WO2020232686A1 - 凝胶材料及制备方法、可塑型制品和应用 - Google Patents

凝胶材料及制备方法、可塑型制品和应用 Download PDF

Info

Publication number
WO2020232686A1
WO2020232686A1 PCT/CN2019/088042 CN2019088042W WO2020232686A1 WO 2020232686 A1 WO2020232686 A1 WO 2020232686A1 CN 2019088042 W CN2019088042 W CN 2019088042W WO 2020232686 A1 WO2020232686 A1 WO 2020232686A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel material
galactomannan
konjac glucomannan
aluminate
gel
Prior art date
Application number
PCT/CN2019/088042
Other languages
English (en)
French (fr)
Inventor
周月柳
Original Assignee
梧州渺渺科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 梧州渺渺科技有限公司 filed Critical 梧州渺渺科技有限公司
Priority to PCT/CN2019/088042 priority Critical patent/WO2020232686A1/zh
Publication of WO2020232686A1 publication Critical patent/WO2020232686A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds

Definitions

  • the invention relates to a gel material, a preparation method thereof, a plastic product and an application.
  • REACH regulations full name: Registration, Evaluation, Authorisation and Restriction of Chemicals
  • SVHC substances The chemical registration, evaluation, licensing and restriction regulations that have been fully implemented in Europe on June 1, 2007, referred to as REACH regulations (full name: Registration, Evaluation, Authorisation and Restriction of Chemicals)
  • REACH regulations full name: Registration, Evaluation, Authorisation and Restriction of Chemicals
  • SVHC substances the chemical registration, evaluation, licensing and restriction regulations
  • ECHA European Chemical Agency
  • Boric acid and sodium borate were included in the third batch of SVHC (announced on June 8, 2010), and sodium perborate and sodium metaborate were included in the eleventh batch of SVHC (on June 16, 2014). Announced).
  • the limit on the amount of boron is particularly strict.
  • the boron content of flexible materials is controlled within 1200PPM, and the boron content of viscous materials is controlled within 300PPM.
  • the boron content of different borates is different. If the boron content of borate is roughly 10%, the boron content needs to be less than 1200PPM, and the amount of borate does not exceed 1.2% to meet the toy standard of EN71 Requirements:
  • the boron content needs to be less than 300PPM, and the amount of borate does not exceed 0.3% to meet the EN71 toy standard.
  • boric acid, sodium borate and sodium perborate are all commonly used cross-linking materials for the preparation of gel materials. If the amount of boron is small, it will directly affect the cross-linking degree of the gel material. Affect the viscosity of the gel material, and even make the prepared substance not a gel material at all. In addition, the current gel materials have poor high temperature resistance.
  • a gel material in terms of mass percentage, the raw materials for preparing the gel material include: 70.2% to 99.48% water, 0.5% to 28% thickener, and 0.02% to 0.6% aluminate And 0-1.2% boron source, the thickening agent is selected from the group consisting of galactomannan, konjac glucomannan, polyvinyl alcohol, galactomannan derivatives and konjac glucomannan derivatives The boron source is selected from at least one of boric acid and borate.
  • a method for preparing a gel material includes the following steps: mixing raw materials to obtain a gel material, wherein, in terms of mass percentage, the raw materials include: 70.2% to 99.48% water, 0.5% to 28% increase Thickener, 0.02% to 0.6% aluminate and 0 to 1.2% boron source, the thickener is selected from galactomannan, konjac glucomannan, polyvinyl alcohol, galactomannan At least one of derivatives and derivatives of konjac glucomannan, and the boron source is at least one selected from boric acid and borate.
  • a plastic product includes the above gel material or the gel material prepared by the above gel material preparation method.
  • the raw materials for preparing the gel material include: 70.2% ⁇ 99.48% water, 0.5% ⁇ 28% thickener, and 0.02% ⁇ 0.6% aluminate. And 0 ⁇ 1.2% boron source.
  • the thickening agent is selected from at least one of galactomannan, konjac glucomannan, polyvinyl alcohol, derivatives of galactomannan, and derivatives of konjac glucomannan.
  • the above thickeners all contain hydroxyl groups and can undergo condensation type crosslinking reactions with boron and aluminum. Boron and aluminum are semi-cured crosslinkers and can form a plastic gel with the above thickeners. If it is a fully cured crosslinking agent (such as formaldehyde, glutaraldehyde and terephthalmethylene aldehyde, etc.), the gel formed with the above thickening agent is a shaped gel, which lacks plasticity, and cannot be compressed into different shapes at will Shape, no shaping function.
  • the derivative of galactomannan is selected from hydroxyethyl galactomannan, hydroxypropyl galactomannan, carboxymethyl galactomannan, carboxymethyl hydroxyethyl galactomannan At least one of sugar and carboxymethyl hydroxypropyl galactomannan.
  • the konjac glucomannan derivative is selected from hydroxyethyl konjac glucomannan, hydroxypropyl konjac glucomannan, carboxymethyl konjac glucomannan, carboxymethyl hydroxyethyl konjac glucomannan At least one of sugar and carboxymethyl hydroxypropyl konjac glucomannan.
  • aluminate is a water-soluble aluminate.
  • the aluminate is selected from at least one of sodium aluminate and potassium aluminate.
  • Sodium aluminate and potassium aluminate have good water solubility.
  • the boron source is selected from at least one of boric acid and borate.
  • the borate is selected from at least one of potassium tetraborate, sodium tetraborate, sodium perborate and sodium metaborate.
  • the boron source is borate, which is easily soluble in water, and the aqueous solution is generally weakly alkaline. The gel has a better hand feeling and higher crosslinking degree in a weakly alkaline system, while boric acid is acidic. The gel has a lower degree of cross-linking in acidic systems.
  • the boron source is sodium tetraborate. Sodium tetraborate is the most widely used variety of borate. The material is easily available.
  • Potassium tetraborate has the same function as sodium tetraborate, but the price is higher.
  • Sodium perborate is decomposed into hydrogen peroxide and sodium tetraborate in water.
  • Sodium metaborate is combined with carbon dioxide to generate sodium tetraborate and sodium carbonate.
  • the final effect of using sodium perborate and sodium metaborate is still the effect of sodium tetraborate, but storage
  • the stability performance of sodium tetraborate is not as high as that of sodium tetraborate, so in consideration of cost and material storage stability, the boron source is preferably sodium tetraborate.
  • the difference between the gel formed by aluminate and boron crosslinking agent is mainly reflected in two aspects: one is the difference in gel crosslinking degree, and the other is the difference in gel temperature resistance.
