WO2020200169A1 - 一种疏水亲油可降解油污的海洋混凝土的制备方法 - Google Patents

一种疏水亲油可降解油污的海洋混凝土的制备方法 Download PDF

Info

Publication number
WO2020200169A1
WO2020200169A1 PCT/CN2020/082084 CN2020082084W WO2020200169A1 WO 2020200169 A1 WO2020200169 A1 WO 2020200169A1 CN 2020082084 W CN2020082084 W CN 2020082084W WO 2020200169 A1 WO2020200169 A1 WO 2020200169A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
sand
hydrophobic
marine
oil
Prior art date
Application number
PCT/CN2020/082084
Other languages
English (en)
French (fr)
Inventor
王清
雷露露
郑旭
王宁
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2020200169A1 publication Critical patent/WO2020200169A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements

Definitions

  • the invention relates to the field of marine concrete preparation, in particular to a preparation method of hydrophobic, lipophilic, and oily marine concrete.
  • the existing marine concrete is mainly coated on the surface of the concrete.
  • the coating has poor wear resistance under the action of external force, and the roughness of the coating is reduced.
  • the impact will destroy the surface molecular structure and reduce the performance of marine concrete.
  • the surface of the concrete structure will be destroyed under the scouring of the sea water, and the performance of the marine concrete will be lost, and most of the modifiers used are fluorine or silane substances, which are expensive, and the silane structure Unstable, high cost when used in actual projects.
  • fluorine-based substances are toxic substances and should not be handled properly, which can easily pollute water sources and crops.
  • the existing coating method for preparing marine concrete is achieved by painting or spraying on the surface of the marine concrete substrate with super-hydrophobic anticorrosive paint, and then drying.
  • the silane coupling agent and methyltriethoxysilane in the modified silicone-acrylic emulsion used in the prior art are all slightly toxic and have a irritating effect on the skin.
  • the vapor or mist is harmful to the eyes, mucous membranes and upper respiratory tract. It has a stimulating effect and is flammable when exposed to high heat and open flames. It can react strongly with oxidants.
  • the production cost of silane substances is high, the preparation is cumbersome, and the experimental environment is relatively high, and the spraying or smearing method is not conducive to the application in long-term washed seawater, which will greatly damage its structure and affect the use.
  • the existing marine concrete has the following shortcomings:
  • the spraying or smearing technology used in the existing marine concrete can easily cause the hydrophobic layer on the surface of the concrete to fall off after being washed by sea water, causing the marine concrete to lose its performance;
  • the existing marine concrete does not solve the problem of marine sewage oil adsorbed into the concrete
  • the modifiers mostly used in the existing marine concrete are fluorine or silane substances. Fluorine substances are harmful substances, which are expensive and have unstable silane structure;
  • the present invention proposes a method for preparing marine concrete that is hydrophobic, lipophilic, and degradable.
  • the marine concrete prepared by this method has good hydrophobic and lipophilic effects, good stability, and can effectively absorb slop oil in the ocean. , Improve the marine environment.
  • a preparation method of hydrophobic, lipophilic, and degradable marine concrete includes the following steps:
  • step (3) mix the mixed solution prepared in step (2) with cement, sand, and water according to the above ratio to make fresh concrete;
  • the preparation method of the microcapsules coated with Bacillus includes the following steps:
  • Bacillus subtilis was inoculated into the bacterial basal medium at 30 °C, 200 After culturing on a shaker for 12 hours at r/min, transfer to the fermentation medium at 5% inoculum and cultivate at 30 °C and 200 r/min. When the spore rate of the fermentation broth is greater than 90%, stop the fermentation to obtain the strain fermentation liquid;
  • the gelatinized maltodextrin is mixed with the fermentation broth of the strain to obtain the mixed solution.
  • the mixed solution is placed in a magnetic stirrer at 500 r/min and continuously stirred and mixed evenly.
  • the sample is uniformly injected into the spray dryer through a peristaltic pump, and spray dried Afterwards, the product was collected to obtain microcapsules coated with Bacillus.
  • the sand is river sand or sea sand, and the particle size of the sand is 0.2mm-0.3mm or 0.6mm-1.18mm.
  • the formula of the fermentation medium is as follows: starch 24g, protein powder 30g, CaCO 3 4.8g, K 2 HPO 4 2g, KH 2 PO 4 0.6g, molasses 15 g, water 1 L , PH 7.0.
  • the concrete mixture is mixed with low surface energy substances, and under the combined action of copper mesh and biological bacteria, it is made into a hydrophobic, lipophilic, and degradable marine concrete. Compared with the prior art, no additional equipment is required. Coating, so the preparation process is convenient, which is conducive to large-area construction.
