WO2020217406A1 - 3次元焼成体の製法 - Google Patents

3次元焼成体の製法 Download PDF

Info

Publication number
WO2020217406A1
WO2020217406A1 PCT/JP2019/017718 JP2019017718W WO2020217406A1 WO 2020217406 A1 WO2020217406 A1 WO 2020217406A1 JP 2019017718 W JP2019017718 W JP 2019017718W WO 2020217406 A1 WO2020217406 A1 WO 2020217406A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding die
dimensional
molding
mold
producing
Prior art date
Application number
PCT/JP2019/017718
Other languages
English (en)
French (fr)
Inventor
泰穂 青木
正 大野
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to KR1020217033574A priority Critical patent/KR102541744B1/ko
Priority to CN201980095692.3A priority patent/CN113710444B/zh
Priority to JP2021515425A priority patent/JP7144603B2/ja
Priority to PCT/JP2019/017718 priority patent/WO2020217406A1/ja
Priority to TW109112783A priority patent/TWI807182B/zh
Publication of WO2020217406A1 publication Critical patent/WO2020217406A1/ja
Priority to US17/451,204 priority patent/US20220032501A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/34Moulds, cores, or mandrels of special material, e.g. destructible materials
    • B28B7/342Moulds, cores, or mandrels of special material, e.g. destructible materials which are at least partially destroyed, e.g. broken, molten, before demoulding; Moulding surfaces or spaces shaped by, or in, the ground, or sand or soil, whether bound or not; Cores consisting at least mainly of sand or soil, whether bound or not
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/14Producing shaped prefabricated articles from the material by simple casting, the material being neither forcibly fed nor positively compacted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/48Producing shaped prefabricated articles from the material by removing material from solid section preforms for forming hollow articles, e.g. by punching or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/16Moulds for making shaped articles with cavities or holes open to the surface, e.g. with blind holes
    • B28B7/18Moulds for making shaped articles with cavities or holes open to the surface, e.g. with blind holes the holes passing completely through the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/34Moulds, cores, or mandrels of special material, e.g. destructible materials
    • B28B7/346Manufacture of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/34Moulds, cores, or mandrels of special material, e.g. destructible materials
    • B28B7/348Moulds, cores, or mandrels of special material, e.g. destructible materials of plastic material or rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6028Shaping around a core which is removed later

