WO2014181922A1 - 에스테르계 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물 - Google Patents

에스테르계 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물 Download PDF

Info

Publication number
WO2014181922A1
WO2014181922A1 PCT/KR2013/006329 KR2013006329W WO2014181922A1 WO 2014181922 A1 WO2014181922 A1 WO 2014181922A1 KR 2013006329 W KR2013006329 W KR 2013006329W WO 2014181922 A1 WO2014181922 A1 WO 2014181922A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
ester
weight
terephthalate
formula
Prior art date
Application number
PCT/KR2013/006329
Other languages
English (en)
French (fr)
Inventor
김현규
이미연
고동현
이규일
홍칠의
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51999943&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014181922(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2015515959A priority Critical patent/JP5907311B2/ja
Priority to EP13848110.6A priority patent/EP2821431B1/en
Priority to CN201380004058.7A priority patent/CN104603193B/zh
Priority to US14/150,472 priority patent/US9062179B2/en
Publication of WO2014181922A1 publication Critical patent/WO2014181922A1/ko
Priority to US14/694,784 priority patent/US9505907B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/39Preparation of carboxylic acid esters by oxidation of groups which are precursors for the acid moiety of the ester
    • C07C67/40Preparation of carboxylic acid esters by oxidation of groups which are precursors for the acid moiety of the ester by oxidation of primary alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/80Phthalic acid esters
    • C07C69/82Terephthalic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the present invention relates to an ester composition, a method for preparing the same, and a resin composition including the same, and more particularly, a terephthalate compound substituted with an alkyl group of a non-hybrid branched type, a hybrid branch type, and a non-hybrid branched type. It relates to an ester-based composition, a method for preparing the same, and a resin composition comprising the same in the range.
  • plasticizers react with alcohols to polycarboxylic acids such as phthalic acid and adipic acid to form the corresponding esters.
  • plasticizers react with alcohols to polycarboxylic acids such as phthalic acid and adipic acid to form the corresponding esters.
  • Commercially important examples include adipates of C8, C9 and C10 alcohols such as di (2-ethylhexyl) adipate, diisononyl adipate, diisodecyl adipate; And phthalates of C8, C9 and C10 alcohols, such as di (2-ethylhexyl) phthalate, diisononyl phthalate, diisodecyl phthalate.
  • the di (2-ethylhexyl) phthalate is formed through a plastisol and dry formulations, toys, films, shoes, paints, floorings, gloves, wallpaper, artificial leather, sealants, tarpaulins, car floor coatings, furniture, It is used in the manufacture of foam mats, and soundproof panels, and can also be used to produce the sheath and insulation of PVC cables, and other calendered plastic PVC products.
  • di- (2-ethylhexyl) phthalate is widely used as an ester composition used as a plasticizer at present, it is an environmental hormone that disturbs the endocrine system, which is harmful to the human body, and also the processability of the resin, the absorption rate with the resin, and the loss of migration. There is a limit to improving the degree and thermal stability.
  • the first technical problem to be solved of the present invention is to improve the processability of the resin by having a absorption rate and a short melting time for the resin, and the sheet prescription of wires, automobile interior materials, films, sheets, tubes, wallpaper, toys, flooring and the like and It is to provide an ester-based composition that can provide excellent physical properties when formulating a compound.
  • the second technical problem to be achieved by the present invention is to provide a method for producing the ester composition.
  • the third technical problem to be achieved by the present invention is to provide a resin composition comprising the ester composition.
  • the present invention is a non-branched non-branched type, hybrid branched type and non-hybrid branched alkyl substituted terephthalate-based compound 0.5 wt% to 9.5 wt%, 14.5 to the total weight of the ester composition, respectively It provides an ester-based composition comprising in an amount of 4% by weight to 43.8% by weight to 85% by weight.
  • the present invention also provides a method for preparing the ester composition, comprising di- (2-ethylhexyl) terephthalate (DEHTP) transesterification reaction with butyl alcohol (tansesterification).
  • DEHTP di- (2-ethylhexyl) terephthalate
  • this invention provides the resin composition containing the said ester composition and resin.
  • Ester-based composition according to an embodiment of the present invention has a absorption rate and a short melting time for the resin to improve the processability of the resin, and the sheet prescription of wires, automotive interior materials, films, sheets, tubes, wallpaper, toys, flooring materials, etc. And it can provide excellent physical properties when formulating a compound.
  • the non-branched, mixed branched and non-hybrid branched alkyl substituted terephthalate compound is 0.5 wt% to 9.5 wt%, 14.5 wt% based on the total weight of the ester composition. It provides an ester-based composition comprising in an amount of from 43.8% by weight to 46.7% by weight to 85% by weight.
  • the ester composition is a non-hybrid branched type, hybrid branched type and non-hybrid branched type alkyl substituted terephthalate-based compound is included in the specific weight ratio range, in particular non-hybrid branched Type of the alkyl substituted terephthalate-based compound of 0.5% to 9.5% by weight relative to the total weight of the ester-based composition, so that the absorption rate and short melting time for the resin to improve the processability of the resin, wire, automotive interior materials It can provide excellent physical properties when formulating and formulating a sheet, film, sheet, tube, wallpaper, toys, flooring and the like.
  • the non-hybrid unbranched type, hybrid branched type and non-hybrid branched type alkyl substituted terephthalate-based compounds are preferably 1% by weight to 8.5% by weight, respectively, based on the total weight of the ester-based composition. %, 15.8% to 42% by weight and 49.5% to 83.2% by weight.
  • the weight ratio of the alkyl branched terephthalate compound of the hybrid branched type to the non-hybrid unbranched type is preferably 4.6 to 29, preferably 5 to 17.
  • the hardness, tensile strength, elongation rate, migration loss, as well as workability with the resin such as absorption rate and melting time within the weight ratio range physical properties such as loss), sheet heating loss, heat stability and accelerated weather resistance (QUV) can be further improved.
  • hybrid unbranched type refers to a structure in which an alkyl group substituted at a symmetric position of a phenyl group is the same and includes two linear hydrocarbons without a branched chain.
  • hybrid branching type refers to the structure which differs from the alkyl group substituted by the symmetric position of a phenyl group, and includes 1 branched chain, unless otherwise specified.
  • the other alkyl group is an unbranched type. It means an alkyl group.
  • the branched alkyl group may be the same as the branched alkyl group of the non-hybrid branched alkyl-substituted terephthalate-based compound,
  • the alkyl group may be the same as the unbranched alkyl group of the non-hybrid unbranched alkyl substituted terephthalate-based compound.
  • non-hybrid branching type used in the present invention refers to a structure having the same alkyl group substituted at the symmetric position of the phenyl group and including two branched chains, unless otherwise specified.
  • the substituted alkyl may be, for example, a hydrocarbon having 3 to 10 carbon atoms, and in particular, considering the ease of processing (plasticization efficiency) and the degree of migration loss according to a fast absorption rate with the resin, the carbon may have 3 to 4 carbon atoms. It may be at least one selected from among hydrocarbons, and hydrocarbons having 6 to 10 carbon atoms.
  • the non-hybrid unbranched alkyl substituted terephthalate-based compound may be dibutyl terephthalate (DBTP) of Formula 1 below:
  • DBTP dibutyl terephthalate
  • the hybrid branched alkyl substituted terephthalate-based compound may be 1-butyl 4- (2-ethylhexyl) terephthalate (BEHTP) of Formula 2 below:
  • non-hybrid branched alkyl substituted terephthalate-based compound may be di- (2-ethylhexyl) terephthalate (DEHTP) of Formula 3 below:
  • the ester composition may be an ether-free composition, and within this range, the plasticization efficiency is good and the workability is excellent.
  • the ether free means that the ether component contained in the ester composition is 1,000 ppm or less, 100 ppm or less, or 10 ppm or less.
  • the compound of Chemical Formulas 1 to 3 by transesterification reaction of di- (2-ethylhexyl) terephthalate (DEHTP) of Chemical Formula 3 with butyl alcohol of Chemical Formula 4 It provides a method for producing an ester-based composition comprising.
  • tansesterification reaction means a reaction in which an alcohol and an ester react so that R of the ester is interchanged with R 'of the alcohol as in Scheme 1 below:
  • the trans-butoxide in the esterification reaction is completed, the formula 4-butanol (C 4 H 9 O -) of the formula 3-di- (2-ethylhexyl) terephthalate (DEHTP
  • dibutyl terephthalate (DBTP) of Formula 1 may be formed; di- (2-ethylhexyl) of Formula 3 Attacking the carbon of one ester (RCOOR ") group substituted with a phenyl group in terephthalate (DEHTP) can form 1-butyl 4- (2-ethylhexyl) terephthalate (BEHTP) of Formula 2;
  • the unreacted portion of the reaction may remain as di- (2-ethylhexyl) terephthalate (DEHTP) of Chemical Formula 3.
  • the ester composition prepared by the transesterification reaction is dibutyl terephthalate (DBTP) of the formula (1), 1-butyl 4- (2-ethylhexyl of the formula 2 ) Terephthalate (BEHTP) and di- (2-ethylhexyl) terephthalate (DEHTP) of the formula (3) may include both, it is possible to control the composition of the ester composition according to the addition amount of the butanol of the formula (4). .
  • the ester composition is a di- (2-ethylhexyl) terephthalate (DEHTP) of the formula 3, 1-butyl 4- (2-ethylhexyl) terephthalate of the formula (2 BEHTP) and dibutyl terephthalate (DBTP) of Formula 1 may be included in a high content, but the higher the amount of butanol added, the more di- (2-ethylhexyl) terephthalate (DEHTP) is involved in the transesterification reaction.
  • DEHTP di- (2-ethylhexyl) terephthalate
  • DEHTP di- (2-ethylhexyl) terephthalate
  • the content of dibutyl terephthalate (DBTP) of Formula 1 is 0.5% to 9.5% by weight, preferably 1 to the total weight of the ester composition.
  • the amount of the butyl alcohol added may be 4 parts by weight to 23 parts by weight, preferably 5 parts by weight, based on 100 parts by weight of the di- (2-ethylhexyl) terephthalate (DEHTP) to be included in an amount of 8.5% by weight to 8.5% by weight. It is preferable that it is 20 weight part.
  • the molar ratio of di- (2-ethylhexyl) terephthalate (DEHTP) and butanol is, for example, 1: 0.005 to 5.0, 1: 0.2 to 2.5, or 1: 0.3 to 1.5, within this range, high process efficiency and processability There is an effect of obtaining an ester plasticizer excellent in the improvement effect.
  • the transesterification reaction is carried out for 10 minutes to 10 hours, preferably at a reaction temperature of 120 °C to 190 °C, preferably 135 °C to 180 °C, more preferably 141 to 179 °C Is preferably performed at 30 minutes to 8 hours, more preferably 1 hour to 6 hours. It is possible to effectively obtain an ester composition having a desired composition ratio within the temperature and time range.
  • the reaction time may be calculated from the time point at which the reaction temperature is reached after the reaction temperature is raised.
  • the transesterification reaction can be carried out under an acid catalyst or a metal catalyst, in this case there is an effect that the reaction time is shortened.
  • the acid catalyst may be, for example, sulfuric acid, methanesulfonic acid or p-toluenesulfonic acid, and the like, and the metal catalyst may be, for example, an organometallic catalyst, a metal oxide catalyst, a metal salt catalyst, or the metal itself.
  • the metal component may be any one selected from the group consisting of tin, titanium and zirconium, or a mixture of two or more thereof.