  • the gel formed by aluminate crosslinking has a high degree of crosslinking, and the gel formed by a boron crosslinking agent has a low degree of crosslinking. If it is necessary to obtain a gel with the same degree of crosslinking, use aluminate as a crosslinking agent to condense The aluminum content in the glue will be significantly lower than the boron content.
  • the gel formed by aluminum cross-linking agent has strong high temperature resistance, and the gel formed by boron cross-linking agent has poor high temperature resistance. Therefore, by adjusting the ratio of aluminum to boron, gels with different degrees of crosslinking and different high-temperature resistance can be obtained, so that the gel has a wider range of functions and uses.
  • the raw materials for preparing the gel material include: 80.4%-98.85% water, 1%-19% thickener, 0.1%-0.3% aluminate, and 0.05%-0.3 % Borate.
  • the glue formed by the above formula has suitable viscosity, not too thin or too thick, and can make the gel material have a suitable degree of crosslinking, so that it has fluidity, easy to stretch and easy to compress and deform.
  • it can be directly used as a shaping paste, and the gel material of the formula can easily wrap other fillers, so that the gel material has a wide range of uses, such as making toy mud.
  • the above-mentioned gel material can not only reduce the boron content in the gel material by following the above-mentioned formula, but also the obtained gel material has suitable viscosity and good high temperature resistance.
  • the preparation method of the gel material includes the following steps: mixing the raw materials to obtain the gel material.
  • the raw materials include: 70.2%-99.48% water, 0.5%-28% thickener, 0.02%-0.6% aluminate and 0-1.2% boron source.
  • the thickening agent is selected from at least one of galactomannan, konjac glucomannan, polyvinyl alcohol, derivatives of galactomannan, and derivatives of konjac glucomannan.
  • the derivative of galactomannan is selected from hydroxyethyl galactomannan, hydroxypropyl galactomannan, carboxymethyl galactomannan, carboxymethyl hydroxyethyl galactomannan At least one of sugar and carboxymethyl hydroxypropyl galactomannan.
  • the konjac glucomannan derivative is selected from hydroxyethyl konjac glucomannan, hydroxypropyl konjac glucomannan, carboxymethyl konjac glucomannan, carboxymethyl hydroxyethyl konjac glucomannan At least one of sugar and carboxymethyl hydroxypropyl konjac glucomannan.
  • the boron source is selected from at least one of boric acid and borate.
  • the borate is selected from at least one of potassium tetraborate, sodium tetraborate, sodium perborate and sodium metaborate.
  • the boron source is borate; and further, the boron source is sodium tetraborate.
  • the aluminate is selected from at least one of sodium aluminate and potassium aluminate.
  • the raw materials include: 70.2% to 99.48% water, 0.5% to 28% thickener, 0.02% to 0.6% aluminate, and 0 to 1.2% borate.
  • the step of mixing the raw materials includes: dissolving the thickener and aluminate in water respectively to obtain an aqueous solution of the thickener and an aqueous solution of aluminate;
  • the aqueous solution is added to the thickener aqueous solution, stirred and mixed to obtain a gel material.
  • the time for stirring and mixing is 3 minutes to 30 minutes. That is, part of the water is used to dissolve the thickener, and the other part is used to dissolve the aluminate.
  • the step of mixing the raw materials includes: dissolving the thickener, aluminate and boron source in water respectively to obtain an aqueous solution of the thickener, an aqueous solution of aluminate, and an aqueous solution of the boron source ; Add the aqueous solution of aluminate to the aqueous solution of the thickener, and then add the aqueous solution of the boron source, stir and mix to obtain a gel material. That is, part of the water is used to dissolve the thickener, a part of the water is used to dissolve the aluminate, and the remaining part of the water is used to dissolve the boron source. Or add the borate aqueous solution first, and then add the aluminate aqueous solution.
  • the plastic product of one embodiment includes the gel material described above or the gel material prepared by the method for preparing the gel material.
  • the moldable product is a molding paste. That is, the aforementioned gel material can be used directly as a molding paste.
  • the raw materials for preparing the gel material include: 80.4%-98.85% water, 1%-19% thickener, 0.1%-0.3% aluminate and 0.05%-0.3 % Borate, the gel material of this formula has good plasticity.
  • the plastic product is a toy clay, and in this case, the plastic product further includes filler.
  • filler By adding fillers, the plasticity of the gel material can be adjusted. Furthermore, if the mass ratio of filler to gel material is below 30:100, too much filler will lead to poor plasticity of gel material. In order to make filler and gel material have more suitable plasticity, the flow of gel material The performance is proportional to the amount of filler added, that is, the greater the fluidity of the gel material, the more filler added.
  • the filler is selected from at least one of starch, silicon dioxide and calcium carbonate, microcapsule foaming powder, and plastic foaming particles.
  • the mass ratio of the filler to the gel material is less than 30:100. Too much filler will lead to poor plasticity of the gel material.
  • the fluidity of the gel material is proportional to the amount of filler added, namely The greater the fluidity of the gel material, the greater the amount of filler added.
  • the aforementioned gel material or the gel material prepared by the aforementioned plastic preparation method can also be used to prepare gel-type cleaners, gel-type daily necessities or high-temperature sand-carrying liquids.
  • the above-mentioned gel materials are used as gum bases, such as gum bases of gel-type cleaners, gum bases for scent absorption, and the like.
  • the aforementioned gel material When used in a high-temperature resistant sand-carrying liquid, the aforementioned gel material is used as the liquid phase of the high-temperature resistant sand-carrying liquid for oilfield exploitation.
  • the preparation process of the gel material of Comparative Example 1 is roughly the same as that of Example 1. The difference is that in Comparative Example 1, aluminate is not used as the crosslinking agent, but a boron source is used as the crosslinking agent.
  • the preparation process of the gel material is as follows:
  • the preparation process of the gel material of Comparative Example 6 is approximately the same as that of Example 25, except that the composition of the raw materials is different. See Table 2 for details.
  • the preparation process of the gel material of Comparative Example 7 is approximately the same as that of Example 20, except that the composition of the raw materials is different. See Table 2 for details.
  • the thickener without crosslinking has a linear molecular structure, linear molecules are easily dissolved or melted.
  • the size of the network depends on the number of crosslinks of the chemical chains between the branches, that is, the degree of crosslinking.
