The number of methacryl groups contained in the methacrylic acid to be reacted is 0.70 mol. Therefore, the methacrylic acid-modified bisphenol F type epoxy resin obtained is a 70% partially methacrylic product.
[実施例1]
 合成例1で得られたメタアクリル酸変性ビスフェノールF型エポキシ樹脂(70%部分メタアクリル化物)50質量部、多価フェノール硬化剤A(三井化学社製:ミレックス3L、軟化点71℃)4質量部、2級多価チオール硬化剤B(昭和電工社製:PE-1)8質量部、1級多価アミン硬化剤D(ADEKA社製;EH-5057、融点80℃)4質量部、光開始剤として光ラジカル重合開始剤(チバガイギー社製:イルガキュア651)1質量部、硬化触媒(四国化成社製:2MAOK)2質量部、熱可塑性ポリマー微粒子(ガンツ社製:F351)20質量部、充填剤(フィラー)SiO 10質量部、シランカップリング剤(信越シリコーン社製:KBM-403)1質量部からなる樹脂組成物を、三本ロールを用いて均一な液となるように十分に混合して、液晶シール剤を得た。後述する方法で粘度(初期粘度)を測定したところ、240Pa・sであった。
[Example 1]
50 parts by mass of a methacrylic acid-modified bisphenol F type epoxy resin (70% partially methacrylic product) obtained in Synthesis Example 1, 4 parts by mass of a polyhydric phenol curing agent A (Mitsui Chemicals Co., Ltd .: Millex 3L, softening point 71 ° C.) Parts, secondary polyvalent thiol curing agent B (manufactured by Showa Denko KK: PE-1) 8 parts by mass, primary polyvalent amine curing agent D (manufactured by ADEKA; EH-5057, melting point 80 ° C.) 4 parts by mass, light As an initiator, 1 part by mass of a photo radical polymerization initiator (Ciba Geigy: Irgacure 651), 2 parts by mass of a curing catalyst (Shikoku Kasei Co., Ltd .: 2MAOK), 20 parts by mass of thermoplastic polymer fine particles (G351: F351), and filling The resin composition consisting of 10 parts by weight of the agent (filler) SiO 2 and 1 part by weight of the silane coupling agent (manufactured by Shin-Etsu Silicone Co., Ltd .: KBM-403) is converted into a uniform liquid using three rolls. The mixture was thoroughly mixed to obtain a liquid crystal sealant. When the viscosity (initial viscosity) was measured by the method described later, it was 240 Pa · s.
[実施例2]
 多価フェノール硬化剤Aを8質量部、1級多価アミン硬化剤Dを8質量部とし、2級多価チオール硬化剤を0質量部とした以外は、実施例1と同様にして液晶シール剤を得た。また後述する方法で粘度(初期粘度)を測定したところ、320Pa・sであった。
[Example 2]
Liquid crystal seal in the same manner as in Example 1 except that 8 parts by mass of the polyhydric phenol curing agent A, 8 parts by mass of the primary polyvalent amine curing agent D, and 0 parts by mass of the secondary polyvalent thiol curing agent. An agent was obtained. Moreover, it was 320 Pa.s when the viscosity (initial viscosity) was measured by the method mentioned later.
[実施例3]
 多価フェノール硬化剤Aを8質量部、2級多価チオール硬化剤Bを8質量部とし、1級多価アミン硬化剤を0質量部とした以外は、実施例1と同様にして液晶シール剤を得た。また後述する方法で粘度(初期粘度)を測定したところ、250Pa・sであった。
[Example 3]
Liquid crystal seal in the same manner as in Example 1 except that 8 parts by mass of the polyhydric phenol curing agent A, 8 parts by mass of the secondary polyvalent thiol curing agent B, and 0 parts by mass of the primary polyvalent amine curing agent. An agent was obtained. Moreover, it was 250 Pa.s when the viscosity (initial viscosity) was measured by the method mentioned later.
[実施例4]
 2級多価チオール硬化剤Bを8質量部、1級多価アミン硬化剤Dを8質量部とした以外は、実施例1と同様にして液晶シール剤を得た。また後述する方法で粘度(初期粘度)を測定したところ、260Pa・sであった。
[Example 4]
A liquid crystal sealant was obtained in the same manner as in Example 1 except that 8 parts by mass of the secondary polyvalent thiol curing agent B and 8 parts by mass of the primary polyvalent amine curing agent D were used. Moreover, it was 260 Pa.s when the viscosity (initial viscosity) was measured by the method mentioned later.
[実施例5]
 合成例1で得られたメタアクリル酸変性ビスフェノールF型エポキシ樹脂(70%部分メタアクリル化物)の量を40質量部とし、多価フェノール硬化剤Aの量を7質量部、2級多価チオール硬化剤Bの量を14質量部、1級多価アミン硬化剤Dの量を7質量部、熱可塑性ポリマー微粒子の量を19質量部とし、フィラーの量を9質量部とした以外は、実施例1と同様にして液晶シール剤を得た。また後述する方法で粘度(初期粘度)を測定したところ、210Pa・sであった。
[Example 5]
The amount of the methacrylic acid-modified bisphenol F-type epoxy resin (70% partially methacrylic product) obtained in Synthesis Example 1 is 40 parts by mass, the amount of the polyhydric phenol curing agent A is 7 parts by mass, and the secondary polyvalent thiol. Except for the amount of curing agent B being 14 parts by mass, the amount of primary polyvalent amine curing agent D being 7 parts by mass, the amount of thermoplastic polymer fine particles being 19 parts by mass, and the amount of filler being 9 parts by mass. A liquid crystal sealant was obtained in the same manner as in Example 1. Further, the viscosity (initial viscosity) measured by the method described later was 210 Pa · s.
[実施例6]
 合成例1で得られたメタアクリル酸変性ビスフェノールF型エポキシ樹脂(70%部分メタアクリル化物)の量を56質量部とし、多価フェノール硬化剤Aの量を1質量部、2級多価チオール硬化剤Bの量を3質量部、1級多価アミン硬化剤Dの量を1質量部、熱可塑性ポリマー微粒子の量を23質量部、フィラーの質量を12質量部とした以外は、実施例1と同様にして液晶シール剤を得た。また後述する方法で粘度(初期粘度)を測定したところ、300Pa・sであった。
[Example 6]
The amount of the methacrylic acid-modified bisphenol F type epoxy resin (70% partially methacrylic product) obtained in Synthesis Example 1 is 56 parts by mass, the amount of polyhydric phenol curing agent A is 1 part by mass, and the secondary polyvalent thiol. Example, except that the amount of the curing agent B was 3 parts by mass, the amount of the primary polyvalent amine curing agent D was 1 part by mass, the amount of the thermoplastic polymer fine particles was 23 parts by mass, and the mass of the filler was 12 parts by mass. In the same manner as in Example 1, a liquid crystal sealant was obtained. Moreover, it was 300 Pa.s when the viscosity (initial viscosity) was measured by the method mentioned later.
[実施例7]
 多価フェノール硬化剤Aの代わりに多価フェノール硬化剤B(DIC社製:TD2131 軟化点80℃)を4質量部用い、2級多価チオール硬化剤Bの量を8質量部、1級多価アミン硬化剤Dの量を4質量部とした以外は、実施例1と同様にして液晶シール剤を得た。また後述する方法で粘度(初期粘度)を測定したところ、250Pa・sであった。
[Example 7]