Definitions

  • the present invention relates to a method for producing a three-dimensional fired body.
  • Patent Document 1 describes a method for producing a ceramic tube. Specifically, first, a ceramic raw material powder is formed into a tube shape by an isostatic pressing method using an inner mold (core) made of an organic thermoplastic material through a core and an outer mold (molding mold) made of rubber. Mold. Subsequently, the molded body is released from the outer mold, and the core is pulled out from the molded body. Then, it is heated to melt the inner mold to remove the outflow from the inside of the molded product, and the molded product is fired to obtain a ceramic tube.
  • Patent Document 2 describes a method for producing a molded product having an undercut portion.
  • the core is placed in the molding die.
  • a placing piece made of a thermoplastic material is provided in the portion of the core that provides the mold surface that forms the undercut portion.
  • the outer periphery of the core of the molding die is filled with a ceramic material and molded, and then the molded body is released from the molding die.
  • the metal pin of the core is pulled out and heated to remove the placing piece from the outflow to obtain a molded body having an undercut portion on the inner surface.
  • Patent Documents 1 and 2 it is necessary to install a core separate from the molding mold in the molding mold, and at that time, it is also necessary to manage the position of the core. Further, in order to separate the molded product from the molding die, it is necessary to apply a mold release agent to the molding die and wash the molding die.
  • the present invention has been made to solve the above-mentioned problems, and a main object of the present invention is to manufacture a three-dimensional fired body easily and accurately.
  • the method for producing a three-dimensional fired body of the present invention is (A) A step of producing a molding die made of an organic material, which has a molding space having the same shape as a molded body having a hollow portion opening on the outer surface and in which a core corresponding to the hollow portion is integrated. (B) A step of producing the molded product in the molding die by injecting a ceramic slurry into the molding space of the molding die and solidifying the molded product. (C) A step of drying and then degreasing the molded product, wherein the molding is performed at any stage of before drying, during drying, after drying and before degreasing, during degreasing, and after degreasing. The process of losing the mold and (D) A step of firing the molded product to obtain a three-dimensional fired product, and Is included.
  • a molded body is manufactured by solidifying a ceramic slurry using a molding die in which a core corresponding to a hollow portion of the molded body is integrated. Therefore, it is not necessary to install the core in the molding die and manage the position of the core. Further, the molding die disappears at any stage of before, during drying, after drying and before degreasing, during degreasing, and after degreasing. Therefore, the work of applying the release agent to the mold and the work of cleaning the mold are also unnecessary. Therefore, as compared with the conventional case, the three-dimensional fired body can be manufactured easily and accurately.
  • the method for eliminating the molding die is not particularly limited.
  • the molding die may be eliminated by melting and removing the molding die, or the molding die may be eliminated by chemical decomposition (including, for example, thermal decomposition). You may let me.
  • the molding die in the method for producing a three-dimensional fired product of the present invention, in the step (c), the molding die may be melted and removed to eliminate it.
  • the molding die When the molding die is burned and disappears, the components contained in the molded body may also be burned to cause unevenness on the surface of the molded body, but here, since the molding die is melted and removed, there is no such possibility. ..
  • the molding under the condition that the components of the molded product are not melt-removed, the molding may be melt-removed to eliminate the components. In this way, it is possible to prevent the molded product from being deformed when the mold is melt-removed.
  • the molding die in the step (a), is manufactured using a 3D printer, and in the 3D printer, it is contained in a predetermined cleaning liquid and the ceramic slurry after curing as a model material.
  • a material insoluble in the above-mentioned components may be used, and a material soluble in the predetermined cleaning liquid after curing may be used as the support material.
  • the term "insoluble” includes not only the case where it does not dissolve at all but also the case where it dissolves to the extent that a desired shape can be retained. In this way, a molding die in which the cores are integrated can be relatively easily manufactured, and there is no possibility that the molding die is eluted to the extent that the shape cannot be maintained by the components contained in the ceramic slurry.
  • a slurry containing a ceramic powder and a gelling agent is used as the ceramic slurry, and after the ceramic slurry is injected into the molding die, the gelling agent is used. May be chemically reacted to gel the ceramic slurry to produce the molded product in the molding mold. In this way, the ceramic slurry is filled tightly in the molding space of the molding mold in which the core is integrated, so that the molded product accurately matches the shape of the molding space.
  • the three-dimensional fired body is fitted into a plug installation hole provided on a surface of the electrostatic chuck opposite to the wafer mounting surface, and the electrostatic chuck is bent while being bent.
  • the plug is provided with a gas passage penetrating in the thickness direction of the electrostatic chuck, and the plug is provided so as to penetrate the bottom of the plug installation hole of the electrostatic chuck in the thickness direction of the electrostatic chuck. It may be used to supply gas to the pores through the gas passage.
  • a plug is, for example, a component similar to the plasma arrester for an electrostatic chuck described in US Patent Application Publication No. 2017/0243726 (US2017 / 0243726).
  • the precursor (mold) of the arrester is made with a 3D printer, which makes it difficult to eject the molding material from the gas passage.
  • a ceramic slurry is injected into a molding die having a molding space having the same shape as the molded body of the plug and the core is integrated to solidify the molded body. Therefore, the gas passage can be easily manufactured.
  • FIG. 3 is a perspective view of a molded body 50 for manufacturing the plug 30.
  • FIG. 3 is a perspective view of a molding die 70 for producing a molded body 50.
  • the vertical sectional view of the ceramic member 120. A partial vertical sectional view of a member for a semiconductor manufacturing apparatus of another example.
  • FIG. 1 is a vertical sectional view (with a partially enlarged view) of a member 10 for a semiconductor manufacturing apparatus
  • FIG. 3 is a perspective view of a molded body 50 for manufacturing a plug
  • FIG. 4 is a molding die for manufacturing a molded body 50.
  • FIG. 5 is a cross-sectional view of the molding die 70 when it is divided in half in the vertical direction.
  • the semiconductor manufacturing device member 10 is a member in which an electrostatic chuck 20 having a wafer mounting surface 22 is provided on the cooling device 40.
  • a plurality of small protrusions 23 are provided on the wafer mounting surface 22 by embossing.
  • the wafer W to be subjected to plasma treatment is placed on the small protrusions 23.
  • the cooling device 40 is a disk-shaped member made of metal such as aluminum, and has a gas supply hole 42.
  • the gas supply hole 42 communicates the joint surface 44 joined to the electrostatic chuck 20 of the cooling device 40 with the lower surface 46 on the opposite side of the joint surface 44.
  • the joint surface 44 of the cooling device 40 is adhered to the lower surface 24 of the electrostatic chuck 20 via a bonding sheet (not shown).
  • the electrostatic chuck 20 is a dense disk-shaped member made of ceramics such as alumina or aluminum nitride, and has a plug installation hole 26 and a plurality of pores 28 communicating with the plug installation hole 26.
  • the plug installation hole 26 is formed from a position of the lower surface 24 of the electrostatic chuck 20 facing the gas supply hole 42 toward the wafer mounting surface 22. Therefore, the plug installation hole 26 communicates with the gas supply hole 42. Further, the internal space of the plug installation hole 26 is cylindrical.
  • the pore 28 is a hole having a diameter smaller than that of the plug installation hole 26, and penetrates from the bottom surface 27 of the plug installation hole 26 to the wafer mounting surface 22. The pores 28 are open in the wafer mounting surface 22 where the small protrusions 23 are not formed.
  • a dense ceramic plug 30 is fitted in the plug installation hole 26.
  • the plug 30 is a cylindrical member and has a gas passage 32 penetrating the thickness direction (vertical direction) of the electrostatic chuck 20.
  • the plug 30 is adhered to, for example, the side wall of the plug installation hole 26 with an adhesive.
  • the gas passage 32 is formed in a bent shape (here, a spiral shape), and reaches the opening 32a provided on the lower surface of the plug 30 to the opening 32b provided on the upper surface of the plug 30.
  • the lower surface of the plug 30 coincides with the lower surface 24 of the electrostatic chuck 20.
  • a gas storage space 34 is provided between the upper surface of the plug 30 and the bottom surface 27 of the plug installation hole 26.
  • Such a semiconductor manufacturing apparatus member 10 is installed in a chamber (not shown). Then, the wafer W is placed on the wafer mounting surface 22, the raw material gas is introduced into the chamber, and the RF voltage for generating plasma is applied to the cooling device 40 to generate plasma and process the wafer W. I do.
  • a backside gas such as helium is introduced into the gas supply hole 42 from a gas cylinder (not shown). The backside gas is supplied to the space 12 on the back surface side of the wafer W through the gas supply hole 42, the gas passage 32 of the plug 30, the gas reservoir space 34, and the pores 28.
  • the gas passage 32 When the plasma is generated in this way, if the gas passage 32 has a straight shape, an electric discharge may occur between the wafer W and the cooling device 40, but in the present embodiment, the gas passage 32 becomes spiral. Therefore, it is possible to prevent an electric discharge from occurring between the wafer W and the cooling device 40.
  • this production example includes (a) a manufacturing step of the molding die 70, (b) a manufacturing step of the molded body 50, and (c) a drying degreasing step of the molded body 50.
  • d) Includes a step of firing the molded product 50.
  • the molded body 50 shown in FIG. 3 becomes a plug 30 after firing, and the dimensions of the molded body 50 are determined based on the dimensions of the plug 30 in consideration of baking and tightening during firing.
  • the molded body 50 has a spiral hollow portion 52 that becomes a gas passage 32 after firing. The hollow portion 52 is open to the upper surface and the lower surface of the molded body 50.
  • the molding die 70 is manufactured. As shown in FIGS. 4 and 5, the molding die 70 includes a bottomed tubular main body 70a and a spiral core 70b corresponding to the hollow portion 52 of the molded body 50.
  • the molding die 70 has a molding space 71 having the same shape as the molded body 50.
  • the molding space 71 is a space obtained by removing the core 70b from the cylindrical space inside the main body 70a.
  • the lower end of the core 70b is integrated with the bottom surface of the molding die 70.
  • the upper end of the core 70b is a free end.
  • the mold 70 is made using a well-known 3D printer.
  • the 3D printer forms the molded body 50 by repeating a series of operations of discharging the pre-cured fluid from the head portion toward the stage to form the pre-cured layered product and curing the pre-cured layered product. ..
  • the 3D printer is finally removed as the pre-curing fluid, which is the model material which is the material that finally constitutes the necessary part of the molding die 70 and the basic part of the molding die 70 that supports the model material. It is equipped with a support material that is a material that constitutes the part.
