WO2020233336A1 - 密封导管接头 - Google Patents

密封导管接头 Download PDF

Info

Publication number
WO2020233336A1
WO2020233336A1 PCT/CN2020/086471 CN2020086471W WO2020233336A1 WO 2020233336 A1 WO2020233336 A1 WO 2020233336A1 CN 2020086471 W CN2020086471 W CN 2020086471W WO 2020233336 A1 WO2020233336 A1 WO 2020233336A1
Authority
WO
WIPO (PCT)
Prior art keywords
bead
annular ring
joint
main body
pipe
Prior art date
Application number
PCT/CN2020/086471
Other languages
English (en)
French (fr)
Inventor
贾建东
张虞旭驹
潘哲
Original Assignee
杭州科百特过滤器材有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州科百特过滤器材有限公司 filed Critical 杭州科百特过滤器材有限公司
Publication of WO2020233336A1 publication Critical patent/WO2020233336A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L19/00Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on or into one of the joint parts
    • F16L19/02Pipe ends provided with collars or flanges, integral with the pipe or not, pressed together by a screwed member
    • F16L19/0206Pipe ends provided with collars or flanges, integral with the pipe or not, pressed together by a screwed member the collar not being integral with the pipe
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L19/00Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on or into one of the joint parts
    • F16L19/02Pipe ends provided with collars or flanges, integral with the pipe or not, pressed together by a screwed member
    • F16L19/0212Pipe ends provided with collars or flanges, integral with the pipe or not, pressed together by a screwed member using specially adapted sealing means
    • F16L19/0225Pipe ends provided with collars or flanges, integral with the pipe or not, pressed together by a screwed member using specially adapted sealing means without sealing rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L19/00Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on or into one of the joint parts
    • F16L19/02Pipe ends provided with collars or flanges, integral with the pipe or not, pressed together by a screwed member
    • F16L19/0237Pipe ends provided with collars or flanges, integral with the pipe or not, pressed together by a screwed member specially adapted for use with attachments, e.g. reduction units, T-pieces, bends or the like