  • after the transesterification reaction may further comprise the step of distilling unreacted butyl alcohol and reaction by-products, for example 2-ethylhexyl alcohol.
  • the distillation may be, for example, two-stage distillation that is separated by using the difference between the break points of the butanol and the reaction by-product.
  • the distillation may be mixed distillation.
  • the mixed distillation means distilling butanol and reaction by-products simultaneously.
  • the present invention provides an ester composition prepared by the above production method.
  • the present invention also provides a resin composition comprising the ester composition and the resin.
  • the ester composition according to an embodiment of the present invention is added as a plasticizer.
  • the resin may be a resin known in the art.
  • a resin known in the art for example, one or more mixtures selected from ethylene vinyl acetate, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane, thermoplastic elastomer, and polylactic acid may be used, but is not limited thereto.
  • the ester composition may be included in 5 to 100 parts by weight based on 100 parts by weight of the resin.
  • the resin composition may further include a filler.
  • the filler may be 0 to 300 parts by weight, preferably 50 to 200 parts by weight, more preferably 100 to 200 parts by weight based on 100 parts by weight of the resin.
  • the filler may be a filler known in the art, it is not particularly limited.
  • it may be at least one mixture selected from silica, magnesium carbonate, calcium carbonate, hard coal, talc, magnesium hydroxide, titanium dioxide, magnesium oxide, calcium hydroxide, aluminum hydroxide, aluminum silicate, magnesium silicate and barium sulfate.
  • the resin composition may further include other additives such as stabilizers, if necessary.
  • additives such as the stabilizer may be, for example, 0 to 20 parts by weight, preferably 1 to 15 parts by weight, based on 100 parts by weight of the resin.
  • Stabilizers that may be used in accordance with one embodiment of the present invention may be used, for example, calcium-zinc-based (Ca-Zn-based) stabilizers such as calcium stearate salts, but is not particularly limited thereto.
  • Ca-Zn-based stabilizers such as calcium stearate salts
  • the resin composition is dioctylphthalate (DOP), dibutyl phthalate (DBP), dioctyl terephthalate (DOTP), diisononyl phthalate (DINP), diisodecyl phthalate (DIDP) and di- (2-ethylhexyl) terephthalate (DEHTP) may further comprise at least one plasticizer composition.
  • the plasticizer composition may be in the range of 0 to 150 parts by weight, preferably 5 to 100 parts by weight, based on 100 parts by weight of the resin.
  • the resin composition has an absorption rate of 3 minutes to 10 minutes, 3 minutes to 8 minutes, more preferably 4 minutes to 7 minutes, and has excellent workability and workability within this range.
  • the absorption rate may be evaluated by measuring the time until the resin is stabilized and the torque of the mixer is mixed with each other by using a mixer (product name: Brabender, P600) under the conditions of 77 °C, 60rpm. .
  • the stabilization of the torque means that the resin is first put in order to measure the absorption rate, and when the ester-based composition is added, the torque peak initially rises, and the torque peak gradually decreases to keep the level almost flat. This can be seen in the graph.
  • the resin composition has a sol viscosity of 4000 to 15000cp, 5000 to 11000cp, or 6000 to 9000cp, there is an effect that can ensure a stable processability within this range.
  • Sol viscosity of the substrate is measured using a Brookfield (LV type) viscometer, the spindle used is # 4, measured at 6rpm, 12rpm.
  • Samples include 100 phr of PVC (PB900, LG Chem), 75 phr of ester composition (plasticizer), 4 phr of stabilizer (KSZ111XF), 3 phr of blowing agent (W1039), 13 phr of TiO 2 (TMCA100), 130 phr of CaCO3 (OMYA10), viscosity lowering agent ( Exa-sol) 10 phr, dispersant (BYK3160) 1 phr is formulated to make a plastisol, and stored for 1 hour at 25 °C, it can be measured.
  • LV type viscometer Brookfield (LV type) viscometer, the spindle used is # 4, measured at 6rpm, 12rpm.
  • Samples include 100 phr of PVC (PB900, LG Chem), 75 p
  • the resin composition may be a resin composition, that is, a viscosity-lowering agent-free resin composition, in which the amount of the viscosity-lowering agent is lowered compared to an existing product or not used.
  • the viscosity reducing agent free composition of this description means that it does not contain the viscosity reducing agent for adjusting the viscosity of a resin composition at all.
  • Ester-based composition according to an embodiment of the present invention has a absorption rate and a short melting time for the resin to improve the processability of the resin, and the sheet prescription of wires, automotive interior materials, films, sheets, tubes, wallpaper, toys, flooring materials, etc. And it can provide excellent physical properties when formulating a compound.
  • the resin composition comprising the ester-based composition when prescribed as a wallpaper sheet can provide excellent physical properties.
  • DEHTP di- (2-ethylhexyl) terephthalate
  • TIPT titanium-based catalyst
  • DBTP dibutyl terephthalate
  • BEHTP 1-butyl 4- (2-ethylhexyl) terephthalate
  • DEHTP di- (2-ethylhexyl) terephthalate
  • the reaction product was mixed and distilled to remove residual butanol and 2-ethylhexyl alcohol to prepare a final ester composition.
  • Butanol was prepared in the same manner as in Example 1, except that 5 parts by weight of 100 parts by weight of DEHTP was used to prepare an ester composition having the composition shown in Table 1 below.
  • Butanol was prepared in the same manner as in Example 1, except that 8 parts by weight of 100 parts by weight of DEHTP was used to prepare an ester composition having the composition shown in Table 1 below.
  • Butanol was prepared in the same manner as in Example 1, except that 10 parts by weight of 100 parts by weight of DEHTP was used to prepare an ester composition having the composition shown in Table 1 below.
  • Butanol was prepared in the same manner as in Example 1, except that 15 parts by weight of 100 parts by weight of DEHTP was used to prepare an ester composition having the composition shown in Table 1 below.
  • Butanol was prepared in the same manner as in Example 1, except that 20 parts by weight of 100 parts by weight of DEHTP was used to prepare an ester composition having the composition shown in Table 1 below.
  • Butanol was prepared in the same manner as in Example 1, except that 35 parts by weight of 100 parts by weight of DEHTP was used to prepare an ester composition having the composition shown in Table 1 below. As in Comparative Example 2, due to the addition of a large amount of butanol it was confirmed that some butanol is lost in the middle of the butanol reflux.
  • the content (wt%) of DBTP, BEHTP and DEHTP is Agilent's gas chromatograph instrument (Agilent 7890 GC, column: HP-5, Carrier gas: helium).
  • the ester composition prepared in Examples 1 to 7 and Comparative Examples 1 to 3 was 55 parts by weight of a plasticizer based on 100 parts by weight of polyvinyl chloride resin (PVC (LS 130s)), and BZ stabilizer (BZ210, Songwon Industry) as an additive. 2 parts by weight, 2 parts by weight of epoxidized soybean oil (ESO, Songwon Industry) were combined and mixed at 100 ° C. at 1300 rpm. The roll mill was used for 4 minutes at 175 ° C and the press was used for 3 minutes (low pressure) and 2 minutes and 30 seconds (high pressure) at 185 ° C to produce sheets with a thickness of 2 mm. It was.
  • PVC polyvinyl chloride resin
  • BZ210 BZ210, Songwon Industry
  • Shore hardness at 25 ° C. was measured using ASTM D2240.
  • Tensile strength (kgf / mm2) load value (kgf) / thickness (mm) x width (mm)
  • Elongation (%) calculated after elongation / initial length ⁇ 100.
  • Test specimens having a thickness of 2 mm or more were obtained according to KSM-3156, and a load of 1 kgf / cm 2 was applied after attaching ABS (Natural Color) to both sides of the specimens.
  • the test piece was left in a hot air circulation oven (80 ° C.) for 72 hours and then taken out and cooled at room temperature for 4 hours. Then, after removing the ABS attached to both sides of the test piece, the weight before and after leaving in the oven was measured and the transfer loss was calculated by the following equation.
  • % Of transfer loss ⁇ (initial weight of test piece at room temperature-weight of test piece after leaving the oven) / initial weight of test piece at room temperature ⁇ x 100
  • Thermal stability measurement was performed by performing 20 mm / 30 seconds at 230 °C.
  • Sheet specimens (10 * 10 cm specimens) were evaluated after 200 hours in the QUV of The Q-panel company under the following conditions by NIKE # G37 evaluation method.
  • UV LAMP UVA-340 / Room Temperature was measured using a 22 ⁇ 2 °C spectrometer (UV-3600).
  • the resin and ester-based composition (plasticizer) are mixed with each other using a mixer (product name: Brabender) to stabilize the torque of the mixer. It evaluated by measuring the time until it becomes a state to become.
  • the stabilization of the torque means that the resin is first put in order to measure the absorption rate, and when the ester-based composition is added, the torque peak initially rises, and the torque peak gradually decreases to keep the level almost flat. This can be seen in the graph.
  • the excellent absorption rate, meltability and hardness, as in Examples 1 to 7 may have a large difference in the physical properties of the final product.
  • the ester-based composition of Examples 1 to 7 is applied to the actual sheet, not only can be used in a smaller amount, but also can provide excellent stabilization of the final workability.
  • Comparative Examples 2 and 3 In the case of heating loss, it can be confirmed that the amount of several times in Comparative Examples 2 and 3 compared to Examples 1 to 7 is measured. In particular, Comparative Examples 2 and 3 can be confirmed that the heating loss is measured up to about 10 times or more compared to Examples 1 to 3.
  • Comparative Examples 2 and 3 with DBTP lower than 0.5% or DBTP higher than 9.5%, had slightly poor or poor QUV results and slightly better or equivalent thermal stability based on the use of DOP alone. .
  • the absorption rate for the resin can be seen that in the case of Examples 1 to 7 of the present invention excellent or at least equal to or more than DOP, DINP.
  • the absorption rate is rather fast, which may act as a poor physical property when applied to a product such as an actual sheet. If the absorption rate is too fast, you may not have enough time to process the product smoothly, which can lead to the loss of unwanted products.
  • Examples 1 to 7 had a DBTP content of 0.5% to 9.5% by weight. It can be confirmed that the elongation after heating at room temperature and 100 °C compared to Comparative Examples 2 and 3 regarding the value deviated from%.
  • the content of the DBTP is more than a certain amount, that is, more than 10% by weight (for example, 10.5% by weight), it can be confirmed that the elongation is sharply worse after room temperature or heating.
  • the heating loss was about 0.49% to 1.95%.
  • the heating loss was rapidly increased to 7% to 8.3%. Rapid reduction in heating, as in Comparative Examples 2 and 3, means that the amount of ester-based composition (plasticizer) present in the specimen was reduced by that amount, which is indicated by a decrease in elongation.
  • melt test was marked with a level of 1 (fast melt time) to 5 (slow melt time), and in Examples 1 to 7, melt test levels were about 2 and 3 levels. In contrast, Comparative Examples 2 and 3 and DBTP showed a fast melting time. Such a rapid melting time can reduce the time for smooth processing of the product, the loss of the product can occur, there is a possibility that adverse effects on the work.
  • the ester composition according to the present invention has a water absorption rate and a short melting time for the resin to improve the processability of the resin, and the sheet prescription and compound prescription of wires, automotive interior materials, films, sheets, tubes, wallpaper, toys, flooring materials, etc. It can provide excellent physical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 에스테르 조성, 이의 제조방법 및 이를 포함하는 수지 조성물에 관한 것으로, 구체적으로 비혼성 비분지 타입, 혼성 분지 타입 및 비혼성 분지 타입의 알킬 치환된 테레프탈레이트계 화합물을 에스테르계 조성물 총 중량에 대해 각각 0.5 중량% 내지 9.5 중량%, 14.5 중량% 내지 43.8 중량% 및 46.7 중량% 내지 85 중량%의 양으로 포함하는 에스테르계 조성물을 제공한다. 본 발명에 따른 에스테르계 조성물은 수지에 대한 흡수속도와 짧은 용융 시간을 가져 수지의 가공성을 개선시키고, 전선, 자동차 내장재, 필름, 시트, 튜브, 벽지, 완구, 바닥재 등의 시트 처방 및 컴파운드 처방시 우수한 물성을 제공할 수 있다.