  • the degree of crosslinking increases, the dissolution and melting properties of polymers become lower and lower.
  • the molecular chain between the two cross-linking points is still flexible, and the solvent enters the cross-linked polymer network to stretch the cross-linked polymer network and increase the total volume. This phenomenon is called swelling.
  • swelling tension and contraction force reach equilibrium, it is called swelling equilibrium.
  • the ratio of the volume at swelling equilibrium to the volume before swelling is called the swelling degree Q value. The larger the Q value, the smaller the degree of crosslinking; the smaller the Q value, the greater the degree of crosslinking.
  • the specific experimental process is as follows: the swelling degree Q value of the gel materials of Examples 1-27 and Comparative Examples 1-7 are respectively measured under the condition of a constant temperature of 22°C, and the value of 1/Q is used to represent the degree of crosslinking.
  • the sol without crosslinking is a fluid liquid. If the degree of crosslinking is too low, the strength of the gel is insufficient and the fluidity is high. If the degree of cross-linking is too high, the elasticity of the gel will be high, which is not good for the shaping function. After the gel is completely cross-linked, it loses its fluidity and its resilience is maximized, so it also loses its shaping function.
  • the degree of crosslinking 1/Q should be controlled at 38% to 70%, then the corresponding Q value control It is appropriate to range from 1.43 to 2.67.
  • the cross-linking agent is optimally controlled between 50% and 65%, and the corresponding optimal Q value is controlled within 1.69-2.0.
  • the swelling degree Q values of the gel materials of Examples 1-27 and Comparative Examples 1-7 are shown in Table 3.
  • the viscosity of the gel material A gel with no change in viscosity indicates good high temperature stability, and a gel with separation or reduced viscosity has poor high temperature stability.
  • the ratio S of the viscosity after maintaining at 60°C for 24 hours to the viscosity at room temperature 22°C represents thermal stability. The smaller the ratio S, the worse the thermal stability; the larger the ratio, the closer to 1, the higher the thermal stability.
  • the viscosity after continuous high temperature (60°C) is required to be at least 60% of the original viscosity. Therefore, the S value should be controlled above 0.6.
  • the viscosity after continuous high temperature (60°C) is at least not less than 80% of the original viscosity, and the S value is most suitably controlled above 0.80, so that the gel material has more excellent thermal stability.
  • Plasticity test of the gel materials of Examples 1-27 and Comparative Examples 1-7 The plasticity is the property of deforming and maintaining the deformation under the action of external force, which is expressed by simulating the Wicker's plasticity. It is determined according to the highly plastic change of the sample under load between the two parallel plates. When measuring, apply a thin layer of paraffin oil on the upper and lower plates to prevent the gel from adhering to the surface of the plates. Place 200 grams of gel on the lower plate, and compress the upper plate for 3 minutes under a load (5 kg). After the load was removed, the gel was allowed to return to its shape over 3 minutes at room temperature. Then calculate the plasticity P of the sample according to the high compression deformation and the deformation recovery after removing the load. At this time, the calculation formula of the plasticity P is as follows:
  • the P value needs to be controlled within a suitable operating range.
  • P When P is 0.5, it is in a standard semi-fluid state. When it is semi-fluid, the gel material still has certain fluidity and plasticity, and has certain shaping properties. Among them, when P is less than 0.4, the fluidity of the gel material is extremely poor and it is difficult to mold; when P is more than 0.4 and less than 0.5, the fluidity of the gel material is poor, and there will be resilience, and it will be deformed after molding.
  • the gel material has suitable fluidity and plasticity and can be used directly as a molding paste; when P is greater than 0.67 and below 0.87, the fluidity of the gel material is better. It is difficult to mold directly.
  • the plasticity of the gel material can be adjusted by adding fillers (such as starch, silicon dioxide, calcium carbonate, microcapsule foaming powder, plastic foaming particles, etc.), or it can be used for preparation High temperature resistant sand-carrying liquid; when P is greater than 0.87, the fluidity is too large and the plasticity of the gel material has been lost.
  • Example 1 1.78 0.89 0.59
  • Example 2 1.69 1.0 0.50
  • Example 3 1.78 0.81 0.57
  • Example 4 1.70 0.92 0.56
  • Example 5 1.87 0.85 0.67
  • Example 6 1.69 0.94 0.64
  • Example 7 1.92 0.80 0.58
  • Example 8 1.74 0.82 0.53
  • Example 9 2.0 0.81 0.61
  • Example 10 1.71 0.92 0.57
  • Example 11 1.85 0.83 0.56
  • Example 12 1.96 0.81 0.61
  • Example 13 1.91 0.84 0.63
  • Example 14 1.97 0.86 0.62
  • Example 15 1.73 0.93 0.64
  • Example 16 1.54 0.89 0.46
  • Example 17 2.45 0.64 0.73
  • Example 18 2.17 0.68 0.76
  • Example 19 2.67 0.60 0.87
  • Example 20 1.57 0.97 0.40
  • Example 21 1.48 0.91 0.48
  • Example 22 1.59 0.93 0.44
  • Example 23 1.57 0.89 0.42
  • Example 24 2.09 0.77 0.45
  • Example 25 1.43 0.96 0.43
  • Example 26 2.06 0.
  • the Q values of the gel materials of Examples 1-27 are 1.43-2.67 (1/Q represents the degree of cross-linking, and the degree of cross-linking is controlled between 38% and 70%), and the S values are all at 0.60
  • the plasticity P value is 0.40 ⁇ 0.87, which not only has good viscosity and suitable plasticity, but also has good thermal stability, which meets the actual requirements of gel materials, that is, the crosslinking degree of gel and high temperature Performance and plasticity can all be satisfied at the same time.
  • the Q values of the gel materials of Comparative Examples 1-7 are 4.48, 1.12, 1.34, 1.02, 4.71, 1.06, and 1.11, respectively, that is, the corresponding cross-linking degrees of Comparative Examples 1-7 are 22%, 89%, and 75%, respectively. , 98%, 21%, 94% and 90%, the degree of cross-linking is either too high or too low.
  • the S values of the gel materials of Comparative Example 1, Comparative Example 3 and Comparative Example 5 are 0.46, 0.39 and 0.32, respectively.
  • the value of the gel material of Examples 1-15 is 1.69-2.0 (1/Q represents the degree of cross-linking, and the degree of cross-linking is controlled at 50% to 65%), the S value is above 0.80, and the P value is 0.50 to 0.67, the gel materials of Examples 1-15 have more excellent performance and can be used directly as a molding paste.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种凝胶材料,按照质量百分含量计,制备凝胶材料的原料包括:70.2%~99.48%的水、0.5%~28%的增稠剂、0.02%~0.6%的铝酸盐及0~1.2%的硼源,增稠剂选自半乳甘露聚糖、魔芋葡甘露聚糖、聚乙烯醇、半乳甘露聚糖的衍生物及魔芋葡甘露聚糖的衍生物中的至少一种,硼源选自硼酸及硼酸盐中的至少一种。

