WO2020222494A1 - 가소제 조성물 및 이를 포함하는 수지 조성물 - Google Patents

가소제 조성물 및 이를 포함하는 수지 조성물 Download PDF

Info

Publication number
WO2020222494A1
WO2020222494A1 PCT/KR2020/005567 KR2020005567W WO2020222494A1 WO 2020222494 A1 WO2020222494 A1 WO 2020222494A1 KR 2020005567 W KR2020005567 W KR 2020005567W WO 2020222494 A1 WO2020222494 A1 WO 2020222494A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclohexane
group
based material
triester
diester
Prior art date
Application number
PCT/KR2020/005567
Other languages
English (en)
French (fr)
Inventor
김현규
조윤기
최우혁
문정주
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/439,700 priority Critical patent/US20220162436A1/en
Priority to CN202080025059.XA priority patent/CN113646373B/zh
Priority to EP20798264.6A priority patent/EP3964544A4/en
Publication of WO2020222494A1 publication Critical patent/WO2020222494A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the present invention relates to a plasticizer composition and a resin composition including the same, and to a plasticizer composition that is environmentally friendly and excellent in physical properties, and a resin composition including the same.
  • plasticizers react with alcohols with polycarboxylic acids such as phthalic acid and adipic acid to form corresponding esters.
  • polycarboxylic acids such as phthalic acid and adipic acid
  • plasticizer compositions that can replace phthalate plasticizers such as terephthalate, adipate, and other polymers are continuing.
  • plasticizers should be used in consideration of discoloration, migration, and mechanical properties.
  • sub-materials such as plasticizers, fillers, stabilizers, viscosity reducing agents, dispersants, defoaming agents, foaming agents, etc. are mixed with the PVC resin according to the properties required for each industry, such as tensile strength, elongation, light resistance, transition, gelling property or absorption rate. Is done.
  • DEHTP di(2-ethylhexyl) terephthalate
  • composition containing DEHTP it may be considered to apply the product of the transesterification reaction with butanol as a plasticizer, but while the plasticization efficiency is improved, the heating loss or thermal stability is poor, and mechanical properties There is currently no solution except to adopt a method of supplementing it through mixed use with other secondary plasticizers, as the improvement of physical properties such as this somewhat deteriorated.
  • Patent Document 1 KR10-0957134B
  • An object of the present invention is to provide a plasticizer composition that is environmentally friendly and has excellent physical properties, and improves physical properties such as transfer loss, tensile strength, and heating loss, and has an improved plasticizer composition having excellent orientation in the case of elongation and stress resistance.
  • the present invention is a cyclohexane 1,4-diester-based material, a diester-based material selected from those having an alkyl group bonded to two ester groups each independently having 8 to 10 carbon atoms; And a cyclohexane 1,2,4-triester-based material, a triester-based material selected from those having 4 to 10 carbon atoms, respectively, independently of the alkyl groups bonded to the three ester groups; Including, the cyclohexane 1,4-di
  • the ester-based material and the cyclohexane 1,2,4-triester-based material provide a plasticizer composition in which the weight ratio is 95:5 to 5:95.
  • the present invention provides a resin composition comprising 100 parts by weight of a resin and 5 to 150 parts by weight of the plasticizer composition.
  • the plasticizer composition of the present invention is environmentally friendly, and accordingly, when the plasticizer composition of the present invention is included in the resin composition, tensile strength, elongation, transferability, heating loss and resistance are equivalent to or higher than those of existing phthalate products or improved products. Physical properties such as stress can be remarkably improved.
  • composition includes reaction products and decomposition products formed from the materials of the composition as well as mixtures of materials comprising the composition.
  • iso- refers to an alkyl group in which a methyl group or ethyl group is bonded in a branched chain to the main chain of an alkyl group. As long as there is no alkyl group separately referred to as otherwise, a methyl group or ethyl group is bonded to the main chain It can be used as a generic term for the alkyl group.
  • the term "isononyl group” as used herein may mean an alkyl group having a total carbon number of 9 in which one or more of one or two methyl groups, one ethyl group, and one propyl group in the main chain are branched, For example, 2-methyloctyl group, 3-methyloctyl group, 4-methyloctyl group, 5-methyloctyl group, 6-methyloctyl group, 3-ethylheptyl group, 2-ethylheptyl group, 2,5-dimethylheptyl group In the meaning of collectively referring to a tyl group, 2,3-dimethylheptyl group, 4,5-dimethylheptyl group, 3-ethyl-4-methylhexyl group, 2-ethyl-4-methylhexyl group, or 2-propylhexyl group, etc.
  • isononyl alcohol (CAS No.: 68526-84-1, 27458-94-2) used commercially may mean a composition of isomers having a degree of branching of 1.2 to 1.9, and the commercial alcohol In the case, it may also contain some n-nonyl groups.
  • the term "straight vinyl chloride polymer” as used herein, as one of the types of vinyl chloride polymer, may mean polymerization through suspension polymerization or bulk polymerization, and having a size of tens to hundreds of micrometers. It has the form of porous particles in which a large amount of pores are distributed, has no cohesiveness, and has excellent flowability.
  • paste vinyl chloride polymer as used herein, as one of the types of vinyl chloride polymers, may mean polymerized through microsuspension polymerization, microseed polymerization, or emulsion polymerization, and from tens to It refers to a polymer with poor flowability and cohesiveness as particles without fine and dense pores having a size of several thousand nanometers.
  • compositions claimed through the use of the term'comprising', whether polymer or otherwise, may contain any additional additives, adjuvants, or compounds, unless stated to the contrary.
  • the term'consisting essentially of' excludes from the scope of any subsequent description any other component, step or procedure, except that it is not essential to operability.
  • the term'consisting of' excludes any component, step or procedure not specifically described or listed.
  • analysis of the content of components in the composition is performed through gas chromatography measurement, and a gas chromatography instrument (product name: Agilent 7890 GC, column: HP-5, carrier gas : Helium (flow rate 2.4mL/min), detector: FID, injection volume: 1uL, initial value: 70°C/4,2min, final value: 280°C/7.8min, program rate: 15°C/min) .
  • a gas chromatography instrument product name: Agilent 7890 GC, column: HP-5, carrier gas : Helium (flow rate 2.4mL/min), detector: FID, injection volume: 1uL, initial value: 70°C/4,2min, final value: 280°C/7.8min, program rate: 15°C/min
  • 'hardness' refers to Shore hardness at 25°C (Shore “A” and/or Shore “D”) using ASTM D2240, and is measured under the conditions of 3T 10s, and plasticized It can be an index to evaluate the efficiency, and the lower it means the plasticization efficiency is excellent.
  • the'tensile strength' is a cross head speed of 200 mm/min (1T) using UTM (manufacturer; Instron, model name; 4466) as a test device according to ASTM D638 method. ), and then the point at which the specimen is cut is measured and calculated by Equation 1 below.
  • Tensile strength (kgf/cm 2 ) load value (kgf) / thickness (cm) x width (cm)
  • the'elongation rate' is measured at the point where the specimen is cut after pulling the cross head speed to 200 mm/min (1T) using the UTM according to the ASTM D638 method. Then, it is calculated by the following equation (2).
  • Elongation (%) length after elongation / initial length x 100
  • the'migration loss' is obtained by obtaining a test piece with a thickness of 2 mm or more according to KSM-3156, attaching the plate to both sides of the test piece, and applying a load of 1 kgf/cm 2 . After leaving the test piece in a hot air circulation oven (80°C) for 72 hours, take it out and cool it at room temperature for 4 hours. Then, after removing the plate attached to both sides of the test piece, measure the weight before and after leaving the plates in the oven, and calculate the transition loss amount by Equation 3 below.
  • the material of the plate may be various, such as PS (Polystyrene), ABS, Glass, and the specimen plate, and the plate material used in the measurement in this specification is Glass.
  • Transition loss (%) ⁇ [(initial weight of specimen)-(weight of specimen after leaving the oven)] / (initial weight of specimen) ⁇ x 100
  • Heating loss (%) ⁇ [(Initial specimen weight)-(After work specimen weight)] / (Initial specimen weight) ⁇ x 100
  • the plasticizer composition according to an embodiment of the present invention includes a cyclohexane 1,4-diester-based material and a cyclohexane 1,2,4-triester-based material, and the diester-based material is bonded to two ester groups.
  • the alkyl groups are each independently selected from those having 8 to 10 carbon atoms, and the triester-based material is selected from those having 4 to 10 carbon atoms, each of which is independently bonded to the three ester groups.
  • the cyclohexane 1,4-diester-based material may have 8 to 10 carbon atoms of the alkyl group bonded thereto, for example, 2-ethylhexyl group, isononyl group, n-nonyl group, 2-propylheptyl group Or it may be an isodecyl group, and preferably a 2-ethylhexyl group, an isononyl group or a 2-propylheptyl group may be applied.
  • the diester-based material it can generally be obtained by hydrogenating terephthalate, and as a plasticizer for replacing the terephthalate-based plasticizer, it can be quite excellent in plasticization efficiency and light resistance. In terms of achieving this effect, more preferably, the alkyl group may have 8 or 9 carbon atoms.
  • the diester-based material is one in which an ester group is bonded to carbons 1 and 4 of cyclohexane, and may be a material derived from hydrogenation from terephthalate, and an ester group is bonded to carbons 1 and 2 or 1 Compared to materials in which an ester group is bonded to carbon Nos. and 3, plasticization efficiency and mechanical properties may be excellent, so it is preferable to apply a diester-based material bonded to positions 1 and 4 according to the present invention. I can.
  • the diester-based material may be prepared by hydrogenation of a terephthalate-based material, and may be prepared by an esterification reaction of cyclohexane dicarboxylic acid, and the diester-based material is prepared through an appropriate combination of hydrogenation and esterification. Can be manufactured.
  • cyclohexane 1,4-diester-based material When the cyclohexane 1,4-diester-based material is directly prepared, it may be prepared by direct esterification reaction or transesterification reaction of cyclohexane 1,4-dicarboxylic acid or a derivative thereof and an alcohol.
  • the cyclohexane 1,4-dicarboxylic acid derivative may be at least one selected from the group consisting of an anhydride of cyclohexane 1,4-dicarboxylic acid and/or an alkyl ester of the cyclohexane 1,4-dicarboxylic acid.
  • the alkyl ester may be an alkyl ester having 8 to 10 carbon atoms.
  • alkyl group of the cyclohexane 1,4-diester finally prepared has 8 to 10 carbon atoms, it is preferable that the alkyl group as described above is applied, and these alkyl groups may be derived from the alcohol used in the preparation.
  • the alcohol is 2 to 10 based on 1 mol of the cyclohexane 1,4-dicarboxylic acid or a derivative thereof. It may be used in moles, 2 to 8 moles, 2 to 6 moles, or 2 to 5 moles, of which 2 to 5 moles are preferably used.
  • the direct esterification reaction may be carried out in the presence of a catalyst, and the catalyst may be one or more selected from the group consisting of inorganic acids, organic acids, and Lewis acids, of which one or more selected from the group consisting of organic acids and Lewis acids. I can.
  • the inorganic acid may be one or more selected from the group consisting of sulfuric acid, hydrochloric acid and phosphoric acid.
  • the organic acid may be at least one selected from the group consisting of p-toluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid and alkyl sulfuric acid.
  • the Lewis acid is an aluminum derivative (aluminum oxide, aluminum hydroxide), a tin derivative (a C 3 to C 12 fatty acid tin, tin oxide, tin hydroxide), a titanium derivative (C 3 to C 8 tetraalkyl titanate, titanium oxide, hydroxide). Titanium), lead derivatives (lead oxide, lead hydroxide) and zinc derivatives (zinc oxide, zinc hydroxide) may be one or more selected from the group consisting of.
  • the catalyst when it is a homogeneous catalyst, it may be used in an amount of 0.001 to 5 parts by weight or 0.001 to 3 parts by weight based on 100 parts by weight of the total of the cyclohexane 1,4-dicarboxylic acid or a derivative thereof and an alcohol, of which 0.01 to 3 It is preferably used in parts by weight.
  • the catalyst when it is a heterogeneous catalyst, it may be used in an amount of 0.5 to 200 parts by weight or 0.5 to 100 parts by weight based on 100 parts by weight of the sum of cyclohexane 1,4-dicarboxylic acid or a derivative thereof and an alcohol, of which 0.5 to 200 parts by weight It is preferably used as a wealth.
  • the direct esterification reaction may be performed at 100 to 280°C, 130 to 250°C, or 150 to 230°C, of which it is preferably performed at 150 to 230°C.
  • the direct esterification reaction may be performed for 3 to 30 hours or 3 to 25 hours, of which it is preferably performed for 3 to 25 hours.
  • a cyclohexane 1,4-diester-based material when a cyclohexane 1,4-diester-based material is prepared by the transesterification reaction, it may be prepared by a transesterification reaction of the cyclohexane 1,4-dicarboxylic acid derivative and an alcohol.
  • the derivative of cyclohexane 1,4-dicarboxylic acid may be an alkyl ester of cyclohexane 1,4-dicarboxylic acid, and preferably, methyl ester of cyclohexane 1,4-dicarboxylic acid to facilitate separation of the reaction product. You can use
  • the alcohol may be used in 2 to 10 moles, 2 to 8 moles, 2 to 6 moles, or 2 to 5 moles, of which 2 to 5 moles are used. It is desirable to be.
  • the transesterification reaction may be carried out in the presence of a catalyst, and in this case, the reaction time may be shortened.
  • the catalyst may be one or more selected from the group consisting of Lewis acids and alkali metals.
  • the Lewis acid is as described in the description of the direct esterification reaction, and aluminum derivatives (aluminum oxide, aluminum hydroxide), tin derivatives (fatty acid tin of C 3 to C 12 , tin oxide, tin hydroxide), titanium derivative (C 3 It may be one or more selected from the group consisting of C 8 tetraalkyl titanate, titanium oxide, titanium hydroxide), lead derivatives (lead oxide, lead hydroxide) and zinc derivatives (zinc oxide, zinc hydroxide).