Definitions

  • the present invention relates to a joint, more specifically, it relates to a sealed conduit joint.
  • a resin pipe joint which includes a joint body, a sleeve and a fastener; when it is used, the pipe is sleeved on one end of the sleeve, and then the sleeve The other end of the tube is connected to the main body of the joint, and finally a fastener is used to further fasten the pipe and the sleeve to the main body of the joint. In this way, the sealing connection effect at the joint of the pipe is realized.
  • a resin pipe joint which also includes a joint body, a sleeve and a fastener.
  • the pipe is sleeved on one end of the sleeve, and then the sleeve The other end of the tube is connected with the joint body, and finally the pipe and the sleeve are further fastened to the joint body with a fastener.
  • the insertion rate and magnification of the insertion portion into the groove portion are further limited, so as to achieve a better sealing effect.
  • the purpose of the present invention is to provide a sealed pipe joint that can utilize the kinetic energy of fluid flow inside the pipe joint to make the pipe joint have better sealing performance.
  • a sealed pipe joint comprising: a joint main body, a bead and a nut;
  • the joint main body has a main body cylinder, an outer cylinder and an inner cylinder, the outer
  • the tube portion coaxially protrudes from the main body tube portion to one side of the axis direction, the outer tube portion and the inner tube portion are surrounded to form a groove portion that opens to the axis direction side, and the inner tube portion is provided in A radially inner side of the outer cylindrical portion and the protruding end of the outer cylindrical portion is closer to the main body cylindrical portion side than the protruding end of the outer cylindrical portion coaxially protrudes from the main body cylindrical portion in the same direction as the outer cylindrical portion;
  • the connector body has a cylindrical embedded end and a pipe connecting end away from the embedded end.
  • the embedded end is detachably embedded inside the groove to form a sealing portion; the pipe connecting end is radially protruding in a direction away from the axis;
  • the nut is threadedly connected with the main body of the joint; the inside of the main body of the joint and the bead are provided with a flow passage for fluid circulation;
  • the pipe joint is characterized in that: an annular ring is provided in the inner circumference of the flow passage inside the bead , The annular ring is arranged protrudingly toward the axis of the bead.
  • the annular ring is at least partially arranged at a position in the flow channel corresponding to the connecting end of the conduit.
  • the annular ring is stepped along the axial section of the bead and extends to the embedding end of the bead or the connecting end of the pipe.
  • the annular ring includes a first surface and a second surface that form a certain angle with the inner wall of the flow channel.
  • the present invention is further provided that: the first surface and the second surface are respectively smoothly connected with the surface of the flow channel through an arc surface.
  • the present invention is further provided that: the first surface and the second surface are connected to a horizontal connecting surface through an arc surface.
  • the present invention is further configured as follows: the height of the annular ring protrusion is set to be between 0.1 mm and 3 mm; the width of the annular ring is set to at least 0.1 mm.
  • the included angle between the first surface and the second surface and the inner wall of the flow channel is set between 20° and 90°.
  • the present invention is further configured that: the axial length of the horizontal connecting surface is set between 0.1 and 3 mm.
  • the first surface and the second surface are both arcuate surfaces and have the same curvature.
  • the annular ring protruding radially inward receives the impact force generated by the fluid on it, and its direction is the same as that of the fluid.
  • the flow direction is the same, and because the annular ring is fixed inside the flow channel, more specifically, the entire bead is integrally formed, so when the annular ring is subjected to fluid impact, it can be equivalent to the bead being subjected to fluid flow along Directional impact, so that the beads have a tendency to move along the direction of fluid flow.
  • the end of the bead is the embedding end of the main body of the bead.
  • the impact force of the fluid impact can be used to increase the sealing pressure on the embedded end and make the sealing effect of the embedded end Better; if the direction of the impact force is opposite to the embedding direction of the inserting end into the main body of the joint, the bead will move towards the nut, so that the first seal is formed between the bead, the pipe and the nut The sealing pressure of the surface is increased, so that the impact force of the fluid impact is used to enhance the sealing effect of the first sealing surface.
  • Figure 1 is a schematic structural diagram of Embodiment 1 of a sealed conduit joint of the present invention
  • FIG. 2 is a schematic diagram of the structure of the bead in the first embodiment of the sealed conduit joint of the present invention
  • Fig. 3 is a schematic diagram of the structure of the beads, the nut and the pipe fixing in the first embodiment of the sealed pipe joint of the present invention
  • FIG. 4 is a schematic diagram of the cross-sectional shape of the bead-entry ring in the second embodiment of the sealed conduit joint of the present invention.
  • FIG. 5 is a schematic diagram of the structure of the bead in the third embodiment of the sealed pipe joint of the present invention.
  • FIG. 6 is a schematic diagram of the structure of the bead insertion, the screw cap and the pipe fixing in the third embodiment of the sealed pipe joint of the present invention
  • FIG. 7 is a schematic diagram of the cross-sectional shape of the bead-entry ring in the third embodiment of the sealed pipe joint of the present invention.
  • FIG. 8 is a schematic diagram of the structure of the four-bead in the sealed conduit joint embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the structure of the bead insertion, the screw cap and the fixing of the pipe in the fourth embodiment of the sealed pipe joint of the present invention.
  • FIG. 10 is a schematic diagram of the cross-sectional shape of the bead-entry ring in the fourth embodiment of the sealed pipe joint of the present invention.
  • FIG. 11 is a schematic diagram of the structure of the bead in the fifth embodiment of the sealed conduit joint of the present invention.
  • FIG. 12 is a schematic diagram of the structure of the bead inserting, the screw cap, and the pipe fixing in Embodiment 5 of the sealed pipe joint of the present invention
  • FIG. 13 is a schematic diagram of the cross-sectional shape of the bead-entering annular ring in Embodiment 5 of the sealed conduit joint of the present invention.
  • FIG. 14 is a schematic view of the structure of the bead in the sixth embodiment of the sealed conduit joint of the present invention.
  • 15 is a schematic diagram of the structure of the bead in the seventh embodiment of the sealed conduit joint of the present invention.
  • Figure 16 is a schematic diagram of fluid flowing from left to right in the first embodiment
  • Figure 17 is a schematic diagram of fluid flowing from right to left in the first embodiment.
  • a flow channel 5 for fluid circulation is provided in the inside of the tube, and an annular ring 7 is provided in the circumferential direction of the flow channel 5 at the connecting end 22 of the pipe, and the annular ring 7 protrudes toward the axis of the bead 2. Since the annular ring 7 is a structure that is often subjected to fluid impact during use, the position of the annular ring 7 is set in the flow channel 5 at a thicker part of the pipe connecting end 22 corresponding to the bead 2.
  • the cross-sectional shape of the annular ring 7 along the axial section of the bead 2 is set to be an isosceles triangle, and the slopes corresponding to the two waist lines are the first surface 71 and the second surface 72.
  • the first surface 71 The number of acute angles between the second surface 72 and the inner surface of the flow channel 5 is set to 60°.
  • the height of the annular ring 7 is set to 1 mm to ensure that the annular groove can better receive the impact force of the fluid in the flow channel 5 against it.
  • the joint main body 1 has a main body cylinder portion 11, an outer cylinder portion 12, and an inner cylinder portion 13.
  • the outer cylinder portion 12 and the inner cylinder portion 13 are surrounded and formed with a groove portion that opens to one side in the axial direction. 14.
