WO2020213057A1 - リニアコンベアシステム、リニアコンベアシステムの制御方法、リニアコンベアシステムの制御プログラムおよび記録媒体 - Google Patents

リニアコンベアシステム、リニアコンベアシステムの制御方法、リニアコンベアシステムの制御プログラムおよび記録媒体 Download PDF

Info

Publication number
WO2020213057A1
WO2020213057A1 PCT/JP2019/016318 JP2019016318W WO2020213057A1 WO 2020213057 A1 WO2020213057 A1 WO 2020213057A1 JP 2019016318 W JP2019016318 W JP 2019016318W WO 2020213057 A1 WO2020213057 A1 WO 2020213057A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear module
slider
movable
range
facing
Prior art date
Application number
PCT/JP2019/016318
Other languages
English (en)
French (fr)
Inventor
賢治 上野
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2019/016318 priority Critical patent/WO2020213057A1/ja
Priority to US17/601,495 priority patent/US11724894B2/en
Priority to DE112019007227.7T priority patent/DE112019007227T5/de
Priority to JP2021514687A priority patent/JP7439061B2/ja
Priority to CN201980095429.4A priority patent/CN113748074B/zh
Publication of WO2020213057A1 publication Critical patent/WO2020213057A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G54/00Non-mechanical conveyors not otherwise provided for
    • B65G54/02Non-mechanical conveyors not otherwise provided for electrostatic, electric, or magnetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/02Control or detection
    • B65G2203/0266Control or detection relating to the load carrier(s)
    • B65G2203/0283Position of the load carrier