  • the marine concrete prepared by the present invention is rich in microcapsule-coated bacillus, which can biodegrade the dirty oil that enters the concrete.
  • the low surface energy substance used in the present invention is stearic acid.
  • the cost of stearic acid is lower than that of fluorine and silanes, is non-toxic, pollution-free, and has good stability.
  • the present invention prepares the hydrophobic, lipophilic, and degradable marine concrete. Its surface not only has hydrophobic properties, but also can effectively absorb the oil spilled at sea and degrade it by itself, thereby alleviating the problem of marine oil pollution.
  • the stearic acid used in the present invention is a low surface energy substance that can modify the microstructure of concrete; the copper mesh on the outer wall of the concrete is beneficial to strengthen the micro-surface structure of the concrete, so that the surface of the concrete has a micron/nano structure and can promote super-hydrophobicity
  • the hydrophobic and lipophilic effect of concrete improves the mechanical properties of concrete (such as abrasion resistance, etc.).
  • the prepared microcapsules coated with bacillus are placed in concrete, and in the process of concrete vibrating, the microcapsules are broken, and the bacillus enters the concrete and survives and multiplies, thereby degrading dirty oil.
  • the bacillus has strong vitality, can survive in high and low temperature and acid-base environments, and multiplies quickly; the concrete produces an alkaline solution of calcium hydroxide due to the hydration of cement mineral components, which is beneficial to the survival of the bacillus.
  • the bacillus selected for use in the present invention has a strong ability to degrade slop oil.
  • the marine oil contains microorganisms that can degrade petroleum hydrocarbons. The bacillus can activate these microorganisms to degrade marine oils.
  • Figure 1 is a top view of the wettability of water and oil droplets on the surface of marine concrete prepared by the present invention
  • Figure 2 is a side view of the wettability of water droplets and oil droplets on the surface of the marine concrete prepared by the present invention.
  • the hydrophobic, lipophilic, and degradable marine concrete prepared by the present invention can effectively absorb the slop oil leaked from ships in the ocean and improve the marine environment, and the slop entering the concrete can be degraded by biological bacteria without causing bridges The internal structure of the concrete changes.
  • this hydrophobic, lipophilic, and degradable marine concrete can also prevent the intrusion of seawater and avoid corrosion of steel bars in the concrete.
  • a preparation method of hydrophobic, lipophilic, and degradable marine concrete includes the following steps:
  • cement, sand, absolute ethanol, water and stearic acid are selected as raw materials, and the weight ratio of cement, sand, absolute ethanol, water and stearic acid is 100:100:12:45:1.
  • the sand is river sand or sea sand, and the particle size of the sand can be 0.2mm-0.3mm or 0.6mm-1.18mm.
  • step (3) mix the mixed solution prepared in step (2) with cement, sand and water according to the above ratio to make fresh concrete, and the mixing time is controlled within 30 minutes.
  • Bacillus subtilis was inoculated into a bacterial basal medium, cultured in a shaker at 30 °C, 200 r/min for 12 h, and then transferred to a fermentation medium (starch 24 g, protein powder 30 g, CaCO 3 4. 8 g, K 2 HPO 4 2 g, KH 2 PO 4 0.6 g, molasses 15 g, 1 L water, pH 7.0), culture at 30 °C, 200 r/min, and wait for fermentation When the liquid spore rate (the fermentation broth is stained with crystal violet and examined under an optical microscope, the ratio of the bacillus content to the total bacteria content in the field of view is the spore rate) is greater than 90%, and fermentation is stopped to obtain the strain fermentation broth.
  • a fermentation medium starch 24 g, protein powder 30 g, CaCO 3 4. 8 g, K 2 HPO 4 2 g, KH 2 PO 4 0.6 g, molasses 15 g, 1 L water, pH 7.0
  • the above 5% inoculum amount refers to the proportion of inoculated strains calculated according to the fermentation weight.
  • the gelatinized maltodextrin is mixed with the fermentation broth of the strain to obtain the mixed solution.
  • the mixed solution is placed in a magnetic stirrer at 500 r/min and continuously stirred and mixed evenly.
  • the sample is uniformly injected into the spray dryer through a peristaltic pump, and spray dried Afterwards, the product was collected to obtain microcapsules coated with Bacillus.
  • maltodextrin is the wall material
  • Bacillus subtilis fermentation liquid is the core material
  • microcapsules coated with Bacillus can be added during the concrete mixing process, and the amount of microcapsules added can be adjusted according to needs and application environment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