  • the opening direction of the groove portion 14 faces the side of the bead 2; and a chamfer is provided at the end of the outer cylinder 12 away from the main cylinder 11 to facilitate the embedding of the bead 2; further, the bead 2 includes an embedded joint body The embedded end 21 of 1 and the pipe connecting end 22 which is far away from the embedded end 21 and connected to the pipe 4, where the embedded end 21 and the groove 14 are embedded and fitted to form a sealing part, so as to realize the detachability between the bead 2 and the joint body 1. Ground sealing connection.
  • the pipe connecting end 22 of the bead 2 is arranged protrudingly away from the axis; the inner diameter of the nut 3 on the side away from the joint body 1 is larger than the inner diameter of the bead 2 and smaller than the maximum outer diameter of the connecting end protrusion. path.
  • This arrangement enables the edge of the screw cap 3 to be pressed into the convex surface of the pipe connecting end 22 of the bead 2 through the pipe 4 when the screw cap 3 is tightened; at the same time, this arrangement makes the pipe connecting end 22 and the pipe 4 sleeved on its surface It is not easy to fall off.
  • Such a connection method forms a first sealing surface 6 between the pipe 4 and the pipe connecting end 22.
  • the outer surface of the protruding pipe connecting end 22 as a slope, and a horizontal end surface is provided on the outer surface, and the horizontal end surface is used to increase the protruding part and
  • the contact area between the ducts 4 increases the friction between the ducts 4 and makes them difficult to fall off.
  • the sharp angles of the protrusions are dulled to reduce damage to the ducts 4 and increase their service life.
  • Working condition 1 The fluid flows out from the joint body 1, flows through the bead 2, and finally flows into the conduit 4.
  • the flow direction of the fluid is V1.
  • an impact force is generated on the annular ring 7.
  • the bead 2 generates a horizontal rightward impact, and under the impact of this impact, the sealing pressure at the first sealing surface 6 is increased, so that the impact of the fluid is used to improve the sealing effect of the entire sealed conduit joint.
  • Working condition 2 The fluid flows in from the pipe 4, flows through the bead 2, and finally flows into the joint body 1.
  • the flow direction of the fluid is V2.
  • an impact force is generated on the annular ring 7. Since the annular ring 7 and the beads 2 are integrated, the impact force of the fluid is The bead 2 generates a horizontal leftward impact force, and under this impact force, the embedding end 21 of the bead 2 can obtain a horizontal leftward force in the embedding direction, thereby increasing the embedding of the bead 2 into the joint
  • the airtightness at the main body 1 improves the airtightness of the sealing portion, thereby improving the sealing effect of the entire sealed pipe joint as a whole.
  • a sealed pipe joint compared with the first embodiment, the difference is: the connection between the annular ring 7 of the inner flow channel 5 of the bead 2 and the flow channel 5 is formed by an arc 74 That is, the first surface 71 and the inner wall of the flow channel 5 are smoothly connected by the arc surface 74, and the second surface 72 and the inner wall of the flow channel 5 are also smoothly connected by the arc surface 74.
  • Such an arrangement can ensure the smoothness of the inside of the flow channel 5 and minimize the influence on the flow performance of the internal fluid.
  • Fig. 5, Fig. 6 and Fig. 7 are schematic diagrams of the structure of the sealed conduit joint of the third embodiment.
  • the third embodiment differs in that: in this embodiment, the cross-sectional shape of the annular ring 7 is set to a rectangle, that is, a horizontal connecting surface is connected between the first surface 71 and the second surface 72 73.
  • the annular ring 7 of the third embodiment can receive a greater fluid impact force.
  • the impact force of the fluid can be used to generate greater sealing pressure, so that the sealing effect is better.
  • connection between the first surface 71, the second surface 72 and the horizontal connecting surface 73 may also be set as an arc surface 74 to reduce the wear on the annular ring 7 and increase the service life of the product.
  • Figures 8, 9 and 10 are schematic diagrams of the structure of the sealed conduit joint of the fourth embodiment.
  • the difference from Embodiment 1 to Embodiment 3 is only in the cross-sectional shape of the annular ring 7.
  • the cross section of the annular ring 7 is set in an isosceles trapezoid shape, and the acute angle between the first surface 71, the second surface 72 and the flow channel 5 is 60°.
  • the arc surface 74 can be set at the junction of the first surface 71, the second surface 72 and the horizontal connecting surface 73, and the arc surface 74 is set at the junction of the first surface 71, the second surface 72 and the inner wall of the flow channel 5 at the same time. .
  • the configuration of the trapezoidal cross-section here enhances the structural strength of the annular ring 7 and can withstand greater or longer fluid impact.
  • the setting of the arc surface 74 can also ensure the overall smoothness of the flow channel 5 and minimize the impact on the fluid flow.
  • Fig. 11, Fig. 12 and Fig. 13 are schematic diagrams of the structure of the sealed conduit joint of the fifth embodiment.
  • the difference from Embodiment 1 to Embodiment 4 is only in the cross-sectional shape of the annular ring 7.
  • the shape of the cross-section of the annular ring 7 is set as an arc shape, that is, the first surface 71 and the second surface 72 are both set as an arc surface 74 with the same curvature.
  • the connection between the first surface 71, the second surface 72 and the inner wall of the flow channel 5 may be set as an arc surface 74 to ensure the smoothness of the flow channel 5 inside.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • Figure 14 is a schematic diagram of the structure of the sealed pipe joint of the sixth embodiment.
  • the annular ring 7 is arranged in a convex step shape, that is, only includes the first surface 71.
  • the annular ring 7 extends to the side of the bead 2 close to the joint body 1.
  • this arrangement has the advantage that the annular ring 7 can withstand greater impact force of the fluid and has a longer service life.
  • the disadvantage is that the method is affected by the direction of the fluid flow, and only when the fluid is free A better sealing effect can be achieved when flowing from right to left.
  • Fig. 15 is a schematic structural diagram of the sealed pipe joint of the seventh embodiment.
  • the annular ring 7 is arranged in a convex step shape, that is, only includes the second surface 72.
  • the annular ring 7 extends to the side of the bead 2 close to the nut 3.
  • this arrangement has the advantage that the annular ring 7 can withstand greater impact force of the fluid and has a longer service life.
  • the disadvantage is that the method is affected by the direction of the fluid flow, and only when the fluid is free A better sealing effect can be achieved when flowing from left to right.
  • the section of the annular ring 7 can be set as shown in Figure 10, that is, the shape in the fourth embodiment is the optimal In the solution, the included angle between the first surface 71, the second surface 72 and the inner wall of the flow channel 5 is set to 45° to enhance the structural strength of the annular ring 7 while ensuring greater impact from the fluid.
  • the following table 1 shows the leakage data of the annular groove with a cross section of an isosceles trapezoid and a bottom angle of 45° with a curved surface 74 at different heights and widths under normal temperature conditions of 0.75 MPa.
  • the following table 2 shows the cross section of the annular groove. Leakage data of the bead 2 with an isosceles trapezoid shape and a bottom angle of 45° with a curved surface 74 at different heights and widths under a working condition of 0.097MPa and 180°C.
  • the main parameter that affects the sealing performance is the radial height of the annular ring 7, and its width has little effect on the sealing performance (the width here is affected by the height of the annular ring 7 and the annular ring 7
  • the bottom angle and the width of the horizontal connecting surface 73 have little effect on the sealing performance, but have a certain impact on the service life of the sealed pipe joint); at the same time, considering the need to minimize the impact on the fluid flow in the flow channel 5 as much as possible.
  • the annular ring 7 has a cross-section is isosceles trapezoid, the bottom angle is 45°, the height is 1.1mm, the width is 2.2mm, and the axial length of the horizontal connecting surface 73 is 1.1mm, as the most Preferred embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gasket Seals (AREA)
  • Quick-Acting Or Multi-Walled Pipe Joints (AREA)
  • Joints With Pressure Members (AREA)