Definitions

  • the present invention relates to a linear conveyor system provided with a mechanism for driving a slider by a linear module.
  • Patent Document 1 includes a transfer device that conveys the slider in the X direction and a transfer device that conveys the slider received from the transfer device in the Y direction, and by driving the slider, the pallet supported by the slider is conveyed.
  • the transport system to be used is described. In such a transfer system, two transfer devices are arranged at intervals in the Y direction, and two transfer devices are arranged on both sides of these transfer devices in the X direction, thereby circulating sliders supporting the pallets. Can be driven to.
  • a transfer device that receives a slider from a fixed linear module (conveyor device) that drives the slider in the X direction and moves the slider in the Y direction can be configured by a movable linear module that can move in the Y direction.
  • a movable linear module that can move in the Y direction.
  • an operation of moving the slider between the fixed linear module and the movable linear module is appropriately executed while locating the movable linear module within the facing range facing the fixed linear module from the X direction.
  • the slider cannot be properly moved between the fixed linear module and the movable linear module because the operation is to be executed when the movable linear module is not located within the facing range.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a technique for appropriately executing the movement of a slider between a fixed linear module and a movable linear module.
  • the linear conveyor system includes a fixed linear module extending in the first direction and capable of driving a slider in the first direction, and a range facing the fixed linear module from the first direction and a range other than the facing range. It has a movable linear module that can move along a movable range extended in a second direction that intersects the first direction including and can drive a slider in the first direction, and has a movable linear module that can drive a slider in the first direction. It is equipped with a module drive mechanism for driving the movable linear module and a control unit for controlling the drive of the slider and the movable linear module, and the slider can be engaged with and disengaged from the fixed linear module from the end in the first direction.
  • the fixed linear module drives the engaging slider in the first direction
  • the slider can be engaged and disengaged from the end in the first direction with respect to the movable linear module
  • the movable linear module is the engaging slider.
  • the slider transfer operation can be executed to move the slider between the fixed linear module and the movable linear module located within the facing range, and the control unit executes the slider transfer operation. If, as a result of executing the determination process for determining whether or not the movable linear module is located in the facing range, it is determined that the movable linear module is not located in the facing range, the movable linear module is placed in the facing range. After executing the preparatory operation to move to, execute the slider transfer operation.
  • the control method of the linear conveyor system includes a fixed linear module extending in the first direction and capable of driving the slider in the first direction, and a facing range and a facing range facing the fixed linear module from the first direction. It has a movable linear module that can move along a movable range extended in a second direction that intersects the first direction including a range other than the above and can drive a slider in the first direction, and in the movable range.
  • a slider that moves a slider between a fixed linear module and a movable linear module located within a facing range.
  • the step of executing the determination process of determining whether or not the movable linear module is located in the facing range, and the case where the determination process determines that the movable linear module is not located in the facing range. Includes a step of executing a preparatory operation for moving the movable linear module within the facing range, and a step of executing a slider transfer operation after the preparatory operation.
  • the control program of the linear conveyor system includes a fixed linear module extending in the first direction and capable of driving the slider in the first direction, and a facing range and a facing range facing the fixed linear module from the first direction. It has a movable linear module that can move along a movable range extended in a second direction that intersects the first direction including a range other than the above and can drive a slider in the first direction, and in the movable range.
  • a slider that moves a slider between a fixed linear module and a movable linear module located within a facing range.
  • the step of executing the determination process of determining whether or not the movable linear module is located in the facing range Before executing the transfer operation, the step of executing the determination process of determining whether or not the movable linear module is located in the facing range, and the case where the determination process determines that the movable linear module is not located in the facing range.
  • the computer executes a step of executing a preparatory operation for moving the movable linear module within the facing range and a step of executing a slider transfer operation after the preparatory operation.
  • the recording medium according to the present invention records the control program of the above linear conveyor system so that it can be read by a computer.
  • the linear conveyor system may be configured so as to move the slider from the fixed linear module to the movable linear module located within the facing range.
  • a determination process for determining whether or not the movable linear module is located within the facing range before executing the slider transfer operation for moving the slider from the fixed linear module to the movable linear module located within the facing range. Is executed. Then, as a result, when it is determined that the movable linear module is not located within the facing range, the preparatory operation for moving the movable linear module within the facing range is executed, and then the slider transfer operation is executed. Therefore, it is possible to appropriately move the slider from the fixed linear module to the movable linear module.
  • control unit sets the standby operation of moving the slider from the stop position where the slider stops at the start of the preparatory operation to the standby position on the fixed linear module which is closer to the facing range in the first direction than the stop position as the preparatory operation.
  • a linear conveyor system may be configured to run in parallel. In such a configuration, the slider is moved to the standby position in parallel with the preparatory operation for moving the movable linear module to the opposite range, and the period required for the preparatory operation is used for the movement of the slider to enable efficient control. It has become.
  • the control unit moves the slider located at the standby position of the fixed linear module to the movable linear module that has been moved to the opposite range by the preparatory operation, thereby transferring the slider.
  • a linear conveyor system may be configured to perform the operation. This allows the slider to be properly moved from the fixed linear module to the movable linear module.
  • the slider transfer operation can be quickly performed by simply moving the slider from the standby position to the movable linear module after the preparatory operation is completed. It is possible to complete it.
  • the control unit moves the slider from the stop position where the slider stops on the fixed linear module to the facing range at the start of the preparatory operation.
  • the linear conveyor system may be configured to perform the slider transfer operation by moving the slider to the movable linear module that has started and moved to the opposite range due to the preparatory operation. In such a configuration, the movement toward the facing range of the slider is started in parallel with the preparatory operation for moving the movable linear module to the facing range, and the period required for the preparatory operation is used for the moving of the slider, which is efficient. Control is feasible.
  • the linear conveyor system may be configured so as to move the slider from the movable linear module located within the facing range to the fixed linear module.
  • a determination process for determining whether or not the movable linear module is located within the facing range is performed before executing the slider transfer operation for moving the slider from the movable linear module located within the facing range to the fixed linear module. Will be executed. Then, as a result, when it is determined that the movable linear module is not located within the facing range, the preparatory operation for moving the movable linear module within the facing range is executed, and then the slider transfer operation is executed. Therefore, it is possible to appropriately move the slider from the movable linear module to the fixed linear module.
  • control unit sets the standby operation of moving the slider from the stop position where the slider stops at the start of the preparatory operation to the standby position on the movable linear module on the fixed module side in the first direction from the stop position as the preparatory operation.
  • a linear conveyor system may be configured to run in parallel. In such a configuration, the slider is moved to the standby position in parallel with the preparatory operation for moving the movable linear module to the opposite range, and the period required for the preparatory operation is used for the movement of the slider to enable efficient control. It has become.
  • the control unit moves the slider located at the standby position of the movable linear module that has moved to the opposite range by the preparatory operation to the fixed linear module, thereby moving the slider.
  • the linear conveyor system may be configured to carry out. This allows the slider to be properly moved from the movable linear module to the fixed linear module.
  • the slider transfer operation can be quickly performed simply by moving the slider from the standby position to the fixed linear module after the preparatory operation is completed. It is possible to complete it.
  • FIG. 3 is a block diagram showing an example of an electrical configuration included in the linear conveyor system of FIG.
  • FIG. 3 is a flowchart showing a first example of slider transfer control executed by the linear conveyor system shown in FIG.
  • FIG. 3 is a flowchart showing a second example of slider transfer control executed by the linear conveyor system shown in FIG.
  • FIG. 3 is a flowchart showing a third example of slider transfer control executed by the linear conveyor system shown in FIG.
  • FIG. 1 is a perspective view showing an example of a linear module included in the linear conveyor system according to the present invention
  • FIG. 2 is a perspective view showing the inside of the linear module of FIG. 1 partially exposed.
  • XYZ orthogonal coordinate axes having an X direction parallel to the horizontal direction, a Y direction parallel to the horizontal direction while being orthogonal to the X direction, and a Z direction parallel to the vertical direction are shown.
  • the diagonally upper right side of both figures is described as the X1 side along the X direction
  • the diagonally lower left side of both figures is described as the X2 side along the X direction.
  • This linear module has, for example, the same basic configuration as the module of the linear conveyor device described in WO2018 / 055709A1.
  • the linear module will be described, and then the entire linear conveyor system will be described.
  • a linear module 2 extending in the X direction, a base member 3 that supports the linear module 2 from below, and a slider 4 that engages with the linear module 2 are shown.
  • the linear module 2 is attached to the upper ends of three base members 3 arranged at equal intervals in the X direction, and drives the slider 4 in the X direction by magnetic force.
  • the linear module 2 is composed of two module units 20 arranged in the X direction.
  • the number of module units 20 constituting the linear module 2 is not limited to two, and may be one or three or more.
  • the module unit 20 has a substrate 21 extending in the X direction.
  • the substrate 21 is a flat plate having a rectangular shape in a plan view from the Z direction.
  • Two guide rails 22 parallel to the X direction are arranged on the upper surface of the substrate 21 at intervals in the Y direction.
  • a plurality of linear motor stators 23 arranged in a row in the X direction at a predetermined arrangement pitch P23 and a plurality of magnetic sensors 24 arranged in a row in the X direction at a predetermined arrangement pitch P24 are attached.
  • the arrangement pitch P24 of the magnetic sensor 24 is longer than the arrangement pitch P23 of the linear motor stator 23.
  • the plurality of linear motor stators 23 are arranged between the two guide rails 22, and the plurality of magnetic sensors 24 are arranged between the linear motor stator 23 and one guide rail 22. ing.
  • the linear motor stator 23 is an electromagnet composed of a coil and a core inserted into the coil.
  • the slider 4 is provided with a mover composed of a permanent magnet and a back yoke that holds the permanent magnet.
  • the linear motor stator 23 applies a magnetic propulsive force to the mover of the slider 4 by generating a magnetic flux corresponding to the applied current, and drives the slider 4 in the X direction.
  • a magnetic scale indicating a position in the X direction is attached to the slider 4, and the magnetic sensor 24 detects the position of the slider 4 in the X direction by reading the magnetic scale. Then, as will be described later, the slider 4 is driven in the X direction by feedback-controlling the current applied to the linear motor stator 23 based on the position of the slider 4 detected by the magnetic sensor 24.
  • the module unit 20 has a rectangular cover member 25 in a plan view that covers the guide rail 22, the linear motor stator 23, and the magnetic sensor 24 from above.
  • the cover member 25 has a support leg 251 projecting downward at the center in the Y direction, and the support leg 251 is attached to the upper surface of the substrate 21.
  • a gap is formed between the cover member 25 and the substrate 21, and both ends of the slider 4 that has entered between the cover member 25 and the substrate 21 through this gap are two guide rails 22 respectively. Engage in.
  • the linear module 2 is configured.
  • the linear module 2 has a rectangular shape in a plan view.
  • the module unit 20 on the X1 side is erected between the base member 3 at the end on the X1 side of the three base members 3 and the base member 3 at the center, and is installed in X2.
  • the module unit 20 on the side is erected between the base member 3 at the end on the X2 side of the three base members 3 and the base member 3 at the center.
  • the slider 4 can enter the center side of the linear module 2 from the end of the linear module 2 in the X direction and engage with the guide rail 22 of the linear module 2. In this way, the slider 4 engaged with the guide rail 22 is driven in the X direction by the linear module 2. Further, the slider 4 can be pulled out from the end of the linear module 2 in the X direction and can be separated from the guide rail 22 of the linear module 2.
  • FIG. 3 is a diagram schematically showing an example of a linear conveyor system according to the present invention.
  • the linear conveyor system 1 includes four linear modules 2.
  • the four linear modules 2 are given different codes 2a, 2b, 2c, and 2d.
  • the linear modules 2a and 2b are fixed linear modules fixed to the installation surface of the linear conveyor system 1, and the linear modules 2c and 2d are movable linear modules that can move in the Y direction with respect to the installation surface.
  • the fixed linear modules 2a and 2b and the movable linear modules 2c and 2d have the same width in the Y direction, but have different lengths in the X direction. However, they have the common basic configuration shown in FIGS. 1 and 2, except for the length in the X direction.
  • the two fixed linear modules 2a and 2b are arranged parallel to the X direction with an interval in the Y direction.
  • the fixed linear modules 2a and 2b thus arranged in parallel in the X direction have the same length in the X direction.
  • the movable linear modules 2c and 2d have the same length, which is shorter than the fixed linear modules 2a and 2b in the X direction.
  • the linear conveyor system 1 has two actuators 5c and 5d that drive the movable linear modules 2c and 2d in the Y direction.
  • the actuator 5c is arranged parallel to the Y direction on the X1 side of the fixed linear modules 2a and 2b in the X direction.
  • the actuator 5d is arranged parallel to the Y direction on the X2 side of the fixed linear modules 2a and 2b in the X direction. In this way, the two actuators 5c and 5d are arranged so as to sandwich the two fixed linear modules 2a and 2b from the X direction.
  • the actuator 5c is, for example, a single-axis robot equipped with a ball screw parallel to the Y direction, and a movable linear module 2c is attached to the nut of the ball screw of the actuator 5c.
  • the actuator 5c drives the movable linear module 2c in the Y direction along the range of motion Rc.
  • the movable range Rc is opposed to the facing range Fca facing the X1 side end of the fixed linear module 2a from the X1 side in the X direction and facing the X1 side end of the fixed linear module 2b from the X1 side in the X direction.
  • the facing range Fca corresponds to the existence range of the movable linear module 2c arranged in a line in the X direction with the fixed linear module 2a (including the tolerance of the movable linear module 2c), and the facing range Fca corresponds to the fixed linear module 2b and the X direction. It corresponds to the existence range of the movable linear modules 2c arranged in a row (including the tolerance of the fixed linear modules 2b).
  • the actuator 5d is, for example, a single-axis robot equipped with a ball screw parallel to the Y direction, and a movable linear module 2d is attached to the nut of the ball screw of the actuator 5d.
  • the actuator 5d drives the movable linear module 2d in the Y direction along the range of motion Rd.
  • the range of motion Rd is the facing range Fda facing the X2 side end of the fixed linear module 2a from the X2 side in the X direction
  • the facing range Fda corresponds to the existence range (including the tolerance of the movable linear module 2d) of the movable linear module 2d arranged in a line in the X direction with the fixed linear module 2a
  • the facing range Fdb corresponds to the fixed linear module 2b and the X direction. It corresponds to the existence range of the movable linear modules 2d arranged in a row (including the tolerance of the fixed linear modules 2b).
  • the slider 4 can be driven cyclically.
  • the fixed linear module 2a drives the slider 4 engaged with the slider 4 toward the X1 side in the X direction, so that the slider from the fixed linear module 2a to the movable linear module 2c. 4 can be moved.
  • the actuator 5c moves the movable linear module 2c from the facing range Fca to the facing range Fcb
  • the movable linear module 2c located in the facing range Fcb drives the slider 4 engaged with the movable linear module 2c toward the X2 side in the X direction.
  • the slider 4 can be moved from the movable linear module 2c to the fixed linear module 2b.
  • the fixed linear module 2b drives the slider 4 engaged with the movable linear module 2b toward the X2 side in the X direction, so that the fixed linear module 2b becomes the movable linear module 2d.
  • the slider 4 can be moved.
  • the actuator 5d moves the movable linear module 2d from the facing range Fdb to the facing range Fda
  • the movable linear module 2d located in the facing range Fda drives the slider 4 engaged with the movable linear module 2d to the X1 side in the X direction.
  • the slider 4 can be moved from the movable linear module 2d to the fixed linear module 2a.
  • the slider 4 can be driven cyclically counterclockwise. Further, by executing the operation opposite to the above, the slider 4 can be driven cyclically in a clockwise direction.
  • the circulation drive is only an example of a drive mode of the slider 4 that can be executed by the linear conveyor system 1, and the slider 4 can be driven in various other modes.
  • FIG. 4 is a block diagram showing an example of the electrical configuration included in the linear conveyor system of FIG.
  • the linear conveyor system 1 includes a control device 11 that controls the drive of each slider 4 while monitoring the entire system.
  • the control device 11 is a computer such as a personal computer.