Description

에스테르계 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
본 발명은 에스테르계 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물에 관한 것으로, 보다 구체적으로는 비혼성 비분지 타입, 혼성 분지 타입 및 비혼성 분지 타입의 알킬기가 치환된 테레프탈레이트계 화합물이 특정 범위로 포함되는 에스테르계 조성물, 이의 제조 방법, 및 이를 포함하는 수지 조성물에 관한 것이다.
통상적으로 가소제는 알코올이 프탈산 및 아디프산과 같은 폴리카복시산과 반응하여 이에 상응하는 에스테르를 형성한다. 상업적으로 중요한 예는 C8, C9 및 C10 알콜의 아디페이트, 예를 들면 디(2-에틸헥실) 아디페이트, 디이소노닐 아디페이트, 디이소데실 아디페이트; 및 C8, C9 및 C10 알콜의 프탈레이트, 예를 들면 디(2-에틸헥실) 프탈레이트, 디이소노닐 프탈레이트, 디이소데실 프탈레이트를 포함한다.
구체적으로 상기 디(2-에틸헥실) 프탈레이트는 플라스티졸(plastisol) 및 건식 배합을 통하여 장남감, 필름, 신발, 도료, 바닥재, 장갑, 벽지, 인조 가죽, 실란트, 타포린, 차 바닥 코팅제, 가구, 발포 매트, 및 방음 패널 제조시 사용되며, 또한 PVC 케이블의 외장 및 절연, 및 다른 캘린더링된 가소성 PVC 제품을 생산하는 데에도 사용될 수 있다.
현재 가소제로 사용되는 에스테르계 조성물로 디-(2-에틸헥실) 프탈레이트 등이 많이 사용되고 있으나, 내분비계를 교란시키는 환경 호르몬으로 인체에 유해하고, 또한 수지의 가공성, 수지와의 흡수 속도와 이행 손실 정도 및 열적 안정성을 개선시키는 데 한계가 있다.
따라서, 친환경적이면서 수지의 가공성, 수지와의 흡수 속도와 이행 손실 정도 및 열적 안정성 등의 모든 물성면에서 충분히 개선시킬 수 있는 에스테르계 조성물 및 이의 제조방법의 개발이 필요한 실정이다.
본 발명의 해결하고자 하는 제1 기술적 과제는 수지에 대한 흡수속도와 짧은 용융 시간을 가져 수지의 가공성을 개선시키고, 전선, 자동차 내장재, 필름, 시트, 튜브, 벽지, 완구, 바닥재 등의 시트 처방 및 컴파운드 처방시 우수한 물성을 제공할 수 있는 에스테르계 조성물을 제공하는 것이다.
본 발명이 이루고자 하는 제2 기술적 과제는 상기 에스테르계 조성물의 제조방법을 제공하는 것이다.
본 발명이 이루고자 하는 제3 기술적 과제는 상기 에스테르계 조성물을 포함하는 수지 조성물을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 비혼성 비분지 타입, 혼성 분지 타입 및 비혼성 분지 타입의 알킬 치환된 테레프탈레이트계 화합물을 에스테르계 조성물 총 중량에 대해 각각 0.5 중량% 내지 9.5 중량%, 14.5 중량% 내지 43.8 중량% 및 46.7 중량% 내지 85 중량%의 양으로 포함하는 에스테르계 조성물을 제공한다.
또한, 본 발명은 디-(2-에틸헥실) 테레프탈레이트(DEHTP)을 부틸 알코올과 트랜스에스테르화 (tansesterification) 반응시키는 단계를 포함하는 것을 특징으로 하는 상기 에스테르계 조성물의 제조방법을 제공하는 것이다.
나아가, 본 발명은 상기 에스테르계 조성물 및 수지를 포함하는 수지 조성물을 제공한다.
본 발명의 일 실시예에 따른 에스테르계 조성물은 수지에 대한 흡수속도와 짧은 용융 시간을 가져 수지의 가공성을 개선시키고, 전선, 자동차 내장재, 필름, 시트, 튜브, 벽지, 완구, 바닥재 등의 시트 처방 및 컴파운드 처방시 우수한 물성을 제공할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 실시예에 따르면, 비혼성 비분지 타입, 혼성 분지 타입 및 비혼성 분지 타입의 알킬 치환된 테레프탈레이트계 화합물을 에스테르계 조성물 총 중량에 대해 0.5 중량% 내지 9.5 중량%, 14.5 중량% 내지 43.8 중량% 및 46.7 중량% 내지 85 중량%의 양으로 포함하는 에스테르계 조성물을 제공한다.
본 발명의 일 실시예에 따르면, 상기 에스테르계 조성물은 비혼성 비분지 타입, 혼성 분지 타입 및 비혼성 분지 타입의 알킬 치환된 테레프탈레이트계 화합물이 상기 특정 중량비 범위내로 포함됨으로써, 특히 비혼성 비분지 타입의 알킬 치환된 테레프탈레이트계 화합물이 에스테르계 조성물 총 중량에 대해 0.5 중량% 내지 9.5 중량%로 포함됨으로써, 수지에 대한 흡수속도와 짧은 용융 시간을 가져 수지의 가공성을 개선시키고, 전선, 자동차 내장재, 필름, 시트, 튜브, 벽지, 완구, 바닥재 등의 시트 처방 및 컴파운드 처방시 우수한 물성을 제공할 수 있다.
본 발명의 일 실시예에 따르면, 상기 비혼성 비분지 타입, 혼성 분지 타입 및 비혼성 분지 타입의 알킬 치환된 테레프탈레이트계 화합물은 바람직하게는 에스테르계 조성물 총 중량에 대해 각각 1 중량% 내지 8.5 중량%, 15.8 중량% 내지 42 중량% 및 49.5 중량% 내지 83.2 중량%의 양으로 포함될 수 있다.
특히, 상기 비혼성 비분지 타입에 대한 혼성 분지 타입의 알킬 치환된 테레프탈레이트계 화합물의 중량비는 4.6 내지 29, 바람직하게는 5 내지 17인 것이 좋다.
본 발명의 일 실시예에 따르면, 상기 중량비 범위 내에서 흡수속도 및 용융 시간 등의 수지와의 가공성뿐만 아니라, 경도(hardness), 인장강도(tensile strength), 신율(elongation rate), 이행 손실(migration loss), 시트 가열감량, 열안정성(heat stability) 및 촉진 내후성(QUV) 등의 물성이 더욱 개선될 수 있다.
본 발명에서 사용하는 용어 "비혼성 비분지 타입"은 달리 특정되지 않는 한, 페닐기의 대칭 위치에 치환된 알킬기가 동일하고, 분지쇄 없이 2종의 선형 탄화수소를 포함하는 구조를 지칭한다.
또한, 본 발명에서 사용하는 용어 "혼성 분지 타입"은 달리 특정되지 않는 한, 페닐기의 대칭 위치에 치환된 알킬기가 서로 다르고, 1종의 분지쇄를 포함하는 구조를 지칭한다. 예를 들면, 상기 혼성 분지 타입의 알킬 치환된 테레프탈레이트계 화합물에 있어서, 페닐기의 대칭 위치에 치환된 2개의 알킬기 중, 어느 하나의 알킬기가 분지 타입인 알킬기이면 다른 하나의 알킬기는 비분지 타입인 알킬기인 것을 의미한다.
또한, 상기 혼성 분지 타입의 알킬 치환된 테레프탈레이트계 화합물에 있어서, 분지 타입의 알킬기는 비혼성 분지 타입의 알킬 치환된 테레프탈레이트계 화합물의 분지 타입의 알킬기와 동일할 수 있고, 상기 비분지 타입의 알킬기는 상기 비혼성 비분지 타입의 알킬 치환된 테레프탈레이트계 화합물의 비분지 타입의 알킬기와 동일할 수 있다.
나아가, 본 발명에서 사용하는 용어 "비혼성 분지 타입"은 달리 특정되지 않는 한, 페닐기의 대칭 위치에 치환된 알킬기가 동일하고, 2종의 분지쇄를 포함하는 구조를 지칭한다.
상기 치환된 알킬은 일례로, 탄소수 3 내지 10의 탄화수소일 수 있고, 구체적인 예로 수지와의 빠른 흡수 속도에 따른 가공 용이성(가소화 효율)과 이행 손실(migration loss) 정도를 고려할 때 탄소수 3 내지 4의 탄화수소, 및 탄소수 6 내지 10의 탄화수소 중 독립적으로 선택된 1종 이상일 수 있다.
본 발명의 일 실시예에 따르면, 상기 비혼성 비분지 타입의 알킬 치환된 테레프탈레이트계 화합물은 하기 화학식 1의 디부틸 테레프탈레이트(DBTP)일 수 있다:
[화학식 1]
Figure PCTKR2013006329-appb-I000001
또한, 본 발명의 일 실시예에 따르면, 상기 혼성 분지 타입의 알킬 치환된 테레프탈레이트계 화합물은 하기 화학식 2의 1-부틸 4-(2-에틸헥실) 테레프탈레이트(BEHTP)일 수 있다:
[화학식 2]
Figure PCTKR2013006329-appb-I000002
또한, 본 발명의 일 실시예에 따르면, 상기 비혼성 분지 타입의 알킬 치환된 테레프탈레이트계 화합물은 하기 화학식 3의 디-(2-에틸헥실) 테레프탈레이트(DEHTP)일 수 있다:
[화학식 3]
Figure PCTKR2013006329-appb-I000003
상기 에스테르계 조성물은 에테르 프리(ether-free) 조성물일 수 있고, 이 범위 내에서 가소화 효율이 좋고, 작업성이 우수한 효과가 있다.
상기 에테르 프리는 에스테르계 조성물 내에 포함된 에테르 성분이 1,000 ppm 이하, 100 ppm 이하, 혹은 10 ppm 이하인 것을 의미한다.
본 발명의 일 실시예에 따르면, 하기 화학식 3의 디-(2-에틸헥실) 테레프탈레이트(DEHTP)을 하기 화학식 4의 부틸 알코올과 트랜스에스테르화 (tansesterification) 반응시켜 상기 화학식 1 내지 3의 화합물을 포함하는 에스테르계 조성물의 제조방법을 제공한다.
[화학식 3]
Figure PCTKR2013006329-appb-I000004
[화학식 4]
Figure PCTKR2013006329-appb-I000005
본 발명에서 사용되는 "트랜스에스테르화 (tansesterification) 반응"은 하기 반응식 1과 같이 알코올과 에스테르가 반응하여 에스테르의 R"가 알코올의 R’와 서로 상호교환되는 반응을 의미한다:
[반응식 1]
Figure PCTKR2013006329-appb-I000006