Abstract

一种密封导管接头,包括:接头主体(1)、入珠(2)和螺帽(3);接头主体(1)具有主体筒部(11)、外筒部(12)和内筒部(13),外筒部(12)从主体筒部(11)向其轴心方向一侧同轴地突出设置,外筒部(12)和内筒部(13)包围而形成有向轴心方向一侧开口的槽部(14),内筒部(13)设置于外筒部(12)的径向内侧且以使突出端比外筒部(12)的突出端更靠近主体筒部(11)侧的方式与外筒部(12)向相同方向从主体筒部(11)同轴地突出设置;入珠(2)包括嵌入接头主体(1)呈筒状的嵌入端(21)和远离嵌入端(21)的导管连接端(22),嵌入端(21)可拆卸地嵌入槽部(14)内侧以形成密封部;导管连接端(22)于远离轴心方向上径向凸出设置。

Description

密封导管接头 技术领域
本发明涉及一种接头,更具体地说,它涉及一种密封导管接头。
背景技术
在半导体制造、医疗和医药用品制造、食品加工及工业领域的制造工序中,需要使用各种流体(如高纯度药液、高纯度化学试剂等),而这些流体在机器设备中必然是通过导管进行输送的,导管和导管之间、导管和设备之间就需要有导管接头进行连接。若是导管接头的密封性不够好或是不达标,就会在接头处产生漏液等现象,显然这种情况是不能产生的,因此需要密封效果优异的导管接头来避免此类情况的发生。
目前,在公告号为JP2799562B2的日本专利文件中,公开了一种树脂管接头,包括接头主体、套筒和紧固件;在其使用时将导管套设于套筒的一端,再将套筒的另一端与接头主体连接,最后使用紧固件将导管和套筒更进一步地紧固于接头主体,通过这样的方式来实现导管接头处的密封连接效果。
而在授权公告号为CN1064461130B的发明专利文件中,公开了树脂制管接头,同样也包括接头主体、套筒和紧固件,使用时也是将导管套设于套筒的一端,再将套筒的另一端与接头主体连接,最后使用紧固件将导管和套筒更进一步地紧固于接头主体。在该方案中进一步限定了***部***槽部的***率和倍率,从而实现更好的密封效果。
由此可见,在现有技术的方案中,仅仅只利用了导管接头材料的特性和部分结构的特性,来提高导管连接时更好的密封效果。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种能够利用导管接头内部流体流动的动能而使导管接头具有更好密封性的密封导管接头。
为实现上述目的,本发明提供了如下技术方案:一种密封导管接头,包括:接头主体、入珠和螺帽;所述接头主体具有主体筒部、外筒部和内筒部,所述外筒部从主体筒部向其轴心方向一侧同轴地突出设置,所述外筒部和内筒部包围而形成有向轴心方向一侧开口的槽部,所述内筒部设置于外筒部的径向内侧且以使突出端比外筒部的突出端更靠近主体筒部侧的方式与外筒部向相同方向从主体筒部同轴地突出设置;所述入珠包括嵌入接头主体呈筒状的嵌入端和远离嵌入端的导管连接端,所述嵌入端可拆卸地嵌入槽部内侧以形成密封部;所述导管连接端于远离轴心方向上径向凸出设置;所述螺帽与接头主体螺纹连接;所述接头主体和入珠的内部均设置有用以流体流通的流道;所述导管接头其特征在于:所述入珠内部的流道内周向设置有环形圈,所述环形圈向入珠轴心方向凸出设置。
本发明进一步设置为:所述环形圈至少部分设置于流道内对应导管连接端的位置。
本发明进一步设置为:所述环形圈沿入珠轴向截面成台阶状,并延伸至入珠的嵌入端或导管连接端。
本发明进一步设置为:所述环形圈包括与流道内壁形成一定夹角的第一表面和第二表面。
本发明进一步设置为:所述第一表面和第二表面分别通过弧面与流道表面光滑连接。
本发明进一步设置为:所述第一表面和第二表面之间通过通过弧面与一水平连接面连接。
本发明进一步设置为:所述环形圈凸起的高度设置为0.1mm-3mm之间;所述环形圈的宽度设置为至少0.1mm。
本发明进一步设置为:所述第一表面和第二表面与流道内壁之间的夹角设置为20°-90°之间。
本发明进一步设置为:所述水平连接面的轴向长度设置为0.1-3mm之间。
本发明进一步设置为:所述第一表面和第二表面均设置为弧面且曲率相同。
通过采用上述技术方案,在导管接头具体使用的过程中,流道内的流体在流至环形圈位置处时,径向向内凸出的环形圈受到流体对它产生的冲击力,其方向与流体流动方向相同,又由于环形圈是固定在流道内部的,更具体地来说整个入珠是一体成型的,因此当环形圈受到流体冲击力时,即可等同于入珠受到了流体沿流动方向的冲击力,这样就使得入珠产生了一个沿着流体流动方向运动的趋势。入珠的一端是嵌入接头主体的嵌入端,若这个冲击力的方向和入珠嵌入接头主体的嵌入方向相同,就能够利用流体冲击的冲击力,提高对嵌入端的密封压力,使得嵌入端的密封效果更好;若这个冲击力的方向和嵌入端嵌入接头主体的嵌入方向相反,即将入珠产生一个向螺帽方向的运动趋势,这样就使得入珠、导管和螺帽之间形成的第一密封面的密封压力得到了提高,从而利用流体冲击的冲击力增强了第一密封面的密封效果。
附图说明
下面结合附图对本发明作进一步说明:
图1为本发明密封导管接头实施例一的结构示意图;
图2为本发明密封导管接头实施例一中入珠的结构示意图;
图3为本发明密封导管接头实施例一中入珠、螺帽和导管固定的结构示意 图;
图4为本发明密封导管接头实施例二中入珠环形圈截面形状的示意图;
图5为本发明密封导管接头实施例三中入珠的结构示意图;
图6为本发明密封导管接头实施例三中入珠、螺帽和导管固定的结构示意图;
图7为本发明密封导管接头实施例三中入珠环形圈截面形状的示意图;
图8为本发明密封导管接头实施例四入珠的结构示意图;
图9为本发明密封导管接头实施例四中入珠、螺帽和导管固定的结构示意图;