Instead of polyhydric phenol curing agent A, 4 parts by mass of polyhydric phenol curing agent B (manufactured by DIC: TD2131, softening point 80 ° C.) is used, and the amount of secondary polyhydric thiol curing agent B is 8 parts by mass. A liquid crystal sealant was obtained in the same manner as in Example 1 except that the amount of the polyvalent amine curing agent D was 4 parts by mass. Moreover, it was 250 Pa.s when the viscosity (initial viscosity) was measured by the method mentioned later.
[実施例8]
 多価フェノール硬化剤Aの代わりに多価フェノール硬化剤C(三菱化学社製:170 軟化点90℃)を4質量部用い、2級多価チオール硬化剤Bの量を8質量部、1級多価アミン硬化剤Dの量を4質量部とした以外は、実施例1と同様にして液晶シール剤を得た。また後述する方法で粘度(初期粘度)を測定したところ、255Pa・sであった。
[Example 8]
Instead of the polyhydric phenol curing agent A, 4 parts by mass of the polyhydric phenol curing agent C (manufactured by Mitsubishi Chemical Corporation: 170 softening point 90 ° C.) is used, and the amount of the secondary polyhydric thiol curing agent B is 8 parts by mass. A liquid crystal sealing agent was obtained in the same manner as in Example 1 except that the amount of the polyvalent amine curing agent D was changed to 4 parts by mass. Further, when the viscosity (initial viscosity) was measured by the method described later, it was 255 Pa · s.
[実施例9]
 フェノール硬化剤Aの量を4質量部、2級多価チオール硬化剤Bの量を8質量部とし、1級多価アミン硬化剤として多価アミン硬化剤A(日本ヒドラジン社製:ADH、融点180℃)を4質量部、及び多価アミン硬化剤Dを4質量部用いた以外は、実施例1と同様にして液晶シール剤を得た。また後述する方法で粘度(初期粘度)を測定したところ、270Pa・sであった。
[Example 9]
The amount of the phenol curing agent A is 4 parts by mass, the amount of the secondary polyvalent thiol curing agent B is 8 parts by mass, and the polyvalent amine curing agent A (manufactured by Nippon Hydrazine: ADH, melting point) as the primary polyvalent amine curing agent. A liquid crystal sealant was obtained in the same manner as in Example 1 except that 4 parts by mass of 180 ° C.) and 4 parts by mass of the polyvalent amine curing agent D were used. Moreover, it was 270 Pa.s when the viscosity (initial viscosity) was measured by the method mentioned later.
[実施例10]
 フェノール硬化剤Aの量を4質量部、2級多価チオール硬化剤Bの量を8質量部とし、1級多価アミン硬化剤として多価アミン硬化剤B(富士化成工業製:フジキュアFXR-1020、融点125℃)を4質量部、及び多価アミン硬化剤Dを4質量部用いた以外は、実施例1と同様にして液晶シール剤を得た。また後述する方法で粘度(初期粘度)を測定したところ、260Pa・sであった。
[Example 10]
The amount of the phenol curing agent A is 4 parts by mass, the amount of the secondary polyvalent thiol curing agent B is 8 parts by mass, and the polyvalent amine curing agent B (manufactured by Fuji Kasei Kogyo: Fujicure FXR- 1020, melting point 125 ° C.) was used in the same manner as in Example 1 except that 4 parts by mass and 4 parts by mass of polyvalent amine curing agent D were used to obtain a liquid crystal sealant. Moreover, it was 260 Pa.s when the viscosity (initial viscosity) was measured by the method mentioned later.
[実施例11]
 フェノール硬化剤Aの量を4質量部、2級多価チオール硬化剤Bの量を8質量部、1級多価アミン硬化剤として多価アミン硬化剤C(味の素ファインテクノ社製:VDH、融点120℃)を4質量部用いた以外は、実施例1と同様にして液晶シール剤を得た。また後述する方法で粘度(初期粘度)を測定したところ、250Pa・sであった。
[Example 11]
4 parts by mass of phenol curing agent A, 8 parts by mass of secondary polyvalent thiol curing agent B, polyvalent amine curing agent C as a primary polyvalent amine curing agent (manufactured by Ajinomoto Fine Techno Co .: VDH, melting point) A liquid crystal sealant was obtained in the same manner as in Example 1 except that 4 parts by mass of 120 ° C. was used. Moreover, it was 250 Pa.s when the viscosity (initial viscosity) was measured by the method mentioned later.
[比較例1]
 硬化剤としてフェノール硬化剤Aを16質量部とし、2級多価チオール硬化剤及び1級多価アミン硬化剤を0質量部とした以外は、実施例1と同様にして液晶シール剤を得た。また後述する方法で粘度(初期粘度)を測定したところ、350Pa・sであった。
[Comparative Example 1]
A liquid crystal sealant was obtained in the same manner as in Example 1 except that 16 parts by mass of the phenol curing agent A as a curing agent and 0 parts by mass of the secondary polyvalent thiol curing agent and the primary polyvalent amine curing agent were obtained. . Moreover, it was 350 Pa.s when the viscosity (initial viscosity) was measured by the method mentioned later.
[比較例2]
 硬化剤として2級多価チオール硬化剤Bを16質量部とし、多価フェノール硬化剤及び1級多価アミン硬化剤を0質量部とした以外は、実施例1と同様にして液晶シール剤を得た。また後述する方法で粘度(初期粘度)を測定したところ、210Pa・sであった。
[Comparative Example 2]
A liquid crystal sealant was prepared in the same manner as in Example 1 except that 16 parts by mass of the secondary polyvalent thiol curing agent B as the curing agent and 0 parts by mass of the polyhydric phenol curing agent and the primary polyvalent amine curing agent were used. Obtained. Further, the viscosity (initial viscosity) measured by the method described later was 210 Pa · s.
[比較例3]
 硬化剤として1級多価アミン硬化剤Dを16質量部とし、多価フェノール硬化剤及び2級多価チオール硬化剤を0質量部とした以外は、実施例1と同様にして液晶シール剤を得た。また後述する方法で粘度(初期粘度)を測定したところ、370Pa・sであった。
[Comparative Example 3]
A liquid crystal sealant was prepared in the same manner as in Example 1 except that the primary polyvalent amine curing agent D was 16 parts by mass and the polyhydric phenol curing agent and the secondary polyvalent thiol curing agent were 0 parts by mass. Obtained. Further, when the viscosity (initial viscosity) was measured by the method described later, it was 370 Pa · s.
[比較例4]
 合成例1で得られたメタアクリル酸変性ビスフェノールF型エポキシ樹脂(70%部分メタアクリル化物)の量を38質量部とし、フェノール硬化剤Aの量を8質量部、2級多価チオール硬化剤Bの量を16質量部、多価アミン硬化剤Dの量を8質量部とし、フィラーの量を18重量部、熱可塑性ポリマー微粒子の量を8質量部とした以外は、実施例1と同様にして液晶シール剤を得た。また後述する方法で粘度(初期粘度)を測定したところ、280Pa・sであった。
[Comparative Example 4]
