WO2020202329A1 - 感光性樹脂組成物、硬化物、感光性エレメント、及び、レジストパターンの製造方法 - Google Patents

感光性樹脂組成物、硬化物、感光性エレメント、及び、レジストパターンの製造方法 Download PDF

Info

Publication number
WO2020202329A1
WO2020202329A1 PCT/JP2019/014216 JP2019014216W WO2020202329A1 WO 2020202329 A1 WO2020202329 A1 WO 2020202329A1 JP 2019014216 W JP2019014216 W JP 2019014216W WO 2020202329 A1 WO2020202329 A1 WO 2020202329A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
component
photosensitive resin
group
photosensitive
Prior art date
Application number
PCT/JP2019/014216
Other languages
English (en)
French (fr)
Inventor
精吾 横地
健一 岩下
吉田 哲也
加藤 哲也
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2019/014216 priority Critical patent/WO2020202329A1/ja
Priority to JP2021511706A priority patent/JPWO2020202329A1/ja
Publication of WO2020202329A1 publication Critical patent/WO2020202329A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials

Definitions

  • the present disclosure relates to a method for producing a photosensitive resin composition, a cured product, a photosensitive element, and a resist pattern.
  • a negative photosensitive resin composition is used in order to form a fine pattern.
  • a photosensitive layer is formed on a substrate (for example, a chip in the case of a semiconductor element and a substrate in the case of a printed wiring board) by coating a photosensitive resin composition or the like, and an active ray is irradiated through a predetermined pattern. This cures the exposed area. Further, by selectively removing the unexposed portion with a developing solution, a resist pattern, which is a cured product of the photosensitive resin composition, is formed on the substrate.
  • the photosensitive resin composition is required to have high sensitivity to active light rays and to be excellent in being able to form a fine pattern (resolution). Therefore, a photosensitive resin composition containing a novolak resin, an epoxy resin and a photoacid generator; a photosensitive resin composition containing an alkali-soluble epoxy compound having a carboxyl group and a photocationic polymerization initiator has been proposed (for example, see Patent Documents 1 and 2 below).
  • the surface protective film and the interlayer insulating film used for the semiconductor element are required to have insulation reliability such as heat resistance, electrical characteristics, and mechanical characteristics. Therefore, a photosensitive resin composition further containing a crosslinkable monomer in the photosensitive resin composition has been proposed (see, for example, Patent Document 3 below).
  • component (A) an organic compound having thermal crosslinkability
  • component (B) 3 or more acryloyloxy groups, 3 or more methacryloyloxy groups, 3 or more glycidyloxy groups, And an aliphatic compound having at least one selected from the group consisting of three or more hydroxyl groups
  • component (C) a photosensitive acid generator, and an exposure amount to the photosensitive resin composition.
  • a 2.38 mass% tetramethylammonium hydroxide aqueous solution is brought into contact with an exposed portion obtained by irradiating light having a wavelength of 365 nm at 1000 mJ / cm 2 and an unexposed portion in the photosensitive resin composition.
  • a photosensitive resin composition in which the dissolution rate of the exposed portion is 0.05 ⁇ m / s or less and the dissolution rate of the unexposed portion is 1.0 ⁇ m / s or more.
  • a fine pattern can be formed with a high aspect ratio.
  • a photosensitive element comprising a support and a photosensitive layer disposed on the support, wherein the photosensitive layer contains the above-mentioned photosensitive resin composition.
  • Another aspect of the present disclosure provides a cured product of the above-mentioned photosensitive resin composition.
  • Another aspect of the present disclosure is a step of forming a photosensitive layer on a substrate by using the above-mentioned photosensitive resin composition or the above-mentioned photosensitive element, and the above-mentioned photosensitive layer after being exposed to a predetermined pattern.
  • a method for producing a resist pattern comprising a step of heat-treating the layer and a step of heat-treating the photosensitive layer after developing the photosensitive layer in this order.
  • a photosensitive resin composition capable of forming a fine pattern with a high aspect ratio and a cured product thereof.
  • a photosensitive element including a photosensitive layer containing the above-mentioned photosensitive resin composition.
  • a method for producing a resist pattern using the above-mentioned photosensitive resin composition or the above-mentioned photosensitive element it is possible to provide a method for producing a resist pattern using the above-mentioned photosensitive resin composition or the above-mentioned photosensitive element.
  • the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value of the numerical range of one step can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another step.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • “A or B” may include either A or B, or both.
  • the materials exemplified in the present specification may be used alone or in combination of two or more.
  • each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
  • layer includes not only a structure having a shape formed on the entire surface but also a structure having a shape partially formed when observed as a plan view.
  • process is included in the term not only in an independent process but also in the case where the desired action of the process is achieved even if it cannot be clearly distinguished from other processes.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC) under the following conditions, for example, using a standard polystyrene calibration curve.
  • Equipment used Hitachi L-6000 (manufactured by Hitachi, Ltd.)
  • Eluent tetrahydrofuran Measurement temperature: 40 ° C
  • Flow rate 1.75 ml / min
  • Detector L-3300RI (manufactured by Hitachi, Ltd.)
  • the photosensitive resin composition according to the present embodiment includes (A) component: an organic compound having thermal cross-linking property, and (B) component: three or more acryloyloxy groups, three or more methacryloyloxy groups, and three or more. It contains an aliphatic compound having at least one selected from the group consisting of a glycidyloxy group of 3 or more hydroxyl groups, and a component (C): a photosensitive acid generator.
  • the exposed portion obtained by irradiating the photosensitive resin composition (the photosensitive resin composition according to the present embodiment) with light having an exposure amount of 1000 mJ / cm 2 and a wavelength of 365 nm, and the photosensitive portion.
  • the unexposed portion of the sex resin composition (the photosensitive resin composition irradiated with light) is brought into contact with a 2.38 mass% tetramethylammonium hydroxide aqueous solution
  • the dissolution rate of the exposed portion is 0.05 ⁇ m / It is s or less
  • the dissolution rate of the unexposed portion is 1.0 ⁇ m / s or more.
  • the photosensitive resin composition according to the present embodiment can be used as a negative type photosensitive resin composition.
  • a fine pattern can be formed with a high aspect ratio.
  • a pattern for example, a resist pattern
  • a fine pattern having a width of 2.0 ⁇ m or less (preferably a width of 1.5 ⁇ m or less) is formed with an aspect ratio (thickness / width) of 3.0 or more. it can.
  • a fine pattern is formed at a high aspect ratio in both the exposed portion (residual pixel) remaining after development and the unexposed portion (dissolved portion) dissolved by development. it can.
  • the cause of obtaining the above effects is not clear, but the present inventor speculates as follows.
  • the cause is not limited to the following contents. That is, first, in the unexposed portion, a high dissolution rate in a developing solution can be obtained due to the components (A) and (B). On the other hand, in the exposed portion, high developer resistance can be obtained by curing the component (B). As a result, a difference in dissolution rate with respect to the developing solution occurs between the exposed portion and the unexposed portion, so that a high aspect ratio can be easily obtained.
  • the component (C) has high reactivity and low diffusibility of the generated acid component in the photosensitive resin composition, so that high resolution can be easily obtained. As a result, a fine pattern can be formed with a high aspect ratio.
  • a pattern having high heat resistance and chemical resistance (for example, a resist pattern) can be obtained. It is presumed that high heat resistance and chemical resistance can be obtained by cross-linking the component (A). According to the photosensitive resin composition according to the present embodiment, a cured product having high heat resistance and chemical resistance while having high resolution and high aspect ratio can be obtained.
  • a 2.38 mass% tetramethylammonium hydroxide aqueous solution was brought into contact with the exposed portion obtained by irradiating the photosensitive resin composition according to the present embodiment with light having an exposure amount of 1000 mJ / cm 2 and a wavelength of 365 nm.
  • the dissolution rate of the exposed portion is 0.05 ⁇ m / s or less from the viewpoint of forming a fine pattern with a high aspect ratio.
  • the dissolution rate of the exposed portion is preferably 0.045 ⁇ m / s or less, more preferably 0.04 ⁇ m / s or less, further preferably 0.035 ⁇ m / s or less, and 0, from the viewpoint of easily forming a fine pattern with a high aspect ratio.
  • the dissolution rate of the exposed portion may be 0 ⁇ m / s or more, 0 ⁇ m / s or more, 0.01 ⁇ m / s or more, 0.02 ⁇ m / s or more, or 0.03 ⁇ m / s or more.
  • the dissolution rate of the unexposed portion is such that the fine pattern has a high aspect ratio. From the viewpoint of forming, it is 1.0 ⁇ m / s or more.
  • the dissolution rate of the unexposed portion is preferably 1.05 ⁇ m / s or more, more preferably 1.1 ⁇ m / s or more, still more preferably 1.15 ⁇ m / s or more, from the viewpoint of easily forming a fine pattern with a high aspect ratio.
  • the dissolution rate of the unexposed portion may be 2.0 ⁇ m / s or less, 1.8 ⁇ m / s or less, 1.5 ⁇ m / s or less, 1.4 ⁇ m / s or less, or 1.3 ⁇ m / s or less.
  • the above-mentioned exposed portion can be obtained by irradiating the photosensitive layer made of the photosensitive resin composition according to the present embodiment with light having a wavelength of 365 nm.
  • the photosensitive layer can be formed by spin-coating the photosensitive resin composition on a substrate and then heating at 120 ° C. for 3 minutes.
  • the thickness of the photosensitive layer for evaluating the dissolution rate may be 10 ⁇ m.
  • the exposed portion and the unexposed portion obtained by irradiating the photosensitive layer with light having a wavelength of 365 nm and then heating the photosensitive layer at 85 ° C. for 4 minutes were subjected to 2.38 mass% tetramethylammonium hydroxy.
  • the aqueous solution can be contacted.
  • the 2.38 mass% tetramethylammonium hydroxide aqueous solution can be brought into contact with the exposed portion and the unexposed portion by spraying (pump discharge pressure: 0.16 MPa) for 5 seconds at 23 ° C.
  • spraying pump discharge pressure: 0.16 MPa
  • the photosensitive resin composition according to the present embodiment contains an organic compound having thermal crosslinkability as the component (A).
  • an organic compound having thermal crosslinkability as the component (A).
  • the component (A) By using the component (A), a fine pattern can be formed with a high aspect ratio, and excellent heat resistance and chemical resistance can be obtained.
  • the component (A) one type can be used alone or two or more types can be used in combination.
  • the component (A) the component corresponding to the component (B) is excluded.
  • the component (A) has at least one selected from the group consisting of an alkoxyalkyl group and a methylol group from the viewpoint of easily forming a fine pattern with a high aspect ratio and easily obtaining excellent heat resistance and chemical resistance. It preferably contains a compound, and more preferably contains a compound having a structural unit having at least one selected from the group consisting of an alkoxyalkyl group and a methylol group.
  • the carbon number of the alkylene group of the alkoxyalkyl group is preferably 3 or less, more preferably 2 or less, and further preferably 1 (alkoxymethyl group), from the viewpoint of easily forming a fine pattern with a high aspect ratio.
  • the component (A) preferably contains a compound having a phenolic hydroxyl group from the viewpoint of easily forming a fine pattern with a high aspect ratio, and is at least one selected from the group consisting of a phenolic hydroxyl group, an alkoxyalkyl group and a methylol group. And, more preferably, it contains a compound having.
  • the organic compound having thermal crosslinkability has high solubility in a developing solution.
  • the dissolution rate of the component (A) in the 2.38 mass% tetramethylammonium hydroxide aqueous solution is preferably in the following range from the viewpoint of easily forming a fine pattern with a high aspect ratio.
  • the dissolution rate of the component (A) is preferably 0.3 ⁇ m / s or more, more preferably 0.32 ⁇ m / s or more, further preferably 0.35 ⁇ m / s or more, and particularly preferably 0.37 ⁇ m / s or more.
  • the dissolution rate of the component (A) may be 0.5 ⁇ m / s or less, less than 0.5 ⁇ m / s, 0.45 ⁇ m / s or less, or 0.4 ⁇ m / s or less. From these viewpoints, the dissolution rate of the component (A) may be 0.3 to 0.5 ⁇ m / s. In the evaluation of the dissolution rate of the component (A), a 2.38 mass% tetramethylammonium hydroxide aqueous solution can be brought into contact with the layer composed of the component (A).
  • the 2.38 mass% tetramethylammonium hydroxide aqueous solution can be brought into contact with the layer composed of the component (A) by spraying (pump discharge pressure: 0.16 MPa) at 23 ° C. for 5 seconds.
  • the thickness of the layer composed of the component (A) may be 10 ⁇ m.
  • the component (A) preferably contains a novolak resin from the viewpoint of excellent solubility in an alkaline developer (for example, an alkaline aqueous solution).
  • the novolak resin can be obtained, for example, by condensing phenols and aldehydes in the presence of a catalyst.
  • phenols examples include phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, o-butylphenol, m-butylphenol, p-butylphenol, 2,3-.
  • aldehydes examples include formaldehyde, paraformaldehyde, acetaldehyde, benzaldehyde and the like.
  • novolak resin examples include phenol / formaldehyde condensed novolak resin, cresol / formaldehyde condensed novolak resin, phenol-naphthol / formaldehyde condensed novolak resin and the like.
  • component (A) other than the novolak resin examples include polyhydroxystyrene and its copolymer, phenol-xylylene glycol condensed resin, cresol-xylylene glycol condensed resin, and phenol-dicyclopentadiene condensed resin.
  • the weight average molecular weight of the component (A) is preferably 10,000 or less, more preferably 8,000 or less, from the viewpoint of easily obtaining high solubility in the unexposed portion (it is difficult to form a forward taper shape pattern in the unexposed portion). It is more preferably 5000 or less, particularly preferably less than 5000, extremely preferably 4500 or less, and very preferably 4000 or less.
  • the weight average molecular weight of the component (A) has a high aspect ratio because it is easy to obtain excellent developer resistance in the exposed area (it is difficult to form a reverse taper pattern in the exposed area) and it is easy to suppress film loss of pixels.
  • the weight average molecular weight of the component (A) is preferably 1000 to 10000, more preferably 1000 to 4000.
  • the content of the component (A) is such that the cured product of the photosensitive resin composition is highly soluble in the developing solution, and excellent heat resistance and chemical resistance as the cured product can be easily obtained.
  • the following range is preferable based on the total amount of (excluding the component (E)).
  • the content of the component (A) is preferably 40% by mass or more, more preferably 50% by mass or more, further preferably 60% by mass or more, and particularly preferably 70% by mass or more.
  • the content of the component (A) is preferably 90% by mass or less, more preferably 85% by mass or less, and further preferably 80% by mass or less.
  • the content of the component (A) is preferably 40 to 90% by mass, more preferably 50 to 90% by mass, further preferably 50 to 85% by mass, particularly preferably 60 to 80% by mass, and 70. -80% by mass is extremely preferable.
  • the photosensitive resin composition according to the present embodiment contains three or more acryloyloxy groups, three or more methacryloyloxy groups, three or more glycidyloxy groups, and three or more hydroxyl groups as the component (B). Contains at least one aliphatic compound selected from the group.
  • the component (B) has at least three or more functional groups of acryloyloxy group, methylenedioxy group, glycidyloxy group and hydroxyl group.
  • the "aliphatic compound” means a compound whose main skeleton is an aliphatic skeleton and does not contain an aromatic ring and / or a heterocycle. As the component (B), one type can be used alone or two or more types can be used in combination.
  • the number of each functional group of acryloyloxy group, methylenedioxy group, glycidyloxy group and hydroxyl group in the component (B) and / or the total number of these functional groups is determined from the viewpoint that a fine pattern can be easily formed with a high aspect ratio. 3 to 5 is preferable, 3 to 4 is more preferable, and 3 is further preferable.
  • the component (B) is a compound represented by the following general formula (1), a compound represented by the following general formula (2), and a compound represented by the following general formula (3) from the viewpoint of easily forming a fine pattern with a high aspect ratio. It is preferable to contain at least one compound selected from the group consisting of the compound represented by the compound and the compound represented by the following general formula (4).
  • R 11 represents a hydrogen atom, a methyl group, an ethyl group, a hydroxyl group, or a group represented by the following general formula (5)
  • R 12 , R 13 and R 14 are respectively.
  • an acryloyloxy group, a methacryloyloxy group, a glycidyloxy group, a hydroxyl group, a group represented by the following general formula (6), or a group represented by the following general formula (7) is shown.
  • R 21 represents a hydrogen atom, a methyl group, an ethyl group, a hydroxyl group, or a group represented by the following general formula (5)
  • R 22 , R 23, and R 24 are respectively.
  • an acryloyloxy group, a methacryloyloxy group, a glycidyloxy group, a hydroxyl group, a group represented by the following general formula (6), or a group represented by the following general formula (7) is shown.
  • R 31 , R 32 , R 33 , R 34 , R 35 and R 36 are independently acryloyloxy group, methacryloyloxy group, glycidyloxy group, hydroxyl group, and the following general formula (6).
  • the group represented by or the group represented by the following general formula (7) is shown.
  • R 41 and R 44 independently represent a hydrogen atom, a methyl group, an ethyl group, a hydroxyl group, or a group represented by the following general formula (5), and are R 42 and R 43, respectively.
  • R 45 and R 46 are independently an acryloyloxy group, a methacryloyloxy group, a glycidyloxy group, a hydroxyl group, a group represented by the following general formula (6), or a group represented by the following general formula (7). Is shown. ]
  • R 5 is an acryloyloxy group, methacryloyloxy group, glycidyloxy group, or a hydroxyl group.
  • R 6 represents an acryloyloxy group, a methacryloyloxy group, a glycidyloxy group, or a hydroxyl group, and n represents an integer of 1 to 10.
  • R 7 represents an acryloyloxy group, a methacryloyloxy group, a glycidyloxy group, or a hydroxyl group, and m represents an integer of 1 to 10.
  • Examples of the compound having an acryloyloxy group include EO-modified dipentaerythritol hexaacrylate, PO-modified dipentaerythritol hexaacrylate, dipentaerythritol hexaacrylate, EO-modified ditrimethylolpropane tetraacrylate, PO-modified ditrimethylolpropane tetraacrylate, and ditrimethylolpropane.
  • the compound having an acryloyloxy group may be used alone or in combination of two or more. "EO" represents an ethyleneoxy group and "PO" represents a propyleneoxy group.
  • Compounds having a methacryloyloxy group include EO-modified dipentaerythritol hexamethritol, PO-modified dipentaerythritol hexamethritol, dipentaerythritol hexametheritol, EO-modified ditrimethylolpropanetetramethritol, PO-modified ditrimethylolpropanetetramethritol, and ditrimethylolpropane.