图10为本发明密封导管接头实施例四中入珠环形圈截面形状的示意图;
图11为本发明密封导管接头实施例五入珠的结构示意图;
图12为本发明密封导管接头实施例五中入珠、螺帽和导管固定的结构示意图;
图13为本发明密封导管接头实施例五中入珠环形圈截面形状的示意图;
图14为本发明密封导管接头实施例六入珠的结构示意图;
图15为本发明密封导管接头实施例七入珠的结构示意图;
图16为实施例一中流体自左向右流动的示意图;
图17为实施例一中流体自右向左流动的示意图。
图中:1、接头主体;11、主体筒部;12、外筒部;13、内筒部;14、槽部;2、入珠;21、嵌入端;22、导管连接端;3、螺帽;4、导管;5、流道;6、第一密封面;7、环形圈;71、第一表面;72、第二表面;73、水平连接面;74、弧面。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
参照图1至图17对本发明一种密封导管接头实施例做进一步说明。
实施例一:
如图1、图2和图3所示的一种密封导管接头,包括大体呈筒状的接头主体1、大体呈筒状的入珠2和大体呈筒状的螺帽3,入珠2的一端与接头主体1之间可拆卸地密封连接,在入珠2嵌入接头主体1的位置形成密封部;入珠2的另一端连接有导管4,螺帽3与接头主体1之间螺纹连接,且于连接时通过挤压入珠2将导管4紧固于接头主体1,同时在入珠2抵触导管4和螺帽3的表面形成第一密封面6;在接头主体1的和入珠2的内部均设置有用以流体流通的流道5,进一步在导管连接端22处的流道5内周向设置有一环形圈7,这个环形圈7向入珠2轴心方向凸出设置。由于在使用时,环形圈7为经常受到流体冲击力的结构,因此将环形圈7的位置设置在流道5内对应入珠2的导管连接端22的较厚处。
在本实施例中,将环形圈7沿入珠2轴向切面的截面形状设置为等腰三角形,其两条腰线对应的斜面分别为第一表面71和第二表面72,第一表面71和第二表面72与流道5的内表面所呈的锐角度数设置为60°。进一步地,将环形圈7的高度设置为1mm,以保证环形槽能够更好地接受到流道5内流体对其的冲 击力。
在本实施例中,接头主体1有主体筒部11、外筒部12和内筒部13,同时在外筒部12和内筒部13之间包围形成有向轴心方向一侧开口的槽部14,槽部14开口方向朝向入珠2一侧;并且在外筒部12远离主体筒部11的一端向内设置有倒角,以便入珠2的嵌入;进一步地,入珠2包括嵌入接头主体1的嵌入端21和远离嵌入端21且与导管4连接的导管连接端22,这里通过嵌入端21和槽部14的嵌入配合形成密封部,从而实现入珠2和接头主体1之间可拆卸地密封连接。
在本实施例中,入珠2的导管连接端22于远离轴心方向上凸出设置;螺帽3远离接头主体1一侧的内径大于入珠2内径且小于连接端凸起处的最大外径。这样的设置使得螺帽3在拧紧时,能够其边缘通过导管4压紧入珠2的导管连接端22的凸起的表面;同时这样的设置使得导管连接端22和套于其表面的导管4更加不易脱落。这样的连接方式在导管4与导管连接端22之间形成了第一密封面6。更进一步地,在本实施例中,我们将凸出的导管连接端22的外表面设置为斜面,且在其外表面设置有一段水平端面,水平端面用于增加导管连接端22凸出部分和导管4之间的接触面积,增大和导管4之间的摩擦力,使其不易脱落,同时将本来凸出处弯折较尖锐的角度钝化,减少对导管4的损伤,增加其使用寿命。
在具体使用过程中,根据导管接头内部流体流向不同,大体分为两种工作状况。
工作状况1:流体由接头主体1处流出,流经入珠2,最后流入导管4。
如图16所示,流体的流向为V1,当流体流至环形圈7处时,对环形圈7产生一个冲击力,由于环形圈7和入珠2是一体的,即流体的冲击力对入珠2产 生一个水平向右的冲击力,而在这个冲击力的作用下,使得第一密封面6处的密封压力增大,从而利用了流体的冲击力提高了整个密封导管接头的密封效果。
工作状况2:流体由导管4处流入,流经入珠2,最后流入接头主体1。
如图17所示,流体的流向为V2,当流体流至环形圈7处时,对环形圈7产生一个冲击力,由于环形圈7和入珠2是一体的,即流体的冲击力对入珠2产生一个水平向左的冲击力,而在这个冲击力的作用下,能够让入珠2的嵌入端21能够在嵌入方向上得到一个水平向左的力,从而提高了入珠2嵌入接头主体1处的密封性,即提高了密封部的密封性,从而整体提高整个密封导管接头的密封效果。
上述两种工况为具体使用过程中的一般情况,对于后续的所有实施例也同样适用。
实施例二:
如图4所示的一种密封导管接头,相比实施例一来说,区别在于:入珠2内部流道5的环形圈7与流道5之间的连接是有形成一个弧面74的,即第一表面71和流道5内壁是通过弧面74平整连接、第二表面72和流道5内壁也是通过弧面74平整连接。这样的设置能够保证流道5内部的平滑性,对其内部流体的流动性能影响降至最低。
实施例三:
如图5、图6和图7所示的为实施例三的密封导管接头的结构示意图。实施例三相比实施例二来说,区别在于:在本实施例中,将环形圈7的截面形状设置为矩形,即在第一表面71和第二表面72之间连接有一个水平连接面73。这样的形状设置,相比实施例二来说,在流道5内流体收到同样的压力流过环形圈7的时候,实施例三中形状的环形圈7能够收到更大的流体冲击力,以此保 证能够利用流体冲击力产生更大的密封压力,使其密封效果更好。但这样的设置相比实施例一、实施例二中的环形圈7形状来说,环形圈7凸起处更容易断裂,因此不适用与一些高压、长时间工作的工作情况。这里也可以将第一表面71、第二表面72和水平连接面73的连接处设置为弧面74,减小对环形圈7的磨损,增加产品的使用寿命。