The amount of the methacrylic acid-modified bisphenol F-type epoxy resin (70% partially methacrylic product) obtained in Synthesis Example 1 is 38 parts by mass, the amount of the phenol curing agent A is 8 parts by mass, and the secondary polyvalent thiol curing agent. Example 1 except that the amount of B was 16 parts by mass, the amount of polyvalent amine curing agent D was 8 parts by mass, the amount of filler was 18 parts by weight, and the amount of thermoplastic polymer fine particles was 8 parts by mass. Thus, a liquid crystal sealant was obtained. Further, when the viscosity (initial viscosity) was measured by the method described later, it was 280 Pa · s.
[比較例5]
 合成例1で得られたメタアクリル酸変性ビスフェノールF型エポキシ樹脂(70%部分メタアクリル化物)の量を58質量部とし、フェノール硬化剤Aの量を0.5質量部、2級多価チオール硬化剤Bの量を2質量部、多価アミン硬化剤Dの量を0.5質量部とし、熱可塑性ポリマー微粒子の量を23質量部、フィラーの量を12質量部とした以外は、実施例1と同様にして液晶シール剤を得た。また後述する方法で粘度(初期粘度)を測定したところ、270Pa・sであった。
[Comparative Example 5]
The amount of the methacrylic acid-modified bisphenol F-type epoxy resin (70% partially methacrylic product) obtained in Synthesis Example 1 is 58 parts by mass, the amount of the phenol curing agent A is 0.5 parts by mass, and the secondary polyvalent thiol. Except that the amount of the curing agent B was 2 parts by mass, the amount of the polyvalent amine curing agent D was 0.5 parts by mass, the amount of the thermoplastic polymer fine particles was 23 parts by mass, and the amount of the filler was 12 parts by mass. A liquid crystal sealant was obtained in the same manner as in Example 1. Moreover, it was 270 Pa.s when the viscosity (initial viscosity) was measured by the method mentioned later.
[比較例6]
 多価チオール硬化剤として1級多価チオール硬化剤(堺化学社製:TMMP(トリメチロールプロパンメルカプトプロピオン酸)を8質量部用いた以外は、実施例1と同様にして液晶シール剤を得た。また後述する方法で粘度(初期粘度)を測定したところ、260Pa・sであった。
[Comparative Example 6]
A liquid crystal sealant was obtained in the same manner as in Example 1 except that 8 parts by mass of a primary polyvalent thiol curing agent (manufactured by Sakai Chemical Co., Ltd .: TMMP (trimethylolpropane mercaptopropionic acid)) was used as the polyvalent thiol curing agent. Further, when the viscosity (initial viscosity) was measured by the method described later, it was 260 Pa · s.
[比較例7]
 多価フェノール硬化剤としてフェノール硬化剤D(DIC社製:TD2090、軟化点100℃)を用いた以外は、実施例1と同様にして液晶シール剤を得た。また後述する方法で粘度(初期粘度)を測定したところ、270Pa・sであった。
[Comparative Example 7]
A liquid crystal sealing agent was obtained in the same manner as in Example 1 except that the phenol curing agent D (manufactured by DIC: TD2090, softening point 100 ° C.) was used as the polyhydric phenol curing agent. Moreover, it was 270 Pa.s when the viscosity (initial viscosity) was measured by the method mentioned later.
[比較例8]
 エポキシ樹脂(日本化薬株式会社社製:EOCN-1020-75)10質量部、(メタ)アクリレートモノマー及び/またはオリゴマー(大阪有機化学工業社製:ビスコート♯300)53質量部、1級多価チオール硬化剤A 5質量部、1級多価アミン化合物(味の素ファインテクノ社製社製:アミキュア VDH)5質量部、光ラジカル重合開始剤(チバガイギー社製:イルガキュア184)2質量部、熱可塑性ポリマー微粒子(ガンツ社製:F351)12質量部、SiO(フィラー)12質量部、シランカップリング剤(信越シリコーン社製:KBM-403)1質量部からなる硬化性樹脂組成物を、三本ロールを用いて均一な液となるように十分に混合して、液晶シール剤を得た。また後述する方法で粘度(初期粘度)を測定したところ、250Pa・sであった。
[Comparative Example 8]
10 parts by mass of epoxy resin (Nippon Kayaku Co., Ltd .: EOCN-1020-75), 53 parts by mass of (meth) acrylate monomer and / or oligomer (by Osaka Organic Chemical Industry Co., Ltd .: Viscoat # 300), primary polyvalent 5 parts by weight of a thiol curing agent A, 5 parts by weight of a primary polyamine compound (manufactured by Ajinomoto Fine Techno Co., Ltd .: Amicure VDH), 2 parts by weight of a radical photopolymerization initiator (manufactured by Ciba Geigy: Irgacure 184), a thermoplastic polymer Three rolls of a curable resin composition comprising 12 parts by mass of fine particles (manufactured by Gantz: F351), 12 parts by mass of SiO 2 (filler), and 1 part by mass of a silane coupling agent (manufactured by Shin-Etsu Silicone: KBM-403) The liquid crystal sealant was obtained by sufficiently mixing so as to obtain a uniform liquid. Moreover, it was 250 Pa.s when the viscosity (initial viscosity) was measured by the method mentioned later.
[評価]
 実施例1~11、及び比較例1~8について粘度安定性、シール塗布性、接着強度、表示状態、高温高湿信頼性、ギャップ精度を測定した。各測定方法は以下の通りである。これらの結果を表1~3に示す。
[Evaluation]
For Examples 1 to 11 and Comparative Examples 1 to 8, viscosity stability, seal coatability, adhesive strength, display state, high temperature and high humidity reliability, and gap accuracy were measured. Each measuring method is as follows. These results are shown in Tables 1 to 3.
 1)粘度安定性
 実施例および比較例で得られた液晶シール剤を、ディスペンス用シリンジ内の液晶シール剤の重量が10gになるように採取した後、脱泡処理をした。そのうち2gについて、E型粘度計にて、室温(25℃)、2.5rpmで初期粘度を測定した。次いで、このサンプルを、23℃50%RHで1週間保存した後、再度、同様の条件で粘度を測定した。このときの、初期粘度に対する1週間保存後の粘度の上昇率を求めた。
 初期粘度に対する保存後粘度の上昇率が1.1倍以下であるものを◎(非常に優れる);1.1倍を超え1.2倍以下であるものを○(優れる);1.2倍を超え1.5倍以下であるものを△(やや劣る);1.5倍を超えるものを×(劣る);とした。
1) Viscosity stability The liquid crystal sealants obtained in the examples and comparative examples were collected so that the weight of the liquid crystal sealant in the dispensing syringe was 10 g, and then subjected to defoaming treatment. About 2 g of them, the initial viscosity was measured with an E-type viscometer at room temperature (25 ° C.) and 2.5 rpm. Next, after the sample was stored at 23 ° C. and 50% RH for 1 week, the viscosity was measured again under the same conditions. At this time, the rate of increase in viscosity after storage for 1 week with respect to the initial viscosity was determined.
When the increase rate of the viscosity after storage with respect to the initial viscosity is 1.1 times or less: ◎ (very excellent); when it exceeds 1.1 times but not more than 1.2 times: ○ (excellent): 1.2 times A value exceeding 1.5 and not more than 1.5 times was evaluated as Δ (slightly inferior);