  • the alkali metal may be one or more selected from the group consisting of sodium alkoxide, potassium alkoxide, sodium hydroxide and potassium hydroxide, and a single or two or more mixed catalysts of the metal catalyst may be used.
  • the catalyst may be used in an amount of 0.001 to 5 parts by weight or 0.01 to 3 parts by weight, of which 0.001 to 3 parts by weight is used based on 100 parts by weight of the sum of the derivative of cyclohexane 1,4-dicarboxylic acid and the alcohol. desirable.
  • the transesterification reaction may be performed at 120 to 250°C, 135 to 230°C, or 140 to 220°C, of which it is preferably performed at 140 to 220°C.
  • the transesterification reaction may be performed for 0.5 to 10 hours or 0.5 to 8 hours, of which it is preferably performed for 0.5 to 8 hours.
  • the direct esterification reaction or the transesterification reaction further comprises at least one selected from the group consisting of benzene, toluene, xylene, and cyclohexane in order to promote the outflow of water or lower alcohol such as methanol generated by the reaction. It can be added, and commercially available nitrogen for the same purpose can be used as an entrainment.
  • the cyclohexane 1,4-diester-based material represented by Chemical Formula 1 prepared by the direct esterification reaction or transesterification reaction may be purified by performing a separate post-treatment.
  • the post-treatment may be at least one selected from the group consisting of catalyst deactivation treatment (neutralization treatment, base treatment), water washing treatment, distillation (reduction or dehydration treatment), and adsorption purification treatment.
  • a manufacturing method including converting a dialkyl terephthalate-based material into a cyclohexane 1,4-diester-based material by hydrogenating a dialkyl terephthalate-based material in the presence of a metal catalyst can be applied.
  • the hydrogenation step is a reaction of removing the aromaticity of the benzene ring of terephthalate by adding hydrogen in the presence of a metal catalyst, and may be a kind of reduction reaction.
  • the hydrogenation reaction is to synthesize a cyclohexane 1,4-diester-based material by reacting the terephthalate-based material with hydrogen under a metal catalyst, and the reaction conditions are the benzene ring without affecting the carbonyl group substituted in benzene. It may include all of the conventional reaction conditions capable of hydrogenating the bay.
  • the hydrogenation reaction may be carried out by further including an organic solvent such as ethanol, but is not limited thereto.
  • an organic solvent such as ethanol
  • an Rh/C catalyst, a Pt catalyst, a Pd catalyst, etc. which are generally used to hydrogenate a benzene ring, may be used, but the hydrogenation reaction as described above is not limited thereto.
  • the plasticizer composition according to an embodiment of the present invention is characterized in that a cyclohexane 1,2,4-triester-based material is used in addition to the cyclohexane 1,4-diester-based material.
  • the diester-based material is a material applied to improve the plasticizing efficiency of terephthalate-based materials, but despite the improvement of the plasticization efficiency, the transferability and heating loss are lower than that of the terephthalate-based plasticizer. It can be inferior, and it is difficult to compensate for such poor physical properties, so it is a material that can be difficult to commercialize as a plasticizer that meets actual market demands.
  • the terephthalate-based plasticizer is an eco-friendly alternative to the phthalate-based plasticizer, the fact that the petroleum-based plasticizer cannot be removed due to the benzene ring may also act as a limitation.
  • diester-based materials are difficult to be applied alone in that they do not have significantly improved physical properties to offset the cost increase due to hydrogenation of terephthalate-based materials.Therefore, it is difficult to apply them alone. Blending is required.
  • cyclohexane 1,2,4-triester-based materials may be selected from those having 4 to 10 carbon atoms, respectively, independently of the alkyl group bonded to each of the three ester groups, and preferably the number of carbon atoms may be 5 to 9 .
  • a triester-based material in which an alkyl group having less than 4 carbon atoms is bonded is applied, it may not be possible to achieve the purpose of supplementing mechanical properties, and when an alkyl group having a carbon number greater than 10 is applied, even excellent plasticization efficiency may be offset.
  • the alkyl group may have 5 to 9 carbon atoms, for example, n-pentyl group, isopentyl group, n-hexyl group, isohexyl group, n-heptyl group , Isoheptyl group, 2-ethylhexyl group, isononyl group or 2-propylheptyl group may be applied.
  • the cyclohexane 1,2,4-triester-based material may be prepared by hydrogenating trimellitate, and cyclohexane tricarboxylic acid may be subjected to a transester reaction or a direct ester reaction. It can also be prepared, and if the sequence of the ester reaction and the hydrogenation reaction is properly combined and the raw material is appropriately applied accordingly, a cyclohexane 1,2,4-triester-based material can be prepared.
  • This manufacturing method can be applied substantially the same method as the manufacturing of the above-described diester-based material, and cyclohexane 1,2,4-triester-based material can be obtained without difficulty if only fine control such as raw material and reaction temperature is performed. I can.
  • the diester-based material and the triester-based material are included in a weight ratio of 95:5 to 5:95.
  • the weight ratio may be, for example, 99:1, 95:5, 90:10, 85:15, 80:20, 75:25, 70:30, or 60:40 as an upper limit, and 1:99, 5 as a lower limit. :95, 10:90, 15:85, 20:80, 25:75, 30:70, 40:60, or 50:50.
  • a weight ratio of 90:10 to 10:90 may be applied, preferably a weight ratio of 80:20 to 20:80, and more preferably 70:30 to 30:70 It can be applied in a weight ratio of.
  • the synergy of improving poor physical properties while maintaining excellent physical properties of each material It can make an effect.
  • the improvement of mechanical properties such as tensile strength and elongation is remarkable, while the plasticization efficiency is maintained, and other transferability and heating loss can be achieved at a very high level, and excellent effects in improving stress resistance are expected. I can.
  • the resin composition according to another embodiment of the present invention includes 100 parts by weight of a resin, and 5 to 150 parts by weight of the plasticizer composition described above.
  • the plasticizer composition may be included in an amount of 5 to 150 parts by weight, preferably 5 to 130 parts by weight, or 10 to 120 parts by weight, based on 100 parts by weight of the resin.
  • the resin a resin known in the art may be used.
  • a resin known in the art may be used.
  • the resin in which the plasticizer composition is used may be manufactured into a resin product through melt processing or plastisol processing, and the melt processing resin and plastisol processing resin may be produced differently according to each polymerization method.
  • a vinyl chloride polymer when used for melt processing, a solid resin particle having a large average particle diameter is used because it is prepared by suspension polymerization, and this vinyl chloride polymer is called a straight vinyl chloride polymer, and is used for plastisol processing.
  • a resin in a sol state is used as fine resin particles that are prepared by emulsion polymerization or the like, and such a vinyl chloride polymer is called a paste vinyl chloride resin.
  • the plasticizer in the case of the straight vinyl chloride polymer, is preferably contained within the range of 5 to 80 parts by weight based on 100 parts by weight of the polymer, and in the case of the paste vinyl chloride polymer, 40 to 120 parts by weight based on 100 parts by weight of the polymer It is preferably included in.
  • the resin composition may further include a filler.
  • the filler may be 0 to 300 parts by weight, preferably 50 to 200 parts by weight, more preferably 100 to 200 parts by weight, based on 100 parts by weight of the resin.
  • the plasticizer composition according to an embodiment of the present invention may be preferably applied to a straight vinyl chloride polymer, and thus melt-processed, and as a processing method described later, it is applied to a resin product applied to processing such as calendering, extrusion, injection, etc. It can be used as a plasticizer.
  • the filler may be a filler known in the art, and is not particularly limited.
  • it may be a mixture of one or more selected from silica, magnesium carbonate, calcium carbonate, hard coal, talc, magnesium hydroxide, titanium dioxide, magnesium oxide, calcium hydroxide, aluminum hydroxide, aluminum silicate, magnesium silicate and barium sulfate.
  • the resin composition may further include other additives such as stabilizers, if necessary.
  • additives such as the stabilizer may be, for example, 0 to 20 parts by weight, preferably 1 to 15 parts by weight, based on 100 parts by weight of the resin, respectively.
  • the stabilizer is, for example, calcium-zinc (Ca-Zn) stabilizers such as calcium-zinc complex stearic acid salts, and barium-zinc (Ba-Zn) stabilizers using barium-zinc as the main metal material. Can be used, but is not particularly limited thereto.
  • Ca-Zn calcium-zinc
  • Ba-Zn barium-zinc
  • the resin composition may be applied to both melt processing and plastisol processing as described above, for example, melt processing may be applied to calendering processing, extrusion processing, or injection processing, and plastisol processing may be applied to coating processing, etc. Can be applied.
  • the resin composition may be used in the manufacture of electric wires, flooring materials, automobile interior materials, films, sheets, or tubes.
  • Diisononyl cyclohexane 1,4-dicarboxylate was prepared in the same manner as in Preparation Example 1, except that isononyl alcohol was used instead of 2-ethylhexyl alcohol in Preparation Example 1.
  • Di(2-propylheptyl) cyclohexane 1,4-dicarboxylate was prepared in the same manner as in Preparation Example 1, except that 2-propylheptyl alcohol was used instead of 2-ethylhexyl alcohol in Preparation Example 1.
  • Diisodecyl cyclohexane 1,4-dicarboxylate was prepared in the same manner as in Preparation Example 1, except that isodecyl alcohol was used instead of 2-ethylhexyl alcohol in Preparation Example 1.
  • Tripentyl cyclohexane 1,4-tricarboxylate was prepared in the same manner as in Preparation Example 5, except that n-pentyl alcohol was used instead of 2-ethylhexyl alcohol in Preparation Example 5.
  • Triisononyl cyclohexane 1,4-tricarboxylate was prepared in the same manner as in Preparation Example 5, except that isononyl alcohol was used instead of 2-ethylhexyl alcohol in Preparation Example 5.
  • Tributyl cyclohexane 1,4-tricarboxylate was prepared in the same manner as in Preparation Example 5, except that n-butyl alcohol was used instead of 2-ethylhexyl alcohol in Preparation Example 5.
  • Tri(2-propylheptyl) cyclohexane 1,4-tricarboxylate was prepared in the same manner as in Preparation Example 5, except that 2-propylheptyl alcohol was used instead of 2-ethylhexyl alcohol in Preparation Example 5.
  • Plasticizer compositions of Examples and Comparative Examples were prepared using the materials prepared in Preparation Examples, and are summarized in Table 1 below. Evaluation of physical properties of the plasticizer composition was performed according to the following experimental items. Materials other than the materials prepared in the above preparation examples were commercialized products.
  • Example 1 DEHCH 10
  • TEHCH 90 - Example 2 DEHCH 30 TEHCH 70 - Example 3 DEHCH 50 TEHCH 50 -
  • Example 4 DEHCH 70 TEHCH 30 -
  • Example 5 DEHCH 90 TEHCH 10 -
  • Example 6 DINCH 70 TPCH 30 - Example 7 DEHCH 80 TINCH 20 -
  • Example 8 DEHCH 40 TBCH 60 -
  • Example 9 DEHCH 50 TPHCH 50 -
  • Example 11 DIDCH 90 TEHCH 10 - Comparative Example 1 - - DINP 2) Comparative Example 2 - - DEHTP 3) Comparative Example 3 - - TEHTM Comparative Example 4 DEHCH 100 - - Comparative Example 5 - TEHCH 100 - Comparative Example 6 DINCH 100 - - Comparative Example 7 - TPCH 100 - Comparative Example 8 DEHCH 50 - DEHTP 50 Comparative Example 9 DEHC
  • Tensile strength (kgf/cm 2 ) load value (kgf) / thickness (cm) x width (cm)
  • Elongation rate According to the ASTM D638 method, after pulling the cross head speed at 200 mm/min using the UTM, the point at which the 1T specimen is cut is measured, and the elongation is calculated as follows. It was calculated as:
  • Elongation (%) length after elongation / initial length x 100 was calculated.
  • Transition loss (%) ⁇ [(Initial specimen weight)-(Specimen weight after leaving the oven)] / (Initial specimen weight) ⁇ x 100
  • Heating loss (%) ⁇ [(Initial specimen weight)-(After work specimen weight)] / (Initial specimen weight) ⁇ x 100
  • Stress test stress resistance: After a specimen with a thickness of 2 mm was allowed to stand at 23°C for 72 hours in a bent state, the degree of migration (the degree of bleeding) was observed, and the result was written as a numerical value, The closer it was, the better the characteristics were.
  • Table 2 shows the evaluation results of the above items.
  • Example 1 93.1 46.5 232.9 318.7 1.82 0.49 0
  • Example 2 92.5 45.9 230.8 318.3 2.29 0.65 0
  • Example 3 92.2 45.5 232.4 319.1 2.36 0.81 0
  • Example 4 90.9 45.0 235.5 315.4 2.86 1.05 0
  • Example 5 90.1 44.8 234.6 310.1 2.98 1.17 0
  • Example 6 92.3 45.6 234.7 325.4 2.35 0.70
  • Example 7 90.3 45.0 245.1 320.2 1.95 0.95 0
  • Example 8 87.8 42.2 238.9 301.0 2.34 2.14 0
  • Example 9 93.3 46.8 241.0 310.5 2.23 0.56
  • Example 10 94.5 47.9 240.7 298.6 3.01 1.02 1.0
  • Comparative Examples 2 and 4 were not mixed, unlike the Examples, and Comparative Example 2 was considered to have high hardness, so the plasticization efficiency was poor, and both mechanical properties such as elongation and transfer characteristics were not significantly excellent. It was confirmed that the stress property was also poor, and in Comparative Example 4, it was confirmed that only the plasticization efficiency was excellent, but all other technical characteristics were poorly shown, so that it was difficult to commercialize by itself.
  • the materials of Comparative Examples 2 and 4 were mixed, and the physical properties were shown to have intermediate values to some extent, but the stress resistance was worsened, and no improvement was seen in the transition loss.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 사이클로헥산 1,4-디에스터계 물질 및 사이클로헥산 1,2,4-트리에스터계 물질을 포함하는 가소제 조성물에 관한 것으로서, 기존의 프탈레이트계 가소제 제품 대비 가소화 효율을 우수한 수준으로 유지하고 기계적 물성을 개선할 수 있는 가소제를 제공할 수 있으며, 내스트레스성의 우수함 또한 장점으로 갖는 가소제를 제공할 수 있다.