  • the control device 11 includes a control unit 12, a storage unit 13, and a display 14.
  • the control unit 12 is, for example, a processor composed of a CPU (Central Processing Unit), and is responsible for calculations in the control device 11.
  • the storage unit 13 is composed of, for example, an HDD (Hard Disk Drive), and stores data and programs used in calculations by the control device 2.
  • the storage unit 13 stores a program 18 that causes the control unit 12 of the control device 11 to execute the control described later.
  • This program 18 may be provided in a state of being readable by the control device 11 by a recording medium 19 such as a USB (Universal Serial Bus) memory and installed in the storage unit 13, or may be downloaded from an Internet server and installed in the storage unit. It may be installed in 13.
  • the display 14 is, for example, a touch panel display, and functions as a UI (User Interface) that not only displays to the user but also accepts input operations from the user.
  • UI User Interface
  • the control unit 12 of the control device 11 drives the slider 4 to each of the fixed linear modules 2a to 2d by feedback-controlling the linear motor stator 23 based on the position of the slider 4 detected by the magnetic sensor 24.
  • each of the actuators 5c and 5d has a servomotor 51 for rotating the ball screw and an encoder 52 for detecting the rotation position of the servomotor 51, and the control unit 12 servos based on the rotation position detected by the encoder 52.
  • the movable linear modules 2c and 2d are driven by the actuators 5c and 5d, respectively.
  • the slider transfer operation of moving the slider 4 from the fixed linear modules 2a and 2b to the movable linear modules 2c and 2d is appropriately executed.
  • the fixed linear module 2b is directed toward the movable linear module 2c located in the facing range Fcb facing the fixed linear module 2b from the X direction.
  • the slider transfer operation is executed.
  • the control device 11 realizes reliable movement of the slider 4 by executing the slider transfer control described below.
  • FIG. 5 is a flowchart showing a first example of slider transfer control executed by the linear conveyor system shown in FIG. 3, and FIG. 6 is a diagram schematically showing an operation executed by the slider transfer control of FIG. is there.
  • This flowchart is defined by the program 18, and is executed by the control unit 12 controlling each unit based on the program 18.
  • this flowchart shows the following combinations / fixed linear module 2a and movable linear module 2c. -Fixed linear module 2a and movable linear module 2d -Fixed linear module 2b and movable linear module 2c -Fixed linear module 2b and movable linear module 2d It can be executed in common for the slider transfer operation by.
  • step S101 it is determined whether or not the transfer of the slider 4 from the fixed linear module 2b to the movable linear module 2c can be executed. Specifically, when the movable linear module 2c to which the slider 4 is moved is located within the facing range Fcb facing the fixed linear module 2b to which the slider 4 is moved, it is determined that delivery can be executed. (“YES” in step S101), if the movable linear module 2c is not located within the facing range Fcb facing the fixed linear module 2b, it is determined that delivery cannot be executed (“NO” in step S101). If even a part of the movable linear module 2c is located outside the facing range Fcb, it is determined that the movable linear module 2c is not located inside the facing range Fcb.
  • step S101 delivery is possible
  • step S104 delivery cannot be performed in step S101 ( It is judged as NO).
  • the movement of the movable linear module 2c to the facing range Fcb is started, and the movable linear module 2c moves in the Y direction toward the facing range Fcb (step S102).
  • step S103 the movable linear module 2c reaches the facing range Fcb and the completion of the movement of the movable linear module 2c to the facing range Fcb is confirmed (step). “YES” in S103), and the process proceeds to step S104.
  • step S104 the slider 4 starts moving from the movement start position Ls on the fixed linear module 2b toward the movement target position Ld on the movable linear module 2c in the facing range Fcb, and the slider 4 moves the movement start position Ls. Moves in the X direction toward the movement target position Ld. Then, as illustrated in the column of "S105" in FIG. 6, the slider 4 reaches the movement target position Ld on the movable linear module 2c, and the movement of the slider 4 from the movement start position Ls to the movement target position Ld is completed. Is confirmed (“YES” in step S105), the control of FIG. 5 is terminated. In this way, the slider transfer operation (steps S104, S105) for moving the slider 4 from the movement start position Ls on the fixed linear module 2b to the movement target position Ld on the movable linear module 2c is executed.
  • step S101 for determining whether or not the movable linear module 2c is located within the facing range Fcb is executed.
  • the preparatory operation for moving the movable linear module 2c into the facing range Fcb is executed, and then The slider transfer operation (steps S104, S105) is executed. Therefore, it is possible to appropriately move the slider 4 from the fixed linear module 2b to the movable linear module 2c.
  • FIG. 7 is a flowchart showing a second example of the slider transfer control executed by the linear conveyor system shown in FIG. 3, and FIG. 8 is a diagram schematically showing an operation executed by the slider transfer control of FIG. is there.
  • the difference from the first example of the slider transfer control will be mainly described, and the common parts will be given corresponding reference numerals and the description thereof will be omitted as appropriate.
  • the same effect can be achieved by providing a common part.
  • the standby position Lw is set at the end of the fixed linear module 2b on the opposite range Fcb side.
  • This standby position Lw is set in the fixed linear module 2b so as to be located between the movement start position Ls of the slider 4 on the fixed linear module 2b and the facing range Fcb facing the fixed linear module 2b in the X direction. Will be done. That is, the standby position Lw is provided at the end of the fixed linear module 2b adjacent to the facing range Fcb.
  • Step S201 the movement of the slider 4 from the movement start position Ls to the standby position Lw is executed (step S201).
  • step S105 the slider transfer operation (steps S104, S105) for moving the slider 4 from the standby position Lw on the fixed linear module 2b to the moving target position Ld on the movable linear module 2c is executed.
  • the control device 11 starts the movement start position at which the slider 4 stops at the start of the preparatory operation (steps S102 and S103) for moving the movable linear module 2c into the facing range Fcb.
  • the standby operation (step S201) for moving the slider 4 from the Ls (stop position) to the standby position Lw on the fixed linear module 2b closer to the facing range Fcb in the X direction than the movement start position Ls is performed as a preparatory operation (steps S102, S103). ) In parallel.
  • the slider 4 is moved to the standby position Lw in parallel with the preparatory operation (steps S102 and S103) for moving the movable linear module 2c to the facing range Fcb, and the movable linear module 2c is moved to the facing range Fcb.
  • Efficient control can be executed by using the period required for the movement of the slider 4.
  • step S201 when the standby operation (step S201) for moving the slider 4 to the standby position Lw is completed and the preparatory operation (steps S102, S103) for moving the movable linear module 2c to the opposite range Fcb is completed, the control device 11 is in the standby position.
  • the slider transfer operation is executed (steps S104 and S105). As described above, the movement of the slider 4 from the fixed linear module 2b to the movable linear module 2c can be appropriately executed.
  • the slider is made to stand by in advance at the standby position Lw by moving the slider 4 to the standby position Lw, which is executed in parallel with the movement of the movable linear module 2c to the opposite range Fcb. Therefore, it is possible to quickly complete the slider transfer operation simply by moving the slider 4 from the standby position Lw to the movable linear module 2c after the movement of the movable linear module 2c to the opposite range Fcb is completed.
  • FIG. 9 is a flowchart showing a third example of the slider transfer control executed by the linear conveyor system shown in FIG. 3, and FIG. 10 is a diagram schematically showing an operation executed by the slider transfer control of FIG. is there.
  • the difference from the first example of the slider transfer control will be mainly described, and the common parts will be given corresponding reference numerals and the description thereof will be omitted as appropriate.
  • the same effect can be achieved by providing a common part.
  • a reference position Lp separated from the facing range Fcb by a predetermined distance in the Y direction is provided.
  • This reference position Lp is provided in the range of motion Rc of the movable linear module 2c.
  • the slider 4 starts moving from the movement start position Ls.
  • the moving speed, the moving start position Ls, and the moving target of the movable linear module 2c and the slider 4 so that the slider 4 reaches the moving target position Ld after the movable linear module 2c reaches the facing range Fcb and stops.
  • the reference position Lp is set based on the distance from the position Ld.
  • step S101 when the movable linear module 2c is out of the facing range Fcb ("NO" in step S101), the movable linear module 2c is in the facing range as in the first example.
  • the movement to the Fcb is started (step S102).
  • the movable linear module 2c moving toward the facing range Fcb passes through the reference position Lp, and the movable linear module 2c is the reference.
  • step S302 the movement of the slider 4 from the movement start position Ls on the fixed linear module 2b toward the opposite range Fcb is started (step S302).
  • the movement of the facing range Fcb of the slider 4 is executed in parallel with the movement of the movable linear module 2c to the facing range Fcb.
  • step S302 and S105 for moving the slider 4 from the position on the fixed linear module 2b illustrated in the “S302” column of FIG. 10 to the movement target position Ld on the movable linear module 2c is executed. ..
  • the slider 4 moving to the facing range Fcb in the preparatory operation (step S102) for moving the movable linear module 2c to the facing range Fcb sets the reference position Lp.
  • the slider 4 starts moving from the movement start position Ls where the slider 4 stops on the fixed linear module 2b at the start of the preparatory operation toward the opposite range Fcb.
  • the slider transfer operation is executed by moving the slider 4 to the movable linear module 2c that has moved to the opposite range Fcb (steps S302 and S105).
  • step S102 the movement of the movable linear module 2c to the opposite range Fcb is started in parallel with the movement of the slider 4 to the opposite range Fcb (step S102), and the movement of the movable linear module 2c to the opposite range Fcb is started.
  • Efficient control can be executed by using the period required for moving the slider 4.
  • FIG. 11 is a diagram schematically showing a modified example of the operation executed by the slider transfer control of FIG.
  • the controls described using this modification are the following combinations / fixed linear module 2a and movable linear module 2c.
  • -Fixed linear module 2a and movable linear module 2d -Fixed linear module 2b and movable linear module 2c -Fixed linear module 2b and movable linear module 2d
  • a slider transfer operation for moving the slider 4 from the movable linear module 2c to the fixed linear module 2b will be described as an example.
  • the slider 4 and the movable linear modules 2c and 2d are stopped.
  • step S101 it is determined whether or not the transfer of the slider 4 from the movable linear module 2c to the fixed linear module 2b can be executed. Specifically, when the movable linear module 2c, which is the moving source of the slider 4, is located within the facing range Fcb facing the fixed linear module 2b, which is the moving destination of the slider 4, it is determined that delivery can be executed. (“YES” in step S101), if the movable linear module 2c is not located within the facing range Fcb facing the fixed linear module 2b, it is determined that delivery cannot be executed (“NO” in step S101). If even a part of the movable linear module 2c is located outside the facing range Fcb, it is determined that the movable linear module 2c is not located inside the facing range Fcb.
  • step S101 delivery is possible
  • step S104 delivery cannot be performed in step S101 ( It is judged as NO).
  • the movement of the movable linear module 2c to the facing range Fcb is started, and the movable linear module 2c moves in the Y direction toward the facing range Fcb (step S102).
  • step S103 when the movable linear module 2c reaches the facing range Fcb and the completion of the movement of the movable linear module 2c to the facing range Fcb is confirmed (step). “YES” in S103), and the process proceeds to step S104.
  • step S104 the slider 4 starts moving from the movement start position Ls on the movable linear module 2c in the facing range Fcb toward the movement target position Ld on the fixed linear module 2b, and the slider 4 moves the movement start position Ls. Moves in the X direction toward the movement target position Ld. Then, as illustrated in the column of "S105" in FIG. 11, the slider 4 reaches the movement target position Ld on the fixed linear module 2b, and the movement of the slider 4 from the movement start position Ls to the movement target position Ld is completed. Is confirmed (“YES” in step S105), the control of FIG. 5 is terminated. In this way, the slider transfer operation (steps S104, S105) for moving the slider 4 from the movement start position Ls on the movable linear module 2c to the movement target position Ld on the fixed linear module 2b is executed.
  • step S104 and S105 the slider transfer operation of moving the slider 4 from the movable linear module 2c located in the facing range Fcb to the fixed linear module 2b.
  • a determination process step S101 for determining whether or not the movable linear module 2c is located in the facing range Fcb is executed before the execution of. Then, as a result, when it is determined that the movable linear module 2c is not located in the facing range Fcb, the preparatory operation (steps S102, S103) for moving the movable linear module 2c into the facing range Fcb is executed, and then The slider transfer operation (steps S104, S105) is executed. Therefore, it is possible to appropriately move the slider 4 from the movable linear module 2c to the fixed linear module 2b.
  • FIG. 12 is a diagram schematically showing a modified example of the operation executed by the slider transfer control of FIG. 7. Also in the example of FIG. 12, the slider transfer operation of moving the slider 4 from the movable linear module 2c to the fixed linear module 2b is shown.
  • the difference from the operation shown in FIG. 11 will be mainly described, and the common parts will be given corresponding reference numerals and the description thereof will be omitted as appropriate.
  • the same effect can be achieved by providing a common part.
  • the standby position Lw is set at the end of the movable linear module 2c on the fixed linear module 2b side (X2 side).
  • This standby position Lw is set in the movable linear module 2c so as to be located on the fixed linear module 2b side from the movement start position Ls of the slider 4 on the movable linear module 2c in the X direction. That is, the standby position Lw is provided at the end of the movable linear module 2c so as to be adjacent to the fixed linear module 2b in a state where the movable linear module 2c is located within the facing range Fcb.
  • Step S201 the movement of the slider 4 from the movement start position Ls to the standby position Lw is executed (step S201).
  • step S105 the control of FIG. 7 ends.
  • the slider transfer operation (steps S104, S105) for moving the slider 4 from the standby position Lw on the movable linear module 2c to the moving target position Ld on the fixed linear module 2b is executed.
  • the slider 4 is set at the start of the preparatory operation (steps S102, S103) for moving the movable linear module 2c into the facing range Fcb.
  • a standby operation (step S201) for moving the slider 4 from the movement start position Ls (stop position) to stop to the standby position Lw on the fixed linear module 2b side (X2 side) in the X direction from the movement start position Ls is performed (step S201). It is executed in parallel with steps S102 and S103).
  • the slider 4 is moved to the standby position Lw in parallel with the preparatory operation (steps S102 and S103) for moving the movable linear module 2c to the facing range Fcb, and the movable linear module 2c is moved to the facing range Fcb.
  • Efficient control can be executed by using the period required for the movement of the slider 4.
  • step S201 when the standby operation (step S201) for moving the slider 4 to the standby position Lw is completed and the preparatory operation (steps S102, S103) for moving the movable linear module 2c to the opposite range Fcb is completed, the control device 11 is in the standby position.
  • the slider transfer operation is executed (steps S104 and S105).
  • the movement of the slider 4 from the movable linear module 2c to the fixed linear module 2b can be appropriately executed.
  • the slider is made to stand by in advance at the standby position Lw by moving the slider 4 to the standby position Lw, which is executed in parallel with the movement of the movable linear module 2c to the opposite range Fcb. Therefore, it is possible to quickly complete the slider transfer operation simply by moving the slider 4 from the standby position Lw to the fixed linear module 2b after the movement of the movable linear module 2c to the opposite range Fcb is completed.
  • the linear conveyor system 1 corresponds to an example of the "linear conveyor system” of the present invention
  • the control device 11 corresponds to an example of the "control unit” of the present invention
  • the program 18 corresponds to the present invention.
  • recording medium 19 corresponds to an example of "recording medium” of the present invention
  • fixed linear modules 2a and 2b correspond to an example of "fixed linear module” of the present invention.
  • the movable linear modules 2c and 2d correspond to an example of the "movable linear module” of the present invention
  • the actuators 5c and 5d and the movable linear modules 2c and 2d constitute an example of the "module drive mechanism" of the present invention.
  • Facing ranges Fca, Fcb, Fda, and Fdb correspond to an example of the "opposing range” of the present invention
  • the movement start position Ls corresponds to an example of the "stop position” of the present invention
  • the standby position Lw corresponds to the "standby” of the present invention.
  • the reference position Lp corresponds to an example of the "predetermined position” of the present invention
  • the movable ranges Rc and Rd correspond to an example of the "movable range” of the present invention
  • the X direction corresponds to the example of the present invention. It corresponds to an example of the "first direction”
  • the Y direction corresponds to an example of the "second direction” of the present invention.
  • the direction in which the fixed linear modules 2a and 2b are arranged is not limited to the Y direction (horizontal direction), and may be the Z direction (vertical direction).
  • the actuators 5c and 5d move the movable linear modules 2c and 2d up and down in the Z direction.
  • the linear conveyor system 1 is configured so that the slider 4 is moved by an L-shaped path including one fixed linear module 2a and one actuator 5d for driving the movable linear module 2d. Is also good.
  • the fixed linear module 2b may be moved in parallel in the X direction and arranged on the opposite side of the fixed linear module 2a with respect to the actuator 5c.
  • the number of fixed linear modules 2a and 2b is not limited to two, and may be three or more.
  • the direction in which the fixed linear modules 2a and 2b drive the slider 4 and the direction in which the actuators 5c and 5d drive the slider 4 do not necessarily have to be orthogonal to each other and may be tilted.
  • Linear conveyor system 11 ...
  • Control device (control unit) 18 ...
  • Program (Linear conveyor system control program) 19 ... Recording medium 2a, 2b ... Fixed linear module 2c, 2d ... Movable linear module (module drive mechanism) 5c ... 5d actuator (module drive mechanism) Fca, Fcb, Fda, Fdb ... Opposing range Ls ... Movement start position (stop position) Lw ... Standby position Lp ... Reference position (predetermined position) Rc, Rd ... Range of motion X ... X direction (first direction) Y ... Y direction (second direction)