  • Tetramethacrylate Tetramethacrylate, EO-modified pentaerythritol tetramethritol, PO-modified pentaerythritol tetramethritol, pentaerythritol tetrametheritol, EO-modified pentaerythritol-trimethacrylate, PO-modified pentaerythritol-trimethacrylate, pentaerythritol-trimethacrylate, EO-modified trimethylolpropane methacrylate, PO-modified Examples thereof include trimethylolpropane methacrylate, trimethylolpropane methacrylate, EO-modified glycerin trimethacrylate, PO-modified glycerin trimethacrylate, and glycerin trimethacrylate.
  • the compound having a methacryloyloxy group one kind may be used alone or two or more
  • the compound having a glycidyloxy group a compound in which at least three of the hydroxyl groups in the trihydric or higher aliphatic polyhydric alcohol are substituted with a group containing a glycidyloxy group can be used.
  • trihydric or higher aliphatic polyhydric alcohols examples include glycerin, diglycerin, triglycerin, tetraglycerin, trimethylolethane, trimethylolpropane, ditrimethylolpropane, erythritol, pentaerythritol, dipentaerythritol, sorbitan, sorbitol, 1, 2,4-Butantriol, 1,2,6-hexanetriol, 2,4-dihydroxy-3-hydroxymethylpentane, 1,1,1-tris (bishydroxymethyl) propane, 2,2-bis (hydroxymethyl) ) Butanol-3, arabit, ribitol, xylitol, mannit, galactitol, allozurcit, sucrose and the like.
  • Examples of the compound having a glycidyl oxy group include ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, and 1,6-hexanediol diglycidyl ether.
  • the compound having a glycidyloxy group one kind may be used alone or two or more kinds may be used in combination.
  • the compound having a glycidyloxy group preferably contains at least one selected from the group consisting of trimethylolethane triglycidyl ether and trimethylolpropane triglycidyl ether from the viewpoint of easily obtaining excellent sensitivity and resolution.
  • Compounds having a glycidyloxy group include, for example, Epolite 40E, Epolite 100E, Epolite 70P, Epolite 200P, Epolite 1500NP, Epolite 1600, Epolite 80MF, Epolite 100MF (above, Kyoeisha Chemical Co., Ltd., trade name), alkyl type epoxy resin.
  • Examples of the compound having a hydroxyl group include polyhydric alcohols such as dipentaerythritol, pentaerythritol, and glycerin.
  • polyhydric alcohols such as dipentaerythritol, pentaerythritol, and glycerin.
  • the compound having a hydroxyl group one type can be used alone or two or more types can be used in combination.
  • the component (B) is selected from the group consisting of three or more acryloyloxy groups, three or more methacryloyloxy groups, and three or more glycidyloxy groups from the viewpoint of easily forming a fine pattern with a high aspect ratio. It is preferable to have at least one, and it is more preferable to have at least one selected from the group consisting of three or more acryloyloxy groups and three or more glycidyloxy groups.
  • the component (B) preferably contains an aliphatic compound having three or more glycidyloxy groups from the viewpoint that excellent developability can be easily obtained and a fine pattern can be easily formed with a high aspect ratio.
  • the component (B) preferably contains an aliphatic compound having a molecular weight (for example, a weight average molecular weight) of 1000 or less having three or more glycidyloxy groups from the viewpoint of easily obtaining excellent developability, and three or more glycidyl. It is more preferable to contain an aliphatic compound having an oxy group and having a molecular weight (for example, weight average molecular weight) of 1000 or less.
  • the molecular weight of the component (B) (for example, the weight average molecular weight) is preferably in the following range from the viewpoint of easily forming a fine pattern with a high aspect ratio.
  • the molecular weight of the component (B) is preferably 1000 or less, more preferably 800 or less, further preferably 600 or less, particularly preferably 500 or less, and extremely preferably 400 or less.
  • the molecular weight of the component (B) is preferably 100 or more, more preferably 150 or more, further preferably 200 or more, particularly preferably 250 or more, and extremely preferably 300 or more. From these viewpoints, the molecular weight of the component (B) is preferably 100 to 1000.
  • the content of the component (B) is preferably in the following range with respect to 100 parts by mass of the component (A).
  • the content of the component (B) is preferably 20 parts by mass or more, more preferably 25 parts by mass or more, and more preferably 30 parts by mass or more from the viewpoint that sufficient cross-linking can be easily obtained in the exposed part and the resolution is easily improved. More preferred.
  • the content of the component (B) is preferably 70 parts by mass or less, preferably 65 parts by mass or less, from the viewpoint that the photosensitive resin composition is easily formed on a desired base material or support and the resolution tends to be difficult to decrease.
  • the content of the component (B) is preferably 20 to 70 parts by mass, more preferably 25 to 65 parts by mass, further preferably 30 to 55 parts by mass, particularly preferably 30 to 50 parts by mass, and 30 parts by mass. To 45 parts by mass is extremely preferable, 30 to 40 parts by mass is very preferable, and 30 to 35 parts by mass is even more preferable.
  • the photosensitive resin composition according to the present embodiment contains a photosensitive acid generator as the component (C).
  • the photosensitive acid generator is a compound that generates an acid by irradiation with active light or the like. Due to the catalytic effect of the acid generated from the photosensitive acid generator, the functional groups in the component (B) react to significantly reduce the solubility of the photosensitive resin composition in the developing solution, resulting in a negative pattern. Can be formed.
  • the component (C) one type can be used alone or two or more types can be used in combination.
  • the component (C) excludes the component (A) or the component corresponding to the component (B).
  • the component (C) is not particularly limited as long as it is a compound that generates an acid by irradiation with light (active light or the like).
  • Examples of the component (C) include onium salt compounds, halogen-containing compounds, diazoketone compounds, sulfone compounds, sulfonic acid compounds, sulfonimide compounds, and diazomethane compounds.
  • the component (C) preferably contains at least one selected from the group consisting of onium salt compounds and sulfonimide compounds from the viewpoint of excellent availability.
  • the component (C) preferably contains an onium salt compound from the viewpoint of excellent solubility in the component (E) when the component (E) is used.
  • Examples of the onium salt compound include iodonium salt, sulfonium salt, phosphonium salt, diazonium salt, pyridinium salt and the like.
  • Examples of onium salt compounds include diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluorobutane sulfonate, diphenyliodonium heptadecafluorooctane sulfonate, diphenyliodonium p-toluenesulfonate, diphenyliodonium hexafluoroantimonate, diphenyliodonium hexafluorophosphate, and diphenyliodonium tris.
  • Diaryliodonium salts such as (pentafluoroethyl) trifluorophosphate, diphenyliodonium tetrafluoroborate, diphenyliodonium tetrakis (pentafluorophenyl) borate, diphenyliodonium tris [(trifluoromethyl) sulfonyl] metanide; triarylsulfonium salts, etc. Be done.
  • the onium salt compound a sulfonium salt is preferable from the viewpoint of further improving sensitivity and thermal stability.
  • a triarylsulfonium salt is preferable from the viewpoint of further improving the thermal stability.
  • the onium salt compound may be used alone or in combination of two or more.
  • Examples of the triarylsulfonium salt include a compound represented by the following general formula (c1), a compound represented by the following general formula (c2), a compound represented by the following general formula (c3), and the following general formula. At least one cation selected from the group consisting of the compound represented by (c4), a tetraphenylborate skeleton, an alkyl sulfonate skeleton having 1 to 20 carbon atoms, a phenyl sulfonate skeleton, a 10-campar sulfonate skeleton, and 1 to 20 carbon atoms
  • Examples thereof include a sulfonium salt having an anion having at least one skeleton selected from the group consisting of a trisalkylsulfonylmethanide skeleton, a tetrafluoroborate skeleton, a hexafluoroantimonate skeleton and a hexafluorophosphate skeleton.
  • the hydrogen atoms of the phenyl groups of the general formulas (c1), (c2), (c3) and (c4) are hydroxyl groups, alkyl groups having 1 to 12 carbon atoms, alkoxy groups having 1 to 12 carbon atoms, and 2 to 12 carbon atoms. It may be substituted with at least one selected from the group consisting of the alkylcarbonyl group of the above and the alkoxycarbonyl group having 2 to 12 carbon atoms. When there are a plurality of substituents, they may be the same or different from each other.
  • the hydrogen atom of the phenyl group of the tetraphenylborate skeleton includes a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, a hydroxyl group, an alkyl group having 1 to 12 carbon atoms, and an alkoxy group having 1 to 12 carbon atoms. It may be substituted with at least one selected from the group consisting of an alkylcarbonyl group having 2 to 12 carbon atoms and an alkoxycarbonyl group having 2 to 12 carbon atoms. When there are a plurality of substituents, they may be the same or different from each other.
  • the hydrogen atom of the alkylsulfonate skeleton is replaced with at least one selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, a hydroxyl group, an alkoxy group, an alkylcarbonyl group, and an alkoxycarbonyl group. It may have been. When there are a plurality of substituents, they may be the same or different from each other.
  • the hydrogen atom of the phenyl group of the phenylsulfonate skeleton is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, a hydroxyl group, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, and carbon. It may be substituted with at least one selected from the group consisting of an alkylcarbonyl group having 2 to 12 atoms and an alkoxycarbonyl group having 2 to 12 carbon atoms. When there are a plurality of substituents, they may be the same or different from each other.
  • the hydrogen atom of the trisalkylsulfonylmethanide skeleton is at least selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, a hydroxyl group, an alkoxy group, an alkylcarbonyl group, and an alkoxycarbonyl group. It may be replaced with one kind. When there are a plurality of substituents, they may be the same or different from each other.
  • the fluorine atom of the hexafluorophosphate skeleton may be substituted with at least one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, and a perfluoroalkyl group having 1 to 12 carbon atoms. When there are a plurality of substituents, they may be the same or different from each other.
  • the sulfonium salt used as the component (C) has [4- (4-biphenylylthio) phenyl] -4-biphenylylphenylsulfonium, (2) as a cation from the viewpoint of further excellent sensitivity, resolution and insulating property.
  • the sulfonium salt used as the component (C) has trifluoromethanesulfonate, nonafluorobutanesulfonate, hexafluoroantimonate, tris [(trifluoromethyl) sulfonyl] as anions from the viewpoint of easily forming a fine pattern with a high aspect ratio. It is preferably a compound having at least one selected from the group consisting of methanide, 10-campersulfonate, tris (pentafluoroethyl) trifluorophosphate and tetrakis (pentafluorophenyl) borate.
  • the sulfonium salt examples include (2-ethoxy) phenyl [4- (4-biphenylylthio) -3-ethoxyphenyl] 4-biphenylyl sulfonium nonafluorobutane sulfonate, [4- (4-biphenylylthio) phenyl]-.
  • Examples thereof include 4-biphenylylphenyl sulfonium tetrakis (pentafluorophenyl) borate and tris [4- (4-acetylphenyl sulfanyl) phenyl] sulfonium tetrakis (pentafluorophenyl) borate.
  • the sulfonium salt may be used alone or in combination of two or more.
  • sulfonimide compound examples include N- (trifluoromethylsulfonyloxy) succinimide, N- (trifluoromethylsulfonyloxy) phthalimide, N- (trifluoromethylsulfonyloxy) diphenylmaleimide, and N- (trifluoromethylsulfonyloxy) bicyclo.
  • Hept-5-ene-2,3-dicarboxyimide N- (trifluoromethylsulfonyloxy) naphthylimide, N- (p-toluenesulfonyloxy) -1,8-naphthalimide, Examples thereof include N- (10-campharsulfonyloxy) -1,8-naphthalimide.
  • the sulfoneimide compound may be used alone or in combination of two or more.
  • the content of the component (C) is preferably in the following range with respect to 100 parts by mass of the component (A) from the viewpoint that the sensitivity, resolution, pattern shape, etc. of the photosensitive resin composition can be easily improved.
  • the content of the component (C) is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, further preferably 0.5 parts by mass or more, particularly preferably 1 part by mass or more, and 2 parts by mass or more. Is extremely preferable, 3 parts by mass or more is very preferable, and 4 parts by mass or more is even more preferable.
  • the content of the component (C) is preferably 15 parts by mass or less, more preferably 10 parts by mass or less, further preferably 8 parts by mass or less, and particularly preferably 5 parts by mass or less.
  • the content of the component (C) is preferably 0.1 to 15 parts by mass, more preferably 0.3 to 10 parts by mass, further preferably 0.5 to 10 parts by mass, and 1 to 10 parts by mass. Parts are particularly preferable, 2 to 10 parts by mass is extremely preferable, 3 to 8 parts by mass is very preferable, and 4 to 5 parts by mass is even more preferable.
  • the photosensitive resin composition according to the present embodiment has, as other additives, an adhesion-imparting agent; a solvent; a sensitizer; a leveling agent; an inorganic filler; an inhibitor of a reaction associated with irradiation with active rays; an adhesion aid, etc. Can be contained. Additives can be used to adjust the physical properties of the cured product of the photosensitive resin composition.
  • the photosensitive resin composition according to the present embodiment may contain an adhesion-imparting agent as the component (D).
  • an adhesion-imparting agent as the component (D).
  • the component (D) By using the component (D), the adhesion strength between the photosensitive layer and the base material after forming the resin pattern can be improved.
  • the component (D) one type can be used alone or two or more types can be used in combination.
  • component (D) examples include alkylsilane, alkoxysilane, vinylsilane, epoxysilane, aminosilane, acryloylsilane, methacryloylsilane, mercaptosilane, sulfidesilane, isocyanatesilane, sulfersilane, styrylsilane, and alkylchlorosilane.
  • component (D) examples include methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, methyltriethoxysilane, methyltriphenoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, diisopropyldimethoxysilane, and isobutyl.
  • an epoxysilane having at least one glycidyloxy group is preferable, and an epoxysilane having at least one selected from the group consisting of a trimethoxysilyl group and a triethoxysilyl group is more preferable.
  • the component (D) preferably contains at least one selected from the group consisting of epoxysilane, mercaptosilane, isocyanatesilane, acryloylsilane, and methacryloylsilane from the viewpoint of easily obtaining high resolution.
  • the content of the component (D) is preferably in the following range with respect to 100 parts by mass of the component (A).
  • the content of the component (D) is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and further preferably 4 parts by mass or more.
  • the content of the component (D) is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, further preferably 8 parts by mass or less, and particularly preferably 5 parts by mass or less. From these viewpoints, the content of the component (D) is preferably 1 to 20 parts by mass, more preferably 3 to 10 parts by mass, further preferably 4 to 8 parts by mass, and particularly preferably 4 to 5 parts by mass.
  • the photosensitive resin composition according to the present embodiment can contain a solvent as the component (E).
  • a solvent as the component (E).
  • the handleability of the photosensitive resin composition can be improved, and the viscosity and storage stability can be adjusted.
  • the component (E) one type can be used alone or two or more types can be used in combination.
  • the component (E) preferably contains an organic solvent.
  • the organic solvent include ethylene glycol monoalkyl ether acetate such as ethylene glycol monomethyl ether acetate and ethylene glycol monoethyl ether acetate; propylene such as propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether and propylene glycol monobutyl ether.
  • Glycol monoalkyl ether propylene glycol dialkyl ether such as propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dipropyl ether, propylene glycol dibutyl ether; propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate , Propylene glycol monoalkyl ether acetate such as propylene glycol monobutyl ether acetate; Cellosolve such as ethyl cellosolve and butyl cellosolve; Carbitol such as butyl carbitol; Lactic acid esters such as methyl lactate, ethyl lactate, n-propyl lactate and isopropyl lactate; acetic acid Aliphatic carboxylic acid esters such as ethyl, n-propyl acetate, isopropyl
  • the content of the component (E) is preferably in the following range based on the total amount of the photosensitive resin composition (excluding the component (E)).
  • the content of the component (E) is preferably 30% by mass or more, more preferably 60% by mass or more.
  • the content of the component (E) is preferably 200% by mass or less, more preferably 120% by mass or less. From these viewpoints, the content of the component (E) is preferably 30 to 200% by mass, more preferably 60 to 120% by mass.
  • the photosensitive resin composition according to the present embodiment may contain a sensitizer.
  • a sensitizer By using a sensitizer, it is easy to improve the sensitivity of the photosensitive resin composition.
  • the sensitizer include 9,10-dibutoxyanthracene and the like.
  • the content of the sensitizer is preferably 0.01 to 1.5 parts by mass, and more preferably 0.05 to 0.5 parts by mass with respect to 100 parts by mass of the component (A).
  • the photosensitive resin composition according to the present embodiment may contain a leveling agent.
  • the leveling agent include a silicon-based leveling agent, a fluorine-based leveling agent, and an acrylic-based leveling agent.
  • the silicon-based leveling agent include ethylene oxide or a compound in which one or more long chains containing propylene oxide and an alkyl group are bonded to a chain in which one or more SiO units are continuously bonded.
  • Specific examples of the leveling agent include SH-193 and SH-7PA manufactured by Toray Dow Corning Silicone Co., Ltd .; BYK-333 and BYK-344 manufactured by Big Chemie Co., Ltd. and the like.
  • the photosensitive resin composition according to the present embodiment may contain an inorganic filler.
  • Inorganic fillers include aluminum compounds such as aluminum oxide and aluminum hydroxide; alkali metal compounds; alkaline earth metal compounds such as calcium carbonate, calcium hydroxide, barium sulfate, barium carbonate, magnesium oxide and magnesium hydroxide; talc and mica.
  • Inorganic compounds derived from mineral products such as, molten spherical silica, molten pulverized silica, fuming silica, silica such as solgel silica and the like can be mentioned.
  • an inorganic filler having a coefficient of thermal expansion of 5.0 ⁇ 10 -6 / ° C. or less is preferable, silica is more preferable, and molten spherical silica, fuzzy silica, and sol-gel silica are preferable. At least one selected from the group consisting of is more preferable.
  • silica at least one selected from the group consisting of fuzzy silica and sol-gel silica is preferable, and silica (nanosilica) having an average primary particle diameter of 5 to 100 nm is more preferable.
  • the primary particle size can be obtained by converting from the BET specific surface area.
  • the average particle size of the inorganic filler is determined from the viewpoint of suppressing light scattering in the exposure wavelength region (for example, 300 to 450 nm) of the photosensitive resin composition (that is, suppressing a decrease in transmittance in the exposure wavelength region). It is preferably 100 nm or less, more preferably 80 nm or less, further preferably 50 nm or less, and particularly preferably 30 nm or less.
  • the lower limit of the average particle size of the inorganic filler is, for example, 5 nm or more.
  • the average particle size of the inorganic filler is the average particle size of the inorganic filler dispersed in the photosensitive resin composition, and can be obtained by measuring as follows. First, the photosensitive resin composition is diluted (or dissolved) 1000-fold with methyl ethyl ketone, and then conformed to the international standard ISO13321 using a submicron particle analyzer (manufactured by Beckman Coulter, Inc., trade name: N5). Then, the particles dispersed in the solvent are measured at a refractive index of 1.38, and the particle size at an integrated value of 50% (volume basis) in the particle size distribution is taken as the average particle size.