Description

가소제 조성물 및 이를 포함하는 수지 조성물
관련출원과의 상호인용
본 출원은 2019년 05월 02일자 한국 특허 출원 제10-2019-0051715호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 가소제 조성물 및 이를 포함하는 수지 조성물에 관한 것으로서, 환경 친화적이면서, 물성이 우수한 가소제 조성물 및 이를 포함하는 수지 조성물에 관한 것이다.
통상적으로 가소제는 알코올이 프탈산 및 아디프산과 같은 폴리카복시산과 반응하여 이에 상응하는 에스터를 형성한다. 또한 인체에 유해한 프탈레이트계 가소제의 국내외 규제를 고려하여, 테레프탈레이트계, 아디페이트계, 기타 고분자계 등의 프탈레이트계 가소제를 대체할 수 있는 가소제 조성물들에 대한 연구가 계속되고 있다.
한편, 바닥재, 벽지, 연질 및 경질 시트 등의 플라스티졸 업종, 캘린더링 업종, 압출/사출 컴파운드 업종을 막론하고, 이러한 친환경 제품에 대한 요구가 증대고 있으며, 이에 대한 완제품별 품질 특성, 가공성 및 생산성을 강화하기 위하여 변색 및 이행성, 기계적 물성 등을 고려하여 적절한 가소제를 사용하여야 한다.
이러한 다양한 사용 영역에서 업종별 요구되는 특성인 인장강도, 신율, 내광성, 이행성, 겔링성 혹은 흡수속도 등에 따라 PVC 수지에 가소제, 충전제, 안정제, 점도저하제, 분산제, 소포제, 발포제 등의 부원료등을 배합하게 된다.
일례로, PVC에 적용 가능한 가소제 조성물 중, 가격이 상대적으로 저렴하면서 가장 범용적으로 사용되는 디(2-에틸헥실) 테레프탈레이트(DEHTP)를 적용할 경우, 경도 혹은 졸 점도가 높고 가소제의 흡수 속도가 상대적으로 느리며, 이행성 및 스트레스 이행성도 양호하지 않았다.
이에 대한 개선으로 DEHTP를 포함하는 조성물로서, 부탄올과의 트랜스 에스터화 반응의 생성물을 가소제로 적용하는 것을 고려할 수 있으나, 가소화 효율은 개선되는 반면, 가열감량이나 열안정성 등이 열악하고, 기계적 물성이 다소 저하되는 등 물성의 개선이 요구되어 일반적으로 다른 2차 가소제와의 혼용을 통해서 이를 보완하는 방식을 채용하는 것 외에는 현재로써 해결책이 없는 상황이다.
그러나, 2차 가소제를 적용하는 경우에는 물성 변화에 대한 예측이 어렵고, 제품 단가가 상승하는 요인으로 작용할 수 있으며, 특정한 경우 이외에는 물성의 개선이 뚜렷하게 나타나지 않으며, 수지와의 상용성에 문제를 일으키는 등 예상치 못한 문제점이 발생한다는 단점이 있다.
또한, 상기 DEHTP 제품의 열악한 이행성과 감량 특성을 개선하기 위해 트리멜리테이트 계열의 제품으로서 트리(2-에틸헥실) 트리멜리테이트나 트리이소노닐 트리멜리테이트와 같은 물질을 적용하는 경우, 이행성이나 감량 특성은 개선되는 반면에, 가소화 효율이 열악해져, 수지에 적절한 가소화 효과를 부여하기 위해서는 상당량 투입하여야 하는 문제가 있고, 이에 비교적 단가가 높은 제품들이라는 점에서, 상용화가 불가능한 실정에 있다.
나아가, DEHTP 제품의 열악한 성능 개선을 위하여 이를 수소화 한 제품이 제안되고 있으나, 이 제품의 경우 가소화 효율만이 개선될뿐 기계적 물성이나, 내스트레스성이 열악해지고 이행성과 감량 특성은 보다 악화되는 문제가 있는 실정이며, 수소화로 인한 단가 상승 역시 해결해야 하는 문제로 남아 있다.
이에, 기존 제품으로써 프탈레이트계 제품의 환경적 이슈를 해결하기 위한 제품 또는 프탈레이트계 제품의 환경 이슈를 개선하기 위한 친환경 제품들의 열악한 물성을 개선한 제품 등의 개발이 요구되는 실정이다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) KR10-0957134B
본 발명의 목적은 환경 친화적이면서, 물성이 우수한 가소제 조성물로, 이행손실, 인장강도, 가열 감량 등의 물성을 개선하고, 신율과 내스트레스성의 경우 우수한 방향성을 갖도록 개선된 가소제 조성물을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 사이클로헥산 1,4-디에스터계 물질로, 2개의 에스터기에 결합된 알킬기가 각각 독립적으로 탄소수 8 내지 10인 것에서 선택된 디에스터계 물질; 및 사이클로헥산 1,2,4-트리에스터계 물질로, 3개의 에스터기에 결합된 알킬기가 각각 독립적으로 탄소수 4 내지 10인 것에서 선택된 트리에스터계 물질;를 포함하고, 상기 사이클로헥산 1,4-디에스터계 물질과 사이클로헥산 1,2,4-트리에스터계 물질은 중량비가 95:5 내지 5:95인 것인 것인 가소제 조성물을 제공한다.
상기 과제를 해결하기 위하여, 본 발명은 수지 100 중량부 및 상기 가소제 조성물 5 내지 150 중량부를 포함하는 수지 조성물을 제공한다.
본 발명의 가소제 조성물은 환경 친화적이며, 이에 따라 본 발명의 가소제 조성물이 수지 조성물에 포함되면, 기존 프탈레이트 제품이나, 이의 개선 제품들 대비 동등 이상의 수준으로 인장강도, 신율, 이행성, 가열감량 및 내스트레스성과 같은 물성을 현저하게 개선할 수 있다.
특히, 사이클로헥산 1,4-디에스터계 물질의 문제로써 개선이 극히 어려웠던 내이행성과 가열감량을 개선할 수 있고, 수지와의 상용성과 가소화 효율은 우수한 수준으로 유지될 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
용어의 정의
본 명세서에서 이용되는 바와 같은 "조성물"이란 용어는, 해당 조성물의 재료로부터 형성된 반응 생성물 및 분해 생성물뿐만 아니라 해당 조성물을 포함하는 재료들의 혼합물을 포함한다.
본 명세서에서 이용되는 바와 같은 접두어 “이소-“는 알킬기의 주사슬에 메틸기 또는 에틸기가 분지쇄로 결합된 알킬기를 의미하며, 달리 별도로 칭하는 알킬기가 없는 이상 분지쇄로 메틸기 또는 에틸기가 주사슬에 결합된 알킬기를 총칭하는 것으로 사용될 수 있다.
본 명세서에서 사용되는 용어 “이소노닐기”는 주사슬에 1개 또는 2개의 메틸기, 1개의 에틸기 및 1개의 프로필기 중에서 1 이상이 가지로 치환되어 있는 총 탄소수 9인 알킬기를 의미할 수 있고, 예컨대, 2-메틸옥틸기, 3-메틸옥틸기, 4-메틸옥틸기, 5-메틸옥틸기, 6-메틸옥틸기, 3-에틸헵틸기, 2-에틸헵틸기, 2,5-디메틸헵틸기, 2,3-디메틸헵틸기, 4,5-디메틸헵틸기, 3-에틸-4-메틸헥실기, 2-에틸-4-메틸헥실기, 또는 2-프로필헥실기 등을 통칭하는 의미로 사용되는 용어이며, 상업적으로 사용되는 이소노닐 알코올(CAS No.: 68526-84-1, 27458-94-2)은 분지화도 1.2 내지 1.9를 갖는 이성질체들의 조성물을 의미할 수 있으며, 상기 상업적인 알코올의 경우 n-노닐기 또한 일부 포함하고 있을 수 있다.
본 명세서에서 이용되는 바와 같은 "스트레이트 염화비닐 중합체"란 용어는, 염화비닐 중합체의 종류 중 하나로서, 현탁 중합 또는 벌크 중합 등을 통해 중합된 것을 의미할 수 있고, 수십 내지 수백 마이크로미터 크기를 가지는 다량의 기공이 분포된 다공성 입자의 형태를 갖고 응집성이 없으며 흐름성이 우수한중합체를 말한다.
본 명세서에서 이용되는 바와 같은 "페이스트 염화비닐 중합체"란 용어는, 염화비닐 중합체의 종류 중 하나로서, 미세현탁 중합, 미세시드 중합, 또는 유화 중합 등을 통해 중합된 것을 의미할 수 있고, 수십 내지 수천 나노미터 크기를 가지는 미세하고 치밀한 공극이 없는 입자로서 응집성을 갖고 흐름성이 열악한 중합체를 말한다.
'포함하는', '가지는'이란 용어 및 이들의 파생어는, 이들이 구체적으로 개시되어 있든지 그렇치 않든지 간에, 임의의 추가의 성분, 단계 혹은 절차의 존재를 배제하도록 의도된 것은 아니다. 어떠한 불확실함도 피하기 위하여, '포함하는'이란 용어의 사용을 통해 청구된 모든 조성물은, 반대로 기술되지 않는 한, 중합체든지 혹은 그 밖의 다른 것이든지 간에, 임의의 추가의 첨가제, 보조제, 혹은 화합물을 포함할 수 있다. 이와 대조적으로, '로 본질적으로 구성되는'이란 용어는, 조작성에 필수적이지 않은 것을 제외하고, 임의의 기타 성분, 단계 혹은 절차를 임의의 연속하는 설명의 범위로부터 배제한다. '로 구성되는'이란 용어는 구체적으로 기술되거나 열거되지 않은 임의의 성분, 단계 혹은 절차를 배제한다.
측정 방법
본 명세서에서 특정 반응, 예컨대 에스터화 반응의 생성물인 조성물 내의 성분들의 함량 분석은 가스 크로마토그래피 측정을 통해 수행하며, Agilent 사의 가스 크로마토그래피 기기(제품명: Agilent 7890 GC, 컬럼: HP-5, 캐리어 가스: 헬륨(flow rate 2.4mL/min), 디텍터: F.I.D, 인젝션 볼륨: 1uL, 초기값: 70℃/4,2min, 종기값: 280℃/7.8min, program rate: 15℃/min)로 분석한다.
본 명세서에서, '경도(hardness)'는 ASTM D2240을 이용하여, 25℃에서의 쇼어 경도(Shore “A” 및/또는 Shore “D”)를 의미하며, 3T 10s의 조건에서 측정하고, 가소화 효율을 평가하는 지표가 될 수 있으며 낮을수록 가소화 효율이 우수함을 의미한다.
본 명세서에서, '인장강도(tensile strength)'는 ASTM D638 방법에 의하여, 테스트 기기인 U.T.M (제조사; Instron, 모델명; 4466)을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min(1T)으로 당긴 후, 시편이 절단되는 지점을 측정하고 하기 수학식 1로 계산한다.
[수학식 1]
인장 강도(kgf/cm2) = 로드 (load)값(kgf) / 두께(cm) x 폭(cm)
본 명세서에서 '신율(elongation rate)'은 ASTM D638 방법에 의하여, 상기 U.T.M을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min(1T)으로 당긴 후, 시편이 절단되는 지점을 측정한 후, 하기 수학식 2로 계산한다.
[수학식 2]
신율(%) = 신장 후 길이 / 초기 길이 x 100