본 발명의 일 실시예에 따르면, 상기 트랜스에스테르화 반응이 이루어지면 상기 화학식 4의 부탄올의 부톡사이드(C4H9O-)가 상기 화학식 3의 디-(2-에틸헥실) 테레프탈레이트(DEHTP) 중 페닐기에 치환되는 두개의 에스테르(RCOOR")기의 탄소를 공격할 경우, 상기 화학식 1의 디부틸 테레프탈레이트(DBTP)를 형성할 수 있고; 상기 화학식 3의 디-(2-에틸헥실) 테레프탈레이트(DEHTP) 중 페닐기에 치환되는 한개의 에스테르(RCOOR")기의 탄소를 공격할 경우 상기 화학식 2의 1-부틸 4-(2-에틸헥실) 테레프탈레이트(BEHTP)를 형성할 수 있으며; 반응이 이루어지지 않은 미반응 부분으로 상기 화학식 3의 디-(2-에틸헥실) 테레프탈레이트(DEHTP)로 남아 있을 수 있다.
따라서, 본 발명의 일 실시예에 따르면, 상기 트랜스에스테르화 반응에 의해 제조된 에스테르계 조성물은 상기 화학식 1의 디부틸 테레프탈레이트(DBTP), 상기 화학식 2의 1-부틸 4-(2-에틸헥실) 테레프탈레이트(BEHTP) 및 상기 화학식 3의 디-(2-에틸헥실) 테레프탈레이트(DEHTP) 모두를 포함할 수 있으며, 상기 화학식 4의 부탄올의 첨가량에 따라 상기 에스테르계 조성물의 조성을 제어할 수 있다.
본 발명의 일 실시예에 따르면, 상기 에스테르계 조성물은 상기 화학식 3의 디-(2-에틸헥실) 테레프탈레이트(DEHTP), 상기 화학식 2의 1-부틸 4-(2-에틸헥실) 테레프탈레이트(BEHTP) 및 상기 화학식 1의 디부틸 테레프탈레이트(DBTP) 순서로 높은 함량으로 포함될 수 있으나, 부탄올의 첨가량이 많을 수록, 트랜스에스테르화 반응에 참여하는 디-(2-에틸헥실) 테레프탈레이트(DEHTP)의 몰분율(mole fraction)이 커질 것이므로, 상기 에스테르계 조성물에 있어서 상기 화학식 1의 디부틸 테레프탈레이트(DBTP) 및 상기 화학식 2의 1-부틸 4-(2-에틸헥실) 테레프탈레이트(BEHTP)의 함량이 증가할 수 있다.
또한, 이에 상응하여 미반응으로 존재하는 화학식 3의 디-(2-에틸헥실) 테레프탈레이트(DEHTP)의 함량은 감소하는 경향을 보일 수 있다.
본 발명의 일 실시예에 따르면, 상기 에스테르계 조성물에 있어서, 상기 화학식 1의 디부틸 테레프탈레이트(DBTP)의 함량이 상기 에스테르계 조성물 총 중량에 대해 0.5 중량% 내지 9.5 중량%, 바람직하게는 1 중량% 내지 8.5 중량%로 포함되기 위해, 상기 부틸 알코올의 첨가량은 상기 디-(2-에틸헥실) 테레프탈레이트(DEHTP) 100 중량부에 대해 4 중량부 내지 23 중량부, 바람직하게는 5 중량부 내지 20 중량부인 것이 바람직하다
상기 디-(2-에틸헥실) 테레프탈레이트(DEHTP)와 부탄올의 몰비는 일례로 1:0.005 내지 5.0, 1:0.2 내지 2.5, 혹은 1:0.3 내지 1.5이고, 이 범위 내에서 공정 효율이 높으며 가공성 개선 효과가 뛰어난 에스테르계 가소제를 수득하는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 트랜스에스테르화 반응은 120 ℃ 내지 190 ℃, 바람직하게는 135 ℃ 내지 180 ℃, 더욱 바람직하게는 141 내지 179 ℃의 반응 온도 하에서 10분 내지 10시간, 바람직하게는 30분 내지 8시간, 더욱 바람직하게는 1시간 내지 6시간에서 수행되는 것이 바람직하다. 상기 온도 및 시간 범위 내에서 원하는 조성비의 에스테르계 조성물을 효과적으로 얻을 수 있다. 이때, 상기 반응 시간은 반응물을 승온 후 반응 온도에 도달한 시점부터 계산될 수 있다.
본 발명의 일 실시예에 따르면, 상기 트랜스에스테르화 반응은 산 촉매 또는 금속 촉매 하에서 실시될 수 있고, 이 경우 반응시간이 단축되는 효과가 있다.
상기 산 촉매는 일례로 황산, 메탄설폰산 또는 p-톨루엔설폰산 등일 수 있고, 상기 금속 촉매는 일례로 유기금속 촉매, 금속 산화물 촉매, 금속염 촉매 또는 금속 자체일 수 있다.
상기 금속 성분은 일례로 주석, 티탄 및 지르코늄으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 트랜스에스테르화 반응 후 미반응 부틸알코올과 반응 부산물, 예를 들면 2-에틸헥실알코올을 증류시켜 제거하는 단계를 더 포함할 수 있다.
상기 증류는 일례로 상기 부탄올과 반응 부산물의 끊는점 차이를 이용하여 따로 분리하는 2단계 증류일 수 있다.
또 다른 일례로, 상기 증류는 혼합증류일 수 있다. 이 경우 에스테르계 조성물을 원하는 조성비로 비교적 안정적으로 확보할 수 있는 효과가 있다. 상기 혼합증류는 부탄올과 반응 부산물을 동시에 증류하는 것을 의미한다.
본 발명은 상기 제조방법에 의해 제조된 에스테르계 조성물을 제공한다.
또한, 본 발명은 상기 에스테르계 조성물 및 수지를 포함하는 수지 조성물을 제공한다.
본 발명의 일 실시예에 따른 상기 에스테르계 조성물은 가소제로서 첨가된다.
본 발명의 일 실시예에 따르면, 상기 수지는 당 분야에 알려져 있는 수지를 사용할 수 있다. 예를 들면, 에틸렌 초산 비닐, 폴리에틸렌, 폴리프로필렌, 폴리염화비닐, 폴리 스타이렌, 폴리우레탄, 열가소성 엘라스토머 및 폴리유산 중에서 선택된 1종 이상의 혼합물 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 실시예에 따르면, 상기 에스테르계 조성물은 상기 수지 100 중량부를 기준으로 5 내지 100 중량부로 포함될 수 있다.
본 발명의 일 실시예에 따르면, 상기 수지 조성물은 충진제를 더 포함할 수 있다.
상기 충진제는 상기 수지 100 중량부를 기준으로 0 내지 300 중량부, 바람직하게는 50 내지 200 중량부, 더욱 바람직하게는 100 내지 200 중량부일 수 있다.
본 발명의 일 실시예에 따르면, 상기 충진제는 당 분야에 알려져 있는 충진제를 사용할 수 있으며, 특별히 제한되지 않는다. 예를 들면, 실리카, 마그네슘 카보네이트, 칼슘 카보네이트, 경탄, 탈크, 수산화 마그네슘, 티타늄 디옥사이드, 마그네슘 옥사이드, 수산화 칼슘, 수산화 알루미늄, 알루미늄 실리케이트, 마그네슘 실리케이트 및 황산바륨 중에서 선택된 1종 이상의 혼합물일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 수지 조성물은 필요에 따라 안정화제 등의 기타 첨가제를 더 포함할 수 있다.
상기 안정화제 등의 기타 첨가제는 일례로 각각 상기 수지 100 중량부를 기준으로 0 내지 20 중량부, 바람직하게는 1 내지 15 중량부일 수 있다.
본 발명의 일 실시예에 따라 사용될 수 있는 안정화제는 예를 들어 칼슘-아연의 복합 스테아린산 염 등의 칼슘-아연계(Ca-Zn계) 안정화제를 사용할 수 있으나, 이에 특별히 제한되는 것은 아니다.
또한, 본 발명의 일 실시예에 따르면, 상기 수지 조성물은 디옥틸프탈레이트(DOP), 디부틸프탈레이트(DBP), 디옥틸테레프텔레이트(DOTP), 디이소노닐프탈레이트(DINP), 디이소데실프탈레이트(DIDP) 및 디-(2-에틸헥실) 테레프탈레이트(DEHTP) 중에서 1종 이상 선택된 가소제 조성물을 더 포함할 수 있다. 상기 가소제 조성물은 상기 수지 100 중량부 기준으로 0 내지 150 중량부, 바람직하게는 5 내지 100 중량부 범위 내일 수 있다.
상기 수지 조성물은 일례로 상기 에스테르계 조성물의 흡수속도가 3분 내지 10분, 3분 내지 8분, 더욱 바람직하게는 4분 내지 7분이고, 이 범위 내에서 작업성 및 가공성이 우수한 효과가 있다.
상기 흡수속도는 77℃, 60rpm의 조건 하에서, 믹서기(제품명: Brabender, P600)를 사용하여 수지와 에스테르계 조성물이 서로 혼합되어 믹서의 토크가 안정화되는 상태가 되기까지의 시간을 측정하여 평가할 수 있다.
상기 토크의 안정화는 흡수속도를 측정하기 위해 수지를 먼저 투입하고, 에스테르계 조성물을 투입하면, 초기에 토크 피크가 올랐다가 점차 토크 피크가 점점 내려오면서 거의 수평을 유지하는 상태를 의미하고, 모니터상에 그래프로 확인할 수 있다.
또한, 상기 수지 조성물은 졸 점도가 4000 내지 15000cp, 5000 내지 11000cp, 혹은 6000 내지 9000cp 이고, 이 범위 내에서 안정적인 가공성을 확보할 수 있는 효과가 있다.
본 기재의 졸 점도는 Brookfield (LV type)점도계를 이용하여 측정되며, 사용하는 spindle은 #4이며, 6rpm, 12rpm에서 측정한다. 시료는 일례로 PVC(PB900, LG화학)100phr, 에스테르계 조성물(가소제) 75phr, 안정화제(KSZ111XF)4phr, 발포제(W1039) 3phr, TiO2(TMCA100) 13phr, CaCO3(OMYA10) 130phr, 점도저하제(Exa-sol) 10phr, 분산제(BYK3160) 1phr를 배합하여 플라스티졸을 만들고, 25℃에서 1시간 보관 후, 측정할 수 있다.
상기 수지 조성물은 일례로 점도 저하제의 투입량을 기존 제품대비 낮추거나, 혹은 사용하지 않은 수지 조성물, 즉 점도 저하제 프리 수지 조성물일 수 있다.
본 기재의 점도 저하제 프리 조성물은 수지 조성물의 점도를 조절하기 위한 점도 저하제를 전혀 포함하지 않는 것을 의미한다.
본 발명의 일 실시예에 따른 에스테르계 조성물은 수지에 대한 흡수속도와 짧은 용융 시간을 가져 수지의 가공성을 개선시키고, 전선, 자동차 내장재, 필름, 시트, 튜브, 벽지, 완구, 바닥재 등의 시트 처방 및 컴파운드 처방시 우수한 물성을 제공할 수 있다.
특히, 상기 에스테르계 조성물을 포함하는 수지 조성물이 벽지 시트로서 처방될 경우 우수한 물성을 제공할 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