  • a submicron particle analyzer manufactured by Beckman Coulter, Inc., trade name: N5
  • the particle diameter at the integrated value of 99.9% (volume basis) in the particle size distribution is defined as the maximum particle diameter. Even if the photosensitive layer or the cured product of the photosensitive resin composition provided on the support is diluted (or dissolved) 1000 times (volume ratio) with a solvent as described above, the submicron particles are described above. It can be measured using an analyzer.
  • a known particle size distribution meter When measuring the particle size of each inorganic filler, it is preferable to use a known particle size distribution meter.
  • a laser diffraction-scattering particle size distribution meter that irradiates a group of particles with laser light and calculates the particle size distribution from the intensity distribution pattern of the diffracted / scattered light emitted from the particle group; the particle size using frequency analysis by the dynamic light scattering method. Examples thereof include a particle size distribution meter for obtaining a distribution.
  • the content of the inorganic filler is preferably 20 to 300 parts by mass, more preferably 50 to 300 parts by mass, and even more preferably 100 to 300 parts by mass with respect to 100 parts by mass of the component (A).
  • the content of the inorganic filler is 20 parts by mass or more, the coefficient of thermal expansion is likely to be lowered.
  • the content of the inorganic filler is 300 parts by mass or less, good resolution can be easily exhibited.
  • the cured product according to the present embodiment is a cured product of the photosensitive resin composition according to the present embodiment.
  • the cured product according to the present embodiment can be used, for example, as a surface protective film, an interlayer insulating film, a solder resist, or the like in an electronic component device.
  • the cured product according to the present embodiment can be used, for example, as a surface protective film or an interlayer insulating film of a semiconductor element, or as a solder resist and / or an interlayer insulating film in a wiring board (for example, a multilayer printed wiring board).
  • the thickness of the cured product may be 1 to 100 ⁇ m, 2 to 60 ⁇ m, 3 to 50 ⁇ m, 3 to 20 ⁇ m, or 3 to 10 ⁇ m.
  • the cured product according to the present embodiment may have a pattern with an aspect ratio (thickness / width) of 3.0 or more.
  • the shape of the pattern include a linear shape (line shape) and a tubular shape.
  • the pattern (for example, a linear pattern) include a convex pattern, a concave pattern, and an uneven pattern in which convex and concave are alternately arranged.
  • the dissolved portion or the non-dissolved portion (pixels) after development may have an aspect ratio of 3.0 or more.
  • the width of the pattern having an aspect ratio of 3.0 or more may be 2.0 ⁇ m or less, less than 2.0 ⁇ m, 1.5 ⁇ m or less, less than 1.5 ⁇ m, 1.2 ⁇ m or less, or 1.0 ⁇ m or less.
  • the minimum width of the pattern may be used.
  • the lower limit of the width of the pattern may be more than 0 ⁇ m, 0.1 ⁇ m or more, or 0.5 ⁇ m or more.
  • the photosensitive element according to the present embodiment includes a support and a photosensitive layer arranged on the support, and the photosensitive layer includes the photosensitive resin composition according to the present embodiment.
  • the photosensitive element according to the present embodiment may include a protective film that covers the photosensitive layer.
  • FIG. 1 is a schematic cross-sectional view showing an example of a photosensitive element.
  • the photosensitive element 10 shown in FIG. 1 includes a support 12, a photosensitive layer 14 arranged on the support 12, and a protective film 16 arranged on the photosensitive layer 14. Includes the photosensitive resin composition according to this embodiment.
  • a polymer film having heat resistance and solvent resistance such as polyethylene terephthalate, polypropylene, polyethylene, polyester, etc. can be used.
  • one polymer film can be used as a support and the other polymer film can be used as a protective film.
  • the thickness of the support and / or the protective film is preferably 5 to 25 ⁇ m.
  • the photosensitive layer is a layer formed by using the photosensitive resin composition according to the present embodiment, and can be formed by applying the photosensitive resin composition on a support or a protective film.
  • the coating method include a dipping method, a spray method, a bar coating method, a roll coating method, a spin coating method and the like.
  • the thickness (after drying) of the photosensitive layer varies depending on the application, but is preferably 1 to 100 ⁇ m, more preferably 2 to 60 ⁇ m, further preferably 3 to 50 ⁇ m, particularly preferably 3 to 20 ⁇ m, and extremely preferably 3 to 10 ⁇ m.
  • the method for producing a resist pattern (forming method) according to the present embodiment is a photosensitive layer for forming a photosensitive layer on a substrate by using the photosensitive resin composition according to the present embodiment or the photosensitive element according to the present embodiment.
  • a layer forming step, an exposure step of exposing the photosensitive layer to a predetermined pattern, and a developing step of developing the photosensitive layer are provided in this order.
  • the photosensitive layer may be heat-treated after exposure and / or development.
  • the method for producing a resist pattern according to the present embodiment includes a step of forming a photosensitive layer on a substrate by using the photosensitive resin composition according to the present embodiment or the photosensitive element according to the present embodiment.
  • a step of heat-treating the photosensitive layer after exposing the photosensitive layer to a predetermined pattern and a step of heat-treating the photosensitive layer after developing the photosensitive layer are provided in this order.
  • an example of a method for producing a resist pattern according to the present embodiment will be further described.
  • a photosensitive layer containing the photosensitive resin composition according to the present embodiment is formed on a substrate on which a resist is to be formed.
  • a method for forming the photosensitive layer a method for forming a photosensitive layer (coating film) by applying a photosensitive resin composition to a substrate and then drying to volatilize a solvent or the like; a photosensitive element according to the present embodiment. Examples thereof include a method of transferring the photosensitive layer on the substrate.
  • the base material a chip, a substrate, or the like can be used as the base material. Examples of the base material include a copper foil with a resin, a copper-clad laminate, a silicon wafer with a metal sputtering film, and an alumina substrate.
  • Examples of the method for applying the photosensitive resin composition to the substrate include a dipping method, a spray method, a bar coating method, a roll coating method, a spin coating method, a slit method, a slit and spin coating method, and the like.
  • the thickness of the photosensitive layer (coating film) can be appropriately controlled by the coating means, the solid content concentration and the viscosity of the photosensitive resin composition, and the like.
  • the photosensitive layer is exposed to a predetermined pattern via a predetermined mask pattern.
  • the active light beam used for exposure include a light beam of a g-ray stepper; an ultraviolet ray such as a low-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, and an i-line stepper; an electron beam; a laser beam and the like.
  • the exposure amount is appropriately selected depending on the light source used, the thickness of the photosensitive layer, and the like. For example, in the case of ultraviolet irradiation from a high-pressure mercury lamp, the exposure amount is about 100 to 5000 mJ / cm 2 when the thickness of the photosensitive layer is 10 to 50 ⁇ m.
  • baking after exposure heat treatment
  • the curing reaction of the component (B) by the generated acid can be promoted.
  • the conditions for baking after exposure differ depending on the content of the photosensitive resin composition, the thickness of the photosensitive layer (coating film), and the like. For example, heating at 60 to 150 ° C. for 1 to 60 minutes is preferable, and heating at 70 to 120 ° C. for 1 to 60 minutes is more preferable.
  • the photosensitive layer that has been exposed and / or baked after exposure is developed with a developing solution to dissolve and remove the region (unexposed portion) other than the cured portion to obtain a desired resist pattern.
  • a developing solution to dissolve and remove the region (unexposed portion) other than the cured portion to obtain a desired resist pattern.
  • Examples of the developing method in this case include a shower developing method, a spray developing method, a dipping developing method, a paddle developing method, and the like.
  • the developing conditions are, for example, 20 to 40 ° C. for 1 to 10 minutes.
  • the developer is not particularly limited, but the developer can contain a component that dissolves the unexposed portion of the photosensitive layer.
  • the developing solution include an organic solvent and an alkaline developing solution.
  • the organic solvent include a solvent that dissolves the photosensitive resin composition and does not damage the substrate (for example, the above-mentioned component (E)).
  • the alkaline developer is, for example, an alkaline aqueous solution obtained by dissolving an alkaline compound (sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, choline, etc.) in water so that the concentration is 1 to 10% by mass.
  • An alkaline aqueous solution such as aqueous ammonia can be mentioned.
  • the alkaline developer can contain, for example, a water-soluble organic solvent such as methanol or ethanol; an appropriate amount of a surfactant or the like. After developing with an alkaline developer, it can be washed and dried with water.
  • a water-soluble organic solvent such as methanol or ethanol
  • a surfactant or the like After developing with an alkaline developer, it can be washed and dried with water.
  • tetramethylammonium hydroxide is preferable from the viewpoint that excellent resolution can be easily obtained.
  • a cured product (resist pattern) of the photosensitive resin composition can be obtained by performing a heat treatment after development.
  • the curing conditions of the photosensitive resin composition are not particularly limited.
  • the photosensitive resin composition can be cured by heating at 50 to 250 ° C. for 30 minutes to 10 hours, for example.
  • it can be cured by heating at 50 to 120 ° C. for 5 minutes to 2 hours in the first stage and then heating at 80 to 200 ° C. for 10 minutes to 10 hours in the second stage.
  • heating equipment There are no particular restrictions on the heating equipment, and a general oven, infrared furnace, etc. can be used.
  • the electronic component device includes a cured product according to the present embodiment.
  • the electronic component device according to the present embodiment is a cured product according to the present embodiment as a surface protective film or an interlayer insulating film of a semiconductor element, or a solder resist and / or an interlayer insulating film in a wiring board (for example, a multilayer printed wiring board). It has.
  • Examples of the electronic component device include a semiconductor device including a semiconductor element or a semiconductor wafer as the electronic component; a wiring board (for example, a multilayer printed wiring board) and the like.
  • FIG. 2 is a schematic cross-sectional view showing an example of a method for manufacturing a multilayer printed wiring board having a cured product according to the present embodiment as a solder resist and / or an interlayer insulating material.
  • the multilayer printed wiring board 100 shown in FIG. 2 (f) has a wiring pattern on the surface and inside.
  • the multilayer printed wiring board 100 can be obtained by laminating a copper-clad laminate, an interlayer insulating material, a metal foil, or the like, and appropriately forming a wiring pattern by an etching method or a semi-additive method.
  • a method for manufacturing the multilayer printed wiring board 100 will be briefly described with reference to FIG.
  • the interlayer insulating film 103 is formed on both sides of the copper-clad laminate 101 having the wiring pattern 102 on the surface (see FIG. 2A).
  • the interlayer insulating film 103 may be formed by printing a photosensitive resin composition using a screen printing machine or a roll coater.
  • the above-mentioned photosensitive element is prepared in advance, and the photosensitive element is photosensitive using a laminator.
  • the layer can also be formed by being attached to the surface of the copper-clad laminate 101.
  • an opening 104 is formed at a location that needs to be electrically connected to the outside by using a YAG laser or a carbon dioxide laser (see FIG. 2B). Smear (residue) around the opening 104 can be removed by desmear treatment.
  • the seed layer 105 is formed by the electroless plating method (see FIG. 2C).
  • a photosensitive layer containing the above-mentioned photosensitive resin composition is formed on the seed layer 105, and a predetermined portion is exposed and developed to form a resin pattern 106 (see FIG. 2D).
  • the wiring pattern 107 is formed in the portion of the seed layer 105 where the resin pattern 106 is not formed by the electrolytic plating method. Then, after removing the resin pattern 106 by the peeling liquid, the portion of the seed layer 105 where the wiring pattern 107 is not formed is removed by etching (see FIG. 2E).
  • the multilayer printed wiring board 100 can be manufactured by repeating the above operation and forming the solder resist 108 containing the cured product of the above-mentioned photosensitive resin composition on the outermost surface (see FIG. 2 (f)).
  • a semiconductor element is mounted at a corresponding portion, and an electrical connection can be secured.
  • A-1 Novolac resin having an alkoxymethyl group (manufactured by Gun Ei Chemical Industry Co., Ltd., trade name: GPCL-03, weight average molecular weight: 3500, alkali dissolution rate: 0.37 ⁇ m / s)
  • A-2 Novolac resin having an alkoxymethyl group (manufactured by Gun Ei Chemical Industry Co., Ltd., trade name: GPCL-011, weight average molecular weight: 5000, alkali dissolution rate: 0.5 ⁇ m / s)
  • A-3 Novolac resin without thermal crosslinkability (manufactured by Asahi Organic Materials Industry Co., Ltd., trade name: TR4020G, weight average molecular weight: 13000, alkali dissolution rate: 0.02 ⁇ m / s)
  • B-1 Trimethylolpropane triglycidyl ether (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: ZX-1542, glycidyloxy group: trifunctional)
  • B-2 Aliphatic epoxy (manufactured by Nagase ChemteX Corporation, trade name: EX-1310, glycidyloxy group: trifunctional)
  • B-3 Ethylglycidyl ether (manufactured by Tokyo Chemical Industry Co., Ltd., trade name: EGE, glycidyloxy group: monofunctional)
  • B-4 Butyl glycidyl ether (manufactured by Wako Pure Chemical Industries, Ltd., trade name: BGE, glycidyloxy group: monofunctional)
  • B-5 Neopentyl diglycidyl ether (manufactured by Tokyo Chemical Industry Co., Ltd., trade name: NDGE, glycidyloxy group:
  • C-1 Triarylsulfonium salt (manufactured by Sun Appro Co., Ltd., trade name: CPI-301B)
  • E-1 Propylene glycol monomethyl ether acetate (manufactured by Kanto Chemical Co., Inc., product name: PGMEA)
  • F-1 1,3,4,6-tetrakis (methoxymethyl) glycoluryl (compound having an alkoxyalkyl group, manufactured by Sanwa Chemical Co., Ltd., trade name: Nicarac MX-270)
  • a lysate was obtained by dissolving 100 parts by mass of the component (A-1), the component (A-2) and the component (A-3) in 100 parts by mass of the component (E-1).
  • a photosensitive layer (coating film) having a thickness of 10 ⁇ m was prepared by spin-coating the solution on a silicon wafer having a diameter of 6 inches and then heating it on a hot plate at 120 ° C. for 3 minutes. Thickness was measured T a1 of the photosensitive layer using a stylus thickness meter.
  • a developing solution at 23 ° C. is sprayed on the photosensitive layer for 5 seconds (pump discharge pressure [developing solution]: 0.16 MPa).
  • As a developing solution a 2.38 mass% tetramethylammonium hydroxide aqueous solution (manufactured by Tama Chemical Industry Co., Ltd., trade name: TMAH 2.38%) was used.
  • TMAH 2.38% tetramethylammonium hydroxide aqueous solution
  • the above-mentioned photosensitive resin composition was spin-coated on a silicon wafer having a diameter of 6 inches and then heated on a hot plate at 120 ° C. for 3 minutes to prepare a photosensitive layer (coating film) having a thickness of 10 ⁇ m.
  • the thickness T1 of the photosensitive layer was measured using a stylus type film thickness meter.
  • the photosensitive layer was exposed through an i-line (365 nm) filter using an exposure machine (Mask-Aliigner ML-210FM, Sanaga Denki Seisakusho Co., Ltd.) with one side of the photosensitive layer shielded from light.
  • the exposure amount was 1000 mJ / cm 2 .
  • An unexposed portion was formed in the light-shielded portion, and an exposed portion was formed in the non-light-shielded portion.
  • the photosensitive layer was then heated at 85 ° C. for 4 minutes (post-exposure baking).
  • a developing machine manufactured by Takizawa Sangyo Co., Ltd., trade name: AD-1200
  • a developing solution at 23 ° C. is sprayed on the photosensitive layer for 5 seconds (pump discharge pressure [developing solution]: 0.16 MPa) to develop. went.
  • As a developing solution a 2.38 mass% tetramethylammonium hydroxide aqueous solution (manufactured by Tama Chemical Industry Co., Ltd., trade name: TMAH 2.38%) was used.
  • TMAH 2.38% tetramethylammonium hydroxide aqueous solution
  • Dissolution rate of exposed part melting [ ⁇ m / s] (thickness T1 [ ⁇ m] -thickness T22 [ ⁇ m]) / 5 [s]
  • the above-mentioned photosensitive resin composition is spin-coated on a silicon wafer having a diameter of 6 inches and then heated on a hot plate at 120 ° C. for 3 minutes to obtain a photosensitive layer (coating film) having a thickness of 3 to 6 ⁇ m in 1 ⁇ m increments.
  • the prepared photosensitive layer was subjected to reduced projection exposure of i-line (365 nm) through a mask using an i-line stepper (manufactured by Canon Inc., trade name: FPA-3000iW).
  • a mask having a line-shaped opening (width: 1.0 ⁇ m, 1.5 ⁇ m, and 2 ⁇ m) from which a pattern of an exposed portion and an unexposed portion having a width of 1: 1 can be obtained was used. It was reduced projection exposure while changing by 100 mJ / cm 2 in the range of exposure amount of 100 ⁇ 1100mJ / cm 2.
  • the exposed photosensitive layer was heated at 85 ° C. for 4 minutes (baking after exposure).
  • a developing machine manufactured by Takizawa Sangyo Co., Ltd., trade name: AD-1200
  • a developer at 23 ° C. was applied to the photosensitive layer in a time equivalent to four times the shortest developing time (the shortest time for removing unexposed areas).
  • the unexposed portion was removed by spraying (pump discharge pressure [developing solution]: 0.16 MPa).
  • developer solution a 2.38 mass% tetramethylammonium hydroxide aqueous solution (manufactured by Tama Chemical Industry Co., Ltd., trade name: TMAH 2.38%) was used.
  • the cured product pattern was observed at a magnification of 1000 times using a metallurgical microscope.
  • the aspect ratio was calculated based on the thickness of the pattern in which the space portion (unexposed portion) was cleanly removed and the line portion (exposed portion) was formed without meandering or chipping.
  • To determine the resolution and aspect ratio in a pattern with a width of 1.5 ⁇ m or less, if the aspect ratio is 3.0 or more, it is determined as A (pass), and if the aspect ratio is less than 3.0, it is B (impossible). ).
  • the evaluation results are shown in Table 1. “Opening NG” in the table indicates that the space portion (unexposed portion) was not sufficiently opened.
  • the photosensitive resin composition according to the present disclosure can be applied as a material used for a surface protective film or an interlayer insulating film of a semiconductor element, a solder resist for a wiring board, a material used for an interlayer insulating film, and the like.
  • the photosensitive resin composition according to the present disclosure has a high resolution and a high aspect ratio, it is possible to suppress wiring resistance, and thus it is suitable for a highly integrated package substrate having thin wires and high densities. Can be used for.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Laminated Bodies (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