본 명세서에서 '이행 손실(migration loss)'은 KSM-3156에 따라 두께 2 mm 이상의 시험편을 얻고, 시험편 양면에 Plate를 붙인 후 1 kgf/cm2 의 하중을 가한다. 시험편을 열풍 순환식 오븐(80℃)에서 72 시간 동안 방치한 후 꺼내서 상온에서 4 시간 동안 냉각시킨다. 그런 후 시험편의 양면에 부착된 Plate를 제거한 후 Plate 들을 오븐에 방치하기 전과 후의 중량을 측정하여 이행손실량을 하기 수학식 3에 의하여 계산한다. 여기서 상기 Plate의 재질은 PS(Polystyrene), ABS, Glass 및 시편자체(Specimen plate)등 다양할 수 있으며, 본 명세서에서 측정에 사용된 Plate 재질은 Glass이다.
[수학식 3]
[수학식 3]
이행손실량(%) = {[(초기 시편 중량) - (오븐 방치후 시편 중량)] / (시편의 초기 중량)} x 100
본 명세서에서 '가열 감량(volatile loss)'은 시편을 80℃에서 72시간 동안 작업한 후, 시편의 무게를 측정한다.
[수학식 4]
가열 감량(%) = {[(초기 시편 중량) - (작업 후 시편 중량)] / (초기 시편 중량)} x 100
상기 다양한 측정 조건들의 경우, 온도, 회전속도, 시간 등의 세부 조건은 경우에 따라 다소 상이해질 수 있으며, 상이한 경우에는 별도로 그 측정 방법 및 조건을 명시한다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 실시예에 따른 가소제 조성물은 사이클로헥산 1,4-디에스터계 물질과 사이클로헥산 1,2,4-트리에스터계 물질을 포함하며, 상기 디에스터계 물질은 2개의 에스터기에 결합된 알킬기가 각각 독립적으로 탄소수 8 내지 10인 것에서 선택되고, 상기 트리에스터계 물질은 3개의 에스터기에 결합된 알킬기가 각각 독립적으로 탄소수 4 내지 10인 것에서 선택된다.
상기 사이클로헥산 1,4-디에스터계 물질은 이에 결합된 알킬기의 탄소수가 8 내지 10일 수 있고, 예를 들면, 2-에틸헥실기, 이소노닐기, n-노닐기, 2-프로필헵틸기 또는 이소데실기일 수 있고, 바람직하게는 2-에틸헥실기, 이소노닐기 또는 2-프로필헵틸기가 적용될 수 있다. 상기 디에스터계 물질의 경우, 일반적으로 테레프탈레이트를 수소화 함으로써 얻어질 수 있고, 테레프탈레이트계 가소제를 대체하기 위한 가소제로서, 가소화 효율 및 내광성이 상당히 우수할 수 있다. 이러한 효과의 달성 측면에서 보다 바람직하게는 상기 알킬기의 탄소수는 8 또는 9인 것일 수 있다.
또한, 상기 디에스터계 물질은 사이클로헥산의 1번 및 4번 탄소에 에스터기가 결합된 것으로서, 테레프탈레이트로부터 수소화로 유래되는 물질일 수 있으며, 1번 및 2번 탄소에 에스터기가 결합된 것 또는 1번 및 3번 탄소에 에스터기가 결합된 물질들 대비하여, 가소화 효율과 기계적 물성이 우수할 수 있어, 본 발명에 따른 1번 및 4번 위치에 결합된 디에스터계 물질을 적용하는 것이 바람직할 수 있다.
상기 디에스터계 물질은 테레프탈레이트계 물질이 수소화되어 제조될 수 있고, 사이클로헥산 디카르복실산의 에스터화 반응으로 제조될 수도 있으며, 수소화 및 에스터화의 적절한 조합을 통해 상기의 디에스터계 물질이 제조될 수 있다.
상기 사이클로헥산 1,4-디에스터계 물질을 직접 제조하는 경우, 사이클로헥산 1,4-디카르복시산 또는 이의 유도체와 알코올을 직접 에스터화 반응 또는 트랜스 에스터화 반응시켜 제조할 수 있다.
상기 사이클로헥산 1,4-디카르복시산의 유도체는 사이클로헥산 1,4-디카르복시산의 무수물 및/혹은 상기 사이클로헥산 1,4-디카르복시산의 알킬에스터로 이루어진 군에서 선택되는 1종 이상일 수 있다. 이때, 알킬에스터는 탄소수 8 내지 10의 알킬에스터일 수 있다.
최종적으로 제조되는 사이클로헥산 1,4-디에스터의 알킬기는 탄소수 8 내지 10인 것으로서, 전술한 것과 같은 알킬기가 적용되는 것이 바람직하며, 이들 알킬기는 제조시 사용된 알코올로부터 유래되는 것일 수 있다.
상기 직접 에스터화 반응으로 상기 화학식 1로 표시되는 사이클로헥산 1,4-디에스터계 물질을 제조할 경우, 상기 사이클로헥산 1,4-디카르복시산 또는 이의 유도체 1 몰에 대하여, 상기 알코올이 2 내지 10 몰, 2 내지 8 몰, 2 내지 6 몰 또는 2 내지 5 몰로 이용될 수 있고, 이 중 2 내지 5 몰로 이용되는 것이 바람직하다.
상기 직접 에스터화 반응은 촉매 존재 하에 수행될 수 있으며, 상기 촉매는 무기산, 유기산 및 루이스산으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 유기산 및 루이스산으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 무기산은 황산, 염산 및 인산으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 유기산은 p-톨루엔술폰산, 메탄술폰산, 에탄술폰산, 프로판술폰산, 부탄술폰산 및 알킬 황산으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 루이스산은 알루미늄 유도체(산화알루미늄, 수산화알루미늄), 주석 유도체(C3 내지 C12의 지방산 주석, 산화주석, 수산화주석), 티타늄 유도체(C3 내지 C8의 테트라알킬 티타네이트, 산화티타늄, 수산화티타늄), 납 유도체(산화납, 수산화납) 및 아연 유도체(산화아연, 수산화아연)로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 촉매가 균일 촉매인 경우 상기 사이클로헥산 1,4-디카르복시산 또는 이의 유도체와 알코올의 합 100 중량부에 대하여, 0.001 내지 5 중량부 또는 0.001 내지 3 중량부로 이용될 수 있고, 이 중 0.01 내지 3 중량부로 이용되는 것이 바람직하다.
상기 촉매가 불균일 촉매인 경우 사이클로헥산 1,4-디카르복시산 또는 이의 유도체와 알코올의 합 100 중량부에 대하여, 0.5 내지 200 중량부 또는 0.5 내지 100 중량부로 이용될 수 있고, 이 중 0.5 내지 200 중량부로 이용되는 것이 바람직하다.
상기 직접 에스터화 반응은 100 내지 280 ℃, 130 내지 250 ℃ 또는 150 내지 230 ℃에서 수행될 수 있으며, 이 중 150 내지 230 ℃에서 수행되는 것이 바람직하다.
상기 직접 에스터화 반응은 3 내지 30 시간 또는 3 내지 25 시간 동안 수행될 수 있으며, 이 중 3 내지 25 시간 동안 수행되는 것이 바람직하다.
한편, 상기 트랜스 에스터화 반응으로 사이클로헥산 1,4-디에스터계 물질을 제조할 경우, 상기 사이클로헥산 1,4-디카르복시산의 유도체와 알코올의 트랜스 에스터화 반응으로 제조될 수 있다.
상기 사이클로헥산 1,4-디카르복시산의 유도체는 사이클로헥산 1,4-디카르복시산의 알킬에스터일 수 있고, 바람직하게는 반응 생성물의 분리가 용이할 수 있도록 사이클로헥산 1,4-디카르복시산의 메틸 에스터를 사용할 수 있다.
상기 사이클로헥산 1,4-디카르복시산의 유도체 1 몰에 대하여, 상기 알코올이 2 내지 10 몰, 2 내지 8 몰, 2 내지 6 몰 또는 2 내지 5 몰로 이용될 수 있고, 이 중 2 내지 5 몰로 이용되는 것이 바람직하다.
상기 트랜스 에스터화 반응은 촉매 존재 하에서 수행될 수 있으며, 이 경우, 반응시간이 단축될 수 있다.
상기 촉매는 루이스산 및 알칼리 금속으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 루이스산은 직접 에스터화 반응의 설명에서 기재한 바와 같으며, 알루미늄 유도체(산화알루미늄, 수산화알루미늄), 주석 유도체(C3 내지 C12의 지방산 주석, 산화주석, 수산화주석), 티타늄 유도체(C3 내지 C8의 테트라알킬 티타네이트, 산화티타늄, 수산화티타늄), 납 유도체(산화납, 수산화납) 및 아연 유도체(산화아연, 수산화아연)로 이루어진 군에서 선택되는 1종 이상일 수 있다.
또한, 상기 알칼리 금속은 나트륨알콕시드, 칼륨알콕시드, 수산화나트륨 및 수산화칼륨으로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 상기 금속촉매의 단일 혹은 2종 이상의 혼합촉매를 사용할 수 있다.
상기 촉매가 상기 사이클로헥산 1,4-디카르복시산의 유도체와 알코올의 합 100 중량부에 대하여, 0.001 내지 5 중량부 또는 0.01 내지 3 중량부로 이용될 수 있고, 이 중 0.001 내지 3 중량부로 이용되는 것이 바람직하다.
상기 트랜스 에스터화 반응은 120 내지 250 ℃, 135 내지 230 ℃ 또는 140 내지 220 ℃에서 수행될 수 있으며, 이 중 140 내지 220 ℃에서 수행되는 것이 바람직하다.
상기 트랜스 에스터화 반응은 0.5 내지 10 시간 또는 0.5 내지 8 시간 동안 수행될 수 있으며, 이 중 0.5 내지 8 시간 동안 수행되는 것이 바람직하다.
상기 직접 에스터화 반응 또는 트랜스 에스터화 반응은 반응에 의해 생성되는 물 또는 메탄올 등의 저급 알코올의 유출을 촉진하기 위하여, 벤젠, 톨루엔, 크실렌 및 사이클로헥산으로 이루어진 군에서 선택되는 1종 이상을 추가로 투입할 수 있으며, 동일 목적으로 상업적으로 사용 가능한 질소 등을 비말동반으로 사용할 수 있다.
상기 직접 에스터화 반응 또는 트랜스 에스터화 반응으로 제조된 상기 화학식 1로 표시되는 사이클로헥산 1,4-디에스터계 물질은 별도의 후처리를 수행함으로써 정제될 수 있다. 상기 후처리는 촉매의 불활성화 처리(중화 처리, 염기 처리), 수세 처리, 증류(감압 또는 탈수 처리) 및 흡착 정제 처리로 이루어진 군에서 선택되는 1종 이상일 수 있다.
위와 같은 제조 방법과 달리 디알킬 테레프탈레이트계 물질을 금속 촉매의 존재 하에 수소화 반응시킴으로써 사이클로헥산 1,4-디에스터계 물질로 변환하는 단계를 포함하는 제조방법이 적용될 수 있다.
상기 수소화 반응 단계는 금속 촉매의 존재 하에, 수소를 첨가하여 테레프탈레이트의 벤젠 고리의 방향성을 제거하는 반응으로서, 일종의 환원 반응일 수 있다.
상기 수소화 반응은 금속 촉매 하에서 상기 테레프탈레이트계 물질과 수소를 반응시켜 사이클로헥산 1,4-디에스터계 물질을 합성하는 것으로, 그 반응조건은 벤젠에 치환되어 있는 카르보닐기에는 영향을 주지 않으면서 벤젠 고리만을 수소화시킬 수 있는 통상적인 반응조건을 모두 포함할 수 있다.