이하 실시예 및 실험예를 들어 더욱 설명하나, 본 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다.
실시예 1
교반기, 응축기 및 데칸터가 설치된 반응기에 디-(2-에틸헥실) 테레프탈레이트(이하, DEHTP) 1000 g을 투입하고 160 ℃까지 승온한 후, 촉매로써 티타늄계 촉매 (TIPT, tetra isopropyl titanate)를 1.6g 투입하고, 부탄올 40 g(DEHTP 100 중량부에 대해 4 중량부)을 펌프 이송하여 반응기에 투입하였다. 그 다음, 160 ℃의 반응온도에서 3시간 동안 트랜스 에스테르화 반응시켜 디부틸 테레프탈레이트(이하, DBTP) 0.5 중량%, 1-부틸 4-(2-에틸헥실) 테레프탈레이트(이하, BEHTP) 14.5 중량% 및 디-(2-에틸헥실) 테레프탈레이트(이하, DEHTP) 85 중량%를 포함하는 반응 생성물을 수득하였다.
상기 반응 생성물을 혼합증류하여 잔류하는 부탄올 및 2-에틸헥실알코올을 제거하고 최종 에스테르계 조성물을를 제조하였다.
상기 실시예 1의 트랜스에스테르화 반응에 있어서, 부탄올 투입량에 따른, DBTP의 생성량(%) 변화는 하기 표 1에 도시하였다.
실시예 2
부탄올을 DEHTP 100 중량부에 대해 5 중량부를 사용한 것을 제외하고는, 실시예 1과 동일하게 수행하여 하기 표 1에 나타낸 조성을 갖는 에스테르계 조성물을 제조하였다.
실시예 3
부탄올을 DEHTP 100 중량부에 대해 8 중량부를 사용한 것을 제외하고는, 실시예 1과 동일하게 수행하여 하기 표 1에 나타낸 조성을 갖는 에스테르계 조성물을 제조하였다.
실시예 4
부탄올을 DEHTP 100 중량부에 대해 10 중량부를 사용한 것을 제외하고는, 실시예 1과 동일하게 수행하여 하기 표 1에 나타낸 조성을 갖는 에스테르계 조성물을 제조하였다.
실시예 5
부탄올을 DEHTP 100 중량부에 대해 15 중량부를 사용한 것을 제외하고는, 실시예 1과 동일하게 수행하여 하기 표 1에 나타낸 조성을 갖는 에스테르계 조성물을 제조하였다.
실시예 6
부탄올을 DEHTP 100 중량부에 대해 20 중량부를 사용한 것을 제외하고는, 실시예 1과 동일하게 수행하여 하기 표 1에 나타낸 조성을 갖는 에스테르계 조성물을 제조하였다.
실시예 7
부탄올을 DEHTP 100 중량부에 대해 23 중량부를 사용한 것을 제외하고는, 실시예 1과 동일하게 수행하여 하기 표 1에 나타낸 조성을 갖는 에스테르계 조성물을 제조하였다.
비교예 1
부탄올을 DEHTP 100 중량부에 대해 2 중량부를 사용한 것을 제외하고는, 실시예 1과 동일하게 수행하여 하기 표 1에 나타낸 조성을 갖는 에스테르계 조성물을 제조하였다.
비교예 2
부탄올을 DEHTP 100 중량부에 대해 28 중량부를 사용한 것을 제외하고는, 실시예 1과 동일하게 수행하여 하기 표 1에 나타낸 조성을 갖는 에스테르계 조성물을 제조하였다. 이 경우, 다량의 부탄올 투입으로 인해 부탄올이 환류(reflux)되는 중간에 일부의 부탄올이 손실되는 것을 확인할 수 있었다.
비교예 3
부탄올을 DEHTP 100 중량부에 대해 35 중량부를 사용한 것을 제외하고는, 실시예 1과 동일하게 수행하여 하기 표 1에 나타낸 조성을 갖는 에스테르계 조성물을 제조하였다. 상기 비교예 2와 마찬가지로, 다량의 부탄올 투입으로 인해 부탄올이 환류되는 중간에 일부의 부탄올이 손실되는 것을 확인할 수 있었다.
표 1
부탄올 첨가량 DBTP(화학식 1) BEHTP(화학식 2) DEHTP(화학식 3)
실시예 1 4 중량부 0.5 중량% 14.5 중량% 85.0 중량%
실시예 2 5 중량부 1.0. 중량% 15.8중량% 83.2 중량%
실시예 3 8 중량부 2.1 중량% 24.2 중량% 73.7 중량%
실시예 4 10 중량부 2.8 중량% 28.4 중량% 68.8 중량%
실시예 5 15 중량부 4.8 중량% 35.1 중량% 60.1 중량%
실시예 6 20 중량부 8.5중량% 42 중량% 49.5 중량%
실시예 7 23 중량부 9.5 중량% 43.8 중량% 46.7 중량%
비교예 1 2 중량부 0.1 중량% 7.9 중량% 92.0 중량%
비교예 2 28 중량부 10.5 중량% 45.7 중량% 43.8 중량%
비교예 3 35 중량부 15.2 중량% 47.3 중량% 37.5 중량%
실험예 1 : 에스테르계 조성물의 함량 측정
본 발명의 실시예 1 내지 7 및 비교예 1 내지 3의 에스테르계 조성물에 있어서, DBTP, BEHTP 및 DEHTP의 함량(wt%)은 Agilent사의 가스 크로마토그래프 기기(Agilent 7890 GC, 컬럼: HP-5, 캐리어 가스: 헬륨)를 이용하여 측정하였다.
상기 실시예 1 내지 7의 에스테르계 조성물에서 에테르는 검출되지 않았다.
이를 통하여 반응물인 부탄올과 생성물인 DBTP, BEHTP 및 DEHTP의 조성비 및 특히 BEHTP/DBTP의 관계를 알 수 있다. 즉, 실시예 1 내지 7의 에스테르계 조성물에 있어서, BEHTP/DBTP는 4.6 내지 29 내의 범위임을 확인할 수 있다. 또한, 상기 표 1에서 알 수 있는 바와 같이, 부탄올의 첨가량이 증가할수록, 에스테르계 조성물에 있어서 DBTP 및 BEHTP의 함량이 점차 증가하였고, 이에 상응하여 DEHTP 함량은 감소함을 확인할 수 있다.
하지만, 비교예 2와 같이 부탄올 첨가량이 DEHTP 대비 23 중량비를 초과하는 경우, 트랜스 에스테르화 반응중 부탄올의 증발로 인해 부탄올이 손실되어 DBTP의 함량이 9.5 초과로 DBTP의 생성량이 급격하게 증가함을 확인할 수 있다.
실험예 2: 시편 제작(시트) 및 성능 평가
실시예 1 내지 7 및 비교예 1 내지 3에서 제조된 에스테르계 조성물을 폴리염화비닐 수지(PVC(LS 130s)) 100 중량부에 대해 가소제 55 중량부, 첨가제로 BZ 안정화제(BZ210, 송원산업) 2 중량부, 에폭시드화 대드유(ESO, 송원산업) 2 중량부를 배합하여 1300 rpm으로 100℃에서 혼합하였다. 롤밀(Roll mill)을 이용하여 175℃에서 4분 동안 작업하였고, 프레스(press)를 이용하여 185℃에서 3분(저압) 및 2분 30초(고압)로 작업하여 2mm의 두께로 시트를 제작하였다.
상기 시트에 대해 경도(hardness), 인장강도(tensile strength), 신율(elongation rate), 이행 손실(migration loss), 시트 가열감량, 열안정성(heat stability), 촉진 내후성(QUV), 흡수 속도(absorption) 및 용융테스트(Fusion test)를 수행하였다.
각각의 성능 평가의 조건은 다음과 같다.
경도(hardness) 측정
ASTM D2240을 이용하여, 25℃에서의 쇼어(shore)경도를 측정하였다.
인장강도(tensile strength) 측정
ASTM D638 방법에 의하여, 테스트 기기인 U.T.M (제조사; Instron, 모델명; 4466)을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min으로 당긴 후, 시편이 절단되는 지점을 측정하였다. 인장강도는 다음과 같이 계산하였다:
인장 강도(kgf/㎟) = 로드 (load)값(kgf) / 두께(㎜)×폭(㎜)
신율(elongation rate) 측정
ASTM D638 방법에 의하여, 상기 U.T.M을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min으로 당긴 후, 시편이 절단되는 지점을 측정한 후, 신율을 다음과 같이 계산하였다:
신율 (%) = 신장 후 길이 / 초기 길이 ×100으로 계산하였다.
이행 손실(migration loss) 측정
KSM-3156에 따라 두께 2 mm 이상의 시험편을 얻었고, 시험편 양면에 ABS(Natural Color)를 붙인 후 1kgf/cm2 의 하중을 가하였다. 시험편을 열풍 순환식 오븐(80℃)에서 72 시간 동안 방치한 후 꺼내서 상온에서 4 시간 동안 냉각시켰다. 그런 후 시험편의 양면에 부착된 ABS를 제거한 후 오븐에 방치하기 전과 후의 중량을 측정하여 이행손실량을 아래와 같은 식에 의하여 계산하였다.
이행손실량(%) = {(상온에서의 시험편의 초기 중량 - 오븐 방치후 시험편의 중량) / 상온에서의 시험편의 초기 중량} x 100
시트 가열 감량 측정
상기 제작된 시편을 70 ℃에서 72시간 동안 작업한 후, 시편의 무게를 측정하였다.
가열 감량 (중량%) = 초기 시편 무게 - (70℃, 72시간 작업 후 시편 무게) / 초기 시편 무게 × 100으로 계산하였다.
열안정성(heat stability) 측정
열안정성 측정은 230℃에서 20 mm/30초로 수행하여 측정하였다.
QUV 측정
NIKE #G37 평가법에 의하여 시트 시편(10 * 10 cm 시편)을 The Q-panel company의 QUV기에 하기와 같은 조건으로 200 시간 방치 후 평가하였다.
QUV 조건: UV LAMP: UVA-340 / Room Temperature 22±2℃ spectrometer(UV-3600)을 이용하여 측정하였다.
흡수 속도(absorption time) 측정
77 ℃, 60 rpm, PVC(제품명: LS 130s) 및 에스테르계 조성물(가소제)의 믹싱 조건 하에서 믹서기(제품명: Brabender)를 사용하여 수지와 에스테르계 조성물(가소제)이 서로 혼합되어 믹서의 토크가 안정화되는 상태가 되기까지의 시간을 측정하여 평가하였다.
상기 토크의 안정화는 흡수속도를 측정하기 위해 수지를 먼저 투입하고, 에스테르계 조성물을 투입하면, 초기에 토크 피크가 올랐다가 점차 토크 피크가 점점 내려오면서 거의 수평을 유지하는 상태를 의미하고, 모니터상에 그래프로 확인할 수 있다.