Landscapes

  • Non-Mechanical Conveyors (AREA)

Abstract

固定リニアモジュール2bと、対向範囲Fcb内に位置する可動リニアモジュール2cとの間でスライダー4を移動させるスライダー移載動作の実行前に、対向範囲Fcb内に可動リニアモジュール2cが位置するか否かを判断する判断処理が実行される。そして、その結果、対向範囲Fcb内に可動リニアモジュール2cが位置しないと判断した場合には、可動リニアモジュール2cを対向範囲Fcb内に移動させる準備動作を実行してから、スライダー移載動作を実行する。したがって、固定リニアモジュール2bと可動リニアモジュール2cとの間におけるスライダー4の移動を適切に実行することが可能となっている。

Description

リニアコンベアシステム、リニアコンベアシステムの制御方法、リニアコンベアシステムの制御プログラムおよび記録媒体
 この発明は、リニアモジュールによりスライダーを駆動する機構を備えたリニアコンベアシステムに関する。
 特許文献1では、スライダーをX方向に搬送する搬送装置と、搬送装置から受け取ったスライダーをY方向に搬送する移載装置とを備え、スライダーを駆動することで、スライダーに支持されたパレットを搬送する搬送システムが記載されている。かかる搬送システムは、2台の搬送装置をY方向に間隔を空けて配置し、これら搬送装置のX方向の両側に2台の移載装置を配置することで、パレットを支持するスライダーを循環的に駆動することができる。
特許第5977145号公報
 ところで、X方向にスライダーを駆動する固定リニアモジュール(搬送装置)からスライダーを受け取ってY方向にこのスライダーを移動させる移載装置を、Y方向に移動可能な可動リニアモジュールにより構成することができる。かかる構成では、固定リニアモジュールにX方向から対向する対向範囲内に可動リニアモジュールを位置させつつ、固定リニアモジュールと可動リニアモジュールとの間でスライダーを移動させるといった動作が適宜実行される。しかしながら、可動リニアモジュールが対向範囲内に位置しない状態で、当該動作を実行しようとしたために、スライダーが固定リニアモジュールと可動リニアモジュールとの間で適切に移動できない場合があった。
 この発明は上記課題に鑑みなされたものであり、固定リニアモジュールと可動リニアモジュールとの間におけるスライダーの移動を適切に実行可能とする技術の提供を目的とする。
 本発明に係るリニアコンベアシステムは、第1方向に延設されて第1方向にスライダーを駆動可能である固定リニアモジュールと、固定リニアモジュールに第1方向から対向する対向範囲および対向範囲以外の範囲を含んで第1方向に交差する第2方向に延設された可動域に沿って移動可能であって、第1方向にスライダーを駆動可能な可動リニアモジュールを有し、可動域において第2方向に可動リニアモジュールを駆動するモジュール駆動機構と、スライダーおよび可動リニアモジュールの駆動を制御する制御部とを備え、第1方向の端から固定リニアモジュールに対して、スライダーが係合および離脱可能であり、固定リニアモジュールは、係合するスライダーを第1方向に駆動し、第1方向の端から可動リニアモジュールに対して、スライダーが係合および離脱可能であり、可動リニアモジュールは、係合するスライダーを第1方向に駆動し、固定リニアモジュールと、対向範囲内に位置する可動リニアモジュールとの間でスライダーを移動させるスライダー移載動作が実行可能であり、制御部は、スライダー移載動作の実行前に、対向範囲内に可動リニアモジュールが位置するか否かを判断する判断処理を実行した結果、対向範囲内に可動リニアモジュールが位置しないと判断した場合には、可動リニアモジュールを対向範囲内に移動させる準備動作を実行してから、スライダー移載動作を実行する。
 本発明に係るリニアコンベアシステムの制御方法は、第1方向に延設されて第1方向にスライダーを駆動可能である固定リニアモジュールと、固定リニアモジュールに第1方向から対向する対向範囲および対向範囲以外の範囲を含んで第1方向に交差する第2方向に延設された可動域に沿って移動可能であって、第1方向にスライダーを駆動可能な可動リニアモジュールを有し、可動域において第2方向に可動リニアモジュールを駆動するモジュール駆動機構とを備えたリニアコンベアシステムの制御方法であって、固定リニアモジュールと、対向範囲内に位置する可動リニアモジュールとの間でスライダーを移動させるスライダー移載動作を実行する前に、対向範囲内に可動リニアモジュールが位置するか否かを判断する判断処理を実行する工程と、判断処理で対向範囲内に可動リニアモジュールが位置しないと判断した場合には、可動リニアモジュールを対向範囲内に移動させる準備動作を実行する工程と、準備動作の後にスライダー移載動作を実行する工程とを備える。
 本発明に係るリニアコンベアシステムの制御プログラムは、第1方向に延設されて第1方向にスライダーを駆動可能である固定リニアモジュールと、固定リニアモジュールに第1方向から対向する対向範囲および対向範囲以外の範囲を含んで第1方向に交差する第2方向に延設された可動域に沿って移動可能であって、第1方向にスライダーを駆動可能な可動リニアモジュールを有し、可動域において第2方向に可動リニアモジュールを駆動するモジュール駆動機構とを備えたリニアコンベアシステムの制御方法であって、固定リニアモジュールと、対向範囲内に位置する可動リニアモジュールとの間でスライダーを移動させるスライダー移載動作を実行する前に、対向範囲内に可動リニアモジュールが位置するか否かを判断する判断処理を実行する工程と、判断処理で対向範囲内に可動リニアモジュールが位置しないと判断した場合には、可動リニアモジュールを対向範囲内に移動させる準備動作を実行する工程と、準備動作の後にスライダー移載動作を実行する工程とを、コンピューターに実行させる。
 本発明に係る記録媒体は、上記のリニアコンベアシステムの制御プログラムを、コンピューターにより読み出し可能に記録する。
 このように構成された本発明(リニアコンベアシステム、リニアコンベアシステムの制御方法、リニアコンベアシステムの制御プログラムおよび記録媒体)では、固定リニアモジュールと、対向範囲内に位置する可動リニアモジュールとの間でスライダーを移動させるスライダー移載動作の実行前に、対向範囲内に可動リニアモジュールが位置するか否かを判断する判断処理が実行される。そして、その結果、対向範囲内に可動リニアモジュールが位置しないと判断した場合には、可動リニアモジュールを対向範囲内に移動させる準備動作を実行してから、スライダー移載動作を実行する。したがって、固定リニアモジュールと可動リニアモジュールとの間におけるスライダーの移動を適切に実行することが可能となっている。
 また、スライダー移載動作では、固定リニアモジュールから対向範囲内に位置する可動リニアモジュールへスライダーを移動させるように、リニアコンベアシステムを構成してもよい。かかる構成では、固定リニアモジュールから、対向範囲内に位置する可動リニアモジュールにスライダーを移動させるスライダー移載動作の実行前に、対向範囲内に可動リニアモジュールが位置するか否かを判断する判断処理が実行される。そして、その結果、対向範囲内に可動リニアモジュールが位置しないと判断した場合には、可動リニアモジュールを対向範囲内に移動させる準備動作を実行してから、スライダー移載動作を実行する。したがって、固定リニアモジュールから可動リニアモジュールへのスライダーの移動を適切に実行することが可能となっている。
 また、制御部は、準備動作の開始時においてスライダーが停止する停止位置から停止位置よりも第1方向において対向範囲に近い固定リニアモジュール上の待機位置までスライダーを移動させる待機動作を、準備動作に並行して実行するように、リニアコンベアシステムを構成してもよい。かかる構成では、可動リニアモジュールを対向範囲へ移動させる準備動作と並行してスライダーを待機位置まで移動させており、準備動作に要する期間をスライダーの移動に利用して、効率的な制御が実行可能となっている。
 また、制御部は、待機動作の完了後に準備動作が完了すると、固定リニアモジュールの待機位置に位置するスライダーを、準備動作により対向範囲に移動してきた可動リニアモジュールに移動させることで、スライダー移載動作を実行するように、リニアコンベアシステムを構成してもよい。これによって、固定リニアモジュールから可動リニアモジュールへのスライダーの移動を適切に実行することができる。特に、準備動作と並行して実行される待機動作によってスライダーを予め待機位置に待機させているため、準備動作の完了後に待機位置から可動リニアモジュールまでスライダーを移動させるだけでスライダー移載動作を速やかに完了することが可能となっている。
 また、制御部は、準備動作において対向範囲へ移動中のスライダーが所定位置を通過すると、準備動作の開始時点において固定リニアモジュール上でスライダーが停止する停止位置から対向範囲へ向けてスライダーの移動を開始し、準備動作により対向範囲に移動してきた可動リニアモジュールにスライダーを移動させることで、スライダー移載動作を実行するように、リニアコンベアシステムを構成してもよい。かかる構成では、可動リニアモジュールを対向範囲へ移動させる準備動作と並行してスライダーの対向範囲へ向けた移動を開始させており、準備動作に要する期間をスライダーの移動に利用して、効率的な制御が実行可能となっている。
 また、スライダー移載動作では、対向範囲内に位置する可動リニアモジュールから固定リニアモジュールにスライダーを移動させるように、リニアコンベアシステムを構成してもよい。かかる構成では、対向範囲内に位置する可動リニアモジュールから固定リニアモジュールにスライダーを移動させるスライダー移載動作の実行前に、対向範囲内に可動リニアモジュールが位置するか否かを判断する判断処理が実行される。そして、その結果、対向範囲内に可動リニアモジュールが位置しないと判断した場合には、可動リニアモジュールを対向範囲内に移動させる準備動作を実行してから、スライダー移載動作を実行する。したがって、可動リニアモジュールから固定リニアモジュールへのスライダーの移動を適切に実行することが可能となっている。
 また、制御部は、準備動作の開始時においてスライダーが停止する停止位置から停止位置よりも第1方向において固定モジュール側の可動リニアモジュール上の待機位置までスライダーを移動させる待機動作を、準備動作に並行して実行するように、リニアコンベアシステムを構成してもよい。かかる構成では、可動リニアモジュールを対向範囲へ移動させる準備動作と並行してスライダーを待機位置まで移動させており、準備動作に要する期間をスライダーの移動に利用して、効率的な制御が実行可能となっている。
 また、制御部は、待機動作の完了後に準備動作が完了すると、準備動作により対向範囲に移動してきた可動リニアモジュールの待機位置に位置するスライダーを固定リニアモジュールに移動させることで、スライダー移載動作を実行するように、リニアコンベアシステムを構成してもよい。これによって、可動リニアモジュールから固定リニアモジュールへのスライダーの移動を適切に実行することができる。特に、準備動作と並行して実行される待機動作によってスライダーを予め待機位置に待機させているため、準備動作の完了後に待機位置から固定リニアモジュールまでスライダーを移動させるだけでスライダー移載動作を速やかに完了することが可能となっている。
 本発明によれば、固定リニアモジュールから可動リニアモジュールへのスライダーの移動を適切に実行することが可能となる。
本発明に係るリニアコンベアシステムが備えるリニアモジュールの一例を示す斜視図。 図1のリニアモジュールの内部を部分的に露出させて示す斜視図。 本発明に係るリニアコンベアシステムの一例を模式的に示す図。 図3のリニアコンベアシステムが備える電気的構成の一例を示すブロック図。 図3に示すリニアコンベアシステムで実行されるスライダー移載制御の第1例を示すフローチャート。 図5のスライダー移載制御で実行される動作を模式的に示す図。 図3に示すリニアコンベアシステムで実行されるスライダー移載制御の第2例を示すフローチャート。 図7のスライダー移載制御で実行される動作を模式的に示す図。 図3に示すリニアコンベアシステムで実行されるスライダー移載制御の第3例を示すフローチャート。 図9のスライダー移載制御で実行される動作を模式的に示す図。 図5のスライダー移載制御で実行される動作の変形例を模式的に示す図。 図7のスライダー移載制御で実行される動作の変形例を模式的に示す図。
 図1は本発明に係るリニアコンベアシステムが備えるリニアモジュールの一例を示す斜視図であり、図2は図1のリニアモジュールの内部を部分的に露出させて示す斜視図である。図1および図2では、水平方向に平行なX方向、X方向に直交しつつ水平方向に平行なY方向および鉛直方向に平行なZ方向を有するXYZ直交座標軸が表記されている。さらに、X方向に沿って両図の右斜め上側がX1側と表記され、X方向に沿って両図の左斜め下側がX2側と表記されている。同様の表記は、以下の図においても適宜用いられる。このリニアモジュールは、例えばWO2018/055709A1に記載のリニアコンベア装置のモジュールと同様の基本構成を具備する。ここでは、リニアモジュールの説明を行ってから、リニアコンベアシステムの全体の説明を行う。
 図1および図2では、X方向に延設されたリニアモジュール2と、リニアモジュール2を下側から支持するベース部材3と、リニアモジュール2に係合するスライダー4とが示されている。リニアモジュール2は、X方向に等間隔で並ぶ3個のベース部材3の上端に取り付けられており、磁力によってスライダー4をX方向に駆動する。ここの例では、リニアモジュール2は、X方向に配列された2個のモジュールユニット20で構成される。ただし、リニアモジュール2を構成するモジュールユニット20の個数は、2個に限られず、1個あるいは3個以上でもよい。
 モジュールユニット20は、X方向に延設された基板21を有する。基板21はZ方向からの平面視で矩形状を有する平板である。基板21の上面には、X方向に平行な2本のガイドレール22がY方向に間隔を空けて配置されている。さらに、基板21の上面には、所定の配列ピッチP23でX方向に一列に並ぶ複数のリニアモーター固定子23と、所定の配列ピッチP24でX方向に一列に並ぶ複数の磁気センサー24とが取り付けられている。ここで、リニアモーター固定子23の配列ピッチP23よりも、磁気センサー24の配列ピッチP24の方が長い。Y方向において、複数のリニアモーター固定子23は、2本のガイドレール22の間に配置され、複数の磁気センサー24は、リニアモーター固定子23と1本のガイドレール22との間に配置されている。
 リニアモーター固定子23は、コイルと当該コイルに挿入されたコアとで構成された電磁石である。一方、スライダー4には、永久磁石と当該永久磁石を保持するバックヨークで構成された可動子が設けられている。リニアモーター固定子23は、印加された電流に応じた磁束を発生することでスライダー4の可動子に磁気的な推進力を与えて、スライダー4をX方向に駆動する。また、スライダー4には、X方向への位置を示す磁気スケールが取り付けられており、磁気センサー24は、磁気スケールを読み取ることでスライダー4のX方向への位置を検出する。そして、後述するように、磁気センサー24が検出したスライダー4の位置に基づきリニアモーター固定子23に印加する電流をフィードバック制御することで、スライダー4をX方向に駆動する。
 また、モジュールユニット20は、これらガイドレール22、リニアモーター固定子23および磁気センサー24を上側から覆う、平面視で矩形状のカバー部材25を有する。カバー部材25は、Y方向の中央で下方に突出する支持脚251を有し、支持脚251が基板21の上面に取り付けられる。Y方向の両端において、カバー部材25と基板21との間には隙間が形成され、この隙間からカバー部材25と基板21との間に入り込んだスライダー4の両端部がそれぞれ2本のガイドレール22に係合する。