상기 수소화 반응은 에탄올 등과 같은 유기용매를 더 포함하여 실시될 수 있으나, 이에 제한되는 것은 아니다. 상기 금속 촉매로는 일반적으로 벤젠 고리를 수소화 하는데 사용되는 Rh/C 촉매, Pt 촉매, Pd 촉매 등을 사용할 수 있으나, 상기와 같은 수소화 반응이 가능한 것이면 이에 제한되지 않는다.
본 발명의 일 실시예에 따른 상기 가소제 조성물은 사이클로헥산 1,4-디에스터계 물질에 추가로 사이클로헥산 1,2,4-트리에스터계 물질을 혼용하는 것을 특징으로 한다.
한편, 상기 디에스터계 물질은 테레프탈레이트계 물질의 가소화 효율을 개선하기 위하여 적용되는 물질이나, 가소화 효율의 개선에도 불구하고 이행성이나 가열감량 등은 테레프탈레이트계 가소제 대비 동등 이하의 수준으로 열악할 수 있으며, 이러한 열악해지는 물성의 보완이 어려워 실제 시장의 요구에 부합하는 가소제로서 제품화 하기가 어려울 수 있는 물질이다. 아울러, 상기 테레프탈레이트계 가소제는 프탈레이트계 가소제의 친환경 대체품이기는 하나, 벤젠링을 포함하고 있음으로 인해 석유계 가소제를 탈피하지 못하였다는 점 또한 한계로 작용할 수 있다. 나아가, 디에스터계 물질은 테레프탈레이트계 물질의 수소화로 인해 상승되는 단가를 상쇄할 정도로 크게 개선된 물성이 없다는 점에서 단독으로 적용되기 어려우며, 이에 적절하게 물성을 보완 또는 개선하기 위한 다른 물질과의 블렌딩이 필요하다.
상기 디에스터계 물질을 테레프탈레이트와 혼합하게 되는 경우, 단가 경쟁력 외 물성의 개선에서는 효과를 볼 수 없고, 이 외에도 저하된 기계적 물성의 보완이 상당히 어려우며, 나, 본 발명에 따른 가소제 조성물의 경우 상기 디에스터계 물질의 블렌딩 파트너 물질로서, 트리에스터계 물질로서 사이클로헥산 1,2,4-트리에스터를 적용함으로써, 이러한 물성 개선이 가능함을 확인하였다.
이러한 사이클로헥산 1,2,4-트리에스터계 물질은 세개의 에스터기 각각에 결합된 알킬기가 각각 독립적으로 탄소수가 4 내지 10인 것에서 선택될 수 있고, 바람직하게 상기 탄소수는 5 내지 9일 수 있다. 탄소수가 4 보다 작은 알킬기가 결합된 트리에스터계 물질이 적용되면 기계적 물성 보완이라는 목적 달성이 불가능할 수 있고, 탄소수가 10 보다 큰 알킬기가 적용되면 우수한 가소화 효율 마저 상쇄되는 문제가 있을 수 있다.
상기와 같은 문제점을 방지하고 효과를 보다 극대화 하기 위해서는 바람직하게 알킬기의 탄소수가 5 내지 9일 수 있으며, 예컨대, n-펜틸기, 이소펜틸기, n-헥실기, 이소헥실기, n-헵틸기, 이소헵틸기, 2-에틸헥실기, 이소노닐기 또는 2-프로필헵틸기가 적용될 수 있다.
본 발명의 일 실시예에 따르면, 상기 사이클로헥산 1,2,4-트리에스터계 물질은 트리멜리테이트를 수소화 반응시켜 제조할 수 있고, 사이클로헥산 트리카르복실산을 트랜스 에스터 반응 또는 직접 에스터 반응으로 제조할 수도 있으며, 에스터 반응과 수소화 반응의 순서가 적절히 조합되고 그에 따라서 적절히 원료 물질이 적용된다면, 사이클로헥산 1,2,4-트리에스터계 물질을 제조할 수 있다. 이 제조방법은 전술한 디에스터계 물질의 제조와 실질적으로 동일한 방법이 적용될 수 있고, 원료 물질과 반응온도 등의 미세한 제어만 수행된다면 사이클로헥산 1,2,4-트리에스터계 물질도 어렵지 않게 얻을 수 있다.
본 발명의 일 실시예에 따르면, 상기 디에스터계 물질과 트리에스터계 물질은 95:5 내지 5:95의 중량비로 포함된다. 상기 중량비는 예컨대 상한으로 99:1, 95:5, 90:10, 85:15, 80:20, 75:25, 70:30, 또는 60:40일 수 있고, 하한으로는 1:99, 5:95, 10:90, 15:85, 20:80, 25:75, 30:70, 40:60 또는 50:50일 수 있다. 다만, 전술한 것과 같은 효과의 최적화를 위해서는, 90:10 내지 10:90의 중량비로, 바람직하게 80:20 내지 20:80의 중량비가 적용될 수 있으며, 더 바람직하게는 70:30 내지 30:70의 중량비로 적용될 수 있다.
본 발명에서와 같이, 상기 사이클로헥산 1,4-디에스터계 물질과 사이클로헥산 1,2,4-트리에스터계 물질을 혼용하면, 각 물질들이 갖는 우수한 물성은 유지되면서도, 열악한 물성이 개선되는 시너지 효과를 낼 수 있다. 특히, 인장강도와 신율과 같은 기계적 물성의 개선이 현저하면서도, 가소화 효율은 우수성이 유지되고, 그 외 이행성 및 가열감량 또한 상당히 우수한 수준 달성이 가능하며, 내스트레스성의 개선에 뛰어난 효과를 기대할 수 있다.
본 발명의 다른 일 실시예에 따른 수지 조성물은 수지 100 중량부, 및 전술한 가소제 조성물 5 내지 150 중량부를 포함한다. 상기 가소제 조성물은 상기 수지 100 중량부를 기준으로 5 내지 150 중량부, 바람직하게 5 내지 130 중량부, 또는 10 내지 120 중량부로 포함될 수 있다.
상기 수지는 당 분야에 알려져 있는 수지를 사용할 수 있다. 예를 들면, 스트레이트 염화비닐 중합체, 페이스트 염화비닐 중합체, 에틸렌초산비닐 공중합체, 에틸렌 중합체, 프로필렌 중합체, 폴리케톤, 폴리스티렌, 폴리우레탄, 천연고무, 합성고무 및 열가소성 엘라스토머로 이루어진 군에서 선택된 1종 이상의 혼합물 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.
일반적으로, 가소제 조성물이 사용되는 수지는 용융 가공 또는 플라스티졸 가공을 통해 수지 제품으로 제조될 수 있으며, 용융 가공 수지와 플라스티졸 가공 수지는 각 중합 방법에 따라 다르게 생산되는 것일 수 있다.
예를 들어, 염화비닐 중합체는 용융 가공에 사용되는 경우 현탁 중합 등으로 제조되어 평균 입경이 큰 고체상의 수지 입자가 사용되며 이러한 염화비닐 중합체는 스트레이트 염화비닐 중합체로 불리우며, 플라스티졸 가공에 사용되는 경우 유화 중합 등으로 제조되어 미세한 수지 입자로서 졸 상태의 수지가 사용되며 이러한 염화비닐 중합체는 페이스트 염화비닐 수지로 불리운다.
이 때, 상기 스트레이트 염화비닐 중합체의 경우, 가소제는 중합체 100 중량부 대비 5 내지 80 중량부의 범위 내에서 포함되는 것이 바람직하며, 페이스트 염화비닐 중합체의 경우 중합체 100 중량부 대비 40 내지 120 중량부의 범위 내에서 포함되는 것이 바람직하다.
상기 수지 조성물은 충진제를 더 포함할 수 있다. 상기 충진제는 상기 수지 100 중량부를 기준으로 0 내지 300 중량부, 바람직하게는 50 내지 200 중량부, 더욱 바람직하게는 100 내지 200 중량부일 수 있다.
본 발명의 일 실시예에 따른 가소제 조성물은 바람직하게는 스트레이트 염화비닐 중합체에 적용될 수 있고, 이에 따라 용융 가공될 수 있으며, 후술하는 가공법으로서 카렌더링, 압출, 사출 등의 가공에 적용되는 수지 제품에 가소제로 사용될 수 있다.
상기 충진제는 당 분야에 알려져 있는 충진제를 사용할 수 있으며, 특별히 제한되지 않는다. 예를 들면, 실리카, 마그네슘 카보네이트, 칼슘 카보네이트, 경탄, 탈크, 수산화 마그네슘, 티타늄 디옥사이드, 마그네슘 옥사이드, 수산화 칼슘, 수산화 알루미늄, 알루미늄 실리케이트, 마그네슘 실리케이트 및 황산바륨 중에서 선택된 1종 이상의 혼합물일 수 있다.
또한, 상기 수지 조성물은 필요에 따라 안정화제 등의 기타 첨가제를 더 포함할 수 있다. 상기 안정화제 등의 기타 첨가제는 일례로 각각 상기 수지 100 중량부를 기준으로 0 내지 20 중량부, 바람직하게는 1 내지 15 중량부일 수 있다.
상기 안정화제는 예를 들어 칼슘-아연의 복합 스테아린산 염 등의 칼슘-아연계(Ca-Zn계) 안정화제, 바륨-아연을 주요 금속 물질로 하는 바륨-아연계(Ba-Zn계) 안정화제를 사용할 수 있으나, 이에 특별히 제한되는 것은 아니다.
상기 수지 조성물은 전술한 것과 같이 용융 가공 및 플라스티졸 가공에 모두 적용될 수 있고, 예를 들어 용융 가공은 카렌더링 가공, 압출 가공, 또는 사출 가공이 적용될 수 있고, 플라스티졸 가공은 코팅 가공 등이 적용될 수 있다.
상기 수지 조성물은 전선, 바닥재, 자동차 내장재, 필름, 시트 혹은 튜브 등의 제조에 사용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
제조예 1: 디(2-에틸헥실) 사이클로헥산 1,4-디에스터 (1,4-DEHCH)
냉각기, 콘덴서, 디캔터, 환류 펌프, 온도 컨트롤러, 교반기 등을 갖춘 4구의 3 리터 반응기에 사이클로헥산 1,4-디카르복시산 516.5 g, 2-에틸헥실 알코올 1,170 g, 촉매로 테트라 이소프로필 티타네이트 1.55 g을 투입하고, 반응온도를 230 ℃로 설정하고 질소 가스를 계속 투입하면서, 약 6시간 동안 직접 에스터화 반응을 수행하고, 산가가 0.1에 도달하였을 때 반응을 완료하였다.
반응 완료 후, 미반응 원료를 제거하기 위하여, 감압 하에서 증류 추출을 실시하였다. 증류 추출 후, 중화공정, 탈수공정 및 여과공정을 거쳐 디(2-에틸헥실) 사이클로헥산 1,4-디카복시레이트 1,155 g(수율: 97%)를 제조하였다.
제조예 2: 디이소노닐 사이클로헥산 1,4-디에스터 (1,4-DINCH)
상기 제조예 1에서 2-에틸헥실 알코올 대신 이소노닐 알코올을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 디이소노닐 사이클로헥산 1,4-디카복시레이트를 제조하였다.
제조예 3: 디(2-프로필헵틸) 사이클로헥산 1,4-디에스터 (1,4-DPHCH)
상기 제조예 1에서 2-에틸헥실 알코올 대신 2-프로필헵틸 알코올을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 디(2-프로필헵틸) 사이클로헥산 1,4-디카복시레이트를 제조하였다.
제조예 4: 디이소데실 사이클로헥산 1,4-디에스터 (1,4-DIDCH)
상기 제조예 1에서 2-에틸헥실 알코올 대신 이소데실 알코올을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 디이소데실 사이클로헥산 1,4-디카복시레이트를 제조하였다.