实施例四:
如图8、图9和图10所示的为实施例四的密封导管接头的结构示意图。在本实施例中,和实施例一至实施例三的区别也仅仅在于环形圈7的截面形状不同。在本实施例中,环形圈7的截面设置为等腰梯形状,第一表面71、第二表面72和流道5之间所呈的锐角为60°。并且在第一表面71、第二表面72和水平连接面73的连接处可设置为弧面74,同时将第一表面71、第二表面72和流道5的内壁连接处设置为弧面74。这里截面梯形的设置相比实施例三来说,增强了环形圈7处的结构强度,能够使其承受更大或是更久的流体冲击。而弧面74的设置也同样是能够保证流道5内整体的平滑性,将对流体流动的影响减值最低。
实施例五:
如图11、图12和图13所示的为实施例五的密封导管接头的结构示意图。在本实施例中,和实施例一至实施例四的区别也仅仅在于环形圈7的截面形状不同。在本实施例中,环形圈7截面的形状设置为圆弧状,即将第一表面71和第二表面72均设置为弧面74,且曲率相同。同时也可以将第一表面71、第二表面72和流道5内壁连接处设置为弧面74,以保证流道5内部的平滑性。
实施例六:
如图14所示的为实施例六的密封导管接头的结构示意图。在本实施例中, 环形圈7呈凸起的台阶状设置,即只包含有第一表面71。同时环形圈7一直延伸至入珠2靠近接头主体1一侧。这样的设置相比实施例一来说,具有的优点在于,环形圈7处能够承受流体更大的冲击力,使用寿命更长久,但缺点在于该方式受到流体流动方向的影响,仅在流体自右向左流动时才能起到更好的密封效果。
实施例七:
如图15所示的为实施例七的密封导管接头的结构示意图。在本实施例中,环形圈7呈凸起的台阶状设置,即只包含有第二表面72。同时环形圈7一直延伸至入珠2靠近螺帽3的一侧。这样的设置相比实施例一来说,具有的优点在于,环形圈7处能够承受流体更大的冲击力,使用寿命更长久,但缺点在于该方式受到流体流动方向的影响,仅在流体自左向右流动时才能起到更好的密封效果。
综合整体产品的使用寿命以及产品的适应性,根据环形圈7截面的受力情况进行分析,可得将环形圈7截面设置为图10中所示,即实施例四中的形状为最优的方案,同时将第一表面71、第二表面72和流道5内壁之间的夹角设置为45°,以增强环形圈7的结构强度同时保证受到流体较大的冲击。
进一步地,对截面形状大体呈等腰梯形状且各个面之间均通过弧面74连接的环形圈7,进行具体的尺寸选择实验。具体的实验如下:
我们分别制作了截面高度为0.1mm,宽度为0.3mm、0.8mm、1.3mm、1.8mm、2.3mm;高度为1.1mm,宽度为2.2mm、2.4mm、2.6mm、2.8mm、3.0mm;截面高度为2.1mm,宽度为4.4mm、4.6mm、4.8mm、5.0mm、5.2mm;截面高度为3.0mm,宽度为6.2mm、6.4mm、6.6mm、6.8mm、7.0mm;20个不同尺寸的入珠2,记为一组。一共有两组,分别在不同的工况下进行泄漏性实验。这里所指的不同工况 分别为0.75MPa常温的工况和0.097MPa180℃的工况。同时为了模拟实际工况,在实验前统一对导管接头所有部件以及两组入珠2反复进行10次加热(150℃,1小时)和冷却(温度25℃,6小时)。进一步地,我们设置了两组实验对照组,对照组中所使用的入珠2内部的流道5内未设置环形圈7的导管接头,在实验前也对两组对照组使用的导管接头所有部件以及入珠2反复进行10次加热(150℃,1小时)和冷却(温度25℃,6小时)。之后分别将两组入珠2置于上述两个不同的工况下进行密封性实验。最后我们出结论,入珠2内未设置环形圈7的导管接头,在0.75MPa常温的工况下,密封时长能达到43800小时,而在0.097MPa180℃的工况下,密封时长达到8757小时。
下表一为环形槽截面为等腰梯形且底角为45°设置有弧面74的入珠2于0.75MPa常温工况下不同高度以及宽度的泄漏性数据,下表二为环形槽截面为等腰梯形且底角为45°设置有弧面74的入珠2于0.097MPa180℃工况下不同高度以及宽度的泄漏性数据。
表一:
Figure PCTCN2020086471-appb-000001
Figure PCTCN2020086471-appb-000002
表二:
Figure PCTCN2020086471-appb-000003
根据上表数据结合对照组的实验数据,我们发现影响密封性的主要参数在于环形圈7的径向高度,而其宽度对密封性影响不大(这里的宽度受到环形圈7高度、环形圈7底部角度以及水平连接面73的宽度影响,对密封性影响不大,但对密封导管接头的使用寿命有着一定程度的影响);同时考虑到需要对流道5内流体的流动尽可能地减少影响。我们最终选择环形圈7的具体设置为:其截面为等腰梯形,且下底角为45°,高度为1.1mm,宽度为2.2mm,水平连接面73的轴向长度为1.1mm,作为最优选的实施例。
在上述所有实施例以及未提及的实施例中,若将环形圈7的各个面连接处不设置为弧面74,那在长时间、高压的使用后,就容易出现流体将棱角磨损, 这样就会使得流道5内部产生了杂质,影响具体生产或实验精度。为了避免上述问题,可以将环形圈7与流道5连接处,环形圈7的表面弯折处,均设置为通过弧面74进行连接,这样就减小了由于长时间的高压冲击将其磨损的现象发生,使流道5内部不会产生杂质,使其使用寿命得到了提高。
以上已详细描述了本发明的较佳实施例,但应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改。这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (10)