 2)シール塗布性
 実施例および比較例で得られた液晶シール剤20gをシリンジに真空下で充填した。次いで、口径0.35mmの針先をつけたシリンジから1g吐出後、23℃で1日放置した。次いで、このシリンジをディスペンサー(日立プラントテクノロジー社製)にセットし、360mm×470mmの液晶表示パネル用ガラス基板(日本電気硝子社製)の上に35mm×40mmのシールパターンを50個形成した。このとき、吐出圧力を0.3MPa、断面積3000μm、塗布速度を100mm/sとした。得られたシールパターンの形状を、以下のように評価した。
 シール切れ、シールかすれが全く発生していない枠型が50個:◎(非常に優れる)
 シール切れ、シールかすれが全く発生していない枠型が48個~49個:○(優れる)
 シール切れ、シールかすれが全く発生していない枠型が48個未満:×(劣る)
2) Seal coatability 20 g of the liquid crystal sealant obtained in Examples and Comparative Examples was filled in a syringe under vacuum. Next, 1 g was discharged from a syringe with a needle tip having a diameter of 0.35 mm, and left at 23 ° C. for 1 day. Next, this syringe was set in a dispenser (manufactured by Hitachi Plant Technology), and 50 seal patterns of 35 mm × 40 mm were formed on a 360 mm × 470 mm glass substrate for liquid crystal display panel (manufactured by Nippon Electric Glass Co., Ltd.). At this time, the discharge pressure was 0.3 MPa, the cross-sectional area was 3000 μm 2 , and the coating speed was 100 mm / s. The shape of the obtained seal pattern was evaluated as follows.
50 frame types with no seal breakage or seal fading: ◎ (Excellent)
48-49 frame molds with no seal breakage or seal fading: ○ (Excellent)
Less than 48 frame molds with no seal breakage or seal fading: × (Inferior)
 3)表示状態と高温高湿信頼性試験
 上記実施例及び比較例で得られた液晶シール剤を、ディスペンサー(ショットマスター:武蔵エンジニアリング製)により、透明電極と配向膜が予め形成された40mm×45mmガラス基板(EHC社製、RT-DM88-PIN)上に、35mm×40mmの四角形のシールパターン(断面積3500μm)(メインシール)を形成した。続いて、その外周に四角形のシールパターン(38mm×43mmの四角形のシールパターン)を形成した。
 次いで、貼り合せ後のパネル内容量に相当する液晶材料(MLC-119000-000:メルク社製)を、メインシールの枠内にディスペンサーにて精密に滴下した。次いで、対になるガラス基板を減圧下で貼り合せた後、大気開放して貼り合わせた。そして、貼り合わせた2枚のガラス基板を3分間遮光ボックス内で保持した後、2000mJ/cmの紫外線を照射し、さらに100℃で1時間加熱した。
3) Display state and high-temperature and high-humidity reliability test The liquid crystal sealant obtained in the above examples and comparative examples was prepared by using a dispenser (shot master: manufactured by Musashi Engineering Co., Ltd.) with a transparent electrode and an alignment film formed in advance. A 35 mm × 40 mm square seal pattern (cross-sectional area 3500 μm 2 ) (main seal) was formed on a glass substrate (EHC, RT-DM88-PIN). Subsequently, a square seal pattern (38 mm × 43 mm square seal pattern) was formed on the outer periphery thereof.
Next, a liquid crystal material (MLC-119000-000: manufactured by Merck & Co., Inc.) corresponding to the internal volume of the panel after bonding was precisely dropped into the main seal frame with a dispenser. Next, a pair of glass substrates was bonded together under reduced pressure, and then bonded to the atmosphere. Then, the two bonded glass substrates were held in a light shielding box for 3 minutes, then irradiated with 2000 mJ / cm 2 of ultraviolet light, and further heated at 100 ° C. for 1 hour.
 得られた液晶表示パネルを、70℃、95%RHで500時間、恒温槽で保存した。保存前後のシール部周辺の液晶に生じる色むらを目視で観察した。色むらが全く確認されなかったものを◎(非常に優れる);ほとんど確認されなかったものを○(優れる);確認されたものを△;著しく確認されたものを×(劣る)とした。 The obtained liquid crystal display panel was stored in a thermostatic bath at 70 ° C. and 95% RH for 500 hours. Color unevenness generated in the liquid crystal around the seal portion before and after storage was visually observed. The case where no color unevenness was confirmed was rated as ◎ (very excellent); the case where almost no color unevenness was confirmed was evaluated as ◯ (excellent); the confirmed result as Δ;
 さらに、恒温槽で保存後、取り出した液晶表示パネルを、直流電源装置により5Vの印加電圧で駆動させた。液晶シール剤近傍の液晶表示機能が、駆動初期から正常に機能するか否かによって、液晶表示パネルの表示特性を評価した。表示特性は、シール際まで液晶表示機能が正常に発揮できている場合を◎(優れる)、シール際の近傍0.1mm未満で液晶表示機能の異常が確認された場合を○(良い)、シール際の近傍0.1mmを超え0.3mm未満で液晶表示機能の異常が確認された場合を△(やや劣る)、シール際の近傍0.3mmを超えて表示機能の異常が確認された場合を×(劣る)とした。 Further, after being stored in a thermostatic chamber, the taken out liquid crystal display panel was driven with an applied voltage of 5 V by a DC power supply device. The display characteristics of the liquid crystal display panel were evaluated depending on whether the liquid crystal display function in the vicinity of the liquid crystal sealant functions normally from the beginning of driving. As for the display characteristics, ◎ (excellent) when the liquid crystal display function can be exhibited normally until sealing, ◯ (good) when abnormality of the liquid crystal display function is confirmed near 0.1 mm when sealing, △ (slightly inferior) when the liquid crystal display function abnormality is confirmed in the vicinity of 0.1 mm and less than 0.3 mm, and the display function abnormality is confirmed in the vicinity of 0.3 mm when the seal is exceeded. X (Inferior).
 4)接着強度
 前記3)において、恒温槽で保存した後の液晶表示パネルのサンプルについて、引張り試験装置(インテスコ製)を用いて、引張り速度2m/分で平面引張り強度を測定した。接着性は、以下のように評価した。
 接着強度が20MPa以上:◎(優れる)
 接着強度が15MPa以上20MPa未満:○(優れる)
 接着強度が7MPa以上15MPa未満:△(やや劣る)
 接着強度が7MPa未満:×(劣る)
4) Adhesive strength In the above 3), the plane tensile strength of the liquid crystal display panel sample after storage in a thermostat was measured at a tensile speed of 2 m / min using a tensile tester (manufactured by Intesco). Adhesiveness was evaluated as follows.
Adhesive strength of 20 MPa or more: ◎ (Excellent)
Adhesive strength is 15 MPa or more and less than 20 MPa: ○ (excellent)
Adhesive strength is 7 MPa or more and less than 15 MPa: Δ (slightly inferior)