제조예 5: 트리(2-에틸헥실) 사이클로헥산 1,2,4-트리에스터계 물질 (1,2,4-TEHCH)
냉각기, 콘덴서, 디캔터, 환류 펌프, 온도 컨트롤러, 교반기 등을 갖춘 4구의 3 리터 반응기에 사이클로헥산 1,2,4-트리카르복시산 432.4 g, 2-에틸헥실 알코올 1014 g, 촉매로 테트라 이소프로필 티타네이트 1.55 g을 투입하고, 반응온도를 230 ℃로 설정하고 질소 가스를 계속 투입하면서, 약 6시간 동안 직접 에스터화 반응을 수행하고, 산가가 0.1에 도달하였을 때 반응을 완료하였다.
반응 완료 후, 미반응 원료를 제거하기 위하여, 감압 하에서 증류 추출을 실시하였다. 증류 추출 후, 중화공정, 탈수공정 및 여과공정을 거쳐 트리(2-에틸헥실) 사이클로헥산 1,4-트리카복시레이트 1,072 g(수율: 97%)를 제조하였다.
제조예 6: 트리펜틸 사이클로헥산 1,2,4-트리에스터계 물질 (1,2,4-TPCH)
상기 제조예 5에서 2-에틸헥실 알코올 대신 n-펜틸 알코올을 사용한 것을 제외하고는 제조예 5와 동일한 방법으로 트리펜틸 사이클로헥산 1,4-트리카복시레이트를 제조하였다.
제조예 7: 트리이소노닐 사이클로헥산 1,2,4-트리에스터계 물질 (1,2,4-TINCH)
상기 제조예 5에서 2-에틸헥실 알코올 대신 이소노닐 알코올을 사용한 것을 제외하고는 제조예 5와 동일한 방법으로 트리이소노닐 사이클로헥산 1,4-트리카복시레이트를 제조하였다.
제조예 8: 트리부틸 사이클로헥산 1,2,4-트리에스터계 물질 (1,2,4-TBCH)
상기 제조예 5에서 2-에틸헥실 알코올 대신 n-부틸 알코올을 사용한 것을 제외하고는 제조예 5와 동일한 방법으로 트리부틸 사이클로헥산 1,4-트리카복시레이트를 제조하였다.
제조예 9: 트리(2-프로필헵틸) 사이클로헥산 1,2,4-트리에스터계 물질 (1,2,4-TPHCH)
상기 제조예 5에서 2-에틸헥실 알코올 대신 2-프로필헵틸 알코올을 사용한 것을 제외하고는 제조예 5와 동일한 방법으로 트리(2-프로필헵틸) 사이클로헥산 1,4-트리카복시레이트를 제조하였다.
실시예 및 비교예
제조예들에서 제조한 물질들을 이용하여 실시예 및 비교예들의 가소제 조성물을 제조하였고, 이를 하기 표 1에 정리하였다. 가소제 조성물의 물성 평가는 하기의 실험 항목에 따라 수행하였다. 상기 제조예에서 제조된 물질들 이외의 물질들은 상업화된 제품을 사용하였다.
1,4-디에스터 1,2,4-트리에스터 기타
실시예 1 DEHCH 101) TEHCH 90 -
실시예 2 DEHCH 30 TEHCH 70 -
실시예 3 DEHCH 50 TEHCH 50 -
실시예 4 DEHCH 70 TEHCH 30 -
실시예 5 DEHCH 90 TEHCH 10 -
실시예 6 DINCH 70 TPCH 30 -
실시예 7 DEHCH 80 TINCH 20 -
실시예 8 DEHCH 40 TBCH 60 -
실시예 9 DEHCH 50 TPHCH 50 -
실시예 10 DPHCH 80 TINCH 20 -
실시예 11 DIDCH 90 TEHCH 10 -
비교예 1 - - DINP2)
비교예 2 - - DEHTP3)
비교예 3 - - TEHTM
비교예 4 DEHCH 100 - -
비교예 5 - TEHCH 100 -
비교예 6 DINCH 100 - -
비교예 7 - TPCH 100 -
비교예 8 DEHCH 50 - DEHTP 50
비교예 9 DEHCH 50 - TEHTM 50
비교예 10 DHxCH 50 TEHCH 50 -
1) 위 표 1의 함량은 모두 중량%이다.2) DINP: 디이소노닐 프탈레이트
3) DEHTP: 디(2-에틸헥실) 테레프탈레이트
4) TEHTM: 트리(2-에틸헥실) 트리멜리테이트
실험예 1: 시트 성능 평가
실시예 및 비교예의 가소제를 사용하여, ASTM D638에 따라 다음과 같은 처방 및 제작 조건으로 시편을 제작하였다.
(1) 처방: 스트레이트 염화비닐 중합체(LS100S, LG화학) 100 중량부, 가소제 40 중량부 및 안정제(BZ-153T) 3 중량부
(2) 배합: 98℃에서 700 rpm으로 믹싱
(3) 시편 제작: 롤 밀(Roll mill)로 160℃에서 4 분, 프레스(press)로 180℃에서 2.5분(저압) 및 2분(고압) 작업하여 1T 및 3T 시트를 제작
(4) 평가 항목
1) 경도(hardness): ASTM D2240을 이용하여, 25℃에서의 쇼어 경도(Shore “A” 및 “D”)를 3T 시편으로 10초 동안 측정하였다. 수치가 작을수록 가소화 효율이 우수한 것으로 평가된다.
2) 인장강도(tensile strength): ASTM D638 방법에 의하여, 테스트 기기인 U.T.M (제조사; Instron, 모델명; 4466)을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min으로 당긴 후, 1T 시편이 절단되는 지점을 측정하였다. 인장강도는 다음과 같이 계산하였다:
인장 강도(kgf/cm2) = 로드 (load)값(kgf) / 두께(cm) x 폭(cm)
3) 신율(elongation rate): ASTM D638 방법에 의하여, 상기 U.T.M을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min으로 당긴 후, 1T 시편이 절단되는 지점을 측정한 후, 신율을 다음과 같이 계산하였다:
신율 (%) = 신장 후 길이 / 초기 길이 x 100으로 계산하였다.
4) 이행 손실(migration loss) 측정: KSM-3156에 따라 두께 1 mm의 시험편을 얻었고, 시편 양면에 Glass Plate를 붙인 후 1kgf/cm2 의 하중을 가하였다. 시편을 열풍 순환식 오븐(80℃)에서 72 시간 동안 방치한 후 꺼내서 상온에서 4 시간 동안 냉각시켰다. 그런 후 시험편의 양면에 부착된 Glass Plate를 제거한 시편을 오븐에 방치하기 전과 후의 중량을 측정하여 이행손실량을 아래와 같은 식에 의하여 계산하였다.
이행손실량(%) = {[(초기 시편 중량) - (오븐 방치후 시편 중량)] / (초기 시편 중량)} x 100
5) 가열 감량(volatile loss): 상기 제작된 시편을 113℃에서 72시간 동안 작업한 후, 시편의 무게를 측정하였다.
가열 감량(%) = {[(초기 시편 중량) - (작업 후 시편 중량)] / (초기 시편 중량)} x 100
6) 스트레스 테스트(내스트레스성): 두께 2 ㎜인 시편을 구부린 상태로 23℃에서 72 시간 동안 방치한 후, 이행 정도(배어나오는 정도)를 관찰하고, 그 결과를 수치로 기재하였으며, 0에 가까울 수록 우수한 특성을 나타내었다.
(5) 평가 결과
상기 항목의 평가 결과를 하기 표 2에 나타내었다.
경도 인장강도(kgf/cm2) 신율(%) 이행손실(%) 가열감량(%) 내스트레스성
구분 Shore A Shore D
실시예 1 93.1 46.5 232.9 318.7 1.82 0.49 0
실시예 2 92.5 45.9 230.8 318.3 2.29 0.65 0
실시예 3 92.2 45.5 232.4 319.1 2.36 0.81 0
실시예 4 90.9 45.0 235.5 315.4 2.86 1.05 0
실시예 5 90.1 44.8 234.6 310.1 2.98 1.17 0
실시예 6 92.3 45.6 234.7 325.4 2.35 0.70 0
실시예 7 90.3 45.0 245.1 320.2 1.95 0.95 0
실시예 8 87.8 42.2 238.9 301.0 2.34 2.14 0
실시예 9 93.3 46.8 241.0 310.5 2.23 0.56 0.5
실시예 10 94.5 47.9 240.7 298.6 3.01 1.02 1.0
실시예 11 94.2 47.5 245.3 302.1 2.90 0.45 0.5
비교예 1 92.1 45.9 226.8 289.6 3.24 1.47 0.5
비교예 2 93.4 46.7 234.0 303.2 4.23 1.38 1.5
비교예 3 95.2 47.8 227.6 305.7 1.78 0.52 0.5
비교예 4 89.7 44.5 214.0 297.4 4.20 2.47 2
비교예 5 94.2 47.9 215.6 301.2 1.80 0.60 0.5
비교예 6 92.0 45.7 209.4 274.6 3.68 1.85 2
비교예 7 90.5 45.1 198.6 257.4 1.23 1.30 0
비교예 8 92.3 45.7 220.3 298.1 4.22 2.03 2
비교예 9 93.0 46.2 220.3 301.2 3.65 2.01 1.5
비교예 10 87.9 42.3 220.4 287.6 2.02 4.58 1.5
상기 표 2를 참조하면, 본 발명의 일 실시예에 따른 가소제 조성물을 적용한 실시예 1 내지 11의 경우 기존 제품으로 사용되는 DINP인 비교예 1 대비 기계적 물성이 크게 개선되었음을 확인할 수 있고, 가소화 효율의 우수성을 유지하면서 내스트레스성 또한 현저한 개선이 있음을 확인할 수 있다.
또, 비교예 2와 4는 실시예들과 달리 혼합을 하지 않은 경우로서, 비교예 2는 경도가 높은 것으로 보아 가소화 효율이 열악하고 신율 등 기계적 물성이나 이행 특성 등 모두 크게 우수한 물성이 없으며 내스트레스성 또한 열악함이 확인되며, 비교예 4는 가소화 효율만 우수해졌을 뿐 그 외 기술적 특징들은 전부 열악하게 나타난 것을 확인할 수 있어, 이 자체로는 제품화가 어려움을 알 수 있다. 또한, 비교예 8의 경우 비교예 2와 4의 물질을 혼용한 것으로서 어느 정도 물성들이 그 중간 값을 가지는 것으로 나타나지만, 내스트레스성은 더 악화되었고, 이행손실에 있어서는 전혀 개선된 부분이 보이질 않았다.
반면, 실시예 1 내지 5를 보면, 대부분의 물성이 1,4-DEHCH가 갖고 있는 우수한 물성은 유지하면서도, 이 1,4-DEHCH나 DEHTP, 또는 이들의 혼합 가소제를 통해 개선할 수 없었던 기계적 물성을 개선하고 내스트레스성을 개선하였음이 확인되는바, 상호간의 시너지 효과로 인해 우수한 물성들을 선택적으로 가질 수 있고 나아가서는 예측하지 못한 개선이 있다는 점을 확인할 수 있다. 나아가, 이와 같은 개선은 트리멜리테이트계 물질을 첨가하여도 크게 그 효과를 볼 수 없음이 비교예 9를 통해 증명되었다고 할 수 있다.