용융 테스트(fusion test)
용융 테스트는 배합된 샘플을 110℃/ 60g/ 70 rpm의 조건으로 작업을 수행한 후 측정하였다.
실시예 1 내지 7을 사용한 시편을 비교예 1 내지 3 뿐만 아니라, 디옥틸프탈레이트(DOP) 단독, 디이소노닐 프탈레이트(DINP) 단독, 디부틸 테레프탈레이트(DBTP) 단독을 사용하여 상기 각각의 성능들을 비교하였다. 상기 방법으로 측정한 성능 테스트 결과를 하기 표 2에 나타내었다.
표 2
Figure PCTKR2013006329-appb-T000001
상기 표 2에 나타낸 바와 같이, 에스테르계 조성물에 있어서, DBTP가 0.5 내지 9.5 중량% 내에 포함된 실시예 1 내지 7을 이용한 시트는 상기 범위를 벗어나는 비교예 1 내지 3, 및 디옥틸프탈레이트(DOP) 단독, 디이소노닐 프탈레이트(DINP) 단독, 디부틸 테레프탈레이트(DBTP) 단독을 사용한 경우에 비해 모든 물성 측면에서 바람직한 결과를 확인할 수 있었다.
구체적으로 살펴보면, 아래와 같이 본 발명의 실시예 1 내지 7의 경우 비교예 1 에 비해 경도, 신율, 흡수속도 및 용융성이 우수함을 확인 할 수 있었다.
특히, 실시예 1 내지 7과 같이 흡수속도, 용융성 및 경도의 우수함은 최종 제품의 물성에 있어서 큰 차이가 날 수 있다. 또한, 실시예 1 내지 7의 에스테르계 조성물을 실제 시트에 적용할 경우, 더 적은 양으로 사용할 수 있을 뿐만 아니라, 최종 제품의 우수한 작업성의 안정화도 제공할 수 있다.
한편, 비교예 1과 같이 흡수속도나 용융성이 너무 낮으면, 작업성이 나빠지고 생산성이 저하되는 현상이 발생할 수 있다. 하지만, 그 반대로 비교예 2와 3과 같이 흡수속도 및 용융성이 너무 높을 경우에는 배합되어 있는 수지의 급격한 겔링에 의해 작업 가능한 시간이 감소되고, 이는 결국 높은 배합 빈도를 필요로 하게 되므로, 결국 작업성이 저하되는 원인이 된다.
또한, 비교예 2와 3를 참조하면, DBTP 및 BEHTP의 양이 증가함에 따라서 이행성과 가열 감량이 급속도로 증가함을 알 수 있는데, 이는 최종 제품의 가공성 및 장기 안정성에 있어서 치명적인 결점이 될 수 있다.
가열 감량의 경우 실시예에 1 내지 7에 비해 비교예 2 및 3 에서 수배에 이르는 양이 측정됨을 확인 할 수 있다. 특히, 비교예 2 및 3은 실시예 1 내지 3에 비해 가열 감량이 약 10배 정도 이상까지 측정됨을 확인할 수 있다.
또한, 열안정성과 QUV 테스트에 있어서, 실시예 2 내지 7 모두 DOP 단독으로 사용한 경우를 기준으로 동등한 결과를 얻었고, 열안정성은 DOP 단독으로 사용한 경우를 기준으로 실시예 1 내지 7 모두 우수하였다.
이에 반해, DBTP가 0.5 중량%보다 낮거나, DBTP가 9.5 중량%를 초과하는 비교예 2 및 3은 DOP의 단독 사용을 기준으로 QUV 결과가 약간 나쁘거나 열악하였고, 열안정성도 약간 좋거나 동등 수준이었다.
한편, 수지에 대한 흡수속도는 본 발명의 실시예 1 내지 7의 경우 DOP, DINP 대비 우수하거나 적어도 동등한 수준 이상임을 알 수 있다. DBTP의 경우는 흡수속도가 다소 빠른 것으로서, 실제 시트 등과 같은 제품에 적용시 오히려 좋지 않은 물성으로 작용할 수 있다. 흡수속도가 너무 빠르게 되면, 제품을 원할하게 가공하는 충분한 시간을 갖지 못하기 때문에 원하지 않는 제품의 손실이 발생할 수 있기 때문이다.
따라서, 실시예 1 내지 7의 에스테르계 조성물과 같이 DBTP가 0.5 내지 9.5 중량% 내의 범위인 경우, 시트 적용시 경도, 인장강도, 신율, 이행 손실, 가열 감량, 열 안정성, QUV, 흡수속도 및 용융테스트 등의 물성이 DOP, DINP, DBTP 단독 및 비교예 1 내지 3에 비해 전반적으로 우수함을 확인할 수 있었다.
실험예 3 : 시편 제작(컴파운드) 및 성능 평가
실시예 1 내지 7 및 비교예 1 내지 3에서 제조된 에스테르계 조성물을 폴리염화비닐 수지(PVC(LS100)) 100 중량부에 대해 50 중량부, 첨가제로 RUP 144 (아데카코리아) 5 중량부, Omya 1T(오미야) 40 중량부, St-A(이수화학) 0.3 phr을 배합하여 1300 rpm으로 100℃에서 혼합하였다. 롤밀(Roll mill)을 이용하여 175℃에서 4분 동안 작업하였고, 프레스(press)를 이용하여 185℃에서 3분(저압) 및 2분 30초(고압)로 작업하여 2mm의 두께로 시편을 제작하였다.
상기 시편에 대해 하기 표 3에 나타낸 실험 조건으로 실험예 2와 유사한 방법으로 경도(hardness), 인장강도(tensile strength), 신율(elongation rate), 시트 가열감량, 촉진 내후성(QUV), 스트레스 및 용융 테스트(fusion test)를 수행하였다. 상기 시편에 대한 각각의 성능 평가 결과를 하기 표 3에 나타내었다.
이때, 스트레스 테스트는 다음과 같은 조건으로 수행하였다:
스트레스 테스트 : 상기 시편을 구부린 상태로 상온에서 7일간 방치한 후, 이행 및 변형 정도를 관찰하였다.
표 3
Figure PCTKR2013006329-appb-T000002
상기 표 3에서 확인한 바와 같이, 본 발명의 실시예에 따라 실시예 1 내지 7을 컴파운드에 적용시, 비교예 1 내지 3, 및 디옥틸프탈레이트(DOP) 단독, 디이소노닐 프탈레이트(DINP) 단독, 디부틸 테레프탈레이트(DBTP) 단독을 사용하여 경우에 비해 모든 물성 측면에서 골고루 바람직한 결과를 확인할 수 있었다.
특히, 실시예 1 내지 7 및 비교예 1 내지 3을 사용한 시편(컴파운드)에 있어서, 상온 및 가열 후의 신율을 측정해 본 결과, 실시예 1 내지 7은, DBTP의 함량이 0.5 중량% 내지 9.5 중량%를 벗어난 값에 관한 비교예 2와 3에 비해 상온 및 100 ℃에서의 가열 후 신율이 우수함을 확인 할 수 있다.
이를 통하여, DBTP의 함량이 일정량 이상, 즉 10 중량%를 초과할 경우 (예를 들어, 10.5 중량%), 상온 또는 가열 후 신율이 급격하게 열악해짐을 확인할 수 있다.
또한, 실시예 1 내지 7의 경우 가열 감량이 0.49 % 내지 1.95 % 정도였고, 이에 반해, 비교예 2와 3의 경우 가열 감량이 7 % 내지 8.3 %까지 급격히 증가함을 확인할 수 있다. 비교예 2와 3과 같이 가열 감량이 급격히 증가한다는 것은 시편 내부에 존재하는 에스테르계 조성물(가소제)의 양이 그만큼 감소했다는 의미이며, 이는 곧 신율의 저하로 나타나는 것이다.
뿐만 아니라, 실시예 1 내지 7의 에스테르계 조성물을 사용한 시편의 경우, 상기 신율 및 가열 감량뿐만 아니라, QUV, 스트레스 테스트 및 용융 테스트에서도 비교예 1 내지 3 및 DOP, DINP 및 DBTP 단독으로 사용한 경우에 비하여 월등히 우수하거나 적어도 동등한 수준 이상임을 알 수 있다.
실험예 4: 시편 제작(플라스티졸) 및 성능 평가
실시예 1 내지 7 및 비교예 1 내지 3에서 제조된 에스테르계 조성물을 폴리염화비닐 수지(PVC(PB900,LG화학)) 100 중량부에 대해 80 중량부, 충진제로 Omya 10(오미아,Omya) 90중량부, K-Zn 안정화제(KKZ 102PF(우창실업)) 3 중량부, DWPX03(동진) 3 중량부, BYK4040(BYK) 3 중량부, Dsol240R(이수화학) 10 중량부 및 TiO2 12 중량부를 배합하였다.
상기 플라스티졸에 대해 하기 표 4에 나타낸 실험 조건으로 실험예 1과 유사한 방법으로 열안정성(heat stability) 및 용융 테스트(fusion test)를 수행하였다. 이때, 열 안정성은 다음과 같은 조건으로 수행하였다.
열안정성 측정: 230℃에서 30 mm/20초, 150℃, 45초 예비 겔화(pregelling) 0.4 mm 두께로 코팅.
하기 표 4에서 확인 할 수 있는 바와 같이, 본 발명의 실시예에 따라 실시예 1 내지 7을 플라스티졸에 적용시, 비교예 1 내지 3, 및 디옥틸프탈레이트(DOP) 단독, 디이소노닐 프탈레이트(DINP) 단독, 디부틸 테레프탈레이트(DBTP) 단독을 사용하여 경우에 비해 열적안정성 및 용융 테스트 모두 우수함을 확인 할 수 있다.
특히, 본 발명의 실시예 1 내지 7의 경우 DOP, DINP를 사용한 경우에 비해 용융 측면에서 우수한 물성을 확인할 수 있었다.
상기 용융 테스트는 1(용융 시간 빠름) 내지 5(용융 시간 느림)의 레벨로 표시 하였으며, 실시예 1 내지 7의 경우, 용융 테스트 레벨이 2 및 3 정도 수준이었다. 이에 반해, 비교예 2와 3 및 DBTP의 경우 빠른 용융 시간을 보였다. 이와 같은 빠른 용융시간으로 인하여 제품을 원활하게 가공하기 위한 시간이 감소될 수 있고, 제품의 손실이 발생할 수 있어서 작업에 오히려 역효과를 발생할 가능성이 있다.
이와 반대로, 비교예 1 및 DINP와 같이 너무 느린 용융 시간은 작업성이 나빠지고 생산성이 저하될 수 있다.
따라서, 적당한 수준의 용융시간을 보이는 실시예 1 내지 7의 경우, 제품 적용시 우수한 물성 부여할 뿐만 아니라 공정상의 이점을 제공할 수 있다.
표 4
Figure PCTKR2013006329-appb-T000003
본 발명에 따른 에스테르계 조성물은 수지에 대한 흡수속도와 짧은 용융 시간을 가져 수지의 가공성을 개선시키고, 전선, 자동차 내장재, 필름, 시트, 튜브, 벽지, 완구, 바닥재 등의 시트 처방 및 컴파운드 처방시 우수한 물성을 제공할 수 있다.