Adhesive strength is less than 7 MPa: x (inferior)
 5)ギャップ精度
 実施例及び比較例で得られた液晶シール剤を、ディスペンサー(ショットマスター:武蔵エンジニアリング製)により、透明電極と配向膜が予め形成された40mm×45mmガラス基板(EHC社製、RT-DM88-PIN)上に、35mm×40mmの四角形のシールパターン(断面積3000μm)(メインシール)を形成した。その後、外周のシールパターンは形成しなかった。対になる基板を貼り合せた後のシール剤の線幅を測定し、その値より、ギャップ精度を確認した。シール線幅が、1mm未満は、○(優れる)、1mm以上は×(劣る)とした。
5) Gap accuracy The liquid crystal sealants obtained in the examples and comparative examples were transferred to a 40 mm × 45 mm glass substrate (RT manufactured by EHC, RT) on which a transparent electrode and an alignment film were previously formed by a dispenser (shot master: manufactured by Musashi Engineering). A square seal pattern (cross-sectional area of 3000 μm 2 ) (main seal) of 35 mm × 40 mm was formed on (DM88-PIN). Thereafter, the outer peripheral seal pattern was not formed. The line width of the sealing agent after bonding the paired substrates was measured, and the gap accuracy was confirmed from the value. When the seal line width was less than 1 mm, it was evaluated as ◯ (excellent) and 1 mm or more as x (inferior).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1及び表2から軟化点が50~90℃の多価フェノール硬化剤、融点が23℃以下の2級多価チオール硬化剤、融点が60~180℃の1級多価アミン硬化剤からなる群から選択される2種類以上の硬化剤を用いた場合には、粘度安定性、シール塗布性、接着強度、表示状態、高温高湿信頼性、及びギャップ精度がいずれも優れることがわかる(実施例1~11)。 From Tables 1 and 2, a polyhydric phenol curing agent having a softening point of 50 to 90 ° C., a secondary polyvalent thiol curing agent having a melting point of 23 ° C. or less, and a primary polyvalent amine curing agent having a melting point of 60 to 180 ° C. When two or more kinds of curing agents selected from the group are used, it can be seen that the viscosity stability, seal coatability, adhesive strength, display state, high temperature and high humidity reliability, and gap accuracy are all excellent. examples 1 to 11).
 一方、軟化点が50~90℃の多価フェノール硬化剤のみを用いた場合(比較例1)には、接着強度が低く、表示状態及び高温高湿信頼性が実施例1~11と比較してやや劣る。また、融点が23℃以下の2級多価チオール硬化剤のみを用いた場合(比較例2)には、粘度安定性、接着強度、表示状態、高温高湿信頼性で、いずれも実施例1~11より劣る。さらに、融点が60~180℃の1級多価アミン硬化剤のみを用いた場合(比較例3)には、粘度安定性が低く、シール塗布性、ギャップ精度が低下する。 On the other hand, when only the polyhydric phenol curing agent having a softening point of 50 to 90 ° C. is used (Comparative Example 1), the adhesive strength is low, and the display state and the high temperature and high humidity reliability are slightly higher than those of Examples 1 to 11. Ya inferior. In addition, when only a secondary polyvalent thiol curing agent having a melting point of 23 ° C. or less was used (Comparative Example 2), all of Example 1 were used for viscosity stability, adhesive strength, display state, and high temperature and high humidity reliability. inferior to 11. Further, when only a primary polyvalent amine curing agent having a melting point of 60 to 180 ° C. is used (Comparative Example 3), the viscosity stability is low, and the seal coating property and the gap accuracy are lowered.
 また、軟化点が50~90℃の多価フェノール硬化剤、融点が23℃以下の2級多価チオール硬化剤、融点が60~180℃の1級多価アミン硬化剤からなる群から選択される2種類以上の硬化剤を用いた場合であっても、その量が、液晶シール剤100質量部に対して4質量部未満となる場合(比較例5)には、接着強度、表示状態、及び高温高湿信頼性が低下する。一方、上記硬化剤の量が液晶シール剤100質量部に対して30質量部超となる場合(比較例4)には、粘度安定性、接着強度、表示状態、高温高湿信頼性が低下し、ギャップ精度が劣る。 Also, selected from the group consisting of a polyhydric phenol curing agent having a softening point of 50 to 90 ° C, a secondary polyvalent thiol curing agent having a melting point of 23 ° C or lower, and a primary polyvalent amine curing agent having a melting point of 60 to 180 ° C. Even when two or more kinds of curing agents are used, when the amount is less than 4 parts by mass with respect to 100 parts by mass of the liquid crystal sealant (Comparative Example 5), the adhesive strength, the display state, In addition, high temperature and high humidity reliability is reduced. On the other hand, when the amount of the curing agent exceeds 30 parts by mass with respect to 100 parts by mass of the liquid crystal sealant (Comparative Example 4), the viscosity stability, the adhesive strength, the display state, and the high temperature and high humidity reliability decrease. , poor gap accuracy.
 さらに、2級多価チオール硬化剤の代わりに、1級多価チオール硬化剤を用いた場合(比較例6及び比較例8)には、粘度安定性が低下し、接着強度、表示状態、高温高湿信頼性も低下する。また、フェノール硬化剤の軟化点が90℃超となる場合(比較例7)には、接着強度が低下し、表示状態及び高温高湿信頼性も低下する。 Further, when the primary polyvalent thiol curing agent is used instead of the secondary polyvalent thiol curing agent (Comparative Example 6 and Comparative Example 8), the viscosity stability is lowered, and the adhesive strength, display state, high temperature high-humidity reliability is also reduced. Moreover, when the softening point of a phenol hardening agent exceeds 90 degreeC (comparative example 7), adhesive strength falls and a display state and high temperature, high humidity reliability also fall.
 本発明の液晶シール剤は、硬化剤に由来する粉体成分が少ないため、液晶シール剤を塗布し、細いシール部材を形成する際にも、塗工安定性を良好なものとすることができる。また、接着強度や粘度安定性にも優れるため、表示信頼性に優れた液晶パネルを提供できる。このため、本発明の液晶シール剤は、液晶表示パネルの製造に好適である。 Since the liquid crystal sealant of the present invention has few powder components derived from the curing agent, the coating stability can be improved even when the liquid crystal sealant is applied to form a thin seal member. . Moreover, since it is excellent in adhesive strength and viscosity stability, a liquid crystal panel excellent in display reliability can be provided. For this reason, the liquid-crystal sealing compound of this invention is suitable for manufacture of a liquid crystal display panel.

