WO2020211081A1 - 一种碱土金属六氟磷酸盐电解质及电解液制备方法 - Google Patents

一种碱土金属六氟磷酸盐电解质及电解液制备方法 Download PDF

Info

Publication number
WO2020211081A1
WO2020211081A1 PCT/CN2019/083464 CN2019083464W WO2020211081A1 WO 2020211081 A1 WO2020211081 A1 WO 2020211081A1 CN 2019083464 W CN2019083464 W CN 2019083464W WO 2020211081 A1 WO2020211081 A1 WO 2020211081A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
hexafluorophosphate
alkaline earth
earth metal
magnesium
Prior art date
Application number
PCT/CN2019/083464
Other languages
English (en)
French (fr)
Inventor
唐永炳
吴南中
姚文娇
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2019/083464 priority Critical patent/WO2020211081A1/zh
Publication of WO2020211081A1 publication Critical patent/WO2020211081A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/455Phosphates containing halogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of secondary batteries, in particular to electrolytes of calcium hexafluorophosphate and magnesium hexafluorophosphate, and preparation methods thereof, electrolytes and preparation methods thereof, and calcium ion batteries and magnesium ions containing the electrolytes or electrolytes battery
  • Energy storage technology is an important part of energy application. Compared with primary batteries, secondary batteries have advantages in resource recycling, economy, and environmental protection; high-performance lithium-ion batteries are widely used in mobile electronic equipment, electric vehicles and other fields.
  • the global reserve of lithium is only 14 million tons and the geographical distribution is uneven, which is difficult to support future energy storage demand. Therefore, it is of great significance to develop new energy storage systems, such as sodium ion, potassium ion, magnesium ion, calcium ion and other energy storage systems.
  • Calcium ions and magnesium ions are divalent ions, and each mole of ions can react to produce twice the charge of lithium ions.
  • the electrolyte is one of the main components of the battery, which greatly affects the performance of the battery.
  • the electrolyte of a secondary battery is composed of organic solvents, electrolytes (solutes), additives, etc., among which the electrolyte is the most critical component.
  • electrolytes classified according to the type of anion, commonly used electrolytes include hexafluorophosphate, tetrafluoroborate, perchlorate, etc.
  • hexafluorophosphate electrolyte has many excellent advantages, such as: better stability; good compatibility with conventional organic solvents; higher solubility in conventional organic solvents; electrolyte composed of it Has good conductivity and ion mobility; does not corrode the current collector; etc.
  • lithium hexafluorophosphate and its electrolyte have been widely used in lithium ion batteries.
  • its alkaline earth metal electrolytes especially hexafluorophosphate electrolytes such as calcium hexafluorophosphate, magnesium hexafluorophosphate and their electrolytes, are crucial to the development of calcium ion batteries and magnesium ion batteries.
  • Literature Chem. Commun. 2017, 53, 4573 intends to learn from the above method, using NOPF6 as a precursor, and reacting with metallic calcium to prepare calcium hexafluorophosphate electrolyte.
  • this method will cause the oxidative decomposition of hexafluorophosphate ions to generate impurity difluorophosphate ions (PO2F2-). This is because when NOPF6 is used as a precursor, the strong oxidizing gas NO produced by the reaction can oxidize hexafluorophosphate ions.
  • Another Ca(PF6)2 electrolyte and electrolyte preparation method is to use alkali metal hexafluorophosphate, such as potassium hexafluorophosphate (KPF6), as the precursor, and replace the alkali metal cations with ion exchange resins.
  • KPF6 potassium hexafluorophosphate
  • the disadvantages of this method are that the ion exchange resin has high cost and cannot be reused, and the method cannot guarantee the purity of the cations in the electrolyte, and the prepared electrolyte contains a large amount of impurity ions.
  • the most mainstream method of industrial production of alkali metal hexafluorophosphate electrolyte is to use anhydrous hydrofluoric acid (HF), phosphorus pentafluoride (PF5) gas and metal fluorides (lithium fluoride, sodium fluoride, potassium fluoride) as Reactant.
  • HF hydrofluoric acid
  • PF5 phosphorus pentafluoride
  • metal fluorides lithium fluoride, sodium fluoride, potassium fluoride
  • alkali metal hexafluorophosphate The outermost electron orbit of an alkali metal atom has only one electron, and the attraction of the outermost electron of the nucleus is very small, and it is easy to lose the outermost electron and become a positively charged cation; while the outermost electron orbit of an alkaline earth metal atom With two electrons, this pair of electrons reduces the energy of the electron orbit. Therefore, alkaline earth metal nuclei have greater attraction to the outermost orbital electrons, and the outermost electrons require more energy to get rid of the bondage of the nucleus. This intrinsic difference results in a large difference in physical and chemical properties such as atomic radius, first ionization energy, and chemical reaction activity between alkali metal substances and alkaline earth metal substances. For this reason, it is impossible to predict whether the preparation method of alkali metal hexafluorophosphate can be applied to alkaline earth metal hexafluorophosphate.
  • the first object of the present invention is to provide a method for preparing calcium hexafluorophosphate and magnesium hexafluorophosphate electrolyte, which has low cost, simple process, high product purity and high material utilization.
  • the second object of the present invention is to provide a calcium hexafluorophosphate electrolyte or magnesium hexafluorophosphate electrolyte prepared by the above electrolyte preparation method, which has high purity, good chemical stability, high ion mobility, and no corrosion. Current collector.
  • the third object of the present invention is to provide a method for preparing calcium hexafluorophosphate electrolyte and magnesium hexafluorophosphate electrolyte, which has the same advantages as the above-mentioned electrolyte preparation method.
  • the fourth object of the present invention is to provide a calcium hexafluorophosphate electrolyte and a magnesium hexafluorophosphate electrolyte, and the electrolyte prepared by using the electrolyte has the same advantages as the above-mentioned electrolyte.
  • the fifth object of the present invention is to provide a calcium ion battery or magnesium ion battery, comprising the above-mentioned calcium hexafluorophosphate electrolyte or electrolyte, or the above-mentioned magnesium hexafluorophosphate electrolyte or electrolyte.
  • the sixth object of the present invention is to provide an energy storage system, including the above-mentioned calcium ion battery or magnesium ion battery.
  • the seventh object of the present invention is to provide an electrical equipment including the above-mentioned calcium ion battery or magnesium ion battery.
  • the present invention provides a method for preparing an electrolyte of calcium hexafluorophosphate and magnesium hexafluorophosphate.
  • the reaction formula is as follows:
  • MH2 is MgH2 or CaH2
  • the solvent is a non-aqueous organic solvent.
  • the preparation method includes the following steps: placing an organic solvent, ammonium hexafluorophosphate, and alkaline earth metal hydride in the same container under the protection of an inert gas, and after the reaction is completed, an alkaline earth metal hexafluorophosphate electrolyte is obtained.
  • the alkaline earth metal hydride is calcium hydride or magnesium hydride
  • the amount (number of moles) of the alkaline earth metal hydride should not be less than half of the amount of ammonium hexafluorophosphate;
  • the present invention provides a calcium hexafluorophosphate electrolyte and magnesium hexafluorophosphate electrolyte prepared by the above-mentioned electrolyte preparation method.
  • the present invention provides a method for preparing calcium hexafluorophosphate electrolyte and magnesium hexafluorophosphate electrolyte, including the following steps: removing the organic solvent from the above-mentioned calcium hexafluorophosphate electrolyte or magnesium hexafluorophosphate electrolyte , Or reduce the solubility of calcium hexafluorophosphate or magnesium hexafluorophosphate in the solvent to obtain calcium hexafluorophosphate electrolyte or magnesium hexafluorophosphate electrolyte.
  • the present invention provides a calcium hexafluorophosphate electrolyte and a magnesium hexafluorophosphate electrolyte prepared by the above electrolyte preparation method.
  • the present invention provides a calcium ion battery and a magnesium ion battery, comprising the above-mentioned calcium hexafluorophosphate electrolyte or electrolyte, or the above-mentioned magnesium hexafluorophosphate electrolyte or electrolyte.
  • the present invention provides an energy storage system, including the above-mentioned calcium ion battery or magnesium ion battery.
  • the present invention provides an electrical equipment including the above-mentioned calcium ion battery or magnesium ion battery.
  • the method for preparing calcium hexafluorophosphate electrolyte and electrolyte, and magnesium hexafluorophosphate electrolyte and electrolyte uses industrial inexpensive precursors NH4PF6 and metal hydride as raw materials, and avoids the use of toxic and corrosive raw materials HF and PF5;
  • the method is simple and does not require complicated equipment; the preparation method has nothing to do with organic solvents, and the solvent can be freely selected; the prepared product has high purity; the by-products are all gases to ensure the complete reaction; the by-products NH3 and H2 are stable reducing gases ,
  • by-product NH3 is the raw material for industrial production of nitrogen fertilizer, and by-product H2 is a clean energy.
  • the calcium hexafluorophosphate electrolyte and electrolyte, the magnesium hexafluorophosphate electrolyte and the electrolyte provided by the invention have higher purity and better chemical stability; they have good compatibility with conventional electrode materials; conductivity and ion migration High rate; does not corrode the current collector.
  • the calcium hexafluorophosphate electrolyte and the magnesium hexafluorophosphate electrolyte provided by the present invention have high solubility in conventional organic solvents; the electrolyte obtained after the electrolyte is dissolved has high concentration, good conductivity and ion mobility; Corrosion current collector.
  • the calcium ion battery and magnesium ion battery provided by the present invention contain the above-mentioned electrolyte or electrolyte, and the calcium ion battery and magnesium ion battery have higher working voltage and capacity.