  • a predetermined cleaning solution water, organic solvent, acid, alkaline solution, etc.
  • a material insoluble in the components contained in the ceramic slurry described later for example, wax such as paraffin wax
  • a material insoluble in the components contained in the ceramic slurry described later for example, wax such as paraffin wax
  • a material insoluble in a predetermined cleaning solution after curing is used.
  • An example of a predetermined cleaning solution is isopropyl alcohol.
  • the 3D printer forms a structure using slice data sliced horizontally from the bottom to the top of the molding die 70 at predetermined intervals. Slice data is created by processing CAD data.
  • slice data there is slice data in which the model material and the support material are mixed, and there is slice data in which only the model material is used.
  • the structure formed by the 3D printer is immersed in isopropyl alcohol to dissolve and remove the cured support material, whereby an object consisting of only the cured model material, that is, a molding die 70 can be obtained.
  • Step (b) the molded body 50 is manufactured in the molding die 70.
  • the molded body 50 is manufactured by mold casting.
  • Mold casting molding is a method sometimes called gel casting molding, and the details thereof are disclosed in, for example, Japanese Patent No. 5458050.
  • a ceramic slurry containing a ceramic powder, a solvent, a dispersant and a gelling agent is injected into the molding space 71 of the molding die 70, and the gelling agent is chemically reacted to gel the ceramic slurry. 50 is produced in the molding die 70.
  • the solvent is not particularly limited as long as it dissolves the dispersant and the gelling agent, but may be a polybasic acid ester (for example, dimethyl glutarate), a polyhydric alcohol acid ester (for example, triacetin, etc.), or the like. It is preferable to use a solvent having two or more ester bonds.
  • the dispersant is not particularly limited as long as it uniformly disperses the ceramic powder in the solvent, but it is preferable to use a polycarboxylic acid-based copolymer, a polycarboxylic acid salt, or the like.
  • the gelling agent for example, isocyanates, polyols and a catalyst may be contained.
  • the isocyanates are not particularly limited as long as they are substances having an isocyanate group as a functional group, and examples thereof include tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), and modified products thereof.
  • the polyols are not particularly limited as long as they are substances having two or more hydroxyl groups capable of reacting with isocyanate groups, and for example, ethylene glycol (EG), polyethylene glycol (PEG), propylene glycol (PG), polypropylene glycol (PPG). And so on.
  • the catalyst is not particularly limited as long as it is a substance that promotes the urethane reaction between isocyanates and polyols, and examples thereof include triethylenediamine, hexanediamine, and 6-dimethylamino-1-hexanol.
  • the gelation reaction is a reaction in which isocyanates and polyols undergo a urethane reaction to form a urethane resin (polyurethane).
  • the ceramic slurry due to the reaction of the gelling agent, and the urethane resin functions as an organic binder.
  • Step (c) the molded product 50 is dried and then degreased. Drying of the molded product 50 is performed in order to evaporate the solvent contained in the molded product 50.
  • the drying temperature may be appropriately set according to the solvent used, but may be set to, for example, 30 to 200 ° C. However, the drying temperature is carefully set so that the molded product 50 being dried does not crack.
  • the atmosphere may be an atmospheric atmosphere, an inert atmosphere, or a vacuum atmosphere.
  • the degreasing of the molded product 50 after drying is performed in order to decompose and remove solid organic substances such as dispersants and catalysts contained in the molded product 50.
  • the degreasing temperature may be appropriately set according to the type of organic matter contained, but may be set to, for example, 200 to 600 ° C. Further, the atmosphere may be any of an atmospheric atmosphere, an inert atmosphere, a vacuum atmosphere, a hydrogen atmosphere and the like.
  • the molded product 50 after degreasing may be calcined.
  • the calcination temperature is not particularly limited, but may be set to, for example, 600 to 1200 ° C.
  • the atmosphere may be an atmospheric atmosphere, an inert atmosphere, or a vacuum atmosphere.
  • the molding die 70 disappears at any stage of before, during drying, after drying and before degreasing, during degreasing, and after degreasing the molded body 50.
  • a material having a melting point equal to or lower than the drying temperature of the molded body 50 (the upper limit temperature when the melting point is represented by a temperature range, the same applies hereinafter) is used as the material of the molding die 70
  • the molded body 50 is used.
  • the molding die 70 may be melted and removed by heating the molded body 50 that has entered the molding die 70 to a temperature equal to or higher than the melting point and lower than the drying temperature before drying, or at the drying temperature when the molded body 50 is dried.
  • the mold 70 may be melted and removed.
  • the molding die 70 can be melted and removed by heating the molding die 70 to 70 ° C. before drying the molded body 50.
  • the molded body 50 is put into the molding die 70 after being dried and before being degreased.
  • the mold 70 may be melt-removed by heating the molded body 50 to a temperature equal to or higher than the melting point and lower than the degreasing temperature, or the mold 70 may be melt-removed at the degreasing temperature when the molded body 50 is degreased. .. It is preferable to use a component of the molded body 50 that is not melt-removed at a temperature at which the molding die 70 is melt-removed. By doing so, it is possible to prevent the molded body 50 from being deformed when the molding die 70 is melt-removed. Instead of melting and removing the mold 70, the mold 70 may be eliminated by combustion.
  • the molding die 70 may be extinguished by combustion when the molded body 50 is degreased and then calcined or fired.
  • Step (d) the molded body 50 is fired to produce the plug 30.
  • the firing temperature (maximum temperature reached) may be appropriately set in consideration of the temperature at which the ceramic powder contained in the molded product 50 is sintered.
  • the firing atmosphere may be appropriately selected from an atmospheric atmosphere, an inert gas atmosphere, a vacuum atmosphere, a hydrogen atmosphere, and the like.
  • the ceramic slurry is solidified using the molding die 70 in which the core 70b corresponding to the hollow portion 52 of the molded body 50 is integrated with the bottomed tubular main body 70a.
  • the molding die 70 disappears at any stage of before, during drying, after drying and before degreasing, during degreasing, and after degreasing the molded body 50. Therefore, the work of applying the release agent to the mold 70 and the work of cleaning the mold 70 are also unnecessary. Therefore, the plug 30 can be manufactured easily and accurately as compared with the conventional case.
  • a slurry containing a ceramic powder and a gelling agent is used as the ceramic slurry, the ceramic slurry is injected into the molding space 71 of the molding die 70, and then the gelling agent is chemically reacted to form the ceramic slurry.
  • the molded body 50 is produced in the molding die 70 by gelling. By doing so, the ceramic slurry is filled tightly in the molding space 71 of the molding die 70 in which the core 70b is integrated with the main body 70a, so that the molded body 50 accurately matches the shape of the molding space 71. ..
  • the components contained in the mold 50 may also be burned to cause unevenness on the surface of the mold 50, but the mold 70 is melted. There is no such risk if it disappears by removing it. At this time, if the components of the molded body 50 are not melt-removed and disappeared by melting and removing the molding die 70, it is possible to prevent the molded body 50 from being deformed when the molding die 70 is melt-removed. ..
  • step (a) the molding die 70 is manufactured using a 3D printer, and in the 3D printer, a material insoluble in the components contained in a predetermined cleaning liquid and ceramic slurry after curing is used as a model material to support the molding die 70.
  • a material that is soluble in a predetermined cleaning liquid after curing is used as the material. Therefore, the molding die 70 in which the core 70b is integrated with the main body 70a can be relatively easily manufactured, and there is no possibility that the molding die 70 is eluted by the components contained in the ceramic slurry.
  • the molding die 70 is manufactured by a 3D printer, but the present invention is not particularly limited, and for example, the molding die 70 may be manufactured by injection molding, casting molding, machining, or the like. However, the molding die 70 can be manufactured easily and accurately by using a 3D printer.
  • the molded body 50 is produced by mold cast molding, but the present invention is not particularly limited to this, and for example, ceramic powder may be molded as a solid. However, the molded body 50 can be manufactured more easily and accurately by the mold cast molding.
  • the mold cast molding using the urethane reaction is exemplified in the step (b), but the epoxy curing reaction may be used.
  • a molded product 50 is produced by pouring a ceramic slurry in which a ceramic powder, an epoxy resin, and a curing agent are dispersed and mixed into a molding die 70, and heating the ceramic slurry while humidifying the epoxy resin to cure the epoxy resin. You may. In this case, for the molding die 70, a material that does not melt in the environment where the epoxy resin is cured is selected.
  • the plug 30 is exemplified as the three-dimensional fired body, but the present invention is not particularly limited to the plug 30, and the present invention is applied to the three-dimensional fired body provided with a hollow portion opening on the outer surface.
  • a cylindrical ceramic tube 100 (see Patent Document 1) may be adopted as shown in FIG. 6, or straight tubes are provided at both ends of the hollow elliptical sphere as shown in FIG.
  • a ceramic tube 110 (see Patent Document 1) having a different shape may be adopted, or a ceramic member 120 (see Patent Document 2) having a shape in which a straight tube is provided at one end of a hollow sphere as shown in FIG. 8 may be adopted.
  • a gas storage space 34 is provided between the upper surface of the plug 30 and the bottom surface 27 of the plug installation hole 26, and a plurality of pores 28 are provided for one plug installation hole 26.
  • the structure of FIG. 9 may be adopted.
  • the upper surface of the plug 30 and the bottom surface 27 of the plug installation hole 26 coincide with each other.
  • one pore 28 is provided for one plug installation hole 26, and a small protrusion 23 of the wafer mounting surface 22 is formed from a position of the bottom surface 27 facing the opening 32b of the gas passage 32. It penetrates to the point where it does not exist. Even when the structure of FIG.
  • backside gas such as helium is introduced into the gas supply hole 42 from a gas cylinder (not shown).
  • the backside gas can be supplied to the space 12 on the back surface side of the wafer W through the gas supply hole 42 of the cooling device 40, the gas passage 32 of the plug 30, and the pore 28 of the electrostatic chuck 20.
  • the present invention can be used in a method for producing a three-dimensional fired body.
  • Ceramic manufacturing equipment members 12 spaces, 20 electrostatic chucks, 22 wafer mounting surfaces, 23 small protrusions, 24 bottom surfaces, 26 plug installation holes, 27 bottom surfaces, 28 pores, 30 plugs, 32 gas passages, 32a openings, 32b opening, 34 gas reservoir space, 40 cooling device, 42 gas supply hole, 44 joint surface, 46 lower surface, 50 molded body, 52 hollow part, 70 molding mold, 70a main body, 70b core, 71 molding space, 100 ceramic Tube, 110 ceramic tube, 120 ceramic member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Moulds, Cores, Or Mandrels (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Filtering Materials (AREA)
  • Materials For Medical Uses (AREA)
  • Ceramic Products (AREA)