Claims (16)

  1. 비혼성 비분지 타입, 혼성 분지 타입 및 비혼성 분지 타입의 알킬 치환된 테레프탈레이트계 화합물을 에스테르계 조성물 총 중량에 대해 각각 0.5 중량% 내지 9.5 중량%, 14.5 중량% 내지 43.8 중량% 및 46.7 중량% 내지 85 중량%의 양으로 포함하는 에스테르계 조성물.
  2. 제 1 항에 있어서,
    비혼성 비분지 타입, 혼성 분지 타입 및 비혼성 분지 타입의 알킬 치환된 테레프탈레이트계 화합물을 에스테르계 조성물 총 중량에 대해 각각 1 중량% 내지 8.5 중량%, 15.8 중량% 내지 42 중량% 및 49.5 중량% 내지 83.2 중량%의 양으로 포함하는 에스테르계 조성물.
  3. 제 1 항에 있어서,
    상기 비혼성 비분지 타입에 대한 혼성 분지 타입의 알킬 치환된 테레프탈레이트계 화합물의 중량비가 4.6 내지 29인 것을 특징으로 하는 에스테르계 조성물.
  4. 제 3 항에 있어서,
    상기 비혼성 비분지 타입에 대한 혼성 분지 타입의 알킬 치환된 테레프탈레이트계 화합물의 중량비가 5 내지 17인 것을 특징으로 하는 에스테르계 조성물.
  5. 제 1 항에 있어서,
    상기 비혼성 비분지 타입의 알킬 치환된 테레프탈레이트계 화합물은 하기 화학식 1의 디부틸 테레프탈레이트(DBTP)인 것을 특징으로 하는 에스테르계 조성물:
    [화학식 1]
    Figure PCTKR2013006329-appb-I000007
  6. 제 1 항에 있어서,
    상기 혼성 분지 타입의 알킬 치환된 테레프탈레이트계 화합물은 하기 화학식 2의 1-부틸 4-(2-에틸헥실) 테레프탈레이트(BEHTP)인 것을 특징으로 하는 에스테르계 조성물:
    [화학식 2]
    Figure PCTKR2013006329-appb-I000008
  7. 제 1 항에 있어서,
    상기 비혼성 분지 타입의 알킬 치환된 테레프탈레이트계 화합물은 하기 화학식 3의 디-(2-에틸헥실) 테레프탈레이트(DEHTP)인 것을 특징으로 하는 것을 특징으로 하는 에스테르계 조성물:
    [화학식 3]
    Figure PCTKR2013006329-appb-I000009
  8. 제 1 항에 있어서
    상기 에스테르계 조성물은 에테르 프리(ether-free) 조성물인 것을 특징으로 하는 에스테르계 조성물.
  9. 하기 화학식 3의 디-(2-에틸헥실) 테레프탈레이트(DEHTP)을 하기 화학식 4의 부틸 알코올과 트랜스에스테르화 (tansesterification) 반응시키는 단계를 포함하는, 제 1 항의 에스테르계 조성물의 제조방법.
    [화학식 3]
    Figure PCTKR2013006329-appb-I000010
    [화학식 4]
    Figure PCTKR2013006329-appb-I000011
  10. 제 9 항에 있어서,
    상기 부틸 알코올의 첨가량은 상기 디-(2-에틸헥실) 테레프탈레이트(DEHTP) 100 중량부에 대해 4 내지 23 중량부인 것을 특징으로 하는 에스테르계 조성물의 제조방법.
  11. 제 10 항에 있어서,
    상기 부틸 알코올의 첨가량은 상기 디-(2-에틸헥실) 테레프탈레이트(DEHTP) 100 중량부에 대해 5 내지 20 중량부인 것을 특징으로 하는 에스테르계 조성물의 제조방법.
  12. 제 9 항에 있어서,
    상기 트랜스에스테르화 반응은 120 ℃ 내지 190 ℃에서 수행되는 것을 특징으로 하는 에스테르계 조성물의 제조방법.
  13. 제 9 항에 있어서,
    상기 트랜스에스테르화 반응 후 미반응 부틸 알코올과 반응 부산물을 혼합 증류시켜 제거하는 단계를 더 포함하는 것을 특징으로 하는 에스테르계 조성물의 제조방법.
  14. 제 1 항의 에스테르계 조성물, 및 수지를 포함하는 수지 조성물.
  15. 제 14 항에 있어서,
    상기 수지는 에틸렌 초산 비닐, 폴리에틸렌, 폴리프로필렌, 폴리염화비닐, 폴리 스타이렌, 폴리우레탄, 열가소성 엘라스토머 및 폴리유산 중에서 선택된 1종 이상인 것을 특징으로 하는 수지 조성물.
  16. 제 14 항에 있어서,
    상기 에스테르계 조성물은 수지 100 중량부에 대하여 5 내지 100 중량부인 것을 특징으로 하는 수지 조성물.
PCT/KR2013/006329 2013-05-08 2013-07-15 에스테르계 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물 WO2014181922A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015515959A JP5907311B2 (ja) 2013-05-08 2013-07-15 エステル系組成物、その製造方法、及びこれを含む樹脂組成物
EP13848110.6A EP2821431B1 (en) 2013-05-08 2013-07-15 Ester-based composition, method for preparing same, and resin composition comprising ester composition
CN201380004058.7A CN104603193B (zh) 2013-05-08 2013-07-15 酯组合物、其制备方法和包含该酯组合物的树脂组合物
US14/150,472 US9062179B2 (en) 2013-05-08 2014-01-08 Ester composition, method of preparing the same and resin composition including the same
US14/694,784 US9505907B2 (en) 2013-05-08 2015-04-23 Ester composition, method of preparing the same and resin composition including the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2013-0051617 2013-05-08
KR20130051617 2013-05-08
KR10-2013-0068197 2013-06-14
KR20130068197 2013-06-14
KR10-2013-0082973 2013-07-15
KR1020130082973A KR101462797B1 (ko) 2013-05-08 2013-07-15 에스테르계 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/150,472 Continuation US9062179B2 (en) 2013-05-08 2014-01-08 Ester composition, method of preparing the same and resin composition including the same

Publications (1)

Publication Number Publication Date
WO2014181922A1 true WO2014181922A1 (ko) 2014-11-13

Family

ID=51999943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006329 WO2014181922A1 (ko) 2013-05-08 2013-07-15 에스테르계 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물

Country Status (7)