 このようなモジュールユニット20を複数(2個)X方向に配列することで、リニアモジュール2が構成される。かかるリニアモジュール2は、平面視において矩形状を有する。リニアモジュール2の2個のモジュールユニット20のうち、X1側のモジュールユニット20は3個のベース部材3のうちX1側の端のベース部材3と中央のベース部材3との間に架設され、X2側のモジュールユニット20は3個のベース部材3のうちX2側の端のベース部材3と中央のベース部材3との間に架設される。
 スライダー4は、X方向においてリニアモジュール2の端からリニアモジュール2の中央側に進入して、リニアモジュール2のガイドレール22に係合することができる。こうして、ガイドレール22に係合したスライダー4は、リニアモジュール2によってX方向に駆動される。また、スライダー4は、X方向においてリニアモジュール2の端から外側に抜けて、リニアモジュール2のガイドレール22から離脱することができる。
 図3は本発明に係るリニアコンベアシステムの一例を模式的に示す図である。リニアコンベアシステム1は、4台のリニアモジュール2を備える。なお、同図では、4台のリニアモジュール2に対して互いに異なる符合2a、2b、2c、2dが付されている。
 リニアモジュール2a、2bはリニアコンベアシステム1の設置面に固定された固定リニアモジュールであり、リニアモジュール2c、2dは設置面に対してY方向に動くことができる可動リニアモジュールである。固定リニアモジュール2a、2bと、可動リニアモジュール2c、2dとは、Y方向に同一の幅を有する一方、X方向において異なる長さを有する。ただし、これらは、X方向における長さを除いて、図1および図2に示した共通の基本構成を有する。
 2個の固定リニアモジュール2a、2bは、Y方向に間隔を空けつつX方向に平行に配置されている。こうしてX方向に並列に配置された固定リニアモジュール2a、2bは、X方向に同一の長さを有する。一方、可動リニアモジュール2c、2dは、X方向において、固定リニアモジュール2a、2bよりも短い、同一の長さを有する。
 かかるリニアコンベアシステム1は、可動リニアモジュール2c、2dをY方向に駆動する2個のアクチュエーター5c、5dを有する。アクチュエーター5cは、固定リニアモジュール2a、2bのX方向のX1側で、Y方向に平行に配置される。アクチュエーター5dは、固定リニアモジュール2a、2bのX方向のX2側で、Y方向に平行に配置される。このように、2個のアクチュエーター5c、5dは、X方向から2個の固定リニアモジュール2a、2bを挟むように配置されている。
 アクチュエーター5cは、例えばY方向に平行なボールネジを備えた単軸ロボットであり、アクチュエーター5cのボールネジのナットに可動リニアモジュール2cが取り付けられている。このアクチュエーター5cは、可動域Rcに沿ってY方向に可動リニアモジュール2cを駆動する。ここで、可動域Rcは、X方向においてX1側から固定リニアモジュール2aのX1側の端に対向する対向範囲Fcaと、X方向においてX1側から固定リニアモジュール2bのX1側の端に対向する対向範囲Fcbとを含み、Y方向に延びる領域である。対向範囲Fcaは、固定リニアモジュール2aとX方向に一列に並ぶ可動リニアモジュール2cの存在範囲(可動リニアモジュール2cの公差を含む)に相当し、対向範囲Fcbは、固定リニアモジュール2bとX方向に一列に並ぶ可動リニアモジュール2cの存在範囲(固定リニアモジュール2bの公差を含む)に相当する。
 アクチュエーター5dは、例えばY方向に平行なボールネジを備えた単軸ロボットであり、アクチュエーター5dのボールネジのナットに可動リニアモジュール2dが取り付けられている。このアクチュエーター5dは、可動域Rdに沿ってY方向に可動リニアモジュール2dを駆動する。ここで、可動域Rdは、X方向においてX2側から固定リニアモジュール2aのX2側の端に対向する対向範囲Fdaと、X方向においてX2側から固定リニアモジュール2bのX2側の端に対向する対向範囲Fdbとを含み、Y方向に延びる領域である。対向範囲Fdaは、固定リニアモジュール2aとX方向に一列に並ぶ可動リニアモジュール2dの存在範囲(可動リニアモジュール2dの公差を含む)に相当し、対向範囲Fdbは、固定リニアモジュール2bとX方向に一列に並ぶ可動リニアモジュール2dの存在範囲(固定リニアモジュール2bの公差を含む)に相当する。
 このようなリニアコンベアシステム1では、スライダー4を循環的に駆動することができる。例えば可動リニアモジュール2cが対向範囲Fca内に位置する状態で、固定リニアモジュール2aがそれに係合するスライダー4をX方向のX1側に駆動することで、固定リニアモジュール2aから可動リニアモジュール2cにスライダー4を移動させることができる。そして、アクチュエーター5cが対向範囲Fcaから対向範囲Fcbに可動リニアモジュール2cを移動させてから、対向範囲Fcb内に位置する可動リニアモジュール2cがそれに係合するスライダー4をX方向のX2側に駆動することで、可動リニアモジュール2cから固定リニアモジュール2bにスライダー4を移動させることができる。
 さらに、可動リニアモジュール2dが対向範囲Fdb内に位置する状態で、固定リニアモジュール2bがそれに係合するスライダー4をX方向のX2側に駆動することで、固定リニアモジュール2bから可動リニアモジュール2dにスライダー4を移動させることができる。そして、アクチュエーター5dが対向範囲Fdbから対向範囲Fdaに可動リニアモジュール2dを移動させてから、対向範囲Fda内に位置する可動リニアモジュール2dがそれに係合するスライダー4をX方向のX1側に駆動することで、可動リニアモジュール2dから固定リニアモジュール2aにスライダー4を移動させることができる。
 こうして、スライダー4を反時計回りに循環的に駆動することができる。また、上記と逆の動作を実行することで、スライダー4を時計回りに循環的に駆動することができる。なお、循環駆動は、リニアコンベアシステム1で実行可能なスライダー4の駆動態様の一例に過ぎず、他の種々の態様でスライダー4を駆動することができる。
 図4は図3のリニアコンベアシステムが備える電気的構成の一例を示すブロック図である。リニアコンベアシステム1は、システム全体を監視しつつ各スライダー4の駆動を制御する制御装置11を備える。この制御装置11は、例えばパーソナルコンピューター等のコンピューターである。
 制御装置11は、制御部12、記憶部13およびディスプレイ14を備える。制御部12は例えばCPU(Central Processing Unit)で構成されたプロセッサーであり、制御装置11での演算を担う。記憶部13は例えばHDD(Hard Disk Drive)で構成され、制御装置2での演算で用いられるデータやプログラムを記憶する。特に、記憶部13は、後述する制御を制御装置11の制御部12に実行させるプログラム18を記憶する。このプログラム18は、USB(Universal Serial Bus)メモリー等の記録媒体19により、制御装置11により読み出し可能な状態で提供されて記憶部13にインストールされてもよいし、インターネットサーバーからダウンロードされて記憶部13にインストールされてもよい。ディスプレイ14は、例えばタッチパネルディスプレイであり、ユーザーへの表示を行うのみならず、ユーザーからの入力操作も受け付けるUI(User Interface)として機能する。
 かかる制御装置11の制御部12は、磁気センサー24が検出したスライダー4の位置に基づきリニアモーター固定子23をフィードバック制御することで、固定リニアモジュール2a~2dのそれぞれにスライダー4を駆動させる。また、アクチュエーター5c、5dのそれぞれは、ボールネジを回転させるサーボモーター51と、サーボモーター51の回転位置を検出するエンコーダー52とを有し、制御部12は、エンコーダー52が検出した回転位置に基づきサーボモーター51をフィードバック制御することで、アクチュエーター5c、5dのそれぞれに可動リニアモジュール2c、2dを駆動させる。
 ところで、かかるリニアコンベアシステム1では、固定リニアモジュール2a、2bから可動リニアモジュール2c、2dへスライダー4を移動させるスライダー移載動作が適宜実行される。例えば、固定リニアモジュール2bから可動リニアモジュール2cにスライダー4を移動させる場合には、固定リニアモジュール2bにX方向から対向する対向範囲Fcb内に位置する可動リニアモジュール2cに向けて、固定リニアモジュール2b上のスライダー4をX方向に移動させることで、スライダー移載動作が実行される。この際、移動先である可動リニアモジュール2cが移動元である固定リニアモジュール2bに対向する対向範囲Fcb内に位置しないと、固定リニアモジュール2bから可動リニアモジュール2cへスライダー4を移動できない。そこで、制御装置11は次に説明するスライダー移載制御を実行することで、スライダー4の確実な移動を実現する。
 図5は図3に示すリニアコンベアシステムで実行されるスライダー移載制御の第1例を示すフローチャートであり、図6は図5のスライダー移載制御で実行される動作を模式的に示す図である。このフローチャートはプログラム18により規定され、制御部12がプログラム18に基づき各部を制御することで実行される。また、このフローチャートは、次の各組合せ
・固定リニアモジュール2aおよび可動リニアモジュール2c
・固定リニアモジュール2aおよび可動リニアモジュール2d
・固定リニアモジュール2bおよび可動リニアモジュール2c
・固定リニアモジュール2bおよび可動リニアモジュール2d
によるスライダー移載動作に対して共通して実行できる。ただし、ここでは、固定リニアモジュール2bから可動リニアモジュール2cへスライダー4を移動させるスライダー移載動作を例に挙げて説明を行う。なお、このフローチャートの開始時点では、スライダー4および可動リニアモジュール2c、2dは停止しているものとする。これらの点は、後に示すスライダー移載制御の第2例および第3例にも共通する。
 ステップS101では、固定リニアモジュール2bから可動リニアモジュール2cへのスライダー4の受け渡しを実行可能か否かが判断される。具体的には、スライダー4の移動先である可動リニアモジュール2cが、スライダー4の移動元である固定リニアモジュール2bに対向する対向範囲Fcb内に位置する場合には、受け渡しが実行できると判断され(ステップS101で「YES」)、可動リニアモジュール2cが固定リニアモジュール2bに対向する対向範囲Fcb内に位置しない場合には、受け渡しが実行できない判断される(ステップS101で「NO」)。なお、可動リニアモジュール2cの一部でも対向範囲Fcbの外に位置する場合には、可動リニアモジュール2cは対向範囲Fcb内に位置しないと判断する。
 そして、ステップS101で受け渡しができる(YES)と判断されると、ステップS104に進む。一方、図6の「S101」の欄に例示するように、可動リニアモジュール2cが対向範囲Fcb内に位置せずに、対向範囲FcbからY方向に外れていると、ステップS101で受け渡しができない(NO)と判断される。この場合、可動リニアモジュール2cの対向範囲Fcbへの移動が開始されて、可動リニアモジュール2cが対向範囲Fcbへ向けてY方向に移動する(ステップS102)。そして、図6の「S103」の欄に例示するように、可動リニアモジュール2cが対向範囲Fcb内に到達して、可動リニアモジュール2cの対向範囲Fcbへの移動の完了が確認されると(ステップS103で「YES」)、ステップS104に進む。
 ステップS104では、固定リニアモジュール2b上の移動開始位置Lsから、対向範囲Fcb内の可動リニアモジュール2c上の移動目標位置Ldに向けたスライダー4の移動が開始され、スライダー4は、移動開始位置Lsから移動目標位置Ldへ向けてX方向に移動する。そして、図6の「S105」の欄に例示するように、スライダー4が可動リニアモジュール2c上の移動目標位置Ldに到達し、移動開始位置Lsから移動目標位置Ldへのスライダー4の移動の完了が確認されると(ステップS105で「YES」)、図5の制御を終了する。こうして、固定リニアモジュール2b上の移動開始位置Lsから可動リニアモジュール2c上の移動目標位置Ldへスライダー4を移動させるスライダー移載動作(ステップS104、S105)が実行される。
 このようにスライダー移載制御の第1例では、固定リニアモジュール2bから、対向範囲Fcb内に位置する可動リニアモジュール2cにスライダー4を移動させるスライダー移載動作(ステップS104、S105)の実行前に、対向範囲Fcb内に可動リニアモジュール2cが位置するか否かを判断する判断処理(ステップS101)が実行される。そして、その結果、対向範囲Fcb内に可動リニアモジュール2cが位置しないと判断した場合には、可動リニアモジュール2cを対向範囲Fcb内に移動させる準備動作(ステップS102、S103)を実行してから、スライダー移載動作(ステップS104、S105)を実行する。したがって、固定リニアモジュール2bから可動リニアモジュール2cへのスライダー4の移動を適切に実行することが可能となっている。
 図7は図3に示すリニアコンベアシステムで実行されるスライダー移載制御の第2例を示すフローチャートであり、図8は図7のスライダー移載制御で実行される動作を模式的に示す図である。ここでは、スライダー移載制御の第1例との違いを中心に説明することとし、共通部分は相当符号を付して適宜説明を省略する。ただし、共通部分を備えることで同様の効果を奏することは言うまでもない。
 この第2例では、固定リニアモジュール2bの対向範囲Fcb側の端に待機位置Lwが設定される。この待機位置Lwは、X方向において、固定リニアモジュール2b上のスライダー4の移動開始位置Lsと、固定リニアモジュール2bに対向する対向範囲Fcbとの間に位置するように、固定リニアモジュール2bに設定される。つまり、待機位置Lwは、対向範囲Fcbに隣接して固定リニアモジュール2bの端に設けられている。
 そして、図8の「S101」の欄に例示するように、可動リニアモジュール2cが対向範囲Fcbから外れており、可動リニアモジュール2cが対向範囲Fcbへ向けて移動を開始するのに伴って、スライダー4が待機位置Lwへ向けて移動する。(ステップS201)。こうして、可動リニアモジュール2cの移動に並行して(ステップS102、S103)、移動開始位置Lsから待機位置Lwへのスライダー4の移動が実行される(ステップS201)。
 図8の「S201」の欄に例示するように、スライダー4は待機位置Lwに到達すると、当該待機位置Lwで停止する。これによって、可動リニアモジュール2cが対向範囲Fcbに到達するまでの間、スライダー4は待機位置Lwで待機する。そして、図8の「S103」の欄に例示するように、可動リニアモジュール2cの対向範囲Fcbへの移動が完了すると(ステップS103で「YES」)、スライダー4は待機位置Lwから移動目標位置Ldへ向けた移動を開始する(ステップS104)。そして、図8の「S105」の欄に例示するように、スライダー4が可動リニアモジュール2c上の移動目標位置Ldに到達し、待機位置Lwから移動目標位置Ldへのスライダー4の移動の完了が確認されると(ステップS105で「YES」)、図7の制御を終了する。こうして、固定リニアモジュール2b上の待機位置Lwから可動リニアモジュール2c上の移動目標位置Ldへスライダー4を移動させるスライダー移載動作(ステップS104、S105)が実行される。
 このようにスライダー移載制御の第2例では、制御装置11は、可動リニアモジュール2cを対向範囲Fcb内に移動させる準備動作(ステップS102、S103)の開始時においてスライダー4が停止する移動開始位置Ls(停止位置)から移動開始位置LsよりもX方向において対向範囲Fcbに近い固定リニアモジュール2b上の待機位置Lwまでスライダー4を移動させる待機動作(ステップS201)を、準備動作(ステップS102、S103)に並行して実行する。かかる構成では、可動リニアモジュール2cを対向範囲Fcbへ移動させる準備動作(ステップS102、S103)と並行してスライダー4を待機位置Lwまで移動させており、可動リニアモジュール2cを対向範囲Fcbへ移動させるのに要する期間をスライダー4の移動に利用して、効率的な制御が実行可能となっている。