Abstract

3次元焼成体の製法であって、(a)外面に開口する中空部分を備えた成形体と同形状の成形用空間を有し中空部分に対応する中子が一体化された成形型を有機材料で作製する工程と、(b)セラミックスラリーを成形型の成形用空間に注入して固化させることにより成形体を成形型内に作製する工程と、(c)成形体を乾燥したあと脱脂する工程であって、成形体を乾燥する前、乾燥中、乾燥した後且つ脱脂する前、脱脂中及び脱脂した後のいずれかの段階で成形型を消失させる工程と、(d)成形体を焼成して3次元焼成体を得る工程と、を含む。

Description

3次元焼成体の製法
 本発明は、3次元焼成体の製法に関する。
 3次元焼成体の製法としては、例えば特許文献1,2の製法が知られている。特許文献1には、セラミックチューブの製法が記載されている。具体的には、まず、中芯を通した有機質熱可塑性材料よりなる内型(中子)とゴム製の外型(成形型)とを用いてアイソスタティックプレス法によってセラミック原料粉末をチューブ形状に成形する。続いて、この成形体を外型から離型し、成形体から中芯を引き抜く。ついで、加熱して内型を溶融させ成形体の内部から流出除去し、成形品を焼成してセラミックチューブを得る。特許文献2には、アンダーカット部を有する成形体を製造する方法が記載されている。具体的には、まず、成形型に中子を配置する。このとき、中子のうちアンダーカット部を形成する型表面を与える部分に熱可塑性物質からなる置き駒を設けておく。そして、成形型のうち中子の外周にセラミック材料を充填して成形した後、成形体を成形型から離型する。その後、中子のうち金属ピンを引き抜き、加熱して置き駒を流出除去して内面にアンダーカット部を有する成形体を得る。
特開昭48-61514号公報 特開昭60-154007号公報
 しかしながら、特許文献1,2の製法では、成形型とは別体の中子を成形型に設置する作業が必要になるし、その際に中子の位置を管理する必要もあった。また、成形型から成形体を離型するため、成形型に離型剤を塗布したり成形型を洗浄したりする必要もあった。
 本発明は、上述した課題を解決するためになされたものであり、3次元焼成体を簡易且つ精度よく製造することを主目的とする。
 本発明の3次元焼成体の製法は、
(a)外面に開口する中空部分を備えた成形体と同形状の成形用空間を有し前記中空部分に対応する中子が一体化された成形型を有機材料で作製する工程と、
(b)セラミックスラリーを前記成形型の前記成形用空間に注入して固化させることにより前記成形体を前記成形型内に作製する工程と、
(c)前記成形体を乾燥したあと脱脂する工程であって、前記成形体を乾燥する前、乾燥中、乾燥した後且つ脱脂する前、脱脂中及び脱脂した後のいずれかの段階で前記成形型を消失させる工程と、
(d)前記成形体を焼成して3次元焼成体を得る工程と、
 を含むものである。
 この3次元焼成体の製法では、成形体の中空部分に対応する中子が一体化された成形型を用いてセラミックスラリーを固化させて成形体を作製する。そのため、成形型への中子の設置作業や中子の位置管理が不要になる。また、成形型は、成形体を乾燥する前、乾燥中、乾燥した後且つ脱脂する前、脱脂中及び脱脂した後のいずれかの段階で、消失される。そのため、成形型への離型剤の塗布作業や成形型の洗浄作業も不要になる。したがって、従来に比べて、3次元焼成体を簡易且つ精度よく製造することができる。
 なお、成形型を消失させる方法は、特に限定されるものではなく、例えば、成形型を溶融除去することにより消失させてもよいし、成形型を化学分解(例えば熱分解などを含む)により消失させてもよい。
 本発明の3次元焼成体の製法において、前記工程(c)では、前記成形型を溶融除去することにより消失させてもよい。成形型を燃焼させて消失させる場合には成形体に含まれる成分も燃焼して成形体の表面に凹凸などが生じるおそれがあるが、ここでは成形型を溶融除去するためそのようなおそれがない。このとき、前記成形体の成分が溶融除去されない条件下で、前記成形型を溶融除去することにより消失させてもよい。こうすれば、成形型の溶融除去時に成形体が変形するのを防止することができる。
 本発明の3次元焼成体の製法において、前記工程(a)では、前記成形型を3Dプリンタを用いて作製し、前記3Dプリンタでは、モデル材として、硬化後に所定の洗浄液及び前記セラミックスラリーに含まれる成分に不溶な材料を使用し、サポート材として、硬化後に前記所定の洗浄液に可溶な材料を使用してもよい。本明細書で「不溶」とは、全く溶けない場合のほか、所望の形状を保持できる程度に溶ける場合も含むものとする。こうすれば、中子が一体化された成形型を比較的容易に作製することができるし、成形型がセラミックスラリーに含まれる成分によって形状を保持できないほど溶出してしまうおそれもない。
 本発明の3次元焼成体の製法において、前記工程(b)では、前記セラミックスラリーとしてセラミック粉末とゲル化剤とを含むスラリーを用い、前記セラミックスラリーを前記成形型に注入したあと前記ゲル化剤を化学反応させて前記セラミックスラリーをゲル化させることにより前記成形体を前記成形型内に作製してもよい。こうすれば、中子が一体化された成形型の成形用空間にセラミックスラリーが隙間なく充填されるため、成形体は成形用空間の形状と精度よく一致する。
 本発明の3次元焼成体の製法において、前記3次元焼成体は、静電チャックのウエハ載置面とは反対側の面に設けられたプラグ設置穴に嵌め込まれ、屈曲しながら前記静電チャックの厚さ方向に貫通するガス通路を備えたプラグであり、前記プラグは、前記静電チャックのうち前記プラグ設置穴の底部を前記静電チャックの厚さ方向に貫通するように設けられた細孔に、前記ガス通路を通じてガスを供給するのに用いられるものとしてもよい。こうしたプラグは、例えば米国特許出願公開第2017/0243726号明細書(US2017/0243726)に記載された静電チャック用プラズマアレスタと同様の部品である。この米国特許出願では、アレスタの前駆体(成形体)を3Dプリンタで作製しているため、ガス通路から成形材料を排出するのが困難になる。これに対して、本発明の製法では、プラグの成形体と同形状の成形用空間を有し中子が一体化された成形型にセラミックスラリーを注入し固化させて成形体を作製しているため、ガス通路を容易に作製することができる。
半導体製造装置用部材10の縦断面図。 プラグ30の製造手順を示したフローチャート。 プラグ30を作製するための成形体50の斜視図。 成形体50を作製するための成形型70の斜視図。 成形型70を縦方向に半分に割ったときの断面図。 セラミックチューブ100の縦断面図。 セラミックチューブ110の縦断面図。 セラミック部材120の縦断面図。 別例の半導体製造装置用部材の部分縦断面図。
 次に、本発明の好適な一実施形態について、図面を用いて説明する。図1は半導体製造装置用部材10の縦断面図(部分拡大図付き)、図3はプラグ30を作製するための成形体50の斜視図、図4は成形体50を作製するための成形型70の斜視図、図5は成形型70を縦方向に半分に割ったときの断面図である。
 半導体製造装置用部材10は、ウエハ載置面22を有する静電チャック20が冷却装置40の上に設けられた部材である。ウエハ載置面22には、複数の小突起23がエンボス加工により設けられている。プラズマ処理が施されるウエハWは、この小突起23に載置される。
 冷却装置40は、アルミニウムなどの金属製の円盤状の部材であり、ガス供給孔42を有している。このガス供給孔42は、冷却装置40のうち静電チャック20に接合された接合面44と該接合面44とは反対側の下面46とを連通している。冷却装置40の接合面44は、図示しないボンディングシートを介して静電チャック20の下面24に接着されている。