Claims (11)

  1.  (1)分子内にエポキシ基と(メタ)アクリル基とを含む(メタ)アクリル変性エポキシ樹脂と、(2)硬化剤と、(3)光開始剤と、を含む液晶シール剤であって、
     前記成分(2)が、軟化点が50~90℃の多価フェノール硬化剤、融点が23℃以下の2級多価チオール硬化剤、融点が60~180℃の1級多価アミン硬化剤からなる群から選択される2種類以上の硬化剤であり、かつ
     前記成分(2)を、前記液晶シール剤100質量部に対して4~30質量部含有する、液晶シール剤。
    (1) A liquid crystal sealant comprising a (meth) acryl-modified epoxy resin containing an epoxy group and a (meth) acryl group in the molecule, (2) a curing agent, and (3) a photoinitiator,
    The component (2) is a polyhydric phenol curing agent having a softening point of 50 to 90 ° C., a secondary polyvalent thiol curing agent having a melting point of 23 ° C. or less, and a primary polyvalent amine curing agent having a melting point of 60 to 180 ° C. A liquid crystal sealing agent comprising two or more kinds of curing agents selected from the group consisting of 4 to 30 parts by mass of the component (2) with respect to 100 parts by mass of the liquid crystal sealing agent.
  2.  前記液晶シール剤100質量部に対して、前記成分(1)を5~95質量部、前記成分(3)を0.01~5質量部、含有する請求項1に記載の液晶シール剤。 The liquid crystal sealant according to claim 1, comprising 5 to 95 parts by mass of the component (1) and 0.01 to 5 parts by mass of the component (3) with respect to 100 parts by mass of the liquid crystal sealant.
  3.  さらに、前記液晶シール剤100質量部に対して、(メタ)アクリレートモノマーおよび/またはオリゴマーを1~50質量部を含有する請求項1に記載の液晶シール剤。 The liquid crystal sealant according to claim 1, further comprising 1 to 50 parts by mass of a (meth) acrylate monomer and / or oligomer with respect to 100 parts by mass of the liquid crystal sealant.
  4.  分子内に2以上のエポキシ基を有するエポキシ樹脂をさらに含み、前記エポキシ樹脂がビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルエーテル型エポキシ樹脂、およびトリスフェノール型エポキシ樹脂からなる群より選ばれる少なくとも1種類の2官能または3官能のエポキシ樹脂である請求項1に記載の液晶シール剤。 An epoxy resin having two or more epoxy groups in the molecule, wherein the epoxy resin is at least one selected from the group consisting of a bisphenol type epoxy resin, a biphenyl type epoxy resin, a biphenyl ether type epoxy resin, and a trisphenol type epoxy resin; The liquid crystal sealant according to claim 1, which is a kind of bifunctional or trifunctional epoxy resin.
  5.  環球法により測定される軟化点温度が50~120℃の熱可塑性ポリマーを含み、かつ数平均粒子径が0.05~5μmである熱可塑性ポリマー微粒子をさらに含有する、請求項1に記載の液晶シール剤。 2. The liquid crystal according to claim 1, further comprising thermoplastic polymer fine particles containing a thermoplastic polymer having a softening point temperature of 50 to 120 ° C. measured by a ring and ball method and having a number average particle diameter of 0.05 to 5 μm. Sealing agent.
  6.  前記液晶シール剤100質量部に対して、充填剤を1~50質量部含有する請求項1に記載の液晶シール剤。 The liquid crystal sealing agent according to claim 1, comprising 1 to 50 parts by mass of a filler with respect to 100 parts by mass of the liquid crystal sealing agent.
  7.  前記液晶シール剤100質量部に対して、エポキシ樹脂の硬化触媒を0.1~5質量部含有する請求項1に記載の液晶シール剤。 The liquid crystal sealant according to claim 1, comprising 0.1 to 5 parts by mass of an epoxy resin curing catalyst with respect to 100 parts by mass of the liquid crystal sealant.
  8.  液晶滴下工法による液晶表示パネルの製造に用いられる、請求項1に記載の液晶シール剤。 The liquid crystal sealing agent according to claim 1, which is used for production of a liquid crystal display panel by a liquid crystal dropping method.
  9.  表示基板及び、それと対になる対向基板を準備し、一方の基板に請求項1に記載の液晶シール剤を用いてシールパターンを形成する工程、
     前記シールパターンが未硬化の状態において前記基板のシールパターン領域内、または前記基板と対になる他方の基板に液晶を滴下する工程、
     前記一方の基板と、前記他方の基板とを重ね合わせる工程、および
     前記シールパターンを光硬化させた後、熱硬化させる工程、を含む液晶表示パネルの製造方法。
    Preparing a display substrate and a counter substrate to be paired with the display substrate, and forming a seal pattern on one substrate using the liquid crystal sealant according to claim 1;
    Dropping the liquid crystal in the seal pattern region of the substrate in the uncured state of the seal pattern, or on the other substrate paired with the substrate;
    A method for manufacturing a liquid crystal display panel, comprising: a step of superimposing the one substrate on the other substrate; and a step of thermally curing the seal pattern after photocuring.
  10.  前記シールパターンを形成する工程が、前記液晶シール剤を用いて、ダミーパターンを形成せずに前記シールパターンのみを形成する工程である請求項9に記載の液晶表示パネルの製造方法。 The method for manufacturing a liquid crystal display panel according to claim 9, wherein the step of forming the seal pattern is a step of forming only the seal pattern without forming a dummy pattern using the liquid crystal sealant.
  11.  表示基板と、
     前記表示基板と対になる対向基板と、
     前記表示基板と、前記対向基板との間に介在する、枠状のシール部材と、
     前記表示基板と前記対向基板との間の、前記シール部材で囲まれた空間に充填された液晶層と、を含む液晶表示パネルであって、
     前記シール部材は、請求項1に記載の液晶シール剤の硬化物である、液晶表示パネル。
     