  • the energy storage system provided by the present invention includes the aforementioned calcium ion battery and magnesium ion battery, and therefore has at least the same advantages as the aforementioned calcium ion battery and magnesium ion battery, and has a higher discharge voltage and charge and discharge capacity.
  • the electrical equipment provided by the present invention includes the aforementioned calcium ion battery and magnesium ion battery, and therefore has at least the same advantages as the aforementioned calcium ion battery and magnesium ion battery, and has the advantages of high discharge voltage and high charge and discharge capacity. It can work longer, reduce the number of charging, extend the service life, and use more convenient.
  • Figure 1 shows the NMR spectrum (a) of 19F and the NMR spectrum (b) of 31P of the electrolyte solution obtained in Example 1;
  • Example 2 is a mass spectrum of the gas produced by the reaction in Example 1;
  • Figure 3 is an EDX diagram of the electrolyte obtained in Example 2.
  • Example 4 is a constant current charge-discharge curve diagram of a double-carbon calcium ion battery composed of Example 3.
  • FIG. 5 is a schematic structural diagram of a calcium ion battery or a magnesium ion battery provided by the present invention.
  • Icon 1- negative electrode current collector; 2- negative electrode active material layer; 3- separator; 4- electrolyte; 5- positive electrode active material layer; 6- positive electrode current collector.
  • the form of the lower limit and upper limit of the "range" disclosed in the present invention may be one or more lower limits and one or more upper limits, respectively.
  • each reaction or operation step may be carried out in sequence or out of sequence.
  • the reaction method herein is carried out sequentially.
  • a method for preparing a calcium hexafluorophosphate electrolyte or an electrolyte of magnesium hexafluorophosphate includes the following steps: putting an organic solvent, ammonium hexafluorophosphate, and alkaline earth metal hydride in an inert Placed in the same container under gas protection, and after the reaction is complete, an alkaline earth metal hexafluorophosphate electrolyte is obtained.
  • the method uses industrialized cheap precursors NH 4 PF 6 and metal hydrides; avoids the use of toxic and corrosive raw materials HF and PF 5 ; the preparation method is simple and does not require complicated equipment; the preparation method has nothing to do with the solvent, and the solvent can be freely selected;
  • the prepared product has high purity; the by-products are all gases to ensure the complete reaction; the by-products NH 3 and H 2 are stable reducing gases to avoid the oxidation and decomposition of hexafluorophosphate ion; the by-product NH 3 is the raw material for the industrial production of nitrogen fertilizer , H 2 is a clean energy.
  • the organic solvent is not particularly limited, and may be an organic solvent such as esters, sulfones, ethers, nitriles or ionic liquids. Specifically, including propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), acetonitrile (ACN), methyl formate (MF), methyl acetate (MA), N,N-dimethylacetamide (DMA), fluoroethylene carbonate (FEC), methyl propionate (MP), ethyl propionate (EP), acetic acid Ethyl ester (EA), ⁇ -butyrolactone (GBL), tetrahydrofuran (THF), 2-methyltetrahydrofuran (2MeTHF), 1,3-dioxolane (DOL), 4-methyl-1,3 -Dioxolane (4MeDOL), dimethoxymethane (DM
  • the alkaline earth metal hydride is calcium hydride or magnesium hydride
  • the amount (number of moles) of the alkaline earth metal hydride should not be less than half of the amount of ammonium hexafluorophosphate;
  • a calcium hexafluorophosphate electrolyte or magnesium hexafluorophosphate electrolyte is provided, which is obtained by the above-mentioned preparation method of calcium hexafluorophosphate electrolyte or magnesium hexafluorophosphate electrolyte.
  • the electrolyte has good chemical stability, high ion mobility, and does not corrode the current collector.
  • a method for preparing calcium hexafluorophosphate electrolyte or magnesium hexafluorophosphate electrolyte is provided in at least one embodiment.
  • the above-mentioned calcium hexafluorophosphate or magnesium hexafluorophosphate electrolyte is removed from the organic solvent, or the solubility of calcium hexafluorophosphate and magnesium hexafluorophosphate in the solvent is reduced to obtain calcium hexafluorophosphate electrolyte or magnesium hexafluorophosphate electrolyte.
  • the method of removing the organic solvent is not particularly limited. Specifically, methods such as heating evaporation, reduced pressure evaporation, and room temperature volatilization can be used.
  • the method of reducing the solubility of calcium hexafluorophosphate and magnesium hexafluorophosphate in the solvent is not particularly limited. Specifically, methods such as freezing, introducing weakly polar or non-polar solvents, etc. can be used.
  • a calcium hexafluorophosphate electrolyte or magnesium hexafluorophosphate electrolyte is provided, which is obtained by the above-mentioned preparation method of calcium hexafluorophosphate electrolyte or magnesium hexafluorophosphate electrolyte.
  • a calcium ion battery or a magnesium ion battery which includes a positive electrode, a separator, a negative electrode, and the above-mentioned calcium hexafluorophosphate electrolyte or electrolyte, or the above-mentioned magnesium hexafluorophosphate electrolyte or electrolyte.
  • the calcium ion battery or magnesium ion battery provided by the present invention has two working principles, one of which is: during the charging process, calcium ions or magnesium ions are extracted from the positive electrode and enter the electrolyte, and the calcium ions or magnesium ions in the electrolyte Migrate to the negative electrode and be embedded in the negative electrode active material; during the discharge process, calcium ions or magnesium ions are extracted from the negative electrode material and enter the electrolyte, and the calcium ions or magnesium ions in the electrolyte migrate to the positive electrode and be embedded in the positive electrode active material .
  • the second is: during the charging process, the anions in the electrolyte migrate to the positive electrode and be embedded in the positive electrode active material, and the calcium ions or magnesium ions in the electrolyte migrate to the negative electrode and be embedded in the negative electrode active material; during the discharge process, the anions are removed from the positive electrode And into the electrolyte, calcium ions or magnesium ions are extracted from the negative electrode and enter the electrolyte.
  • the positive electrode includes a positive electrode active material layer and a positive electrode current collector.
  • the positive electrode active material layer includes a positive electrode active material, a positive electrode conductive agent, and a positive electrode binder.
  • the content of the positive electrode active material is 60-95 wt%, and the content of the positive electrode conductive agent is 2-30wt%, and the content of the positive electrode binder is 2-10wt%.
  • the positive electrode active material includes at least one of carbon material, metal, alloy, sulfide, nitride, oxide, or carbide.
  • the positive electrode current collector or the negative electrode current collector is any one of aluminum, copper, iron, tin, zinc, nickel, titanium, manganese, lead, antimony, cadmium, gold, bismuth, or germanium, preferably aluminum;
  • the positive electrode current collector or the negative electrode current collector is an alloy including at least any one of aluminum, copper, iron, tin, zinc, nickel, titanium, manganese, lead, antimony, cadmium, gold, bismuth, or germanium;
  • the positive electrode current collector or the negative electrode current collector is a composite material including at least any one of aluminum, copper, iron, tin, zinc, nickel, titanium, manganese, lead, antimony, cadmium, gold, bismuth, or germanium.
  • Alloy refers to a substance with metallic characteristics synthesized by a certain method from two or more metals and metals or non-metals.
  • Metal composite material refers to a metal matrix composite conductive material formed by the combination of metal and other non-metal materials.
  • Typical but non-limiting metal composite materials include graphene-metal composite materials, carbon fiber-metal composite materials and ceramic-metal composite materials.
  • the negative electrode includes a negative electrode active material layer and a negative electrode current collector.
  • the negative electrode active material layer includes a negative electrode active material, a negative electrode conductive agent and a negative electrode binder.
  • the content of the negative electrode active material is 60-90 wt%, and the content of the negative electrode conductive agent is 5-30wt%, and the content of the negative electrode binder is 5-10wt%.
  • the negative active material includes at least one of a carbon material, a metal, an alloy, a sulfide, a nitride, an oxide, or a carbide.
  • the positive electrode conductive agent or the negative electrode conductive agent includes at least one of conductive carbon black, conductive carbon balls, conductive graphite, carbon nanotubes, conductive carbon fibers, graphene, or reduced graphene oxide.
  • the positive electrode binder or the negative electrode binder includes polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl alcohol, carboxymethyl cellulose, SBR rubber (Styrene Butadiene Rubber, styrene butadiene rubber) or polyolefins. At least one.
  • the electrolyte includes the above-mentioned calcium hexafluorophosphate electrolyte or electrolyte, or the magnesium hexafluorophosphate electrolyte or electrolyte.
  • the electrolyte further includes additives, and the content of the additives is preferably 0.1-20 wt%. Adding additives to the electrolyte can form a stable solid electrolyte membrane on the electrode surface and improve the battery life.
  • the additives include at least one of esters, sulfones, ethers, nitriles, or olefins.
  • Additives include fluoroethylene carbonate, vinylene carbonate, vinyl ethylene carbonate, 1,3-propane sultone, 1,4-butane sultone, vinyl sulfate, propylene sulfate, ethylene sulfate Ester, vinyl sulfite, propylene sulfite, dimethyl sulfite, diethyl sulfite, ethylene sulfite, methyl chloroformate, dimethyl sulfoxide, anisole, acetamide , Diazabenzene, meta-diazepine, crown ether 12-crown-4, crown ether 18-crown-6, 4-fluoroanisole, fluorinated chain ether, difluoromethyl ethylene carbonate, Trifluoromethyl ethylene carbonate, chloroethylene carbonate, bromoethylene carbonate, trifluoroethylphosphonic acid, bromobutyrolactone, fluoroacetoxyethane, phosphate,
  • the separator includes a porous polymer film or an inorganic porous film, and preferably includes at least one of a porous polypropylene film, a porous polyethylene film, a porous composite polymer film, a glass fiber paper, or a porous ceramic separator.