(A)成分:熱架橋性を有する有機化合物と、(B)成分:3つ以上のアクリロイルオキシ基、3つ以上のメタクリロイルオキシ基、3つ以上のグリシジルオキシ基、及び、3つ以上の水酸基からなる群より選ばれる少なくとも一種を有する脂肪族化合物と、(C)成分:光感応性酸発生剤と、を含有し、当該感光性樹脂組成物に対して露光量1000mJ/cmで波長365nmの光を照射することにより得られた露光部と、前記感光性樹脂組成物における未露光部と、に2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を接触させたときの前記露光部の溶解速度が0.05μm/s以下であり、かつ、前記未露光部の溶解速度が1.0μm/s以上である、感光性樹脂組成物。

Description

感光性樹脂組成物、硬化物、感光性エレメント、及び、レジストパターンの製造方法
 本開示は、感光性樹脂組成物、硬化物、感光性エレメント、及び、レジストパターンの製造方法に関する。
 半導体素子又はプリント配線板の製造においては、微細なパターンを形成するために、例えば、ネガ型感光性樹脂組成物が使用されている。この方法では、感光性樹脂組成物の塗布等によって基材(例えば、半導体素子の場合はチップ、プリント配線板の場合は基板)上に感光層を形成し、所定のパターンを通して活性光線を照射することで露光部を硬化させる。さらに、現像液を用いて未露光部を選択的に除去することで、感光性樹脂組成物の硬化物であるレジストパターンを基材上に形成する。そのため、感光性樹脂組成物には、活性光線に対する高い感度を有すること、微細なパターンを形成できること(解像性)等に優れることが求められる。そこで、ノボラック樹脂、エポキシ樹脂及び光酸発生剤を含有する感光性樹脂組成物;カルボキシル基を有するアルカリ可溶性エポキシ化合物及び光カチオン重合開始剤を含有する感光性樹脂組成物等が提案されている(例えば、下記特許文献1及び2参照)。
 さらに、半導体素子に用いられる表面保護膜及び層間絶縁膜としては、耐熱性、電気特性、機械特性等の絶縁信頼性が求められる。そこで、上記感光性樹脂組成物に架橋性モノマを更に含有する感光性樹脂組成物が提案されている(例えば、下記特許文献3参照)。
特開平09-087366号公報 国際公開第2008/010521号 特開2003-215802号公報
 一方、近年、電子機器の高性能化に伴い、例えば、半導体素子の高集積化及び高信頼性化が年々進んでいる。半導体素子の高集積化に伴い、更なる微細なパターンの形成が求められる。しかし、半導体素子の高集積化時の微細配線化には、配線の抵抗値の増加を伴う問題がある。抵抗値の増加を抑制するためには、配線を微細化させつつ高アスペクト化することにより配線の断面積を増加させる(単位面積あたりに配置可能な配線の総数を増加させる)ことが必須となってきている。そのため、微細パターンを高アスペクト比で形成可能な感光性樹脂組成物が求められる。
 本開示の一側面は、前記課題を解決しようとするものであり、微細パターンを高アスペクト比で形成可能な感光性樹脂組成物及びその硬化物を提供することを目的とする。また、本開示の他の一側面は、上述の感光性樹脂組成物を含む感光層を備える感光性エレメントを提供することを目的とする。さらに、本開示の他の一側面は、上述の感光性樹脂組成物又は感光性エレメントを用いたレジストパターンの製造方法を提供することを目的とする。
 本開示の一側面は、(A)成分:熱架橋性を有する有機化合物と、(B)成分:3つ以上のアクリロイルオキシ基、3つ以上のメタクリロイルオキシ基、3つ以上のグリシジルオキシ基、及び、3つ以上の水酸基からなる群より選ばれる少なくとも一種を有する脂肪族化合物と、(C)成分:光感応性酸発生剤と、を含有し、当該感光性樹脂組成物に対して露光量1000mJ/cmで波長365nmの光を照射することにより得られた露光部と、前記感光性樹脂組成物における未露光部と、に2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を接触させたときの前記露光部の溶解速度が0.05μm/s以下であり、かつ、前記未露光部の溶解速度が1.0μm/s以上である、感光性樹脂組成物を提供する。
 このような感光性樹脂組成物によれば、微細パターンを高アスペクト比で形成できる。
 本開示の他の一側面は、支持体と、当該支持体上に配置された感光層と、を備え、前記感光層が上述の感光性樹脂組成物を含む、感光性エレメントを提供する。
 本開示の他の一側面は、上述の感光性樹脂組成物の硬化物を提供する。
 本開示の他の一側面は、上述の感光性樹脂組成物又は上述の感光性エレメントを用いて感光層を基材上に形成する工程と、前記感光層を所定のパターンに露光した後に前記感光層を加熱処理する工程と、前記感光層を現像した後に前記感光層を加熱処理する工程と、をこの順に備える、レジストパターンの製造方法を提供する。
 本開示の一側面によれば、微細パターンを高アスペクト比で形成可能な感光性樹脂組成物及びその硬化物を提供できる。また、本開示の他の一側面によれば、上述の感光性樹脂組成物を含む感光層を備える感光性エレメントを提供できる。さらに、本開示の他の一側面によれば、上述の感光性樹脂組成物又は上述の感光性エレメントを用いたレジストパターンの製造方法を提供できる。
感光性エレメントの一例を示す模式断面図である。 多層プリント配線板の製造方法の一例を示す模式断面図である。
 以下、本開示の実施形態について説明するが、本開示はこれに限定されるものではない。
<定義>
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
 本明細書において重量平均分子量は、例えば、標準ポリスチレンの検量線を用いて、ゲルパーミエーションクロマトグラフィー法(GPC)により下記の条件で測定することができる。
 使用機器:日立L-6000型(株式会社日立製作所製)
 カラム:ゲルパックGL-R420+ゲルパックGL-R430+ゲルパックGL-R440(日立化成株式会社製、商品名、計3本)
 カラム仕様:10.7mmφ×300mm
 溶離液:テトラヒドロフラン
 測定温度:40℃
 流量:1.75ml/分
 検出器:L-3300RI(株式会社日立製作所製)
<感光性樹脂組成物>
 本実施形態に係る感光性樹脂組成物は、(A)成分:熱架橋性を有する有機化合物と、(B)成分:3つ以上のアクリロイルオキシ基、3つ以上のメタクリロイルオキシ基、3つ以上のグリシジルオキシ基、及び、3つ以上の水酸基からなる群より選ばれる少なくとも一種を有する脂肪族化合物と、(C)成分:光感応性酸発生剤と、を含有する。本実施形態では、感光性樹脂組成物(本実施形態に係る感光性樹脂組成物)に対して露光量1000mJ/cmで波長365nmの光を照射することにより得られた露光部と、前記感光性樹脂組成物(前記光を照射した感光性樹脂組成物)における未露光部と、に2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を接触させたときの露光部の溶解速度が0.05μm/s以下であり、かつ、未露光部の溶解速度が1.0μm/s以上である。本実施形態に係る感光性樹脂組成物は、ネガ型の感光性樹脂組成物として用いることができる。
 本実施形態に係る感光性樹脂組成物によれば、微細パターンを高アスペクト比で形成できる。本実施形態に係る感光性樹脂組成物によれば、高解像度かつ高アスペクト比でパターン(例えばレジストパターン)を形成できる。本実施形態に係る感光性樹脂組成物によれば、例えば、幅2.0μm以下(好ましくは、幅1.5μm以下)の微細パターンを3.0以上のアスペクト比(厚さ/幅)で形成できる。本実施形態に係る感光性樹脂組成物によれば、例えば、現像後に残る露光部(残存画素)、及び、現像により溶解する未露光部(溶解部)の双方において微細パターンを高アスペクト比で形成できる。
 上述の効果が得られる原因は明らかではないが、本発明者は下記のように推察している。但し、原因は下記の内容に限定されない。すなわち、まず、未露光部では、(A)成分及び(B)成分に起因して、現像液に対する高い溶解速度を得ることができる。一方、露光部では、(B)成分の硬化によって高い耐現像液性を得ることができる。これにより、露光部と未露光部との間で現像液に対する溶解速度差が生じることにより高いアスペクト比を得やすい。そして、(C)成分は、反応性が高いと共に、発生した酸成分の感光性樹脂組成物中における拡散性が低いことから、高い解像度が得られやすい。これらにより、微細パターンを高アスペクト比で形成できる。
 本実施形態に係る感光性樹脂組成物によれば、耐熱性及び耐薬品性が高いパターン(例えばレジストパターン)を得ることができる。(A)成分の架橋化により、高い耐熱性及び耐薬品性が得られると推測される。本実施形態に係る感光性樹脂組成物によれば、高解像度かつ高アスペクト比でありながら、高い耐熱性及び耐薬品性を有する硬化物が得られる。
 本実施形態に係る感光性樹脂組成物に対して露光量1000mJ/cmで波長365nmの光を照射することにより得られた露光部に2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を接触させたときの露光部の溶解速度は、微細パターンを高アスペクト比で形成する観点から、0.05μm/s以下である。露光部の溶解速度は、微細パターンを高アスペクト比で形成しやすい観点から、0.045μm/s以下が好ましく、0.04μm/s以下がより好ましく、0.035μm/s以下が更に好ましく、0.03μm/s以下が特に好ましい。露光部の溶解速度は、0μm/s以上、0μm/sを超える、0.01μm/s以上、0.02μm/s以上、又は、0.03μm/s以上であってよい。
 上述の露光部が形成された感光性樹脂組成物における未露光部に2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を接触させたときの未露光部の溶解速度は、微細パターンを高アスペクト比で形成する観点から、1.0μm/s以上である。未露光部の溶解速度は、微細パターンを高アスペクト比で形成しやすい観点から、1.05μm/s以上が好ましく、1.1μm/s以上がより好ましく、1.15μm/s以上が更に好ましく、1.2μm/s以上が特に好ましく、1.25μm/s以上が極めて好ましく、1.3μm/s以上が非常に好ましい。未露光部の溶解速度は、2.0μm/s以下、1.8μm/s以下、1.5μm/s以下、1.4μm/s以下、又は、1.3μm/s以下であってよい。
 本実施形態に係る感光性樹脂組成物からなる感光層に対して波長365nmの光を照射することにより上述の露光部を得ることができる。感光層は、感光性樹脂組成物を基材上にスピンコートした後、120℃で3分間加熱することにより形成できる。溶解速度を評価するための感光層の厚さは、10μmであってよい。溶解速度の評価では、感光層に対して波長365nmの光を照射した後に感光層を85℃で4分間加熱することにより得られた露光部及び未露光部に2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を接触させることができる。2.38質量%テトラメチルアンモニウムヒドロキシド水溶液は、23℃において、5秒間スプレー(ポンプ吐出圧:0.16MPa)することにより露光部及び未露光部に接触させることができる。露光部及び未露光部の溶解速度は、感光性樹脂組成物の構成成分(例えば(A)成分)の分子量を調整すること、現像液に対する(A)成分の溶解速度を調整すること、(B)成分を用いること等により調整できる。
((A)成分)
 本実施形態に係る感光性樹脂組成物は、(A)成分として、熱架橋性を有する有機化合物を含有する。(A)成分を用いることにより、微細パターンを高アスペクト比で形成できると共に、優れた耐熱性及び耐薬品性を得ることができる。(A)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。(A)成分としては、(B)成分に該当する成分を除く。
 (A)成分は、微細パターンを高アスペクト比で形成しやすい観点、及び、優れた耐熱性及び耐薬品性を得やすい観点から、アルコキシアルキル基及びメチロール基からなる群より選ばれる少なくとも一種を有する化合物を含むことが好ましく、アルコキシアルキル基及びメチロール基からなる群より選ばれる少なくとも一種を有する構造単位を有する化合物を含むことがより好ましい。アルコキシアルキル基のアルキレン基の炭素数は、微細パターンを高アスペクト比で形成しやすい観点から、3以下が好ましく、2以下がより好ましく、1(アルコキシメチル基)が更に好ましい。
 (A)成分は、微細パターンを高アスペクト比で形成しやすい観点から、フェノール性水酸基を有する化合物を含むことが好ましく、フェノール性水酸基と、アルコキシアルキル基及びメチロール基からなる群より選ばれる少なくとも一種と、を有する化合物を含むことがより好ましい。
 熱架橋性を有する有機化合物は、現像液に対して高い溶解性を有していることが好ましい。例えば、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液に対する(A)成分の溶解速度は、微細パターンを高アスペクト比で形成しやすい観点から、下記の範囲が好ましい。(A)成分の溶解速度は、0.3μm/s以上が好ましく、0.32μm/s以上がより好ましく、0.35μm/s以上が更に好ましく、0.37μm/s以上が特に好ましい。(A)成分の溶解速度は、0.5μm/s以下、0.5μm/s未満、0.45μm/s以下、又は、0.4μm/s以下であってよい。これらの観点から、(A)成分の溶解速度は、0.3~0.5μm/sであってよい。(A)成分の溶解速度の評価では、(A)成分からなる層に2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を接触させることができる。2.38質量%テトラメチルアンモニウムヒドロキシド水溶液は、23℃において、5秒間スプレー(ポンプ吐出圧:0.16MPa)することにより、(A)成分からなる層に接触させることができる。(A)成分からなる層の厚さは、10μmであってよい。
 (A)成分は、アルカリ性現像液(例えばアルカリ水溶液)に対する溶解性に優れる観点から、ノボラック樹脂を含むことが好ましい。ノボラック樹脂は、例えば、フェノール類とアルデヒド類とを触媒の存在下で縮合させることにより得ることができる。
 フェノール類としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、o-エチルフェノール、m-エチルフェノール、p-エチルフェノール、o-ブチルフェノール、m-ブチルフェノール、p-ブチルフェノール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール、2,3,5-トリメチルフェノール、3,4,5-トリメチルフェノール、カテコール、レゾルシノール、ピロガロール、α-ナフトール、β-ナフトール等が挙げられる。
 アルデヒド類としては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド等が挙げられる。
 ノボラック樹脂としては、フェノール/ホルムアルデヒド縮合ノボラック樹脂、クレゾール/ホルムアルデヒド縮合ノボラック樹脂、フェノール-ナフトール/ホルムアルデヒド縮合ノボラック樹脂等が挙げられる。
 ノボラック樹脂以外の(A)成分としては、ポリヒドロキシスチレン及びその共重合体、フェノール-キシリレングリコール縮合樹脂、クレゾール-キシリレングリコール縮合樹脂、フェノール-ジシクロペンタジエン縮合樹脂等が挙げられる。
 (A)成分の重量平均分子量は、未露光部での高溶解性を得やすい(未露光部において順テーパ形状のパターンが形成されにくい)観点から、10000以下が好ましく、8000以下がより好ましく、5000以下が更に好ましく、5000未満が特に好ましく、4500以下が極めて好ましく、4000以下が非常に好ましい。(A)成分の重量平均分子量は、露光部において優れた耐現像液性が得られやすい(露光部において逆テーパ形状のパターンが形成されにくい)と共に画素の膜減りが抑制されやすいことから高アスペクト比が得られやすい観点から、1000以上が好ましく、1500以上がより好ましく、2000以上が更に好ましく、2500以上が特に好ましく、3000以上が極めて好ましく、3500以上が非常に好ましい。これらの観点から、(A)成分の重量平均分子量は、1000~10000が好ましく、1000~4000がより好ましい。
 (A)成分の含有量は、現像液に対する感光性樹脂組成物の硬化物の溶解性が高く、硬化物としての優れた耐熱性及び耐薬品性が得られやすい観点から、感光性樹脂組成物の全量((E)成分を除く)を基準として、下記の範囲が好ましい。(A)成分の含有量は、40質量%以上が好ましく、50質量%以上がより好ましく、60質量%以上が更に好ましく、70質量%以上が特に好ましい。(A)成分の含有量は、90質量%以下が好ましく、85質量%以下がより好ましく、80質量%以下が更に好ましい。これらの観点から、(A)成分の含有量は、40~90質量%が好ましく、50~90質量%がより好ましく、50~85質量%が更に好ましく、60~80質量%が特に好ましく、70~80質量%が極めて好ましい。