  1. 一种密封导管接头,包括:接头主体、入珠和螺帽;所述接头主体具有主体筒部、外筒部和内筒部,所述外筒部从主体筒部向其轴心方向一侧同轴地突出设置,所述外筒部和内筒部包围而形成有向轴心方向一侧开口的槽部,所述内筒部设置于外筒部的径向内侧且以使突出端比外筒部的突出端更靠近主体筒部侧的方式与外筒部向相同方向从主体筒部同轴地突出设置;所述入珠包括嵌入接头主体呈筒状的嵌入端和远离嵌入端的导管连接端,所述嵌入端可拆卸地嵌入槽部内侧以形成密封部;所述导管连接端于远离轴心方向上径向凸出设置;所述螺帽与接头主体螺纹连接;所述接头主体和入珠的内部均设置有用以流体流通的流道;所述导管接头其特征在于:所述入珠内部的流道内周向设置有环形圈,所述环形圈向入珠轴心方向凸出设置。
  2. 根据权利要求1所述的密封导管接头,其特征在于:所述环形圈至少部分设置于流道内对应导管连接端的位置。
  3. 根据权利要求2所述的密封导管接头,其特征在于:所述环形圈沿入珠轴向截面成台阶状,并延伸至入珠的嵌入端或导管连接端。
  4. 根据权利要求2所述的密封导管接头,其特征在于:所述环形圈包括与流道内壁形成一定夹角的第一表面和第二表面。
  5. 根据权利要求4所述的密封导管接头,其特征在于:所述第一表面和第二表面分别通过弧面与流道表面光滑连接。
  6. 根据权利要求4或5所述的密封导管接头,其特征在于:所述第一表面和第二表面之间通过通过弧面与一水平连接面连接。
  7. 根据权利要求3或4所述的密封导管接头,其特征在于:所述环形圈凸起的高度设置为0.1mm-3mm之间;所述环形圈的宽度设置为至少0.1mm。
  8. 根据权利要求4所述的密封导管接头,其特征在于:所述第一表面和第 二表面与流道内壁之间的夹角设置为20°-90°之间。
  9. 根据权利要求6所述的密封导管接头,其特征在于:所述水平连接面的轴向长度设置为0.1-3mm之间。
  10. 根据权利要求4或5所述的密封导管接头,其特征在于:所述第一表面和第二表面均设置为弧面且曲率相同。
PCT/CN2020/086471 2019-05-17 2020-04-23 密封导管接头 WO2020233336A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910412759.3A CN110030443A (zh) 2019-05-17 2019-05-17 密封导管接头
CN201910412759.3 2019-05-17