Description

凝胶材料及制备方法、可塑型制品和应用 技术领域
本发明涉及一种凝胶材料及其制备方法、可塑型制品和应用。
背景技术
在欧洲2007年6月1日开始全面实施的化学品注册、评估、许可和限制法规,简称REACH法规(全称为:Registation,Evaluation,Authorisation and Restriction of Chemicals),陆续发布了一系列高度关注化学物质,简称SVHC物质。根据REACH法规的要求,当产品中SVHC含量超过0.1%,另外,企业出口量超过1吨/年(1t/year),则该企业需向ECHA(欧洲化学管理署)通报。硼酸和硼酸钠被列入第三批次的高度关注物质SVHC(2010年6月8日公布),过硼酸钠和偏硼酸钠被列入第十一批次的SVHC(2014年6月16是公布)。
在欧州玩具标准EN71第三部分中,对硼的用量限制特别严格,柔韧材料的硼含量限控在1200PPM之内,粘度材料的硼含量控制在300PPM之内。不同的硼酸盐的含硼量不相同,如果硼酸盐的含硼量粗略按10%计,需要硼含量要低于1200PPM,则硼酸盐的用量不超过1.2%才能符合EN71的玩具标准要求;需要硼含量要低于300PPM,则硼酸盐的用量不超过0.3%才能符合EN71玩具标准。
然而对于凝胶材料而言,硼酸、硼酸钠及过硼酸钠等都是制备凝胶材料的常用交联剂材料,若硼的用量少,会直接影响到凝胶材料的交联度,从而影响到凝胶材料的粘度,甚至使制备得到的物质根本不是凝胶材料。另外,目前的凝胶材料的耐高温性能也较差。
发明内容
基于此,有必要提供一种硼含量较少且耐高温性能较好的凝胶材料。
此外,还提供一种凝胶材料的制备方法、可塑型制品和应用。
一种凝胶材料,按照质量百分含量计,制备所述凝胶材料的原料包括:70.2%~99.48%的水、0.5%~28%的增稠剂、0.02%~0.6%的铝酸盐及0~1.2%的硼源,所述增稠剂选自半乳甘露聚糖、魔芋葡甘露聚糖、聚乙烯醇、半乳甘露聚糖的衍生物及魔芋葡甘露聚糖的衍生物中的至少一种,所述硼源选自硼酸及硼酸盐中的至少一种。
一种凝胶材料的制备方法,包括如下步骤:将原料混合得到凝胶材料,其中,按照质量百分含量计,所述原料包括:70.2%~99.48%的水、0.5%~28%的增稠剂、0.02%~0.6%的铝酸盐及0~1.2%的硼源,所述增稠剂选自半乳甘露聚糖、魔芋葡甘露聚糖、聚乙烯醇、半乳甘露聚糖的衍生物、魔芋葡甘露聚糖的衍生物中的至少一种,所述硼源选自硼酸及硼酸盐中的至少一种。
一种可塑型制品,包括上述凝胶材料或上述凝胶材料的制备方法制备得到的凝胶材料。
上述凝胶材料或上述凝胶材料的制备方法制备得到的凝胶材料在制备凝胶型清洁剂、凝胶日用品或抗高温携砂液中的应用
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
具体实施方式
为了便于理解本发明,下面对本发明进行更全面的描述。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
一实施方式的凝胶材料,按照质量百分含量计,制备凝胶材料的原料包括:70.2%~99.48%的水、0.5%~28%的增稠剂、0.02%~0.6%的铝酸盐及0~1.2% 的硼源。
其中,增稠剂选自半乳甘露聚糖、魔芋葡甘露聚糖、聚乙烯醇、半乳甘露聚糖的衍生物及魔芋葡甘露聚糖的衍生物中的至少一种。上述增稠剂中均含有羟基,能与硼、铝发生缩合型的交联反应,硼和铝是半固化型的交联剂,能够与上述增稠剂形成具有可塑性的凝胶。如果是全固化型的交联剂(例如甲醛、戊二醛及对苯二亚甲基醛等),与上述增稠剂形成的为定型凝胶,缺乏可塑型,不能随意压捏成不同的形状,没有塑型功能。
具体地,半乳甘露聚糖的衍生物选自羟乙基半乳甘露聚糖、羟丙基半乳甘露聚糖、羧甲基半乳甘露聚糖、羧甲基羟乙基半乳甘露聚糖及羧甲基羟丙基半乳甘露聚糖中的至少一种。
具体地,魔芋葡甘露聚糖的衍生物选自羟乙基魔芋葡甘露聚糖、羟丙基魔芋葡甘露聚糖、羧甲基魔芋葡甘露聚糖、羧甲基羟乙基魔芋葡甘露聚糖及羧甲基羟丙基魔芋葡甘露聚糖中的至少一种。
其中,铝酸盐为水溶性铝酸盐。具体地,铝酸盐选自铝酸钠及铝酸钾中的至少一种。铝酸钠及铝酸钾有较好的水溶性。
其中,硼源选自硼酸及硼酸盐中的至少一种。具体地,硼酸盐选自四硼酸钾、四硼酸钠、过硼酸钠及偏硼酸钠中的至少一种。进一步地,硼源为硼酸盐,硼酸盐易溶于水,水溶液一般呈弱碱性,凝胶在弱碱性的体系下,手感更好,交联度更高,而硼酸呈酸性,凝胶在酸性体系中交联度更低。更进一步地,硼源为四硼酸钠,四硼酸钠是硼酸盐中应用最广泛的品种,材料易得,四硼酸钾的功能与四硼酸钠无差异,但是价格更高。过硼酸钠在水中分解成过氧化氢和四硼酸钠,偏硼酸钠结合二氧化碳化生成四硼酸钠和碳酸钠,使用过硼酸钠和偏硼酸钠最终效果还是表现为四硼酸钠的作用,但贮存的稳定性能没有四硼酸钠高,所以从成本和材料贮存的稳定性考虑,硼源优选为四硼酸钠。
铝酸盐和硼交联剂形成的凝胶的差别主要体现在两个方面:一是凝胶交联度的差异,二是凝胶耐温能力的差异。铝酸盐交联形成的凝胶的交联度高, 硼交联剂形成的凝胶的交联度低,如果需要得到相同交联度的凝胶,使用铝酸盐作为交联剂,凝胶中的铝的含量会明显低于硼含量。且相对于硼交联剂形成,铝交联剂形成的凝胶耐高温能力强,硼交联剂形成的凝胶耐高温能力差。因此,通过调整铝和硼的比例,可以得到不同的交联度和不同耐高温性能的凝胶,使凝胶的功能和用途更广。
进一步地,按照质量百分含量计,制备凝胶材料的原料包括:80.4%~98.85%的水、1%~19%的增稠剂、0.1%~0.3%的铝酸盐及0.05%~0.3%的硼酸盐。上述配方形成的胶液粘稠度适宜,不会太稀,也不会太稠,且能够使凝胶材料具有适宜的交联度,以使其具有流动性,易拉伸和易压缩变型,以使该凝胶材料具有可塑性,能够直接作为塑形膏使用,且该配方的凝胶材料还易于再包裹其它填充料,以使上述凝胶材料具有根据广泛的用途,例如制作玩具泥。
