WO2020221337A1 - 一种声学输出装置和降噪传声装置 - Google Patents

一种声学输出装置和降噪传声装置 Download PDF

Info

Publication number
WO2020221337A1
WO2020221337A1 PCT/CN2020/088190 CN2020088190W WO2020221337A1 WO 2020221337 A1 WO2020221337 A1 WO 2020221337A1 CN 2020088190 W CN2020088190 W CN 2020088190W WO 2020221337 A1 WO2020221337 A1 WO 2020221337A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
acoustic
cavity
output device
acoustic driver
Prior art date
Application number
PCT/CN2020/088190
Other languages
English (en)
French (fr)
Inventor
张磊
付峻江
闫冰岩
廖风云
齐心
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Publication of WO2020221337A1 publication Critical patent/WO2020221337A1/zh
Priority to US17/452,240 priority Critical patent/US11917352B2/en
Priority to US18/426,709 priority patent/US20240171892A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C11/00Non-optical adjuncts; Attachment thereof
    • G02C11/10Electronic devices other than hearing aids
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1016Earpieces of the intra-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C11/00Non-optical adjuncts; Attachment thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/162Interface to dedicated audio devices, e.g. audio drivers, interface to CODECs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/165Management of the audio stream, e.g. setting of volume, audio stream path
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/167Audio in a user interface, e.g. using voice commands for navigating, audio feedback
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/03Constructional features of telephone transmitters or receivers, e.g. telephone hand-sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/03Constructional features of telephone transmitters or receivers, e.g. telephone hand-sets
    • H04M1/035Improving the acoustic characteristics by means of constructional features of the housing, e.g. ribs, walls, resonating chambers or cavities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/78Circuit arrangements in which low-frequency speech signals proceed in one direction on the line, while speech signals proceeding in the other direction on the line are modulated on a high-frequency carrier signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/026Supports for loudspeaker casings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/028Casings; Cabinets ; Supports therefor; Mountings therein associated with devices performing functions other than acoustics, e.g. electric candles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1008Earpieces of the supra-aural or circum-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1025Accumulators or arrangements for charging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1041Mechanical or electronic switches, or control elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • H04R1/1075Mountings of transducers in earphones or headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1083Reduction of ambient noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/24Structural combinations of separate transducers or of two parts of the same transducer and responsive respectively to two or more frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/24Structural combinations of separate transducers or of two parts of the same transducer and responsive respectively to two or more frequency ranges
    • H04R1/245Structural combinations of separate transducers or of two parts of the same transducer and responsive respectively to two or more frequency ranges of microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/26Spatial arrangements of separate transducers responsive to two or more frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2803Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2811Enclosures comprising vibrating or resonating arrangements for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2838Enclosures comprising vibrating or resonating arrangements of the bandpass type
    • H04R1/2842Enclosures comprising vibrating or resonating arrangements of the bandpass type for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2853Enclosures comprising vibrating or resonating arrangements using an acoustic labyrinth or a transmission line
    • H04R1/2857Enclosures comprising vibrating or resonating arrangements using an acoustic labyrinth or a transmission line for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2869Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself
    • H04R1/2892Mountings or supports for transducers
    • H04R1/2896Mountings or supports for transducers for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/342Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means for microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/345Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/345Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means for loudspeakers
    • H04R1/347Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means for loudspeakers for obtaining a phase-shift between the front and back acoustic wave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/38Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means in which sound waves act upon both sides of a diaphragm and incorporating acoustic phase-shifting means, e.g. pressure-gradient microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/44Special adaptations for subaqueous use, e.g. for hydrophone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/02Circuits for transducers, loudspeakers or microphones for preventing acoustic reaction, i.e. acoustic oscillatory feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • H04R3/14Cross-over networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/02Spatial or constructional arrangements of loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication
    • H04R5/0335Earpiece support, e.g. headbands or neckrests
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/302Electronic adaptation of stereophonic sound system to listener position or orientation
    • H04S7/303Tracking of listener position or orientation
    • H04S7/304For headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C11/00Non-optical adjuncts; Attachment thereof
    • G02C11/06Hearing aids
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L2021/02161Number of inputs available containing the signal or the noise to be suppressed
    • G10L2021/02166Microphone arrays; Beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/105Earpiece supports, e.g. ear hooks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/10Details of earpieces, attachments therefor, earphones or monophonic headphones covered by H04R1/10 but not provided for in any of its subgroups
    • H04R2201/103Combination of monophonic or stereophonic headphones with audio players, e.g. integrated in the headphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
    • H04R2201/4012D or 3D arrays of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/05Noise reduction with a separate noise microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2420/00Details of connection covered by H04R, not provided for in its groups
    • H04R2420/07Applications of wireless loudspeakers or wireless microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/03Synergistic effects of band splitting and sub-band processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic
    • H04R2430/21Direction finding using differential microphone array [DMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic
    • H04R2430/23Direction finding using a sum-delay beam-former
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/11Positioning of individual sound objects, e.g. moving airplane, within a sound field