((B)成分)
 本実施形態に係る感光性樹脂組成物は、(B)成分として、3つ以上のアクリロイルオキシ基、3つ以上のメタクリロイルオキシ基、3つ以上のグリシジルオキシ基、及び、3つ以上の水酸基からなる群より選ばれる少なくとも一種を有する脂肪族化合物を含有する。(B)成分は、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基及び水酸基の少なくとも一つの官能基を3つ以上有している。「脂肪族化合物」とは、主骨格が脂肪族骨格であり、芳香環及び/又は複素環を含まないものをいう。(B)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。
 (B)成分におけるアクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基及び水酸基の各官能基の数、及び/又は、これらの官能基の総数は、微細パターンを高アスペクト比で形成しやすい観点から、3~5つが好ましく、3~4つがより好ましく、3つが更に好ましい。
 (B)成分は、微細パターンを高アスペクト比で形成しやすい観点から、下記一般式(1)で表される化合物、下記一般式(2)で表される化合物、下記一般式(3)で表される化合物、及び、下記一般式(4)で表される化合物からなる群より選ばれる少なくとも一種の化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000001
[一般式(1)中、R11は、水素原子、メチル基、エチル基、水酸基、又は、下記一般式(5)で表される基を示し、R12、R13及びR14は、それぞれ独立にアクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基、水酸基、下記一般式(6)で表される基、又は、下記一般式(7)で表される基を示す。]
Figure JPOXMLDOC01-appb-C000002
[一般式(2)中、R21は、水素原子、メチル基、エチル基、水酸基、又は、下記一般式(5)で表される基を示し、R22、R23及びR24は、それぞれ独立にアクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基、水酸基、下記一般式(6)で表される基、又は、下記一般式(7)で表される基を示す。]
Figure JPOXMLDOC01-appb-C000003
[一般式(3)中、R31、R32、R33、R34、R35及びR36は、それぞれ独立にアクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基、水酸基、下記一般式(6)で表される基、又は、下記一般式(7)で表される基を示す。]
Figure JPOXMLDOC01-appb-C000004
[一般式(4)中、R41及びR44は、それぞれ独立に水素原子、メチル基、エチル基、水酸基、又は、下記一般式(5)で表される基を示し、R42、R43、R45及びR46は、それぞれ独立にアクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基、水酸基、下記一般式(6)で表される基、又は、下記一般式(7)で表される基を示す。]
Figure JPOXMLDOC01-appb-C000005
[一般式(5)中、Rは、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基、又は、水酸基を示す。]
Figure JPOXMLDOC01-appb-C000006
[一般式(6)中、Rは、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基、又は、水酸基を示し、nは、1~10の整数を示す。]
Figure JPOXMLDOC01-appb-C000007
[一般式(7)中、Rは、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基、又は、水酸基を示し、mは、1~10の整数を示す。]
 アクリロイルオキシ基を有する化合物としては、EO変性ジペンタエリスリトールヘキサアクリレート、PO変性ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサアクリレート、EO変性ジトリメチロールプロパンテトラアクリレート、PO変性ジトリメチロールプロパンテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、EO変性ペンタエリスリトールテトラアクリレート、PO変性ペンタエリスリトールテトラアクリレート、ペンタエリスリトールテトラアクリレート、EO変性ペンタエリスリトールトリアクリレート、PO変性ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリアクリレート、EO変性トリメチロールプロパンアクリレート、PO変性トリメチロールプロパンアクリレート、トリメチロールプロパンアクリレート、EO変性グリセリントリアクリレート、PO変性グリセリントリアクリレート、グリセリントリアクリレート等が挙げられる。アクリロイルオキシ基を有する化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。「EO」はエチレンオキシ基を表し、「PO」はプロピレンオキシ基を表す。
 メタクリロイルオキシ基を有する化合物としては、EO変性ジペンタエリスリトールヘキサメタクリレート、PO変性ジペンタエリスリトールヘキサメタクリレート、ジペンタエリスリトールヘキサメタクリレート、EO変性ジトリメチロールプロパンテトラメタクリレート、PO変性ジトリメチロールプロパンテトラメタクリレート、ジトリメチロールプロパンテトラメタクリレート、EO変性ペンタエリスリトールテトラメタクリレート、PO変性ペンタエリスリトールテトラメタクリレート、ペンタエリスリトールテトラメタクリレート、EO変性ペンタエリスリトールトリメタクリレート、PO変性ペンタエリスリトールトリメタクリレート、ペンタエリスリトールトリメタクリレート、EO変性トリメチロールプロパンメタクリレート、PO変性トリメチロールプロパンメタクリレート、トリメチロールプロパンメタクリレート、EO変性グリセリントリメタクリレート、PO変性グリセリントリメタクリレート、グリセリントリメタクリレート等が挙げられる。メタクリロイルオキシ基を有する化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。
 グリシジルオキシ基を有する化合物としては、3価以上の脂肪族多価アルコールにおける水酸基のうち少なくとも3つが、グリシジルオキシ基を含む基により置換された化合物を用いることができる。3価以上の脂肪族多価アルコールとしては、グリセリン、ジグリセリン、トリグリセリン、テトラグリセリン、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、エリスリトール、ペンタエリスリトール、ジペンタエリスリトール、ソルビタン、ソルビトール、1,2,4-ブタントリオール、1,2,6-ヘキサントリオール、2,4-ジヒドロキシ-3-ヒドロキシメチルペンタン、1,1,1-トリス(ビスヒドロキシメチル)プロパン、2,2-ビス(ヒドロキシメチル)ブタノール-3、アラビット、リビトール、キシリトール、マンニット、ガラクチトール、アロズルシット、ショ糖等が挙げられる。
 グリシジルオキシ基を有する化合物としては、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセロールプロポキシレートトリグリシジルエーテル、1,4-シクロヘキサンジメタノールジグリシジルエーテル、ジグリシジル1,2-シクロヘキサンジカルボキシレート等が挙げられる。グリシジルオキシ基を有する化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。
 グリシジルオキシ基を有する化合物は、優れた感度及び解像性を得やすい観点から、トリメチロールエタントリグリシジルエーテル及びトリメチロールプロパントリグリシジルエーテルからなる群より選ばれる少なくとも一種を含むことが好ましい。
 グリシジルオキシ基を有する化合物は、例えば、エポライト40E、エポライト100E、エポライト70P、エポライト200P、エポライト1500NP、エポライト1600、エポライト80MF、エポライト100MF(以上、共栄社化学株式会社製、商品名)、アルキル型エポキシ樹脂ZX-1542(新日鉄住金化学株式会社製、商品名)、デナコールEX-212L、デナコールEX-214L、デナコールEX-216L、デナコールEX-321L及びデナコールEX-850L(以上、ナガセケムテック株式会社製、商品名)として商業的に入手できる。
 水酸基を有する化合物としては、ジペンタエリスリトール、ペンタエリスリトール、グリセリン等の多価アルコールなどが挙げられる。水酸基を有する化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。
 (B)成分は、微細パターンを高アスペクト比で形成しやすい観点から、3つ以上のアクリロイルオキシ基、3つ以上のメタクリロイルオキシ基、及び、3つ以上のグリシジルオキシ基からなる群より選ばれる少なくとも一種を有することが好ましく、3つ以上のアクリロイルオキシ基、及び、3つ以上のグリシジルオキシ基からなる群より選ばれる少なくとも一種を有することがより好ましい。
 特に、(B)成分は、優れた現像性が得られやすく、微細パターンを高アスペクト比で形成しやすい観点から、3つ以上のグリシジルオキシ基を有する脂肪族化合物を含むことが好ましい。(B)成分は、優れた現像性が得られやすい観点から、3つ以上のグリシジルオキシ基を有する分子量(例えば重量平均分子量)1000以下の脂肪族化合物を含むことが好ましく、3つ以上のグリシジルオキシ基を有する分子量(例えば重量平均分子量)1000以下の脂肪族化合物を含むことがより好ましい。
 (B)成分の分子量(例えば重量平均分子量)は、微細パターンを高アスペクト比で形成しやすい観点から、下記の範囲が好ましい。(B)成分の分子量は、1000以下が好ましく、800以下がより好ましく、600以下が更に好ましく、500以下が特に好ましく、400以下が極めて好ましい。(B)成分の分子量は、100以上が好ましく、150以上がより好ましく、200以上が更に好ましく、250以上が特に好ましく、300以上が極めて好ましい。これらの観点から、(B)成分の分子量は、100~1000が好ましい。
 (B)成分の含有量は、(A)成分100質量部に対して下記の範囲が好ましい。(B)成分の含有量は、露光部における充分な架橋が得られやすいため解像性が向上しやすい観点から、20質量部以上が好ましく、25質量部以上がより好ましく、30質量部以上が更に好ましい。(B)成分の含有量は、感光性樹脂組成物を所望の基材又は支持体上に成膜しやすく、解像性が低下しにくい傾向がある観点から、70質量部以下が好ましく、65質量部以下がより好ましく、55質量部以下が更に好ましく、50質量部以下が特に好ましく、45質量部以下が極めて好ましく、40質量部以下が非常に好ましく、35質量部以下がより一層好ましい。これらの観点から、(B)成分の含有量は、20~70質量部が好ましく、25~65質量部がより好ましく、30~55質量部が更に好ましく、30~50質量部が特に好ましく、30~45質量部が極めて好ましく、30~40質量部が非常に好ましく、30~35質量部がより一層好ましい。
((C)成分)
 本実施形態に係る感光性樹脂組成物は、(C)成分として光感応性酸発生剤を含有する。光感応性酸発生剤は、活性光線等の照射によって酸を発生する化合物である。光感応性酸発生剤から発生する酸の触媒効果により、(B)成分中の官能基が反応することによって現像液に対する感光性樹脂組成物の溶解性が大幅に低下し、ネガ型のパターンを形成することができる。(C)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。(C)成分としては、(A)成分又は(B)成分に該当する成分を除く。
 (C)成分は、光(活性光線等)の照射によって酸を発生する化合物であれば特に限定されない。(C)成分としては、オニウム塩化合物、ハロゲン含有化合物、ジアゾケトン化合物、スルホン化合物、スルホン酸化合物、スルホンイミド化合物、ジアゾメタン化合物等が挙げられる。(C)成分は、入手の容易さに優れる観点から、オニウム塩化合物及びスルホンイミド化合物からなる群より選ばれる少なくとも一種を含むことが好ましい。特に、(C)成分は、(E)成分を用いる場合において(E)成分に対する溶解性に優れる観点から、オニウム塩化合物を含むことが好ましい。
 オニウム塩化合物としては、ヨードニウム塩、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等が挙げられる。オニウム塩化合物としては、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロブタンスルホネート、ジフェニルヨードニウムヘプタデカフルオロオクタンスルホネート、ジフェニルヨードニウムp-トルエンスルホネート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムトリス(ペンタフルオロエチル)トリフルオロホスフェート、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウムトリス[(トリフルオロメチル)スルホニル]メタニド等のジアリールヨードニウム塩;トリアリールスルホニウム塩などが挙げられる。オニウム塩化合物としては、感度及び熱的安定性を更に向上させる観点から、スルホニウム塩が好ましい。スルホニウム塩としては、熱的安定性を更に向上させる観点から、トリアリールスルホニウム塩が好ましい。オニウム塩化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。
 トリアリールスルホニウム塩としては、例えば、下記一般式(c1)で表される化合物、下記一般式(c2)で表される化合物、下記一般式(c3)で表される化合物、及び、下記一般式(c4)で表される化合物からなる群より選ばれる少なくとも一種のカチオンと、テトラフェニルボレート骨格、炭素数1~20のアルキルスルホネート骨格、フェニルスルホネート骨格、10-カンファースルホネート骨格、炭素数1~20のトリスアルキルスルホニルメタニド骨格、テトラフルオロボレート骨格、ヘキサフルオロアンチモネート骨格及びヘキサフルオロホスフェート骨格からなる群より選ばれる少なくとも一種の骨格を有するアニオンと、を有するスルホニウム塩が挙げられる。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 一般式(c1)、(c2)、(c3)及び(c4)のフェニル基の水素原子は、水酸基、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数2~12のアルキルカルボニル基、及び、炭素数2~12のアルコキシカルボニル基からなる群より選ばれる少なくとも一種で置換されていてもよい。置換基が複数の場合は、互いに同一であっても異なっていてもよい。
 テトラフェニルボレート骨格のフェニル基の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数2~12のアルキルカルボニル基、及び、炭素数2~12のアルコキシカルボニル基からなる群より選ばれる少なくとも一種で置換されていてもよい。置換基が複数の場合は、互いに同一であっても異なっていてもよい。
 アルキルスルホネート骨格の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、アルコキシ基、アルキルカルボニル基、及び、アルコキシカルボニル基からなる群より選ばれる少なくとも一種で置換されていてもよい。置換基が複数の場合は、互いに同一であっても異なっていてもよい。
 フェニルスルホネート骨格のフェニル基の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数2~12のアルキルカルボニル基、及び、炭素数2~12のアルコキシカルボニル基からなる群より選ばれる少なくとも一種で置換されていてもよい。置換基が複数の場合は、互いに同一であっても異なっていてもよい。
 トリスアルキルスルホニルメタニド骨格の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、アルコキシ基、アルキルカルボニル基、及び、アルコキシカルボニル基からなる群より選ばれる少なくとも一種で置換されていてもよい。置換基が複数の場合は、互いに同一であっても異なっていてもよい。