 また、制御装置11は、待機位置Lwまでスライダー4を移動させる待機動作(ステップS201)の完了後に可動リニアモジュール2cを対向範囲Fcbに移動させる準備動作(ステップS102、S103)が完了すると、待機位置Lwに位置するスライダー4を、対向範囲Fcb内の可動リニアモジュール2cに移動させることで、スライダー移載動作を実行する(ステップS104、S105)。このように、これによって、固定リニアモジュール2bから可動リニアモジュール2cへのスライダー4の移動を適切に実行することができる。特に、可動リニアモジュール2cの対向範囲Fcbへの移動と並行して実行されるスライダー4の待機位置Lwへの移動によってスライダーを予め待機位置Lwに待機させている。そのため、可動リニアモジュール2cの対向範囲Fcbへの移動完了後に待機位置Lwから可動リニアモジュール2cまでスライダー4を移動させるだけでスライダー移載動作を速やかに完了することが可能となっている。
 図9は図3に示すリニアコンベアシステムで実行されるスライダー移載制御の第3例を示すフローチャートであり、図10は図9のスライダー移載制御で実行される動作を模式的に示す図である。ここでは、スライダー移載制御の第1例との違いを中心に説明することとし、共通部分は相当符号を付して適宜説明を省略する。ただし、共通部分を備えることで同様の効果を奏することは言うまでもない。
 この第3例では、対向範囲FcbからY方向において所定距離だけ離れた基準位置Lpが設けられている。この基準位置Lpは、可動リニアモジュール2cの可動域Rc内に設けられている。後述するように、可動リニアモジュール2cが基準位置Lpを通過すると、スライダー4が移動開始位置Lsから移動を開始する。この際、可動リニアモジュール2cが対向範囲Fcbに到達して停止した後に、スライダー4が移動目標位置Ldに到達するように、可動リニアモジュール2cおよびスライダー4の移動速度、動開始位置Lsと移動目標位置Ldとの距離に基づいて、基準位置Lpは設定される。
 図10の「S101」の欄に例示するように、可動リニアモジュール2cが対向範囲Fcbから外れていると(ステップS101で「NO」)、第1例と同様に、可動リニアモジュール2cが対向範囲Fcbへ向けて移動を開始する(ステップS102)。そして、この第3例では、図10の「S301」の欄に例示するように、対向範囲Fcbへ向けて移動中の可動リニアモジュール2cが基準位置Lpを通過して、可動リニアモジュール2cが基準位置Lpよりも対向範囲Fcb側に進入すると(ステップS301で「YES」)、固定リニアモジュール2b上の移動開始位置Lsから対向範囲Fcbへ向けたスライダー4の移動が開始される(ステップS302)。これによって、可動リニアモジュール2cの対向範囲Fcbへの移動と並行して、スライダー4の対向範囲Fcbの移動が実行される。
 また、図10の「S302」の欄に例示するように、スライダー4が固定リニアモジュール2b上を移動中に、可動リニアモジュール2cが対向範囲Fcbに到達して、対向範囲Fcbに停止する。続いて、図10の「S105」の欄に例示するように、スライダー4が可動リニアモジュール2c上の移動目標位置Ldに到達し、図10の「S302」欄に例示する位置から移動目標位置Ldへのスライダー4の移動の完了が確認されると(ステップS105で「YES」)、図9の制御を終了する。こうして、図10の「S302」欄に例示する固定リニアモジュール2b上の位置から可動リニアモジュール2c上の移動目標位置Ldへスライダー4を移動させるスライダー移載動作(ステップS302、S105)が実行される。
 このようにスライダー移載制御の第3例では、制御装置11は、可動リニアモジュール2cを対向範囲Fcbに移動させる準備動作(ステップS102)において対向範囲Fcbへ移動中のスライダー4が基準位置Lpを通過すると、準備動作の開始時点において固定リニアモジュール2b上でスライダー4が停止する移動開始位置Lsから対向範囲Fcbへ向けてスライダー4の移動を開始する。そして、対向範囲Fcbに移動してきた可動リニアモジュール2cにスライダー4を移動させることで、スライダー移載動作を実行する(ステップS302、S105)。かかる構成では、可動リニアモジュール2cの対向範囲Fcbへの移動(ステップS102)と並行してスライダー4の対向範囲Fcbへ向けた移動を開始しており、可動リニアモジュール2cの対向範囲Fcbへの移動に要する期間をスライダー4の移動に利用して、効率的な制御が実行可能となっている。
 上述の例では、固定リニアモジュール2bから可動リニアモジュール2cへスライダー4を移動させるスライダー移載動作について説明を行った。しかしながら、図5あるいは図7のスライダー移載制御によって、可動リニアモジュール2c、2dから固定リニアモジュール2a、2bにスライダー4を移動させるスライダー移載動作を制御することもできる。続いては、この点について説明する。
 図11は図5のスライダー移載制御で実行される動作の変形例を模式的に示す図である。この変形例を用いて説明する制御は、次の各組合せ
・固定リニアモジュール2aおよび可動リニアモジュール2c
・固定リニアモジュール2aおよび可動リニアモジュール2d
・固定リニアモジュール2bおよび可動リニアモジュール2c
・固定リニアモジュール2bおよび可動リニアモジュール2d
によるスライダー移載動作に対して共通して実行できる。ただし、ここでは、可動リニアモジュール2cから固定リニアモジュール2bへスライダー4を移動させるスライダー移載動作を例に挙げて説明を行う。なお、このフローチャートの開始時点では、スライダー4および可動リニアモジュール2c、2dは停止しているものとする。これらの点は、後に示すスライダー移載制御による動作例にも共通する。
 ステップS101では、可動リニアモジュール2cから固定リニアモジュール2bへのスライダー4の受け渡しを実行可能か否かが判断される。具体的には、スライダー4の移動元である可動リニアモジュール2cが、スライダー4の移動先である固定リニアモジュール2bに対向する対向範囲Fcb内に位置する場合には、受け渡しが実行できると判断され(ステップS101で「YES」)、可動リニアモジュール2cが固定リニアモジュール2bに対向する対向範囲Fcb内に位置しない場合には、受け渡しが実行できないと判断される(ステップS101で「NO」)。なお、可動リニアモジュール2cの一部でも対向範囲Fcbの外に位置する場合には、可動リニアモジュール2cは対向範囲Fcb内に位置しないと判断する。
 そして、ステップS101で受け渡しができる(YES)と判断されると、ステップS104に進む。一方、図11の「S101」の欄に例示するように、可動リニアモジュール2cが対向範囲Fcb内に位置せずに、対向範囲FcbからY方向に外れていると、ステップS101で受け渡しができない(NO)と判断される。この場合、可動リニアモジュール2cの対向範囲Fcbへの移動が開始されて、可動リニアモジュール2cが対向範囲Fcbへ向けてY方向に移動する(ステップS102)。そして、図11の「S103」の欄に例示するように、可動リニアモジュール2cが対向範囲Fcb内に到達して、可動リニアモジュール2cの対向範囲Fcbへの移動の完了が確認されると(ステップS103で「YES」)、ステップS104に進む。
 ステップS104では、対向範囲Fcb内の可動リニアモジュール2c上の移動開始位置Lsから、固定リニアモジュール2b上の移動目標位置Ldに向けたスライダー4の移動が開始され、スライダー4は、移動開始位置Lsから移動目標位置Ldへ向けてX方向に移動する。そして、図11の「S105」の欄に例示するように、スライダー4が固定リニアモジュール2b上の移動目標位置Ldに到達し、移動開始位置Lsから移動目標位置Ldへのスライダー4の移動の完了が確認されると(ステップS105で「YES」)、図5の制御を終了する。こうして、可動リニアモジュール2c上の移動開始位置Lsから固定リニアモジュール2b上の移動目標位置Ldへスライダー4を移動させるスライダー移載動作(ステップS104、S105)が実行される。
 このように図5のスライダー移載制御に基づく動作の変形例では、対向範囲Fcb内に位置する可動リニアモジュール2cから固定リニアモジュール2bにスライダー4を移動させるスライダー移載動作(ステップS104、S105)の実行前に、対向範囲Fcb内に可動リニアモジュール2cが位置するか否かを判断する判断処理(ステップS101)が実行される。そして、その結果、対向範囲Fcb内に可動リニアモジュール2cが位置しないと判断した場合には、可動リニアモジュール2cを対向範囲Fcb内に移動させる準備動作(ステップS102、S103)を実行してから、スライダー移載動作(ステップS104、S105)を実行する。したがって、可動リニアモジュール2cから固定リニアモジュール2bへのスライダー4の移動を適切に実行することが可能となっている。
 図12は図7のスライダー移載制御で実行される動作の変形例を模式的に示す図である。図12の例においても、可動リニアモジュール2cから固定リニアモジュール2bへスライダー4を移動させるスライダー移載動作が示されている。ここでは、図11に示した動作との違いを中心に説明することとし、共通部分は相当符号を付して適宜説明を省略する。ただし、共通部分を備えることで同様の効果を奏することは言うまでもない。
 図12の例では、可動リニアモジュール2cの固定リニアモジュール2b側(X2側)の端に待機位置Lwが設定される。この待機位置Lwは、X方向において、可動リニアモジュール2c上のスライダー4の移動開始位置Lsより固定リニアモジュール2b側に位置するように、可動リニアモジュール2cに設定される。つまり、待機位置Lwは、可動リニアモジュール2cが対向範囲Fcb内に位置する状態において、固定リニアモジュール2bに隣接するように可動リニアモジュール2cの端に設けられている。
 そして、図12の「S101」の欄に例示するように、可動リニアモジュール2cが対向範囲Fcbから外れており、可動リニアモジュール2cが対向範囲Fcbへ向けて移動を開始するのに伴って、スライダー4が待機位置Lwへ向けて移動する。(ステップS201)。こうして、可動リニアモジュール2cの移動に並行して(ステップS102、S103)、移動開始位置Lsから待機位置Lwへのスライダー4の移動が実行される(ステップS201)。
 図12の「S201」の欄に例示するように、スライダー4は待機位置Lwに到達すると、当該待機位置Lwで停止する。これによって、可動リニアモジュール2cが対向範囲Fcbに到達するまでの間、スライダー4は待機位置Lwで待機する。そして、図12の「S103」の欄に例示するように、可動リニアモジュール2cの対向範囲Fcbへの移動が完了すると(ステップS103で「YES」)、スライダー4は待機位置Lwから移動目標位置Ldへ向けた移動を開始する(ステップS104)。そして、図12の「S105」の欄に例示するように、スライダー4が固定リニアモジュール2b上の移動目標位置Ldに到達し、待機位置Lwから移動目標位置Ldへのスライダー4の移動の完了が確認されると(ステップS105で「YES」)、図7の制御を終了する。こうして、可動リニアモジュール2c上の待機位置Lwから固定リニアモジュール2b上の移動目標位置Ldへスライダー4を移動させるスライダー移載動作(ステップS104、S105)が実行される。
 このように図7のスライダー移載制御に基づく動作の変形例では、制御装置11は、可動リニアモジュール2cを対向範囲Fcb内に移動させる準備動作(ステップS102、S103)の開始時においてスライダー4が停止する移動開始位置Ls(停止位置)から移動開始位置LsよりもX方向において固定リニアモジュール2b側(X2側)の待機位置Lwまでスライダー4を移動させる待機動作(ステップS201)を、準備動作(ステップS102、S103)に並行して実行する。かかる構成では、可動リニアモジュール2cを対向範囲Fcbへ移動させる準備動作(ステップS102、S103)と並行してスライダー4を待機位置Lwまで移動させており、可動リニアモジュール2cを対向範囲Fcbへ移動させるのに要する期間をスライダー4の移動に利用して、効率的な制御が実行可能となっている。
 また、制御装置11は、待機位置Lwまでスライダー4を移動させる待機動作(ステップS201)の完了後に可動リニアモジュール2cを対向範囲Fcbに移動させる準備動作(ステップS102、S103)が完了すると、待機位置Lwに位置するスライダー4を、固定リニアモジュール2bに移動させることで、スライダー移載動作を実行する(ステップS104、S105)。このように、これによって、可動リニアモジュール2cから固定リニアモジュール2bへのスライダー4の移動を適切に実行することができる。特に、可動リニアモジュール2cの対向範囲Fcbへの移動と並行して実行されるスライダー4の待機位置Lwへの移動によってスライダーを予め待機位置Lwに待機させている。そのため、可動リニアモジュール2cの対向範囲Fcbへの移動完了後に待機位置Lwから固定リニアモジュール2bまでスライダー4を移動させるだけでスライダー移載動作を速やかに完了することが可能となっている。
 このように本実施形態では、リニアコンベアシステム1が本発明の「リニアコンベアシステム」の一例に相当し、制御装置11が本発明の「制御部」の一例に相当し、プログラム18が本発明の「リニアコンベアシステムの制御プログラム」の一例に相当し、記録媒体19が本発明の「記録媒体」の一例に相当し、固定リニアモジュール2a、2bが本発明の「固定リニアモジュール」の一例に相当し、可動リニアモジュール2c、2dが本発明の「可動リニアモジュール」の一例に相当し、アクチュエーター5c、5dと可動リニアモジュール2c、2dとで本発明の「モジュール駆動機構」の一例が構成され、対向範囲Fca、Fcb、Fda、Fdbが本発明の「対向範囲」の一例に相当し、移動開始位置Lsが本発明の「停止位置」の一例に相当し、待機位置Lwが本発明の「待機位置」の一例に相当し、基準位置Lpが本発明の「所定位置」の一例に相当し、可動域Rc、Rdが本発明の「可動域」の一例に相当し、X方向が本発明の「第1方向」の一例に相当し、Y方向が本発明の「第2方向」の一例に相当する。
 なお、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したものに対して種々の変更を加えることが可能である。例えば固定リニアモジュール2a、2bが配列される方向はY方向(水平方向)に限られず、Z方向(鉛直方向)でも構わない。この場合、アクチュエーター5c、5dはZ方向に可動リニアモジュール2c、2dを昇降させる。
 また、1個の固定リニアモジュール2aと、可動リニアモジュール2dを駆動する1個のアクチュエーター5dとで構成されるL字状の経路でスライダー4を移動させるように、リニアコンベアシステム1を構成しても良い。あるいは、図3の状態から、固定リニアモジュール2bを、X方向に平行に移動させて、アクチュエーター5cに対して固定リニアモジュール2aの反対側に配置してもよい。
 また、固定リニアモジュール2a、2bの個数は、2個に限られず、3個以上でもよい。
 また、固定リニアモジュール2a、2bがスライダー4を駆動する方向と、アクチュエーター5c、5dがスライダー4を駆動する方向とは、必ずしも直交する必要は無く、傾いていてもよい。
 1…リニアコンベアシステム
 11…制御装置(制御部)
 18…プログラム(リニアコンベアシステムの制御プログラム)
 19…記録媒体
 2a、2b…固定リニアモジュール
 2c、2d…可動リニアモジュール(モジュール駆動機構)
 5c…5dアクチュエーター(モジュール駆動機構)
 Fca、Fcb、Fda、Fdb…対向範囲
 Ls…移動開始位置(停止位置)
 Lw…待機位置
 Lp…基準位置(所定位置)
 Rc、Rd…可動域
 X…X方向(第1方向)
 Y…Y方向(第2方向)