Definitions

  • This application relates to the field of acoustics, in particular to an acoustic output device and a noise reduction sound transmission device.
  • the open binaural acoustic output device is a portable audio output device that realizes sound conduction in a specific range. Compared with traditional in-ear and over-ear headphones, the open binaural acoustic output device has the characteristics of not blocking or covering the ear canal, allowing users to listen to music while acquiring sound information in the external environment, improving safety Sex and comfort. Due to the use of an open structure, the sound leakage of an open binaural acoustic output device is often more serious than that of a traditional earphone.
  • the common practice in the industry is to use two or more sound sources to construct a specific sound field and adjust the sound pressure distribution to reduce sound leakage. Although this method can achieve the effect of reducing sound leakage to a certain extent, it still has certain limitations. For example, this method reduces the volume of the sound sent to the user while suppressing leakage.
  • an acoustic output device which includes: at least one acoustic driver, the at least one acoustic driver emits sound; a housing structure configured to carry the at least one acoustic driver; the housing The structure includes a cavity, the at least one acoustic driver is located in the cavity, and the cavity is divided into a first cavity and a second cavity; the sounds generated by the at least one acoustic driver are respectively generated from the first cavity A cavity and a second cavity are emitted and pass through the shell structure to form dual sound sources, and the dual sound sources are respectively located on both sides of the auricle.
  • the housing structure further includes a first sound tube and a second sound tube, one end of the first sound tube is acoustically coupled with the first cavity, and one end of the second sound tube is The second cavity is acoustically coupled, and the other end of the first sound tube and the other end of the second sound tube are respectively located on both sides of the auricle.
  • the impedance of the first acoustic tube is different from the impedance of the second acoustic tube.
  • the cross-sectional area of the first acoustic tube and the second acoustic tube are the same or different.
  • the cross-sectional area of the first sound tube and the second sound tube is 0.25 mm 2 -400 mm 2 .
  • the lengths of the first acoustic conduit and the second acoustic conduit are inversely related to the frequency of the sound they output.
  • the length of the first sound tube and the second sound tube are the same or different.
  • the length ratio of the first acoustic tube to the second acoustic tube is 0.5-2.
  • the aspect ratio of the first acoustic tube and the second acoustic tube is not greater than 200.
  • the radius of the first and second sound ducts is not less than 0.5 mm, and the length of the first and second sound ducts is not more than 500 mm.
  • the first acoustic conduit and/or the second acoustic conduit is provided with an acoustic structure and/or acoustic material for adjusting the acoustic tone.
  • the impedances of the at least one acoustic driver and the corresponding sides of the first cavity and the second cavity are different.
  • the impedance ratio on both sides of the at least one acoustic driver is 0.8-1.2.
  • the volume of the first cavity is greater than the volume of the second cavity, so that the first resonance peak corresponding to the first cavity is smaller than the second resonance peak corresponding to the second cavity.
  • the volume of the first cavity and the second cavity does not exceed 2500 mm 3 .
  • the dual sound sources output sounds with opposite phases.
  • the distance d between the two sound sources is between 1 cm and 12 cm.
  • the dual sound sources are located on both sides of the auricle, wherein the acoustic path between the sound source on the front of the auricle and the user's ear is shorter than the acoustic path from the sound source on the back of the auricle to the user's ear .
  • the ratio of the distance between the two sound sources to the height of the auricle is 0.2-4.
  • an acoustic output device including: a first acoustic driver and a second acoustic driver; a housing structure configured to carry the first acoustic driver and the second acoustic driver; An acoustic driver and a second acoustic driver are both located in the housing structure, and the first acoustic driver and the second acoustic driver form two ends of a cavity located inside the housing structure.
  • the side of an acoustic driver facing away from the cavity and the side of the second acoustic driver facing away from the cavity respectively radiate sound to the outside of the housing structure.
  • the side of the first acoustic driver facing away from the cavity and the side of the second acoustic driver facing away from the cavity respectively pass through at least two outlets of the housing structure.
  • the sound hole radiates sound outward.
  • the side of the first acoustic driver facing away from the cavity and the side of the second acoustic driver facing away from the cavity generate sounds in opposite phases.
  • the side of the first acoustic driver facing the cavity and the side of the second acoustic driver facing the cavity are in acoustic communication through the cavity.
  • a blocking plate is provided on a side of the first acoustic driver facing away from the cavity and/or a side of the second acoustic driver facing away from the cavity, and The blocking plate is fixedly connected with the shell structure.
  • At least one sound hole is opened on the blocking plate.
  • a mesh layer is provided at the at least one sound outlet.
  • the first acoustic driver includes: a diaphragm; and a magnet that drives the diaphragm to vibrate, and the magnet is located on a side of the diaphragm that faces away from the cavity.
  • the cavity is provided with an acoustic structure and/or acoustic material for adjusting the sound and audio frequency.
  • the diaphragm of the first acoustic driver and the diaphragm of the second acoustic driver are relatively inclined.
  • the length of the cavity between the first acoustic driver and the second acoustic driver in the housing structure is not greater than 25 cm.
  • At least one aperture is opened in the cavity between the first acoustic driver and the second acoustic driver in the housing structure.
  • the first acoustic driver includes an active diaphragm
  • the second acoustic driver includes a passive diaphragm.
  • the active diaphragm drives the air in the cavity to vibrate, and the air vibration drives the Passive diaphragm vibration.
  • the sound output by the passive acoustic driver under the action of the active driver has a phase difference with the sound output by the active driver.
  • the first acoustic driver and the second acoustic driver output sounds with different phases and amplitudes based on the crossover point of the controller.
  • the frequency division point is not greater than 2000 Hz.
  • One of the embodiments of the present application provides a noise reduction and sound transmission device, including: a first microphone and a second microphone; and a supporting structure configured to carry the first microphone and the second microphone, on the supporting structure A first sound guide hole corresponding to the first microphone and a second sound guide hole corresponding to the second microphone are opened, and the first sound guide hole and the second sound guide hole are respectively used to direct the The first microphone and the second microphone introduce external sounds, and the supporting structure makes the first sound guide hole and the second sound guide hole located on both sides of the user's auricle, respectively.
  • the distance between the first sound guide hole and the second sound guide hole is not less than 1 cm.
  • the ratio of the distance between the first sound guide hole and the second sound guide hole to the height of the pinna is not less than 0.2.
  • the first microphone and the second microphone are both non-directional microphones.
  • the sensitivity difference between the first microphone and the second microphone is not more than 3dB.
  • Fig. 1 is an exemplary structural diagram of an acoustic output device according to some embodiments of the present application
  • Fig. 2 is a schematic diagram of the interaction between two-point sound sources according to some embodiments of the present application
  • Fig. 3 is a graph of frequency response of a single-point sound source and a double-point sound source according to some embodiments of the present application;
  • Fig. 4 is a frequency response characteristic curve of a near-field listening position of two-point sound sources with different spacings according to some embodiments of the present application;
  • FIG. 5 is a diagram of the sound leakage index of two-point sound sources with different spacings in the far field according to some embodiments of the present application.
  • FIG. 6 is a schematic diagram of an exemplary distribution of baffles provided between two-point sound sources according to some embodiments of the present application.
  • Fig. 7 is a near-field frequency response characteristic curve when the auricle is located between two-point sound sources according to some embodiments of the present application;
  • Fig. 8 is a far-field frequency response characteristic curve when the auricle is located between two-point sound sources according to some embodiments of the present application;
  • Fig. 9 is a frequency response characteristic curve when the auricle is located between two-point sound sources according to some embodiments of the present application.
  • FIG. 10 is a schematic diagram of measurement of sound leakage index according to some embodiments of the present application.
  • FIG. 11 is a graph of the frequency response between two point sound sources with or without a baffle according to some embodiments of the present application.
  • Figure 12 is a frequency response curve with and without baffles according to some embodiments of the present application.
  • FIG. 13 is a curve of the sound pressure amplitude of a two-point sound source at a frequency of 300 Hz under different spacings according to some embodiments of the present application;
  • FIG. 14 is a curve of the sound pressure amplitude of a two-point sound source at a frequency of 1000 Hz under different spacings according to some embodiments of the present application;
  • FIG. 15 is a curve of the sound pressure amplitude of a two-point sound source at a frequency of 5000 Hz under different spacings according to some embodiments of the present application;
  • Fig. 16 is a near-field frequency response characteristic curve when the distance d between two-point sound sources is 1 cm according to some embodiments of the present application;
  • Fig. 17 is a near-field frequency response characteristic curve when the distance d between two-point sound sources is 2 cm according to some embodiments of the present application;
  • Fig. 18 is a near-field frequency response characteristic curve when the distance d between two-point sound sources is 4 cm according to some embodiments of the present application;
  • Fig. 19 is a far-field sound leakage index curve when the distance d between two-point sound sources is 1 cm according to some embodiments of the present application;
  • FIG. 20 is a far-field sound leakage index curve when the distance d between two-point sound sources is 2 cm according to some embodiments of the present application;
  • Fig. 21 is a far-field sound leakage index curve when the distance d between two-point sound sources is 4 cm according to some embodiments of the present application;
  • 22 is a schematic structural diagram of an acoustic output device provided according to some embodiments of the present application.
  • Fig. 23 is a frequency response characteristic curve of acoustic catheters according to some embodiments of the present application when different pipe diameters are provided;
  • FIG. 24 is a schematic diagram of the attenuation degree of sound at different frequencies by sound conduits with different radii according to some embodiments of the present application.
  • Fig. 25 is a frequency response curve of two acoustic conduits at different lengths according to some embodiments of the present application.
  • Fig. 26 is a frequency response curve of two acoustic conduits at different lengths according to some embodiments of the present application.
  • Figure 27 is a frequency response curve of different cavity volumes provided according to some embodiments of the present application.
  • FIG. 28 is a schematic structural diagram of an acoustic output device provided according to some embodiments of the present application.
  • Fig. 29 is a frequency response characteristic curve of cavities with different effective lengths provided according to some embodiments of the present application.
  • FIG. 30 is a schematic structural diagram of an acoustic output device provided according to some embodiments of the present application.
  • FIG. 31 is a frequency response characteristic curve with or without holes on the cavity provided according to some embodiments of the present application.
  • FIG. 32 is a schematic diagram of the sound pressure of an orifice provided in a cavity according to some embodiments of the present application.
  • Fig. 33 is a frequency response characteristic curve diagram of a cavity provided with an opening provided in some embodiments of the present application.
  • FIG. 34 is a schematic diagram of sound pressure with two orifices provided in a cavity provided according to some embodiments of the present application.
  • 35 is a schematic diagram of sound pressure without openings in the cavity provided according to some embodiments of the present application.
  • Fig. 36 is a frequency response characteristic curve of an acoustic output device provided according to some embodiments of the present application.
  • Fig. 37 is a frequency response characteristic curve of a sound emitting position provided according to some embodiments of the present application.
  • Fig. 38 is a frequency response curve diagram of two acoustic drivers with different frequency response characteristics provided according to some embodiments of the present application.
  • Fig. 39 is a working principle diagram of an active noise reduction output device according to some embodiments of the present application.
  • FIG. 40 is a schematic structural diagram of a noise reduction and sound transmission device provided according to some embodiments of the present application.
  • FIG. 41 is a schematic diagram of the principle of setting a baffle in a noise reduction microphone device according to some embodiments of the present application.
  • FIG. 42 is a graph of the background noise intensity of the noise reduction sound transmission device provided according to some embodiments of the present application when there is no baffle;
  • FIG. 43 is a graph of the voice signal intensity of the noise reduction and sound transmission device provided according to some embodiments of the present application when there is no baffle.
  • Fig. 44 is a graph showing the variation of the signal-to-noise ratio with frequency of the noise reduction sound transmission device according to some embodiments of the present application.
  • system is a method for distinguishing different components, elements, parts, parts, or assemblies of different levels.
  • the words can be replaced by other expressions.
  • a flowchart is used in this application to illustrate the operations performed by the system according to the embodiments of the application. It should be understood that the preceding or following operations are not necessarily performed exactly in order. Instead, the steps can be processed in reverse order or simultaneously. At the same time, you can also add other operations to these processes, or remove a step or several operations from these processes.
  • This specification describes an acoustic output device including at least one set of acoustic drivers.
  • the acoustic output device When the user wears the acoustic output device, the acoustic output device is located at least on the side of the user's head, close to but not blocking the user's ears.
  • the acoustic output device can be worn on the user's head (for example, non-in-ear open earphones worn with glasses, headbands or other structures), or on other parts of the user's body (for example, the user's neck/shoulder) Area), or placed near the user’s ears by other means (for example, the way the user holds them by hand).
  • the sound generated by the at least one set of acoustic drivers in the acoustic output device can be propagated outward through two sound guide holes acoustically coupled therewith.
  • the at least one set of acoustic drivers may include active acoustic drivers and passive acoustic drivers (eg, passive diaphragms).
  • the active acoustic driver and the passive acoustic driver can share the cavity in the acoustic output device.
  • the active acoustic driver When the active acoustic driver generates sound under the joint action of the coil and the magnet, it can simultaneously drive the passive acoustic driver to vibrate.
  • the sound generated by the active acoustic driver and the passive acoustic driver can be respectively propagated outward through the acoustically coupled sound guide holes.
  • the two sound guide holes may be distributed on both sides of the user's auricle.
  • the auricle serves as a baffle to separate the two sound guide holes, so that the two sound guide holes There are different acoustic paths to the user's ear canal.
  • a baffle structure may be provided on the acoustic output device, so that two sound guide holes are respectively distributed on both sides of the baffle.
  • distributing the two sound guide holes on both sides of the auricle or baffle can increase the sound path difference between the two sound guide holes to transmit sound to the user’s ears (that is, the sound from the two sound guide holes reaches the user’s ear canal).
  • the distance difference makes the sound cancellation effect weaker, thereby increasing the volume of the sound (also called near-field sound) heard by the user's ears, thereby providing the user with a better listening experience.
  • the auricle or baffle has little effect on the sound transmission of the sound guide hole to the environment (also called far-field sound).
  • Fig. 1 is an exemplary structural diagram of an acoustic output device according to some embodiments of the present application.
  • the acoustic output device 100 may include a housing structure 110 and an acoustic driver 120 disposed in the housing structure.
  • the acoustic output device 100 can be worn on the user's body (for example, the head, neck, or upper torso of the human body) through the housing structure 110, and the housing structure 110 and the acoustic driver 120 can be close to but not blocked.
  • the ear canal keeps the user's ears open, so that the user can not only hear the sound output by the acoustic output device 100, but also obtain the sound of the external environment.
  • the acoustic output device 100 can be arranged around or partly around the circumference of the user's ear, and can transmit sound through air conduction or bone conduction.
  • the housing structure 110 may be used to be worn on a user's body, and may carry one or more acoustic drivers 120.
  • the housing structure 110 may be a closed housing structure with a hollow inside, and the one or more acoustic drivers 120 are located inside the housing structure 110.
  • the acoustic output device 100 can be combined with glasses, headsets, head-mounted display devices, AR/VR helmets and other products. In this case, the housing structure 110 can be suspended or clamped. The way is fixed near the user’s ear.
  • a hook may be provided on the housing structure 110, and the shape of the hook matches the shape of the auricle, so that the acoustic output device 100 can be independently worn on the user's ear through the hook.
  • the independently worn acoustic output device 100 may be connected to a signal source (for example, a computer, a mobile phone or other mobile devices) in a wired or wireless (for example, Bluetooth) manner.
  • a signal source for example, a computer, a mobile phone or other mobile devices
  • a wired or wireless for example, Bluetooth
  • the acoustic output device 100 at the left and right ears may include a first output device and a second output device, where the first output device can communicate with the signal source, and the second output device can communicate with the first output device in a wireless manner.
  • the first output device and the second output device realize synchronization of audio playback through one or more synchronization signals.
  • the wireless connection mode may include, but is not limited to, Bluetooth, local area network, wide area network, wireless personal area network, near field communication, etc., or any combination thereof.
  • the housing structure 110 may be a housing structure having a human ear fitting shape, such as a circular ring shape, an oval shape, a polygonal shape (regular or irregular), a U-shape, a V-shape, and a semicircular shape.
  • the housing structure 110 can be directly hung on the user's ear.
  • the housing structure 110 may further include one or more fixing structures.
  • the fixing structure may include an ear hook, a head beam or an elastic band, so that the acoustic output device 100 can be better fixed on the user's body and prevent the user from falling during use.
  • the elastic band may be a headband, and the headband may be configured to be worn around the head area.
  • the elastic band may be a neckband, configured to be worn around the neck/shoulder area.
  • the elastic band may be a continuous band and can be elastically stretched to be worn on the user's head, and the elastic band can also apply pressure to the user's head, making the acoustic output device 100 firm The ground is fixed on a specific position of the user's head.
  • the elastic band may be a discontinuous band.
  • the elastic band may include a rigid part and a flexible part.
  • the rigid part may be made of a rigid material (for example, plastic or metal), and the rigid part may be physically connected to the housing structure 110 of the acoustic output device 100 (for example, a card Connection, threaded connection, etc.).
  • the flexible portion may be made of elastic material (for example, cloth, composite material or/and neoprene).
  • the housing structure 110 when the user wears the acoustic output device 100, the housing structure 110 may be located above or below the auricle.
  • the housing structure 110 may also be provided with a sound guide hole 111 and a sound guide hole 112 for transmitting sound.
  • the sound guide hole 111 and the sound guide hole 112 may be respectively located on both sides of the user's auricle, and the acoustic driver 120 may output sound outward through the sound guide hole 111 and the sound guide hole 112.
  • the acoustic driver 120 is an element that can receive electrical signals and convert them into sound signals for output.
  • the type of acoustic driver 120 may include low-frequency (for example, 30Hz-150Hz) acoustic driver, medium and low frequency (for example, 150Hz-500Hz) acoustic driver, medium and high frequency (for example, 500Hz-5kHz) Acoustic driver, high frequency (for example, 5kHz-16kHz) acoustic driver, or full-frequency (for example, 30Hz-16kHz) acoustic driver, or any combination thereof.
  • low-frequency for example, 30Hz-150Hz
  • medium and low frequency for example, 150Hz-500Hz
  • medium and high frequency for example, 500Hz-5kHz
  • Acoustic driver high frequency (for example, 5kHz-16kHz) acoustic driver, or full-frequency (for example, 30Hz-16kHz) acoustic driver, or any combination thereof.
  • the low frequency, high frequency, etc. mentioned here only represent the approximate range of the
  • a crossover point can be determined, low frequency represents the frequency range below the crossover point, and high frequency represents the frequency above the crossover point.
  • the crossover point can be any value within the audible range of the human ear, for example, 500 Hz, 600 Hz, 700 Hz, 800 Hz, 1000 Hz, etc.
  • the acoustic driver 120 may also include, but is not limited to, moving coil, moving iron, piezoelectric, electrostatic, magnetostrictive, and other drivers.
  • the acoustic driver 120 may include a diaphragm. When the diaphragm vibrates, sound can be emitted from the front and back sides of the diaphragm, respectively.
  • the front side of the diaphragm in the housing structure 110 is provided with a front chamber 113 for transmitting sound.
  • the front chamber 113 is acoustically coupled with the sound guide hole 111, and the sound on the front side of the diaphragm can be emitted from the sound guide hole 111 through the front chamber 113.
  • a rear chamber 114 for transmitting sound is provided at a position behind the diaphragm in the housing structure 110.
  • the rear chamber 114 is acoustically coupled with the sound guide hole 112, and the sound on the rear side of the diaphragm can be emitted from the sound guide hole 112 through the rear chamber 114.
  • the front chamber 113 and/or the rear chamber 114 may be divided into different sound transmission structures.
  • the front chamber 113 may further include a first cavity and a first acoustic tube
  • the rear chamber 114 may include a second cavity and a second acoustic tube.
  • the front and back sides of the diaphragm can simultaneously produce a set of opposite phase sounds.
  • the structure of the front chamber 113 and the rear chamber 114 may be arranged so that the sound output by the acoustic driver 120 at the sound guide hole 111 and the sound guide hole 112 meets specific conditions.
  • the length of the front chamber 113 and the rear chamber 114 can be designed so that a set of sounds with a specific phase relationship (for example, opposite phase) can be output at the sound guide hole 111 and the sound guide hole 112, so that the acoustic output device 100 has a near field Both the lower listening volume and the far-field leakage problem have been effectively improved.
  • the acoustic driver 120 may also include multiple diaphragms (for example, two diaphragms).
  • the multiple vibrating diaphragms vibrate respectively to generate sound, which passes through the shell structure and then is transmitted from the corresponding sound guide hole.
  • the multiple diaphragms can be controlled by the same or different controllers respectively, and can produce sounds that meet certain phase and amplitude conditions (for example, sounds with the same amplitude but opposite phases, sounds with different amplitudes and opposite phases, etc. ).
  • the acoustic output device may further include multiple acoustic drivers. Multiple acoustic drivers can be controlled by the same or different controllers, and can generate sounds that meet certain phase and amplitude conditions.
  • the acoustic output device may include a first acoustic driver and a second acoustic driver. The controller can control the first acoustic driver and the second acoustic driver to generate sounds that meet certain phase and amplitude conditions through a control signal (for example, sounds with the same amplitude but opposite phase, sounds with different amplitude and opposite phase, etc.).
  • the first acoustic driver outputs sound through at least one first sound guide hole
  • the second acoustic driver outputs sound through at least one second sound guide hole.
  • the first sound guide hole and the second sound guide hole may be respectively located on both sides of the auricle. It should be noted that the number of acoustic drivers is not limited to the above two, but can also be three, four, five, etc.
  • the sound parameters (for example, phase, frequency, and/or amplitude) in each acoustic driver can be based on The actual demand is adjusted accordingly.
  • the acoustic output device and the auricle can be equivalent to a dual sound source-baffle model in this application.
  • each sound guide hole on the acoustic output device has a small size
  • each sound guide hole can be approximately regarded as a point sound source.
  • the sound field sound pressure p generated by a single-point sound source satisfies formula (1):
  • is the angular frequency
  • ⁇ 0 is the air density
  • r is the distance between the target point and the sound source
  • Q 0 is the volume velocity of the sound source
  • k is the wave number
  • the distance is inversely proportional.
  • two sound guide holes are provided in the acoustic output device 100 to construct a dual-point sound source to reduce the radiation of the sound output device 100 to the surrounding environment. Sound (that is, far-field leakage).
  • the two sound guide holes that is, the two-point sound source, output sounds with a certain phase difference.
  • the acoustic output device can show different sound effects in the near field and the far field.
  • the far-field leakage can be realized according to the principle of sound wave anti-phase cancellation. Tone reduction.
  • the sound field sound pressure p generated by the two-point sound source satisfies the following formula:
  • a 1 and A 2 are the intensities of two point sound sources
  • ⁇ 1 and ⁇ 2 are the phases of the point sound sources
  • d is the distance between the two point sound sources
  • r 1 and r 2 satisfy the formula (3 ):
  • r is the distance between any target point in space and the center of the dual-point sound source
  • represents the angle between the line between the target point and the center of the dual-point sound source and the line where the dual-point sound source is located.
  • the size of the sound pressure p of the target point in the sound field is related to the intensity, spacing d, phase of the sound source at each point, and the distance from the sound source.
  • Fig. 3 is a graph of the frequency response of a single point sound source and a double point sound source provided according to some embodiments of the present application.
  • the leakage sound volume of the two-point sound source is less than that of the single-point sound source.
  • Sound volume, that is, within a certain frequency range, the leakage reduction capability of the above-mentioned dual-point sound source is higher than that of the single-point sound source.
  • the sound source in this embodiment uses a point sound source as an example, and does not limit the type of the sound source. In other embodiments, the sound source may also be a surface sound source.
  • Fig. 4 is a frequency response characteristic curve of a near-field listening position of two-point sound sources with different spacings according to some embodiments of the present application.
  • the listening position is taken as the target point to further illustrate the relationship between the sound pressure at the target point and the point sound source distance d.
  • the listening position mentioned here can represent the position of the user's ears, that is, the sound at the listening position can represent the near-field sound produced by two point sound sources.
  • “near-field sound” means a sound within a certain range from a sound source (for example, a point sound source equivalent to the sound guide hole 111), for example, a sound within a range of 0.2 m from the sound source.
  • point sound source A 1 and point sound source A 2 are located on the same side of the listening position, and point sound source A 1 is closer to the listening position, point sound source A 1 and point sound source A 2 are output respectively Sounds of the same amplitude but opposite phase. 4, is gradually increased as the point sound sources A 1 and A 2 pitch point sound source (e.g., by the increased 1Od d), gradually increases the volume of the listening position. This is because as the distance between the point sound source A 1 and the point sound source A 2 increases, the amplitude difference (that is, the sound pressure difference) of the two sounds reaching the listening position becomes larger, and the sound path difference becomes larger, making the sound The destructive effect becomes weaker, which in turn increases the volume of the listening position.
  • the volume at the listening position in the middle and low frequency bands (for example, the sound with a frequency less than 1000 Hz) is still lower than the volume produced by a single-point sound source at the same location and the same intensity.
  • the high frequency band for example, the sound with a frequency close to 10000 Hz
  • the sound pressure amplitude may refer to the pressure generated by the vibration of sound through air.
  • the volume at the listening position can be increased by increasing the distance between the two-point sound source (for example, the point sound source A 1 and the point sound source A 2 ), but as the distance increases, the sound of the two-point sound source The cancellation ability becomes weak, which in turn leads to an increase in far-field sound leakage.
  • FIG. 5 is a diagram of the leakage index of two-point sound sources with different spacings in the far field according to some embodiments of the present application. As shown in Figure 5, taking the far-field sound leakage index of a single-point sound source as a reference, as the distance between two-point sound sources increases from d to 10d, the far-field sound leakage index gradually increases, indicating that the sound leakage gradually becomes larger. .
  • the leakage index please refer to formula (4) and related descriptions in the specification of this application.
  • the at least two sound guide holes in the acoustic output device are distributed on both sides of the auricle, which is beneficial to improve the output effect of the acoustic output device, that is, increase the sound intensity at the near-field listening position while reducing The volume of far-field leakage.
  • the human auricle is equivalent to a baffle
  • the sound from two sound guide holes is equivalent to two point sound sources (for example, point sound source A 1 and point sound source A 2 ) .
  • Fig. 6 is a schematic diagram of an exemplary distribution of baffles provided between two-point sound sources according to some embodiments of the present application.
  • the sound waves generated by the point sound source A 1 and the point sound source A 2 can interfere in a larger space without bypassing the baffle (similar to the case of no baffle), which is compared to Without a baffle, the sound leakage in the far field will not increase significantly. Therefore, setting a baffle structure between the point sound source A 1 and the point sound source A 2 can significantly increase the volume of the near-field listening position without significantly increasing the volume of the far-field leakage sound.
  • FIG. 7 is a near-field frequency response characteristic curve when the auricle is located between two-point sound sources according to some embodiments of the present application
  • FIG. 8 is a near-field frequency response characteristic curve when the auricle is located between the two-point sound sources according to some embodiments of the present application
  • the frequency response characteristic curve of the far field when the two-point sound sources are located on both sides of the auricle, the auricle has the effect of a baffle, so for convenience, the auricle may also be called a baffle.
  • the result can be equivalent to that the near-field sound is produced by a two-point sound source with a spacing of D 1 (also called mode 1), and the far-field sound is produced by a two-point sound source with a spacing of D 2 Point sound source generation (also called mode 2), where D 1 >D 2 .
  • D 1 also called mode 1
  • D 2 Point sound source generation also called mode 2
  • D 1 >D 2 Point sound source generation
  • the near-field sound volume is basically the same, and both are greater than the near-field sound volume of Mode 2, and are close to the near-field sound volume of a single-point sound source.
  • the frequency increases (for example, when the frequency is between 2000 Hz and 7000 Hz)
  • the volume of the near-field sound when the mode 1 and two-point sound sources are distributed on both sides of the auricle is greater than that of the single-point sound source. This shows that when the user's auricle is located between the two-point sound source, the near-field sound volume transmitted from the sound source to the user's ear can be effectively enhanced.
  • the far-field leakage sound volume will increase, but when the two-point sound source is distributed on both sides of the auricle, the far-field leakage sound volume generated by it is the same as that of the far-field mode 2
  • the sound leakage volume is basically the same, and both are smaller than the far-field leakage sound volume of Mode 1 and the far-field sound leakage volume of a single-point sound source. This shows that when the user's auricle is located between the two-point sound source, the sound transmitted from the sound source to the far field can be effectively reduced, that is, the sound leakage from the sound source to the surrounding environment can be effectively reduced.
  • the leakage index ⁇ can be used as an index to evaluate the ability to reduce the leakage:
  • the leakage index when the two-point sound source is distributed on both sides of the auricle is smaller than Mode 1 (there is no baffle structure between the two-point sound source, and the distance is D 1 ), Mode 2 (no baffle structure between the two-point sound source, and the spacing is D 2 ) and the leakage index in the case of a single-point sound source, which shows that when the two-point sound source is located on both sides of the auricle, the acoustic output
  • the device has better ability to reduce leakage.
  • Fig. 10 is a schematic diagram of measuring the leakage index provided according to some embodiments of the present application.
  • the listening position is on the left side of the point sound source A 1
  • the leakage measurement method is to select the two-point sound source (A 1 and A 2 as shown in Figure 10) as the center of the circle and the radius as The average value of the sound pressure amplitude at each point on the spherical surface of r is taken as the value of sound leakage.
  • the method of measuring leakage sound in this manual is only an exemplary explanation of the principle and effect, and is not limited.
  • the measurement and calculation method of leakage sound can also be adjusted reasonably according to the actual situation, for example, taking the far-field position One point or more than one point is used as the location for measuring leakage. For another example, taking the center of the two-point sound source as the center of the circle, the sound pressure amplitudes of two or more points are uniformly averaged according to a certain spatial angle in the far field.
  • the listening measurement method may be to select a location point near the point sound source as the listening position, and use the sound pressure amplitude measured at the listening position as the listening value.
  • the listening position may be on the line of two point sound sources or not on the line of two point sound sources. The listening measurement and calculation methods can also be adjusted reasonably according to the actual situation.
  • the sound pressure amplitude of other points or more than one point in the near field position can be averaged.
  • the sound pressure amplitudes of two or more points are uniformly averaged according to a certain spatial angle in the near field.
  • the distance between the near-field listening position and the point sound source is much smaller than the distance between the point sound source and the far-field sound leakage measurement sphere.
  • the use of the sound guide hole for outputting sound as a point sound source in this application is only used as an explanation of the principle and effect, and does not limit the shape and size of the sound guide hole in practical applications.
  • the area of the sound guide hole is larger, it can also be equivalent to radiating sound outward in the form of a surface sound source.
  • the point sound source can also be realized by other structures, such as a vibrating surface, a sound radiating surface, and so on.
  • the sound produced by structures such as sound guide holes, vibrating surfaces, and sound radiating surfaces can be equivalent to point sound at the spatial scale discussed in this application.
  • the source has similar sound propagation characteristics and mathematical description.
  • the acoustic effect achieved by the "acoustic driver outputting sound from at least two first sound guide holes" described in this application can also be achieved by the above Other acoustic structures achieve the same effect, such as "at least two acoustic drivers output sound from at least one sound radiating surface". According to the actual situation, other acoustic structures can be selected for reasonable adjustment and combination, and the same acoustic output effect can also be achieved.
  • the principle of the above-mentioned surface sound source and other structures to radiate sound is similar to the above-mentioned point sound source, so I will not repeat it here. .
  • the number of sound guide holes (point sound source or surface sound source) on the acoustic output device is not limited to the above two, and the number can be three, four, five, etc., thereby forming multiple groups
  • the form of the dual-point/surface sound source, or a group of multi-point/surface sound sources is not specifically limited here, and it can also achieve the technical effects that can be achieved by the dual-point sound source in this application.
  • the near-field volume or/and far-field leakage of the listening position under different conditions The sound volume is specified.
  • Fig. 11 is a graph of frequency response between two point sound sources provided with or without a baffle according to some embodiments of the present application.
  • a baffle between two point sound sources (ie, two sound guide holes), in the near field, it is equivalent to increasing the distance between the two point sound sources.
  • the sound volume at the listening position is equivalent to being produced by a set of two-point sound sources with a large distance, so that the listening volume in the near field is significantly increased compared to the case without a baffle.
  • the sound leakage is equivalent to a set of two point sound sources with a small distance, so the sound leakage is in the presence or absence of baffles.
  • the situation does not change significantly. It can be seen that by setting a baffle between the two sound guide holes (two-point sound source), while effectively improving the sound output device's ability to reduce leakage, it can also significantly increase the near-field volume of the sound output device. Therefore, the requirements for the components that play a sounding role in the acoustic output device are greatly reduced.
  • the electrical loss of the acoustic output device can be reduced. Therefore, the use time of the acoustic output device can be greatly extended under the condition of a certain amount of power.
  • Fig. 12 is a frequency response curve of baffled and non-baffled provided according to some embodiments of the present application. As shown in Figure 12, the sound leakage volume when there is a baffle between the two-point sound sources is significantly less than the sound leakage volume when there is no baffle between the two-point sound sources. This shows that when the baffle structure is set between the two-point sound sources The sound leakage reduction capability is significantly greater than that of the non-baffle structure.
  • FIG. 13 is a curve of the sound pressure amplitude of a two-point sound source at a frequency of 300 Hz under different spacings according to some embodiments of the present application.
  • Fig. 14 is a curve of the sound pressure amplitude of a two-point sound source at a frequency of 1000 Hz under different spacings according to some embodiments of the present application.
  • the frequency is 300Hz or 1000Hz
  • the listening volume when there is a baffle between the two-point sound source is always greater than that of the two-point sound source.
  • the baffle structure between the two point sound sources can effectively increase the listening volume in the near field.
  • the volume of the leakage sound when there is a baffle between the two-point sound sources is equivalent to the sound leakage volume when there is no baffle between the two-point sound sources, which indicates whether a baffle is set between the two-point sound sources at this frequency
  • the structure has little effect on the far-field leakage.
  • Fig. 15 is a curve of the sound pressure amplitude of a two-point sound source at a frequency of 5000 Hz under different spacings provided by some embodiments of the present application.
  • the listening volume when there is a baffle between the two-point sound sources is always greater than that between the two-point sound sources The listening volume when there is no baffle.
  • the leakage volume of the two-point sound source with and without the baffle fluctuates with the change of the distance d, but on the whole, it can be seen whether there is a baffle structure between the two-point sound source. The far-field leakage has little effect.
  • FIG. 16 is a near-field frequency response characteristic curve when the distance d between two-point sound sources is 1 cm according to some embodiments of the application
  • FIG. 17 is a near-field frequency response curve when the distance d between two-point sound sources is 2 cm according to some embodiments of the application.
  • Field frequency response characteristic curve FIG. 18 is a near-field frequency response characteristic curve when the distance d between two-point sound sources is 4 cm according to some embodiments of the present application
  • FIG. 19 is a near-field frequency response characteristic curve provided according to some embodiments of the present application.
  • the sound leakage index curve in the far field when d is 1 cm.
  • FIG. 20 is the sound leakage index curve in the far field when the two-point sound source spacing d is 2 cm according to some embodiments of the present application.
  • FIG. 21 is based on some implementations of the present application. The example provides the far-field sound leakage index curve when the distance d between the two-point sound source is 4cm.
  • the two guide holes For different sound guide holes d (for example, 1cm, 2cm, 4cm), at a certain frequency, in the near-field listening position (for example, the user’s ears), the two guide holes
  • the sound volume provided is higher than when the two sound guide holes are not arranged on both sides of the auricle (that is, as shown in the figure) Shows the "no baffle effect" when the volume provided is loud.
  • the certain frequency mentioned here may be below 10000 Hz, or preferably, below 5000 Hz, or more preferably, below 1000 Hz.
  • the distance d between two sound guide holes or two-point sound sources cannot be too large.
  • the distance d between the two sound guide holes can be set to not less than 1 cm, preferably, The distance d between the two sound guide holes can be set to be no more than 20cm, preferably, the distance d between the two sound guide holes can be set to be no more than 12cm, more preferably, the distance between the two sound guide holes d may be set to be not greater than 10 cm, and further preferably, the distance d between the two sound guide holes may be set to be not greater than 6 cm.
  • the distance d between the two sound guide holes can be set to be not less than 1 cm and not more than 12 cm.
  • the two sound guide holes The distance d between the two sound guide holes can be set to not less than 1 cm and not more than 10 cm.
  • the distance d between the two sound guide holes can be set to not less than 1 cm and not more than 8 cm.
  • the distance d between the two sound guide holes can be set to be not less than 1 cm and not more than 6 cm. More preferably, the distance d between the two sound guide holes can be set to be not less than 1 cm and not more than 3 cm.
  • the number of sound guide holes on both sides of the auricle is not limited to the above one, but may also be multiple, which may be the same or different.
  • the number of sound guide holes on one side of the auricle can be two, and the number of sound guide holes on the other side can be two or three.
  • the acoustic output device may be provided with at least two sound guide holes, and the at least two sound guide holes include two sound guide holes respectively located on the front and rear sides of the user's auricle. hole.
  • the sound guide hole located on the front of the auricle is away from the user’s ear canal.
  • the acoustic path (that is, the acoustic distance from the sound guide hole to the entrance of the user's ear canal) is shorter than the acoustic path of the sound guide hole located at the back of the auricle from the user's ear.
  • the user's auricle can be used as a baffle, and the two sound guide holes on the acoustic output device can be arranged on the front and rear sides of the auricle, and the ear canal is located at two listening positions. Between sound guide holes.
  • the distance from the sound guide hole on the front of the auricle to the ear canal is smaller than the distance from the sound guide hole on the back of the auricle to the ear canal.
  • the acoustic output device may include one or more contact points (for example, "inflection points" on the housing structure used to match the shape of the ears) that contact the auricle when worn.
  • the contact point may be located on the line of the two sound guide holes or on one side of the line of the two sound guide holes.
  • the ratio of the distance from the sound guide hole on the front side to the contact point to the distance from the sound guide hole on the back side to the contact point may be between 0.05-20, preferably between 0.1-10, more preferably, 0.2 -5, more preferably, 0.4-2.5.
  • the sound path from the acoustic driver to the sound guide hole in the acoustic output device has a certain effect on the near-field volume and far-field leakage.
  • the sound path can be changed by adjusting the length between the diaphragm and the sound guide hole in the acoustic output device.
  • the acoustic driver includes one diaphragm, and the front and rear sides of the diaphragm are respectively coupled to two sound guide holes through the front chamber and the rear chamber.
  • the sound path between the diaphragm and the two sound guide holes is different.
  • the sound path ratio of the diaphragm to the two sound guide holes is 0.5-2. More preferably, the sound path ratio of the diaphragm to the two sound guide holes is 0.6-1.5. Further preferably, the sound path ratio of the diaphragm to the two sound guide holes is 0.8-1.2.
  • the amplitude of the sound generated at the two sound guide holes may be changed on the premise of keeping the phases of the sounds generated at the two sound guide holes opposite to improve the output effect of the acoustic output device.
  • the purpose of adjusting the sound amplitude at the sound guide hole can be achieved by adjusting the impedance of the acoustic path between the two sound guide holes and the acoustic driver.
  • impedance may refer to the resistance to be overcome by the displacement of the medium during sound wave conduction.
  • the acoustic path may be filled with or not filled with damping materials (for example, tuning nets, tuning cotton, etc.) to achieve sound amplitude modulation.
  • a resonant cavity, a sound hole, an acoustic slit, a tuning net, or a tuning cotton may be provided in the acoustic path to adjust the acoustic resistance to change the impedance of the acoustic path.
  • the acoustic resistance of the acoustic path can also be changed by adjusting the apertures of the two sound guide holes.
  • the acoustic impedance ratio of the acoustic driver (the diaphragm) to the two sound guide holes is 0.5-2. More preferably, the ratio of the acoustic impedance of the acoustic driver (diaphragm) to the two sound guide holes is 0.8-1.2.
  • the listening position may not be on the line of the dual-point sound source, but may also be above, below, or in the extending direction of the line of the dual-point sound source.
  • the distance between the point sound source and the auricle and the measurement method of the height of the auricle can also be adjusted according to different scenarios. The above similar changes are all within the protection scope of this application.
  • Fig. 22 is a schematic structural diagram of an acoustic output device provided according to some embodiments of the present application.
  • the acoustic output device 2200 may include a housing structure 2210 and an acoustic driver 2220 provided in the housing structure 2210.
  • the acoustic output device 2200 can be worn on the user's body (for example, the head, neck, or upper torso of the human body) through the housing structure 2210, while the housing structure 2210 and the acoustic driver 2220 can be close to but not blocked
  • the ear canal keeps the user's ears open, and the user can not only hear the sound output by the acoustic output device 2200, but also obtain the sound of the external environment.
  • the acoustic output device 100 can be arranged around or partly around the circumference of the user's ear, and can transmit sound through air conduction or bone conduction.
  • the housing structure 2210 can be used to be worn on the body of the user and can carry the acoustic driver 2220.
  • the housing structure 2210 may be a closed structure with a hollow inside, and the acoustic driver 2220 is located inside the housing structure 2210.
  • the housing structure 2210 includes a cavity inside, and the acoustic driver 2220 is located in the cavity and divides the cavity into a first cavity 2231 (also called a front cavity) and a second cavity 2232 (also called a front cavity). Known as the back cavity).
  • the housing structure 2210 may further include a first acoustic tube 2233 and a second acoustic tube 2234.
  • first acoustic tube 2233 is acoustically coupled with the first chamber 2231
  • one end of the second acoustic tube 2234 is acoustically coupled with the second chamber 2232
  • the other end of the first acoustic tube 2233 and the other end of the second acoustic tube 2234 can be They are located on either side of the auricle.
  • the front cavity or the back cavity where the acoustic driver 2220 is located needs to meet a certain volume requirement.
  • the front cavity or the back cavity needs to provide enough volume to accommodate the coils, magnets, and corresponding supporting structures of the acoustic driver 2220.
  • the front cavity or the back cavity will have a larger cross-sectional area than its corresponding acoustic tube.
  • the volume of the front cavity or the back cavity corresponds to a specific resonance peak, thereby affecting the sound produced by the acoustic driver 2220 on both sides of the diaphragm.
  • the sound transmitted by the first acoustic tube 2233 can be radiated to the outside through the first sounding position 2241, and the sound transmitted by the second acoustic tube 2234 can be radiated to the outside through the second sounding position 2242.
  • the first sound emitting position 2241 and the second sound emitting position 2242 may be one or more sound guide holes opened on the sound tube.
  • the sound output from the first sound emitting position 2241 and the second sound emitting position 2242 may form a dual sound source (such as the dual point sound source or/and the dual sound radiation surface described elsewhere in this specification).
  • the other end of the first acoustic tube 2233 and the other end of the second acoustic tube 2234 may also be located on the same side of the auricle (for example, the front or back of the auricle).
  • the acoustic conduit in the acoustic output device 2200 is not limited to the first acoustic conduit 2233 and the second acoustic conduit 2234 in FIG. 22, and may also include other acoustic conduits such as a third acoustic conduit and a fourth acoustic conduit.
  • the specific number can be set according to the actual situation and is not further limited here.
  • the amplitude of the sound can be changed to improve the output effect of the acoustic output device under the premise that the phases of the sounds output by the first sound output position 2241 and the second sound output position 2241 are kept opposite.
  • the sound guide hole on the front side of the auricle, that is, the sound output at the first sound position 2241 can have a larger amplitude
  • the sound guide hole on the back side of the auricle, that is, the sound output at the second sound position 2240 The sound has a smaller amplitude, so that the sound amplitude of the sound output from the two sounding positions will have a greater difference in the sound amplitude at the ear canal, which can reduce the sound radiated by the two sounding positions in the ear.
  • the interference at the canal is cancelled to ensure that the listening volume at the ear canal is louder.
  • the volume of the first acoustic tube 2233 and the second acoustic tube 2234 cannot be ignored.
  • additional acoustic mass is generated, so that the first acoustic conduit 2233 and the second acoustic conduit 2234 resonate with the cavity containing the acoustic driver 2220,
  • the frequency response shows a resonance peak.
  • the additional sound mass may refer to the equivalent mass of air pushed when the diaphragm vibrates and emits sound waves. It can be understood that the diaphragm needs to push the air to emit sound waves.
  • the air itself has a certain quality, and the equivalent quality of the pushed air is the additional sound quality.
  • the curves corresponding to “tube diameter D-anterior cavity” and “tube diameter 2D-anterior cavity” respectively represent the frequency response of the first acoustic catheter 2233 when the tube diameter is “D” and “2D”.
  • the curves corresponding to pipe diameter D-rear cavity” and "pipe diameter 2D-rear cavity” respectively represent the frequency response of the second acoustic catheter 2234 when the pipe diameter is "D" and "2D".
  • the pipe diameters of the first acoustic conduit 2233 and the second acoustic conduit 2234 increase, that is, change from "D” to "2D"
  • the frequency of the resonance peak generated by the acoustic conduit will shift to the low-frequency region.
  • the first acoustic conduit 2233 and /Or the diameter (or cross-sectional area) of the second acoustic conduit 2234 should not be too large.
  • the cross-sectional area of the first acoustic tube 2233 and the second acoustic tube 2234 is not greater than 400 mm 2 (the diameter of the tube is about 20 mm).
  • the cross-sectional area of the first acoustic tube 2233 and the second acoustic tube 2234 is not greater than 100 mm 2 (the diameter of the tube is about 10 mm). More preferably, the cross-sectional area of the first acoustic tube 2233 and the second acoustic tube 2234 is not greater than 25 mm 2 (the diameter of the tube is about 5 mm). Further preferably, the cross-sectional area of the first acoustic tube 2233 and the second acoustic tube 2234 is not greater than 9 mm 2 (the diameter of the tube is about 3 mm).
  • the cross-sectional area of the first acoustic tube 2233 and the second acoustic tube 2234 is not less than 0.25 mm 2 (the diameter of the tube is about 0.5 mm).
  • the cross-sectional area of the first acoustic tube 2233 and the second acoustic tube 2234 is not less than 0.5 mm 2 (the diameter of the tube is about 0.7 mm).
  • the cross-sectional area of the first acoustic tube 2233 and the second acoustic tube 2234 is not less than 1 mm 2 (the diameter of the tube is about 1 mm). It should be noted that the above description of the diameters of the first sound tube 2233 and the second sound tube 2234 is an approximation given when the cross section of the sound tube is circular. In an actual scene, the shape of the sound tube is not limited to The circular tube may also be an oval tube, a semicircular tube, etc., which is not further limited here. In some embodiments, the first acoustic tube 2233 and the second acoustic tube 2234 may have the same or different cross-sectional areas.
  • the corresponding frequency responses of the two acoustic conduits are different, which is manifested by different acoustic impedances on both sides of the acoustic driver 2220.
  • the degree of suppression/enhancement of the sound of the specific frequency band in the two sound ducts is different, so that the volume of the specific frequency band at the listening position can be increased.
  • damping materials for example, tuning nets, tuning cotton, etc.
  • the length and aspect ratio of the acoustic conduit also affect the sound output by the acoustic driver 2220. Therefore, the sound output by the acoustic driver 2220 can be adjusted by adjusting the length and the aspect ratio of the first acoustic conduit 2233 and the second acoustic conduit 2234.
  • the aspect ratio may refer to the ratio of the length to the diameter of the acoustic tube.
  • P 0 is the sound pressure of the sound source
  • L is the tube length
  • satisfies the formula (6):
  • a is the radius of the conduit
  • c 0 is the speed of sound
  • is the angular frequency
  • ⁇ / ⁇ 0 is the dynamic viscosity of the medium.
  • FIG. 24 is a schematic diagram of the attenuation degree of sound at different frequencies by sound conduits with different radii according to some embodiments of the present application.
  • the acoustic conduits (the first acoustic conduit 2233 and/or the second acoustic conduit 2234) have different radii (the radius lengths in Figure 24 are 0.5mm, 1mm, 2mm, 5mm, respectively)
  • the radius lengths in Figure 24 are 0.5mm, 1mm, 2mm, 5mm, respectively
  • the aspect ratio of the acoustic tube is not greater than 200.
  • the aspect ratio of the acoustic tube is not greater than 150. More preferably, the aspect ratio of the acoustic tube is not greater than 100.
  • the radius of the sound tube is not less than 0.5 mm, and the length of the sound tube is not more than 100 mm.
  • the sound tube radius is not less than 0.5 mm, and the sound tube length is not more than 50 mm.
  • the sound tube radius is not less than 1 mm, and the sound tube length is not more than 100 mm.
  • the radius of the sound tube is not less than 1 mm, and the length of the sound tube is not more than 80 mm.
  • the sound tube radius is not less than 2mm, and the sound tube length is not more than 200m.
  • the sound tube radius is not less than 2mm, and the sound tube length is not more than 150mm.
  • the radius of the sound tube is not less than 5 mm, and the length of the sound tube is not more than 500 mm.
  • the radius of the sound tube is not less than 5 mm, and the length of the sound tube is not more than 350 mm.
  • Fig. 25 is a graph showing the frequency response of acoustic catheters according to some embodiments of the present application under different lengths. As shown in Figure 25, the four curves show the frequency response of the acoustic tube at 30mm, 50mm, 100mm and 200mm.
  • the length of the acoustic tube may be set to be no greater than 200 mm, so that the frequency response curve of the acoustic tube is relatively flat (no or fewer peaks/valleys) in the range of 20 Hz-800 Hz.
  • the length of the sound tube can be set to be no greater than 100 mm, so that the frequency response curve of the sound tube is relatively flat (no or less peaks/valleys) in the range of 20 Hz-1500 Hz.
  • the length of the sound tube can be set to not greater than 50 mm, so that the frequency response curve of the sound tube is relatively flat (no or less peaks/valleys) in the range of 20 Hz-3200 Hz.
  • the length of the sound tube can be set to be no greater than 30 mm, so that the frequency response curve of the sound tube is relatively flat (no or less peaks/valleys) in the range of 20 Hz-5200 Hz.
  • an impedance matching layer may be provided at the sound guide hole corresponding to the sound tube to reduce the influence of peaks/valleys.
  • the impedance matching layer may refer to a structure with the same impedance and phase as the acoustic conduit itself.
  • the impedance matching layer may include structures such as tuning nets and tuning cottons.
  • the length of the first acoustic tube 2233 and the second acoustic tube 2234 may be the same or different.
  • the sound paths on both sides of the acoustic driver 2220 respectively reach the sound output ends of the first sound tube 2233 and the second sound tube 2234.
  • the phases of the sounds output from the first acoustic conduit 2233 and the second acoustic conduit 2234 can be reversed to reduce the sound leakage volume of the acoustic output device in the far field.
  • Fig. 26 is a graph of frequency response of two acoustic conduits at different lengths according to some embodiments of the present application. As shown in Fig.
  • monopole means an acoustic output device with one sound source
  • L means that the length of the first sound tube 2233 and the second sound tube 2234 are the same
  • 1.05*L means the first sound tube
  • the length ratio of the 2233 and the second acoustic conduit 2234 is 1.05, and so on. It can be seen from Figure 26 that in a specific frequency range (for example, 100Hz-5500Hz), the sound leakage volume of the dual sound source (or dual point sound source) acoustic output device with the first sound duct 2233 and the second sound duct 2234 is significantly lower than An acoustic output device with a sound source.
  • the acoustic output device When the two acoustic tubes have the same length, the acoustic output device has the smallest leakage volume. For sounds of the same frequency, as the ratio of the length of the two acoustic conduits increases, the leakage volume of the acoustic output device will show an increasing trend. In some embodiments, the ratio of the length of the first acoustic tube 2233 and the second acoustic tube 2234 may be 0.5-2.
  • the frequency response at the two sound output positions can also be adjusted by controlling the volume of the cavity containing the acoustic driver 2220.
  • the volume of the first cavity 2231 is greater than the volume of the second cavity 2232, so that the first resonance peak corresponding to the first cavity 2231 is smaller than the second resonance peak corresponding to the second cavity 2232.
  • Fig. 27 is a graph of frequency response of different cavity volumes provided according to some embodiments of the present application. As shown in FIG. 27, increasing the volume of the first cavity 2231 and/or the second cavity 2232 will cause the peak/valley position on the corresponding frequency response curve to move to the low frequency region.
  • the frequency response curve corresponding to the first cavity 2231 and the second cavity 2232 with a volume of 2V is V
  • the frequency response curves corresponding to the first cavity 2231 and the second cavity 2232 will produce peaks/valleys at relatively low frequencies.
  • the frequency response curves of the first cavity 2231 and the second cavity 2232 are quite different, which affects the phase cancellation effect of the two sound sources (point sound source and/or sound radiation surface), resulting in the peak/valley
  • the frequency band leakage will become larger.
  • the volume of the first cavity 2231 and the second cavity 2232 does not exceed 2500mm 3 (for example, for a 16mm diameter
  • the acoustic output device has a cavity height of 10mm). More preferably, the volume of the first cavity 2231 and the second cavity 2232 does not exceed 1200mm 3 (for example, for a 16mm diameter acoustic output device, the cavity height is 5mm). More preferably, the volume of the first cavity 2231 and the second cavity 2232 does not exceed 700 mm 3 (for example, for an acoustic output device with a diameter of 12 mm, the cavity height is 5 mm).
  • the first cavity 2231 and the second cavity 2232 are not limited to a regular cylindrical space, and may also be other regular or irregular shaped spaces, such as a truncated cone-shaped space, a hemispherical space, etc., which are not further limited herein.
  • Fig. 28 is a schematic structural diagram of an acoustic output device provided according to some embodiments of the present application.
  • the acoustic output device 2800 may include a housing structure 2810 and a first acoustic driver 2821 and a second acoustic driver 2822 located in the housing structure 2810.
  • the first acoustic driver 2821 and the second acoustic driver 2822 respectively constitute two ends of a cavity 2820 located in the housing structure 2810.
  • the first acoustic driver 2821 transmits sound to the outside through the first sound position 2811
  • the second acoustic driver 2822 transmits sound to the outside through the second sound position 2812.
  • the first sounding position 2811 and the second sounding position 2812 may be located on both sides of the human auricle, and the auricle may function as a baffle, increasing the first sounding position 2811 and the second sounding position 2811
  • the position 2812 transmits the sound path difference to the user's ears (that is, the distance between the first sound position 2811 and the second sound position 2812 to reach the user’s ear canal), which weakens the sound cancellation effect, thereby increasing the user The volume of the sound heard by the ear (ie, the near-field sound), so as to provide the user with a better listening experience.
  • the auricle has little effect on the sound transmission from the sound position to the environment (that is, the far-field sound).
  • the acoustic output device When the far-field sound generated by the two sound guide holes cancel each other out, the acoustic output device can be suppressed to a certain extent. Sound leakage can prevent the sound generated by the acoustic output device from being heard by others near the user.
  • the first sound position 2811 and the second sound position 2812 may also be located on the same side of the auricle.
  • the first acoustic driver 2821 and the second acoustic driver 2822 can generate outwardly radiated sounds with equal amplitude and opposite phases, which constitute the rest of this specification.
  • the described dual sound source in order to increase the listening volume and reduce the leakage volume, the first acoustic driver 2821 and the second acoustic driver 2822 can generate outwardly radiated sounds with equal amplitude and opposite phases, which constitute the rest of this specification. The described dual sound source.
  • the side of the first acoustic driver 2821 (diaphragm) facing the cavity 2820 and the side of the first acoustic driver 2821 (diaphragm) facing away from the cavity 2820 also generate sound waves of opposite phases
  • the side of the first acoustic driver 2821 facing the cavity 2820 is placed inside the cavity 2820, it is equivalent to being isolated from the side of the first acoustic driver 2821 facing away from the cavity 2820, which can prevent the first acoustic
  • the sound waves of opposite phases on both sides of the driver 2821 cancel each other out in the near field, thereby ensuring the volume of the listening position.
  • the first acoustic driver 2821 and/or A blocking plate may be provided on the side of the second acoustic driver 2822 facing away from the cavity 2820.
  • the blocking plate may be fixedly connected to the housing structure 2810, and the blocking plate may have a certain distance from the first acoustic driver 2821 and/or the second acoustic driver 2822.
  • the barrier plate may be provided with a sound hole (not shown in FIG. 28) for transmitting sound to the outside.
  • the sound outlet may also be located on the side wall of the housing structure 2810 between the blocking plate and the first acoustic driver 2821 and/or the second acoustic driver 2822.
  • a mesh layer (such as a dust-proof net) may be provided at the sound outlet to protect the first acoustic driver 2821 and/or the second acoustic driver 2822 and provide acoustic resistance.
  • the first acoustic driver 2821 and/or the second acoustic driver 2822 may be 2821 and/or the second acoustic driver 2822 are reversed, that is, the front side of the first acoustic driver 2821 and/or the second acoustic driver 2822 (for example, the structure of the moving coil diaphragm speaker without coils, magnets, magnetically conductive bottom plate, etc.
  • the back of the first acoustic driver 2821 and/or the second acoustic driver 2822 (for example, the moving coil diaphragm speaker contains coils, magnets, and magnetic bottom The side) as the side facing away from the cavity 2820. Since the back of the acoustic driver generally contains a metal magnetic material (for example, iron), its texture is relatively strong, which can protect softer structures such as the diaphragm of the acoustic driver. Therefore, inverting the first acoustic driver 2821 and/or the second acoustic driver 2822 can protect the acoustic driver.
  • a metal magnetic material for example, iron
  • the cavity 2820 may be conductive, that is, to maintain the first The communication between the end where the acoustic driver 2821 is located and the end where the second acoustic driver 2822 is located (at this time, it can be considered that the two acoustic drivers share a back cavity).
  • the acoustic propagation medium in the cavity 2820 (for example, the air in the cavity 2820) will not be affected by the The reciprocating vibration of an acoustic driver 2821 (the diaphragm) and the second acoustic driver 2822 (the diaphragm) compress or expand, so that the first acoustic driver 2821 (the diaphragm) and the second acoustic driver 2822 (the vibration (Diaphragm) vibration is basically not affected by the elasticity of the acoustic propagation medium in the cavity 2820, thereby increasing the amplitude of the acoustic radiation of the first acoustic driver 2821 (the diaphragm) and the second acoustic driver 2822 (the diaphragm), especially low
  • the structure of the cavity 2820 in the acoustic output device 2800 is relatively simple, and has less influence on the propagation of sound, so that the frequency response of the first sound output position 2811 is the same as the frequency response of the first acoustic driver 2821 and the second The frequency response of the sounding position 2812 is closer to the frequency response of the second acoustic driver 2822.
  • the frequency response of the first acoustic driver 2821 (the diaphragm) and the second acoustic driver 2822 (the diaphragm) are relatively flat without obvious peaks and valleys, the final frequency response of the acoustic output device 2800 will also be relatively flat.
  • the sound waves generated by the side of the first acoustic driver 2821 facing the cavity 2820 and the sound waves generated by the side of the second acoustic driver 2822 facing the cavity 2820 will be generated when they act on the inner wall of the cavity 2820.
  • Standing waves cause peaks/valleys in the frequency response curve of the acoustic output device 2800.
  • the peak/valley position can be changed by adjusting the effective length of the cavity 2820.
  • the effective length of the cavity may refer to the acoustic path length of sound propagating in the cavity.
  • Fig. 29 is a frequency response characteristic curve of cavities with different effective lengths provided according to some embodiments of the present application.
  • the cavity with a larger effective length Peaks/valleys correspond to lower frequencies.
  • the effective length of the cavity should be set as much as possible so that the corresponding peak/valley is located at a higher frequency position.
  • the effective length of the cavity between the first acoustic driver 2821 and the second acoustic driver 2822 is not greater than 30 cm.
  • the effective length of the cavity 2820 between the first acoustic driver 2821 and the second acoustic driver 2822 is not greater than 25 cm. More preferably, the effective length of the cavity 2820 between the first acoustic driver 2821 and the first acoustic driver 2822 is not greater than 15 cm.
  • the housing structure 2810 and the cavity 2820 in the embodiments of this specification are only illustrative descriptions, and the housing structure 2810 and the cavity 2820 are not limited to the shape shown in FIG. 28, and can be implemented in accordance with this specification. Various variations or modifications with similar effects of the housing structure 2810 and the cavity 2820 in the embodiment are within the protection scope of the present application.
  • the first acoustic driver 2821 (the diaphragm) and the second acoustic driver 2822 (the diaphragm) may be relatively inclined. Set up.
  • the relative tilt arrangement between the first acoustic driver 2821 (the diaphragm) and the second acoustic driver 2822 (the diaphragm) refers to the cross-section of the first acoustic driver 2821 and the second acoustic driver 2821
  • the section of 2822 is not parallel or not in the same plane.
  • the axial direction of the cavity 2820 can also be used as a reference.
  • the relative inclination between the first acoustic driver 2821 (the diaphragm) and the second acoustic driver 2822 (the diaphragm) refers to the first acoustic driver 2821 (the vibration Diaphragm) and (diaphragm of the second acoustic driver 2822) form different angles with the axial direction of the cavity 2820 at their corresponding positions.
  • the diaphragm of the first acoustic driver 2821 may be perpendicular to the axis of the cavity 2820 at the first acoustic driver 2821
  • the diaphragm of the second acoustic driver 2822 may be at the second acoustic driver 2822 with the cavity 2820.
  • an acoustic material and/or acoustic structure may also be provided in the cavity 2820.
  • the acoustic material may include porous materials such as fiber materials, particulate materials, and foam materials.
  • the acoustic structure may include a resonator, a perforated plate, a thin film resonant structure, a thin plate resonant structure, a sound-absorbing wedge, etc., or any combination thereof.
  • Fig. 30 is a schematic structural diagram of an acoustic output device provided according to some embodiments of the present application.
  • the cavity 2820 between the first acoustic driver 2821 (the diaphragm) and the second acoustic driver 2822 (the diaphragm) can be At least one opening 2813 is provided.
  • the sound from the side of the first acoustic driver 2821 (the diaphragm) facing the cavity 2820 and the side of the second acoustic driver 2822 (the diaphragm) facing the cavity 2820 can be output to the environment through the aperture 2813 , Thereby suppressing the formation of standing waves.
  • FIG. 31 is a frequency response characteristic curve of the cavity with or without holes provided according to some embodiments of the present application. As shown in Figure 31, the acoustic curve of the cavity with an opening 2813 (the "rear cavity opening” shown in Figure 31) is relative to the acoustic curve of the cavity without the opening 2813, The peaks/valleys caused by standing waves are weakened.
  • the aperture 2813 may be close to the first sound output position 2811 or the second sound position 2812, and the sound emitted by the aperture 2813 may be the same as the sound emitted at the first sound position 2811 or the second sound position 2812.
  • the interference cancels which causes the first sound output location 2811 and the second sound output location 2812 to reduce the interference cancellation degree in the near field, thereby increasing the near-field listening volume.
  • FIG. 32 is a schematic diagram of the sound pressure of an opening provided in a cavity provided according to some embodiments of the present application.
  • Fig. 33 is a frequency response characteristic curve diagram of a cavity provided with an opening provided according to some embodiments of the present application. As shown in Fig.
  • the cavity has a shape similar to a horseshoe, and an opening 2813 is opened in the cavity.
  • the acoustic output device can be regarded as a three-pole state of two positive and one negative.
  • the leakage of the acoustic output device increases, and the sound of the corresponding acoustic output device The sound volume also increases.
  • the grayscale distribution in FIG. 32 represents the standing wave form in the cavity when the aperture 2813 exists.
  • the frequency response of the cavity 2813 is significantly greater than that on the cavity Frequency response when opening 2813 is not provided ("no hole” shown in FIG. 33).
  • an opening 2813 may be provided on the side wall of the housing structure 2810 of the cavity close to the first sound output position 2811 or the second sound output position 2812 to increase the listening volume.
  • FIG. 34 is a schematic diagram of sound pressure with two orifices provided in a cavity provided according to some embodiments of the application
  • FIG. 35 is a schematic diagram of sound pressure with no orifices provided in a cavity provided according to some embodiments of the application. As shown in FIG. 34, the cavity is provided with a first opening 2813 at a position close to the first sound emitting position 2811, and a second opening 2814 is opened at a position close to the second sound emitting position 2812.
  • the first aperture 2813 Since the first aperture 2813 is close to the back of the first acoustic driver, the first aperture 2813 forms a reverse sound source relative to the first sound emission position 2811, and the sound output by the first sound emission position 2811 is the same as that of the first orifice The phase of the sound output by the 2813 is approximately opposite, which can reduce the leakage volume while reducing the influence of the standing wave inside the cavity.
  • the relationship between the second aperture 2814 and the second sounding position 2812 is similar to the relationship between the first aperture 2813 and the first sounding position 2811, and will not be repeated here.
  • the grayscale distribution in FIG. 34 represents the standing wave form in the cavity when the first orifice 2813 and the second orifice 2814 exist simultaneously. By comparison with FIG. 32, it can be seen that the shape of the standing wave in the cavity can be changed by opening different numbers/positions of orifices.
  • the intensity and phase of the sound radiation emitted by sound waves of different frequencies from the orifice are also different.
  • the sound wave radiated by the orifice position may be in phase with the sound wave radiated by an acoustic driver, while in other frequency bands, the sound wave radiated by the orifice position and the sound wave radiated by an acoustic driver may also be Inverted.
  • the number of orifices is not limited to one or two in FIGS. 30, 32, and 34, and may also be three, four, or more.
  • the position of the orifice is not limited to being close to the first sounding position 2811 and the second sounding position 2812, and can also be located in other positions of the cavity, which can be specifically adjusted according to actual conditions, and will not be repeated here.
  • the first acoustic driver and the second acoustic driver may both be active acoustic drivers.
  • the first acoustic driver and the second acoustic driver may both include active diaphragms, respectively Electric signal drive.
  • the first acoustic driver may be an active acoustic driver
  • the second acoustic driver may be a passive acoustic driver.
  • a passive acoustic driver refers to an acoustic component that passively vibrates under the drive of an active acoustic driver (for example, it includes a passive diaphragm, which may also be called a passive radiator).
  • the active acoustic driver (such as the first acoustic driver 2821) enters the active working mode under the driving of the control signal, while the passive acoustic driver (such as the second acoustic driver 2822) does not apply a control signal.
  • the active diaphragm of the active acoustic driver vibrates and drives the air in the cavity (for example, cavity 2820) to vibrate, thereby driving the passive diaphragm of the passive acoustic driver to vibrate.
  • Fig. 36 is a frequency response characteristic curve of an acoustic output device provided according to some embodiments of the present application.
  • the frequency response curve of the first acoustic driver 2821 and the first acoustic driver 2821 and the second acoustic driver 2822 are both active acoustic drivers ("two spk") and the first when the phases are opposite
  • the frequency response curve of the acoustic driver 2821 is basically the same.
  • the second acoustic driver 2821 When the first acoustic driver 2821 is in the active working mode and the second acoustic driver 2822 is in the passive working mode, the second acoustic driver 2821 ("spk+soft passive diaphragm-passive diaphragm end" and “spk+ The frequency response curve of the hard passive diaphragm-passive diaphragm end ”) will vary according to the hardness of the diaphragm. That is, when the second acoustic driver 2822 is a passive diaphragm, the elasticity and quality of the passive diaphragm are different, and the frequency response curve of the sound output by the second acoustic driver 2822 will also be different.
  • the sound radiated by the cavity acts on the passive diaphragm (the second acoustic driver 2822). After the passive diaphragm is excited, the second output The sound position 2812 also radiates sound, and the softer the diaphragm of the second acoustic driver 2822, the stronger the low-frequency sound field radiated.
  • the sound output by the passive acoustic driver under the action of the active acoustic driver and the sound output by the active acoustic driver have different phase differences.
  • the diaphragm elasticity, mass, and cavity volume of the second acoustic driver 2822 can be adjusted to adjust the phase difference of the sound radiated by the first acoustic driver 2821 and the second acoustic driver 2822.
  • the phase difference between the first acoustic driver 2821 and the second acoustic driver 2822 is not less than 90°, the sound generated by the second acoustic driver and the sound generated by the first acoustic driver begin to become synchronized, and the sound generated by the acoustic driver 2822
  • the sound generated by the acoustic driver 2821 can be enhanced at the listening position.
  • the second acoustic driver 2822 in the passive working mode plays a role of phase inversion.
  • the vibration speed of the first acoustic driver 2821 is:
  • u 1 represents the vibration velocity of the first acoustic driver 2821 (the diaphragm)
  • U 1 represents the velocity amplitude of the first acoustic driver 2821 (the diaphragm)
  • represents the vibration of the first acoustic driver 2821 (the diaphragm).
  • Membrane vibration frequency Represents the phase of the first acoustic driver 2821 (the diaphragm).
  • the vibration speed of the second acoustic driver 2822 is:
  • u 2 represents the vibration speed of the second acoustic driver 2822 (the diaphragm)
  • U 2 represents the speed amplitude of the second acoustic driver 2822 (the diaphragm)
  • , u 2 -
  • the phase difference between the first acoustic driver 2821 and the second acoustic driver 2822 is:
  • the vibration directions of the first acoustic driver 2821 (the diaphragm) and the second acoustic driver 2822 (the diaphragm) are the same (as shown in FIG. 36).
  • the sound emitted by the second acoustic driver 2822 in the passive working mode at the second sounding position has the same or approximately the same phase as the sound emitted by the first acoustic driver 2821 at the first sounding position.
  • the sound generated by the acoustic driver enhances each other at the listening position, thereby enhancing the low-frequency sound of the listening position.
  • the acoustic output device may further include a controller.
  • the controller can control the amplitude and phase of the sound generated by the first acoustic driver 2821 and the second acoustic driver 2822 through a control signal to achieve effects such as leakage reduction, sound quality improvement, low frequency enhancement, or active noise reduction.
  • the controller uses a control signal to make the first acoustic driver 2811 and the second acoustic driver 2822 output sounds with the same sound pressure amplitude and opposite phases, which can increase the user’s listening volume in the near field and reduce Sound leakage in the far field.
  • the controller uses a control signal to make the low-frequency sound output by the first acoustic driver 2821 and the second acoustic driver 2822 have the same phase, or the phase difference is less than 90°, and the output medium and high-frequency sound The phase is opposite, or the phase difference is between 90°-270°.
  • the low-frequency sound that the user hears in the near field will not be strengthened by interference, while the mid- and high-frequency sound in the far field will still be weakened by interference cancellation.
  • the controller may adjust the amplitude and phase of the sound generated by the first acoustic driver and/or the second acoustic driver according to the crossover point.
  • Fig. 37 is a frequency response characteristic curve of a sound emitting position provided according to some embodiments of the present application. As shown in Figure 37, the frequency response curve of the first sound position ("frequency response-sound position 1" shown in Figure 37) and the second sound position ("frequency response-sound position 1" shown in Figure 37) The frequency response curve of acoustic position 2" is basically the same. For the convenience of description, the sound component whose frequency range is before the crossover point can be called the first sound component, and the sound component whose frequency range is after the crossover point is called the second sound component.
  • the controller can control the first sound components output from the first sound position and the second sound position to have the same phase or a smaller phase difference. In this way, the first sound component radiated from the first sound emitting position and the first sound component radiated from the second sound emitting position are superimposed and added at the listening position to produce a larger volume.
  • the controller can also control the second sound component output from the first sound position and the second sound position to have opposite phases or a phase difference close to 180°. In this way, the second sound component radiated from the first sound position and the second sound component radiated from the second sound position will interfere and cancel each other in the far field, reducing far-field sound leakage.
  • the crossover point may be set to be no greater than 2000 Hz.
  • the frequency dividing point can be set to be no greater than 1000 Hz. More preferably, the crossover point can be set to be no greater than 400 Hz. Further preferably, the frequency division point may be set to be not greater than 300 Hz.
  • the two acoustic drivers may have different frequency responses.
  • the first sound output position and the second sound position may have different frequency response curves.
  • two acoustic drivers with greater frequency response characteristics in the low-frequency range can be used. In this way, the low-frequency sound produced by the two acoustic drivers is opposite in phase. Due to the large difference in amplitude, there is still less cancellation.
  • Fig. 38 is a frequency response curve diagram of two acoustic drivers with different frequency response characteristics provided according to some embodiments of the present application.
  • the first acoustic driver is an acoustic driver with a strong low-frequency output capability ("Acoustic Driver 1" in Figure 38), and the second acoustic driver has a weaker low-frequency output capability, medium and high-frequency output
  • a second acoustic driver equivalent to an acoustic driver (“Acoustic Driver 2" in Figure 39).
  • the first acoustic driver and the second acoustic driver can produce low-frequency sounds with opposite phases but with larger amplitudes. Therefore, the low-frequency sounds at the listening position can still have greater
  • the volume, and the leakage in the high frequency range in the far field is similar to the mid and high frequency situation described in Figure 37.
  • the controller may use a control signal to make the first acoustic driver or the second acoustic driver output a sound with the same amplitude and opposite phase as the external noise sound pressure, so as to achieve an active noise reduction effect.
  • Fig. 39 is a working principle diagram of an active noise reduction output device provided according to some embodiments of the present application.
  • the acoustic output device 3800 includes a first acoustic driver 3810 and a second acoustic driver 3820.
  • the first acoustic driver 3810 is used to output a listening sound wave 3830 to a listening position (for example, a human external auditory canal).
  • the second acoustic driver 3820 is used to output an inverted acoustic wave 3850 that is inverse to the external environmental noise 3840.
  • the inverted acoustic wave 3850 and the ambient noise 3840 output by the second acoustic driver 3820 have the same sound pressure amplitude and opposite phase, so that the inverted acoustic wave 3850 and the ambient noise 3840 cancel out, so as to achieve the effect of reducing external noise.
  • the acoustic output device 3800 may be provided with a microphone (not shown in FIG.
  • the microphone can convert the external environmental noise 3840 into a corresponding noise signal, and the noise signal It is transmitted to the controller of the acoustic output device 3800, and the controller controls the second acoustic driver 3820 based on the noise signal to output sound with the same amplitude and opposite phase as the external environment noise 3840.
  • the first acoustic driver 3810 and the second acoustic driver 3820 may be located on the front and back sides of the auricle. For the detailed description of the location of the first acoustic driver 3810 and the second acoustic driver 3820 on the front and rear sides of the auricle, reference may be made to content elsewhere in this application, such as FIG.
  • first acoustic driver 3810 and the second acoustic driver 3820 may also be located on the same side of the auricle (for example, located on the same side of the auricle at the same time).
  • FIG. 40 is a schematic structural diagram of a noise reduction and sound transmission device provided according to some embodiments of the present application.
  • the noise reduction sound transmission device 4000 may include a first microphone 4010, a second microphone 4020, a controller (not shown), and a supporting structure 4030 for fixing the first microphone 4010 and the second microphone 4020.
  • the first microphone 4010 and the second microphone 4020 may be used to receive sound signals, including the user's voice, background noise in the environment, and so on.
  • the controller is configured to process the two sets of signals received by the first microphone 4010 and the second microphone 4020 and improve the signal-to-noise ratio of the noise reduction sound transmission device 4000 in a specific frequency band.
  • the signal-to-noise ratio can be used to evaluate the noise reduction performance of the noise reduction sound transmission device 400.
  • the signal-to-noise ratio of the noise reduction sound transmission device 400 can be improved by reducing the noise component in the sound signal and ensuring the voice component in the sound signal.
  • the supporting structure 4030 is configured to carry the first microphone 4010, the second microphone 4020 and the controller.
  • the supporting structure is provided with a first sound guide hole (not shown in FIG. 40) corresponding to the first microphone 4010 and a second sound guide hole (not shown in FIG. 40) corresponding to the second microphone 4020.
  • the first sound guide hole and the second sound guide hole can respectively guide sound signals to the first microphone 4010 and the second microphone 4020.
  • the first microphone 4010 (or the first sound hole) may be located on the front side of the auricle, and the second microphone 4020 (or the second sound hole) may be located on the back side of the auricle.
  • the first microphone 4010 (or the first sound guide hole) may be located close to the mouth of the human body in order to better receive the user's voice.
  • the first microphone 4010 and the second microphone 4020 may also be located on the same side of the auricle at the same time, for example, the first microphone 4010 (or the first sound hole) and the second microphone 4020 (or the second microphone) The sound hole) can be located on the front side of the auricle and close to the human mouth.
  • first microphone 4010 or the first sound hole and the second microphone 4020 (or the second sound hole) are not limited to the one shown in FIG. 40, and the first microphone 4010 (or the first sound hole)
  • the number of the second microphone 4020 (or the second sound guide hole) can also be multiple.
  • at least one first microphone 4010 or first sound guide holes
  • at least one second microphone 4020 is located on the back side of the auricle.
  • the first microphone 4010 and the second microphone 4020 may be independent non-directional sound transmission elements. In some embodiments, the sensitivity difference between the first microphone 4010 and the second microphone 4020 is not more than 3 dB. Preferably, the sensitivity difference between the first microphone 4010 and the second microphone 4020 is not more than 1 dB. More preferably, the first microphone 4010 and the second microphone 4020 may be the same sound transmission element.
  • Fig. 41 is a schematic diagram of the principle of setting a baffle on a noise reduction microphone device according to some embodiments of the present application.
  • the attenuation of the noise reduction sound transmission device 4000 to the background noise ie, the amount of noise reduction
  • the spatial correlation function of the first microphone 4010 and the second microphone 4020 that is, the first microphone 4010 and the second microphone 4010
  • the distance between the first microphone 4010 and the second microphone 4020 can be adjusted.
  • the mutual interference of the first microphone 4010 and the second microphone 4020 is negatively correlated with the distance between the two, that is, the smaller the distance between the first microphone 4010 and the second microphone 4020, the better the coherence between the two and the lower
  • the noise reduction effect of the noise transmission device 4000 is better.
  • the distance between the first microphone 4010 and the second microphone 4020 is too small, the sound pressure difference caused by the user's voice on the first microphone 4010 and the second microphone 4020 will also decrease sharply, resulting in the signal noise of the final output signal. Ratio lower. As shown in Fig.
  • a baffle can be set between the first microphone 4010 and the second microphone 4020 or the auricle can be used as a baffle to solve the problem of reduced signal-to-noise ratio caused by the small distance between the two microphones. . Due to the weak directivity of the background noise, the baffle or the auricle has little effect on the coherence of the first microphone 4010 and the second microphone 4020. At the same time, the baffle or auricle increases the sound path of the voice signal to the second microphone 4020, thereby reducing the amount of voice signal received by the second microphone 4020, thus increasing the reception of the first microphone 4010 and the second microphone 4020.
  • the amplitude of the received speech signal is different, thereby significantly improving the signal-to-noise ratio of the noise reduction sound transmission device 4000.
  • the background noise signals received by the first microphone 4010 and the second microphone 4020 are the same, and because of the presence of the baffle or the auricle, the voice signals received by the first microphone 4010 and the second microphone 4020 have larger
  • the controller can subtract the sound signals received by the first microphone 4010 and the second microphone 4020 to obtain a signal that mainly reflects the user's voice.
  • the controller may also include one or more filters (for example, adaptive filters) to filter the sound signals received by the first microphone 4010 and/or the second microphone 4020. Then obtain the user's voice signal with high signal-to-noise ratio.
  • FIG. 42 is a graph of the background noise intensity of the noise reduction sound transmission device provided according to some embodiments of the present application with or without a baffle.
  • FIG. 43 is a graph of the voice signal intensity of the noise reduction and sound transmission device provided according to some embodiments of the present application with or without a baffle.
  • the increase range of the background signal difference between the two microphones 4020 provided with a baffle In other words, the increase in the voice signal of the two microphones is greater than the decrease in the coherence of the two microphones, so that the signal-to-noise ratio of the noise reduction sound transmission device 4000 is increased.
  • the auricle can be used as a baffle or a baffle can be provided on the supporting structure between two microphones, and the height of the baffle can be adjusted and the distance between the first microphone 4010 and the second microphone 4020 can be adjusted. Spacing to improve the signal-to-noise ratio of the noise reduction sound transmission device 4000.
  • FIG. 44 is a curve of the change of the signal-to-noise ratio with frequency when the ratio of the height of the baffle plate to the distance between the first microphone 4010 and the second microphone 4020 is equal to 4 according to some embodiments of the present application. As shown in the figure, the upper limit of the frequency at which the baffle can increase the signal-to-noise ratio of the noise reduction sound transmission device is about 2kHz.
  • the ratio of the baffle height to the distance between the first microphone 4010 and the second microphone 4020 is not greater than 4. More preferably, the ratio of the height of the baffle to the distance between the first microphone 4010 and the second microphone 4020 is not more than two. In some embodiments, the distance between the first microphone 4010 and the second microphone 4020 is not less than 1 cm. Preferably, the distance between the first microphone 4010 and the second microphone 4020 is not greater than 12 cm. More preferably, the distance between the first microphone 4010 and the second microphone 4020 is not greater than 8 cm. In some embodiments, the ratio of the distance between the two microphones to the height of the baffle is not less than 0.2 and not more than 4.
  • the above description of the noise reduction and sound transmission device 4000 is only for illustrative purposes, and those skilled in the art can make adjustments to the above structure without violating the principle, and the adjusted structure is still in this Within the scope of protection applied for.
  • the supporting structure 4030 in the noise reduction sound transmission device 4000 is not limited to the structure and shape shown in FIG. 40, and other structures that can fix and support the first microphone 4010 and the second microphone 4020 are visible.
  • the first microphone 4010 and the second microphone 4020 may also be located on the same side of the auricle at the same time, and a baffle may be provided between the first microphone 4010 and the second microphone 4020.
  • this application uses specific words to describe the embodiments of the application.
  • “one embodiment”, “an embodiment”, and/or “some embodiments” mean a certain feature, structure, or characteristic related to at least one embodiment of the present application. Therefore, it should be emphasized and noted that “one embodiment” or “one embodiment” or “an alternative embodiment” mentioned twice or more in different positions in this specification does not necessarily refer to the same embodiment. .
  • some features, structures, or characteristics in one or more embodiments of the present application can be appropriately combined.
  • the computer storage medium may contain a propagated data signal containing a computer program code, for example on a baseband or as part of a carrier wave.
  • the propagation signal may have multiple manifestations, including electromagnetic forms, optical forms, etc., or a suitable combination.
  • the computer storage medium may be any computer readable medium other than the computer readable storage medium, and the medium may be connected to an instruction execution system, device, or device to realize communication, propagation, or transmission of the program for use.
  • the program code located on the computer storage medium can be transmitted through any suitable medium, including radio, cable, fiber optic cable, RF, or similar medium, or any combination of the above medium.
  • the computer program codes required for the operation of each part of this application can be written in any one or more programming languages, including object-oriented programming languages such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB.NET, Python Etc., conventional programming languages such as C language, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages.
  • the program code can run entirely on the user's computer, or run as an independent software package on the user's computer, or partly run on the user's computer and partly run on the remote computer, or run entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any form of network, such as a local area network (LAN) or a wide area network (WAN), or to an external computer (for example, via the Internet), or in a cloud computing environment, or as a service Use software as a service (SaaS).
  • LAN local area network
  • WAN wide area network
  • SaaS service Use software as a service

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • General Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Headphones And Earphones (AREA)
  • Stereophonic System (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Eyeglasses (AREA)

Abstract

本申请公开了一种声学输出装置,该声学输出装置可以包括:至少一个声学驱动器,所述至少一个声学驱动器可以发出声音;壳体结构,被配置为承载所述至少一个声学驱动器;所述壳体结构包括腔体,所述至少一个声学驱动器位于所述腔体中,并将所述腔体分隔为第一腔体和第二腔体;所述至少一个声学驱动器产生的声音分别从所述第一腔体和第二腔体发出,穿过所述壳体结构后形成双声源,所述双声源分别位于耳廓的两侧。

Description

一种声学输出装置和降噪传声装置
优先权信息
本申请要求2019年4月30日提交的中国申请号201910364346.2的优先权,2019年9月19日提交的中国申请号201910888762.2的优先权,以及2019年9月19日提交的中国申请号201910888067.6的优先权,全部内容通过引用并入本文。
技术领域
本申请涉及声学领域,特别涉及一种声学输出装置和降噪传声装置。
背景技术
开放双耳的声学输出装置是一种在特定范围内实现声传导的便携式音频输出设备。与传统的入耳式、耳罩式耳机相比,开放双耳的声学输出装置具有不堵塞、不覆盖耳道的特点,可以让用户在聆听音乐的同时,获取外界环境中的声音信息,提高安全性与舒适感。由于开放式结构的使用,开放双耳的声学输出装置的漏音往往较传统耳机更为严重。目前,行业内的普遍做法是利用两个或多个声源,构建特定声场,调控声压分布,以降低漏音。该方法虽然能够在一定程度上能够达到降低漏音的效果,但是仍然存在一定的局限性。例如,该方法在抑制漏音的同时,也会降低发送给用户的声音音量。
因此希望提供一种声学输出装置,可以同时达到提高用户听音音量和降低漏音的效果。
发明内容
本申请实施例之一提供一种声学输出装置,该装置包括:至少一个声学驱动器,所述至少一个声学驱动器发出声音;壳体结构,被配置为承载所述至少一个声学驱动器;所述壳体结构包括腔体,所述至少一个声学驱动器位于所述腔体中,并将所述腔体分隔为第一腔体和第二腔体;所述至少一个声学驱动器产生的声音分别从所述第一腔体和第二腔体发出,穿过所述壳体结构后形成双声源,所述双声源分别位于耳廓的两侧。
在一些实施例中,所述壳体结构还包括第一声导管和第二声导管,所述第一声导管的一端与所述第一腔体声学耦合,所述第二声导管的一端与所述第二腔体声学耦合,所述第一声导管的另一端和所述第二声导管的另一端分别位于耳廓的两侧。
在一些实施例中,所述第一声导管的阻抗与所述第二声导管的阻抗不同。
在一些实施例中,所述第一声导管和第二声导管的横截面积相同或不同。
在一些实施例中,所述第一声导管和第二声导管的横截面积为0.25mm 2-400mm 2
在一些实施例中,所述第一声导管和第二声导管的长度与其各自输出的声音频率负相关。
在一些实施例中,所述第一声导管与第二声导管的长度相同或不相同。
在一些实施例中,所述第一声导管与第二声导管的长度比为0.5-2。
在一些实施例中,所述第一声导管和第二声导管的长径比不大于200。
在一些实施例中,所述第一声导管和第二声导管的半径不小于0.5mm,所述第一声导管和第二声导管的长度不大于500mm。
在一些实施例中,所述第一声导管和/或所述第二声导管中设有用于调节声音频响的声学结构和/或声学材料。
在一些实施例中,所述至少一个声学驱动器与所述第一腔体和第二腔体对应的两侧的阻抗不同。
在一些实施例中,所述至少一个声学驱动器两侧的阻抗比为0.8-1.2。
在一些实施例中,所述第一腔体的容积大于所述第二腔体的容积,使得第一腔体对应的第一谐振峰小于第二腔体对应的第二谐振峰。
在一些实施例中,所述第一腔体和第二腔体的容积均不超过2500mm 3
在一些实施例中,所述双声源输出相位相反的声音。
在一些实施例中,所述双声源之间的间距d在1cm和12cm之间。
在一些实施例中,所述双声源分别位于耳廓的两侧,其中,位于耳廓前侧的声源距离用户耳朵的声学路径短于位于耳廓后侧的声源距离用户耳朵的声学路径。
在一些实施例中,所述双声源的间距与耳廓的高度比为0.2-4。
本申请实施例之一提供一种声学输出装置,包括:第一声学驱动器和第二声学驱动器;壳体结构,被配置为承载所述第一声学驱动器和第二声学驱动器;所述第一声学驱动器和第二声学驱动器均位于所述壳体结构中,所述第一声学驱动器和所述第二声学驱动器构成位于所述壳体结构内部的腔体的两端,所述第一声学驱动器背朝所述腔体的一侧和所述第二声学驱动器背朝所述腔体的一侧分别向所述壳体结构的外部辐射声音。
在一些实施例中,所述第一声学驱动器背朝所述腔体的一侧和所述第二声学驱动器背朝所述腔体的一侧分别通过所述壳体结构的至少两个出声孔向外辐射声音。
在一些实施例中,所述第一声学驱动器背朝所述腔体的一侧和所述第二声学驱动器背朝所述腔体的一侧产生相位相反的声音。
在一些实施例中,所述第一声学驱动器面朝所述腔体的一侧与所述第二声学驱动器面朝所述腔体的一侧通过所述腔体声学连通。
在一些实施例中,所述第一声学驱动器的背朝所述腔体的一侧和/或所述第二声学驱动器的背朝所述腔体的一侧处设有阻挡板,所述阻挡板与所述壳体结构固定连接。
在一些实施例中,所述阻挡板上开设有至少一个出声孔。
在一些实施例中,所述至少一个出声孔处设有网状层。
在一些实施例中,所述第一声学驱动器包括:振膜;以及驱动所述振膜振动的磁体,所述磁***于所述振膜背朝所述腔体的一侧。
在一些实施例中,所述腔体中设有用于调节声音频响的声学结构和/或声学材料。
在一些实施例中,所述第一声学驱动器的振膜与所述第二声学驱动器的振膜相对倾斜设置。
在一些实施例中,所述壳体结构中位于所述第一声学驱动器和所述第二声学驱动器之间的所述腔体长度不大于25cm。
在一些实施例中,所述壳体结构中位于所述第一声学驱动器和第二声学驱动器之间的所述腔体上开设有至少一个孔口。
在一些实施例中,所述第一声学驱动器包括主动振膜,所述第二声学驱动器包括被动振膜,所述主动振膜驱动所述腔体内的空气振动,所述空气振动带动所述被动振膜振动。在不同的声音频率下,所述被动声学驱动器在所述主动驱动器的作用下输出的声音与所述主动驱动器输出的声音具有相位差。
在一些实施例中,所述第一声学驱动器和所述第二声学驱动器基于控制器的分频点输出具有不同相位和幅值的声音。
在一些实施例中,所述分频点不大于2000Hz。
本申请实施例之一提供一种降噪传声装置,包括:第一传声器和第二传声器;以及支撑结构,被配置为承载所述第一传声器和所述第二传声器,所述支撑结构上开设有对应于所述第一传声器的第一引声孔和对应于所述第二传声器的第二引声孔,所述第一引声孔和所述第二引声孔分别用于向所述第一传声器和所述第二传声器导入外界声音,且所述支撑结构使得所述第一引声孔和所述第二引声孔分别位于用户耳廓的两侧。
在一些实施例中,所述第一引声孔和所述第二引声孔之间的间距不小于1cm。
在一些实施例中,所述第一引声孔和所述第二引声孔之间的间距与耳廓高度的比值不小于0.2。
在一些实施例中,所述第一传声器和所述第二传声器均为无指向型 传声器。
在一些实施例中,所述第一传声器和所述第二传声器的灵敏度差异不大于3dB。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本申请一些实施例所示的声学输出装置的示例性的结构示意图;
图2是根据本申请一些实施例提供的双点声源之间相互作用的示意图;
图3是根据本申请一些实施例提供的单点声源和双点声源的频率响应曲线图;
图4是根据本申请一些实施例提供的不同间距的双点声源在近场听音位置的频率响应特性曲线;
图5是根据本申请一些实施例提供的不同间距的双点声源在远场的漏音指数图;
图6是根据本申请一些实施例提供的双点声源之间设置挡板的示例性分布示意图;
图7是根据本申请一些实施例提供的耳廓位于双点声源之间时近场的频率响应特性曲线;
图8是根据本申请一些实施例提供的耳廓位于双点声源之间时远场的频率响应特性曲线;
图9是根据本申请一些实施例提供的耳廓位于双点声源之间时频率响应特性曲线;
图10是根据本申请一些实施例提供的漏音指数的测量示意图;
图11是根据本申请一些实施例提供的两个点声源之间在有无挡板的情况下的频率响应曲线图;
图12是根据本申请一些实施例提供的有挡板和无挡板的频率响应曲线;
图13是根据本申请一些实施例提供的不同间距下双点声源在频率为300Hz时的声压幅值曲线;
图14是根据本申请一些实施例提供的不同间距下双点声源在频率为1000Hz时的声压幅值曲线;
图15是根据本申请一些实施例提供的不同间距下双点声源在频率为5000Hz时的声压幅值曲线;
图16是根据本申请一些实施例提供的双点声源间距d为1cm时的近场频率响应特性曲线;
图17是根据本申请一些实施例提供的双点声源间距d为2cm时的近场频率响应特性曲线;
图18是根据本申请一些实施例提供的双点声源间距d为4cm时的近场频率响应特性曲线;
图19是根据本申请一些实施例提供的双点声源间距d为1cm时的远场的漏音指数曲线;
图20是根据本申请一些实施例提供的双点声源间距d为2cm时的远场的漏音指数曲线;
图21是根据本申请一些实施例提供的双点声源间距d为4cm时的远场的漏音指数曲线;
图22是根据本申请一些实施例提供的声学输出装置的结构示意图;
图23是根据本申请一些实施例提供的声导管不同管径时的频率响特性曲线;
图24是根据本申请一些实施例提供的不同半径的声导管对不同频率声音的衰减程度示意图;
图25是根据本申请一些实施例提供的两个声导管在不同长度下的频率响应曲线;
图26是根据本申请一些实施例提供的两个声导管在不同长度下的频率响应曲线;
图27是根据本申请一些实施例提供的不同腔体容积的频率响应曲线;
图28是根据本申请一些实施例提供的声学输出装置的结构示意图;
图29是根据本申请一些实施例提供的不同有效长度的腔体的频率响应特性曲线;
图30是根据本申请一些实施例提供的声学输出装置的结构示意图;
图31是根据本申请一些实施例提供的腔体上有无孔口的频率响应特性曲线;
图32是根据本申请一些实施例提供的腔体上开设一个孔口的声压示意图;
图33是根据本申请一些实施例提供的腔体上开设有一个孔口的频率响应特性曲线图;
图34是根据本申请一些实施例提供的腔体上开设有两个孔口的声压示意图;
图35是根据本申请一些实施例提供的腔体上未开设孔口的声压示意图;
图36是根据本申请一些实施例提供的声学输出装置的频率响应特 性曲线;
图37是根据本申请一些实施例提供的出声位置的频率响应特性曲线;
图38是根据本申请一些实施例提供的具有不同频率响应特性的两个声学驱动器的频响曲线图;
图39是根据本申请一些实施例提供的主动降噪声学输出装置的工作原理图;
图40是根据本申请一些实施例提供的降噪传声装置的结构示意图;
图41是根据本申请一些实施例提供的降噪传声器装置中设置挡板的原理示意图;
图42是根据本申请一些实施例提供的降噪传声装置有无挡板时的背景噪声强度图;
图43是根据本申请一些实施例提供的降噪传声装置有无挡板时的语音信号强度图;以及
图44是根据本申请一些实施例所示的降噪传声装置的信噪比随频率的变化曲线。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“***”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本申请中使用了流程图用来说明根据本申请的实施例的***所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
本说明书描述了包括至少一组声学驱动器的声学输出装置。在用户 佩戴所述声学输出装置时,所述声学输出装置至少位于用户头部一侧,靠近但不堵塞用户耳朵。该声学输出装置可以佩戴在用户头部(例如,以眼镜、头带或其它结构方式佩戴的非入耳式的开放式耳机),或者佩戴在用户身体的其他部位(例如用户的颈部/肩部区域),或者通过其它方式(例如,用户手持的方式)放置在用户耳朵附近。在一些实施例中,该声学输出装置中至少一组声学驱动器产生的声音可以通过与其声耦合的两个导声孔向外传播。在一些实施例中,所述至少一组声学驱动器可以包括主动声学驱动器和被动声学驱动器(例如,被动振膜)。主动声学驱动器和被动声学驱动器可以共用位于所述声学输出装置内的腔体,当主动声学驱动器在线圈和磁体的共同作用下产生声音时,可以同时带动被动声学驱动器振动。主动声学驱动器和被动声学驱动器产生的声音可以分别通过与其声耦合的导声孔向外传播。在一些实施例中,所述两个导声孔可以分布于用户耳廓的两侧,此时耳廓作为挡板,可以隔开所述两个导声孔,使得所述两个导声孔具有不同的到用户耳道的声学路径。在一些实施例中,所述声学输出装置上可以设有挡板结构,使得两个导声孔分别分布于挡板的两侧。一方面,将两个导声孔分布于耳廓或挡板的两侧可以增加两个导声孔分别向用户耳朵传递声音的声程差(即两个导声孔发出的声音到达用户耳道的路程差),使得声音相消的效果变弱,进而增加用户耳朵听到的声音(也称为近场声音)的音量,从而为用户提供较佳的听觉体验。另一方面,耳廓或者挡板对导声孔向环境传播声音(也称为远场声音)的影响很小,当两个导声孔产生的远场声音相互抵消时,可以在一定程度上抑制声学输出装置的漏音,同时能够防止声学输出装置产生的声音被该用户附近的他人听见。
图1是根据本申请一些实施例所示的声学输出装置的示例性的结构示意图。如图1所示,声学输出装置100可以包括壳体结构110以及设置在壳体结构内的声学驱动器120。在一些实施例中,声学输出装置100可以通过壳体结构110佩戴在用户身体上(例如,人体的头部、颈部或者上部躯干),同时壳体结构110和声学驱动器120可以靠近但不堵塞耳道,使得用户耳朵保持开放的状态,在用户既能听到声学输出装置100输出的声音的同时,又能获取外部环境的声音。例如,声学输出装置100可以环绕设置或者部分环绕设置在用户耳朵的周侧,并可以通过气传导或骨传导的方式进行声音的传递。
壳体结构110可以用于佩戴在用户的身体上,并可以承载一个或多个声学驱动器120。在一些实施例中,壳体结构110可以是内部中空的封闭式壳体结构,且所述一个或多个声学驱动器120位于壳体结构110的内部。在一些实施例中,声学输出装置100可以与眼镜、头戴式耳机、头戴式显示装置、AR/VR头盔等产品相结合,在这种情况下,壳体结构110可以采用悬挂或夹持的方式固定在用户的耳朵的附近。在一些可替代的实施例中,壳体结构110上可以设有挂钩,且挂钩的形状与耳廓的形状相匹配,从而 声学输出装置100可以通过挂钩独立佩戴在用户的耳朵上。独立佩戴使用的声学输出装置100可以通过有线或无线(例如,蓝牙)的方式与信号源(例如,电脑、手机或其他移动设备)通信连接。例如,左右耳处的声学输出装置100可以均通过无线的方式与信号源直接通信连接。又例如,左右耳处的声学输出装置100可以包括第一输出装置和第二输出装置,其中第一输出装置可以与信号源进行通信连接,第二输出装置可以通过无线方式与第一输出装置无线连接,第一输出装置和第二输出装置之间通过一个或多个同步信号实现音频播放的同步。无线连接的方式可以包括但不限于蓝牙、局域网、广域网、无线个域网、近场通讯等或其任意组合。
在一些实施例中,壳体结构110可以为具有人体耳朵适配形状的壳体结构,例如圆环形、椭圆形、多边形(规则或不规则)、U型、V型、半圆形,以便壳体结构110可以直接挂靠在用户的耳朵处。在一些实施例中,壳体结构110还可以包括一个或多个固定结构。所述固定结构可以包括耳挂、头梁或弹性带,使得声学输出装置100可以更好地固定在用户身上,防止用户在使用时发生掉落。仅作为示例性说明,例如,弹性带可以为头带,头带可以被配置为围绕头部区域佩戴。又例如,弹性带可以为颈带,被配置为围绕颈/肩区域佩戴。在一些实施例中,弹性带可以是连续的带状物,并可以被弹性地拉伸以佩戴在用户的头部,同时弹性带还可以对用户的头部施加压力,使得声学输出装置100牢固地固定在用户的头部的特定位置上。在一些实施例中,弹性带可以是不连续的带状物。例如,弹性带可以包括刚性部分和柔性部分,其中,刚性部分可以由刚性材料(例如,塑料或金属)制成,刚性部分可以与声学输出装置100的壳体结构110通过物理连接(例如,卡接、螺纹连接等)的方式进行固定。柔性部分可以由弹性材料制成(例如,布料、复合材料或/和氯丁橡胶)。
在一些实施例中,当用户佩戴声学输出装置100时,壳体结构110可以位于耳廓的上方或下方。壳体结构110上还可以开设有用于传递声音的导声孔111和导声孔112。在一些实施例中,导声孔111和导声孔112可以分别位于用户耳廓的两侧,且声学驱动器120可以通过导声孔111和导声孔112向外输出声音。
声学驱动器120是一个可以接收电信号,并将其转换为声音信号进行输出的元件。在一些实施例中,按频率进行区分,声学驱动器120的类型可以包括低频(例如,30Hz–150Hz)声学驱动器、中低频(例如,150Hz–500Hz)声学驱动器、中高频(例如,500Hz–5kHz)声学驱动器、高频(例如,5kHz–16kHz)声学驱动器或全频(例如,30Hz–16kHz)声学驱动器,或其任意组合。当然,这里所说的低频、高频等只表示频率的大致范围,在不同的应用场景中,可以具有不同的划分方式。例如,可以确定一个分频点,低频表示分频点以下的频率范围,高频表示分频点以上的频率。该分频点可以为人耳可听范围内的任意值,例如,500Hz,600Hz, 700Hz,800Hz,1000Hz等。在一些实施例中,按原理进行区分,声学驱动器120还可以包括但不限于动圈式、动铁式、压电式、静电式、磁致伸缩式等驱动器。
在一些实施例中,声学驱动器120可以包括一个振膜。当振膜振动时,声音可以分别从该振膜的前侧和后侧发出。在一些实施例中,壳体结构110内振膜前侧的位置设有用于传递声音的前室113。前室113与导声孔111声学耦合,振膜前侧的声音可以通过前室113从导声孔111中发出。壳体结构110内振膜后侧的位置设有用于传递声音的后室114。后室114与导声孔112声学耦合,振膜后侧的声音可以通过后室114从导声孔112中发出。在一些实施例中,前室113和/或后室114可以划分为不同的传递声音的结构。例如,前室113还可以包括第一腔体和第一声导管,后室114可以包括第二腔体和第二声导管。具体描述,请参见说明书其它地方的描述,例如,图22及相关描述。需要知道的是,当振膜在振动时,振膜前侧和后侧可以同时产生一组相位相反的声音。当声音分别通过前室113和后室114后,会从导声孔111和导声孔112的位置向外传播。在一些实施例中,可以通过设置前室113和后室114的结构,使得声学驱动器120在导声孔111和导声孔112处输出的声音满足特定的条件。例如,可以设计前室113和后室114的长度,使得导声孔111和导声孔112处可以输出一组具有特定相位关系(例如,相位相反)的声音,使得声学输出装置100近场的听音音量较小和远场的漏音问题均得到有效改善。
在一些可替代的实施例中,声学驱动器120也可以包括多个振膜(例如,两个振膜)。所述多个振膜分别振动产生声音,并分别穿过壳体结构后从对应的导声孔处传出。所述多个振膜可以分别由相同或不同的控制器进行控制,并可以产生具有满足一定相位和幅值条件的声音(例如,振幅相同当相位相反的声音、振幅不同且相位相反的声音等)。
在一些实施例中,声学输出装置还可以包括多个声学驱动器。多个声学驱动器可以分别由相同或不同的控制器进行控制,并可以产生具有满足一定相位和幅值条件的声音。仅作为示例性说明,声学输出装置可以包括第一声学驱动器、第二声学驱动器。控制器可以通过一个控制信号控制第一声学驱动器和第二声学驱动器产生具有满足一定相位和幅值条件的声音(例如,振幅相同但相位相反的声音、振幅不同且相位相反的声音等)。第一声学驱动器通过至少一个第一导声孔输出声音,第二声学驱动器通过至少一个第二导声孔输出声音。第一导声孔和第二导声孔可以分别位于耳廓的两侧。需要注意的是,声学驱动器的数量不局限于上述的两个,还可以为三个、四个、五个等,各个声学驱动器中的声音参数(例如,相位、频率和/或振幅)可以根据实际需求作相应调整。
为了进一步说明导声孔分布在耳廓两侧对声学输出装置的声音输出效果的影响,本申请中可以将该声学输出装置与耳廓等效成双声源-挡板的 模型。
仅仅为了方便描述和说明的目的,当声学输出装置上的导声孔尺寸较小时,每个导声孔可以近似视为一个点声源。单点声源产生的声场声压p满足公式(1):
Figure PCTCN2020088190-appb-000001
其中,ω为角频率,ρ 0为空气密度,r为目标点与声源的距离,Q 0为声源体积速度,k为波数,点声源的声场声压的大小与到点声源的距离呈反比。
如上文所述,可以通过在声学输出装置100中设置两个导声孔(例如,导声孔111和导声孔112)以构造双点声源来减小声音输出装置100向周围环境辐射的声音(即远场漏音)。在一些实施例中,两个导声孔,即双点声源,输出的声音具有一定的相位差。当双点声源之间的位置、相位差等满足一定条件时,可以使得声学输出装置在近场和远场表现出不同的声音效果。例如,当两个导声孔对应的点声源的相位相反,即两个点声源之间的相位差的绝对值为180°时,根据声波反相相消的原理,可实现远场漏音的削减。
如图2所示,双点声源产生的声场声压p满足如下公式:
Figure PCTCN2020088190-appb-000002
其中,A 1、A 2分别为两个点声源的强度,φ 1、φ 2为点声源的相位,d为两个点声源之间的间距,r 1与r 2满足公式(3):
Figure PCTCN2020088190-appb-000003
其中,r为空间中任一目标点与双点声源中心位置的距离,θ表示该目标点与双点声源中心的连线与双点声源所在直线的夹角。
通过公式(3)可知,声场中目标点的声压p的大小与各点声源强度、间距d、相位以及与声源的距离有关。
图3是根据本申请一些实施例提供的单点声源和双点声源的频率响应曲线图。如图3所示,在远场,当双点声源的间距一定时,在一定的频率范围内(例如,100Hz-8000Hz),双点声源产生的漏音音量小于单点声源的漏音音量,即在一定频率范围内时,上述双点声源的降漏音能力高于单点声源的降漏音能力。需要注意的是,本实施例中的声源以点声源作为示例,并未对声源的类型进行限制,在其它的实施例中声源还可以为面声源。
图4是根据本申请一些实施例提供的不同间距的双点声源在近场听音位置的频率响应特性曲线。本实施例中以听音位置作为目标点,以进一 步说明目标点处的声压与点声源间距d的关系。这里所说的听音位置可以代表用户耳朵的位置,即听音位置处的声音可以代表两个点声源产生的近场声音。需要知道的是,“近场声音”表示距离声源(例如,导声孔111等效成的点声源)一定范围之内的声音,例如,距离声源0.2m范围内的声音。仅仅作为示例性说明,点声源A 1和点声源A 2位于听音位置的同一侧,且点声源A 1更靠近听音位置,点声源A 1和点声源A 2分别输出幅值相同但相位相反的声音。如图4所示,随着点声源A 1和点声源A 2间距的逐渐增加(例如,由d增加到10d),听音位置的音量逐渐增大。这是由于随着点声源A 1和点声源A 2的间距增大,到达听音位置的两路声音的幅值差(即声压差)变大,声程差更大,使得声音相消的效果变弱,进而使得听音位置的音量增加。但由于声音相消的情况仍存在,听音位置处的音量在中低频段(例如,频率小于1000Hz的声音)仍小于同位置同强度的单点声源产生的音量。但在高频段(例如,频率接近10000Hz的声音),由于声音波长的变小,会出现满足声音相互增强的条件,使得双点声源产生的声音比单点声源的声音大。在本说明书的实施例中,声压幅值,即声压,可以是指声音通过空气的振动所产生的压强。
在一些实施例中,通过增加双点声源(例如,点声源A 1和点声源A 2)的间距可以提高听音位置处的音量,但随着间距的增加,双点声源声音相消的能力变弱,进而导致远场漏音的增加。仅仅作为说明,图5是根据本申请一些实施例提供的不同间距的双点声源在远场的漏音指数图。如图5所示,以单点声源的远场漏音指数作为参照,随着双点声源的间距由d增加到10d,远场的漏音指数逐渐升高,说明漏音逐渐变大。关于漏音指数的具体内容可以参考本申请说明书公式(4)及其相关描述。
在一些实施例中,声学输出装置中的至少两个导声孔分布于耳廓的两侧,有利于提高声学输出装置的输出效果,即增大近场听音位置的声音强度,同时减小远场漏音的音量。仅仅为了方便说明声学输出装置,将人体耳廓等效成挡板,将两个导声孔发出的声音等效成两个点声源(例如,点声源A 1和点声源A 2)。图6是根据本申请一些实施例提供的双点声源之间设置挡板的示例性分布示意图。如图6所示,当点声源A 1和点声源A 2之间设有挡板时,在近场,点声源A 2的声场需要绕过挡板才能与点声源A 1的声波在听音位置处产生干涉,相当于增加了点声源A 2到听音位置的声程。因此,假设点声源A 1和点声源A 2具有相同的幅值,则相比于没有设置挡板的情况,点声源A 1和点声源A 2在听音位置的声波的幅值差增大,从而两路声音在听音位置进行相消的程度减少,使得听音位置的音量增大。在远场,由于点声源A 1和点声源A 2产生的声波在较大的空间范围内都不需要绕过挡板就可以发生干涉(类似于无挡板情形),则相比于没有挡板的情况,远场的漏音不会明显增加。因此,在点声源A 1和点声源A 2之间设置挡板结构,可以在远场漏音音量不显著增加的情况下,显著提升近场听 音位置的音量。
图7是根据本申请一些实施例提供的耳廓位于双点声源之间时近场的频率响应特性曲线,图8是根据本申请一些实施例提供的耳廓位于双点声源之间时远场的频率响应特性曲线。在本申请中,当双点声源分别位于耳廓的两侧时,耳廓具有挡板的效果,因此为方便起见,耳廓也可以被称作挡板。作为示例性说明,由于耳廓的存在,其结果可等效为近场声音由间距为D 1的双点声源产生(也称为模式1),而远场声音由间距为D 2的双点声源产生(也称为模式2),其中D 1>D 2。如图7所示,当频率较低时(例如,频率小于1000Hz时),双点声源分布在耳廓两侧时的近场声音(即用户耳朵听到的声音)的音量与模式1的近场声音音量基本相同,均大于模式2的近场声音音量,且接近单点声源的近场声音音量。随着频率的增加(例如,频率在2000Hz-7000Hz时),模式1和双点声源分布在耳廓两侧时的近场声音的音量大于单点声源。由此说明当用户的耳廓位于在双点声源之间时,可以有效地增强声源传递到用户耳朵的近场声音音量。如图8所示,随着频率的增加,远场漏音音量都会有所增加,但是当双点声源分布在耳廓两侧时,其产生的远场漏音音量与模式2的远场漏音音量基本相同,均小于模式1的远场漏音音量和单点声源的远场漏音音量。由此说明当用户的耳廓位于双点声源之间时,可以有效地降低声源传递到远场的声音,即可以有效减少声源向周围环境发出的漏音。
关于上述漏音指数的具体含义和相关内容可以参考以下描述。在开放双耳的声学输出装置的应用中,需保证传递到听音位置的声压P ear足够大以满足听音需求,同时需保证其向远场辐射的声音声压P far足够小以降低漏音。因此,可取漏音指数α作为评价降漏音能力的指标:
Figure PCTCN2020088190-appb-000004
通过公式(4)可知,漏音指数越小,声学输出装置的降漏音能力越强,在听音位置处近场听音音量相同的情况下,远场的漏音越小。如图9所示,在频率小于10000Hz时,双点声源分布在耳廓两侧时的漏音指数要小于模式1(双点声源之间无挡板结构,且间距为D 1)、模式2(双点声源之间无挡板结构,且间距为D 2)以及单点声源情况下的漏音指数,由此说明在双点声源分别位于耳廓两侧时,声学输出装置具有更好地降漏音能力。
图10是根据本申请一些实施例提供的漏音指数的测量示意图。如图10所示,听音位置位于点声源A 1的左侧,漏音的测量方式为选取以双点声源(如图10所示的A 1和A 2)中心为圆心、半径为r的球面上各点声压幅值的平均值作为漏音的值。需要知道的是,本说明书中测量漏音的方法仅作原理和效果的示例性说明,并不作限制,漏音的测量和计算方式也可以根据实际情况进行合理调整,例如,取远场位置的一个点或一个以上的点 作为测量漏音的位置。又例如,以双点声源中心为圆心,在远场处根据一定的空间角均匀地取两个或两个以上的点的声压幅值进行平均。在一些实施例中,听音的测量方式可以为选取点声源附近的一个位置点作为听音位置,以该听音位置测量得到的声压幅值作为听音的值。在一些实施例中,听音位置可以在两个点声源的连线上,也可以不在两个点声源的连线上。听音的测量和计算方式也可以根据实际情况进行合理调整,例如,取近场位置的其他点或一个以上的点的声压幅值进行平均。又例如,以某个点声源为圆心,在近场处根据一定的空间角均匀地取两个或两个以上的点的声压幅值进行平均。在一些实施例中,近场听音位置与点声源之间的距离远小于点声源与远场漏音测量球面的距离。
需要说明的是,本申请中将输出声音的导声孔作为点声源仅作为原理和效果的说明,并不限制实际应用中导声孔的形状和大小。在一些实施例中,当导声孔的面积较大时,还可以等效成以面声源的形式向外辐射声音。在一些实施例中,点声源亦可由其他结构实现,如振动面、声辐射面等。对于本领域中的技术人员,在不付出创造性活动的情况下,可以获知导声孔、振动面、声辐射面等结构产生的声音在本申请所论述的空间尺度下均可等效成点声源,有类似的声音传播特性及数学描述方式。进一步地,对于本领域中的技术人员,在不付出创造性活动的情况下,可以获知本申请中所述的“声学驱动器从至少两个第一导声孔输出声音”实现的声学效果亦可由上述其他声学结构实现相同的效果,例如“至少两个声学驱动器分别从至少一个声辐射面输出声音”。还可以根据实际情况,选择其他声学结构进行合理调整与组合,亦可实现相同的声学输出效果,上述以面声源等结构向外辐射声音的原理与上述点声源类似,在此不再赘述。进一步地,声学输出装置上的导声孔(点声源或面声源)的数量不限于上述的两个,其数量可以为三个、四个、五个……等,由此形成多组双点/面声源,或者一组多点/面声源的形式,在此不做具体限定,其同样可以实现本申请中双点声源所能达到的技术效果。
为了进一步说明双点声源或两个导声孔之间有无挡板时对声学输出装置的声音输出效果的影响,现以不同条件下的听音位置的近场音量或/和远场漏音音量作具体说明。
图11是根据本申请一些实施例提供的两个点声源之间在有无挡板的情况下的频率响应曲线图。如图11所示,声学输出装置在两个点声源(即两个导声孔)之间增加挡板以后,在近场,相当于增大了两个点声源的间距,在近场听音位置的音量相当于由一组距离较大的双点声源产生,使得近场的听音音量相对于无挡板的情况明显增加。在远场,由于两个点声源产生的声波的干涉受挡板的影响很小,漏音相当于是由一组距离较小的双点声源产生,故漏音在有/无挡板的情况下并变化不明显。由此可知,通过在两个导声孔(双点声源)之间设置挡板,在有效提升声音输出装置降漏 音能力的同时,还可以显著增加声音输出装置的近场音量。因而对声学输出装置中起到发声作用的组件要求大大降低,同时由于电路结构简单,能够减少声学输出装置的电损耗,故在电量一定的情况下,还能大大延长声学输出装置的使用时间。
图12是根据本申请一些实施例提供的有挡板和无挡板的频率响应曲线。如图12所示,双点声源之间有挡板时漏音音量明显小于双点声源之间无挡板时漏音音量,这说明当双点声源之间设置挡板结构时的降漏音能力明显大于无挡板结构时的降漏音能力。
图13是根据本申请一些实施例提供的不同间距下双点声源在频率为300Hz时的声压幅值曲线。图14是根据本申请一些实施例提供的不同间距下双点声源在频率为1000Hz时的声压幅值曲线。如图13和图14所示,在近场,当频率为300Hz或1000Hz时,随着双点声源间距d的增大,双点声源之间存在挡板时的听音音量始终大于双点声源之间无挡板时的听音音量,这说明在该频率下,双点声源之间设置挡板结构可以有效地提高近场的听音音量。在远场,双点声源之间有挡板时漏音音量与双点声源之间无挡板时漏音音量相当,这说明在该频率下,双点声源之间是否设置挡板结构对远场漏音的影响不大。
图15是根据本申请一些实施例提供的不同间距下双点声源在频率为5000Hz时的声压幅值曲线。如图15所示,在近场,当频率为5000Hz时,随着双点声源间距d的增大,双点声源之间存在挡板时的听音音量始终大于双点声源之间无挡板时的听音音量。在远场,有挡板和无挡板的双点声源的漏音音量随间距d的变化而呈现波动性变化,但整体上可以看出,双点声源之间是否设置挡板结构对远场漏音的影响不大。
图16是根据本申请一些实施例提供的双点声源间距d为1cm时的近场频率响应特性曲线,图17是根据本申请一些实施例提供的双点声源间距d为2cm时的近场频率响应特性曲线,图18是根据本申请一些实施例提供的双点声源间距d为4cm时的近场频率响应特性曲线,图19是根据本申请一些实施例提供的双点声源间距d为1cm时的远场的漏音指数曲线,图20是根据本申请一些实施例提供的双点声源间距d为2cm时的远场的漏音指数曲线,图21是根据本申请一些实施例提供的双点声源间距d为4cm时的远场的漏音指数曲线。如图16至图19所示,对于不同的导声孔的间距d(例如,1cm、2cm、4cm),在一定的频率下,在近场听音位置(例如,用户耳朵),两个导声孔分别设置于耳廓两侧(即,图中所示“有挡板作用”的情况)时提供的音量都要比两个导声孔未设置于耳廓两侧(即,图中所示“无挡板作用”的情况)时提供的音量大。这里所说的一定频率可以是在10000Hz以下,或者优选地,在5000Hz以下,或者更优选地,在1000Hz以下。
如图19至21所示,对于不同的导声孔的间距d(例如,1cm、2cm、 4cm),在一定的频率下,在远场位置(例如,远离用户耳朵的环境位置),两个导声孔分别设置于耳廓两侧时产生的漏音音量都要比两个导声孔未设置于耳廓两侧时产生的漏音音量小。需要知道的是,随着两个导声孔或者双点声源的间距增加,远场位置处声音相消干涉会减弱,导致远场的漏音逐渐增加,降漏音能力变弱。因此两个导声孔或者双点声源的间距d不能太大。在一些实施例中,为了保持声音输出装置在近场可以输出尽可能大的声音,同时抑制远场的漏音,两个导声孔之间的间距d可以设置为不小于1cm,优选地,两个导声孔之间的间距d可以设置为不大于20cm,优选地,两个导声孔之间的间距d可以设置为不大于12cm,更优选地,两个导声孔之间的间距d可以设置为不大于10cm,进一步优选地,两个导声孔之间的间距d可以设置为不大于6cm。在一些实施例中,考虑到声学输出装置的尺寸以及导声孔的结构要求,两个导声孔之间的间距d可以设置为不小于1cm且不大于12cm,优选地,两个导声孔之间的间距d可以设置为不小于1cm且不大于10cm,优选地,两个导声孔之间的间距d可以设置为不小于1cm且不大于8cm,更优选地,两个导声孔之间的间距d可以设置为不小于1cm且不大于6cm,更优选地,两个导声孔之间的间距d可以设置为不小于1cm且不大于3cm。
需要注意的是,以上描述仅为描述方便,并不用于限制本申请。可以理解,对于本领域的技术人员来说,在了解本申请的原理后,可以在不违背这一原理的情况下,对上述声学输出装置进行形式和细节上的各种修正和改变,例如,在一些实施例中,耳廓两侧的导声孔数量不限于上述的一个,还可以为多个,可以相同或不同。例如耳廓一侧的导声孔数量可以为两个,另一侧的导声孔数量可以为两个或三个。以上这些改变均在本申请的保护范围内。
在一些实施例中,在保持双点声源间距一定的前提下,听音位置相对于双点声源的位置对于近场听音音量和远场降漏音具有一定影响。为了提高声学输出装置的输出效果,在一些实施例中,声学输出装置上可以设置至少两个导声孔,且该至少两个导声孔包括两个分别位于用户耳廓前后两侧的导声孔。在一些特定的实施例中,考虑到位于用户耳廓后侧的导声孔传出的声音需要绕开耳廓才能到达用户的耳道,位于耳廓前侧的导声孔距离用户耳道的声学路径(即,导声孔到用户耳道入口位置的声学距离)短于位于耳廓后侧的导声孔距离用户耳朵的声学路径。
因此,根据声学输出装置的实际应用场景,可以将用户的耳廓作为挡板,将声学输出装置上两个导声孔分别设置在耳廓的前后两侧,耳道作为听音位置位于两个导声孔之间。在一些实施例中,通过设计两个导声孔在声学输出装置上的位置,使得耳廓前侧的导声孔到耳道的距离比耳廓后侧的导声孔到耳道的距离小,此时由于耳廓前侧的导声孔距离耳道的距离较近,耳廓前侧导声孔在耳道处产生的声音幅值较大,而耳廓后侧导声孔 在耳道处产生的声音幅值较小,减小了两个导声孔处的声音在耳道处的干涉相消,从而确保耳道处的听音音量较大。在一些实施例中,声学输出装置上可以包括一个或多个在佩戴时与耳廓接触的接触点(例如,壳体结构上用于匹配耳朵形状的“拐点”)。所述接触点可以位于两个导声孔的连线上或者位于两个导声孔连线的一侧。且前侧的导声孔到接触点的距离与后侧的导声孔到接触点的距离之比可以在0.05-20之间,优选地,在0.1-10之间,更优选地,在0.2-5之间,进一步优选地,在0.4-2.5之间。
需要知道的是,声学输出装置中声学驱动器到导声孔的声程对近场音量和远场漏音具有一定影响。该声程可以通过调整声学输出装置内振膜和导声孔之间的长度来改变。在一些实施例中,声学驱动器包括一个振膜,且振膜的前后侧分别通过前室和后室耦合到两个导声孔。所述振膜到两个导声孔之间的声程不同。优选地,所述振膜到两个导声孔的声程比为0.5-2。更优选地,所述振膜到两个导声孔的声程比为0.6-1.5。进一步优选地,所述振膜到两个导声孔的声程比为0.8-1.2。
在一些实施例中,可以在保持两个导声孔处产生的声音的相位相反的前提下,改变两个导声孔处产生的声音的幅值来提高声学输出装置的输出效果。具体地,可以通过调节两个导声孔与声学驱动器之间声学路径的阻抗来达到调节导声孔处声音幅值的目的。在本说明书的实施例中,阻抗可以是指声波传导时介质位移需要克服的阻力。所述声学路径中可以填充或者不填充阻尼材料(例如,调音网、调音棉等)来实现声音的调幅。例如,在一些实施例中,声学路径中可以设置谐振腔、声孔、声狭缝、调音网或调音棉来调整声阻,以改变声学路径的阻抗。再例如,在一些实施例中,还可以通过调节两个导声孔的孔径以改变声学路径的声阻。优选地,声学驱动器(的振膜)至两个导声孔的声阻抗之比为0.5-2。更优选地,声学驱动器(的振膜)至两个导声孔的声阻抗之比为0.8-1.2。
需要注意的是,以上描述仅为描述方便,并不用于限制本申请。可以理解,对于本领域的技术人员来说,在了解本申请的原理后,可以在不违背这一原理的情况下,对上述声学输出装置进行形式和细节上的各种修正和改变,例如,听音位置可以不在双点声源的连线上,也可以在双点声源连线的上方、下方或延伸方向上。又例如,点声源至耳廓的间距、耳廓的高度的测量方式还可以根据不同的场景进行调整。以上类似的改变均在本申请的保护范围内。
图22是根据本申请一些实施例提供的声学输出装置的结构示意图。如图22所示,声学输出装置2200可以包括壳体结构2210以及设置在壳体结构2210内的声学驱动器2220。在一些实施例中,声学输出装置2200可以通过壳体结构2210佩戴在用户身体上(例如,人体的头部、颈部或者上部躯干),同时壳体结构2210和声学驱动器2220可以靠近但不堵塞耳道,使得用户耳朵保持开放的状态,在用户既能听到声学输出装置2200输出的 声音的同时,又能获取外部环境的声音。例如,声学输出装置100可以环绕设置或者部分环绕设置在用户耳朵的周侧,并可以通过气传导或骨传导的方式进行声音的传递。
壳体结构2210可以用于佩戴在用户的身体上,并可以承载声学驱动器2220。在一些实施例中,壳体结构2210可以是内部中空的封闭式结构,且声学驱动器2220位于壳体结构2210的内部。在一些实施例中,壳体结构2210内部包括腔体,声学驱动器2220位于腔体中,并将腔体分隔为第一腔体2231(也被称为前腔)和第二腔体2232(也被称为后腔)。在一些实施例中,外壳结构2210还可以包括第一声导管2233和第二声导管2234。第一声导管2233的一端与第一腔室2231声学耦合,第二声导管2234的一端与第二腔室2232声学耦合,第一声导管2233的另一端和第二声导管2234的另一端可以分别位于耳廓的两侧。在一些实施例中,声学驱动器2220所位于的前腔或后腔需要满足一定的容积要求。例如,前腔或后腔需要提供足够的容积来容纳声学驱动器2220的线圈、磁体及相应的支撑结构。在这种情况系下,前腔或后腔会具有比其对应的声导管更大的横截面积。再例如,前腔或后腔的容积大小会对应特定的谐振峰,从而影响声学驱动器2220在振膜两侧产生的声音。由第一声导管2233传递的声音可以通过第一出声位置2241向外界辐射,由第二声导管2234传递的声音可以通过第二出声位置2242向外界辐射。第一出声位置2241和第二出声位置2242可以是声导管上开设的一个或多个导声孔。第一出声位置2241和第二出声位置2242输出的声音可以形成双声源(如本说明书中其它地方描述的双点声源或/和双声辐射面)。在一些可替代的实施例中,第一声导管2233的另一端和第二声导管2234的另一端也可以位于耳廓的同一侧(例如,耳廓的前侧或后侧)。
需要知道的是,以上对声学输出装置2200的描述仅仅是出于说明的目的,在不违背原理的情况下,本领域的技术人员可以对上述结构做出调整,并且调整后的结构仍然在本申请的保护范围内。例如,声学输出装置2200中的声导管不局限于图22中的第一声导管2233和第二声导管2234,还可以包括第三声导管和第四声导管等其他声导管,关于声导管的具体数量可以根据实际情况进行设置,在此不作进一步限定。
在一些实施例中,可以在保持第一出声位置2241和第二出声位置2241输出的声音的相位相反的前提下,改变声音的幅值以提高声学输出装置的输出效果。例如,可以使得耳廓前侧导声孔,即第一出声位置2241处输出的声音具有较大的幅值,而使得耳廓后侧导声孔,即第二出声位置2240处输出的声音具有较小的幅值,这样两个出声位置所输出的声音在耳道处产生的声音幅值会具有更大的差别,从而可以减小两个出声位置所辐射出的声音在耳道处的干涉相消,确保耳道处的听音音量较大。
在一些实施例中,当第一声导管2233和第二声导管2234的管径或 截面积较大时,第一声导管2233和第二声导管2234的容积不可忽略。此时,当声波通过第一声导管2233和第二声导管2234时,会产生附加声质量,使得第一声导管2233和第二声导管2234与容纳声学驱动器2220的腔体产生谐振,并在频响中表现出谐振峰。在本说明书的实施例中,附加声质量可以是指振膜振动发出声波时推动的空气等效质量。可以理解为,振膜需要推动空气发出声波,空气本身具有一定质量,被推动的空气等效质量就是附加声质量。如图23所示,“管径D-前腔”和“管径2D-前腔”对应的曲线分别表示第一声导管2233的管径在“D”和“2D”时的频响,“管径D-后腔”和“管径2D-后腔”对应的曲线分别表示第二声导管2234的管径在“D”和“2D”时的频响。当第一声导管2233和第二声导管2234的管径增大,即从“D”变为“2D”时,声导管产生的谐振峰的频率会向低频区域移动。为了防止声导管在低频区域产生谐振峰而影响到声学输出装置在中低频的频响(例如,声导管产低频谐振峰时会使对应频率处的频率响应不平坦),第一声导管2233和/或第二声导管2234的管径(或截面积)不宜过大。在一些实施例中,第一声导管2233和第二声导管2234的截面积不大于400mm 2(管的直径约20mm)。优选地,第一声导管2233和第二声导管2234的截面积不大于100mm 2(管的直径约10mm)。更优选地,第一声导管2233和第二声导管2234的截面积不大于25mm 2(管的直径约5mm)。进一步优选地,第一声导管2233和第二声导管2234的截面积不大于9mm 2(管的直径约3mm)。
在一些实施例中,考虑到当声导管的管径较小时,其内部的摩擦力和粘滞力会抑制声音的传播,因此声导管的管径也不宜过小。在一些实施例中,第一声导管2233和第二声导管2234的截面积不小于0.25mm 2(管的直径约0.5mm)。优选地,第一声导管2233和第二声导管2234的截面积不小于0.5mm 2(管的直径约0.7mm)。进一步优选地,第一声导管2233和第二声导管2234的截面积不小于1mm 2(管的直径约1mm)。需要注意的是,以上对第一声导管2233和第二声导管2234的直径的描述是在假设声导管的截面为圆形时给出的近似值,在实际的场景下,声导管的形状不限于圆形管,还可以为椭圆形管、半圆形管等,在此不作进一步限定。在一些实施例中,第一声导管2233和第二声导管2234可以具有相同或不同的截面积。例如,当设置两个声导管具有不同的截面积时,两个声导管对应的频响不同,表现为声学驱动器2220两侧的声阻抗不同。此时,特定频段的声音在两个声导管中受到的抑制/增强的程度不同,这样可以提升该特定频段在听音位置的音量。在一些场景下,还可以通过在声导管中添加阻尼材料(例如,调音网、调音棉等)来起到类似的作用。
在一些实施例中,声导管的长度和长径比也会对声学驱动器2220输出的声音产生影响。因此,可以通过调节第一声导管2233和第二声导管2234的长度和长径比对声学驱动器2220输出的声音进行调整。在本说明 书的实施例中,长径比可以是指声导管的长度与直径的比值。关于声学驱动器2220输出的声音的声压的变化情况参考公式(5):
|P|=|P 0|exp(-αL)    (5)
其中,P 0为声源声压,L为管长,α满足公式(6):
Figure PCTCN2020088190-appb-000005
其中,a为导管半径,c 0为声速,ω为角频率,η/ρ 0为媒质的动力粘度。由公式(5)和公式(6)可知声压的大小与第一声导管和第二声导管的长度负相关。例如,当第一声导管2233和第二声导管2234的长度越大,声学输出装置输出声音的声压越低。
图24是根据本申请一些实施例提供的不同半径的声导管对不同频率声音的衰减程度示意图。如图24所示,当频率一定时,声导管(第一声导管2233和/或第二声导管2234)在不同半径(如图24中的半径长度分别为0.5mm、1mm、2mm、5mm)下,随着声导管长度的增加,声音的衰减程度越高。通过调节声导管的长径比可以有效降低声音在声导管中传播的衰减量。在一些实施例中,声导管的长径比不大于200。优选地,声导管的长径比不大于150。更优选地,声导管的长径比不大于100。具体地,声导管的半径不小于0.5mm,声导管长度不大于100mm。优选地,声导管半径不小于0.5mm,声导管长度不大于50mm。优选地,声导管半径不小于1mm,声导管长度不大于100mm。优选地,声导管半径不小于1mm,声导管长度不大于80mm。优选地,声导管半径不小于2mm,声导管长度不大于200m。优选地,声导管半径不小于2mm,声导管长度不大于150mm。更优选地,声导管半径不小于5mm,声导管长度不大于500mm。进一步优选地,声导管半径不小于5mm,声导管长度不大于350mm。
由于声导管及其管口辐射阻抗相互作用,特定频率(例如,800Hz-10000Hz)的声音可能会在声导管中形成驻波,从而导致输出的不同频率的声音形成相应的峰/谷,影响声音的输出效果。因此,在一些实施例中,通过调节声导管的长度还可以调节声音中峰/谷对应的频率。图25是根据本申请一些实施例提供的声导管在不同长度下的频率响应曲线图。如图25所示,四条曲线分别显示了声导管的长度在30mm、50mm、100mm和200mm时的频响。随着声导管长度的增加,频响曲线上峰/谷的频率向低频方向移动,峰/谷的数量也增多。在一些实施例中,声导管的长度可以被设为不大于200mm,以使得声导管的频响曲线在20Hz-800Hz的范围内较为平坦(没有或者较少的峰/谷)。优选地,声导管长度可以被设为不大于100mm,以使得声导管的频响曲线在20Hz-1500Hz的范围内较为平坦(没有或者较少的峰/谷)。优选地,声导管长度可以被设为不大于50mm,以使得声导管的频响曲线在20Hz-3200Hz的范围内较为平坦(没有或者较少的峰/谷)。优选地,声导管长度可以被设为不大于30mm,以使得声导管的 频响曲线在20Hz-5200Hz的范围内较为平坦(没有或者较少的峰/谷)。在一些实施例中,可以在声导管对应的导声孔处设置阻抗匹配层以减少峰/谷的影响。阻抗匹配层可以是指与声导管自身阻抗大小相同且相位相同的结构。在一些实施例中,阻抗匹配层可以包括调音网、调音棉等结构。
在一些实施例中,第一声导管2233和第二声导管2234的长度可以相同或不同。当第一声导管2233和第二声导管2234的长度相同时,声学驱动器2220(的振膜)两侧的声音分别到达第一声导管2233和第二声导管2234的声音输出端的声程相同,可以使从第一声导管2233和第二声导管2234输出的声音相位相反,以降低声学输出装置在远场的漏音音量。当第一声导管2233和第二声导管2234的长度不相同时,可以使从第一声导管2233和第二声导管2234输出的声音具有不完全相反的相位,以提高声学输出装置在近场的听音音量。图26是根据本申请一些实施例提供的两个声导管在不同长度下的频率响应曲线图。如图26所示,“单极子”表示具有一个声源的声学输出装置,“L”表示第一声导管2233和第二声导管2234的长度相同,“1.05*L”表示第一声导管2233和第二声导管2234的长度比为1.05,依此类推。由图26可知,在特定频率范围内(例如,100Hz-5500Hz),具有第一声导管2233和第二声导管2234的双声源(或双点声源)声学输出装置的漏音音量明显低于具有一个声源的声学输出装置。当两个声导管长度相同时,声学输出装置具有最小的漏音音量。而对于同一频率的声音,随着两个声导管长度比的增加,声学输出装置的漏音音量会呈现递增的趋势。在一些实施例中,第一声导管2233和第二声导管2234的长度之比可以为0.5-2。
在一些实施例中,还可以通过控制容纳声学驱动器2220的腔体的容积对两个出音位置处的频响进行调节。例如,在一些实施例中,第一腔体2231的容积大于第二腔体2232的容积,可以使得第一腔体2231对应的第一谐振峰小于第二腔体2232对应的第二谐振峰。图27是根据本申请一些实施例提供的不同腔体容积的频率响应曲线图。如图27所示,第一腔体2231和/或第二腔体2232容积变大后会导致其对应的频响曲线上峰/谷的位置向低频区域移动。具体地,容积为2V的第一腔体2231和第二腔体2232相对应的频响曲线(图27中的“容积2V-前腔”和“容积2V-后腔”)相对于容积为V的第一腔体2231和第二腔体2232相对应的频响曲线(图27中的“容积V-前腔”和“容积V-后腔)会在相对较低的频率产生峰/谷,同时第一腔体2231和第二腔体2232相对应的频响曲线具有较大差异,从而影响双声源(点声源和/或声辐射面)的相位相消效果,导致峰/谷所在的频段漏音会变大。在一些实施例中,为了保持双声源在中低频的声音相消效果,第一腔体2231和第二腔体2232的容积均不超过2500mm 3(例如,对于16mm直径的声学输出装置,腔体高度10mm)。更优选地,第一腔体2231和第二腔体2232的容积均不超过1200mm 3(例如,对于16mm直径 的声学输出装置,腔体高度5mm)。更优选地,第一腔体2231和第二腔体2232的容积均不超过700mm 3(例如,对于12mm直径的声学输出装置,腔体高度5mm)。
需要注意的是,以上描述仅为描述方便,并不用于限制本申请。可以理解,对于本领域的技术人员来说,在了解本申请的原理后,可以在不违背这一原理的情况下,对上述声学输出装置进行形式和细节上的各种修正和改变,例如,第一腔体2231和第二腔体2232不局限于规则的圆柱形空间,还可以为其它规则或不规则形状的空间,例如,圆台型空间、半球形空间等,在此不作进一步限定。
图28是根据本申请一些实施例提供的声学输出装置的结构示意图。如图28所示,声学输出装置2800可以包括壳体结构2810以及位于壳体结构2810中的第一声学驱动器2821和第二声学驱动器2822。第一声学驱动器2821和第二声学驱动器2822分别构成位于壳体结构2810内的腔体2820的两端。其中,第一声学驱动器2821通过第一出声位置2811向外界传输声音,第二声学驱动器2822通过第二出声位置2812向外界传输声音。在一些实施例中,第一出声位置2811和第二出声位置2812可以分别位于人体耳廓的两侧,耳廓可以起到挡板作用,增加第一出声位置2811和第二出声位置2812向用户耳朵传递声音的声程差(即第一出声位置2811和第二出声位置2812发出的声音到达用户耳道的路程差),使得声音相消的效果变弱,进而增加用户耳朵听到的声音(即近场声音)的音量,从而为用户提供较佳的听觉体验。另一方面,耳廓对出声位置向环境传播声音(即远场声音)的影响很小,当两个导声孔产生的远场声音相互抵消时,可以在一定程度上抑制声学输出装置的漏音,同时能够防止声学输出装置产生的声音被该用户附近的他人听见。在其它的实施例中,第一出声位置2811和第二出声位置2812也可以位于耳廓的同一侧。
在一些实施例中,为了提高听音音量和降低漏音音量,第一声学驱动器2821和第二声学驱动器2822可以产生幅值相等,相位相反的向外辐射的声音,构成本说明书中其它地方所描述的双声源。第一声学驱动器2821(的振膜)的面朝腔体2820的一侧和第一声学驱动器2821(的振膜)的背朝腔体2820的一侧虽然也产生相位相反的声波,但由于第一声学驱动器2821的面朝腔体2820的一侧置于腔体2820内部,相当于与第一声学驱动器2821的背朝腔体2820的一侧相互隔绝,可以防止第一声学驱动器2821两侧相位相反的声波在近场互相抵消,从而保证听音位置的音量。
在一些实施例中,为了为保护第一声学驱动器2821和/或第二声学驱动器2822的声辐射面(例如,动圈式振膜扬声器的振膜),第一声学驱动器2821和/或第二声学驱动器2822的背朝腔体2820的一侧可以设置有阻挡板(图28中未示出)。该阻挡板可以与壳体结构2810固定连接,阻挡板与第一声学驱动器2821和/或第二声学驱动器2822可以具有一定间距。 在一些实施例中,阻挡板上可以开设有用于将声音传输至外界的出声孔(图28中未示出)。在其它的实施例中,出声孔也可以位于阻挡板与第一声学驱动器2821和/或第二声学驱动器2822之间的壳体结构2810的侧壁上。在一些实施例中,出声孔处可以设有网状层(如防尘网),以起到保护第一声学驱动器2821和/或第二声学驱动器2822和提供声阻的作用。
在一些可替代的实施例中,为了保护第一声学驱动器2821和/或第二声学驱动器2822的声辐射面(如,动圈式振膜扬声器的振膜),可以将第一声学驱动器2821和/或第二声学驱动器2822反置,即将第一声学驱动器2821和/或第二声学驱动器2822的正面(例如,动圈式振膜扬声器的不含线圈、磁体、导磁底板等结构的一侧)作为面朝腔体2820的一侧,而将第一声学驱动器2821和/或第二声学驱动器2822的背面(例如,动圈式振膜扬声器的包含线圈、磁铁和导磁底板的一侧)作为背朝腔体2820的一侧。由于声学驱动器的背面一般包含金属导磁材料(例如,铁),其质地较为坚固,可以对声学驱动器的振膜等质地较为软的结构起到保护作用。因此,将第一声学驱动器2821和/或第二声学驱动器2822反置可以起到保护声学驱动器的效果。
为了减小第一声学驱动器2821(的振膜)和第二声学驱动器2822(的振膜)之间的声阻抗,在一些实施例中,腔体2820可以是导通的,即保持第一声学驱动器2821所在的一端和第二声学驱动器2822所在的一端之间的连通(此时可认为两个声学驱动器共用一个后腔)。当第一声学驱动器2821(的振膜)和第二声学驱动器2822(的振膜)反相振动时,腔体2820内的声学传播介质(例如,腔体2820中的空气)不会因为第一声学驱动器2821(的振膜)和第二声学驱动器2822(的振膜)的往复振动而压缩或扩张,使第一声学驱动器2821(的振膜)和第二声学驱动器2822(的振膜)振动基本不受腔体2820内声学传播介质弹性的影响,从而提升第一声学驱动器2821(的振膜)和第二声学驱动器2822(的振膜)声辐射的幅值,尤其是低频段声辐射的幅值。
在一些实施例中,声学输出装置2800中腔体2820的结构较为简单,对声音的传播影响较少,使得第一出声位置2811的频响与第一声学驱动器2821的频响、第二出声位置2812的频响与第二声学驱动器2822的频响较为接近。当第一声学驱动器2821(的振膜)和第二声学驱动器2822(的振膜)本身频响比较平坦,没有明显峰谷的时候,声学输出装置2800最终的频响也会较为平坦。
在一些实施例中,第一声学驱动器2821面朝腔体2820的一侧产生的声波与第二声学驱动器2822面朝腔体2820的一侧产生的声波作用于腔体2820的内壁时会产生驻波,使得声学输出装置2800的频响曲线中存在峰/谷。通过调节腔体2820的有效长度可以改变峰/谷的位置。在本说明书的实施例中,腔体的有效长度可以是指声音在腔体中传播的声学路径长度。 图29是根据本申请一些实施例提供的不同有效长度的腔体的频率响应特性曲线。如图29所示,相对于有效长度较小的腔体(图29中所示的“短后腔”),有效长度较大的腔体(图29中所示的“长后腔”)的峰/谷所对应的频率较低。在这种情况下,为了避免腔体对声学输出装置输出的中低频声音的影响,应尽可能设置腔体的有效长度使得其对应的峰/谷位于较高的频率位置。在一些实施例中,为了达到以上目的,第一声学驱动器2821与第二声学驱动器2822之间的腔体的有效长度不大于30cm。优选地,第一声学驱动器2821与第二声学驱动器2822之间的腔体2820的有效长度不大于25cm。更优选地,第一声学驱动器2821与第一声学驱动器2822之间的腔体2820的有效长度不大于15cm。需要注意的是,本说明书实施例中关于壳体结构2810及腔体2820仅作为示例性说明,关于壳体结构2810及腔体2820并不局限于图28所示的形状,能够实现与本说明书实施例中壳体结构2810及腔体2820类似效果的各种变型或修改均在本申请的保护范围内。
在一些实施例中,为了减弱腔体2820内驻波对声学输出装置频响的影响,第一声学驱动器2821(的振膜)与第二声学驱动器2822(的振膜)之间可以相对倾斜设置。在本说明书的实施例中,第一声学驱动器2821(的振膜)与第二声学驱动器2822(的振膜)之间相对倾斜设置是指第一声学驱动器2821的截面与第二声学驱动器2822的截面不平行或不在同一平面。也可以以腔体2820的轴向作为参考,第一声学驱动器2821(的振膜)与第二声学驱动器2822(的振膜)之间相对倾斜设置是指第一声学驱动器2821(的振膜)和第二声学驱动器2822(的振膜)与其对应位置处腔体2820的轴向形成不同大小的夹角。例如,第一声学驱动器2821的振膜可以与腔体2820在第一声学驱动器2821处的轴向垂直,而第二声学驱动器2822的振膜可以与腔体2820在第二声学驱动器2822处的轴向之间形成小于90度的夹角。在一些实施例中,为了减弱腔体2820内驻波对声学输出装置频响的影响,还可以在腔体2820中设置声学材料和/或声学结构。在一些实施例中,声学材料可以包括纤维材料、颗粒材料、泡沫材料等多孔材料。在一些实施例中,声学结构可以包括共振器、穿孔板、薄膜共振结构、薄板共振结构、吸声尖劈等,或其任意组合。
图30是根据本申请一些实施例提供的声学输出装置的结构示意图。如图30所示,为了减弱腔体2820内驻波对频响的影响,第一声学驱动器2821(的振膜)和第二声学驱动器2822(的振膜)之间的腔体2820上可以开设有至少一个孔口2813。第一声学驱动器2821(的振膜)面朝腔体2820的一侧和第二声学驱动器2822(的振膜)面朝腔体2820的一侧发出的声音可以通过孔口2813输出到环境中,从而抑制驻波的形成。图31是根据本申请一些实施例提供的腔体上有无孔口的频率响应特性曲线。如图31所示,腔体上开设有孔口2813(图31中所示的“后腔开孔”)的声音频响曲线相 对于腔体上未开设有孔口2813的声音频响曲线,驻波引起的峰/谷有所减弱。
在一些实施例中,孔口2813可以靠近第一出音位置2811或第二出音位置2812,孔口2813发出的声音可以与第一出音位置2811或第二出音位置2812处发出的声音在近场处干涉相消,由此导致第一出音位置2811和第二出音位置2812在近场处干涉相消的程度减弱,从而提高了近场听音音量。图32是根据本申请一些实施例提供的腔体上开设一个孔口的声压示意图。图33是根据本申请一些实施例提供的腔体上开设有一个孔口的频率响应特性曲线图。如图32所示,腔体具有类似马蹄形的形状,腔体上开设一个孔口2813。当第一声学驱动器2811和第二声学驱动器2822反向振动时,声学输出装置可以视为两正一负的三极子状态,声学输出装置的漏音增大,相应的声学输出装置的听音音量也随之增大。图32中的灰度分布表示有孔口2813存在时腔体内的驻波形态。如图33所示,在特定频段(例如,250Hz-500Hz,2000Hz-3000Hz),腔体上开设有孔口2813(图33中所示的“单孔”)时的频率响应明显大于腔体上未开设孔口2813(图33中所示的“无孔”)时的频率响应。
在一些实施例中,可以在腔体靠近第一出音位置2811或第二出音位置2812的壳体结构2810的侧壁上开设孔口2813,以提高听音音量。图34是根据本申请一些实施例提供的腔体上开设有两个孔口的声压示意图,图35是根据本申请一些实施例提供的腔体上未开设孔口的声压示意图。如图34所示,腔体上在靠近第一出声位置2811处的位置开设有第一孔口2813,靠近第二出声位置2812的位置开设有第二孔口2814。由于第一孔口2813接近第一声学驱动器的背部,第一孔口2813相对于第一出声位置2811形成一个反向的声源,第一出声位置2811输出的声音与第一孔口2813输出的声音相位近似相反,可以在减少腔体内部驻波影响的同时降低漏音音量。关于第二孔口2814与第二出声位置2812的关系与第一孔口2813与第一出声位置2811的关系类似,在此不做赘述。图34中灰度分布表示第一孔口2813和第二孔口2814同时存在时腔体内的驻波形态。通过与图32的对比可知,通过开设不同数量/位置的孔口可以改变腔体内驻波的形态。
如图35所示,由于壳体结构的腔体中存在驻波,沿着腔体的长度方向(例如,两个声学驱动器沿腔体轴线的连线方向)存在声压极大和声压极小的位置。也就是说,沿着腔体长度方向,腔体内的声压是不同的。因此,当孔口开设在不同的位置时,孔口处的腔体内声压也不同,那么腔体从孔口位置辐射出来的声辐射强度和相位也不同。另外,孔口位置辐射出的声辐射强度和相位也与声波的频率相关。例如,同一个位置的孔口,不同频率的声波从孔口辐射出来的声辐射强度和相位也不同。又例如,在一些频段中,孔口位置辐射的声波可能与某个声学驱动器辐射的声波为同相,而在另一些频段中,孔口位置辐射的声波与某个声学驱动器辐射的声波也 可以为反相。需要注意的是,孔口(例如,孔口2813和孔口2814)的数量不限于图30、图32和图34中一个或两个,还可以为三个、四个或者更多。另外,孔口所处的位置也不限于靠近第一出声位置2811和第二出声位置2812,还可以位于腔体的其它位置,具体可以根据实际情况进行调整,在此不做赘述。
在一些实施例中,第一声学驱动器和第二声学驱动器可以均为主动声学驱动器,在这种情况下,第一声学驱动器和第二声学驱动器可以都包括主动振膜,分别由对应的电信号驱动。在一些实施例中,第一声学驱动器可以为主动声学驱动器,第二声学驱动器可以为被动声学驱动器。在本说明书的实施例中,被动声学驱动器是指在主动声学驱动器的带动下被动进行振动的声学件(例如,包括被动振膜,也可以叫做无源辐射器)。具体地,主动声学驱动器(如第一声学驱动器2821)在控制信号的驱动下进入主动工作模式,而被动声学驱动器(如第二声学驱动器2822)上则不施加控制信号。主动声学驱动器的主动振膜振动后带动腔体(例如,腔体2820)内空气振动,由此带动被动声学驱动器的被动振膜振动。图36是根据本申请一些实施例提供的声学输出装置的频率响应特性曲线。如图36所示,当第一声学驱动器2821处于主动工作模式且第二声学驱动器2822处于被动工作模式时(图36中所示的“spk+软被动振膜-spk端”和“spk+硬被动振膜-spk端”),第一声学驱动器2821的频响曲线与第一声学驱动器2821和第二声学驱动器2822均为主动声学驱动器(“两个spk”)且相位相反时的第一声学驱动器2821的频响曲线基本相同。当第一声学驱动器2821处于主动工作模式且第二声学驱动器2822处于被动工作模式时,第二声学驱动器2821(图36中所示的“spk+软被动振膜-被动振膜端”和“spk+硬被动振膜-被动振膜端”)的频响曲线会根据其振膜的软硬程度不同而有所差异。即,第二声学驱动器2822为被动振膜时,被动振膜的弹性和质量不同,第二声学驱动器2822输出声音的频响曲线也会不同。第一声学驱动器2811在进入主动工作模式时辐射的声音通过腔体的传输介质(例如,空气)作用于被动振膜(第二声学驱动器2822),被动振膜受到激励后,在第二出声位置2812也会辐射声音,且第二声学驱动器2822的振膜越软,辐射的低频声场越强。
在不同的频率下,被动声学驱动器在主动声学驱动器的作用下输出的声音与主动声学驱动器输出的声音具有不同的相位差。在一些实施例中,可以通过调节第二声学驱动器2822的振膜弹性、质量以及腔体的容积,以调节第一声学驱动器2821和第二声学驱动器2822所辐射声音的相位差。当第一声学驱动器2821和第二声学驱动器2822的相位差不小于90°时,第二声学驱动器产生的声音与第一声学驱动器产生的声音开始变得同步,则声学驱动器2822产生的声音可以在听音位置增强声学驱动器2821产生的声音,此时可以认为处于被动工作模式的第二声学驱动器2822起到倒相 的作用。假定第一声学驱动器2821的振动速度为:
Figure PCTCN2020088190-appb-000006
其中,u 1表示第一声学驱动器2821(的振膜)的振动速度,U 1表示第一声学驱动器2821(的振膜)的速度幅值,ω表示第一声学驱动器2821(的振膜)的振动频率,
Figure PCTCN2020088190-appb-000007
表示第一声学驱动器2821(的振膜)的相位。第二声学驱动器2822的振动速度为:
Figure PCTCN2020088190-appb-000008
其中,u 2表示第二声学驱动器2822(的振膜)的振动速度,U 2表示第二声学驱动器2822(的振膜)的速度幅值,
Figure PCTCN2020088190-appb-000009
表示第二声学驱动器2822(的振膜)的相位。当t=0,
Figure PCTCN2020088190-appb-000010
时,u 1=U 1,u 2=U 2。由于u 1和u 2振动速度相反,以u 1的振动方向为正方向,则U 1为正数,U 2为负数,即u 1=|U 1|,u 2=-|U 2|。所以u 1和u 2可以表示为:
Figure PCTCN2020088190-appb-000011
Figure PCTCN2020088190-appb-000012
第一声学驱动器2821和第二声学驱动器2822的相位差为:
Figure PCTCN2020088190-appb-000013
在图28所示的声学输出装置中,当相位差
Figure PCTCN2020088190-appb-000014
为180°时,第一声学驱动器2821(的振膜)与第二声学驱动器2822(的振膜)的振动方向相同(如图36所示)。此时,处于被动工作模式的第二声学驱动器2822在第二出声位置发出的声音与第一声学驱动器2821在第一出声位置发出的声音具有相同或近似相同的相位,此时两个声学驱动器产生的声音在听音位置相互增强,从而起到增强听音位置低频声音的作用。
在一些实施例中,声学输出装置还可以包括控制器。该控制器可以通过控制信号控制第一声学驱动器2821和第二声学驱动器2822产生的声音的幅值和相位,以实现降漏音、音质提升、低频增强或主动降噪等效果。例如,在一些实施例中,控制器通过控制信号使得第一声学驱动器2811和第二声学驱动器2822输出声压幅值相同且相位相反的声音,可以提高用户在近场的听音音量以及降低远场的漏音效果。又例如,为提升声学输出装置的低频效果,控制器通过控制信号使得第一声学驱动器2821和第二声学驱动器2822输出的低频声音相位相同,或者相位差小于90°,而输出的中高频声音相位相反,或者相位差在90°–270°之间。这样,用户在近场听到的低频声音不会因为干涉相增而加强,而远场的中高频声音仍会由于干涉相消而减弱。
在一些实施例中,控制器可以根据分频点对第一声学驱动器和/或第二声学驱动器产生的声音的幅值和相位进行相应调整。图37是根据本申请一些实施例提供的出声位置的频率响应特性曲线。如图37所示,第一出声位置(图37中所示的“频响-出声位置1”)的频响曲线与第二出声位置(图37中所示的“频响-出声位置2”)的频响曲线基本相同。为方便描述,可 以将频率范围在分频点之前的声音成分叫做第一声音成分,而将频率范围在分频点之后的声音成分叫做第二声音成分。如图所示,控制器可以控制第一出声位置和第二出声位置各自输出的第一声音成分具有相同的相位或者较小的相位差。这样,第一出声位置辐射的第一声音成分和第二出声位置辐射的第一声音成分会在听音位置叠加相加,产生较大的音量。控制器还可以控制第一出声位置和第二出声位置各自输出的第二声音成分相位相反或者相位差接近180°。这样,第一出声位置辐射的第二声音成分和第二出声位置辐射的第二声音成分会在远场干涉相消,降低远场漏音。在一些实施例中,考虑到需要增强声学输出装置的低频音效,分频点可以被设置为不大于2000Hz。优选地,分频点可以被设置为不大于1000Hz。更优选地,分频点可以被设置为不大于400Hz。进一步优选地,分频点可以被设置为不大于300Hz。
在一些可替代的实施例中,两个声学驱动器可以具有不同的频率响应,此时,第一出声位置和第二出声位置会具有不同的频响曲线。在这种情况下,也可以实现特定频率的听音音量的增强或者漏音音量的减弱。例如,为了提升听音位置(例如,人体外耳道)的低频段音量,可以使用两个在低频段具有较大频率响应特性的声学驱动器,这样,两个声学驱动器产生的低频声音即使相位相反,但由于幅值相差较大,仍然可以较少地相消。图38是根据本申请一些实施例提供的具有不同频率响应特性的两个声学驱动器的频响曲线图。如图38所示,第一声学驱动器为具有较强低频输出能力的声学驱动器(图38中的“声学驱动器1”),第二声学驱动器为低频输出能力较弱、中高频输出能力与第一声学驱动器相当的第二声学驱动器(图39中的“声学驱动器2”)。在低频段(例如,100Hz–500Hz),第一声学驱动器和第二声学驱动器可以产生相位相反但幅值相差较大的低频声音,因此在听音位置处的低频声音仍然可以具有较大的音量,而远场中高频段的漏音类似于图37所描述的中高频情况。
在一些实施例中,控制器可以通过控制信号使得第一声学驱动器或第二声学驱动器输出与外界噪声声压幅值相同且相位相反的声音,以达到主动降噪效果。图39是根据本申请一些实施例提供的主动降噪声学输出装置的工作原理图。如图39所示,声学输出装置3800包括第一声学驱动器3810和第二声学驱动器3820。其中,第一声学驱动器3810用于向听音位置(例如,人体外耳道)输出听音音波3830。第二声学驱动器3820用于输出与外界环境噪音3840反相的反相声波3850。第二声学驱动器3820输出的反相声波3850与环境噪音3840的声压幅值相同且相位相反,使得反相声波3850与环境噪音3840相抵消,以达到降低外界噪音的效果。在一些实施例中,声学输出装置3800中可以设有用于监测外界环境噪音3840的麦克风(图39中未示出),麦克风可以将外界环境噪音3840转换为相应的噪声信号,并将该噪声信号传送至声学输出装置3800的控制器中,控制 器基于噪声信号控制第二声学驱动器3820输出与外界环境噪音3840振幅相同且相位相反的声音。在一些实施例中,第一声学驱动器3810和第二声学驱动器3820可以位于耳廓的前后两侧。关于第一声学驱动器3810和第二声学驱动器3820位于耳廓前后两侧的具体描述可以参考本申请其他地方的内容,例如图1及其相关内容。在其它的实施例中,第一声学驱动器3810和第二声学驱动器3820也可以位于耳廓的同一侧(例如,同时位于耳廓同侧)。
图40是根据本申请一些实施例提供的降噪传声装置的结构示意图。如图40所示,降噪传声装置4000可以包括第一传声器4010、第二传声器4020、控制器(未示出)以及用于固定第一传声器4010和第二传声器4020的支撑结构4030。其中,第一传声器4010和第二传声器4020可以用于接收声音信号,包括用户的语音、环境中的背景噪声等。控制器被配置为对第一传声器4010和第二传声器4020接收到的两组信号进行处理并提高降噪传声装置4000在特定频段的信噪比。在本说明书的实施例中,信噪比可以用于评价降噪传声装置400的降噪性能。可以通过减少声音信号中的噪声成分以及保证声音信号中的语音成分来提高降噪传声装置400的信噪比。
支撑结构4030被配置为承载所第一传声器4010、第二传声器4020以及控制器。所述支撑结构上开设有对应于第一传声器4010的第一引声孔(图40中未示出)和对应于第二传声器4020的第二引声孔(图40中未示出)。所述第一引声孔和第二引声孔可以分别向第一传声器4010和第二传声器4020导入声音信号。在一些实施例中,第一传声器4010(或第一引声孔)可以位于耳廓的前侧,第二传声器4020(或第二引声孔)可以位于耳廓的后侧,此时耳廓可以作为挡板来增大用户嘴部到达第一传声器4010和第二传声器4020的声学传递距离,使得第一传声器4010和第二传声器4020接收到的语音信号具有相当的差别。优选地,第一传声器4010(或第一引声孔)可以位于靠近人体嘴部的位置,以便更好地接收用户的语音。在其它的实施例中,第一传声器4010和第二传声器4020也可以同时位于耳廓的同一侧,例如,第一传声器4010(或第一引声孔)和第二传声器4020(或第二引声孔)可以同时位于耳廓的前侧并靠近人体嘴部的位置。需要注意的是,第一传声器4010(或第一引声孔)和第二传声器4020(或第二引声孔)不限于图40中的一个,第一传声器4010(或第一引声孔)和第二传声器4020(或第二引声孔)的数量还可以为多个。当第一传声器(或第一引声孔)和第二传声器4020(或第二引声孔)为多个时,至少有一个第一传声器4010(或第一引声孔)位于耳廓的前侧,至少有一个第二传声器4020(或第二引声孔)位于耳廓的后侧。
在一些实施例中,第一传声器4010和第二传声器4020可以为独立的无指向型传声元件。在一些实施例中,第一传声器4010和第二传声器4020的灵敏度差异不大于3dB。优选地,第一传声器4010和第二传声器 4020的灵敏度差异不大于1dB。更优选地,第一传声器4010和第二传声器4020可以为相同的传声元件。
图41是根据本申请一些实施例提供的降噪传声器装置上设置挡板的原理示意图。根据自适应滤波理论,降噪传声装置4000对背景噪声的衰减量(即降噪量)与第一传声器4010和第二传声器4020的空间互相干函数正相关,即第一传声器4010和第二传声器4020越相干,对背景噪声的衰减越多,降噪效果越好。由于背景噪声的声场往往不是均匀声场,其在不同位置的声压幅值和相位有差异,所以第一传声器4010与第二传声器4020的距离越大,第一传声器4010和第二传声器4020接收到的背景噪声信号差异也越大,其互相干性越差。因此,在一些实施例中,为了提高第一传声器4010和第二传声器4020之间的互相干性,可以通过调节第一传声器4010和第二传声器4020的间距来实现。第一传声器4010和第二传声器4020的互相干性与二者之间的间距呈负相关,即第一传声器4010和第二传声器4020之间的间距越小,二者的相干性越好,降噪传声装置4000的降噪效果越好。但是,当第一传声器4010和第二传声器4020之间的间距过小时,用户语音在第一传声器4010和第二传声器4020上造成的声压差也会急剧减小,导致最终输出信号的信噪比降低。如图41所示,可以在第一传声器4010和第二传声器4020之间设置挡板或将耳廓作为挡板,以解决两个传声器之间的间距过小而导致的信噪比降低的问题。由于背景噪声的方向性较弱,挡板或耳廓对第一传声器4010和第二传声器4020的相干性影响很小。同时,挡板或耳廓增加了语音信号到第二传声器4020的声程,从而减小了第二传声器4020接收到的语音信号量,这样就增大了第一传声器4010和第二传声器4020接收到的语音信号的幅度差,从而显著提升降噪传声装置4000的信噪比。为简单起见,假设第一传声器4010和第二传声器4020接收到的背景噪声信号相同,且因为挡板或耳廓的存在,第一传声器4010和第二传声器4020接收到的语音信号具有较大的差别,控制器可以将第一传声器4010和第二传声器4020接收到的声音信号进行相减来获得主要体现用户语音的信号。当然,在实际的应用场景中,控制器中还可以包含一个或多个滤波器(例如,自适应滤波器)来对第一传声器4010和/或第二传声器4020接收的声音信号进行滤波处理,再以此获得高信噪比的用户语音信号。
图42是根据本申请一些实施例提供的降噪传声装置有无挡板时的背景噪声强度图。图43是根据本申请一些实施例提供的降噪传声装置有无挡板时的语音信号强度图。如图42所示,在挡板高度一定时,当频率大于2000Hz,相对于第一传声器4010和第二传声器4020之间无挡板的情况(图42中“两个麦克风背景信号差异-无挡板”),第一传声器4010和第二传声器4020之间设置挡板后的背景信号差异(图42中“两个麦克风背景信号差异-有挡板”)随频率的增加而变得越来越明显。如图43所示,在 挡板高度一定时,相对于第一传声器4010和第二传声器4020之间无挡板的情况(图43中“两个麦克风背景信号差异-无挡板”),当频率大于2000Hz,第一传声器4010和第二传声器4020之间设置挡板后的语音信号差异(图43中“两个麦克风语音信号差异-有挡板”)随频率的增加而越来越明显。结合图42和图43可以看出,在频率不大于5000Hz的范围内,第一传声器4010和第二传声器4020之间设有挡板时的语音信号差异的增加幅度明显大于第一传声器4010和第二传声器4020之间设有挡板的背景信号差异的增加幅度。也就是说,两个传声器语音信号的增加幅度大于两个传声器相干性的减弱,使得降噪传声装置4000的信噪比增大。
在一些实施例中,可以利用耳廓作为挡板或者在两个传声器之间的支撑结构上设置挡板,并通过调节所设挡板的高度以及第一传声器4010和第二传声器4020之间的间距,以提高降噪传声装置4000的信噪比。图44是根据本申请一些实施例所示的挡板高度与第一传声器4010和第二传声器4020之间的间距之比等于4时的信噪比随频率的变化曲线。如图所示,挡板可提升降噪传声装置信噪比的频率上限在2kHz左右。在一些实施例中,为了满足正常语音信号的使用场景(语音信号的频率上限一般不小于4kHz),挡板高度与第一传声器4010和第二传声器4020的间距之比不大于4。更优选地,挡板高度与第一传声器4010和第二传声器4020的间距之比不大于2。在一些实施例中,第一传声器4010和第二传声器4020的间距不小于1cm。优选地,第一传声器4010和第二传声器4020的间距不大于12cm。更优选地,第一传声器4010和第二传声器4020的间距不大于8cm。在一些实施例中个,两个传声器的间距与挡板的高度之比不小于0.2且不大于4。
需要注意的是,以上对降噪传声装置4000的描述仅仅是处于说明的目的,在不违背原理的情况下,本领域技术人员可以对上述结构做出调整,并且调整后的结构仍然在本申请的保护范围内。例如,降噪传声装置4000中的支撑结构4030并不出局限于图40中所示的结构和形状,能够对第一传声器4010和第二传声器4020起到固定和支撑作用的其它结构均可视为支撑结构。又例如,第一传声器4010和第二传声器4020还可以同时位于耳廓的同一侧,第一传声器4010和第二传声器4020之间还可以设有挡板。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在 不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“***”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
计算机存储介质可能包含一个内含有计算机程序编码的传播数据信号,例如在基带上或作为载波的一部分。该传播信号可能有多种表现形式,包括电磁形式、光形式等,或合适的组合形式。计算机存储介质可以是除计算机可读存储介质之外的任何计算机可读介质,该介质可以通过连接至一个指令执行***、装置或设备以实现通讯、传播或传输供使用的程序。位于计算机存储介质上的程序编码可以通过任何合适的介质进行传播,包括无线电、电缆、光纤电缆、RF、或类似介质,或任何上述介质的组合。
本申请各部分操作所需的计算机程序编码可以用任意一种或多种程序语言编写,包括面向对象编程语言如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C++、C#、VB.NET、Python等,常规程序化编程语言如C语言、Visual Basic、Fortran 2003、Perl、COBOL 2002、PHP、ABAP,动态编程语言如Python、Ruby和Groovy,或其他编程语言等。该程序编码可以完全在用户计算机上运行、或作为独立的软件包在用户计算机上运行、或部分在用户计算机上运行部分在远程计算机运行、或完全在远程计算机或服务器上运行。在后种情况下,远程计算机可以通过任何网络形式与用户计算机连接,比如局域网(LAN)或广域网(WAN),或连接至外部计算机(例如通过因特网),或在云计算环境中,或作为服务使用如软件即服务(SaaS)。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的***组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的***。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种 特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (37)