Publications (1)

Publication Number Publication Date
WO2020233336A1 true WO2020233336A1 (zh) 2020-11-26

Family

ID=67242538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086471 WO2020233336A1 (zh) 2019-05-17 2020-04-23 密封导管接头

Country Status (3)

Country Link
CN (1) CN110030443A (zh)
TW (1) TWI739426B (zh)
WO (1) WO2020233336A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210318899U (zh) * 2019-05-17 2020-04-14 杭州科百特过滤器材有限公司 一种密封导管接头
CN110030443A (zh) * 2019-05-17 2019-07-19 杭州科百特过滤器材有限公司 密封导管接头
CN110925504A (zh) * 2019-11-29 2020-03-27 嘉兴一达管件制造有限公司 一种挖掘机用锥密封管接头
CN113464749A (zh) * 2021-08-14 2021-10-01 程波 一种单端万用接头及其应用方法
CN115153746B (zh) * 2022-06-21 2023-06-02 上海玮琅医疗科技有限公司 一种导管接头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2227778Y (zh) * 1995-06-14 1996-05-22 中国科学院长春应用化学研究所 交联聚乙烯管道接口
JP2005344795A (ja) * 2004-06-02 2005-12-15 Nippon Pillar Packing Co Ltd 管継手用のインナーリング、管継手、及び管継手の接続方法
JP2010025196A (ja) * 2008-07-17 2010-02-04 Nippon Pillar Packing Co Ltd 管継手用インナーリング、管継手、インナーリング製造方法
CN208138678U (zh) * 2018-04-28 2018-11-23 焦作市富泉塑胶有限公司 一种pvc-u管快速连接结构
CN110030443A (zh) * 2019-05-17 2019-07-19 杭州科百特过滤器材有限公司 密封导管接头

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3130922C1 (de) * 1981-08-05 1982-12-09 Ermeto Armaturen Gmbh, 4800 Bielefeld Verschraubungssystem
JP5709096B2 (ja) * 2009-11-18 2015-04-30 Smc株式会社 管継手
JP5878143B2 (ja) * 2013-05-08 2016-03-08 日本ピラー工業株式会社 合成樹脂製管継手
JP5883907B1 (ja) * 2014-09-30 2016-03-15 日本ピラー工業株式会社 樹脂製管継手
KR101886552B1 (ko) * 2014-09-30 2018-08-07 니폰 필라고교 가부시키가이샤 수지제관 이음매
CN210003964U (zh) * 2019-05-17 2020-01-31 杭州科百特过滤器材有限公司 密封导管接头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2227778Y (zh) * 1995-06-14 1996-05-22 中国科学院长春应用化学研究所 交联聚乙烯管道接口
JP2005344795A (ja) * 2004-06-02 2005-12-15 Nippon Pillar Packing Co Ltd 管継手用のインナーリング、管継手、及び管継手の接続方法
JP2010025196A (ja) * 2008-07-17 2010-02-04 Nippon Pillar Packing Co Ltd 管継手用インナーリング、管継手、インナーリング製造方法
CN208138678U (zh) * 2018-04-28 2018-11-23 焦作市富泉塑胶有限公司 一种pvc-u管快速连接结构
CN110030443A (zh) * 2019-05-17 2019-07-19 杭州科百特过滤器材有限公司 密封导管接头

Also Published As

Publication number Publication date
TW202043662A (zh) 2020-12-01
CN110030443A (zh) 2019-07-19
TWI739426B (zh) 2021-09-11

Similar Documents

Publication Publication Date Title
WO2020233336A1 (zh) 密封导管接头
EP3604883B1 (en) Resinous pipe joint
US9091374B2 (en) Tube coupling joint
US9109728B2 (en) Resinous pipe joint
CN106687733B (zh) 树脂制管接头结构
US20160061361A1 (en) Pipe connecting device
JP5871855B2 (ja) インナーリング
EP3001086B1 (en) Pipe connecting device
US20160201830A1 (en) Bead seal and connection device comprising such a seal
CN210003964U (zh) 密封导管接头
TWI739427B (zh) 一種密封導管接頭
JP2020098004A (ja) 管継手
JP4131716B2 (ja) 管継手用のフッ素樹脂製インナーリング、管継手、及び管継手の接続方法
US11885444B2 (en) Sleeve and fitting with the same
EP3187763A1 (en) Coupling for connecting and sealing fluid handling components
JP2018048704A (ja) ヘルールガスケット
JP2010084914A (ja) 管継手用継手本体、管継手、継手本体製造方法
CN219159768U (zh) 一种双密封凹槽式管件
TWI722708B (zh) 連結管
TWI655383B (zh) 密封構造及其製造方法
KR20230008098A (ko) 배관 커넥터
JP2020098005A (ja) 管継手
JP2019015299A (ja) 流体機器の接続構造
JP2009270604A (ja) 継手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20810524

Country of ref document: EP

Kind code of ref document: A1