Country Link
US (2) US9062179B2 (ko)
EP (1) EP2821431B1 (ko)
JP (1) JP5907311B2 (ko)
KR (6) KR101462797B1 (ko)
CN (1) CN104603193B (ko)
PL (1) PL2821431T3 (ko)
WO (1) WO2014181922A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106795325A (zh) * 2015-02-12 2017-05-31 Lg化学株式会社 增塑剂组合物和树脂组合物及其制备方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2731425B1 (en) 2011-09-19 2018-04-11 Fenwal, Inc. Red blood cell products and the storage of red blood cells in containers free of phthalate plasticizer
US10398625B2 (en) 2013-03-13 2019-09-03 Fenwal, Inc. Medical containers with terephthalate plasticizer for storing red blood cell products
US9587087B2 (en) * 2013-05-08 2017-03-07 Lg Chem, Ltd. Method for preparing ester composition and resin composition
WO2015124236A1 (en) * 2014-02-20 2015-08-27 Fresenius Hemocare Netherlands B.V. Medical containers and system components with non-dehp plasticizers for storing red blood cell products, plasma and platelets
WO2016153236A1 (ko) * 2015-03-20 2016-09-29 주식회사 엘지화학 가소제 조성물, 수지 조성물 및 이들의 제조 방법
KR101907252B1 (ko) * 2015-03-20 2018-10-11 주식회사 엘지화학 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2016153235A1 (ko) * 2015-03-20 2016-09-29 주식회사 엘지화학 가소제 조성물, 수지 조성물 및 이들의 제조 방법
KR101939159B1 (ko) * 2015-05-14 2019-04-10 주식회사 엘지화학 에스테르계 화합물, 이를 포함하는 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
KR101939160B1 (ko) 2015-05-14 2019-01-16 주식회사 엘지화학 에스테르계 화합물, 이를 포함하는 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
KR101793383B1 (ko) 2015-07-24 2017-11-20 주식회사 엘지화학 가소제 조성물, 수지 조성물 및 이들의 제조 방법
US20180066125A1 (en) * 2015-07-28 2018-03-08 Lg Chem, Ltd. Plasticizer composition, resin composition and method of preparing the same
US10787303B2 (en) 2016-05-29 2020-09-29 Cellulose Material Solutions, LLC Packaging insulation products and methods of making and using same
US11078007B2 (en) 2016-06-27 2021-08-03 Cellulose Material Solutions, LLC Thermoplastic packaging insulation products and methods of making and using same
KR102122466B1 (ko) * 2016-07-05 2020-06-12 주식회사 엘지화학 가소제 조성물, 수지 조성물 및 이들의 제조 방법
CN110621650A (zh) * 2017-03-15 2019-12-27 沙特基础工业全球技术有限公司 由对苯二甲酸制备对苯二甲酸二烷基酯的方法
KR102138788B1 (ko) * 2017-09-07 2020-07-28 주식회사 엘지화학 에스터 조성물의 제조 시스템 및 이를 이용한 에스터 조성물의 제조 방법
KR102161592B1 (ko) * 2017-11-09 2020-10-05 주식회사 엘지화학 열가소성 수지 조성물
KR102236924B1 (ko) * 2017-12-04 2021-04-07 주식회사 엘지화학 가소제 조성물 및 이를 포함하는 수지 조성물
KR102236923B1 (ko) * 2017-12-04 2021-04-07 주식회사 엘지화학 가소제 조성물 및 이를 포함하는 수지 조성물
JP7060414B2 (ja) 2018-03-08 2022-04-26 花王株式会社 ハロゲン系樹脂用可塑剤
WO2019203498A1 (ko) * 2018-04-17 2019-10-24 한화케미칼 주식회사 변색을 개선한 벽지용 염화비닐 수지 조성물
MX2020012129A (es) * 2018-08-27 2021-01-29 Lg Chemical Ltd Composiciones de plastificante y composicion de resina que la incluye.
WO2020091361A1 (ko) * 2018-10-29 2020-05-07 주식회사 엘지화학 사이클로헥산 트리에스터계 가소제 조성물 및 이를 포함하는 수지 조성물
KR102325729B1 (ko) 2018-11-28 2021-11-15 주식회사 엘지화학 가압 구간을 포함하는 테레프탈레이트계 조성물의 제조방법
KR102361973B1 (ko) 2020-04-29 2022-02-11 애경케미칼주식회사 복합 가소제 및 이를 포함하는 폴리염화비닐 수지 조성물
KR102412574B1 (ko) 2020-06-11 2022-06-24 애경케미칼주식회사 에스테르계 가소제 및 이를 포함하는 폴리염화비닐 수지 조성물
WO2023027544A1 (ko) * 2021-08-26 2023-03-02 한화솔루션 주식회사 염화비닐 수지 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332394A (ja) * 2001-05-09 2002-11-22 Toagosei Co Ltd ポリエステル樹脂組成物及び熱収縮性フィルム状体
US20070037926A1 (en) * 2005-08-12 2007-02-15 Olsen David J Polyvinyl chloride compositions
KR20070075341A (ko) * 2006-01-12 2007-07-18 옥세노 올레핀케미 게엠베하 디알킬 테레프탈레이트 및 그의 용도
US20080057317A1 (en) * 2006-08-30 2008-03-06 Eastman Chemical Company Sealant compositions having a novel plasticizer
KR20130035493A (ko) * 2011-09-30 2013-04-09 주식회사 엘지화학 에스터 가소제 조성물

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001031794A (ja) 1999-07-21 2001-02-06 Hokoku Seiyu Kk テレフタル酸エステル
KR100417068B1 (ko) 2001-03-19 2004-02-05 주식회사 엘지화학 고투명성 사출 성형 수지 조성물 및 이를 이용한사출성형물의 제조방법
GB0227086D0 (en) * 2002-11-20 2002-12-24 Exxonmobil Res & Eng Co Hydrogenation processes
US7276621B2 (en) 2005-08-12 2007-10-02 Eastman Chemical Company Production of di-(2-ethylhexyl) terephthalate
KR100843610B1 (ko) 2006-03-29 2008-07-03 주식회사 엘지화학 캘린더 가공성이 우수한 올레핀계 열가소성 수지 조성물
EP2063857A2 (en) * 2006-08-30 2009-06-03 Eastman Chemical Company Fragrance fixatives
US7361779B1 (en) * 2007-04-18 2008-04-22 Eastman Chemical Company Low-melting mixtures of di-n-butyl and diisobutyl terephthalate
WO2010071717A1 (en) * 2008-12-18 2010-06-24 Exxonmobil Chemical Patents Inc. Polymer compositions comprising terephthalates
EP2221165A1 (en) 2009-02-20 2010-08-25 Tarkett GDL Decorative welding rod for surface coverings
KR101264148B1 (ko) 2011-01-18 2013-05-14 한화케미칼 주식회사 디에틸헥실사이클로헥산을 포함하는 벽지용 염화비닐계 수지 조성물
JP2012184529A (ja) 2011-03-07 2012-09-27 Okamoto Kk 壁紙
US9127141B2 (en) * 2013-05-08 2015-09-08 Lg Chem, Ltd. Method of preparing ester plasticizer and ester plasticizer prepared therefrom
IN2015DN01460A (ko) * 2013-06-14 2015-07-03 Lg Chemical Ltd

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332394A (ja) * 2001-05-09 2002-11-22 Toagosei Co Ltd ポリエステル樹脂組成物及び熱収縮性フィルム状体
US20070037926A1 (en) * 2005-08-12 2007-02-15 Olsen David J Polyvinyl chloride compositions
KR20070075341A (ko) * 2006-01-12 2007-07-18 옥세노 올레핀케미 게엠베하 디알킬 테레프탈레이트 및 그의 용도
US20080057317A1 (en) * 2006-08-30 2008-03-06 Eastman Chemical Company Sealant compositions having a novel plasticizer
KR20130035493A (ko) * 2011-09-30 2013-04-09 주식회사 엘지화학 에스터 가소제 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2821431A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106795325A (zh) * 2015-02-12 2017-05-31 Lg化学株式会社 增塑剂组合物和树脂组合物及其制备方法
CN111732756A (zh) * 2015-02-12 2020-10-02 株式会社Lg化学 增塑剂组合物和树脂组合物及其制备方法
CN111732757A (zh) * 2015-02-12 2020-10-02 株式会社Lg化学 增塑剂组合物和树脂组合物及其制备方法
CN111777796A (zh) * 2015-02-12 2020-10-16 株式会社Lg化学 增塑剂组合物和树脂组合物及其制备方法
US11359071B2 (en) 2015-02-12 2022-06-14 Lg Chem, Ltd. Plasticizer composition and resin composition, and preparation method thereof

Also Published As

Publication number Publication date
US20150225538A1 (en) 2015-08-13
CN104603193A (zh) 2015-05-06
KR20140132683A (ko) 2014-11-18
CN104603193B (zh) 2017-03-01
EP2821431A4 (en) 2015-04-15
JP2015520185A (ja) 2015-07-16
KR101720381B1 (ko) 2017-03-27
KR101462797B1 (ko) 2014-11-21
PL2821431T3 (pl) 2017-02-28
KR20140132682A (ko) 2014-11-18
US9062179B2 (en) 2015-06-23
KR20170015423A (ko) 2017-02-08
KR101829163B1 (ko) 2018-02-13
US9505907B2 (en) 2016-11-29
KR20140132657A (ko) 2014-11-18
KR101810354B1 (ko) 2017-12-20
EP2821431A1 (en) 2015-01-07
KR20140132681A (ko) 2014-11-18
JP5907311B2 (ja) 2016-04-26
US20140336319A1 (en) 2014-11-13
EP2821431B1 (en) 2016-09-07
KR20170015424A (ko) 2017-02-08

Similar Documents

Publication Publication Date Title
WO2014181922A1 (ko) 에스테르계 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
WO2018147690A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018048170A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018216985A1 (ko) 시트레이트계 가소제 및 이를 포함하는 수지 조성물
WO2014058122A1 (ko) 가소제, 가소제 조성물, 내열수지 조성물 및 이들의 제조 방법
WO2018008913A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2021020878A1 (ko) 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2020222536A1 (ko) 사이클로헥산 트리에스터계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2019088736A2 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017222232A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2017018740A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2016182376A1 (ko) 에스테르계 화합물, 이를 포함하는 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
WO2020251266A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2019240418A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2016153235A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2017074057A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2017183877A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017091040A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2018110922A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2020222494A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2022270910A1 (ko) 트라이에스터계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018128314A1 (ko) 사이클로헥산 1,4-디에스터계 화합물을 포함하는 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017183876A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017018741A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2022035138A1 (ko) 아세틸 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2013848110

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013848110

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015515959

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE