WO2020218989A1 - Revêtements superhydrophobes robustes à structures hiérarchiques auto-assemblées - Google Patents

Revêtements superhydrophobes robustes à structures hiérarchiques auto-assemblées Download PDF

Info

Publication number
WO2020218989A1
WO2020218989A1 PCT/TR2019/051108 TR2019051108W WO2020218989A1 WO 2020218989 A1 WO2020218989 A1 WO 2020218989A1 TR 2019051108 W TR2019051108 W TR 2019051108W WO 2020218989 A1 WO2020218989 A1 WO 2020218989A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface coating
minutes
superhydrophobic surface
glass slides
coating method
Prior art date
Application number
PCT/TR2019/051108
Other languages
English (en)
Inventor
Mustafa Serdar ONSES
İlker TORUN
Nusret CELIK
Original Assignee
Erciyes Universitesi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Erciyes Universitesi filed Critical Erciyes Universitesi
Publication of WO2020218989A1 publication Critical patent/WO2020218989A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1681Antifouling coatings characterised by surface structure, e.g. for roughness effect giving superhydrophobic coatings or Lotus effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2401/00Form of the coating product, e.g. solution, water dispersion, powders or the like
    • B05D2401/10Organic solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2501/00Varnish or unspecified clear coat
    • B05D2501/10Wax
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers
    • B05D2601/20Inorganic fillers used for non-pigmentation effect
    • B05D2601/22Silica

Definitions

  • the present invention relates to a method of robust superhydrophobic coating with self-assembled hierarchical structures.
  • the technique of superhydrophobic coating is a method developed utilizing the properties of a lotus flower. There is an anti-pollution structure on the surface of the lotus flower. The rain drops falling onto the leaves of the plant flow away from the leaf and fall down while at the same time dragging away the dirt and dust on the surface. A micro-nano layer is formed on the surface of the objects with the technique developed based on forming the said texture on the surface, thereby enabling the said surfaces to exhibit superhydrophobic properties. Thus, the object is neither polluted nor wetted.
  • Superhydrophobic coatings can be applied on all kinds of surfaces (e.g. all textile and leather surfaces, glass, ceramic surfaces, stone and wooden surfaces, surfaces of electronic products).
  • Superhydrophobic coating provides an advantageous method for occupational groups working at hazardous jobs. Workers can be protected from hazards by means of breathable clothing with hydrophobic and water-impermeable coating. Furthermore, thanks to these coatings, the friction coefficient on the outer surface of the ships can be reduced thereby achieving fuel saving, and the ship's active working time can be increased by extending the ship maintenance periods.
  • the invention disclosed in the United States patent document US2019016905 an application known in the state of the art, relates to an improved superhydrophobic coating process.
  • a robust superhydrophobic coating is produced by using carbon dioxide to enhance the integration of a binder material into the superhydrophobic coating.
  • the carbon dioxide may be used to infiltrate and fill the interstitial voids of a superhydrophobic material, such as diatomaceous earth. Occupying these voids in the superhydrophobic material effectively blocks other components (e.g. binders) from entering the voids.
  • the coating formulations of the invention are more robust and may strongly adhere to the substrates to which they are applied.
  • the objective of the present invention is to produce superhydrophobic coatings having high hydrophobicity (water contact angle >150° and roll-off angle ⁇ 10°) and high mechanical robustness. For this purpose, it is aimed to self-assemble hierarchically ordered micro- and nano- sized structures.
  • carnauba wax which is an inexpensive, easy-to-supply, completely vegetable based material that is used as an additive in food products, or alternatives thereof (natural wax, mineral wax, vegetable wax, animal wax and synthetic wax).
  • a further objective of the invention is to obtain coatings with high hydrophobicity without using fluorocarbon compounds.
  • Another objective of the invention is to obtain a method that is easily adaptable to industrial applications thanks to the simplicity of the production formula that is used, and inexpensive and easy-to-supply raw materials.
  • the present invention is a highly robust superhydrophobic surface coating method comprising the steps of
  • camauba wax crystals 0.1 g by weight of camauba wax crystals are added into 20 mL of chloroform and heated at 105°C for 10 minutes. After camauba wax is dissolved homogenously in the chloroform, it is allowed to cool at room temperature in a controlled manner. It is agitated in the process of cooling and when room temperature is reached, 0.4 grams of hydrophobized silica nanoparticles are added and stirred for 10 minutes by the help of a vortex apparatus.
  • chloroform which is used as the solvent
  • solvents such as ethanol, toluene, methanol and acetone.
  • chloroform and ethyl acetate dissolve carnauba wax much better (average diameter distributions of 5 nm ⁇ 1 nm) than the other solvents.
  • the particle size was found to be in the range of about 2 - 7 pm.
  • the diameter distributions are measured to be at an average of 5 nm ( ⁇ 1 nm).
  • Carnauba wax having such small diameters enhances the strength of the functionalized silica nanoparticles without compromising the hydrophobicity thereof.
  • the static water contact angle of these coatings is characterized to be 175° ⁇ 3° and the roll-off angle thereof to be 2° ⁇ 1°.
  • carnauba wax which is a natural material
  • hydrophobic nanoparticles to increase the strength of the coatings.
  • non-fluorine-based alkyl silanes with low surface energy are used and the static contact angle decreases.
  • fluorine-free alkyl silane is used in this method, no such problem has been observed.
  • the coatings do not contain fluorocarbon components and have a high static contact angle of 175° ⁇ 3° and a roll-off angle of 2° ⁇ 1°.
  • the hydrophilic silica nanoparticles are modified with alkyl silane, preferably dodecyl trichlorosilane, to make them hydrophobic.
  • alkyl silane preferably dodecyl trichlorosilane
  • 2 grams of silica nanoparticles are added to 40 mL of toluene and stirred with the help of a magnetic stirring bar.
  • 1 mL of alkyl silane is gradually added to the mixture of toluene silica nanoparticles. This solution is stirred for 3 hours. After stirring, this solution is centrifuged for 15 minutes by means of a centrifuge device.
  • the hydrophobic silica nanoparticles obtained after centrifugation are dried in an oven at 80°C. The drying process takes approximately 12 hours.
  • Glass slides (l x l cm 2 ) are placed into the washing container containing ethyl alcohol and acetone, and the cleaning process is carried out in the ultrasonic device for 10 minutes. At the end of the process, the glass slides are dried with nitrogen and cleaned in a UV-ozone device for 30 minutes.
  • ethyl alcohol or alcohol wipes may be used for surface cleaning.
  • the obtained suspension is applied as a coating on a glass slide (l x l cm 2 ) prepared for coating with the help of a spray gun with a nozzle head having an inner diameter of 0.35 mm at a fixed pressure of 2-3 bars. After performing spray coating from a distance of 30 cm and with 90° angle, it is allowed to dry in atmospheric environment. Coating can also be performed with spray bottles outside the laboratory environment.
  • the resulting final solution product was tested for shelf life and no precipitation was observed in the nanoparticles used in the product.
  • titanium dioxide, iron oxide and zinc oxide nanoparticles can be used instead of silica nanoparticles that are hydrophobized using alkyl silane.
  • ethyl acetate is used instead of chloroform as the solvent of camauba wax.
  • the same experimental results are obtained for both of the solvents.
  • the water repellency properties and the static contact angle and roll-off angle measurements of the coated substrates are characterized by a goniometer device.
  • Impact and abrasion resistance of the prepared coatings are determined by water spray impact test, water jet impact test, long term water drop impact test and linear abrasion test.
  • the destruction caused by the impact and abrasion tests on the surface is characterized by SEM and AFM devices.
  • the superhydrophobic coated sample having a surface area of 1 cm 2 was moved on a 1000 grit silicon carbide abrasive surface under a weight of 100 grams to examine the abrasion resistance of the superhydrophobic coating. Although the superhydrophobic coating was moved about 150 cm on the abrasive surface, the static water contact angle was still 165° ⁇ 2° and the roll-off angle was 7° ⁇ 1°, and it still maintained its high liquid repellent property. After every 10 cm of movement of the superhydrophobic coated sample on the silicon carbide surface, the static contact angle was measured, and this was repeated 15 times. The fact that the coating preserved its superhydrophobic property despite the highly abrasive properties of the silicon abrasive surface shows that the developed method provides high mechanical strength.
  • the sample was found to be highly resistant to the water impact tests.
  • the static contact angle of the superhydrophobic coating to which water impact was applied for 45 minutes under pressurized water, was still 168° ⁇ 2° and the roll-of angle thereof was 4° ⁇ 1°.
  • the fact that the coating still maintained its static contact angle although pressurized water formed a pressure of 32.0 kPa on the superhydrophobic surface shows that the coating has high impact resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

La présente invention concerne un procédé de production d'un revêtement de surface superhydrophobe présentant une résistance élevée aux chocs et à l'abrasion et un angle de contact statique avec l'eau élevé, comprenant les étapes consistant à ajouter 0,1 g en poids de cristaux de cire de carnauba dans 20 ml de chloroforme et à dissoudre ces derniers sous chauffage entre 100 et 120 °C pendant 5 à 15 minutes ; après dissolution, à agiter et à refroidir à température ambiante ; à ajouter 0,4 gramme de nanoparticules hydrophobes et à agiter pendant 5 à 15 minutes ; à placer les lames de verre dans un récipient de lavage contenant de l'alcool éthylique et de l'acétone, et à les nettoyer dans un dispositif à ultrasons ; à sécher les lames de verre avec de l'azote et à les laisser reposer dans un dispositif UV-ozone pendant 20 à 30 minutes ; à revêtir les lames de verre par pulvérisation d'une suspension, dans laquelle sont ajoutées des nanoparticules hydrophobes, par un pistolet de pulvérisation à une distance d'au moins 20 cm à une pression fixe comprise entre 2 et 3 bars. De cette manière, l'invention vise à auto-assembler des structures de taille micrométrique et nanométrique ordonnées de manière hiérarchique et à produire des revêtements superhydrophobes présentant une hydrophobicité élevée (angle de contact avec l'eau > 150° et angle de glissement < 10°) et une résistance mécanique élevée.
PCT/TR2019/051108 2019-04-24 2019-12-18 Revêtements superhydrophobes robustes à structures hiérarchiques auto-assemblées WO2020218989A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TR2019/06035 2019-04-24
TR2019/06035A TR201906035A1 (tr) 2019-04-24 2019-04-24 Kendi̇li̇ği̇nden düzenlenen hi̇yerarşi̇k yapilar i̇le dayanikli süperhi̇drofobi̇k kaplamalar

Publications (1)

Publication Number Publication Date
WO2020218989A1 true WO2020218989A1 (fr) 2020-10-29

Family

ID=72941738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/TR2019/051108 WO2020218989A1 (fr) 2019-04-24 2019-12-18 Revêtements superhydrophobes robustes à structures hiérarchiques auto-assemblées

Country Status (2)

Country Link
TR (1) TR201906035A1 (fr)
WO (1) WO2020218989A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112724436A (zh) * 2020-12-28 2021-04-30 陕西科技大学 一种超疏水辐射自降温材料及其制备方法
CN114753182A (zh) * 2022-03-28 2022-07-15 中国科学院化学研究所 一种农用模拟叶片表面疏水程度的材料及其制备方法
CN115895005A (zh) * 2022-11-28 2023-04-04 深圳供电局有限公司 一种超疏水rtv制备方法
CN116179004A (zh) * 2023-03-22 2023-05-30 北京华楚路美交通科技有限公司 一种自组装法制备超疏水抗污涂料的方法及用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015161233A1 (fr) * 2014-04-18 2015-10-22 University Of Massachusetts Procédés et formulations pour revêtements polymères superhydrophiques, autonettoyants et superhydrophobes durables et objets sur lesquels se trouvent ces revêtements
WO2017220588A1 (fr) * 2016-06-20 2017-12-28 Université de Mons Compositions polymères superhydrophobes et leurs utilisations
WO2019045732A1 (fr) * 2017-08-31 2019-03-07 Kimberly-Clark Worldwide, Inc. Compositions non fluorées à base d'eau comportant des matériaux végétaux permettant de générer des surfaces superhydrophobes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015161233A1 (fr) * 2014-04-18 2015-10-22 University Of Massachusetts Procédés et formulations pour revêtements polymères superhydrophiques, autonettoyants et superhydrophobes durables et objets sur lesquels se trouvent ces revêtements
WO2017220588A1 (fr) * 2016-06-20 2017-12-28 Université de Mons Compositions polymères superhydrophobes et leurs utilisations
WO2019045732A1 (fr) * 2017-08-31 2019-03-07 Kimberly-Clark Worldwide, Inc. Compositions non fluorées à base d'eau comportant des matériaux végétaux permettant de générer des surfaces superhydrophobes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112724436A (zh) * 2020-12-28 2021-04-30 陕西科技大学 一种超疏水辐射自降温材料及其制备方法
CN114753182A (zh) * 2022-03-28 2022-07-15 中国科学院化学研究所 一种农用模拟叶片表面疏水程度的材料及其制备方法
CN114753182B (zh) * 2022-03-28 2023-08-25 中国科学院化学研究所 一种农用模拟叶片表面疏水程度的材料及其制备方法
CN115895005A (zh) * 2022-11-28 2023-04-04 深圳供电局有限公司 一种超疏水rtv制备方法
CN116179004A (zh) * 2023-03-22 2023-05-30 北京华楚路美交通科技有限公司 一种自组装法制备超疏水抗污涂料的方法及用途
CN116179004B (zh) * 2023-03-22 2024-05-17 北京华楚路美交通科技有限公司 一种自组装法制备超疏水抗污涂料的方法及用途

Also Published As

Publication number Publication date
TR201906035A1 (tr) 2020-11-23

Similar Documents

Publication Publication Date Title
WO2020218989A1 (fr) Revêtements superhydrophobes robustes à structures hiérarchiques auto-assemblées
Celik et al. Fabrication of robust superhydrophobic surfaces by one-step spray coating: Evaporation driven self-assembly of wax and nanoparticles into hierarchical structures
JP4755418B2 (ja) ナノ構造化された疎水性粒子を基礎とする界面活性剤不含の水性懸濁液の製造法およびその使用
JP4809054B2 (ja) 非透水性テキスタイル支持体、その製造法及びその使用
ES2275039T3 (es) Procedimiento para la produccion de revestimientos laminares desprendibles, repelentes de la suciedad y del agua.
US7914897B2 (en) Superhydrophobic coating
AU2009302806B2 (en) Highly durable superhydrophobic, oleophobic and anti-icing coatings and methods and compositions for their preparation
JP2005517052A (ja) 汚れおよび水をはじく特性を有する保護層の製造方法
Wu et al. Fabrication of robust and room-temperature curable superhydrophobic composite coatings with breathable and anti-icing performance
KR101582498B1 (ko) 오르가노실리콘 화합물의 수성 분산액
CN108300299B (zh) 一种具有防滑功能的保护性涂层组合物、涂布制品及其制备方法
EP3312242B1 (fr) Composition de revêtement protecteur à fonctionnalités mixtes
KR20150042805A (ko) 라임스케일 및/또는 비누 찌꺼기의 방지 및/또는 제거용 코팅 조성물
JP2007509732A (ja) フルオロシランで疎水化した粒子の、疎脂質性、疎油性、疎ミルク性及び疎水性の特性を有する自浄性表面の製造のための使用
JP2017523917A (ja) 超疎水性、超疎油性又は超両疎媒性層を形成する方法において使用するための液体コーティング組成物
KR20030042015A (ko) 저습윤성 표면 형성용 조성물
WO2020007254A1 (fr) Composition de revêtement de surface à longue durabilité
KR20220006089A (ko) 소수성 필름용 코팅 조성물 및 소수성 표면을 갖는 물품
Manoudis et al. A comparative study of the wetting properties of a superhydrophobic siloxane material and rose petal
KR20210019449A (ko) 소포 활성제, 이의 제조 방법, 및 소포 제형
JP7500602B2 (ja) 疎水性被膜のコーティング組成物及び疎水性表面を有する物品
TWI600725B (zh) 一種具有防滑功能的保護性塗層組合物、塗佈製品及其製備方法
Sharmin et al. Adhesive less Silica Nanoparticle Coating on Nylon Woven Fabric and Its Characterization
WO2024059726A2 (fr) Revêtement superhydrophobe renforcé au graphène et procédé de préparation associé
CN116285621A (zh) 一种耐久性良好的水性超双疏涂料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926623

Country of ref document: EP

Kind code of ref document: A1