 ヘキサフルオロホスフェート骨格のフッ素原子は、水素原子、炭素数1~12のアルキル基、及び、炭素数1~12のパーフルオロアルキル基からなる群より選ばれる少なくとも一種で置換されていてもよい。置換基が複数の場合は、互いに同一であっても異なっていてもよい。
 (C)成分として用いられるスルホニウム塩は、感度、解像性及び絶縁性に更に優れる観点から、カチオンとして、[4-(4-ビフェニリルチオ)フェニル]-4-ビフェニリルフェニルスルホニウム、(2-メチル)フェニル[4-(4-ビフェニリルチオ)フェニル]4-ビフェニリルスルホニウム、[4-(4-ビフェニリルチオ)-3-メチルフェニル]4-ビフェニリルフェニルスルホニウム、(2-エトキシ)フェニル[4-(4-ビフェニリルチオ)-3-エトキシフェニル]4-ビフェニリルスルホニウム、及び、トリス[4-(4-アセチルフェニルスルファニル)フェニル]スルホニウムからなる群より選ばれる少なくとも一種を有する化合物であることが好ましい。
 (C)成分として用いられるスルホニウム塩は、微細パターンを高アスペクト比で形成しやすい観点から、アニオンとして、トリフルオロメタンスルホネート、ノナフルオロブタンスルホネート、ヘキサフルオロアンチモネート、トリス[(トリフルオロメチル)スルホニル]メタニド、10-カンファースルホネート、トリス(ペンタフルオロエチル)トリフルオロホスフェート及びテトラキス(ペンタフルオロフェニル)ボレートからなる群より選ばれる少なくとも一種を有する化合物であることが好ましい。
 スルホニウム塩としては、(2-エトキシ)フェニル[4-(4-ビフェニリルチオ)-3-エトキシフェニル]4-ビフェニリルスルホニウムノナフルオロブタンスルホネート、[4-(4-ビフェニリルチオ)フェニル]-4-ビフェニリルフェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリス[4-(4-アセチルフェニルスルファニル)フェニル]スルホニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。スルホニウム塩は、1種を単独で又は2種以上を組み合わせて用いることができる。
 スルホンイミド化合物としては、N-(トリフルオロメチルスルホニルオキシ)スクシンイミド、N-(トリフルオロメチルスルホニルオキシ)フタルイミド、N-(トリフルオロメチルスルホニルオキシ)ジフェニルマレイミド、N-(トリフルオロメチルスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(トリフルオロメチルスルホニルオキシ)ナフチルイミド、N-(p-トルエンスルホニルオキシ)-1,8-ナフタルイミド、N-(10-カンファースルホニルオキシ)-1,8-ナフタルイミド等が挙げられる。スルホンイミド化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。
 (C)成分の含有量は、感光性樹脂組成物の感度、解像性、パターン形状等が向上しやすい観点から、(A)成分100質量部に対して下記の範囲が好ましい。(C)成分の含有量は、0.1質量部以上が好ましく、0.3質量部以上がより好ましく、0.5質量部以上が更に好ましく、1質量部以上が特に好ましく、2質量部以上が極めて好ましく、3質量部以上が非常に好ましく、4質量部以上がより一層好ましい。(C)成分の含有量は、15質量部以下が好ましく、10質量部以下がより好ましく、8質量部以下が更に好ましく、5質量部以下が特に好ましい。これらの観点から、(C)成分の含有量は、0.1~15質量部が好ましく、0.3~10質量部がより好ましく、0.5~10質量部が更に好ましく、1~10質量部が特に好ましく、2~10質量部が極めて好ましく、3~8質量部が非常に好ましく、4~5質量部がより一層好ましい。
(その他の添加剤)
 本実施形態に係る感光性樹脂組成物は、その他の添加剤として、密着性付与剤;溶剤;増感剤;レベリング剤;無機フィラー;活性光線の照射に伴う反応の抑制剤;密着助剤等を含有することができる。添加剤は、感光性樹脂組成物の硬化物の物性を調整するために用いることができる。
 本実施形態に係る感光性樹脂組成物は、(D)成分として密着性付与剤を含有していてもよい。(D)成分を用いることにより、樹脂パターン形成後の感光層と基材との密着強度を向上させることができる。(D)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。
 (D)成分としては、アルキルシラン、アルコキシシラン、ビニルシラン、エポキシシラン、アミノシラン、アクリロイルシラン、メタクリロイルシラン、メルカプトシラン、スルフィドシラン、イソシアネートシラン、サルファーシラン、スチリルシラン、アルキルクロロシラン等が挙げられる。
 (D)成分の具体例としては、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、メチルトリエトキシシラン、メチルトリフェノキシシラン、エチルトリメトキシシラン、n-プロピルトリメトキシシラン、ジイソプロピルジメトキシシラン、イソブチルトリメトキシシラン、ジイソブチルジメトキシシラン、イソブチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、シクロヘキシルメチルジメトキシシラン、n-オクチルトリエトキシシラン、n-ドデシルメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、トリフェニルシラノール、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、n-オクチルジメチルクロロシラン、テトラエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド、ビニルトリアセトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン、アリルトリメトキシシラン、ジアリルジメチルシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルメチルジメトキシシラン、3-メタクリロイルオキシプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリエトキシシラン、N-(1,3-ジメチルブチリデン)-3-アミノプロピルトリエトキシシラン、アミノシラン等が挙げられる。
 (D)成分としては、グリシジルオキシ基を1つ以上有するエポキシシランが好ましく、トリメトキシシリル基及びトリエトキシシリル基からなる群より選ばれる少なくとも一種を有するエポキシシランがより好ましい。
 (D)成分は、高解像性が得られやすい観点から、エポキシシラン、メルカプトシラン、イソシアネートシラン、アクリロイルシラン及びメタクリロイルシランからなる群より選ばれる少なくとも一種を含むことが好ましい。
 (D)成分の含有量は、(A)成分100質量部に対して下記の範囲が好ましい。(D)成分の含有量は、1質量部以上が好ましく、3質量部以上がより好ましく、4質量部以上が更に好ましい。(D)成分の含有量は、20質量部以下が好ましく、10質量部以下がより好ましく、8質量部以下が更に好ましく、5質量部以下が特に好ましい。これらの観点から、(D)成分の含有量は、1~20質量部が好ましく、3~10質量部がより好ましく、4~8質量部が更に好ましく、4~5質量部が特に好ましい。
 本実施形態に係る感光性樹脂組成物は、(E)成分として溶剤を含有することができる。(E)成分を用いることにより、感光性樹脂組成物の取り扱い性を向上させることができると共に、粘度及び保存安定性を調節することができる。(E)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。
 (E)成分は、有機溶剤を含むことが好ましい。有機溶剤としては、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート;プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等のプロピレングリコールモノアルキルエーテル;プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテル、プロピレングリコールジブチルエーテル等のプロピレングリコールジアルキルエーテル;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート;エチルセロソルブ、ブチルセロソルブ等のセロソルブ;ブチルカルビトール等のカルビトール;乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸イソプロピル等の乳酸エステル;酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸n-アミル、酢酸イソアミル、プロピオン酸イソプロピル、プロピオン酸n-ブチル、プロピオン酸イソブチル等の脂肪族カルボン酸エステル;3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、ピルビン酸メチル、ピルビン酸エチル等のエステル;トルエン、キシレン等の芳香族炭化水素;2-ブタノン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロヘキサノン等のケトン;N,N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド;γ-ブチロラクトン等のラクトンなどが挙げられる。
 (E)成分の含有量は、感光性樹脂組成物の全量((E)成分を除く)を基準として、下記の範囲が好ましい。(E)成分の含有量は、30質量%以上が好ましく、60質量%以上がより好ましい。(E)成分の含有量は、200質量%以下が好ましく、120質量%以下がより好ましい。これらの観点から、(E)成分の含有量は、30~200質量%が好ましく、60~120質量%がより好ましい。
 本実施形態に係る感光性樹脂組成物は、増感剤を含有してよい。増感剤を用いることにより、感光性樹脂組成物の感度を向上させやすい。増感剤としては、9,10-ジブトキシアントラセン等が挙げられる。増感剤の含有量は、(A)成分100質量部に対して、0.01~1.5質量部であることが好ましく、0.05~0.5質量部であることがより好ましい。
 本実施形態に係る感光性樹脂組成物は、レベリング剤を含有してよい。レベリング剤としては、シリコン系レベリング剤、フッ素系レベリング剤、アクリル系レベリング剤等が挙げられる。シリコン系レベリング剤としては、例えば、1個以上のSiO単位が連続して結合した鎖に、エチレンオキサイド又はプロピレンオキサイドとアルキル基を含む長鎖が1個以上結合した化合物等が挙げられる。レベリング剤の具体例としては、東レ・ダウコーニング・シリコーン株式会社製のSH-193及びSH-7PA;ビック・ケミー社製のBYK-333及びBYK-344等が挙げられる。
 本実施形態に係る感光性樹脂組成物は、無機フィラーを含有してよい。無機フィラーとしては、酸化アルミニウム、水酸化アルミニウム等のアルミニウム化合物;アルカリ金属化合物;炭酸カルシウム、水酸化カルシウム、硫酸バリウム、炭酸バリウム、酸化マグネシウム、水酸化マグネシウム等のアルカリ土類金属化合物;タルク、マイカ等の鉱産物由来の無機化合物;溶融球状シリカ、溶融粉砕シリカ、煙霧状シリカ、ゾルゲルシリカ等のシリカなどが挙げられる。
 無機フィラーとしては、粒子径の観点から、熱膨張係数が5.0×10-6/℃以下である無機フィラーが好ましく、シリカであることがより好ましく、溶融球状シリカ、煙霧状シリカ及びゾルゲルシリカからなる群より選ばれる少なくとも一種が更に好ましい。シリカとしては、煙霧状シリカ及びゾルゲルシリカからなる群より選ばれる少なくとも一種が好ましく、平均一次粒子径が5~100nmのシリカ(ナノシリカ)がより好ましい。一次粒子径は、BET比表面積から換算して得ることができる。
 無機フィラーの含有量に応じて、樹脂パターン形成後の感光層を加熱して得られた硬化物の熱膨張係数を低減できる。無機フィラーの平均粒子径は、感光性樹脂組成物の露光波長領域(例えば、300~450nm)での光散乱を抑える(つまり、当該露光波長領域での透過率の低下を抑制する)観点から、100nm以下が好ましく、80nm以下がより好ましく、50nm以下が更に好ましく、30nm以下が特に好ましい。無機フィラーの平均粒子径の下限は、例えば、5nm以上である。
 無機フィラーの平均粒子径は、感光性樹脂組成物中に分散した状態での無機フィラーの平均粒子径であり、以下のように測定して得ることができる。まず、感光性樹脂組成物をメチルエチルケトンで1000倍に希釈(又は溶解)させた後、サブミクロン粒子アナライザ(ベックマン・コールター株式会社製、商品名:N5)を用いて、国際標準規格ISO13321に準拠して、屈折率1.38で、溶剤中に分散した粒子を測定し、粒度分布における積算値50%(体積基準)での粒子径を平均粒子径とする。また、上記粒度分布における積算値99.9%(体積基準)での粒子径を最大粒子径とする。支持体上に設けられる感光層又は感光性樹脂組成物の硬化物であっても、上述のように溶剤を用いて1000倍(体積比)に希釈(又は溶解)をした後、上記サブミクロン粒子アナライザを用いて測定できる。
 それぞれの無機フィラーの粒子径を測定する際には、公知の粒度分布計を用いることが好ましい。例えば、粒子群にレーザー光を照射し、そこから発せられる回折・散乱光の強度分布パターンから計算によって粒度分布を求めるレーザー回折散乱式粒度分布計;動的光散乱法による周波数解析を用いて粒度分布を求めるナノ粒子の粒度分布計等が挙げられる。
 無機フィラーの含有量は、(A)成分100質量部に対して、20~300質量部が好ましく、50~300質量部がより好ましく、100~300質量部が更に好ましい。無機フィラーの含有量が20質量部以上であることで熱膨張係数を低下させやすい。無機フィラーの含有量が300質量部以下であることで良好な解像性を発現させやすい。
<硬化物>
 本実施形態に係る硬化物は、本実施形態に係る感光性樹脂組成物の硬化物である。本実施形態に係る硬化物は、例えば、電子部品装置における表面保護膜、層間絶縁膜、ソルダーレジスト等として用いることができる。本実施形態に係る硬化物は、例えば、半導体素子の表面保護膜又は層間絶縁膜、あるいは、配線板(例えば多層プリント配線板)におけるソルダーレジスト及び/又は層間絶縁膜として用いることができる。硬化物の厚さは、1~100μm、2~60μm、3~50μm、3~20μm、又は、3~10μmであってよい。
 本実施形態に係る硬化物は、アスペクト比(厚さ/幅)3.0以上のパターンを有してよい。パターンの形状としては、線状(ライン状)、筒状等が挙げられる。パターン(例えば線状のパターン)としては、凸部パターン、凹部パターン、凸部と凹部とが交互に配置された凹凸パターン等が挙げられる。本実施形態に係る硬化物では、例えば、現像後の溶解部又は非溶解部(画素)がアスペクト比3.0以上である態様であってよい。アスペクト比3.0以上のパターンの幅は、2.0μm以下、2.0μm未満、1.5μm以下、1.5μm未満、1.2μm以下、又は、1.0μm以下であってよい。アスペクト比を得るための幅としては、パターンの最小幅を用いてよい。パターンの幅の下限は、0μmを超える、0.1μm以上、又は、0.5μm以上であってよい。
<感光性エレメント>
 本実施形態に係る感光性エレメントは、支持体と、当該支持体上に配置された感光層と、を備え、感光層が、本実施形態に係る感光性樹脂組成物を含む。本実施形態に係る感光性エレメントは、感光層を被覆する保護フィルムを備えていてよい。図1は、感光性エレメントの一例を示す模式断面図である。例えば、図1に示される感光性エレメント10は、支持体12と、支持体12上に配置された感光層14と、感光層14上に配置された保護フィルム16と、を備え、感光層14は、本実施形態に係る感光性樹脂組成物を含む。
 支持体及び/又は保護フィルムとしては、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、ポリエステル等の、耐熱性及び耐溶剤性を有する重合体フィルムを用いることができる。当該重合体フィルムを感光層の両面に配置することにより、一の重合体フィルムを支持体として用い、他の重合体フィルムを保護フィルムとして用いることができる。支持体及び/又は保護フィルムの厚さは、5~25μmであることが好ましい。
 感光層は、本実施形態に係る感光性樹脂組成物を用いて形成された層であり、感光性樹脂組成物を支持体又は保護フィルム上に塗布することにより形成することができる。塗布方法としては、ディッピング法、スプレー法、バーコート法、ロールコート法、スピンコート法等が挙げられる。感光層の厚さ(乾燥後)は、用途により異なるが、1~100μmが好ましく、2~60μmがより好ましく、3~50μmが更に好ましく、3~20μmが特に好ましく、3~10μmが極めて好ましい。