    A display board;
    A counter substrate paired with the display substrate;
    A frame-shaped sealing member interposed between the display substrate and the counter substrate;
    A liquid crystal display panel including a liquid crystal layer filled in a space surrounded by the seal member between the display substrate and the counter substrate,
    The liquid crystal display panel, wherein the seal member is a cured product of the liquid crystal sealant according to claim 1.
PCT/JP2012/001114 2011-03-28 2012-02-20 Liquid crystal sealing agent, method for producing liquid crystal display device using same, and liquid crystal display panel WO2012132203A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137025370A KR101486689B1 (en) 2011-03-28 2012-02-20 Liquid crystal sealing agent, method for producing liquid crystal display device using same, and liquid crystal display panel
CN201280015718.7A CN103477274B (en) 2011-03-28 2012-02-20 Liquid crystal sealing agent, the manufacture method using its display panels and display panels
JP2013507093A JP5986987B2 (en) 2011-03-28 2012-02-20 Liquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011069429 2011-03-28
JP2011-069429 2011-03-28

Publications (1)

Publication Number Publication Date
WO2012132203A1 true WO2012132203A1 (en) 2012-10-04

Family

ID=46929999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001114 WO2012132203A1 (en) 2011-03-28 2012-02-20 Liquid crystal sealing agent, method for producing liquid crystal display device using same, and liquid crystal display panel

Country Status (5)