上述凝胶材料通过按照上述配方不仅能够降低凝胶材料中的硼含量,而且得到的凝胶材料还具有合适的粘度,和较好的耐高温性能。
一实施方式的凝胶材料的制备方法,包括如下步骤:将原料混合得到凝胶材料。其中,按照质量百分含量计,原料包括:70.2%~99.48%的水、0.5%~28%的增稠剂、0.02%~0.6%的铝酸盐及0~1.2%的硼源。
其中,增稠剂选自半乳甘露聚糖、魔芋葡甘露聚糖、聚乙烯醇、半乳甘露聚糖的衍生物及魔芋葡甘露聚糖的衍生物中的至少一种。
具体地,半乳甘露聚糖的衍生物选自羟乙基半乳甘露聚糖、羟丙基半乳甘露聚糖、羧甲基半乳甘露聚糖、羧甲基羟乙基半乳甘露聚糖及羧甲基羟丙基半乳甘露聚糖中的至少一种。
具体地,魔芋葡甘露聚糖的衍生物选自羟乙基魔芋葡甘露聚糖、羟丙基魔芋葡甘露聚糖、羧甲基魔芋葡甘露聚糖、羧甲基羟乙基魔芋葡甘露聚糖及羧甲基羟丙基魔芋葡甘露聚糖中的至少一种。
其中,硼源选自硼酸及硼酸盐中的至少一种。具体地,硼酸盐选自四硼酸钾、四硼酸钠、过硼酸钠及偏硼酸钠中的至少一种。进一步地,硼源为硼 酸盐;更进一步地,硼源为四硼酸钠。
其中,铝酸盐选自铝酸钠及铝酸钾中的至少一种。
进一步地,按照质量百分含量计,原料包括:70.2%~99.48%的水、0.5%~28%的增稠剂、0.02%~0.6%的铝酸盐及0~1.2%的硼酸盐。
具体地,当硼源的含量为0时,将原料混合的步骤包括:将增稠剂和铝酸盐分别溶解在水中,得到增稠剂的水溶液及铝酸盐的水溶液;将铝酸盐的水溶液加入到增稠剂的水溶液中,搅拌混合,得到凝胶材料。具体地,搅拌混合的时间为3分钟~30分钟。即一部分水用于溶解增稠剂,另一部分水用于溶解铝酸盐。
当硼源的含量不为0时,将原料混合的步骤包括:将增稠剂、铝酸盐和硼源分别溶解在水中,得到增稠剂的水溶液、铝酸盐的水溶液及硼源的水溶液;将铝酸盐的水溶液加入到增稠剂的水溶液中,然后加入硼源的水溶液,搅拌混合,得到凝胶材料。即一部分水用于溶解增稠剂,一个部分水用于溶解铝酸盐,剩余部分的水用于溶解硼源。或者先加入硼酸盐水溶液,后加入铝酸盐水溶液。
一实施方式的可塑型制品,包括上述凝胶材料或上述凝胶材料的制备方法制备得到的凝胶材料。
在其中一个实施例中,可塑型制品为塑型膏。即上述凝胶材料能够直接作为塑型膏使用。此时,按照质量百分含量计,制备凝胶材料的原料包括:80.4%~98.85%的水、1%~19%的增稠剂、0.1%~0.3%的铝酸盐及0.05%~0.3%的硼酸盐,该配方的凝胶材料本身具有较好的可塑性。
在另一个实施例中,可塑型制品为玩具泥,此时,可塑型制品还包括填充料。通过加入填充料,能够调节凝胶材料的可塑度。进一步地,填充料与凝胶材料的质量比在30:100以下填充料过多会导致凝胶材料的可塑性较差,为了使填充料与凝胶材料具有较为合适的可塑性,凝胶材料的流动性与填充料的添加量成正比,即凝胶材料的流动性越大,填充料的添加量越多。
具体地,填充料选自淀粉、二氧化硅及碳酸钙、微胶囊发泡粉、塑料发 泡颗粒中的至少一种。
具体地,填充料与凝胶材料的质量比在30:100以下。填充料过多会导致凝胶材料的可塑性较差,为了使填充料与凝胶材料具有较为合适的可塑性,以作为塑型膏,凝胶材料的流动性与填充料的添加量成正比,即凝胶材料的流动性越大,填充料的添加量越多。
上述凝胶材料或上述可塑型的制备方法制备的凝胶材料还能够用于制备凝胶型清洁剂、凝胶型日用品或抗高温携砂液。
用于制备凝胶型清洁剂或凝胶型日用品时,上述凝胶材料作为胶基使用,例如凝胶型清洁剂的胶基、香味吸附的胶基等。
用于抗高温携砂液时,上述凝胶材料作为抗高温携砂液的液相,用于油田开采。
以下为具体实施例部分(以下实施例如无特殊说明,则不含有除不可避免的杂质以外的其它未明确指出的组分。):
实施例1~18
实施例1~18的凝胶材料的制备过程如下:
(1)按照表1称取各组分。
(2)将增稠剂、铝酸盐和硼源分别溶解在水中,得到增稠剂的水溶液、铝酸盐的水溶液及硼源的水溶液;将铝酸盐的水溶液加入到增稠剂的水溶液中,然后加入硼源的水溶液,搅拌混合t分钟,得到凝胶材料。
表1
Figure PCTCN2019088042-appb-000001
Figure PCTCN2019088042-appb-000002
Figure PCTCN2019088042-appb-000003
实施例19~27
实施例19~27的凝胶材料的制备过程如下:
(1)按照表2称取各组分。
(2)将增稠剂和铝酸盐分别溶解在水中,得到增稠剂的水溶液及铝酸盐的水溶液;将铝酸盐的水溶液加入到增稠剂的水溶液中,然后搅拌混合t分钟,得到凝胶材料。
表2
Figure PCTCN2019088042-appb-000004
Figure PCTCN2019088042-appb-000005
对比例1
对比例1的凝胶材料的制备过程与实施例1大致相同,区别在于,对比例1将没有使用铝酸盐作为交联剂,而是使用硼源作为交联剂,其中,对比例1的凝胶材料的制备过程如下:
(1)按照表1称取各组分。
(2)将硼源和增稠剂分别溶解在水中,得到硼源的水溶液及增稠剂的水溶液;将硼源的水溶液加入到增稠剂的水溶液中,然后搅拌混合t分钟,得 到凝胶材料。
对比例2
对比例2的凝胶材料的制备过程与实施例16大致相同,区别在于,原料的组成不同,详见表1。
对比例3
对比例3的凝胶材料的制备过程与实施例17大致相同,区别在于,原料的组成不同,详见表1。
对比例4
对比例4的凝胶材料的制备过程与实施例16大致相同,区别在于,原料的组成不同,详见表1。
对比例5
对比例5的凝胶材料的制备过程与实施例19大致相同,区别在于,原料的组成不同,详见表2。
对比例6
对比例6的凝胶材料的制备过程与实施例25大致相同,区别在于,原料的组成不同,详见表2。
对比例7
对比例7的凝胶材料的制备过程与实施例20大致相同,区别在于,原料的组成不同,详见表2。