<レジストパターンの製造方法>
 本実施形態に係るレジストパターンの製造方法(形成方法)は、本実施形態に係る感光性樹脂組成物、又は、本実施形態に係る感光性エレメントを用いて感光層を基材上に形成する感光層形成工程と、感光層を所定のパターンに露光する露光工程と、感光層を現像する現像工程と、をこの順に備える。露光工程及び/又は現像工程では、露光及び/又は現像後に感光層を加熱処理してよい。例えば、本実施形態に係るレジストパターンの製造方法は、本実施形態に係る感光性樹脂組成物、又は、本実施形態に係る感光性エレメントを用いて感光層を基材上に形成する工程と、感光層を所定のパターンに露光した後に感光層を加熱処理する工程と、感光層を現像した後に感光層を加熱処理する工程と、をこの順に備える。以下、本実施形態に係るレジストパターンの製造方法の一例について更に説明する。
 まず、レジストを形成すべき基材上に、本実施形態に係る感光性樹脂組成物を含む感光層を形成する。感光層の形成方法としては、感光性樹脂組成物を基材に塗工した後に乾燥して溶剤等を揮発させることにより感光層(塗膜)を形成する方法;本実施形態に係る感光性エレメントにおける感光層を基材上に転写する方法などが挙げられる。基材としては、チップ、基板等を用いることができる。基材としては、樹脂付き銅箔、銅張積層板、金属スパッタ膜を付けたシリコンウエハー、アルミナ基板等が挙げられる。
 基材に対する感光性樹脂組成物の塗布方法としては、ディッピング法、スプレー法、バーコート法、ロールコート法、スピンコート法、スリット法、スリットアンドスピンコート法等が挙げられる。感光層(塗膜)の厚さは、塗布手段、感光性樹脂組成物の固形分濃度及び粘度等により適宜制御することができる。
 次に、所定のマスクパターンを介して、上記感光層を所定のパターンに露光する。露光に用いられる活性光線としては、例えば、g線ステッパーの光線;低圧水銀灯、高圧水銀灯、メタルハライドランプ、i線ステッパー等の紫外線;電子線;レーザー光線などが挙げられる。露光量は、使用する光源、感光層の厚さ等によって適宜選定される。例えば、高圧水銀灯からの紫外線照射の場合、感光層の厚さ10~50μmにおいて露光量は、100~5000mJ/cm程度である。
 続いて、露光後に加熱処理(露光後ベーク)を行う。露光後ベークを行うことにより、発生した酸による(B)成分の硬化反応を促進させることができる。露光後ベークの条件は、感光性樹脂組成物の含有量、感光層(塗膜)の厚さ等によって異なる。例えば、60~150℃で1~60分間加熱することが好ましく、70~120℃で1~60分間加熱することがより好ましい。
 次いで、露光及び/又は露光後ベークを行った感光層を現像液により現像して、硬化部以外の領域(未露光部)を溶解及び除去することにより所望のレジストパターンを得る。この場合の現像方法としては、シャワー現像法、スプレー現像法、浸漬現像法、パドル現像法等が挙げられる。現像条件は、例えば、20~40℃で1~10分間である。
 現像液に特に制限はないが、現像液は、感光層の未露光部を溶解させる成分を含有することができる。現像液としては、有機溶剤、アルカリ性現像液等が挙げられる。有機溶剤としては、感光性樹脂組成物を溶解すると共に基材にダメージを与えない溶剤(例えば上述の(E)成分)等が挙げられる。アルカリ性現像液としては、例えば、濃度が1~10質量%になるようにアルカリ性化合物(水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウムヒドロキシド、コリン等の)を水に溶解して得られるアルカリ性水溶液;アンモニア水等のアルカリ性水溶液などが挙げられる。アルカリ性現像液は、例えば、メタノール、エタノール等の水溶性の有機溶剤;界面活性剤などを適量含有することができる。アルカリ性現像液で現像した後は、水で洗浄及び乾燥することができる。アルカリ性現像液としては、優れた解像性が得られやすい観点から、テトラメチルアンモニウムヒドロキシドが好ましい。
 さらに、絶縁膜特性を発現させる等の観点から、現像後に加熱処理を行うことにより感光性樹脂組成物の硬化物(レジストパターン)を得ることができる。感光性樹脂組成物の硬化条件は特に制限されない。硬化物の用途に応じて、例えば、50~250℃で30分~10時間加熱することにより感光性樹脂組成物を硬化させることができる。
 また、硬化を充分に進行させたり、得られた樹脂パターン形状の変形を防止したりするために二段階で加熱することもできる。例えば、第一段階において50~120℃で5分~2時間加熱した後、第二段階において80~200℃で10分~10時間加熱することにより硬化させることもできる。
 加熱設備に特に制限はなく、一般的なオーブン、赤外線炉等を使用することができる。
<電子部品装置>
 本実施形態に係る電子部品装置は、本実施形態に係る硬化物を備えている。本実施形態に係る電子部品装置は、半導体素子の表面保護膜又は層間絶縁膜、あるいは、配線板(例えば多層プリント配線板)におけるソルダーレジスト及び/又は層間絶縁膜として、本実施形態に係る硬化物を備えている。電子部品装置としては、電子部品として半導体素子又は半導体ウエハを備える半導体装置;配線板(例えば多層プリント配線板)等が挙げられる。
 図2は、本実施形態に係る硬化物をソルダーレジスト及び/又は層間絶縁材料として有する多層プリント配線板の製造方法の一例を示す模式断面図である。図2(f)に示す多層プリント配線板100は、表面及び内部に配線パターンを有する。多層プリント配線板100は、銅張積層体、層間絶縁材料、金属箔等を積層すると共にエッチング法又はセミアディティブ法によって配線パターンを適宜形成することによって得ることができる。以下、図2に基づいて多層プリント配線板100の製造方法を簡単に説明する。
 まず、表面に配線パターン102を有する銅張積層体101の両面に層間絶縁膜103を形成する(図2(a)参照)。層間絶縁膜103は、スクリーン印刷機又はロールコータを用いて感光性樹脂組成物を印刷することにより形成してもよく、上述の感光性エレメントを予め準備し、ラミネータを用いて感光性エレメントにおける感光層を銅張積層体101の表面に貼り付けて形成することもできる。
 次いで、外部と電気的に接続することが必要な箇所に、YAGレーザー又は炭酸ガスレーザーを用いて開口部104を形成する(図2(b)参照)。開口部104周辺のスミア(残渣)はデスミア処理により除去することができる。
 次いで、無電解めっき法によりシード層105を形成する(図2(c)参照)。シード層105上に、上述の感光性樹脂組成物を含む感光層を形成し、所定の箇所を露光、現像処理して樹脂パターン106を形成する(図2(d)参照)。
 次いで、電解めっき法により、シード層105の樹脂パターン106が形成されていない部分に配線パターン107を形成する。そして、はく離液により樹脂パターン106を除去した後、シード層105の配線パターン107が形成されていない部分をエッチングにより除去する(図2(e)参照)。
 以上の操作を繰り返し行い、上述の感光性樹脂組成物の硬化物を含むソルダーレジスト108を最表面に形成することで多層プリント配線板100を作製することができる(図2(f)参照)。このようにして得られた多層プリント配線板100は、例えば、対応する箇所に半導体素子が実装され、電気的な接続を確保することができる。
 以下、実施例により本開示を詳細に説明するが、本開示はこれらの実施例に限定されるものではない。
<構成成分の準備>
 感光性樹脂組成物の構成成分として下記成分を準備した。
 A-1:アルコキシメチル基を有するノボラック樹脂(群栄化学工業株式会社製、商品名:GPCL-03、重量平均分子量:3500、アルカリ溶解速度:0.37μm/s)
 A-2:アルコキシメチル基を有するノボラック樹脂(群栄化学工業株式会社製、商品名:GPCL-011、重量平均分子量:5000、アルカリ溶解速度:0.5μm/s)
 A-3:熱架橋性を有さないノボラック樹脂(旭有機材工業株式会社製、商品名:TR4020G、重量平均分子量:13000、アルカリ溶解速度:0.02μm/s)
 B-1:トリメチロールプロパントリグリシジルエーテル(新日鉄住金化学株式会社製、商品名:ZX-1542、グリシジルオキシ基:3官能)
 B-2:脂肪族エポキシ(ナガセケムテックス株式会社製、商品名:EX-1310、グリシジルオキシ基:3官能)
 B-3:エチルグリシジルエーテル(東京化成工業株式会社製、商品名:EGE、グリシジルオキシ基:単官能)
 B-4:ブチルグリシジルエーテル(和光純薬工業株式会社製、商品名:BGE、グリシジルオキシ基:単官能)
 B-5:ネオペンチルジグリシジルエーテル(東京化成工業株式会社製、商品名:NDGE、グリシジルオキシ基:2官能)
 B-6:ペンタエリスリトールトリアクリレート(日本化薬株式会社製、商品名:PET-30、アクリロイルオキシ基:3官能)
 C-1:トリアリールスルホニウム塩(サンアプロ株式会社製、商品名:CPI-301B)
 D-1:3-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製、商品名:KBM-403)
 E-1:プロピレングリコールモノメチルエーテルアセテート(関東化学株式会社製、商品名:PGMEA)
 F-1:1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(アルコキシアルキル基を有する化合物、株式会社三和ケミカル製、商品名:ニカラックMX-270)
<アルカリ溶解速度の評価>
 (A-1)成分、(A-2)成分及び(A-3)成分100質量部をそれぞれ(E-1)成分100質量部に溶解させることにより溶解液を得た。溶解液を直径6インチのシリコンウエハーにスピンコートした後、ホットプレート上にて120℃で3分間加熱することにより厚さ10μmの感光層(塗膜)を作製した。触針式膜厚計を用いて感光層の厚さTa1を測定した。
 次いで、現像機(滝沢産業株式会社製、商品名:AD-1200)を用いて、5秒間、感光層に23℃の現像液をスプレー(ポンプ吐出圧[現像液]:0.16MPa)することにより現像を行った。現像液としては、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液(多摩化学工業株式会社製、商品名:TMAH2.38%)を用いた。次いで、リンス液として23℃の精製水(和光純薬工業株式会社製、商品名:精製水)を60秒間スプレー(ポンプ吐出圧[リンス液]:0.12~0.14MPa)することにより現像液を洗い流した。その後、エアガンにより感光層の表面の水分を除去した。触針式膜厚計を用いて感光層の厚さTa2を測定した。下記式よりアルカリ溶解速度を算出した。結果を表1に示す。
 アルカリ溶解速度[μm/s]=(厚さTa1[μm]-厚さTa2[μm])/5[s]
<感光性樹脂組成物の作製>
(実施例1及び2)
 (A-1)成分100質量部に対し、(B-1)成分又は(B-2)成分と、(C-1)成分と、(D-1)成分と、(E-1)成分とを表1の使用量にて混合することにより感光性樹脂組成物を得た。
(比較例1)
 (A-2)成分100質量部に対し、(B-1)成分と、(C-1)成分と、(D-1)成分、(E-1)成分とを表1の使用量にて混合することにより感光性樹脂組成物を得た。
(比較例2~4)
 (A-1)成分100質量部に対し、(B-3)成分、(B-4)成分又は(B-5)成分と、(C-1)成分と、(D-1)成分と、(E-1)成分とを表1の使用量にて混合することにより感光性樹脂組成物を得た。
(比較例5)
 (A-3)成分100質量部に対し、(B-1)成分と、(C-1)成分、(D-1)成分と、(E-1)成分と、(F-1)成分とを表1の使用量にて混合することにより感光性樹脂組成物を得た。
(比較例6)
 (A-1)成分100質量部に対し、(B-1)成分及び(B-6)成分と、(C-1)成分と、(D-1)成分と、(E-1)成分とを表1の使用量にて混合することにより感光性樹脂組成物を得た。
<感光性樹脂組成物の溶解速度の評価>
 上述の感光性樹脂組成物を直径6インチのシリコンウエハーにスピンコートした後、ホットプレート上にて120℃で3分間加熱することにより厚さ10μmの感光層(塗膜)を作製した。触針式膜厚計を用いて感光層の厚さT1を測定した。感光層の半面を遮光した状態で、露光機(株式会社三永電機製作所、Mask-Aliigner ML-210FM)を用いて、i線(365nm)フイルタを通して感光層に対して露光を行った。露光量は1000mJ/cmであった。遮光した部分に未露光部が形成され、遮光していない部分に露光部が形成された。
 次いで、感光層を85℃で4分間加熱した(露光後ベーク)。現像機(滝沢産業株式会社製、商品名:AD-1200)を用いて、感光層に23℃の現像液を5秒間スプレー(ポンプ吐出圧[現像液]:0.16MPa)することにより現像を行った。現像液としては、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液(多摩化学工業株式会社製、商品名:TMAH2.38%)を用いた。次いで、リンス液として23℃の精製水(和光純薬工業株式会社製、商品名:精製水)を60秒間スプレー(ポンプ吐出圧[リンス液]:0.12~0.14MPa)することにより現像液を洗い流した。その後、エアガンにより感光層の表面の水分を除去した。触針式膜厚計を用いて未露光部の厚さT21及び露光部の厚さT22を測定した。下記式より未露光部の溶解速度及び露光部の溶解速度を算出した。結果を表1に示す。
 未露光部の溶解速度[μm/s]=(厚さT1[μm]-厚さT21[μm])/5[s]
 露光部溶の解速度[μm/s]=(厚さT1[μm]-厚さT22[μm])/5[s]
<解像度の評価>
 上述の感光性樹脂組成物を直径6インチのシリコンウエハーにスピンコートした後、ホットプレート上にて120℃で3分間加熱することにより、厚さ3~6μmで1μm刻みの感光層(塗膜)を作製した。作製した感光層に対し、i線ステッパー(キヤノン株式会社製、商品名:FPA-3000iW)を用いて、マスクを介してi線(365nm)の縮小投影露光を行った。マスクとしては、幅が1:1の露光部及び未露光部のパターンが得られるライン状の開口(幅:1.0μm、1.5μm及び2μm)を有するマスクを用いた。露光量を100~1100mJ/cmの範囲で100mJ/cmずつ変化させながら縮小投影露光を行った。
 次いで、露光された感光層を85℃で4分間加熱した(露光後ベーク)。現像機(滝沢産業株式会社製、商品名:AD-1200)を用いて、最短現像時間(未露光部が除去される最短時間)の4倍に相当する時間で感光層に23℃の現像液をスプレー(ポンプ吐出圧[現像液]:0.16MPa)することにより未露光部を除去した。現像液としては、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液(多摩化学工業株式会社製、商品名:TMAH2.38%)を用いた。次いで、リンス液として23℃の精製水(和光純薬工業株式会社製、商品名:精製水)を60秒間スプレー(ポンプ吐出圧[リンス液]:0.12~0.14MPa)することにより現像液を洗い流した。その後、乾燥させることで樹脂パターンを形成した。次いで、溶剤乾燥用安全仕様恒温器(楠本化成株式会社製、商品名:HG220)にて180℃で60分間加熱処理を施すことにより樹脂パターンを硬化することにより硬化物パターンを得た。
 金属顕微鏡を用いて倍率1000倍に拡大して硬化物パターンを観察した。スペース部分(未露光部)がきれいに除去され、かつ、ライン部分(露光部)が蛇行又は欠けを生じることなく形成されたパターンにおける厚さに基づきアスペクト比を算出した。解像度及びアスペクト比の判定として、幅1.5μm以下のパターンにおいて、アスペクト比が3.0以上である場合をA(合格)と判定し、アスペクト比が3.0未満である場合をB(不可)と判定した。評価結果を表1に示す。表中の「開口NG」は、スペース部分(未露光部)が充分に開口しなかったことを示す。
Figure JPOXMLDOC01-appb-T000012
 表1から明らかなように、実施例では、微細パターンを高アスペクト比で形成できることが分かる。すなわち、高解像度領域でも高いアスペクト比の画素が形成されており、画素形成に優れることが分かる。
 本開示に係る感光性樹脂組成物は、半導体素子の表面保護膜又は層間絶縁膜に用いられる材料、配線板のソルダーレジスト又は層間絶縁膜に用いられる材料等として適用することができる。特に、本開示に係る感光性樹脂組成物は、高解像度かつ高アスペクト比であるため、配線の抵抗を抑制することができることから、細線化及び高密度化された高集積化パッケージ基板等に好適に用いることができる。
 10…感光性エレメント、12…支持体、14…感光層、16…保護フィルム、100…多層プリント配線板、101…銅張積層体、102,107…配線パターン、106…樹脂パターン、103…層間絶縁膜、104…開口部、105…シード層、108…ソルダーレジスト。