Country Link
JP (1) JP5986987B2 (en)
KR (1) KR101486689B1 (en)
CN (1) CN103477274B (en)
TW (1) TWI532759B (en)
WO (1) WO2012132203A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098874A1 (en) * 2013-12-24 2015-07-02 株式会社ブリヂストン Composition, adhesive, and laminate body
EP3088484A1 (en) * 2013-12-24 2016-11-02 Bridgestone Corporation Adhesive sheet, manufacturing method therefor, and laminate
WO2016181840A1 (en) * 2015-05-08 2016-11-17 積水化学工業株式会社 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP2017134124A (en) * 2016-01-25 2017-08-03 三井化学株式会社 Photocurable resin composition, display element sealant, and liquid crystal display panel
JP2018022052A (en) * 2016-08-04 2018-02-08 日本化薬株式会社 Liquid crystal sealant and liquid crystal display cell using the same
WO2018201428A1 (en) * 2017-05-05 2018-11-08 Henkel Ag & Co. Kgaa Thermally curable sealant composition and use thereof
WO2019031401A1 (en) * 2017-08-10 2019-02-14 シャープ株式会社 Sealing material composition, liquid crystal cell and scanning antenna
WO2022071404A1 (en) * 2020-09-30 2022-04-07 積水化学工業株式会社 Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101974708B1 (en) * 2014-07-24 2019-05-02 미쓰이 가가쿠 가부시키가이샤 Liquid crystal sealing agent and production method for liquid crystal display panel
WO2017038611A1 (en) * 2015-09-02 2017-03-09 積水化学工業株式会社 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004126211A (en) * 2002-10-02 2004-04-22 Mitsui Chemicals Inc Resin composition for sealing liquid crystal, and method of manufacturing liquid crystal display panel
JP2009086291A (en) * 2007-09-28 2009-04-23 Mitsui Chemicals Inc Liquid crystal sealing material, method for manufacturing liquid crystal display panel using the same, and liquid crystal display panel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583326B2 (en) 1999-11-01 2004-11-04 協立化学産業株式会社 Sealant for dripping method of LCD panel
TW200303439A (en) * 2002-02-04 2003-09-01 Mitsui Chemicals Inc Method for producing liquid crystal display cell and sealing agent for liquid crystal display cell
KR100628363B1 (en) * 2002-11-01 2006-09-27 미쓰이 가가쿠 가부시키가이샤 Sealant composition for liquid crystal and process for producing liquid crystal display panel with the same
CN101617267B (en) * 2007-02-20 2012-08-15 三井化学株式会社 Curable resin composition for sealing liquid crystal, and method for production of liquid crystal display panel using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004126211A (en) * 2002-10-02 2004-04-22 Mitsui Chemicals Inc Resin composition for sealing liquid crystal, and method of manufacturing liquid crystal display panel
JP2009086291A (en) * 2007-09-28 2009-04-23 Mitsui Chemicals Inc Liquid crystal sealing material, method for manufacturing liquid crystal display panel using the same, and liquid crystal display panel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHOWA DENKO KABUSHIKI KAISHA: "SHOWA DENKO KarenzMT", Retrieved from the Internet <URL:http://www.karenz.jp/en/mt/index.html> *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10414131B2 (en) 2013-12-24 2019-09-17 Bridgestone Corporation Adhesive sheet, manufacturing method therefor, and laminate
EP3088484A1 (en) * 2013-12-24 2016-11-02 Bridgestone Corporation Adhesive sheet, manufacturing method therefor, and laminate
EP3088484A4 (en) * 2013-12-24 2016-11-02 Bridgestone Corp Adhesive sheet, manufacturing method therefor, and laminate
JPWO2015098874A1 (en) * 2013-12-24 2017-03-23 株式会社ブリヂストン Composition, adhesive and laminate
US9637666B2 (en) 2013-12-24 2017-05-02 Bridgestone Corporation Composition, adhesive and layered body
WO2015098874A1 (en) * 2013-12-24 2015-07-02 株式会社ブリヂストン Composition, adhesive, and laminate body
WO2016181840A1 (en) * 2015-05-08 2016-11-17 積水化学工業株式会社 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6046866B1 (en) * 2015-05-08 2016-12-21 積水化学工業株式会社 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP2017134124A (en) * 2016-01-25 2017-08-03 三井化学株式会社 Photocurable resin composition, display element sealant, and liquid crystal display panel
CN108495869A (en) * 2016-01-25 2018-09-04 三井化学株式会社 Photocurable resin composition, display element sealant, liquid crystal display element sealant and liquid crystal display panel and its manufacturing method
CN108495869B (en) * 2016-01-25 2021-05-28 三井化学株式会社 Photocurable resin composition, display element sealant, liquid crystal display panel, and method for producing same
JP2018022052A (en) * 2016-08-04 2018-02-08 日本化薬株式会社 Liquid crystal sealant and liquid crystal display cell using the same
WO2018201428A1 (en) * 2017-05-05 2018-11-08 Henkel Ag & Co. Kgaa Thermally curable sealant composition and use thereof
CN110998426A (en) * 2017-08-10 2020-04-10 夏普株式会社 Sealing material composition, liquid crystal cell and scanning antenna
WO2019031401A1 (en) * 2017-08-10 2019-02-14 シャープ株式会社 Sealing material composition, liquid crystal cell and scanning antenna
CN110998426B (en) * 2017-08-10 2022-11-15 夏普株式会社 Liquid crystal antenna
US11581642B2 (en) 2017-08-10 2023-02-14 Sharp Kabushiki Kaisha Sealing material composition, liquid crystal cell and scanning antenna
WO2022071404A1 (en) * 2020-09-30 2022-04-07 積水化学工業株式会社 Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JPWO2022071404A1 (en) * 2020-09-30 2022-04-07
JP7151003B2 (en) 2020-09-30 2022-10-11 積水化学工業株式会社 Sealant for liquid crystal dropping method, vertical conduction material, and liquid crystal display element

Also Published As

Publication number Publication date
CN103477274A (en) 2013-12-25
KR101486689B1 (en) 2015-01-26
JPWO2012132203A1 (en) 2014-07-24
TWI532759B (en) 2016-05-11
JP5986987B2 (en) 2016-09-06
TW201242986A (en) 2012-11-01
CN103477274B (en) 2016-04-13
KR20130129448A (en) 2013-11-28

Similar Documents

Publication Publication Date Title
JP5986987B2 (en) Liquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
TWI453512B (en) Liquid crystal sealing agent, fabricating method for liquid crystal display panel by using thereof and liquid crystal display panel
JP5547642B2 (en) Liquid crystal sealant, liquid crystal display panel using the same, manufacturing method thereof, and liquid crystal display device
JP5008682B2 (en) Sealant for liquid crystal dropping method containing photo-curing resin and thermosetting resin
WO2011118191A1 (en) Liquid crystal sealing agent, method for producing liquid crystal display panel using same, and liquid crystal display panel
JP4815027B1 (en) Liquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
TWI698486B (en) Photocurable resin composition, display element sealant, liquid crystal sealant, liquid crystal display panel and manufacturing method thereof
JP4948317B2 (en) Liquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
JP2017223828A (en) Sealant for liquid crystal dropping method, liquid crystal display panel, and method for manufacturing liquid crystal display panel
JP2011219682A (en) Curable resin composition
JP6793471B2 (en) Sealing material for liquid crystal dropping method, liquid crystal display panel and manufacturing method of liquid crystal display panel
WO2016067582A1 (en) Method for producing liquid crystal display panel, liquid crystal display panel and liquid crystal sealing agent composition
JP2013018810A (en) Curable resin composition
JP6370382B2 (en) Liquid crystal sealant and liquid crystal display panel manufacturing method
JP2003119249A (en) Liquid crystal sealing resin composition
JP4845667B2 (en) Liquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
TWI723102B (en) Display element sealant, liquid crystal display panel and manufacturing method thereof
JP5424411B2 (en) Liquid crystal display panel manufacturing method and liquid crystal display panel
JP6793470B2 (en) Sealing material for liquid crystal dripping method, liquid crystal display panel and manufacturing method of liquid crystal display panel
WO2015025522A1 (en) Liquid crystal sealing agent, and method for manufacturing liquid crystal display panel
JP5032340B2 (en) Liquid crystal sealing agent and liquid crystal panel manufacturing method using the same
TW202244241A (en) Photocurable resin composition, liquid crystal sealing agent, liquid crystal display panel using same, and production method therefor
JP2007225773A (en) Liquid crystal sealing agent for liquid crystal dropping process, method for producing liquid crystal display panel using the same and liquid crystal display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765110

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507093

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137025370

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765110

Country of ref document: EP

Kind code of ref document: A1