Claims (11)

  1.  第1方向に延設されて前記第1方向にスライダーを駆動可能である固定リニアモジュールと、
     前記固定リニアモジュールに前記第1方向から対向する対向範囲および前記対向範囲以外の範囲を含んで前記第1方向に交差する第2方向に延設された可動域に沿って移動可能であって、前記第1方向に前記スライダーを駆動可能な可動リニアモジュールを有し、前記可動域において前記第2方向に前記可動リニアモジュールを駆動するモジュール駆動機構と、
     前記スライダーおよび前記可動リニアモジュールの駆動を制御する制御部と
    を備え、
     前記第1方向の端から前記固定リニアモジュールに対して、前記スライダーが係合および離脱可能であり、前記固定リニアモジュールは、係合する前記スライダーを前記第1方向に駆動し、
     前記第1方向の端から前記可動リニアモジュールに対して、前記スライダーが係合および離脱可能であり、前記可動リニアモジュールは、係合する前記スライダーを前記第1方向に駆動し、
     前記固定リニアモジュールと、前記対向範囲内に位置する前記可動リニアモジュールとの間で前記スライダーを移動させるスライダー移載動作が実行可能であり、
     前記制御部は、前記スライダー移載動作の実行前に、前記対向範囲内に前記可動リニアモジュールが位置するか否かを判断する判断処理を実行した結果、前記対向範囲内に前記可動リニアモジュールが位置しないと判断した場合には、前記可動リニアモジュールを前記対向範囲内に移動させる準備動作を実行してから、前記スライダー移載動作を実行するリニアコンベアシステム。
  2.  前記スライダー移載動作では、前記固定リニアモジュールから前記対向範囲内に位置する前記可動リニアモジュールへ前記スライダーを移動させる請求項1に記載のリニアコンベアシステム。
  3.  前記制御部は、前記準備動作の開始時において前記スライダーが停止する停止位置から前記停止位置よりも前記第1方向において前記対向範囲に近い前記固定リニアモジュール上の待機位置まで前記スライダーを移動させる待機動作を、前記準備動作に並行して実行する請求項2に記載のリニアコンベアシステム。
  4.  前記制御部は、前記待機動作の完了後に前記準備動作が完了すると、前記固定リニアモジュールの前記待機位置に位置する前記スライダーを、前記準備動作により前記対向範囲に移動してきた前記可動リニアモジュールに移動させることで、前記スライダー移載動作を実行する請求項3に記載のリニアコンベアシステム。
  5.  前記制御部は、前記準備動作において前記対向範囲へ移動中の前記スライダーが所定位置を通過すると、前記準備動作の開始時点において前記固定リニアモジュール上で前記スライダーが停止する停止位置から前記対向範囲へ向けて前記スライダーの移動を開始し、前記準備動作により前記対向範囲に移動してきた前記可動リニアモジュールに前記スライダーを移動させることで、前記スライダー移載動作を実行する請求項2に記載のリニアコンベアシステム。
  6.  前記スライダー移載動作では、前記対向範囲内に位置する前記可動リニアモジュールから前記固定リニアモジュールからへ前記スライダーを移動させる請求項1に記載のリニアコンベアシステム。
  7.  前記制御部は、前記準備動作の開始時において前記スライダーが停止する停止位置から前記停止位置よりも前記第1方向において前記固定モジュール側の前記可動リニアモジュール上の待機位置まで前記スライダーを移動させる待機動作を、前記準備動作に並行して実行する請求項6に記載のリニアコンベアシステム。
  8.  前記制御部は、前記待機動作の完了後に前記準備動作が完了すると、前記準備動作により前記対向範囲に移動してきた前記可動リニアモジュールの前記待機位置に位置する前記スライダーを前記固定リニアモジュールに移動させることで、前記スライダー移載動作を実行する請求項7に記載のリニアコンベアシステム。
  9.  第1方向に延設されて前記第1方向にスライダーを駆動可能である固定リニアモジュールと、前記固定リニアモジュールに前記第1方向から対向する対向範囲および前記対向範囲以外の範囲を含んで前記第1方向に交差する第2方向に延設された可動域に沿って移動可能であって、前記第1方向に前記スライダーを駆動可能な可動リニアモジュールを有し、前記可動域において前記第2方向に前記可動リニアモジュールを駆動するモジュール駆動機構とを備えたリニアコンベアシステムの制御方法であって、
     前記固定リニアモジュールと、前記対向範囲内に位置する前記可動リニアモジュールとの間で前記スライダーを移動させるスライダー移載動作を実行する前に、前記対向範囲内に前記可動リニアモジュールが位置するか否かを判断する判断処理を実行する工程と、
     前記判断処理で前記対向範囲内に前記可動リニアモジュールが位置しないと判断した場合には、前記可動リニアモジュールを前記対向範囲内に移動させる準備動作を実行する工程と、
     前記準備動作の後に前記スライダー移載動作を実行する工程と
    を備えたリニアコンベアシステムの制御方法。
  10.  第1方向に延設されて前記第1方向にスライダーを駆動可能である固定リニアモジュールと、前記固定リニアモジュールに前記第1方向から対向する対向範囲および前記対向範囲以外の範囲を含んで前記第1方向に交差する第2方向に延設された可動域に沿って移動可能であって、前記第1方向に前記スライダーを駆動可能な可動リニアモジュールを有し、前記可動域において前記第2方向に前記可動リニアモジュールを駆動するモジュール駆動機構とを備えたリニアコンベアシステムの制御方法であって、
     前記固定リニアモジュールと、前記対向範囲内に位置する前記可動リニアモジュールとの間で前記スライダーを移動させるスライダー移載動作を実行する前に、前記対向範囲内に前記可動リニアモジュールが位置するか否かを判断する判断処理を実行する工程と、
     前記判断処理で前記対向範囲内に前記可動リニアモジュールが位置しないと判断した場合には、前記可動リニアモジュールを前記対向範囲内に移動させる準備動作を実行する工程と、
     前記準備動作の後に前記スライダー移載動作を実行する工程と
    を、コンピューターに実行させるリニアコンベアシステムの制御プログラム。
  11.  請求項10に記載のリニアコンベアシステムの制御プログラムを、コンピューターにより読み出し可能に記録する記録媒体。
PCT/JP2019/016318 2019-04-16 2019-04-16 リニアコンベアシステム、リニアコンベアシステムの制御方法、リニアコンベアシステムの制御プログラムおよび記録媒体 WO2020213057A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2019/016318 WO2020213057A1 (ja) 2019-04-16 2019-04-16 リニアコンベアシステム、リニアコンベアシステムの制御方法、リニアコンベアシステムの制御プログラムおよび記録媒体
US17/601,495 US11724894B2 (en) 2019-04-16 2019-04-16 Linear conveyor system, a control method for a linear conveyor system, a control program for a linear conveyor system and a recording medium
DE112019007227.7T DE112019007227T5 (de) 2019-04-16 2019-04-16 Linearfördersystem, Steuerverfahren für ein Linearfördersystem, Steuerprogramm für ein Linearfördersystem und Aufzeichnungsmedium
JP2021514687A JP7439061B2 (ja) 2019-04-16 2019-04-16 リニアコンベアシステム、リニアコンベアシステムの制御方法、リニアコンベアシステムの制御プログラムおよび記録媒体
CN201980095429.4A CN113748074B (zh) 2019-04-16 2019-04-16 线性输送机***、线性输送机***的控制方法、线性输送机***的控制程序及记录介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/016318 WO2020213057A1 (ja) 2019-04-16 2019-04-16 リニアコンベアシステム、リニアコンベアシステムの制御方法、リニアコンベアシステムの制御プログラムおよび記録媒体