  • Fig. 5 is a schematic diagram of the structure of a calcium ion battery or a magnesium ion battery provided by the present invention, including a negative electrode current collector 1, a negative electrode active material layer 2, a separator 3, an electrolyte 4, a positive electrode active material layer 5 and Positive current collector 6.
  • the preparation method of the above-mentioned calcium ion battery or magnesium ion battery includes: assembling a positive electrode, a separator, a negative electrode, and an electrolyte.
  • the above-mentioned preparation method has simple process and low manufacturing cost.
  • the calcium ion battery or magnesium ion battery prepared by the method has the advantages of high discharge voltage and high charge and discharge capacity.
  • the method includes the following steps:
  • the negative electrode active material, the negative electrode conductive agent and the negative electrode binder are made into a negative electrode slurry, and then the negative electrode slurry is coated on the surface of the negative electrode current collector, dried and cut to obtain a negative electrode of the required size; or , Press the negative electrode active material on the surface of the negative electrode current collector, and cut to obtain the negative electrode of the required size;
  • the positive electrode active material, the positive electrode conductive agent and the positive electrode binder are made into a positive electrode slurry, and then the positive electrode slurry is coated on the surface of the positive electrode current collector, dried and cut to obtain a positive electrode of the required size;
  • step (e) Assemble the negative electrode obtained in step (a), the electrolyte obtained in step (b), the separator obtained in step (c), and the positive electrode obtained in step (d).
  • the assembly specifically includes: under an inert environment, the prepared negative electrode, separator, and positive electrode are tightly stacked or wound in sequence, and electrolyte is dripped to make the separator completely infiltrated, and then packaged into the casing to complete the calcium ion battery or magnesium Assembly of ion battery.
  • the shape of the calcium ion battery or the magnesium ion battery of the present invention is not limited to the button battery, and can also be designed into a flat shape, a cylindrical shape, etc. according to the core components.
  • an energy storage system including the calcium ion battery or the magnesium ion battery described above.
  • the energy storage system includes the aforementioned calcium ion battery or magnesium ion battery, and therefore has at least the same advantages as the aforementioned calcium ion battery or magnesium ion battery, and has a higher discharge voltage and charge-discharge capacity.
  • the aforementioned energy storage system refers to a power storage system that mainly uses calcium ion batteries or magnesium ion batteries as a power storage source, including but not limited to household energy storage systems or distributed energy storage systems.
  • a household energy storage system electricity is stored in a calcium ion battery or a magnesium ion battery used as a power storage source, and the electricity stored in the calcium ion battery or magnesium ion battery is consumed as needed to be able to use such as household electronics Various devices of the product.
  • an electrical equipment including the above-mentioned calcium ion battery or magnesium ion battery.
  • the electrical equipment includes the calcium ion battery or magnesium ion battery described above, and therefore has at least the same advantages as the calcium ion battery or magnesium ion battery described above, and has the advantages of high discharge voltage and high charge and discharge capacity. Under the same discharge current, it can Work longer, reduce charging times, extend service life, and use more convenient.
  • the aforementioned electrical equipment includes, but is not limited to, electronic devices, electric tools, or electric vehicles.
  • the electronic device is an electronic device that uses a calcium ion battery or a magnesium ion battery as an operating power source to perform various functions (for example, playing music).
  • An electric tool is an electric tool that uses calcium ion batteries or magnesium ion batteries as a driving power source for moving parts (for example, drill bits).
  • Electric vehicles are electric vehicles (including electric bicycles and electric cars) that rely on calcium-ion batteries or magnesium-ion batteries as driving power sources, and can be vehicles equipped with other driving sources in addition to calcium-ion batteries or magnesium-ion batteries (including Hybrid vehicles).
  • This embodiment provides a calcium hexafluorophosphate electrolyte and a preparation method thereof, including the following steps:
  • the reaction product for mass spectrometry (MS) characterization.
  • MS mass spectrometry
  • the gas product contains a large amount of H 2 and NH 3 , which proves that the reaction produces gas products H 2 and NH 3 .
  • the rest of the mass spectrum signal comes from the volatile molecules of the solvent dimethyl carbonate DMC and the argon in the glove box.
  • This embodiment provides a calcium hexafluorophosphate electrolyte and a preparation method thereof, including the following steps:
  • This embodiment provides a calcium ion battery, which is prepared according to the following steps:
  • the constant current charge and discharge curve of the battery is shown in Fig. 4.
  • the specific charge capacity of the calcium ion battery is 65.6 mAh/g, and the specific discharge capacity is 54.1 mAh/g.
  • This embodiment provides a calcium ion battery, which is different from embodiment 3 in that the electrolyte used is: the calcium hexafluorophosphate electrolyte obtained in embodiment 2 is dissolved in EC+DMC+EMC (the volume ratio is 4: 3:2) to prepare a calcium hexafluorophosphate electrolyte with a concentration of 0.6 mol/L.
  • the rest is the same as Embodiment 3, and will not be repeated here.
  • Example 5-65 provides methods for preparing calcium hexafluorophosphate electrolyte and electrolyte. The difference from Example 1-2 is that the amount of calcium hydride used, the type of organic solvent, the reaction time, and the method of removing the organic solvent are shown in Table 1.
  • Examples 66-126 provide the preparation method of the magnesium hexafluorophosphate electrolyte and the electrolyte.
  • the difference from Example 5-55 is that the amount of magnesium hydride used, the type of organic solvent, the reaction time, and the method of removing the organic solvent are shown in Table 2.
  • Examples 127-156 provide methods for preparing calcium ion batteries and magnesium ion batteries.
  • the difference from Example 3-4 is that the electrolytes used in Examples 127-131 are from the calcium hexafluorophosphate electrolytes obtained in Examples 5-9, and the electrolytes used in Examples 132-136 are respectively Examples 5-9.
  • the obtained calcium hexafluorophosphate electrolyte was prepared with 0.8mol/L calcium hexafluorophosphate electrolyte.
  • the electrolyte used in Examples 137-141 was 0.5mol/L prepared with the calcium hexafluorophosphate electrolyte obtained in Examples 5-9.
  • the electrolytes used in Examples 152-156 are 0.4mol/L magnesium hexafluorophosphate electrolyte prepared with the magnesium hexafluorophosphate electrolyte obtained in Examples 66-70. liquid.
  • Examples 157-170 provide methods for preparing calcium ion batteries and magnesium ion batteries.
  • the difference from Example 3-4 lies in the electrolyte and the positive electrode active material used, as shown in Table 3.
  • Example Electrolyte Cathode material 157 Example 5 CaCo 2 O 4 158 Example 5 CaMn 2 O 4 159 Example 5 Ca 3 Co 2 O 6 160 Example 5 CaMoO 3 161 Example 5 Prussian blue analog 162 Example 9 S 163 Example 5 V 2 O 5 164 Example 7 Prussian blue analog 165 Example 8 Prussian blue analog 166 Example 66 Mo 3 S 4 167 Example 66 S 168 Example 66 V 2 O 5 169 Example 66 MnO 2 170 Example 67 Mo 3 S 4
  • Examples 171-184 provide methods for preparing calcium ion batteries and magnesium ion batteries.
  • the difference from Example 3-4 is the electrolyte used.
  • the electrolyte used is obtained by blending the original solution and the blending solution, as shown in Table 4.
  • Comparative Example 1-4 The difference between Comparative Example 1-4 and Example 1-4 is that the amount of ammonium hexafluorophosphate used is 1.63 g (10 mmol), the dimethyl carbonate DMC used is 25 ml, and the rest is the same as that of Example 1-4. No longer.
  • Comparative Example 5-8 The difference between Comparative Example 5-8 and Example 1-4 is that the amount of ammonium hexafluorophosphate used is 1.63 g (10 mmol), the amount of magnesium hydride used is 0.05 g (2 mmol), and the amount of dimethyl carbonate used DMC is 25 ml, and the rest is the same as in Examples 1-4, and will not be repeated.
  • Elemental analysis of the electrolytes and electrolytes prepared in Comparative Examples 1-2 and 5-6 shows that the cations in the samples include not only calcium/magnesium ions but also a large amount of ammonium ions, indicating that the corresponding preparation methods are not perfect.
  • the resulting electrolyte and electrolyte have low purity.
  • Example 3 72 54
  • Example 4 110 75
  • Example 127 102 65
  • Example 128 108 68
  • Example 129 99 59
  • Example 130 107 72
  • Example 131 106 70
  • Example 132 130 86
  • Example 134 127 81
  • Example 135 160 90
  • Example 136 145 89 Example 137 123 78
  • Example 138 120 75
  • Example 140 125 74
  • Example 141 114 76
  • Example 142 118 72
  • Example 143 117 73
  • Example 144 124 79
  • Example 146 120
  • Example 147 124 82
  • Example 148 123 83
  • Example 149 130
  • Example 150 110 78
  • Example 151 114 79
  • Example 152 100
  • Example 153 105
  • Example 156 96 68
  • Example 157 74 54
  • Example 158 66
  • Example 159 90
  • Example 160 97 89
  • Example 161 102 85
  • Example 162 123
  • Example 163 56
  • Example 164 84 74
  • Example 165 85
  • Example 166 64 45
  • Example 167 100
  • Example 168 60
  • Example 169 60
  • Example 170 70
  • Example 171 45
  • Example 172 80
  • Example 173 89
  • Example 175 55
  • Example 178 46 34
  • Example 179 60
  • Example 180 67
  • Example 181 105 92
  • Example 182 84 43
  • Example 183 71 51
  • Example 184 76 52
  • Comparative example 3 35 twenty one Comparative example 4
  • Comparative example 7 20
  • Comparative example 8 25 15
  • the preferred embodiments of the present invention have higher initial discharge specific capacity and higher initial discharge capacity than Comparative Examples 3-4 and 7-8. Stable discharge specific capacity. Therefore, the preferred embodiments of the present invention can provide more effective methods for preparing calcium hexafluorophosphate electrolytes and electrolytes, magnesium hexafluorophosphate electrolytes and electrolytes, and calcium ion batteries and magnesium ion batteries with better performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

一种六氟磷酸钙电解质和电解液及其制备方法、六氟磷酸镁电解质和电解液及其制备方法,及包含该电解液或电解质的钙离子电池和镁离子电池,主要涉及二次电池领域。所述电解液或电解质可以用于钙离子电池或镁离子电池的活性材料。所述制备方法采用廉价易得的反应原料;所述制备方法简单、可操作性强;所制备的电解液和电解质纯度高、稳定性好,有效地解决了钙离子电池和镁离子电池所需电解质和电解液难以获得的问题;且所述制备方法的副产物可回收利用并具有高附加值。

Description

一种碱土金属六氟磷酸盐电解质及电解液制备方法 技术领域
本发明涉及二次电池领域,具体而言,涉及六氟磷酸钙、六氟磷酸镁的电解质及其制备方法、电解液及其制备方法,及包含该电解质或电解液的钙离子电池和镁离子电池
背景技术
储能技术是能源应用的重要环节。相对于一次电池,二次电池具有资源循环利用及经济、环保等优势;具有高性能的锂离子电池在移动电子设备、电动汽车等领域有着广泛的应用。然而锂的全球储备仅有1400万吨且地理分布不均,难以支撑未来的储能需求。因此,开发新型储能体系,如钠离子、钾离子、镁离子、钙离子等储能体系具有重大的意义。
钙离子和镁离子作为二价离子,每摩尔离子可反应产生两倍于锂离子的电荷量。此外,钙元素地壳丰度排名第五,镁元素地壳丰度排名第八,自然储量均远高于锂。为此,钙离子电池和镁离子电池有望成为新一代高性能、低成本储能技术。
在二次电池中,电解液作为电池的主要组成部分之一,极大地影响着电池的性能。一般地,二次电池的电解液由有机溶剂、电解质(溶质)、添加剂等构成,其中电解质是最为关键的组分。按照阴离子的种类来分类,常用的电解质包含六氟磷酸盐、四氟硼酸盐、高氯酸盐等。相较于其他电解质,六氟磷酸盐电解质具有众多出色的优点,例如:较好的稳定性;与常规有机溶剂良好的兼容性;在常规有机溶剂中较高的溶解度;由其组成的电解液具有良好的导电 性和离子迁移率;不腐蚀集流体;等。基于上述优势,六氟磷酸锂及其电解液已被广泛应用于锂离子电池。相应地,其碱土金属电解质,尤其是六氟磷酸盐电解质如:六氟磷酸钙、六氟磷酸镁及其电解液,对钙离子电池和镁离子电池的开发至关重要。
对于钙离子和镁离子储能体系,相应地电解质及电解液尚没有很好的制备方法。文献Chem.Mater.2015,27,8442报道了一种六氟磷酸钙(Ca(PF6)2)的合成方法:使用乙腈作为溶剂,六氟磷酸银(AgPF6)与氯化钙(CaCl2)作为反应物,并预测发生反应:
Figure PCTCN2019083464-appb-000001
对滤液进行真空干燥,最后得到固体产物。然而,该报道仅验证了固体产物含有六氟磷酸根离子,对生成物中的阳离子种类、纯度及是否含有结晶溶剂分子并未验证。由于反应生成氯化银(AgCl)为固相产物,会附着于反应物表面,阻碍反应持续进行,因此无法保证反应能够彻底进行。此外,贵金属前驱体AgPF6将带来极高的生产成本。
文献J.Am.Chem.Soc.2016,138,8682使用乙腈为溶剂,亚硝基六氟磷酸盐(NOPF6)与金属镁作为反应物,制备了含有六氟磷酸镁(Mg(PF6)2)的乙腈溶液,并通过后处理得到了含有结晶溶剂分子的固体产物Mg(PF6)2(CH3CN)6。然而,该文献仅在乙腈中制备得到六氟磷酸镁电解液,未能提供其他有机溶剂体系的电解液如:酯类、醚类、砜类等的六氟磷酸镁电解液,而乙腈的电化学窗口相对狭窄,因此限制了该电解液的应用。此外,若使用Mg(PF6)2(CH3CN)6固体作为电解质、其它常规有机溶剂作为溶剂,溶解1mol镁源将带来6mol乙腈分子,引起显著的溶剂污染。
文献Chem.Commun.2017,53,4573欲借鉴上述方法,使用NOPF6作为 前驱体,与金属钙反应制备六氟磷酸钙电解液。然而,实验证明该方法会造成六氟磷酸根离子的氧化分解,生成杂质二氟代磷酸根离子(PO2F2-)。这是由于使用NOPF6作为前驱体时,反应生成的强氧化性气体NO能够氧化六氟磷酸根离子。
另一种Ca(PF6)2电解液及电解质的制备方法是:采用碱金属六氟磷酸盐,例如六氟磷酸钾(KPF6),的溶液做前驱体,用离子交换树脂对碱金属阳离子进行置换。此方法的缺点在于:离子交换树脂成本高、不可重复利用,而且该方法无法保证电解液中阳离子的纯度,制备所得的电解液含有大量杂质离子。
工业生产碱金属六氟磷酸盐电解质最主流的方法是采用无水氢氟酸(HF)、五氟化磷(PF5)气体及金属氟化物(氟化锂、氟化钠、氟化钾)作为反应物。目前,未见沿用碱金属六氟磷酸盐的工业生产方法制备碱土金属六氟磷酸盐。其原因在于:碱金属元素和碱土金属元素存在着本征差别。碱金属原子的最外层电子轨道只有一个电子,原子核最外层电子的吸引力很小,很容易失去最外层电子,成为带一个正电荷的阳离子;而碱土金属原子的最外层电子轨道具有两个电子,这种成对的电子降低了电子轨道的能量。因此,碱土金属原子核对最外层轨道电子的吸引力较大,最外层电子需要更多的能量才能摆脱原子核的束缚。这种本征差别造成了碱金属物质与碱土金属物质在原子半径、第一电离能和化学反应活性等物理与化学性质上的较大差异。为此,碱金属六氟磷酸盐的制备方法是否能沿用至碱土金属六氟磷酸盐无法预测。
钙离子和镁离子体系的六氟磷酸盐电解质或电解液的制备未见有其他报道。
鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种六氟磷酸钙和六氟磷酸镁电解液的制备方法,该方法成本低廉,工艺简单,产物纯度高,物质的利用率高。
本发明的第二目的在于提供一种上述电解液制备方法制备得到的六氟磷酸钙电解液或六氟磷酸镁电解液,该电解液纯度高、化学稳定性好、离子迁移率高、不腐蚀集流体。
本发明的第三目的在于提供六氟磷酸钙电解质和六氟磷酸镁电解质的制备方法,该方法具有与上述电解液制备方法相同的优势。
本发明的第四目的在于提供六氟磷酸钙电解质和六氟磷酸镁电解质,利用该电解质制备得到的电解液具有与上述电解液相同的优势。
本发明的第五目的在于提供一种钙离子电池或镁离子电池,包括上述的六氟磷酸钙电解液或电解质,或上述的六氟磷酸镁电解液或电解质。
本发明的第六目的在于提供一种储能***,包括上述钙离子电池或镁离子电池。
本发明的第七目的在于提供一种用电设备,包括上述钙离子电池或镁离子电池。
为了实现本发明的上述目的,特采用以下技术方案:
第一方面,本发明提供了一种六氟磷酸钙、六氟磷酸镁电解液的制备方法,反应式如下:
Figure PCTCN2019083464-appb-000002
其中,MH2为MgH2或CaH2,溶剂为非水系有机溶剂。制备方法包括以下步骤:将有机溶剂、六氟磷酸铵、碱土金属氢化物在惰性气体保护下置于同一容器中,待反应完全,得到碱土金属六氟磷酸盐电解液。
作为进一步优选地技术方案,所述碱土金属氢化物为氢化钙或氢化镁;
优选地,碱土金属氢化物的物质的量(摩尔数)应不低于六氟磷酸铵的物质的量的二分之一;
第二方面,本发明提供了一种上述电解液制备方法制备得到的六氟磷酸钙电解液和六氟磷酸镁电解液。
第三方面,本发明提供了一种六氟磷酸钙电解质和六氟磷酸镁电解质的制备方法,包括以下步骤:将上所述六氟磷酸钙电解液或六氟磷酸镁电解液,除去有机溶剂,或降低六氟磷酸钙或六氟磷酸镁在溶剂中溶解度,得到六氟磷酸钙电解质或六氟磷酸镁电解质。
第四方面,本发明提供了一种上述电解质制备方法制备得到的六氟磷酸钙电解质和六氟磷酸镁电解质。
第五方面,本发明提供一种钙离子电池和镁离子电池,包括上述的六氟磷酸钙电解液或电解质,或上述的六氟磷酸镁电解液或电解质。
第六方面,本发明提供一种储能***,包括上述钙离子电池或镁离子电池。
第七方面,本发明提供一种用电设备,包括上述钙离子电池或镁离子电池。
与现有技术相比,本发明的有益效果为:
本发明提供的六氟磷酸钙电解液和电解质、六氟磷酸镁电解液和电解质的制备方法,使用工业化廉价前驱体NH4PF6和金属氢化物为原料,避免使用有毒强腐蚀性原料HF、PF5;制备方法简单,不需要复杂的仪器设备;制备方法与有机溶剂无关,溶剂可自由选择;制备的产物纯度高;副产物均为气体,保障反应彻底进行;副产物NH3和H2是稳定的还原性气体,避免六氟磷酸根离子被氧化分解;副产物NH3为工业生产氮肥的原料,副产物H2为一种清洁能源。
本发明提供的六氟磷酸钙电解液和电解质、六氟磷酸镁电解液和电解质有着较高的纯度、较好的化学稳定性;与常规电极材料有着良好的相容性;导电性和离子迁移率高;不腐蚀集流体。
本发明提供的六氟磷酸钙电解质、六氟磷酸镁电解质在常规有机溶剂中有着较高的溶解度;电解质溶解后所获得的电解液有着较高的浓度、良好的导电性和离子迁移率;不腐蚀集流体。
本发明提供的钙离子电池、镁离子电池包含上述电解液或电解质,该钙离子电池、镁离子电池拥有较高的工作电压和容量。
本发明提供的储能***包括上述钙离子电池、镁离子电池,因而至少具有与上述钙离子电池、镁离子电池相同的优势,具有较高的放电电压和充放电容量。
本发明提供的用电设备包括上述钙离子电池、镁离子电池,因而至少具有与上述钙离子电池、镁离子电池相同的优势,具有放电电压高和充放电容量高的优点,在相同的放电电流下,能够工作更长时间,减少充电次数,延长使用寿命,且使用更加便捷。
附图说明
图1为实施例1所得电解液19F的NMR谱(a)及31P的NMR谱(b);
图2为实施例1反应所产气体的质谱图;
图3为实施例2所得电解质的EDX图;
图4为实施例3所组成双碳钙离子电池的恒流充放电曲线图。
图5为本发明提供的一种钙离子电池或镁离子电池的结构示意图;
图标:1-负极集流体;2-负极活性材料层;3-隔膜;4-电解液;5-正极活 性材料层;6-正极集流体。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。
需要说明的是:
本发明中,如果没有特别的说明,本文所提到的所有实施方式以及优选实施方法可以相互组合形成新的技术方案。
本发明中,如果没有特别的说明,本文所提到的所有技术特征以及优选特征可以相互组合形成新的技术方案。
本发明中,如果没有特别的说明,所涉及的各组分或其优选组分可以相互组合形成新的技术方案。
本发明所公开的“范围”以下限和上限的形式,可以分别为一个或多个下限,和一个或多个上限。
本发明中,除非另有说明,各个反应或操作步骤可以顺序进行,也可以不按照顺序进行。优选地,本文中的反应方法是顺序进行的。
除非另有说明,本文中所用的专业与科学术语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法或材料也可应用于本发明中。
第一方面,在至少一个实施例中提供了一种六氟磷酸钙电解液或六氟磷酸镁电解液的制备方法,包括以下步骤:将有机溶剂、六氟磷酸铵、碱土金属氢化物在惰性气体保护下置于同一容器中,待反应完全,得到碱土金属六氟磷酸盐电解液。
该方法使用工业化廉价前驱体NH 4PF 6和金属氢化物;避免使用有毒强腐蚀性原料HF、PF 5;制备方法简单,不需要复杂的仪器设备;制 备方法与溶剂无关,溶剂可自由选择;制备的产物纯度高;副产物均为气体,保障反应彻底进行;副产物NH 3和H 2是稳定的还原性气体,避免六氟磷酸根离子氧化分解;副产物NH 3为工业生产氮肥的原料,H 2为一种清洁能源。
所述有机溶剂没有特别限制,可为:酯类、砜类、醚类、腈类或离子液体等有机溶剂。具体地,包括碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、乙腈(ACN)、甲酸甲酯(MF)、乙酸甲酯(MA)、N,N-二甲基乙酰胺(DMA)、氟代碳酸乙烯酯(FEC)、丙酸甲酯(MP)、丙酸乙酯(EP)、乙酸乙酯(EA)、γ-丁内酯(GBL)、四氢呋喃(THF)、2-甲基四氢呋喃(2MeTHF)、1,3-二氧环戊烷(DOL)、4-甲基-1,3-二氧环戊烷(4MeDOL)、二甲氧甲烷(DMM)、1,2-二甲氧丙烷(DMP)、三乙二醇二甲醚(DG)、二甲基砜(MSM)、二甲醚(DME)、亚硫酸乙烯酯(ES)、亚硫酸丙烯脂(PS)、亚硫酸二甲脂(DMS)、亚硫酸二乙脂(DES)、冠醚(12-冠-4)、1-乙基-3-甲基咪唑-六氟磷酸盐、1-乙基-3-甲基咪唑-四氟硼酸盐、1-乙基-3-甲基咪唑-双三氟甲基磺酰亚胺盐、1-丙基-3-甲基咪唑-六氟磷酸盐、1-丙基-3-甲基咪唑-四氟硼酸盐、1-丙基-3-甲基咪唑-双三氟甲基磺酰亚胺盐、1-丁基-1-甲基咪唑-六氟磷酸盐、1-丁基-1-甲基咪唑-四氟硼酸盐、1-丁基-1-甲基咪唑-双三氟甲基磺酰亚胺盐、N-丁基-N-甲基吡咯烷-双三氟甲基磺酰亚胺盐、1-丁基-1-甲基吡咯烷-双三氟甲基磺酰亚胺盐、N-甲基-N-丙基吡咯烷-双三氟甲基磺酰亚胺盐、N-甲,丙基哌啶-双三氟甲基磺酰亚胺盐、N-甲,丁基哌啶-双三氟甲基磺酰亚胺盐中的一种或几种。
优选地,所述碱土金属氢化物为氢化钙或氢化镁;
优选地,碱土金属氢化物的物质的量(摩尔数)应不低于六氟磷酸铵的物质的量的二分之一;
第二方面,在至少一个实施例中提供了一种六氟磷酸钙电解液或六氟磷酸镁电解液,由上述六氟磷酸钙电解液或六氟磷酸镁电解液制备方法得到。该电解液化学稳定性好、离子迁移率高、不腐蚀集流体。
第三方面,在至少一个实施例中提供了一种六氟磷酸钙电解质或六氟磷酸镁电解质的制备方法。将上所述六氟磷酸钙或六氟磷酸镁电解液,除去有机溶剂,或降低六氟磷酸钙、六氟磷酸镁在溶剂中溶解度,得到六氟磷酸钙电解质或六氟磷酸镁电解质。
除去有机溶剂的方法没有特别限制。具体的,可通过加热蒸发、减压蒸发、常温挥发等方法。
降低六氟磷酸钙、六氟磷酸镁在溶剂中溶解度的方法没有特别限制。具体的,可通过冷冻、通入弱极性或非极性溶剂等方法。
第四方面,在至少一个实施例中提供了一种六氟磷酸钙电解质或六氟磷酸镁电解质,由上述六氟磷酸钙电解质或六氟磷酸镁电解质制备方法得到。
第五方面,在至少一个实施例中提供了一种钙离子电池或镁离子电池,包括正极、隔膜、负极及上述六氟磷酸钙电解液或电解质,或上述六氟磷酸镁电解液或电解质。
本发明提供的钙离子电池或镁离子电池有两种工作原理,其一为:在充电过程中,钙离子或镁离子从正极脱出并进入到电解液中,电解液中的钙离子或镁离子迁移至负极并嵌入负极活性材料中;在放电过程中,钙离子或镁离子从负极材料中脱出并进入到电解液中,电解液中的钙离子或镁离子迁移至正极并嵌入正极活性材料中。其二为:在充电过程中,电解液中阴离子迁移至正极并嵌入正极活性材料中,电解液中钙离子或镁离子迁移至负极并嵌入负极活性材料中;在放电过程中,阴离子从正极脱出并进入到电解液中,钙离子或镁离子从负极脱出并进入到电解液中。
正极
所述正极包括正极活性材料层和正极集流体,正极活性材料层包括正极活性材料、正极导电剂和正极粘结剂,所述正极活性材料的含量为60-95wt%,正极导电剂的含量为2-30wt%,正极粘结剂的含量为2-10wt%。
优选地,所述正极活性材料包括碳材料、金属、合金、硫化物、氮化物、氧化物或碳化物中的至少一种。
优选地,正极集流体或负极集流体为铝、铜、铁、锡、锌、镍、钛、锰、铅、锑、镉、金、铋或锗中的任意一种,优选为铝;
或,正极集流体或负极集流体为至少包括铝、铜、铁、锡、锌、镍、钛、锰、铅、锑、镉、金、铋或锗中的任意一种的合金;
或,正极集流体或负极集流体为至少包括铝、铜、铁、锡、锌、镍、钛、锰、铅、锑、镉、金、铋或锗中的任意一种的复合材料。
“合金”是指由两种或两种以上的金属与金属或非金属经一定方法所合成的具有金属特性的物质。
“金属复合材料”是指金属与其他非金属材料结合所形成的金属基复合导电材料。典型但非限制性的金属复合材料包括石墨烯-金属复合材料、碳纤维-金属复合材料和陶瓷-金属复合材料等。
负极
所述负极包括负极活性材料层和负极集流体,负极活性材料层包括负极活性材料、负极导电剂和负极粘结剂,所述负极活性材料的含量为60-90wt%,负极导电剂的含量为5-30wt%,负极粘结剂的含量为5-10wt%。
优选地,所述负极活性材料包括碳材料、金属、合金、硫化物、氮化物、氧化物或碳化物中的至少一种。
进一步地,正极导电剂或负极导电剂包括导电炭黑、导电碳球、导电石墨、碳纳米管、导电碳纤维、石墨烯或还原氧化石墨烯中的至少一种。
进一步地,正极粘结剂或负极粘结剂包括聚偏氟乙烯、聚四氟乙烯、聚乙烯醇、羧甲基纤维素、SBR橡胶(Styrene Butadiene Rubber,丁苯橡胶)或聚烯烃类中的至少一种。
电解液
电解液包括上述的六氟磷酸钙电解液或电解质,或六氟磷酸镁电解液或电解质。
进一步地,电解液还包括添加剂,添加剂的含量优选为0.1-20wt%。在电解液中增加添加剂,该添加剂能够在电极表面形成稳定的固体电解质膜,提高电池的使用寿命。
添加剂包括酯类、砜类、醚类、腈类或烯烃类中的至少一种。
添加剂包括氟代碳酸乙烯酯、碳酸亚乙烯酯、碳酸乙烯亚乙酯、1,3-丙磺酸内酯、1,4-丁磺酸内酯、硫酸乙烯酯、硫酸丙烯酯、硫酸亚乙酯、亚硫酸乙烯酯、亚硫酸丙烯酯、二甲基亚硫酸酯、二乙基亚硫酸酯、亚硫酸亚乙酯、氯代甲酸甲脂、二甲基亚砜、苯甲醚、乙酰胺、二氮杂苯、间二氮杂苯、冠醚12-冠-4、冠醚18-冠-6、4-氟苯甲醚、氟代链状醚、二氟代甲基碳酸乙烯酯、三氟代甲基碳酸乙烯酯、氯代碳酸乙烯酯、溴代碳酸乙烯酯、三氟乙基膦酸、溴代丁内酯、氟代乙酸基乙烷、磷酸酯、亚磷酸酯、磷腈、乙醇胺、碳化二甲胺、环丁基砜、1,3-二氧环戊烷、乙腈、长链烯烃、三氧化二铝、氧化镁、氧化钡、碳酸钠、碳酸钙、二氧化碳、二氧化硫或碳酸锂中的至少一种。
隔膜
隔膜包括多孔聚合物薄膜或无机多孔薄膜,优选包括多孔聚丙烯薄膜、多孔聚乙烯薄膜、多孔复合聚合物薄膜、玻璃纤维纸或多孔陶瓷隔膜中的至少一种。
如图5所示为本发明提供的一种结构的钙离子电池或镁离子电池的结构示意图,包括负极集流体1、负极活性材料层2、隔膜3、电解液4、正极活性材料层5和正极集流体6。
示例性的,上述钙离子电池或镁离子电池的制备方法,包括:将正极、隔膜、负极及电解液进行组装。上述制备方法工艺简单,制造成本低,采用该方法制备得到的钙离子电池或镁离子电池具有放电电压高和充放电容量高的优点。
进一步优选地,所述方法包括以下步骤:
(a)制备负极:将负极活性材料、负极导电剂和负极粘结剂制成负极浆料,然后将负极浆料涂覆于负极集流体表面,干燥后裁切得到所需尺寸的负极;或,将负极活性材料压在负极集流体表面,裁切后得到所需尺寸的负极;
(b)配制电解液:通过上述六氟磷酸钙电解液、六氟磷酸镁电解液制备方法制备的电解液,或上述六氟磷酸钙电解质、六氟磷酸镁电解质制备方法制备的电解质溶于有机溶剂制备的电解液。
(c)制备隔膜:将所需尺寸的多孔聚合物薄膜或无机多孔薄膜作为隔膜备用;
(d)制备正极:将正极活性材料、正极导电剂和正极粘结剂制成正极浆料,然后将正极浆料涂覆于正极集流体表面,干燥后裁切得到所需尺寸的正极;
(e)将步骤(a)得到的负极、步骤(b)得到的电解液、步骤(c)得到的隔膜以及步骤(d)得到的正极进行组装。
优选地,组装时具体包括:在惰性环境下,将制备好的负极、隔膜、正极依次紧密堆叠或卷绕,滴加电解液使隔膜完全浸润,然后封装入壳体,完成钙离子电池或镁离子电池的组装。
本发明的钙离子电池或镁离子电池形态不局限于扣式电池,也可根据核心成分设计成平板型、圆柱型等形态。
第六方面,在至少一个实施例中提供了一种储能***,包括上述钙离子电池或镁离子电池。该储能***包括上述钙离子电池或镁离子电池,因而至少具有与上述钙离子电池或镁离子电池相同的优势,具有较高的放电电压和充放电容量。
上述储能***是指主要使用钙离子电池或镁离子电池作为电力储存源的电力储存***,包括但不限于家用储能***或分布式储能***等。例如,在家用储能***中,使电力储存在用作电力储存源的钙离子电池或镁离子电池中,并且根据需要消耗储存在钙离子电池或镁离子电池中的电力以能够使用诸如家用电子产品的各种装置。
第七方面,在至少一个实施例中提供了一种用电设备,包括上述钙离子电池或镁离子电池。该用电设备包括上述钙离子电池或镁离子电池,因而至少具有与上述钙离子电池或镁离子电池相同的优势,具有放电电压高和充放电容量高的优点,在相同的放电电流下,能够工作更长时间,减少充电次数,延长使用寿命,且使用更加便捷。
上述用电设备包括但不限于电子装置、电动工具或电动车辆等。电子装置是使用钙离子电池或镁离子电池作为操作电源执行各种功能(例如,演奏音乐)的电子装置。电动工具是使用钙离子电池或镁离子电池作为驱动电源移动部件(例如,钻头)的电动工具。电动车辆是依靠钙离子电池或镁离子电池作为驱动电源运行的电动车辆(包括电动自行车、电动汽车),并且可以是除了钙离子电池或镁离子电池之外还装备有其他驱动源的汽车(包括混合动力车)。
下面结合实施例和对比例对本发明做进一步详细的说明。
实施例1
本实施例提供了一种六氟磷酸钙电解液及其制备方法,包括以下步骤:
在氩气手套箱中,将0.652克(4毫摩尔)NH 4PF 6与0.2克(4.7毫摩尔)CaH 2置于10毫升碳酸二甲酯DMC中;搅拌48小时后,过滤得到澄清溶液;对澄清溶液进行除气处理,即可得到Ca(PF 6) 2电解液。
取所制电解液,进行 19F和 31P的核磁共振(NMR)表征。如附图1所示, 19F显示二重峰、 31P显示七重峰,这些是PF 6 -离子的特征谱线,说明溶液中含有PF 6 -离子。未见 19F、 31P的其他峰形,说明PF 6 -不分解;未见 14N/ 15N的特征峰,说明六氟磷酸铵已经反应完全。
取反应产物进行质谱(MS)表征。如附图2所示,气体产物含大量H 2与NH 3,证明反应生成气体产物H 2与NH 3。其余质谱信号来源于溶剂碳酸二甲酯DMC的挥发分子及手套箱中的氩气。
取所制电解液,滴于惰性衬底上,经干燥后进行元素分析,结果表明衬底表面含有大量的Ca元素,说明电解液中含有大量Ca 2+。另外可见P、F元素。
实施例2
本实施例提供了一种六氟磷酸钙电解质及其制备方法,包括以下步骤:
取实施例1所制电解液,经真空干燥24小时后,得到不含有机液体的六氟磷酸钙电解质。
取所制六氟磷酸钙电解质,进行能量色散X射线光谱(EDX)表征。如图3所示,证明电解质中含有Ca、P、F元素。
实施例3
本实施例提供了一种钙离子电池,其按照如下步骤制备而成:
(1)制备电池负极:将中间相碳微球MCMB、导电炭黑、聚偏氟乙烯PVDF按质量比8∶1∶1用N-甲基吡咯烷酮NMP调为均匀浆料。将浆料均匀涂覆于铝箔(负极集流体)表面,真空干燥。将干燥所得的电池极片裁切成直径12mm的圆片,压实后作为电池负极备用。
(2)制备电池正极:将膨胀石墨、导电炭黑、聚偏氟乙烯PVDF按质量比8∶1∶1用N-甲基吡咯烷酮NMP调为均匀浆料。将浆料均匀涂覆于铝箔(正极集流体)表面,真空干燥。将干燥所得的电池极片裁切成直径10mm的圆片,压实后作为电池正极备用。
(3)制备隔膜:将玻璃纤维薄膜裁切成直径16mm的圆片后作为隔膜备用。
(4)电池组装:在惰性气体保护的手套箱中,将上述制备好的负极极片、隔膜、正极极片依次紧密堆叠,滴加实施例1所得电解液使隔膜完全浸润,然后将上述堆叠部分封装入扣式电池壳体,完成双碳钙离子电池组装。
电池恒流充放电曲线如图4所示,该钙离子电池充电比容量为65.6mAh/g,放电比容量为54.1mAh/g。
实施例4
本实施例提供了一种钙离子电池,其与实施例3的不同之处在于,所用电解液为:将实施例2所得六氟磷酸钙电解质溶于EC+DMC+EMC(体积比为4∶3∶2),制成浓度为0.6mol/L的六氟磷酸钙电解液。其余与实施例3相同,在此不再赘述。
实施例5-65
实施例5-65提供了制备六氟磷酸钙电解液及电解质的方法。与实施例1-2的不同之处在于,所用氢化钙的量、有机溶剂种类、反应时长、除去有机溶剂的方法,具体如表1所示。
表1 实施例5-65的六氟磷酸钙电解液及电解质的制备方法
Figure PCTCN2019083464-appb-000003
Figure PCTCN2019083464-appb-000004
Figure PCTCN2019083464-appb-000005
Figure PCTCN2019083464-appb-000006
Figure PCTCN2019083464-appb-000007
实施例66-126
实施例66-126提供了六氟磷酸镁电解液及电解质的制备方法。与实施例5-55的不同之处在于,所用氢化镁的量、有机溶剂种类、反应时长、除去有机溶剂的方法,具体如表2所示。
表2 实施例66-126的六氟磷酸镁电解液及电解质的制备方法
Figure PCTCN2019083464-appb-000008
Figure PCTCN2019083464-appb-000009
Figure PCTCN2019083464-appb-000010
Figure PCTCN2019083464-appb-000011
Figure PCTCN2019083464-appb-000012
实施例127-156
实施例127-156提供了钙离子电池和镁离子电池的制备方法。与实施例3-4的不同之处在于,实施例127-131所用电解液分别来自实施例5-9所得六氟磷酸钙电解液,实施例132-136所用电解液分别为实施例5-9所得六氟磷酸钙电解质配制成的0.8mol/L的六氟磷酸钙电解液,实施例137-141所用电解液分别为实施例5-9所得六氟磷酸钙电解质配制成的0.5mol/L的六氟磷酸钙电解液;实施例142-146所用电解液分别来自实施例66-70所得六氟磷酸镁电解液,实施例147-151所用电解液分别为实施例66-70所得六氟磷酸镁电解质配制成的0.7mol/L的六氟磷酸镁电解液,实施例152-156所用电解液分别为实施例66-70所得六氟磷酸镁电解质配制成的0.4mol/L的六氟磷酸镁电解液。
实施例157-170
实施例157-170提供了钙离子电池和镁离子电池的制备方法,与实施例3-4的不同之处在于所用电解液及正极活性材料,具体如表3所示。
表3 实施例157-170的钙离子电池和镁离子电池的制备方法
实施例 电解液 正极材料
157 实施例5 CaCo 2O 4
158 实施例5 CaMn 2O 4
159 实施例5 Ca 3Co 2O 6
160 实施例5 CaMoO 3
161 实施例5 普鲁士蓝类似物
162 实施例9 S
163 实施例5 V 2O 5
164 实施例7 普鲁士蓝类似物
165 实施例8 普鲁士蓝类似物
166 实施例66 Mo 3S 4
167 实施例66 S
168 实施例66 V 2O 5
169 实施例66 MnO 2
170 实施例67 Mo 3S 4
实施例171-184
实施例171-184提供了钙离子电池和镁离子电池的制备方法,与实施例3-4的不同之处在于所用电解液。所用电解液由原液与勾兑液勾兑获得,具体如表 4所示。
表4 实施例171-184的钙离子电池和镁离子电池的制备方法
Figure PCTCN2019083464-appb-000013
对比例1-4
对比例1-4与实施例1-4的区别在于,所用六氟磷酸铵的量为1.63克(10毫摩尔),所用碳酸二甲酯DMC为25毫升,其余与实施例1-4相同,不再赘述。
对比例5-8
对比例5-8与实施例1-4的区别在于,所用六氟磷酸铵的量为1.63克(10毫摩尔),所用氢化镁的量为0.05克(2毫摩尔),所用碳酸二甲酯DMC为25毫升,其余与实施例1-4相同,不再赘述。
对对比例1-2、5-6制备的电解液及电解质进行元素分析,结果表明样品中的阳离子不仅包括钙/镁离子,还有大量的铵根离子,说明相应地制备方法不够完善,制备得到的电解液和电解质纯度低。
性能测试
对上述实施例127-184以及对比例3-4、7-8的钙离子电池和镁离子进行恒流充放电测试;测试结果参见表5。
表5 实施例127-156及对比例3-4、7-8的钙离子电池或镁离子电池性能测试结果
项目 首圈放电比容量(mAh/g) 稳定放电比容量(mAh/g)
实施例3 72 54
实施例4 110 75
实施例127 102 65
实施例128 108 68
实施例129 99 59
实施例130 107 72
实施例131 106 70
实施例132 130 86
实施例133 129 84
实施例134 127 81
实施例135 160 90
实施例136 145 89
实施例137 123 78
实施例138 120 75
实施例139 121 80
实施例140 125 74
实施例141 114 76
实施例142 118 72
实施例143 117 73
实施例144 124 79
实施例145 125 84
实施例146 120 81
实施例147 124 82
实施例148 123 83
实施例149 130 85
实施例150 110 78
实施例151 114 79
实施例152 100 70
实施例153 105 72
实施例154 103 72
实施例155 98 69
实施例156 96 68
实施例157 74 54
实施例158 85 66
实施例159 90 86
实施例160 97 89
实施例161 102 85
实施例162 123 111
实施例163 70 56
实施例164 84 74
实施例165 85 75
实施例166 64 45
实施例167 100 92
实施例168 60 43
实施例169 60 51
实施例170 70 52
实施例171 65 45
实施例172 80 66
实施例173 89 75
实施例174 81 69
实施例175 71 55
实施例176 62 41
实施例177 69 46
实施例178 46 34
实施例179 60 45
实施例180 67 45
实施例181 105 92
实施例182 84 43
实施例183 71 51
实施例184 76 52
对比例3 35 21
对比例4 31 18
对比例7 20 10
对比例8 25 15
从表5可以看出,本发明中经优选的实施例(如实施例132-136、145、149),较对比例3-4、7-8具有更高的初始放电比容量和较高的稳定放电比容量。因此,本发明中经优选的实施例能提供更有效的制备六氟磷酸钙电解液及电解质、六氟磷酸镁电解液及电解质的方法、及性能更好的钙离子电池和镁离子电池。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (8)

  1. 一种碱土金属六氟磷酸盐电解液的制备方法,其特征在于,包含以下步骤:
    将有机溶剂、六氟磷酸铵、碱土金属氢化物在惰性气体保护下置于同一容器中,待反应完全,得到碱土金属六氟磷酸盐电解液。
  2. 根据权利要求1所述的制备方法,其特征在于,碱土金属优选为镁、钙。
  3. 根据权利要求1所述的制备方法,其特征在于,碱土金属氢化物应过量,以保证产物的纯度;
    优选地,碱土金属氢化物的物质的量(摩尔数)应不低于六氟磷酸铵的物质的量的二分之一。
  4. 根据权利要求1所述的制备方法,其特征在于,
    有机溶剂没有特别限制,可为:酯类、砜类、醚类、腈类或离子液体等有机溶剂。具体地,包括碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、乙腈(ACN)、甲酸甲酯(MF)、乙酸甲酯(MA)、N,N-二甲基乙酰胺(DMA)、氟代碳酸乙烯酯(FEC)、丙酸甲酯(MP)、丙酸乙酯(EP)、乙酸乙酯(EA)、γ-丁内酯(GBL)、四氢呋喃(THF)、2-甲基四氢呋喃(2MeTHF)、1,3-二氧环戊烷(DOL)、4-甲基-1,3-二氧环戊烷(4MeDOL)、二甲氧甲烷(DMM)、1,2-二甲氧丙烷(DMP)、三乙二醇二甲醚(DG)、二甲基砜(MSM)、二甲醚(DME)、亚硫酸乙烯酯(ES)、亚硫酸丙烯脂(PS)、亚硫酸二甲脂(DMS)、亚硫酸二乙脂(DES)、冠醚(12-冠-4)、1-乙基-3-甲基咪唑-六氟磷酸盐、1-乙基-3-甲基咪唑-四氟硼酸盐、1-乙基-3-甲基咪唑-双三氟甲基磺酰亚胺盐、1-丙基-3-甲基咪唑-六氟磷酸盐、1-丙基-3-甲基咪唑-四氟硼酸盐、1-丙基-3-甲基咪唑-双三氟甲基磺酰亚胺盐、1-丁基-1-甲基咪唑-六氟磷酸盐、1- 丁基-1-甲基咪唑-四氟硼酸盐、1-丁基-1-甲基咪唑-双三氟甲基磺酰亚胺盐、N-丁基-N-甲基吡咯烷-双三氟甲基磺酰亚胺盐、1-丁基-1-甲基吡咯烷-双三氟甲基磺酰亚胺盐、N-甲基-N-丙基吡咯烷-双三氟甲基磺酰亚胺盐、N-甲,丙基哌啶-双三氟甲基磺酰亚胺盐、N-甲,丁基哌啶-双三氟甲基磺酰亚胺盐中的一种或几种。
  5. 根据权利要求1-4所述的碱土金属六氟磷酸盐电解液的制备方法制备得到的碱土金属六氟磷酸盐电解液。
  6. 一种碱土金属六氟磷酸盐电解质的制备方法,其特征在于,
    根据权利要求1-4所述的碱土金属六氟磷酸盐电解液的制备方法制备得到的碱土金属六氟磷酸盐电解液,或权利要求5所述的碱土金属六氟磷酸盐电解液,除去有机溶剂;或降低六氟磷酸钙或六氟磷酸镁电解质在溶剂中的溶解度,得到六氟磷酸钙电解质或六氟磷酸镁电解质。
  7. 一种碱土金属六氟磷酸盐电解质,其特征在于,
    根据权利要求6的制备方法制备得到的碱土金属六氟磷酸盐电解质。
  8. 一种钙离子电池或镁离子电池,其特征在于,包含权利要求1-4所述的制备方法制备得到的碱土金属六氟磷酸盐电解液,或权利要求5所述的碱土金属六氟磷酸盐电解液,或权利要求6所述的碱土金属六氟磷酸盐的制备方法制备得到的碱土金属六氟磷酸盐电解质,或权利要求7所述的碱土金属六氟磷酸盐电解质。
PCT/CN2019/083464 2019-04-19 2019-04-19 一种碱土金属六氟磷酸盐电解质及电解液制备方法 WO2020211081A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/083464 WO2020211081A1 (zh) 2019-04-19 2019-04-19 一种碱土金属六氟磷酸盐电解质及电解液制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/083464 WO2020211081A1 (zh) 2019-04-19 2019-04-19 一种碱土金属六氟磷酸盐电解质及电解液制备方法

Publications (1)

Publication Number Publication Date
WO2020211081A1 true WO2020211081A1 (zh) 2020-10-22

Family

ID=72837993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083464 WO2020211081A1 (zh) 2019-04-19 2019-04-19 一种碱土金属六氟磷酸盐电解质及电解液制备方法

Country Status (1)

Country Link
WO (1) WO2020211081A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023108501A1 (zh) * 2021-12-15 2023-06-22 深圳先进技术研究院 钙盐电解液和电解质及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5496661A (en) * 1993-08-24 1996-03-05 Moli Energy (1990) Limited Simplified preparation of LiPF6 based electolyte for non-aqueous batteries
WO2015122511A1 (ja) * 2014-02-14 2015-08-20 ステラケミファ株式会社 ジハロリン酸アルカリ金属塩の製造方法およびジフルオロリン酸アルカリ金属塩の製造方法
CN106745096A (zh) * 2017-02-16 2017-05-31 九江天赐高新材料有限公司 六氟磷酸碱金属盐的制备方法
CN108217622A (zh) * 2017-12-21 2018-06-29 珠海市赛纬电子材料股份有限公司 一种六氟磷酸钠的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5496661A (en) * 1993-08-24 1996-03-05 Moli Energy (1990) Limited Simplified preparation of LiPF6 based electolyte for non-aqueous batteries
WO2015122511A1 (ja) * 2014-02-14 2015-08-20 ステラケミファ株式会社 ジハロリン酸アルカリ金属塩の製造方法およびジフルオロリン酸アルカリ金属塩の製造方法
CN106745096A (zh) * 2017-02-16 2017-05-31 九江天赐高新材料有限公司 六氟磷酸碱金属盐的制备方法
CN108217622A (zh) * 2017-12-21 2018-06-29 珠海市赛纬电子材料股份有限公司 一种六氟磷酸钠的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023108501A1 (zh) * 2021-12-15 2023-06-22 深圳先进技术研究院 钙盐电解液和电解质及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN108511803B (zh) 一种二次电池及其制备方法
US20150000118A1 (en) Method for manufacturing graphene-incorporated rechargeable li-ion battery
CN109686923B (zh) 预嵌锂负极的制备方法及制备得到的预嵌锂负极、储能器件、储能***及用电设备
CN108630979B (zh) 一种基于钙离子的二次电池及其制备方法
EP3857635B1 (en) Chemical prealkaliation of electrodes
CN113539694B (zh) 一种降低负极预金属化氧化电势的方法及其应用、电化学储能装置
JP2023510989A (ja) 電解液、電気化学装置及び電子装置
CN106058193A (zh) 一种新型钠离子电池负极材料及其制备方法和应用
CN111834673B (zh) 一种碱土金属六氟磷酸盐电解质及电解液制备方法
CN109962231B (zh) 金属箔材用作镧离子二次电池负极和镧离子二次电池及其制备方法
CN114989059B (zh) 一种锂离子电池补锂剂及其制备方法、应用
CN111349000A (zh) KLi3Fe(C2O4)3的制备方法、电池正极活性材料、电池及用电设备
WO2019095717A1 (zh) 一种锂原电池
Tsai et al. Effect of different electrolytes on MnO2 anodes in lithium-ion batteries
JP2023511046A (ja) 二次電池、その製造方法、該二次電池を含む電池モジュール、電池パック及び装置
CN108864104A (zh) 一种5,7,12,14-四氮-6,13-并五苯醌电极材料及其制备方法和应用
JP2015097179A (ja) 二次電池
CN110444734B (zh) 硅硫电池预锂化方法
WO2020211081A1 (zh) 一种碱土金属六氟磷酸盐电解质及电解液制备方法
WO2023199348A1 (en) FeSe2 AND N, S DOPED POROUS CARBON SPHERE MICRO FLOWER COMPOSITE AS A HIGH-PERFORMANCE ANODE MATERIAL FOR LITHIUM-ION BATTERY
CN114267878B (zh) 钙盐电解液和电解质及其制备方法和应用
CN103367728A (zh) 一种活化天然石墨改性硅酸铁锂正极材料及其制备方法
CN111354943A (zh) 氟化草酸盐材料的应用以及包含氟化草酸盐材料的产品、制备方法及其用途
CA3232177A1 (en) Lithium sulfur cell
CN115692660A (zh) 硫化聚苯胺复合正极材料及制备方法和采用其的锂硫电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924824

Country of ref document: EP

Kind code of ref document: A1