Claims (10)

  1.  (A)成分:熱架橋性を有する有機化合物と、
     (B)成分:3つ以上のアクリロイルオキシ基、3つ以上のメタクリロイルオキシ基、3つ以上のグリシジルオキシ基、及び、3つ以上の水酸基からなる群より選ばれる少なくとも一種を有する脂肪族化合物と、
     (C)成分:光感応性酸発生剤と、を含有し、
     当該感光性樹脂組成物に対して露光量1000mJ/cmで波長365nmの光を照射することにより得られた露光部と、前記感光性樹脂組成物における未露光部と、に2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を接触させたときの前記露光部の溶解速度が0.05μm/s以下であり、かつ、前記未露光部の溶解速度が1.0μm/s以上である、感光性樹脂組成物。
  2.  2.38質量%テトラメチルアンモニウムヒドロキシド水溶液に対する前記(A)成分の溶解速度が0.3μm/s以上である、請求項1に記載の感光性樹脂組成物。
  3.  前記(A)成分の重量平均分子量が10000以下である、請求項1又は2に記載の感光性樹脂組成物。
  4.  前記(A)成分が、アルコキシアルキル基及びメチロール基からなる群より選ばれる少なくとも一種を有する構造単位を有する化合物を含む、請求項1~3のいずれか一項に記載の感光性樹脂組成物。
  5.  前記(B)成分が、3つ以上のグリシジルオキシ基を有する脂肪族化合物を含む、請求項1~4のいずれか一項に記載の感光性樹脂組成物。
  6.  支持体と、当該支持体上に配置された感光層と、を備え、
     前記感光層が、請求項1~5のいずれか一項に記載の感光性樹脂組成物を含む、感光性エレメント。
  7.  請求項1~5のいずれか一項に記載の感光性樹脂組成物の硬化物。
  8.  アスペクト比3.0以上のパターンを有する、請求項7に記載の硬化物。
  9.  前記パターンの幅が1.5μm以下である、請求項8に記載の硬化物。
  10.  請求項1~5のいずれか一項に記載の感光性樹脂組成物、又は、請求項6に記載の感光性エレメントを用いて感光層を基材上に形成する工程と、
     前記感光層を所定のパターンに露光した後に前記感光層を加熱処理する工程と、
     前記感光層を現像した後に前記感光層を加熱処理する工程と、をこの順に備える、レジストパターンの製造方法。
PCT/JP2019/014216 2019-03-29 2019-03-29 感光性樹脂組成物、硬化物、感光性エレメント、及び、レジストパターンの製造方法 WO2020202329A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/014216 WO2020202329A1 (ja) 2019-03-29 2019-03-29 感光性樹脂組成物、硬化物、感光性エレメント、及び、レジストパターンの製造方法
JP2021511706A JPWO2020202329A1 (ja) 2019-03-29 2019-03-29 感光性樹脂組成物、硬化物、感光性エレメント、及び、レジストパターンの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/014216 WO2020202329A1 (ja) 2019-03-29 2019-03-29 感光性樹脂組成物、硬化物、感光性エレメント、及び、レジストパターンの製造方法

Publications (1)

Publication Number Publication Date
WO2020202329A1 true WO2020202329A1 (ja) 2020-10-08

Family

ID=72667266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014216 WO2020202329A1 (ja) 2019-03-29 2019-03-29 感光性樹脂組成物、硬化物、感光性エレメント、及び、レジストパターンの製造方法

Country Status (2)

Country Link
JP (1) JPWO2020202329A1 (ja)
WO (1) WO2020202329A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06118647A (ja) * 1992-10-05 1994-04-28 Mitsubishi Kasei Corp ネガ型感光性組成物
JP2011203708A (ja) * 2010-03-05 2011-10-13 Dainippon Printing Co Ltd ネガ型レジスト組成物、当該レジスト組成物を用いたレリーフパターンの製造方法及びフォトマスクの製造方法
JP2018091878A (ja) * 2015-03-30 2018-06-14 日立化成株式会社 ドライフィルム、硬化物、半導体装置及びレジストパターンの形成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6569268B2 (ja) * 2015-03-30 2019-09-04 日立化成株式会社 感光性樹脂組成物、感光性エレメント、レジストパターンの形成方法及び半導体部品の製造方法
JP6476302B2 (ja) * 2015-08-31 2019-02-27 富士フイルム株式会社 着色層の製造方法、カラーフィルタ、遮光膜、固体撮像素子および画像表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06118647A (ja) * 1992-10-05 1994-04-28 Mitsubishi Kasei Corp ネガ型感光性組成物
JP2011203708A (ja) * 2010-03-05 2011-10-13 Dainippon Printing Co Ltd ネガ型レジスト組成物、当該レジスト組成物を用いたレリーフパターンの製造方法及びフォトマスクの製造方法
JP2018091878A (ja) * 2015-03-30 2018-06-14 日立化成株式会社 ドライフィルム、硬化物、半導体装置及びレジストパターンの形成方法

Also Published As

Publication number Publication date
JPWO2020202329A1 (ja) 2021-10-28

Similar Documents

Publication Publication Date Title
JP6540510B2 (ja) 感光性樹脂組成物、感光性エレメント、半導体装置及びレジストパターンの形成方法
JP6439291B2 (ja) 感光性樹脂組成物、感光性エレメント、半導体装置及びレジストパターンの形成方法
JP6717198B2 (ja) 感光性樹脂組成物、感光性エレメント、硬化物、半導体装置、レジストパターンの形成方法及び回路基材の製造方法
JP6477479B2 (ja) 感光性樹脂組成物、感光性エレメント、半導体装置及びレジストパターンの形成方法
JPWO2016084855A1 (ja) 感光性樹脂組成物、感光性エレメント、硬化物、半導体装置、レジストパターンの形成方法及び回路基材の製造方法
JP6690128B2 (ja) 感光性樹脂組成物、感光性エレメント、レジストパターン付き基材の製造方法、プリント配線板の製造方法及びタッチパネルの製造方法
WO2016157622A1 (ja) ドライフィルム、硬化物、半導体装置及びレジストパターンの形成方法
JP6631026B2 (ja) ドライフィルム、硬化物、半導体装置及びレジストパターンの形成方法
JP6690776B2 (ja) 感光性エレメント、半導体装置及びレジストパターンの形成方法
WO2016159133A1 (ja) ドライフィルム、硬化物、半導体装置及びレジストパターンの形成方法
JP6600962B2 (ja) 感光性樹脂組成物、感光性エレメント、半導体装置及びレジストパターンの形成方法
WO2020202329A1 (ja) 感光性樹脂組成物、硬化物、感光性エレメント、及び、レジストパターンの製造方法
JP2016188985A (ja) 感光性樹脂組成物、感光性エレメント、硬化物、半導体装置及びレジストパターンの形成方法
WO2018070489A1 (ja) 感光性エレメント、半導体装置、及びレジストパターンの形成方法
WO2016159160A1 (ja) 感光性樹脂組成物、感光性エレメント、硬化物及びレジストパターンの形成方法
WO2016157605A1 (ja) 感光性樹脂組成物、感光性エレメント、硬化物及びレジストパターンの形成方法
JP6790461B2 (ja) 感光性樹脂組成物、感光性エレメント、半導体装置及びレジストパターンの形成方法
JP2019049648A (ja) 感光性エレメント、半導体装置及びレジストパターンの形成方法
JP2018169548A (ja) 感光性樹脂積層体、及びレジストパターンの形成方法
JP2018091877A (ja) 感光性樹脂組成物、感光性エレメント、硬化物及びレジストパターンの形成方法
JP2018091879A (ja) ドライフィルム、硬化物、及びレジストパターンの形成方法
JP2017201345A (ja) 感光性樹脂組成物、感光性エレメント、硬化物、レジストパターンの形成方法及び半導体装置
JP2017201346A (ja) 感光性樹脂組成物、感光性エレメント、硬化物、レジストパターンの形成方法及び半導体装置
JP2018084684A (ja) 感光性樹脂組成物、感光性エレメント、硬化物、半導体装置及びレジストパターンの形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923146

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511706

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19923146

Country of ref document: EP

Kind code of ref document: A1