  1. 一种声学输出装置,其特征在于,包括:
    至少一个声学驱动器,所述至少一个声学驱动器发出声音;
    壳体结构,被配置为承载所述至少一个声学驱动器;
    所述壳体结构包括腔体,所述至少一个声学驱动器位于所述腔体中,并将所述腔体分隔为第一腔体和第二腔体;
    所述至少一个声学驱动器产生的声音分别从所述第一腔体和第二腔体发出,穿过所述壳体结构后形成双声源,所述双声源分别位于耳廓的两侧。
  2. 根据权利要求1所述的声学输出装置,其特征在于,所述壳体结构还包括第一声导管和第二声导管,所述第一声导管的一端与所述第一腔体声学耦合,所述第二声导管的一端与所述第二腔体声学耦合,所述第一声导管的另一端和所述第二声导管的另一端分别位于耳廓的两侧。
  3. 根据权利要求2所述的声学输出装置,其特征在于,所述第一声导管和第二声导管的横截面积相同或不同。
  4. 根据权利要求3所述的声学输出装置,其特征在于,所述第一声导管和第二声导管的横截面积为0.25mm 2–400mm 2
  5. 根据权利要求2所述的声学输出装置,其特征在于,所述第一声导管与第二声导管的长度相同或不相同。
  6. 根据权利要求5所述的声学输出装置,其特征在于,所述第一声导管与第二声导管的长度比为0.5-2。
  7. 根据权利要求2所述的声学输出装置,其特征在于,所述第一声导管和第二声导管的长径比不大于200。
  8. 根据权利要求7所述的声学输出装置,其特征在于,所述第一声导管和第二声导管的半径不小于0.5mm,所述第一声导管和第二声导管的长度不大于500mm。
  9. 根据权利要求2所述的声学输出装置,其特征在于,所述第一声导管和/或所述第二声导管中设有用于调节声音频响的声学结构和/或声学材料。
  10. 根据权利要求1所述的声学输出装置,其特征在于,所述至少一个声学驱动器与所述第一腔体和第二腔体对应的两侧的阻抗不同。
  11. 根据权利要求10所述的声学输出装置,其特征在于,所述至少一个声学驱动器两侧的阻抗比为0.8-1.2。
  12. 根据权利要求1所述的声学输出装置,其特征在于,所述第一腔体的容积大于所述第二腔体的容积,使得第一腔体对应的第一谐振峰小于第二腔体对应的第二谐振峰。
  13. 根据权利要求12所述的声学输出装置,其特征在于,所述第一腔体和第二腔体的容积均不超过2500mm 3
  14. 根据权利要求1所述的声学输出装置,其特征在于,所述双声源输出相位相反的声音。
  15. 根据权利要求1所述的声学输出装置,其特征在于,所述双声源之间的间距d在1cm和12cm之间。
  16. 根据权利要求1所述的声学输出装置,其特征在于,所述双声源分别位于耳廓的两侧,其中,位于耳廓前侧的声源距离用户耳朵的声学路径短于位于耳廓后侧的声源距离用户耳朵的声学路径。
  17. 根据权利要求16所述的声学输出装置,其特征在于,所述双声源的间距与耳廓的高度比为0.2-4。
  18. 一种声学输出装置,其特征在于,包括:
    第一声学驱动器和第二声学驱动器;
    壳体结构,被配置为承载所述第一声学驱动器和第二声学驱动器;
    所述第一声学驱动器和第二声学驱动器均位于所述壳体结构中,所述第一声学驱动器和所述第二声学驱动器构成位于所述壳体结构内部的腔体的两端,所述第一声学驱动器背朝所述腔体的一侧和所述第二声学驱动器背朝所述腔体的一侧分别向所述壳体结构的外部辐射声音。
  19. 根据权利要求18所述的声学输出装置,其特征在于,所述第一声学驱动器背朝所述腔体的一侧和所述第二声学驱动器背朝所述腔体的一侧分别通过所述壳体结构的至少两个出声孔向外辐射声音。
  20. 根据权利要求19所述的声学输出装置,其特征在于,所述第一声学驱动器背朝所述腔体的一侧和所述第二声学驱动器背朝所述腔体的一侧产生相位相反的声音。
  21. 根据权利要求18所述的声学输出装置,其特征在于,所述第一声学驱动器面朝所述腔体的一侧与所述第二声学驱动器面朝所述腔体的一侧通过所述腔体声学连通。
  22. 根据权利要求21所述的声学输出装置,其特征在于,所述第一声学驱动器的背朝所述腔体的一侧和/或所述第二声学驱动器的背朝所述腔体的一侧处设有阻挡板,所述阻挡板与所述壳体结构固定连接。
  23. 根据权利要求22所述的声学输出装置,其特征在于,所述阻挡板上开设有至少一个出声孔。
  24. 根据权利要求23所述的声学输出装置,其特征在于,所述至少一个出声孔处设有网状层。
  25. 根据权利要求18所述的声学输出装置,其特征在于,所述第一声学驱动器包括:
    振膜;以及
    驱动所述振膜振动的磁体,所述磁***于所述振膜背朝所述腔体的一侧。
  26. 根据权利要求18所述的声学输出装置,其特征在于,所述腔体中设有 用于调节声音频响的声学结构和/或声学材料。
  27. 根据权利要求18所述的声学输出装置,其特征在于,所述第一声学驱动器的振膜与所述第二声学驱动器的振膜相对倾斜设置。
  28. 根据权利要求18所述的声学输出装置,其特征在于,所述壳体结构中位于所述第一声学驱动器和所述第二声学驱动器之间的所述腔体长度不大于25cm。
  29. 根据权利要求18所述的声学输出装置,其特征在于,所述壳体结构中位于所述第一声学驱动器和第二声学驱动器之间的所述腔体上开设有至少一个孔口。
  30. 根据权利要求18所述的声学输出装置,其特征在于,所述第一声学驱动器包括主动振膜,所述第二声学驱动器包括被动振膜,所述主动振膜驱动所述腔体内的空气振动,所述空气振动带动所述被动振膜振动。
  31. 根据权利要求18所述的声学输出装置,其特征在于,所述第一声学驱动器和所述第二声学驱动器在分频点前后输出具有不同相位差的声音。
  32. 根据权利要求31所述的声学输出装置,其特征在于,所述分频点不大于2000Hz。
  33. 一种降噪传声装置,其特征在于,包括:
    第一传声器和第二传声器;以及
    支撑结构,被配置为承载所述第一传声器和所述第二传声器,所述支撑结构上开设有对应于所述第一传声器的第一引声孔和对应于所述第二传声器的第二引声孔,所述第一引声孔和所述第二引声孔分别用于向所述第一传声器和所述第二传声器导入外界声音,且所述支撑结构使得所述第一引声孔和所述第二引声孔分别位于用户耳廓的两侧。
  34. 根据权利要求33所述的声学输出装置,其特征在于,所述第一引声孔和所述第二引声孔之间的间距不小于1cm且不大于12cm。
  35. 根据权利要求33所述的声学输出装置,其特征在于,所述第一引声孔和所述第二引声孔之间的间距与耳廓高度的比值不小于0.2。
  36. 根据权利要求33所述的声学输出装置,其特征在于,所述第一传声器和所述第二传声器均为无指向型传声器。
  37. 根据权利要求33所述的声学输出装置,其特征在于,所述第一传声器和所述第二传声器的灵敏度差异不大于3dB。
PCT/CN2020/088190 2019-04-30 2020-04-30 一种声学输出装置和降噪传声装置 WO2020221337A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/452,240 US11917352B2 (en) 2019-04-30 2021-10-26 Acoustic output device and noise reduction and sound transmission device
US18/426,709 US20240171892A1 (en) 2019-04-30 2024-01-30 Acoustic output device and noise reduction and sound transmission device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201910364346.2 2019-04-30
CN201910364346 2019-04-30
CN201910888762.2 2019-09-19
CN201910888762 2019-09-19
CN201910888067 2019-09-19
CN201910888067.6 2019-09-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/452,240 Continuation US11917352B2 (en) 2019-04-30 2021-10-26 Acoustic output device and noise reduction and sound transmission device