 静電チャック20は、アルミナや窒化アルミニウムなどのセラミックス製の緻密な円盤状の部材であり、プラグ設置穴26と、このプラグ設置穴26に連通する複数の細孔28とを有している。プラグ設置穴26は、静電チャック20の下面24のうちガス供給孔42に対向する位置からウエハ載置面22に向かって形成されている。このため、プラグ設置穴26は、ガス供給孔42と連通している。また、プラグ設置穴26の内部空間は、円筒形となっている。細孔28は、プラグ設置穴26より小径の穴であり、プラグ設置穴26の底面27からウエハ載置面22まで貫通している。この細孔28は、ウエハ載置面22のうち小突起23の形成されていない箇所に開口している。また、細孔28は、1つのプラグ設置穴26に対して、複数個(例えば7つ)設けられている。プラグ設置穴26には、セラミック製の緻密なプラグ30が嵌め込まれている。プラグ30は、円柱部材であり、静電チャック20の厚さ方向(上下方向)を貫通するガス通路32を有している。プラグ30は、例えばプラグ設置穴26の側壁に接着剤で接着されている。ガス通路32は、屈曲した形状(ここでは螺旋状)に形成され、プラグ30の下面に設けられた開口32aからプラグ30の上面に設けられた開口32bに達している。プラグ30の下面は静電チャック20の下面24と一致している。プラグ30の上面とプラグ設置穴26の底面27との間には、ガス溜め空間34が設けられている。
 こうした半導体製造装置用部材10は、図示しないチャンバ内に設置される。そして、ウエハ載置面22にウエハWを載置し、チャンバ内に原料ガスを導入すると共に冷却装置40にプラズマを立てるためのRF電圧を印加することにより、プラズマを発生させてウエハWの処理を行う。このとき、ガス供給孔42には、ガスボンベ(図示せず)からヘリウム等のバックサイドガスが導入される。バックサイドガスは、ガス供給孔42、プラグ30のガス通路32、ガス溜め空間34及び細孔28を通ってウエハWの裏面側の空間12に供給される。このようにプラズマを発生させているときに、仮にガス通路32がストレート形状だとするとウエハWと冷却装置40との間で放電が起きることがあるが、本実施形態ではガス通路32が螺旋状になっているため、ウエハWと冷却装置40との間で放電が起きるのを防止することができる。
   次に、プラグ30の製造例について説明する。この製造例は、図2の製造フローに示すように、(a)成形型70の作製工程と、(b)成形体50の作製工程と、(c)成形体50の乾燥脱脂工程と、(d)成形体50の焼成工程とを含む。図3に示す成形体50は、焼成後にプラグ30になるものであり、成形体50の寸法は焼成時に焼き締まることを考慮してプラグ30の寸法に基づいて決定されている。成形体50は、焼成後にガス通路32となる螺旋状の中空部分52を有している。中空部分52は、成形体50の上面及び下面に開口している。
・工程(a)
 工程(a)では成形型70を作製する。成形型70は、図4及び図5に示すように、有底筒状の本体70aと、成形体50の中空部分52に対応する螺旋状の中子70bとを備えている。成形型70は、成形体50と同形状の成形用空間71を有している。成形用空間71は、本体70aの内側の円筒空間から中子70bを除いた空間である。中子70bの下端は成形型70の底面に一体化されている。中子70bの上端は自由端になっている。成形型70は、周知の3Dプリンタを用いて作製される。3Dプリンタは、ヘッド部から硬化前流動物をステージに向かって吐出して硬化前層状物を形成し、その硬化前層状物を硬化させるという一連の操作を繰り返すことにより、成形体50を造形する。3Dプリンタは、硬化前流動物として、成形型70のうち最終的に必要な部位を構成する材料であるモデル材と、成形型70のうちモデル材を支える基礎部分であって最終的に除去される部位を構成する材料であるサポート材とを備えている。ここでは、モデル材として、硬化後に所定の洗浄液(水、有機溶剤、酸、アルカリ溶液など)及び後述のセラミックスラリーに含まれる成分に不溶な材料(例えばパラフィンロウなどのワックス)を使用し、サポート材として、硬化後に所定の洗浄液に可溶な材料(例えばヒドロキシ化ワックス)を使用する。所定の洗浄液の一例としては、イソプロピルアルコールが挙げられる。3Dプリンタは、成形型70の下から上へ所定間隔ごとに水平方向に層状にスライスしたスライスデータを用いて構造物を造形する。スライスデータは、CADデータを加工することにより作製される。スライスデータの中には、モデル材とサポート材とが混在したスライスデータもあれば、モデル材のみのスライスデータもある。3Dプリンタで造形された構造物は、イソプロピルアルコールに浸漬して硬化後のサポート材を溶かして除去することにより、硬化後のモデル材のみからなる物体すなわち成形型70が得られる。
・工程(b)
 工程(b)では成形体50を成形型70内に作製する。ここでは成形体50をモールドキャスト成形で作製する。モールドキャスト成形とは、ゲルキャスト成形と呼ばれることもある方法であり、その詳細は例えば特許第5458050号公報などに開示されている。モールドキャスト成形では、成形型70の成形用空間71に、セラミック粉体、溶媒、分散剤及びゲル化剤を含むセラミックスラリーを注入し、ゲル化剤を化学反応させてセラミックスラリーをゲル化させることにより、成形型70内に成形体50を作製する。溶媒としては、分散剤及びゲル化剤を溶解するものであれば、特に限定されないが、多塩基酸エステル(例えば、グルタル酸ジメチル等)、多価アルコールの酸エステル(例えば、トリアセチン等)等の、2以上のエステル結合を有する溶媒を使用することが好ましい。分散剤としては、セラミック粉体を溶媒中に均一に分散するものであれば、特に限定されないが、ポリカルボン酸系共重合体、ポリカルボン酸塩等を使用することが好ましい。ゲル化剤としては、例えば、イソシアネート類、ポリオール類及び触媒を含むものとしてもよい。このうち、イソシアネート類としては、イソシアネート基を官能基として有する物質であれば特に限定されないが、例えば、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)又はこれらの変性体等が挙げられる。ポリオール類としては、イソシアネート基と反応し得る水酸基を2以上有する物質であれば特に限定されないが、例えば、エチレングリコール(EG)、ポリエチレングリコール(PEG)、プロピレングリコール(PG)、ポリプロピレングリコール(PPG)等が挙げられる。触媒としては、イソシアネート類とポリオール類とのウレタン反応を促進させる物質であれば特に限定されないが、例えば、トリエチレンジアミン、ヘキサンジアミン、6-ジメチルアミノ-1-ヘキサノール等が挙げられる。ここでは、ゲル化反応とは、イソシアネート類とポリオール類とがウレタン反応を起こしてウレタン樹脂(ポリウレタン)になる反応である。ゲル化剤の反応によりセラミックスラリーがゲル化し、ウレタン樹脂は有機バインダーとして機能する。
・工程(c)
 工程(c)では成形体50を乾燥したあと脱脂する。成形体50の乾燥は、成形体50に含まれる溶媒を蒸発させるために行う。乾燥温度は、使用する溶媒に応じて適宜設定すればよいが、例えば30~200℃に設定してもよい。但し、乾燥温度は、乾燥中の成形体50にクラックが入らないように注意して設定する。また、雰囲気は大気雰囲気、不活性雰囲気、真空雰囲気のいずれであってもよい。乾燥後の成形体50の脱脂は、成形体50に含まれる分散剤や触媒などの固形有機物を分解・除去するために行う。脱脂温度は、含まれる有機物の種類に応じて適宜設定すればよいが、例えば200~600℃に設定してもよい。また、雰囲気は大気雰囲気、不活性雰囲気、真空雰囲気、水素雰囲気などのいずれであってもよい。なお、脱脂後の成形体50を仮焼してもよい。仮焼温度は、特に限定するものではないが、例えば600~1200℃に設定してもよい。また、雰囲気は大気雰囲気、不活性雰囲気、真空雰囲気のいずれであってもよい。
 工程(c)では、成形体50を乾燥する前、乾燥中、乾燥した後且つ脱脂する前、脱脂中及び脱脂した後のいずれかの段階で成形型70を消失させる。例えば、成形型70の材料として成形体50の乾燥温度以下の融点(融点が温度範囲をもって表される場合にはその上限温度、以下同じ)を持つ材料を用いた場合には、成形体50を乾燥する前に成形型70に入った成形体50を融点以上乾燥温度未満の温度に加熱することにより成形型70を溶融除去してもよいし、成形体50を乾燥する際にその乾燥温度で成形型70を溶融除去してもよい。例えば成形型70の材料として70℃で溶融するワックスを用いた場合には、成形体50を乾燥する前に成形型70を70℃に加熱することにより成形型70を溶融除去することができる。あるいは、成形型70の材料として成形体50の乾燥温度超で脱脂温度以下の融点を持つ材料を用いた場合には、成形体50を乾燥した後且つ脱脂する前に、成形型70に入った成形体50を融点以上脱脂温度未満の温度に加熱することにより成形型70を溶融除去してもよいし、成形体50を脱脂する際にその脱脂温度で成形型70を溶融除去してもよい。成形体50の成分は、成形型70が溶融除去される温度では溶融除去されないものを用いることが好ましい。こうすれば、成形型70の溶融除去時に成形体50が変形するのを防止することができる。成形型70を溶融除去する代わりに、成形型70を燃焼により消失させてもよい。例えば、成形型70の材料として乾燥温度や脱脂温度では溶融しない材料を用いた場合には、成形体50を脱脂したあと仮焼又は焼成するときに成形型70を燃焼により消失させてもよい。
・工程(d)
 工程(d)では成形体50を焼成してプラグ30を作製する。焼成温度(最高到達温度)は成形体50に含まれるセラミック粉体が焼結する温度を考慮して適宜設定すればよい。また、焼成雰囲気は、大気雰囲気、不活性ガス雰囲気、真空雰囲気、水素雰囲気などから適宜選択すればよい。
 以上説明した本実施形態のプラグ30の製法では、成形体50の中空部分52に対応する中子70bが有底筒状の本体70aに一体化された成形型70を用いてセラミックスラリーを固化させて成形体50を作製する。そのため、成形型70の本体70aへの中子70bの設置作業や中子70bの位置管理が不要になる。また、成形型70は、成形体50を乾燥する前、乾燥中、乾燥した後且つ脱脂する前、脱脂中及び脱脂した後のいずれかの段階で、消失される。そのため、成形型70への離型剤の塗布作業や成形型70の洗浄作業も不要になる。したがって、従来に比べて、プラグ30を簡易且つ精度よく製造することができる。
 また、工程(b)では、セラミックスラリーとしてセラミック粉末とゲル化剤とを含むスラリーを用い、セラミックスラリーを成形型70の成形用空間71に注入したあとゲル化剤を化学反応させてセラミックスラリーをゲル化させることにより成形体50を成形型70内に作製する。こうすることにより、中子70bが本体70aに一体化された成形型70の成形用空間71にセラミックスラリーが隙間なく充填されるため、成形体50は成形用空間71の形状と精度よく一致する。
 更に、工程(c)において、成形型70を燃焼させて消失させる場合には成形体50に含まれる成分も燃焼して成形体50の表面に凹凸が生じるおそれがあるが、成形型70を溶融除去することにより消失させればそのようなおそれがない。このとき、成形体50の成分が溶融除去されない条件下で、成形型70を溶融除去することにより消失させれば、成形型70の溶融除去時に成形体50が変形するのを防止することができる。
 更にまた、工程(a)では、成形型70を3Dプリンタを用いて作製し、3Dプリンタでは、モデル材として、硬化後に所定の洗浄液及びセラミックスラリーに含まれる成分に不溶な材料を使用し、サポート材として、硬化後に所定の洗浄液に可溶な材料を使用する。そのため、中子70bが本体70aに一体化された成形型70を比較的容易に作製することができるし、成形型70がセラミックスラリーに含まれる成分によって溶出するおそれもない。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 例えば、上述した実施形態では、成形型70を3Dプリンタで作製したが、特にこれに限定されるものではなく、例えば成形型70を射出成形や鋳込み成形、機械加工などで作製してもよい。但し、3Dプリンタを用いた方が成形型70を容易かつ精度よく作製することができる。
 上述した実施形態では、モールドキャスト成形により成形体50を作製したが、特にこれに限定されるものではなく、例えばセラミック粉体を固形のまま成形してもよい。但し、モールドキャスト成形の方が成形体50を容易かつ精度よく作製することができる。
 上述した実施形態では、工程(b)において、ウレタン反応を利用したモールドキャスト成形を例示したが、エポキシ硬化反応を利用してもよい。例えば、セラミック粉体とエポキシ樹脂と硬化剤とを分散、混合したセラミックスラリーを成形型70に流し込み、そのセラミックスラリーを加湿しながら加熱することでエポキシ樹脂を硬化させることにより成形体50を作製してもよい。この場合、成形型70には、エポキシ樹脂を硬化させる環境において溶融しない材質を選択する。
 上述した実施形態では、3次元焼成体としてプラグ30を例示したが、特にプラグ30に限定されるものではなく、外面に開口する中空部分を備えた3次元焼成体であれば本発明を適用することができる。例えば、3次元焼成体として、図6に示すように円筒状のセラミックチューブ100(特許文献1参照)を採用してもよいし、図7に示すように中空楕円球の両端にストレート管を設けた形状のセラミックチューブ110(特許文献1参照)を採用してもよいし、図8に示すように中空球の一端にストレート管を設けた形状のセラミック部材120(特許文献2参照)を採用してもよい。これらはいずれも外面に開口する中空部分を備えているため、その中空部分に対応する中子が一体化された有機材料製の成形型を用いれば、上述した実施形態と同様に作製することができる。
 上述した実施形態では、図1に示すように、プラグ30の上面とプラグ設置穴26の底面27との間にガス溜め空間34を設け、1つのプラグ設置穴26に対して複数の細孔28を設けたが、これに代えて、例えば図9の構造を採用してもよい。図9では、プラグ30の上面とプラグ設置穴26の底面27とが一致している。また、細孔28は、1つのプラグ設置穴26に対して1つ設けられ、底面27のうちガス通路32の開口32bに対向する位置からウエハ載置面22のうち小突起23の形成されていない箇所まで貫通している。図9の構造を採用した場合でも、ガス供給孔42には、ガスボンベ(図示せず)からヘリウム等のバックサイドガスが導入される。バックサイドガスを、冷却装置40のガス供給孔42、プラグ30のガス通路32及び静電チャック20の細孔28を通ってウエハWの裏面側の空間12に供給することができる。
 本発明は、3次元焼成体の製法に利用可能である。
10 半導体製造装置用部材、12 空間、20 静電チャック、22 ウエハ載置面、23 小突起、24 下面、26 プラグ設置穴、27 底面、28 細孔、30 プラグ、32 ガス通路、32a 開口、32b 開口、34 ガス溜め空間、40 冷却装置、42 ガス供給孔、44 接合面、46 下面、50 成形体、52 中空部分、70 成形型、70a 本体、70b 中子、71 成形用空間、100 セラミックチューブ、110 セラミックチューブ、120 セラミック部材。