Publications (1)

Publication Number Publication Date
WO2020213057A1 true WO2020213057A1 (ja) 2020-10-22

Family

ID=72838145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016318 WO2020213057A1 (ja) 2019-04-16 2019-04-16 リニアコンベアシステム、リニアコンベアシステムの制御方法、リニアコンベアシステムの制御プログラムおよび記録媒体

Country Status (5)

Country Link
US (1) US11724894B2 (ja)
JP (1) JP7439061B2 (ja)
CN (1) CN113748074B (ja)
DE (1) DE112019007227T5 (ja)
WO (1) WO2020213057A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217295A1 (ja) * 2019-04-23 2020-10-29 ヤマハ発動機株式会社 リニアコンベアシステム、リニアコンベアシステムの制御方法、リニアコンベアシステムの制御プログラムおよび記録媒体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05193731A (ja) * 1992-01-21 1993-08-03 Tdk Corp 回路基板のストック装置
WO2017149377A1 (en) * 2016-02-29 2017-09-08 Vismunda S.R.L. Handling system with independent and coordinated shuttle, for industrial automation
JP2018008337A (ja) * 2016-07-13 2018-01-18 日特エンジニアリング株式会社 パレット搬送装置及びパレット搬送方法
WO2018055755A1 (ja) * 2016-09-26 2018-03-29 ヤマハ発動機株式会社 位置検出装置及びそれを備えたリニアコンベア装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02286510A (ja) * 1989-04-28 1990-11-26 Tsubakimoto Chain Co 台車連結式コンベヤ
DE68908180T2 (de) * 1989-10-09 1993-11-25 Frisco Findus Ag Förderer.
US6640962B2 (en) * 2001-09-27 2003-11-04 Jerral Richardson Interlocking transfer system
JP4378656B2 (ja) * 2007-03-07 2009-12-09 株式会社ダイフク 物品搬送設備
JP5250268B2 (ja) * 2008-01-11 2013-07-31 ヤマハ発動機株式会社 部品移載装置
JP5193731B2 (ja) 2008-08-06 2013-05-08 株式会社東芝 原子炉構造材の腐食抑制方法およびその腐食抑制装置
JP5033847B2 (ja) * 2009-07-31 2012-09-26 株式会社石野製作所 飲食物搬送装置
JP5846790B2 (ja) 2011-07-21 2016-01-20 株式会社岡村製作所 物品搬送装置
JP5977145B2 (ja) 2012-11-02 2016-08-24 平田機工株式会社 搬送装置
CN103144907B (zh) * 2013-03-29 2015-04-08 中国科学技术大学 一种紧致化仓储***的尺寸设置方法
JP6427783B2 (ja) * 2014-01-29 2018-11-28 伊東電機株式会社 移載装置及びモータを有する装置の位置決め方法
MX2019002782A (es) * 2016-09-09 2019-09-04 Procter & Gamble Sistema y método para llenar simultáneamente recipientes con diferentes composiciones de fluidos.
JP6626982B2 (ja) 2016-09-21 2019-12-25 ヤマハ発動機株式会社 リニアコンベア装置
US10432117B1 (en) * 2018-06-22 2019-10-01 Rockwell Automation Technologies, Inc. System and method for monitoring mover status in an independent cart system
JP7321847B2 (ja) * 2019-09-04 2023-08-07 キヤノン株式会社 リニアアクチュエータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05193731A (ja) * 1992-01-21 1993-08-03 Tdk Corp 回路基板のストック装置
WO2017149377A1 (en) * 2016-02-29 2017-09-08 Vismunda S.R.L. Handling system with independent and coordinated shuttle, for industrial automation
JP2018008337A (ja) * 2016-07-13 2018-01-18 日特エンジニアリング株式会社 パレット搬送装置及びパレット搬送方法
WO2018055755A1 (ja) * 2016-09-26 2018-03-29 ヤマハ発動機株式会社 位置検出装置及びそれを備えたリニアコンベア装置

Also Published As

Publication number Publication date
DE112019007227T5 (de) 2021-12-30
CN113748074B (zh) 2023-04-28
US11724894B2 (en) 2023-08-15
CN113748074A (zh) 2021-12-03
JPWO2020213057A1 (ja) 2020-10-22
US20220194719A1 (en) 2022-06-23
JP7439061B2 (ja) 2024-02-27

Similar Documents

Publication Publication Date Title
US8511235B2 (en) Linear transport device
US11557954B2 (en) Transport system, processing system, and article manufacturing method
US11745960B2 (en) Linear conveyor system, control method for linear conveyor system, control program for linear conveyor system and storage medium
CN113748595B (zh) 线性输送机***、线性模块以及线性模块的控制方法
WO2020213057A1 (ja) リニアコンベアシステム、リニアコンベアシステムの制御方法、リニアコンベアシステムの制御プログラムおよび記録媒体
JP7083963B2 (ja) リニアコンベアシステム、リニアコンベアシステムの制御方法、リニアコンベアシステムの制御プログラムおよび記録媒体
JP7083964B2 (ja) リニアコンベアシステム、リニアコンベアシステムの制御方法、リニアコンベアシステムの制御プログラムおよび記録媒体
JP6308860B2 (ja) 搬送システム
JP6616507B2 (ja) リニアモータ、ヘッドユニット、表面実装機および単軸ロボット
CN100570723C (zh) 盒***控制方法
JP2009171683A (ja) リニアモータ、該リニアモータを備えた部品実装装置、前記リニアモータを備えた部品検査装置およびリニアモータの駆動制御方法
JPWO2015128932A1 (ja) ステッピングモータ制御装置、それを備える部品実装機およびステッピングモータ制御方法
JP7313836B2 (ja) キャリア及び搬送システム
JP2019083597A (ja) 搬送装置、加工システム、および物品の製造方法
JP2009201307A (ja) 両面パルスモータ
JP2018093728A (ja) 搬送システム
JP6606465B2 (ja) 部品実装機、部品実装方法
WO2018047216A1 (ja) リニア駆動装置のサーボオフ時停止位置制御システム
JP2006071536A (ja) Xy位置決め装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925485

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514687

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19925485

Country of ref document: EP

Kind code of ref document: A1