Publications (1)

Publication Number Publication Date
WO2020221337A1 true WO2020221337A1 (zh) 2020-11-05

Family

ID=73028591

Family Applications (19)

Application Number Title Priority Date Filing Date
PCT/CN2019/130921 WO2020220722A1 (zh) 2019-04-30 2019-12-31 一种声学输出装置
PCT/CN2019/130944 WO2020220724A1 (zh) 2014-01-06 2019-12-31 一种声学输出装置
PCT/CN2019/130880 WO2020220719A1 (zh) 2014-01-06 2019-12-31 一种声学输出装置
PCT/CN2019/130942 WO2020220723A1 (zh) 2019-04-30 2019-12-31 一种声学输出装置
PCT/CN2019/130884 WO2020220720A1 (zh) 2014-01-06 2019-12-31 一种声学输出装置
PCT/CN2019/130886 WO2020220721A1 (zh) 2019-04-30 2019-12-31 一种声学输出装置
PCT/CN2020/070542 WO2020220735A1 (zh) 2019-04-30 2020-01-06 一种声学输出装置
PCT/CN2020/070539 WO2020220733A1 (zh) 2014-01-06 2020-01-06 一种开放双耳式耳机
PCT/CN2020/070551 WO2020220738A1 (zh) 2019-04-30 2020-01-06 一种声学输出装置及其按键
PCT/CN2020/070540 WO2020220734A1 (zh) 2019-04-30 2020-01-06 一种音频眼镜
PCT/CN2020/070550 WO2020220737A1 (zh) 2019-04-30 2020-01-06 一种麦克风降噪***及使用该***的智能眼镜
PCT/CN2020/070545 WO2020220736A1 (zh) 2019-04-30 2020-01-06 一种声学输出装置及其组件
PCT/CN2020/083631 WO2020220947A1 (en) 2011-12-23 2020-04-08 Acoustic output apparatus and method thereof
PCT/CN2020/084161 WO2020220970A1 (en) 2011-12-23 2020-04-10 Acoustic output apparatus and methods thereof
PCT/CN2020/087034 WO2020221169A1 (en) 2014-01-06 2020-04-26 Acoustic device
PCT/CN2020/087002 WO2020221163A1 (en) 2011-12-23 2020-04-26 Acoustic output apparatus and method thereof
PCT/CN2020/087526 WO2020221254A1 (en) 2011-12-23 2020-04-28 Acoustic output apparatus
PCT/CN2020/088190 WO2020221337A1 (zh) 2019-04-30 2020-04-30 一种声学输出装置和降噪传声装置
PCT/CN2020/088482 WO2020221359A1 (en) 2011-12-23 2020-04-30 Open earphone

Family Applications Before (17)

Application Number Title Priority Date Filing Date
PCT/CN2019/130921 WO2020220722A1 (zh) 2019-04-30 2019-12-31 一种声学输出装置
PCT/CN2019/130944 WO2020220724A1 (zh) 2014-01-06 2019-12-31 一种声学输出装置
PCT/CN2019/130880 WO2020220719A1 (zh) 2014-01-06 2019-12-31 一种声学输出装置
PCT/CN2019/130942 WO2020220723A1 (zh) 2019-04-30 2019-12-31 一种声学输出装置
PCT/CN2019/130884 WO2020220720A1 (zh) 2014-01-06 2019-12-31 一种声学输出装置
PCT/CN2019/130886 WO2020220721A1 (zh) 2019-04-30 2019-12-31 一种声学输出装置
PCT/CN2020/070542 WO2020220735A1 (zh) 2019-04-30 2020-01-06 一种声学输出装置
PCT/CN2020/070539 WO2020220733A1 (zh) 2014-01-06 2020-01-06 一种开放双耳式耳机
PCT/CN2020/070551 WO2020220738A1 (zh) 2019-04-30 2020-01-06 一种声学输出装置及其按键
PCT/CN2020/070540 WO2020220734A1 (zh) 2019-04-30 2020-01-06 一种音频眼镜
PCT/CN2020/070550 WO2020220737A1 (zh) 2019-04-30 2020-01-06 一种麦克风降噪***及使用该***的智能眼镜
PCT/CN2020/070545 WO2020220736A1 (zh) 2019-04-30 2020-01-06 一种声学输出装置及其组件
PCT/CN2020/083631 WO2020220947A1 (en) 2011-12-23 2020-04-08 Acoustic output apparatus and method thereof
PCT/CN2020/084161 WO2020220970A1 (en) 2011-12-23 2020-04-10 Acoustic output apparatus and methods thereof
PCT/CN2020/087034 WO2020221169A1 (en) 2014-01-06 2020-04-26 Acoustic device
PCT/CN2020/087002 WO2020221163A1 (en) 2011-12-23 2020-04-26 Acoustic output apparatus and method thereof
PCT/CN2020/087526 WO2020221254A1 (en) 2011-12-23 2020-04-28 Acoustic output apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088482 WO2020221359A1 (en) 2011-12-23 2020-04-30 Open earphone

Country Status (6)

Country Link
US (47) US11425481B2 (zh)
EP (3) EP3952336A4 (zh)
JP (3) JP7333829B2 (zh)
KR (3) KR102533570B1 (zh)
BR (3) BR112021021746A2 (zh)
WO (19) WO2020220722A1 (zh)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11595760B2 (en) 2011-12-23 2023-02-28 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11716575B2 (en) 2011-12-23 2023-08-01 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11641551B2 (en) 2011-12-23 2023-05-02 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11589171B2 (en) 2014-01-06 2023-02-21 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11622209B2 (en) 2014-01-06 2023-04-04 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11832060B2 (en) 2014-01-06 2023-11-28 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11627419B2 (en) 2014-01-06 2023-04-11 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11706574B2 (en) 2014-01-06 2023-07-18 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
GB2536650A (en) 2015-03-24 2016-09-28 Augmedics Ltd Method and system for combining video-based and optic-based augmented reality in a near eye display
US10757501B2 (en) 2018-05-01 2020-08-25 Facebook Technologies, Llc Hybrid audio system for eyewear devices
WO2019211741A1 (en) 2018-05-02 2019-11-07 Augmedics Ltd. Registration of a fiducial marker for an augmented reality system
US11582545B2 (en) * 2018-07-27 2023-02-14 Sony Corporation Acoustic output device
US11766296B2 (en) 2018-11-26 2023-09-26 Augmedics Ltd. Tracking system for image-guided surgery
CN109547906B (zh) 2019-01-05 2023-12-08 深圳市韶音科技有限公司 骨传导扬声装置
BR112021021746A2 (pt) 2019-04-30 2021-12-28 Shenzhen Voxtech Co Ltd Aparelho de saída acústica
US11980506B2 (en) 2019-07-29 2024-05-14 Augmedics Ltd. Fiducial marker
US20210152907A1 (en) * 2019-08-09 2021-05-20 Sds Asia Limited, Bvi #1748971 Speaker apparatus
US20210105556A1 (en) * 2019-10-08 2021-04-08 Soniphi Llc Systems & Methods For Expanding Sensation Using Isobaric Chambers
US11382712B2 (en) 2019-12-22 2022-07-12 Augmedics Ltd. Mirroring in image guided surgery
KR20210089292A (ko) 2020-01-07 2021-07-16 삼성전자주식회사 음성 인식 시스템 및 이를 이용한 디스플레이 장치
DE102020201533A1 (de) * 2020-02-07 2021-08-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur schallwandlung mit einem akustischen filter
US11304006B2 (en) * 2020-03-27 2022-04-12 Bose Corporation Systems and methods for broadcasting audio
US11686947B2 (en) * 2020-05-27 2023-06-27 Microsoft Technology Licensing, Llc Structural fiber component for injection molding in head mounted displays
US11494160B1 (en) * 2020-06-30 2022-11-08 Apple Inc. Methods and systems for manipulating audio properties of objects
CA198230S (en) * 2020-07-01 2022-02-02 Shenzhen Voxtech Co Ltd Hearing aid
CN112135216A (zh) * 2020-10-16 2020-12-25 深圳市喜来喜科技有限公司 一种可适配不同头型的蓝牙耳机
EP4177668A4 (en) * 2020-11-26 2024-03-27 Shenzhen Shokz Co., Ltd. PORTABLE DEVICE
CN112738680A (zh) * 2020-12-24 2021-04-30 王鑫洪 一种挂耳式个人音响设备
KR20230043940A (ko) * 2021-02-10 2023-03-31 썬전 샥 컴퍼니 리미티드 보청장치들
CN116918350A (zh) * 2021-04-25 2023-10-20 深圳市韶音科技有限公司 声学装置
JP2024511098A (ja) * 2021-04-27 2024-03-12 シェンチェン ショックス カンパニー リミテッド 音響入出力装置
US11841554B2 (en) * 2021-04-29 2023-12-12 Brandon Gaynor Eyewear interface assembly
US11896445B2 (en) 2021-07-07 2024-02-13 Augmedics Ltd. Iliac pin and adapter
WO2023022863A1 (en) * 2021-08-19 2023-02-23 Apple Inc. Flexible speakers
US12002993B2 (en) 2021-09-10 2024-06-04 Milwaukee Electric Tool Corporation Battery pack with wire bonded bus bars
US11678103B2 (en) * 2021-09-14 2023-06-13 Meta Platforms Technologies, Llc Audio system with tissue transducer driven by air conduction transducer
USD1022023S1 (en) 2021-09-15 2024-04-09 Shenzhen Shokz Co., Ltd. Endpieces of glasses with headphones
USD1022019S1 (en) * 2021-09-15 2024-04-09 Shenzhen Shokz Co., Ltd. Glasses with headphones
USD1022018S1 (en) * 2021-09-15 2024-04-09 Shenzhen Shokz Co., Ltd. Glasses with headphones
USD1022020S1 (en) * 2021-09-15 2024-04-09 Shenzhen Shokz Co., Ltd. Glasses with headphones
USD1022011S1 (en) 2021-09-15 2024-04-09 Shenzhen Shokz Co., Ltd. V-shaped part of glasses with headphones
USD1022016S1 (en) * 2021-09-15 2024-04-09 Shenzhen Shokz Co., Ltd. Glasses with headphones
USD1022017S1 (en) * 2021-09-15 2024-04-09 Shenzhen Shokz Co., Ltd. Glasses with headphones
CN118176742A (zh) * 2021-11-09 2024-06-11 日本电信电话株式会社 音响信号输出装置
WO2023084574A1 (ja) * 2021-11-09 2023-05-19 日本電信電話株式会社 音響信号出力装置
JP2023554206A (ja) * 2021-11-19 2023-12-27 シェンツェン・ショックス・カンパニー・リミテッド オープン型音響装置
CN114157954B (zh) * 2021-11-29 2023-10-17 昆山海菲曼科技集团股份有限公司 一种平板低音增强耳机
CN114554340B (zh) * 2022-01-07 2022-12-30 深圳市丰景晟电子科技有限公司 一种具有新型气导传感结构的开放式耳机
CN114401476A (zh) * 2022-01-24 2022-04-26 高创(苏州)电子有限公司 一种分频式扬声器及其控制方法、电子设备
WO2023188345A1 (ja) * 2022-03-31 2023-10-05 日本電信電話株式会社 音響信号出力装置
WO2024004089A1 (ja) * 2022-06-29 2024-01-04 日本電信電話株式会社 音響信号出力装置
WO2024057210A1 (en) 2022-09-13 2024-03-21 Augmedics Ltd. Augmented reality eyewear for image-guided medical intervention
CN220383196U (zh) * 2022-10-28 2024-01-23 深圳市韶音科技有限公司 一种耳机
CN117956362A (zh) * 2022-10-28 2024-04-30 深圳市韶音科技有限公司 一种开放式耳机
USD1034516S1 (en) * 2023-03-03 2024-07-09 Xiamen Mairdi Electronic Technology Co., Ltd. Bone conduction headphones
USD1034520S1 (en) * 2023-03-03 2024-07-09 Xiamen Mairdi Electronic Technology Co., Ltd. Bone conduction headphones

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104581483A (zh) * 2014-12-24 2015-04-29 青岛歌尔声学科技有限公司 一种开放式耳机
CN105228039A (zh) * 2014-06-27 2016-01-06 苹果公司 具有通风室的质量加载耳塞
CN106341752A (zh) * 2016-11-24 2017-01-18 深圳市雷森贝尔听力技术有限公司 一种仿生全开放式耳甲增益导声装置及其使用方法
CN107105361A (zh) * 2016-12-09 2017-08-29 美律电子(深圳)有限公司 耳机
WO2018107141A1 (en) * 2016-12-11 2018-06-14 Bose Corporation Acoustic transducer