Claims (6)

  1. (a)外面に開口する中空部分を備えた成形体と同形状の成形用空間を有し前記中空部分に対応する中子が一体化された成形型を有機材料で作製する工程と、
    (b)セラミックスラリーを前記成形型の前記成形用空間に注入して固化させることにより前記成形体を前記成形型内に作製する工程と、
    (c)前記成形体を乾燥したあと脱脂する工程であって、前記成形体を乾燥する前、乾燥中、乾燥した後且つ脱脂する前、脱脂中及び脱脂した後のいずれかの段階で前記成形型を消失させる工程と、
    (d)前記成形体を焼成して3次元焼成体を得る工程と、
     を含む3次元焼成体の製法。
  2.  前記工程(c)では、前記成形型を溶融除去することにより消失させる、
     請求項1に記載の3次元焼成体の製法。
  3.  前記工程(c)では、前記成形体の成分が溶融除去されない条件下で、前記成形型を溶融除去することにより消失させる、
     請求項2に記載の3次元焼成体の製法。
  4.  前記工程(a)では、前記成形型を3Dプリンタを用いて作製し、前記3Dプリンタでは、モデル材として、硬化後に所定の洗浄液及び前記セラミックスラリーに含まれる成分に不溶な材料を使用し、サポート材として、硬化後に前記所定の洗浄液に可溶な材料を使用する、
     請求項1~3のいずれか1項に記載の3次元焼成体の製法。
  5.  前記工程(b)では、前記セラミックスラリーとしてセラミック粉末とゲル化剤とを含むスラリーを用い、前記セラミックスラリーを前記成形型に注入したあと前記ゲル化剤を化学反応させて前記セラミックスラリーをゲル化させることにより前記成形体を前記成形型内に作製する、
     請求項1~4のいずれか1項に記載の3次元焼成体の製法。
  6.  前記3次元焼成体は、静電チャックのウエハ載置面とは反対側の面に設けられたプラグ設置穴に嵌め込まれ、屈曲しながら前記静電チャックの厚さ方向に貫通するガス通路を備えたプラグであり、
     前記プラグは、前記静電チャックのうち前記プラグ設置穴の底部を前記静電チャックの厚さ方向に貫通するように設けられた細孔に、前記ガス通路を通じてガスを供給するのに用いられる、
     請求項1~5のいずれか1項に記載の3次元焼成体の製法。
PCT/JP2019/017718 2019-04-25 2019-04-25 3次元焼成体の製法 WO2020217406A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020217033574A KR102541744B1 (ko) 2019-04-25 2019-04-25 3차원 소성체의 제법
CN201980095692.3A CN113710444B (zh) 2019-04-25 2019-04-25 三维烧成体的制法
JP2021515425A JP7144603B2 (ja) 2019-04-25 2019-04-25 3次元焼成体の製法
PCT/JP2019/017718 WO2020217406A1 (ja) 2019-04-25 2019-04-25 3次元焼成体の製法
TW109112783A TWI807182B (zh) 2019-04-25 2020-04-16 三維燒成體的製法
US17/451,204 US20220032501A1 (en) 2019-04-25 2021-10-18 Method for manufacturing three-dimensional fired body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/017718 WO2020217406A1 (ja) 2019-04-25 2019-04-25 3次元焼成体の製法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/451,204 Continuation US20220032501A1 (en) 2019-04-25 2021-10-18 Method for manufacturing three-dimensional fired body