Claims (12)

  1. 사이클로헥산 1,4-디에스터계 물질로, 2개의 에스터기에 결합된 알킬기가 각각 독립적으로 탄소수 8 내지 10인 것에서 선택된 디에스터계 물질; 및
    사이클로헥산 1,2,4-트리에스터계 물질로, 3개의 에스터기에 결합된 알킬기가 각각 독립적으로 탄소수 4 내지 10인 것에서 선택된 트리에스터계 물질;를 포함하고,
    상기 사이클로헥산 1,4-디에스터계 물질과 사이클로헥산 1,2,4-트리에스터계 물질은 중량비가 95:5 내지 5:95인 것인 가소제 조성물.
  2. 청구항 1에 있어서,
    상기 사이클로헥산 1,4-디에스터계 물질과 사이클로헥산 1,2,4-트리에스터계 물질은 중량비가 90:10 내지 10:90 인 것인 가소제 조성물.
  3. 청구항 1에 있어서,
    상기 사이클로헥산 1,4-디에스터계 물질과 사이클로헥산 1,2,4-트리에스터계 물질은 중량비가 80:20 내지 20:80 인 것인 가소제 조성물.
  4. 청구항 1에 있어서,
    상기 트리에스터계 물질에 결합된 알킬기는 각각 독립적으로 탄소수가 5 내지 9인 것에서 선택되는 것인 가소제 조성물.
  5. 청구항 1에 있어서,
    상기 트리에스터계 물질에 결합된 알킬기는 각각 독립적으로, n-펜틸기, 이소펜틸기, n-헥실기, 이소헥실기, n-헵틸기, 이소헵틸기, 2-에틸헥실기, 이소노닐기 및 2-프로필헵틸기로 이루어진 군에서 선택되는 것인 가소제 조성물.
  6. 청구항 1에 있어서,
    상기 디에스터계 물질에 결합된 알킬기는 각각 독립적으로, 2-에틸헥실기, 이소노닐기 및 2-프로필헵틸기로 이루어진 군에서 선택되는 것인 가소제 조성물.
  7. 청구항 1에 있어서,
    상기 디에스터계 물질은 디(2-에틸헥실) 사이클로헥산 1,4-디에스터 및 디이소노닐 사이클로헥산 1,4-디에스터로 이루어진 군에서 선택되는 1 이상을 포함하는 것인 가소제 조성물.
  8. 청구항 1에 있어서,
    상기 트리에스터계 물질은 트리이소펜틸 사이클로헥산 1,2,4-트리에스터, 트리이소헥실 1,2,4-트리에스터, 트리이소헵틸 사이클로헥산 1,2,4-트리에스터, 트리(2-에틸헥실) 사이클로헥산 1,2,4-트리에스터, 트리이소노닐 사이클로헥산 1,2,4-트리에스터 및 트리(2-프로필헵틸) 사이클로헥산 1,2,4-트리에스터로 이루어진 군에서 선택되는 1종 이상을 포함하는 것인 가소제 조성물.
  9. 청구항 1에 있어서,
    상기 디에스터계 물질은 디(2-에틸헥실) 사이클로헥산 1,4-디에스터를 포함하고,
    상기 트리에스터계 물질은 트리(2-에틸헥실) 사이클로헥산 1,2,4-트리에스터를 포함하는 것인 가소제 조성물.
  10. 청구항 1에 있어서,
    상기 디에스터계 물질은 디이소노닐 사이클로헥산 1,4-디에스터를 포함하고,
    상기 트리에스터계 물질은 트리이소노닐 사이클로헥산 1,2,4-트리에스터를 포함하는 것인 가소제 조성물.
  11. 수지 100 중량부; 및
    제1항에 따른 가소제 조성물 5 내지 150 중량부로 포함하는 것인 수지 조성물.
  12. 청구항 11에 있어서,
    상기 수지는 스트레이트 염화비닐 중합체, 페이스트 염화비닐 중합체, 에틸렌초산비닐 공중합체, 에틸렌 중합체, 프로필렌 중합체, 폴리케톤, 폴리스티렌, 폴리우레탄, 천연고무, 합성고무 및 열가소성 엘라스토머로 이루어진 군에서 선택된 1 종 이상인 것인 수지 조성물.
PCT/KR2020/005567 2019-05-02 2020-04-28 가소제 조성물 및 이를 포함하는 수지 조성물 WO2020222494A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/439,700 US20220162436A1 (en) 2019-05-02 2020-04-28 Plasticizer composition and resin composition including the same
CN202080025059.XA CN113646373B (zh) 2019-05-02 2020-04-28 增塑剂组合物和包含该增塑剂组合物的树脂组合物
EP20798264.6A EP3964544A4 (en) 2019-05-02 2020-04-28 PLASTICIZER COMPOSITION AND RESIN COMPOSITION COMPRISING THEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0051715 2019-05-02
KR20190051715 2019-05-02

Publications (1)

Publication Number Publication Date
WO2020222494A1 true WO2020222494A1 (ko) 2020-11-05

Family

ID=73028965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005567 WO2020222494A1 (ko) 2019-05-02 2020-04-28 가소제 조성물 및 이를 포함하는 수지 조성물

Country Status (6)

Country Link
US (1) US20220162436A1 (ko)
EP (1) EP3964544A4 (ko)
KR (1) KR102506503B1 (ko)
CN (1) CN113646373B (ko)
TW (1) TWI824142B (ko)
WO (1) WO2020222494A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4105272A1 (de) * 2021-06-15 2022-12-21 Evonik Operations GmbH Weichmacherzusammensetzung umfassend tripentylester der 1,2,4-cyclohexantricarbonsäure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102496350B1 (ko) * 2019-06-05 2023-02-03 한화솔루션 주식회사 가소제 조성물 및 이를 포함하는 염화비닐계 수지 조성물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100957134B1 (ko) 2009-05-19 2010-05-11 애경유화 주식회사 새로운 가소제 조성물 및 이를 이용한 내열전선용 염화비닐수지 조성물
US20110053065A1 (en) * 2009-08-31 2011-03-03 Xerox Corporation Plasticizer containing photoconductors
WO2014053535A2 (en) * 2012-10-02 2014-04-10 Polynt S.P.A. Process for hydrogenation of esters of aromatic carboxylic acids to yield saturated homologues thereof, new uses for said homologues, and new plasticized polymeric mixtures
KR20160047221A (ko) * 2014-10-22 2016-05-02 한화케미칼 주식회사 디(2-에틸헥실)사이클로헥산-1,4-디카르복실레이트 및 시트레이트계 화합물을 포함하는 가소제 조성물, 및 이를 포함하는 염화비닐 수지 조성물
US20180105673A1 (en) * 2016-10-18 2018-04-19 Eastman Chemical Company Plasticizers which improve compatibility in pvc formulations
KR20180080689A (ko) * 2017-01-04 2018-07-12 주식회사 엘지화학 사이클로헥산 1,4-디에스터계 화합물을 포함하는 가소제 조성물 및 이를 포함하는 수지 조성물

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19756913A1 (de) * 1997-12-19 1999-06-24 Basf Ag Verfahren zur Hydrierung von Benzendicarbonsäureestern unter Verwendung eines Makroporen aufweisenden Katalysators
DE19832088A1 (de) * 1998-07-16 2000-01-20 Basf Ag Verfahren zur Hydrierung von Benzolpolycarbonsäuren oder Derivaten davon unter Verwendung eines Makroporen aufweisenden Katalysators
DE20021356U1 (de) * 2000-12-18 2001-02-22 Basf Ag Polyvinylchlorid mit kernhydrierten Phthalat-Weichmachern
EP1432758B1 (en) * 2001-09-25 2008-11-26 ExxonMobil Chemical Patents Inc. Plasticised polyvinyl chloride
DE10203386A1 (de) * 2002-01-29 2003-07-31 Basf Ag Einteilige Verschlussvorrichtung aus PVC
JP2004323778A (ja) * 2003-04-28 2004-11-18 Dainippon Ink & Chem Inc ハロゲン含有樹脂組成物
TW200835597A (en) * 2006-10-30 2008-09-01 Lofo High Tech Film Gmbh Plasticizer for protective films
EP2456840B1 (de) * 2009-07-23 2013-07-17 Basf Se Kleb- und dichtstoffe enthaltend cyclohexanpolycarbonsäure-derivate
DK3147317T3 (en) * 2015-09-28 2017-12-04 Evonik Degussa Gmbh TRIPENTYL ESTERS OF TRIMELLIC ACID
CN108699287B (zh) * 2016-09-07 2021-02-19 株式会社Lg化学 增塑剂组合物和包含该增塑剂组合物的树脂组合物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100957134B1 (ko) 2009-05-19 2010-05-11 애경유화 주식회사 새로운 가소제 조성물 및 이를 이용한 내열전선용 염화비닐수지 조성물
US20110053065A1 (en) * 2009-08-31 2011-03-03 Xerox Corporation Plasticizer containing photoconductors
WO2014053535A2 (en) * 2012-10-02 2014-04-10 Polynt S.P.A. Process for hydrogenation of esters of aromatic carboxylic acids to yield saturated homologues thereof, new uses for said homologues, and new plasticized polymeric mixtures
KR20160047221A (ko) * 2014-10-22 2016-05-02 한화케미칼 주식회사 디(2-에틸헥실)사이클로헥산-1,4-디카르복실레이트 및 시트레이트계 화합물을 포함하는 가소제 조성물, 및 이를 포함하는 염화비닐 수지 조성물
US20180105673A1 (en) * 2016-10-18 2018-04-19 Eastman Chemical Company Plasticizers which improve compatibility in pvc formulations
KR20180080689A (ko) * 2017-01-04 2018-07-12 주식회사 엘지화학 사이클로헥산 1,4-디에스터계 화합물을 포함하는 가소제 조성물 및 이를 포함하는 수지 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3964544A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4105272A1 (de) * 2021-06-15 2022-12-21 Evonik Operations GmbH Weichmacherzusammensetzung umfassend tripentylester der 1,2,4-cyclohexantricarbonsäure
US11932749B2 (en) 2021-06-15 2024-03-19 Evonik Oxeno Gmbh & Co. Kg Plasticizer composition comprising tripentyl esters of 1,2,4-cyclohexanetricarboxylic acid

Also Published As

Publication number Publication date
KR102506503B1 (ko) 2023-03-07
TW202106659A (zh) 2021-02-16
EP3964544A4 (en) 2022-06-22
US20220162436A1 (en) 2022-05-26
KR20200127876A (ko) 2020-11-11
CN113646373B (zh) 2023-04-21
CN113646373A (zh) 2021-11-12
EP3964544A1 (en) 2022-03-09
TWI824142B (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
WO2018048169A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2014181922A1 (ko) 에스테르계 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
WO2018147690A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2020122591A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018110923A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2020222500A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2020222536A1 (ko) 사이클로헥산 트리에스터계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2021020878A1 (ko) 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2019088736A2 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018216985A1 (ko) 시트레이트계 가소제 및 이를 포함하는 수지 조성물
WO2014058122A1 (ko) 가소제, 가소제 조성물, 내열수지 조성물 및 이들의 제조 방법
WO2020251266A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017222232A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2018008913A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2020222494A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2019240418A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017074057A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2017183877A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2016153235A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2017091040A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2016182376A1 (ko) 에스테르계 화합물, 이를 포함하는 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
WO2021145643A1 (ko) 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018110922A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017183876A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2022270910A1 (ko) 트라이에스터계 가소제 조성물 및 이를 포함하는 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020798264

Country of ref document: EP

Effective date: 20211202