Family Cites Families (219)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2327320A (en) 1941-11-12 1943-08-17 Sonotone Corp Amplifying hearing aid
WO1994025957A1 (en) 1990-04-05 1994-11-10 Intelex, Inc., Dba Race Link Communications Systems, Inc. Voice transmission system and method for high ambient noise conditions
US5450061A (en) 1994-04-08 1995-09-12 Detection Systems, Inc. Glass break detection using temporal sequence of selected frequency characteristics
US5572594A (en) 1994-09-27 1996-11-05 Devoe; Lambert Ear canal device holder
US5775855A (en) 1995-06-08 1998-07-07 Valenite Inc. Cutting insert and cutter for milling
JP3153113B2 (ja) 1995-09-28 2001-04-03 富士通テン株式会社 ヘッドホン装置
DE19616870A1 (de) 1996-04-26 1997-10-30 Sennheiser Electronic Am Körper eines Benutzers lagerbare Schallwiedergabevorrichtung
NL1011538C2 (nl) 1999-03-11 2000-09-12 Stertil Bv Voertuighefinrichting.
CN1121809C (zh) * 1999-04-09 2003-09-17 张凡 扬声器
EP1045544A1 (fr) 1999-04-13 2000-10-18 Koninklijke Philips Electronics N.V. Réduction des clics pour signaux vocaux codés MICDA (ADPCM)
JP2003515435A (ja) 1999-12-02 2003-05-07 エヌイーシートーキン株式会社 サスペンションプレートと磁気回路装置との間に弾性体を備えた振動アクチュエータ
KR200190070Y1 (ko) 2000-02-26 2000-07-15 김성일 다채널헤드폰
KR100344091B1 (ko) 2000-04-18 2002-07-24 주식회사 도우미텍 골도 진동자 및 이것을 이용한 골도 스피커 헤드셋
KR100335171B1 (en) 2000-09-25 2002-05-11 Mm Gear Multi-channel headphone system
US20020164041A1 (en) 2001-03-27 2002-11-07 Sensimetrics Corporation Directional receiver for hearing aids
KR20040011859A (ko) * 2002-07-31 2004-02-11 주식회사 디유전자 알파벳 유자 모양의 어깨 착용형 진동 우퍼 스피커
KR100390003B1 (en) 2002-10-02 2003-07-04 Joo Bae Kim Bone-conduction speaker using vibration plate and mobile telephone using the same
US20040105568A1 (en) * 2002-12-03 2004-06-03 Po-Hsiung Lee Speaker with enhanced magnetic flux
JP2004274593A (ja) 2003-03-11 2004-09-30 Temuko Japan:Kk 骨伝導スピーカ
WO2004095878A2 (en) 2003-04-23 2004-11-04 Rh Lyon Corp Method and apparatus for sound transduction with minimal interference from background noise and minimal local acoustic radiation
JP4079827B2 (ja) 2003-05-14 2008-04-23 富士通テン株式会社 スピーカ装置
CA2432832A1 (en) 2003-06-16 2004-12-16 James G. Hildebrandt Headphones for 3d sound
US7327850B2 (en) 2003-07-15 2008-02-05 Bose Corporation Supplying electrical power
US7019605B2 (en) * 2003-10-30 2006-03-28 Larson Iii John D Stacked bulk acoustic resonator band-pass filter with controllable pass bandwidth
US7570777B1 (en) * 2004-01-13 2009-08-04 Step Labs, Inc. Earset assembly
KR20060113892A (ko) 2004-02-20 2006-11-03 가부시기가이샤 템코 재팬 골전도형 핸드세트
JP2006157464A (ja) 2004-11-29 2006-06-15 Kyocera Corp 音響装置
US20060252978A1 (en) * 2005-05-09 2006-11-09 Vesely Michael A Biofeedback eyewear system
JP4631070B2 (ja) 2005-05-23 2011-02-16 並木精密宝石株式会社 骨伝導スピーカ
JP2006352367A (ja) * 2005-06-14 2006-12-28 Sony Corp 音響装置
US8457324B2 (en) * 2005-08-16 2013-06-04 Honeywell International Inc. Directional speaker system
US7945297B2 (en) * 2005-09-30 2011-05-17 Atmel Corporation Headsets and headset power management
US7890377B2 (en) 2005-10-31 2011-02-15 Phonak Ag Method for producing an order and ordering apparatus
FR2892886B1 (fr) * 2005-11-03 2008-01-25 Bernard Richoux Transducteur electrodynamique, applications aux haut-parleurs et geophones
US8111854B2 (en) 2006-11-29 2012-02-07 Yan-Ru Peng Methods and apparatus for sound production
GB2434708B (en) * 2006-01-26 2008-02-27 Sonaptic Ltd Ambient noise reduction arrangements
US7957541B2 (en) * 2006-01-27 2011-06-07 Sony Ericsson Mobile Communications Ab Acoustic compliance adjuster
CN101022678A (zh) * 2006-02-13 2007-08-22 致胜科技股份有限公司 骨传导多声道装置
JP2007251358A (ja) 2006-03-14 2007-09-27 Nec Tokin Corp 骨伝導スピーカ
CN101536549B (zh) 2006-03-22 2013-04-24 骨声通信有限公司 用于骨导声音传播的方法和***
WO2007112404A2 (en) * 2006-03-27 2007-10-04 Knowles Electronics, Llc Electroacoustic transducer system and manufacturing method thereof
US8170249B2 (en) * 2006-06-19 2012-05-01 Sonion Nederland B.V. Hearing aid having two receivers each amplifying a different frequency range
CN101098353A (zh) * 2006-06-27 2008-01-02 明基电通股份有限公司 能与移动通讯装置通讯的耳机装置
US7933427B2 (en) * 2006-06-27 2011-04-26 Motorola Solutions, Inc. Method and system for equal acoustics porting
US7916888B2 (en) * 2006-06-30 2011-03-29 Bose Corporation In-ear headphones
KR101135396B1 (ko) 2006-07-03 2012-04-17 아이필유(주) 다기능 초소형 스피커
CN101513083B (zh) * 2006-07-28 2011-09-07 詹姆斯·G·希尔德布兰特 头戴式耳机的改进
AU2007292796A1 (en) 2006-09-07 2008-03-13 Temco Japan Co., Ltd. Bone conduction speaker
US7925307B2 (en) * 2006-10-31 2011-04-12 Palm, Inc. Audio output using multiple speakers
US8175316B2 (en) * 2006-12-05 2012-05-08 Sony Corporation Ear speaker device
US20080166006A1 (en) 2007-01-06 2008-07-10 Apple Inc Light diffuser
KR20080103334A (ko) * 2007-05-23 2008-11-27 (주) 지비테크 휴대용 오디오기기의 리모콘 및 이침 다이어트 이어폰
US8391534B2 (en) 2008-07-23 2013-03-05 Asius Technologies, Llc Inflatable ear device
WO2009075834A1 (en) 2007-12-10 2009-06-18 Klipsch, Llc In-ear headphones
US8270637B2 (en) 2008-02-15 2012-09-18 Sonitus Medical, Inc. Headset systems and methods
KR20090091378A (ko) 2008-02-25 2009-08-28 정상일 골전도 마이크로폰
US8660289B2 (en) * 2008-02-29 2014-02-25 Apple Inc. Multiple receiver venting system
JP2009260524A (ja) 2008-04-15 2009-11-05 Sony Corp スピーカー装置
JP4355359B1 (ja) * 2008-05-27 2009-10-28 パナソニック株式会社 マイクを外耳道開口部に設置する耳掛型補聴器
GB0813115D0 (en) * 2008-07-17 2008-08-27 Strong Pacific Hong Kong Ltd Earphone
CN101729955B (zh) 2008-10-15 2014-03-26 诸爱道 安全耳塞机
US8682021B2 (en) * 2009-02-09 2014-03-25 Sanyo Electric Co., Ltd. Speaker unit and portable information terminal
KR101039813B1 (ko) 2009-03-30 2011-06-13 주식회사 보니아코퍼레이션 골전도와 공기전도 기능을 갖는 듀얼 이어폰
CN201426167Y (zh) * 2009-04-17 2010-03-17 富祐鸿科技股份有限公司 具导音管的开放式结构耳机
CN201774654U (zh) 2010-07-16 2011-03-23 深圳市中兴移动通信有限公司 基于手机上四段式连接的线控耳机电路
EP3593702B1 (en) 2011-01-31 2023-01-18 Boston Scientific Scimed, Inc. Articulation section with locking
US9185491B2 (en) * 2011-04-12 2015-11-10 Harman International Industries, Incorporated Reinforced diaphragm for a low profile loudspeaker transducer with two sets of inner and outer magnets
US8934647B2 (en) * 2011-04-14 2015-01-13 Bose Corporation Orientation-responsive acoustic driver selection
JP2012249097A (ja) * 2011-05-27 2012-12-13 Kyocera Corp 音声出力装置
US8256566B1 (en) * 2011-08-19 2012-09-04 Rogersound Labs, LLC Speaker enclosure
US9020168B2 (en) * 2011-08-30 2015-04-28 Nokia Corporation Apparatus and method for audio delivery with different sound conduction transducers
JP5667018B2 (ja) 2011-09-06 2015-02-12 Kddi株式会社 携帯電話端末、携帯電話端末の音声伝達方法、携帯電話端末の音声伝達プログラム
JP4953490B1 (ja) 2011-09-12 2012-06-13 音茶楽株式会社 ツィンドライバーイヤホン
US9350832B2 (en) 2011-09-30 2016-05-24 Kyocera Corporation Mobile electronic device
US20130108068A1 (en) 2011-10-27 2013-05-02 Research In Motion Limited Headset with two-way multiplexed communication
CA3164530C (en) 2011-10-28 2023-09-19 Magic Leap, Inc. System and method for augmented and virtual reality
JP5926950B2 (ja) 2011-12-22 2016-05-25 京セラ株式会社 電子機器
CN202435598U (zh) 2011-12-23 2012-09-12 深圳市韶音科技有限公司 一种骨传导扬声器及其复合振动装置
CN102497612B (zh) 2011-12-23 2013-05-29 深圳市韶音科技有限公司 一种骨传导扬声器及其复合振动装置
CN108873372B (zh) * 2018-08-24 2024-06-14 深圳市韶音科技有限公司 一种铰链及眼镜
US20130169513A1 (en) * 2012-01-04 2013-07-04 Google Inc. Wearable computing device
CN102647646B (zh) 2012-04-06 2016-03-30 惠州Tcl移动通信有限公司 手镯式蓝牙耳机以及手镯式蓝牙耳机电路
JP5812925B2 (ja) 2012-04-12 2015-11-17 京セラ株式会社 電子機器
CN102780938B (zh) 2012-06-06 2015-04-15 歌尔声学股份有限公司 蓝牙耳机电路板
CN202679440U (zh) 2012-06-08 2013-01-16 瑞声光电科技(常州)有限公司 带骨传导功能的通信装置
CN202710871U (zh) 2012-06-28 2013-01-30 黄明传 具有接口传输处理功能的眼镜
CN102760938B (zh) 2012-07-20 2013-08-07 深圳市龙侨华实业有限公司 一种增强型全向天线振子
JP6006598B2 (ja) 2012-09-27 2016-10-12 京セラ株式会社 電子機器
EP2765786A1 (en) 2013-02-06 2014-08-13 Nagravision S.A. Method to enhance a video content in a receiving device
CN103108268B (zh) 2013-02-07 2016-08-24 歌尔声学股份有限公司 扬声器模组及其使用该扬声器模组的电子装置
TWI535302B (zh) * 2013-02-08 2016-05-21 Jian-Quan Pan Multi-channel headphones
US20140253867A1 (en) * 2013-03-05 2014-09-11 Tao Jiang Pair of Projector Glasses
CN103179483B (zh) * 2013-03-12 2016-06-08 中名(东莞)电子有限公司 具有多动态驱动单元的入耳式耳机
CN103209377B (zh) 2013-03-19 2016-02-17 歌尔声学股份有限公司 多功能扬声器
CN203233520U (zh) * 2013-03-27 2013-10-09 特通科技有限公司 具接近感测模组的头戴式耳机
CN103167390B (zh) 2013-04-09 2017-04-19 苏州逸巛声学科技有限公司 具有气导作用的骨传导受话器
US9118996B1 (en) * 2013-05-01 2015-08-25 Miguel A. Garcia Head band with wirelessly engaged music player
US9992568B2 (en) * 2013-05-02 2018-06-05 Nokia Technologies Oy Method and apparatus for audio playback
US8757317B1 (en) * 2013-05-03 2014-06-24 Longinesteno Technology Complex Corporation Barrel-shaped multidirectional loudspeaker enclosure structure
CN103260117A (zh) 2013-05-08 2013-08-21 歌尔声学股份有限公司 一种低音扬声器及其应用该低音扬声器的电子装置
CN203301726U (zh) 2013-05-08 2013-11-20 歌尔声学股份有限公司 一种低音扬声器及其应用该低音扬声器的电子装置
JP6359807B2 (ja) * 2013-06-12 2018-07-18 京セラ株式会社 音響再生機器
EP2819429B1 (en) * 2013-06-28 2016-06-22 GN Netcom A/S A headset having a microphone
US9571941B2 (en) * 2013-08-19 2017-02-14 Knowles Electronics, Llc Dynamic driver in hearing instrument
GR1008382B (el) * 2013-12-13 2014-12-19 Βασιλειος Γεωργιου Τσακιρης Ηχεια ισορροπημενης κατευθυντικοτητας
CN106470371B (zh) 2014-01-06 2018-02-27 深圳市韶音科技有限公司 一种能够抑制漏音的骨传导扬声器
US9380374B2 (en) 2014-01-17 2016-06-28 Okappi, Inc. Hearing assistance systems configured to detect and provide protection to the user from harmful conditions
US8891800B1 (en) 2014-02-21 2014-11-18 Jonathan Everett Shaffer Earbud charging case for mobile device
CN104883635B (zh) * 2014-02-28 2019-08-16 宁波升亚电子有限公司 一种近头式扬声器装置及其应用
US9762199B2 (en) * 2014-03-31 2017-09-12 Bitwave Pte Ltd. Facilitation of headphone audio enhancement
JP6381679B2 (ja) * 2014-06-03 2018-08-29 ドルビー ラボラトリーズ ライセンシング コーポレイション 上方発射ドライバのための受動および能動仮想高さフィルタ・システム
US20150381333A1 (en) * 2014-06-26 2015-12-31 Harris Corporation Novel approach for enabling mixed mode behavior using microphone placement on radio terminal hardware
US9571917B2 (en) 2014-07-18 2017-02-14 Bose Corporation Acoustic device
EP3211916A4 (en) * 2014-10-20 2018-06-20 Sony Corporation Audio playback device
EP3211917B1 (en) 2014-10-24 2020-02-26 Sony Corporation Earphone
JP5759641B1 (ja) 2014-10-24 2015-08-05 太陽誘電株式会社 電気音響変換装置及び電子機器
CN104540076B (zh) 2014-11-20 2018-09-07 歌尔股份有限公司 扬声器模组
KR102362727B1 (ko) * 2014-12-18 2022-02-15 엘지이노텍 주식회사 맥박 측정 장치 및 이를 이용한 컴퓨팅 장치
EP3125573A4 (en) * 2014-12-24 2017-10-11 Temco Japan Co., Ltd. Bone conduction headphone
TWM500412U (zh) * 2015-01-14 2015-05-01 Jetvox Acoustic Corp 具有導音管之耳機結構
CN204377095U (zh) * 2015-01-22 2015-06-03 邹士磊 偶极高辐射抗型耳机
US9648412B2 (en) 2015-02-06 2017-05-09 Skullcandy, Inc. Speakers and headphones related to vibrations in an audio system, and methods for operating same
CN104863635B (zh) 2015-04-21 2017-04-05 西南石油大学 一种隧道沉降的自动监测报警装置及其使用方法
CN204810512U (zh) * 2015-06-01 2015-11-25 深圳市贝多福科技有限公司 具有独立音腔的导音结构
CN106303779B (zh) * 2015-06-03 2019-07-12 阿里巴巴集团控股有限公司 耳机
CN104869515A (zh) * 2015-06-08 2015-08-26 西安康弘新材料科技有限公司 动圈扬声器配合压电扬声器高保真音箱
US9613615B2 (en) * 2015-06-22 2017-04-04 Sony Corporation Noise cancellation system, headset and electronic device
US10375479B2 (en) 2015-08-04 2019-08-06 Curtis E. Graber Electric motor
JP6651608B2 (ja) * 2015-08-13 2020-02-19 シェンヂェン ボクステック カンパニー リミテッドShenzhen Voxtech Co., Ltd 骨伝導スピーカーのためのシステム
CN204859471U (zh) 2015-08-24 2015-12-09 嘉善豪声电子有限公司 使用fpc引线的手机扬声器腔体及包括该腔体的扬声器
CN204948328U (zh) * 2015-08-26 2016-01-06 成都优逸工业设计有限公司 三单元动铁耳机分频电路
CN204948329U (zh) * 2015-08-26 2016-01-06 成都优逸工业设计有限公司 四单元动铁耳机分频电路
CN205081951U (zh) 2015-09-01 2016-03-09 深圳市冠旭电子有限公司 一种线控耳机电路及线控耳机
CN204948313U (zh) * 2015-09-06 2016-01-06 深圳市韶音科技有限公司 骨传导无线耳机
CN105208480B (zh) 2015-09-24 2019-07-02 厦门宇特信息技术有限公司 滑动导电式头戴耳机
CN106792304A (zh) * 2015-11-21 2017-05-31 王永明 一种多驱动器入耳式耳机
CN108370465B (zh) * 2015-12-14 2020-09-22 哈曼贝克自动***股份有限公司 一种包括至少一个听筒的耳机装置
CN205336486U (zh) * 2015-12-15 2016-06-22 深圳市韶音科技有限公司 一种骨传导无线耳机
EP3185589B1 (en) 2015-12-22 2024-02-07 Oticon A/s A hearing device comprising a microphone control system
US20170195795A1 (en) * 2015-12-30 2017-07-06 Cyber Group USA Inc. Intelligent 3d earphone
US9794676B2 (en) * 2016-01-12 2017-10-17 Bose Corporation Headphone
US9794677B2 (en) * 2016-01-12 2017-10-17 Bose Corporation Headphone
US9905244B2 (en) 2016-02-02 2018-02-27 Ebay Inc. Personalized, real-time audio processing
DE112017000753B4 (de) 2016-02-10 2021-12-30 Panasonic Intellectual Property Management Co., Ltd. Fahrzeugannäherungs-Mitteilungsvorrichtung
DE102016103477A1 (de) * 2016-02-26 2017-08-31 USound GmbH Audiosystem mit strahlformenden Lautsprechern sowie Brille mit einem derartigen Audiosystem
TWM524028U (zh) 2016-03-25 2016-06-11 Jetvox Acoustic Corp 具有集流管之耳機裝置
CN107231585A (zh) * 2016-03-25 2017-10-03 富祐鸿科技股份有限公司 耳机结构
JPWO2017168903A1 (ja) * 2016-03-29 2019-02-07 ソニー株式会社 音響再生装置
JP6783541B2 (ja) * 2016-03-30 2020-11-11 株式会社バンダイナムコエンターテインメント プログラム及び仮想現実体験提供装置
CN205510154U (zh) * 2016-04-13 2016-08-24 广东欧珀移动通信有限公司 一种移动终端
US10277971B2 (en) * 2016-04-28 2019-04-30 Roxilla Llc Malleable earpiece for electronic devices
CN205754812U (zh) * 2016-05-12 2016-11-30 深圳市盛佳丽电子有限公司 一种动铁耳机的分频电路
US10129647B2 (en) * 2016-05-25 2018-11-13 Lg Electronics Inc. Wireless sound equipment
KR101812227B1 (ko) * 2016-05-26 2017-12-27 (주)인시그널 동작 인식 기반의 스마트 글래스 장치
US9949030B2 (en) 2016-06-06 2018-04-17 Bose Corporation Acoustic device
US9838787B1 (en) 2016-06-06 2017-12-05 Bose Corporation Acoustic device
CN106231462A (zh) * 2016-08-08 2016-12-14 珠海声浪科技有限公司 一种耳机
KR101830246B1 (ko) 2016-08-09 2018-03-29 주식회사 이엠텍 넥밴드형 무선 음향 변환 장치
US10757503B2 (en) * 2016-09-01 2020-08-25 Audeze, Llc Active noise control with planar transducers
US10075783B2 (en) * 2016-09-23 2018-09-11 Apple Inc. Acoustically summed reference microphone for active noise control
CN106375915B (zh) * 2016-10-31 2024-04-16 深圳市冠旭电子股份有限公司 一种扬声器及耳机
CN106324849B (zh) 2016-11-07 2018-11-27 东莞市松研智达工业设计有限公司 3d智能眼镜
CN206193360U (zh) * 2016-11-17 2017-05-24 厦门轻居科技有限公司 一种头戴式vr设备
GB2558284B (en) 2016-12-23 2021-12-08 Sony Interactive Entertainment Inc Virtual reality
CN107071607A (zh) * 2017-01-19 2017-08-18 诸爱道 防辐射的蓝牙耳机
US10555106B1 (en) 2017-01-27 2020-02-04 Facebook Technologies, Llc Gaze-directed audio enhancement
KR102671346B1 (ko) * 2017-02-08 2024-06-03 삼성전자 주식회사 전자 장치
CN206640738U (zh) * 2017-02-14 2017-11-14 歌尔股份有限公司 降噪耳机以及电子设备
TW201834469A (zh) 2017-03-03 2018-09-16 樂軒 許 一種可穿戴式立體聲設備
CN206575566U (zh) * 2017-03-06 2017-10-20 深圳市冠旭电子股份有限公司 一种入耳式耳机
KR102551780B1 (ko) * 2017-03-30 2023-07-04 매직 립, 인코포레이티드 비차단 이중 드라이버 이어폰들
US10469951B2 (en) * 2017-04-07 2019-11-05 Correlated Magnetics Research, Llc Loudspeaker magnet and earphone assembly
CN206885707U (zh) 2017-05-09 2018-01-16 硅湖职业技术学院 一体式手机包装盒
US9985596B1 (en) * 2017-05-15 2018-05-29 Bose Corporation Acoustic device
CN107094273A (zh) 2017-05-23 2017-08-25 诸爱道 安全的耳机
CN107105363A (zh) * 2017-06-08 2017-08-29 歌尔科技有限公司 颈戴式智能音箱
CN206865707U (zh) * 2017-06-20 2018-01-09 李阳君 一种新型的耳机导音结构
CN207340117U (zh) 2017-07-18 2018-05-08 深圳市深印柔性电路有限公司 用于耳机的异形fpc板
EP3657816B1 (en) * 2017-07-21 2022-07-06 Sony Group Corporation Sound output device
CN207070281U (zh) * 2017-08-18 2018-03-02 深圳市韶音科技有限公司 一种骨传导耳机
CN207075075U (zh) * 2017-09-01 2018-03-06 珠海煌荣集成电路科技有限公司 一种虚拟低音生成电路及音频设备
CN207340125U (zh) * 2017-09-06 2018-05-08 深圳市冠旭电子股份有限公司 一种运动耳机
CN107509147B (zh) * 2017-09-21 2023-12-12 惠州迪芬尼声学科技股份有限公司 一种具有u形短路环的扬声器磁路***
DK3468228T3 (da) * 2017-10-05 2021-10-18 Gn Hearing As Binauralt høresystem med lokalisering af lydkilder
CN109379654B (zh) 2017-10-05 2020-08-04 诸爱道 一种降噪空气导管麦克风、降噪安全耳机及降噪安全蓝牙耳机
CN107820169A (zh) * 2017-10-18 2018-03-20 深圳精拓创新科技有限公司 扬声器及提高扬声器灵敏度的方法
CN208210280U (zh) * 2018-01-08 2018-12-07 深圳市韶音科技有限公司 一种骨传导扬声器的磁路组件
US10555071B2 (en) 2018-01-31 2020-02-04 Bose Corporation Eyeglass headphones
US10380989B1 (en) * 2018-02-22 2019-08-13 Cirrus Logic, Inc. Methods and apparatus for processing stereophonic audio content
WO2019173577A1 (en) 2018-03-08 2019-09-12 Bose Corporation Audio content engine for audio augmented reality
WO2019173573A1 (en) 2018-03-08 2019-09-12 Bose Corporation User-interfaces for audio-augmented-reality
CN207939700U (zh) * 2018-03-14 2018-10-02 东莞市和乐电子有限公司 一种独立分频的多单元耳机
US10904667B1 (en) * 2018-03-19 2021-01-26 Amazon Technologies, Inc. Compact audio module for head-mounted wearable device
CN108650597B (zh) * 2018-04-12 2020-06-05 Oppo广东移动通信有限公司 一种密封组件、壳体组件及电子设备
CN108535585B (zh) 2018-04-18 2023-05-02 丹阳市精通眼镜技术创新服务中心有限公司 一种光电复合式线盘断线检测眼镜及其制作方法
CN208297647U (zh) 2018-04-18 2018-12-28 丹阳市精通眼镜技术创新服务中心有限公司 一种光电复合式线盘断线检测眼镜
CN108712695B (zh) * 2018-05-18 2021-02-12 维沃移动通信有限公司 一种麦克风模组、印制电路板pcb的制造方法及终端
CN108898516B (zh) 2018-05-30 2020-06-16 贝壳找房(北京)科技有限公司 在虚拟三维空间讲房模式进功能间的方法、服务器和终端
CN208572417U (zh) * 2018-06-28 2019-03-01 维沃移动通信有限公司 一种移动终端
CN109032558B (zh) * 2018-07-23 2021-08-17 Oppo广东移动通信有限公司 发声控制方法、装置、电子装置及计算机可读介质
CN109151680B (zh) * 2018-07-27 2020-09-04 Oppo广东移动通信有限公司 电子设备
US11113884B2 (en) 2018-07-30 2021-09-07 Disney Enterprises, Inc. Techniques for immersive virtual reality experiences
CN208783039U (zh) * 2018-08-24 2019-04-23 深圳市韶音科技有限公司 一种骨传导耳机及眼镜
CN209267805U (zh) 2019-01-05 2019-08-16 深圳市韶音科技有限公司 骨传导耳机芯及骨传导扬声装置
JP7137694B2 (ja) 2018-09-12 2022-09-14 シェンチェン ショックス カンパニー リミテッド 複数の音響電気変換器を有する信号処理装置
US10609465B1 (en) 2018-10-04 2020-03-31 Bose Corporation Acoustic device
US10506362B1 (en) 2018-10-05 2019-12-10 Bose Corporation Dynamic focus for audio augmented reality (AR)
CN208675298U (zh) * 2018-10-12 2019-03-29 上海闻泰信息技术有限公司 导音结构及便携式电子设备
US10631075B1 (en) * 2018-11-12 2020-04-21 Bose Corporation Open ear audio device with bone conduction speaker
US11281021B2 (en) * 2018-12-04 2022-03-22 Izone Japan Inc. Eyeglasses
CN209358728U (zh) 2019-01-05 2019-09-06 深圳市韶音科技有限公司 骨传导扬声装置
CN117528322A (zh) * 2019-01-05 2024-02-06 深圳市韶音科技有限公司 骨传导扬声装置
CN109788386B (zh) 2019-01-05 2024-01-26 深圳市韶音科技有限公司 骨传导扬声装置及其耳挂的制造方法
CN109547906B (zh) 2019-01-05 2023-12-08 深圳市韶音科技有限公司 骨传导扬声装置
CN209184799U (zh) 2019-01-05 2019-07-30 深圳市韶音科技有限公司 电池组件及骨传导扬声装置
CN114679656A (zh) 2019-01-05 2022-06-28 深圳市韶音科技有限公司 电池组件及骨传导扬声装置
CN109640209B (zh) * 2019-01-24 2021-02-09 合肥星空物联信息科技有限公司 一种基于传感器智能操作的蓝牙耳机
US10812896B2 (en) 2019-03-21 2020-10-20 Facebook Technologies, Llc High compliance microspeakers for vibration mitigation in a personal audio device
BR112021021746A2 (pt) 2019-04-30 2021-12-28 Shenzhen Voxtech Co Ltd Aparelho de saída acústica

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105228039A (zh) * 2014-06-27 2016-01-06 苹果公司 具有通风室的质量加载耳塞
CN104581483A (zh) * 2014-12-24 2015-04-29 青岛歌尔声学科技有限公司 一种开放式耳机
CN106341752A (zh) * 2016-11-24 2017-01-18 深圳市雷森贝尔听力技术有限公司 一种仿生全开放式耳甲增益导声装置及其使用方法
CN107105361A (zh) * 2016-12-09 2017-08-29 美律电子(深圳)有限公司 耳机
WO2018107141A1 (en) * 2016-12-11 2018-06-14 Bose Corporation Acoustic transducer

Also Published As

Publication number Publication date
WO2020221169A1 (en) 2020-11-05
WO2020220724A1 (zh) 2020-11-05
JP2022531256A (ja) 2022-07-06
US11425482B2 (en) 2022-08-23
KR20220017905A (ko) 2022-02-14
US11457301B2 (en) 2022-09-27
US11743627B2 (en) 2023-08-29
US11595745B2 (en) 2023-02-28
WO2020220738A1 (zh) 2020-11-05
US11706556B2 (en) 2023-07-18
US20230156390A1 (en) 2023-05-18
US11540037B2 (en) 2022-12-27
US20230232145A1 (en) 2023-07-20
WO2020220723A1 (zh) 2020-11-05
JP2022531254A (ja) 2022-07-06
US20230276161A1 (en) 2023-08-31
WO2020221163A1 (en) 2020-11-05
JP2022530813A (ja) 2022-07-01
US20220070570A1 (en) 2022-03-03
WO2020220719A1 (zh) 2020-11-05
US11985466B2 (en) 2024-05-14
WO2020220736A1 (zh) 2020-11-05
US20220021963A1 (en) 2022-01-20
US20230156391A1 (en) 2023-05-18
US11671737B2 (en) 2023-06-06
US20210168498A1 (en) 2021-06-03
US20210274278A1 (en) 2021-09-02
US20220386012A1 (en) 2022-12-01
US12010475B2 (en) 2024-06-11
WO2020220947A1 (en) 2020-11-05
US20210274281A1 (en) 2021-09-02
KR20220017908A (ko) 2022-02-14
EP3942844A1 (en) 2022-01-26
US20210377645A1 (en) 2021-12-02
EP3952336A1 (en) 2022-02-09
US11503395B2 (en) 2022-11-15
US11678098B2 (en) 2023-06-13
US11856351B2 (en) 2023-12-26
WO2020220970A1 (en) 2020-11-05
US20210160610A1 (en) 2021-05-27
US20210127200A1 (en) 2021-04-29
US20240171892A1 (en) 2024-05-23
US11671738B2 (en) 2023-06-06
JP2023179772A (ja) 2023-12-19
US20210168494A1 (en) 2021-06-03
US11838713B2 (en) 2023-12-05
US11540038B2 (en) 2022-12-27
KR102511669B1 (ko) 2023-03-21
KR102533570B1 (ko) 2023-05-19
EP3942844A4 (en) 2022-08-10
US11689838B2 (en) 2023-06-27
US20210168485A1 (en) 2021-06-03
US11425481B2 (en) 2022-08-23
US20230109699A1 (en) 2023-04-13
US20230141946A1 (en) 2023-05-11
US20230007380A1 (en) 2023-01-05
US11445281B2 (en) 2022-09-13
US20210112329A1 (en) 2021-04-15
US11356763B2 (en) 2022-06-07
US20220264212A1 (en) 2022-08-18
EP3952331A1 (en) 2022-02-09
US11122359B2 (en) 2021-09-14
US20210160606A1 (en) 2021-05-27
US11689837B2 (en) 2023-06-27
US11930314B2 (en) 2024-03-12
US20230276160A1 (en) 2023-08-31
US11653134B2 (en) 2023-05-16
WO2020220720A1 (zh) 2020-11-05
US20210243518A1 (en) 2021-08-05
US11838712B2 (en) 2023-12-05
US11159870B2 (en) 2021-10-26
US11622186B2 (en) 2023-04-04
US20230012124A1 (en) 2023-01-12
WO2020220722A1 (zh) 2020-11-05
US11178477B2 (en) 2021-11-16
US20210289281A1 (en) 2021-09-16
JP7333829B2 (ja) 2023-08-25
US20210168495A1 (en) 2021-06-03
US20210235181A1 (en) 2021-07-29
US20210160602A1 (en) 2021-05-27
US20230066263A1 (en) 2023-03-02
WO2020220733A1 (zh) 2020-11-05
KR102533573B1 (ko) 2023-05-19
US20240073579A1 (en) 2024-02-29
WO2020220734A1 (zh) 2020-11-05
BR112021021739A2 (pt) 2021-12-28
WO2020221254A1 (en) 2020-11-05
US11496824B2 (en) 2022-11-08
US11917352B2 (en) 2024-02-27
US11818529B2 (en) 2023-11-14
EP3952331A4 (en) 2022-05-18
US20240205582A1 (en) 2024-06-20
BR112021021746A2 (pt) 2021-12-28
WO2020220735A1 (zh) 2020-11-05
US20210168500A1 (en) 2021-06-03
US11490188B2 (en) 2022-11-01
WO2020220721A1 (zh) 2020-11-05
US20230070507A1 (en) 2023-03-09
KR20220017904A (ko) 2022-02-14
US20210227306A1 (en) 2021-07-22
US20230171528A1 (en) 2023-06-01
US11516572B2 (en) 2022-11-29
US20210271115A1 (en) 2021-09-02
US20210223577A1 (en) 2021-07-22
WO2020220737A1 (zh) 2020-11-05
US20210274276A1 (en) 2021-09-02
US20210274280A1 (en) 2021-09-02
US20210185421A1 (en) 2021-06-17
US11570536B2 (en) 2023-01-31
US20210168554A1 (en) 2021-06-03
US11115774B2 (en) 2021-09-07
US20230396912A1 (en) 2023-12-07
US11985465B2 (en) 2024-05-14
US20210127197A1 (en) 2021-04-29
US20220030347A1 (en) 2022-01-27
US20230145038A1 (en) 2023-05-11
EP3952336A4 (en) 2022-05-18
US20230336902A1 (en) 2023-10-19
WO2020221359A1 (en) 2020-11-05
BR112021021750A2 (pt) 2021-12-28

Similar Documents

Publication Publication Date Title
WO2020221337A1 (zh) 一种声学输出装置和降噪传声装置
WO2021052046A1 (zh) 一种声学输出装置
WO2022126592A1 (zh) 一种声学输出装置
WO2023245661A1 (zh) 一种耳机
RU2796796C1 (ru) Акустическое выходное устройство
RU2801637C1 (ru) Акустическое выходное устройство
RU2803551C1 (ru) Устройство вывода акустических сигналов
RU2782985C1 (ru) Акустическое выходное устройство
JP7524219B2 (ja) 音響出力装置
WO2024087291A1 (zh) 一种开放式耳机
CN117336642A (zh) 一种耳机
CN116055941A (zh) 音频输出模块和开放式耳机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20798629

Country of ref document: EP

Kind code of ref document: A1