Publications (1)

Publication Number Publication Date
WO2020217406A1 true WO2020217406A1 (ja) 2020-10-29

Family

ID=72941142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017718 WO2020217406A1 (ja) 2019-04-25 2019-04-25 3次元焼成体の製法

Country Status (6)

Country Link
US (1) US20220032501A1 (ja)
JP (1) JP7144603B2 (ja)
KR (1) KR102541744B1 (ja)
CN (1) CN113710444B (ja)
TW (1) TWI807182B (ja)
WO (1) WO2020217406A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023056156A (ja) * 2021-10-07 2023-04-19 日本碍子株式会社 半導体製造装置用部材
JP2024088883A (ja) 2022-12-21 2024-07-03 日本碍子株式会社 プラグ、プラグ製造方法及び半導体製造装置用部材

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07507508A (ja) * 1992-06-05 1995-08-24 マサチユーセツツ・インステイテユート・オブ・テクノロジー 三次元印刷技法
WO2014157571A1 (ja) * 2013-03-29 2014-10-02 Toto株式会社 静電チャック
JP2017121806A (ja) * 2016-01-08 2017-07-13 ゼネラル・エレクトリック・カンパニイ 3d印刷プロセスを使用することによって混成セラミック/金属、セラミック/セラミック体を製造するための方法
JP2018020441A (ja) * 2016-08-01 2018-02-08 株式会社オメガ 三次元形状造形物の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813446B2 (ja) * 1990-05-30 1996-02-14 株式会社日立製作所 スリツプキヤステイング法
US6189483B1 (en) * 1997-05-29 2001-02-20 Applied Materials, Inc. Process kit
JP4343421B2 (ja) 2000-12-13 2009-10-14 菊水化学工業株式会社 セラミック薄板の生成形体の成形方法及び成形装置
KR100906346B1 (ko) * 2005-08-17 2009-07-06 주식회사 코미코 세라믹 성형체의 제조방법 및 이를 이용하여 제조된 세라믹성형체
JP5331519B2 (ja) * 2008-03-11 2013-10-30 日本碍子株式会社 静電チャック
US8336891B2 (en) * 2008-03-11 2012-12-25 Ngk Insulators, Ltd. Electrostatic chuck
JP2010132487A (ja) 2008-12-04 2010-06-17 Panasonic Corp セラミック多孔体の製造方法
EP2360291A1 (de) * 2010-02-24 2011-08-24 Singulus Technologies AG Verfahren und Vorrichtung zum schnellen Heizen und Kühlen eines Substrates und sofort anschließender Beschichtung desselben unter Vakuum
KR101167838B1 (ko) * 2010-05-07 2012-07-24 한국기계연구원 탄소몰드를 이용한 금속 함침 주조품의 제조방법
CN102487029B (zh) * 2010-12-02 2014-03-19 北京北方微电子基地设备工艺研究中心有限责任公司 静电卡盘和具有它的等离子体装置
JP5458050B2 (ja) 2011-03-30 2014-04-02 日本碍子株式会社 静電チャックの製法
JP5890795B2 (ja) * 2013-03-18 2016-03-22 日本碍子株式会社 半導体製造装置用部材
KR101680334B1 (ko) * 2015-06-15 2016-11-29 주식회사 퓨쳐캐스트 3차원 프린팅 방식을 이용한 금형 제작방법
US10350682B2 (en) * 2016-04-14 2019-07-16 Desktop Metal, Inc. Sinterable article with removable support structures
CN108101519A (zh) * 2017-12-19 2018-06-01 西安交通大学 一种用于复杂结构零件定向凝固成形的陶瓷铸型制备方法
CN108649012B (zh) * 2018-05-11 2021-10-01 北京华卓精科科技股份有限公司 新型陶瓷塞及具有该新型陶瓷塞的静电卡盘装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07507508A (ja) * 1992-06-05 1995-08-24 マサチユーセツツ・インステイテユート・オブ・テクノロジー 三次元印刷技法
WO2014157571A1 (ja) * 2013-03-29 2014-10-02 Toto株式会社 静電チャック
JP2017121806A (ja) * 2016-01-08 2017-07-13 ゼネラル・エレクトリック・カンパニイ 3d印刷プロセスを使用することによって混成セラミック/金属、セラミック/セラミック体を製造するための方法
JP2018020441A (ja) * 2016-08-01 2018-02-08 株式会社オメガ 三次元形状造形物の製造方法

Also Published As

Publication number Publication date
CN113710444B (zh) 2023-06-23
TWI807182B (zh) 2023-07-01
KR102541744B1 (ko) 2023-06-13
KR20210138086A (ko) 2021-11-18
CN113710444A (zh) 2021-11-26
JP7144603B2 (ja) 2022-09-29
TW202043174A (zh) 2020-12-01
US20220032501A1 (en) 2022-02-03
JPWO2020217406A1 (ja) 2020-10-29

Similar Documents

Publication Publication Date Title
US7955546B2 (en) Forming die and method for manufacturing formed body using forming die
US20220032501A1 (en) Method for manufacturing three-dimensional fired body
US20160023375A1 (en) Slip mixture for 3d printed molds and 3d printing ceramic material
US10259036B2 (en) Variable diameter investment casting mold for casting of reticulated metal foams
EP3047922B1 (en) Dual investment technique for solid mold casting of reticulated metal foams
US10870218B2 (en) Speciality ceramic components
EP3047923B1 (en) Investment technique for solid mold casting of reticulated metal foams
EP3894115A1 (en) Supports for components during debinding and sintering
JPWO2020217406A5 (ja)
CN111417612A (zh) 陶瓷成形体的脱脂方法和陶瓷烧成体的制造方法
TWI745899B (zh) 半導體製造裝置用構件、其製法及成形模具
JP4124111B2 (ja) インサート成形方法
JP4124113B2 (ja) インサート成形方法
WO2023068189A1 (ja) セラミックス物品の製造方法
US20220314306A1 (en) Water soluble polymer for core forming
JP2005153268A (ja) インサート成形用金型装置およびインサート成形方法
JP6858908B2 (ja) 成形体の製造方法
KR20240099024A (ko) 플러그, 플러그 제조 방법 및 반도체 제조 장치용 부재
KR100818312B1 (ko) 백필링에 의한 용사 금형의 제작 방법
JP2017119592A (ja) 粉体焼結成形体の製造方法、粉体焼結成形体用バインダ組成物及び焼結用成形材料
JPH10278015A (ja) セラミックス粉末の成形方法
JPH10130071A (ja) 流体透過性プラスチック製品の製造法
JPS62103105A (ja) スリツプキヤステイング成形型
JPH1121181A (ja) 多孔質セラミックの製造方法
JPH0596523A (ja) 無機物粉末成形体の乾燥方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925733

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515425

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217033574

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925733

Country of ref document: EP

Kind code of ref document: A1