测试:
(1)实施例1~27及对比例1~7的凝胶材料的交联度测试:
由于没有交联的上述增稠剂是线性的分子结构,线性分子容易被溶解或熔融。当侧链上形成化学链连接后,就形成了网络状的高分子结构,网络的大小取决于支链间化学链的交联数量的多少,也就是交联度的大小。随着交联度的增加,高分子的溶解和熔融性能就越来越低。但是,2个交联点之间的分子链仍然具有柔顺性,溶剂进入交联高分子网络中,使交联高分子的网格伸展,总体积增大,这一现象称为溶胀。当溶胀的张力和收缩力达到平衡时,称为溶胀平衡。溶胀平衡时的体积与溶胀前的体积的比值称为溶胀度Q值,Q值越大,交联度就越小;Q值越小,交联度就越大。
具体实验过程如下:在恒定温度为22℃的条件下分别测量实施例1~27及对比例1~7的凝胶材料的溶胀度Q值,用1/Q的数值代表交联度的大小。为了获得可塑性的功能,需要控制凝胶材料为半交联状态,没有交联的溶胶为流动性液体,如果交联度太低,则凝胶的强度不足,流动性偏高。如果交联度太大,则凝胶的弹性又偏高,都对塑型功能不利。完全交联之后的凝胶,则失去了流动性,反弹性达到最大,因此也失去了塑型功能。对于最佳交联度的控制,目前还没有相应的标准可以引用和参考,但是,根据实际产品需要,交联度1/Q控制在38%~70%为宜,那么,对应的Q值控制在1.43~2.67为宜,优选地,交联剂最适宜控制在50%~65%之间,对应的最适宜Q值控制在1.69~2.0。其中,实施例1~27及对比例1~7的凝胶材料的溶胀度Q值如表3所示。
(2)实施例1~27及对比例1~7的凝胶材料的耐高温性能测试:
将50g的实施例1~27及对比例1~7的凝胶材料分别装入测试瓶中密封,在60℃以下保持24小时,观察并分别记录实施例1~27及对比例1~7的凝胶材料的粘度。粘度没有发生变化的凝胶说明其高温稳定性好,发生分离或粘度降低的凝胶,其高温稳定性差。将60℃下维持24小时后的粘度和常温22℃时的粘度的比值S代表热稳定性。比值S越小,热稳定性越差;比值越大,越接近于1,表示热稳定性越高。如果凝胶材料的粘度下降40%以上,凝胶 材料的可塑性就会下降太严重,失去可塑型凝胶的基本功能。如果凝胶材料的粘度下降20%以上,对凝胶材料的可塑性无明显影响,根据实际操作的需要,要求持续高温(60℃)后的粘度至少不低于原始粘度的60%。所以,S值控制在0.6以上为宜。优选地,持续高温(60℃)后的粘度至少不低于原始粘度的80%,S值最适宜控制在0.80以上,以使凝胶材料具有更加优异的热稳定性。
(3)实施例1~27及对比例1~7的凝胶材料的可塑性能测试:可塑性能是在外力作用下发生形变并保持形变的性质,模拟威氏可塑度来表示。根据试样在两平行板间受负荷作用所发生的高度可塑变化来确定,测定时,在上下两块平板上涂上一层薄薄的石蜡油,目的是防止凝胶粘附在平板表面。将200克凝胶放在下平板上,上平板在负荷(5公斤)下压缩3分钟。除去负荷后在室温下经3分钟让凝胶恢复形状。然后根据高度的压缩变形量及除掉负荷后的变形恢复量,来计算试样的可塑度P,此时,可塑度P的计算公式如下:
P=(h 0-h 2)/(h 0+h 1)
式中:h 0—试样原高;h 1—试样压缩3分钟后高度;h 2—去掉负荷恢复3分钟后的高度。如果h 2=h 1=0,则P=1,为绝对流体;若h 2=h 0,则P=0,是绝对弹性体。故威氏可塑度的取值范围在0~1之间,0表示绝对弹性体,1表示绝对流体,P为0和1,都没有塑型功能。P值越接近于0,凝胶的反弹性越高,塑型后极易反弹再回复到原始状态,缺乏定塑功能。反之,P值越接近于1,凝胶越易流动,塑型后的凝胶极易下坠变形,也没有定型功能,所以P值需要控制在一个适宜操作的范围。P为0.5时为标准半流体状态,半流体时,凝胶材料仍有一定的流动性和可塑性,具有一定的定型性能。其中,当P小于0.4时,凝胶材料的流动性极差,难以塑型;当P在0.4以上且小于0.5时,凝胶材料的流动性较差,且出现反弹性,塑型后会变形;当P值在0.50~0.67之间时,凝胶材料具有合适的流动性和可塑性,可以直接作为塑型膏使用;当P大于0.67且在0.87以下时,凝胶材料的流动性较好,较难直接 塑型,可以通过加入填充料(比如淀粉、二氧化硅、碳酸钙、微胶囊发泡粉、塑料发泡颗粒等填充料)调节凝胶材料的可塑度,或者,可以用于制备抗高温携砂液;当P大于0.87时,流动性过大,已经失去了凝胶材料的可塑性质。
表3
  Q值 S值 P值
实施例1 1.78 0.89 0.59
实施例2 1.69 1.0 0.50
实施例3 1.78 0.81 0.57
实施例4 1.70 0.92 0.56
实施例5 1.87 0.85 0.67
实施例6 1.69 0.94 0.64
实施例7 1.92 0.80 0.58
实施例8 1.74 0.82 0.53
实施例9 2.0 0.81 0.61
实施例10 1.71 0.92 0.57
实施例11 1.85 0.83 0.56
实施例12 1.96 0.81 0.61
实施例13 1.91 0.84 0.63
实施例14 1.97 0.86 0.62
实施例15 1.73 0.93 0.64
实施例16 1.54 0.89 0.46
实施例17 2.45 0.64 0.73
实施例18 2.17 0.68 0.76
实施例19 2.67 0.60 0.87
实施例20 1.57 0.97 0.40
实施例21 1.48 0.91 0.48
实施例22 1.59 0.93 0.44
实施例23 1.57 0.89 0.42
实施例24 2.09 0.77 0.45
实施例25 1.43 0.96 0.43
实施例26 2.06 0.79 0.73
实施例27 1.54 0.87 0.47
对比例1 4.48 0.46 0.89
对比例2 1.12 0.96 0.21
对比例3 1.34 0.39 0.90
对比例4 1.02 0.97 0.19
对比例5 4.71 0.32 0.92
对比例6 1.06 0.90 0.23
对比例7 1.11 0.92 0.34
从表3中可以看出,实施例1~27的凝胶材料的Q值为1.43~2.67(1/Q代表交联度,交联度控制在38%~70%),S值均在0.60以上,可塑度P值为0.40~0.87,不仅具有较好的粘性、合适的可塑度,而且还具有较好的热稳定性,符合凝胶材料的实际要求,即凝胶的交联度、高温性能和可塑度都能同时全部满足。
而对比例1~7的凝胶材料的Q值分别为4.48、1.12、1.34、1.02、4.71、1.06及1.11,即对比例1~7对应的交联度分别为22%、89%、75%、98%、21%、94%及90%,交联度不是太高就是太低,其中,对比例1、对比例3及对比例5的凝胶材料的S值分别为0.46、0.39及0.32,高温测试后粘度下降太严重,热稳定性太差,且可塑度P值也太高;虽然对比例2、对比例4、对比例6及对比例7的凝胶材料高温测试后的粘度变化小,粘度稳定性能符合要求,但是对应的Q值太低,交联度太高,粘度过大,且可塑度P值也偏低,凝胶的反弹性偏高。
其中,实施例1~15的凝胶材料的值为1.69~2.0(1/Q代表交联度,交联度控制在50%~65%),S值均在0.80以上,P值为0.50~0.67,实施例1~15的凝胶材料具有更加优异的性能,能够直接作为塑型膏使用。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种凝胶材料,按照质量百分含量计,制备所述凝胶材料的原料包括:70.2%~99.48%的水、0.5%~28%的增稠剂、0.02%~0.6%的铝酸盐及0~1.2%的硼源,所述增稠剂选自半乳甘露聚糖、魔芋葡甘露聚糖、聚乙烯醇、半乳甘露聚糖的衍生物及魔芋葡甘露聚糖的衍生物中的至少一种,所述硼源选自硼酸及硼酸盐中的至少一种。
  2. 根据权利要求1所述的凝胶材料,其特征在于,按照质量百分含量计,制备所述凝胶材料的原料包括:80.4%~98.85%的水、1%~19%的增稠剂、0.1%~0.3%的铝酸盐及0.05%~0.3%的硼酸盐。
  3. 根据权利要求1~2任一项所述的凝胶材料,其特征在于,所述半乳甘露聚糖的衍生物选自羟乙基半乳甘露聚糖、羟丙基半乳甘露聚糖、羧甲基半乳甘露聚糖、羧甲基羟乙基半乳甘露聚糖及羧甲基羟丙基半乳甘露聚糖中的至少一种;所述魔芋葡甘露聚糖的衍生物选自羟乙基魔芋葡甘露聚糖、羟丙基魔芋葡甘露聚糖、羧甲基魔芋葡甘露聚糖、羧甲基羟乙基魔芋葡甘露聚糖及羧甲基羟丙基魔芋葡甘露聚糖中的至少一种。
  4. 根据权利要求1~2任一项所述的凝胶材料,其特征在于,所述铝酸盐选自铝酸钠及铝酸钾中的至少一种。
  5. 根据权利要求1~2任一项所述的凝胶材料,其特征在于,所述硼酸盐选自四硼酸钾、四硼酸钠、过硼酸钠及偏硼酸钠中的至少一种。
  6. 一种凝胶材料的制备方法,包括如下步骤:将原料混合,得到凝胶材料,其中,按照质量百分含量计,所述原料包括:70.2%~99.48%的水、0.5%~28%的增稠剂、0.02%~0.6%的铝酸盐及0~1.2%的硼源,所述增稠剂选自半乳甘露聚糖、魔芋葡甘露聚糖、聚乙烯醇、半乳甘露聚糖的衍生物、魔芋葡甘露聚糖的衍生物中的至少一种,所述硼源选自硼酸及硼酸盐中的至少一种。
  7. 根据权利要求6所述的可塑性凝胶材料的制备方法,其特征在于,按照质量百分含量计,所述原料包括:80.4%~98.85%的水、1%~19%的增稠剂、0.1%~0.3%的铝酸盐及0.05%~0.3%的硼酸盐。
  8. 根据权利要求6~7任一项所述的凝胶材料,其特征在于,所述半乳甘露聚糖的衍生物选自羟乙基半乳甘露聚糖、羟丙基半乳甘露聚糖、羧甲基半乳甘露聚糖、羧甲基羟乙基半乳甘露聚糖及羧甲基羟丙基半乳甘露聚糖中的至少一种;所述魔芋葡甘露聚糖的衍生物选自羟乙基魔芋葡甘露聚糖、羟丙基魔芋葡甘露聚糖、羧甲基魔芋葡甘露聚糖、羧甲基羟乙基魔芋葡甘露聚糖及羧甲基羟丙基魔芋葡甘露聚糖中的至少一种。
  9. 根据权利要求6~7任一项所述的凝胶材料,其特征在于,所述铝酸盐选自铝酸钠及铝酸钾中的至少一种。
  10. 根据权利要求6~7任一项所述的凝胶材料,其特征在于,所述硼酸盐选自四硼酸钾、四硼酸钠、过硼酸钠及偏硼酸钠中的至少一种。
  11. 一种可塑型制品,包括权利要求1~5任一项所述的凝胶材料或权利要求6~10任一项所述的凝胶材料的制备方法制备得到的凝胶材料。
  12. 根据权利要求11所述的可塑型制品,其特征在于,所述可塑型制品为塑型膏。
  13. 根据权利要求11所述的可塑型制品,其特征在于,所述可塑型制品为玩具泥,所述可塑型制品还包括填充料。
  14. 根据权利要求13所述的可塑型制品,其特征在于,所述填充料与所述凝胶材料的质量比在30:100以下。
  15. 根据权利要求13或14所述的可塑型制品,其特征在于,所述填充料选自淀粉、二氧化硅及碳酸钙、微胶囊发泡粉、塑料发泡颗粒中的至少一种。
  16. 权利要求1~5任一项所述的凝胶材料或权利要求6~10任一项所述的凝胶材料的制备方法制备得到的凝胶材料在制备凝胶型清洁剂、凝胶日用品或抗高温携砂液中的应用。
PCT/CN2019/088042 2019-05-23 2019-05-23 凝胶材料及制备方法、可塑型制品和应用 WO2020232686A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/088042 WO2020232686A1 (zh) 2019-05-23 2019-05-23 凝胶材料及制备方法、可塑型制品和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/088042 WO2020232686A1 (zh) 2019-05-23 2019-05-23 凝胶材料及制备方法、可塑型制品和应用

Publications (1)

Publication Number Publication Date
WO2020232686A1 true WO2020232686A1 (zh) 2020-11-26

Family

ID=73459314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088042 WO2020232686A1 (zh) 2019-05-23 2019-05-23 凝胶材料及制备方法、可塑型制品和应用

Country Status (1)

Country Link
WO (1) WO2020232686A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101233844A (zh) * 2008-01-14 2008-08-06 周加权 一种水性清洁杀菌凝胶
JP2018095640A (ja) * 2016-12-08 2018-06-21 花王株式会社 ハイドロゲル粒子
CN110117371A (zh) * 2019-05-23 2019-08-13 梧州渺渺科技有限公司 凝胶材料及其制备方法、可塑型制品和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101233844A (zh) * 2008-01-14 2008-08-06 周加权 一种水性清洁杀菌凝胶
JP2018095640A (ja) * 2016-12-08 2018-06-21 花王株式会社 ハイドロゲル粒子
CN110117371A (zh) * 2019-05-23 2019-08-13 梧州渺渺科技有限公司 凝胶材料及其制备方法、可塑型制品和应用

Similar Documents

Publication Publication Date Title
Feng et al. Multifunctional vitrimer-like polydimethylsiloxane (PDMS): recyclable, self-healable, and water-driven malleable covalent networks based on dynamic imine bond
Chen et al. Hydrogel with ultrafast self-healing property both in air and underwater
Lv et al. Degradable, reprocessable, self-healing PDMS/CNTs nanocomposite elastomers with high stretchability and toughness based on novel dual-dynamic covalent sacrificial system
CN1307218C (zh) 二烯橡胶、其制备方法以及橡胶组合物、其制备方法和交联物
Zárate-Ramírez et al. Thermo-mechanical and hydrophilic properties of polysaccharide/gluten-based bioplastics
Chen et al. Effects of nano-TiO2 on bonding performance, structure stability and film-forming properties of starch-g-VAc based wood adhesive
US20040266940A1 (en) Reformable compositions
Zhang et al. Facile fabrication of tough photocrosslinked polyvinyl alcohol hydrogels with cellulose nanofibrils reinforcement
EP3320027B1 (en) Styrenic block copolymers as thermally-activated viscosifiers for oilfield applications
Fang et al. One-step synthesis of healable weak-polyelectrolyte-based hydrogels with high mechanical strength, toughness, and excellent self-recovery
CN103756329B (zh) 一种应用于电力电缆附件的绝缘橡胶及其制备方法
CN110591371A (zh) 一种可原位成型的高粘结导热硅凝胶及其制备方法
Huang et al. Reprocessable and robust crosslinked elastomers via interfacial CN transalkylation of pyridinium
KR20010015772A (ko) 소수성으로 개질된 폴리(아세탈-또는 케탈-폴리에테르),폴리우레탄 및 폴리아크릴레이트의 유동화 중합체 현탁액
CN111393651B (zh) 一种自修复聚硅氧烷弹性体及其制备方法和应用
DE112017000057B4 (de) Silikon-Kautschuk-Zusammensetzung und Körper aus vernetztem Silikon-Kautschuk
RU2007146111A (ru) Композиции, содержащие бактериальную целлюлозу, и способ получения эффективных композиций, содержащих бактериальную целлюлозу
Zhou et al. A novel 3D-printable hydrogel with high mechanical strength and shape memory properties
Heidarian et al. Double dynamic cellulose nanocomposite hydrogels with environmentally adaptive self-healing and pH-tuning properties
CN105238070A (zh) 一种单组份加成型液体硅橡胶及其制备方法
WO2018205326A1 (zh) 一种免粘合剂的瓶盖垫片和/或衬垫及其制备方法
Mark Thermoset elastomers
WO2020232686A1 (zh) 凝胶材料及制备方法、可塑型制品和应用
CN110117371B (zh) 凝胶材料及其制备方法、可塑型制品和应用
Lv et al. Robust, healable and hydrophobically recoverable polydimethylsiloxane based supramolecular material with dual-activate hard segment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929774

Country of ref document: EP

Kind code of ref document: A1