一种疏水亲油可降解油污的海洋混凝土的制备方法,该方法选取水泥、沙子、无水乙醇、水和硬脂酸作为原材料,先使用磁力搅拌器将硬脂酸和无水乙醇搅拌成混合溶液;再将混合溶液与水泥、沙子、水搅拌制成新鲜混凝土;将模具内侧壁和底壁用紫铜网覆盖,然后将新鲜混凝土置入模具中,同时向模具中添加包覆芽孢杆菌的微胶囊,然后振捣混凝土,振捣完毕后刮平表面,最后在顶部覆盖铜网;再在室温下硬化,脱模,除去铜网,放入标准养护箱中养护,即得疏水亲油可降解油污的海洋混凝土。疏水亲油可降解油污的海洋混凝土,其表面不仅具有疏水性能,还可以吸收海上泄漏的油污,并自行降解,从而缓解海洋油污污染问题。

Description

一种疏水亲油可降解油污的海洋混凝土的制备方法 技术领域
本发明涉及海洋混凝土制备领域,具体地说是涉及一种疏水亲油可降解油污的海洋混凝土的制备方法。
背景技术
随着海洋业的发展,在沿海地带严酷的海洋环境中,海洋油污污染严重,引起了人们的极大重视。现有海洋混凝土主要是在混凝土表面做涂层处理,大范围施工时,容易造成涂抹不均匀等问题,而且该涂层在外力的作用下耐磨性差,涂层的粗糙程度下降,外界环境的影响会使表面分子结构破坏,海洋混凝土性能下降。如果应用在海洋环境中,在海水的冲刷下,混凝土结构表面会被破坏,失去海洋混凝土的性能,而且大多采用的改性剂为氟类或硅烷类物质,氟类物质价格昂贵,硅烷类结构不稳定,应用在实际工程中造价高,另外氟类物质为毒性物质,处理不得当容易污染水源和农作物。
现有涂层法制备海洋混凝土的实现方案:用超疏水防腐涂料涂刷或喷涂在海工混凝土基体表面,干燥即可。此现有技术中所用到的改性硅丙乳液中的硅烷偶联剂和甲基三乙氧基硅烷均属微毒类型,对皮肤有刺激作用,其蒸汽或雾对眼睛、粘膜和上呼吸道有刺激作用,遇高热、明火易燃,与氧化剂能发生强烈反应。其次是硅烷类物质生产成本高,制备繁琐,要求实验环境较高,而且使用喷涂或涂抹的方式不利于应用在长期冲刷的海水中,会大大破坏其结构,影响使用。
技术问题
总结来说,现有海洋混凝土存在以下缺点:
1、现有海洋混凝土采用的喷涂或涂抹技术经过海水的冲刷容易造成混凝土表面的疏水层脱落现象,使得海洋混凝土失去其性能;
2、现有海洋混凝土并没有解决海洋污油吸附进入混凝土后的问题;
3、现有海洋混凝土多采用的改性剂为氟类或硅烷类物质,氟类物质为有害物质,价格昂贵,硅烷类结构不稳定;
4、现有超疏水涂抹技术或喷涂技术,在进行大面积施工时容易造成涂抹不均匀,表面结构不完整,成本高。
技术解决方案
针对上述技术问题,本发明提出一种疏水亲油可降解油污的海洋混凝土的制备方法,该方法所制备的海洋混凝土疏水亲油效果好,稳定性好,并可以有效的吸收海洋中的污油,改善海洋环境。
本发明所采用的技术解决方案是:
一种疏水亲油可降解油污的海洋混凝土的制备方法,包括以下步骤:
(1)选取水泥、沙子、无水乙醇、水和硬脂酸作为原材料,水泥、沙子、无水乙醇、水和硬脂酸的重量份配比为100∶100∶12∶45∶0.6-1;
(2)先使用磁力搅拌器将硬脂酸和无水乙醇搅拌成混合溶液,搅拌时间控制在40min~60min;
    (3)再将步骤(2)配制的混合溶液与水泥、沙子、水按上述配比搅拌制成新鲜混凝土;
(4)制备包覆芽孢杆菌的微胶囊;
(5)将模具内侧壁和底壁用180目紫铜网覆盖,然后将新鲜混凝土置入模具中,同时向模具中添加包覆芽孢杆菌的微胶囊,之后采用***式振捣器振捣混凝土,振捣完毕后刮平表面,最后在顶部覆盖铜网;
(6)在室温下硬化24小时后,脱模,除去铜网,得到混凝土试块;
(7)将混凝土试块放入标准养护箱中养护28天后,得到疏水亲油可降解油污的海洋混凝土;
上述步骤(4)中,包覆芽孢杆菌的微胶囊的制备方法包括以下步骤:
(41)发酵
将枯草芽孢杆菌接种于细菌基础培养基中,于 30 ℃、200 r/min 摇床培养 12 h 后,按5%接种量转接于发酵培养基中,在30 ℃、200 r/min 条件下培养,待发酵液芽孢率大于 90%时停止发酵,得到菌株发酵液;
(42)糊化
将麦芽糊精与水按体积比2∶1混合搅拌均匀,加热至 60 ℃,持续 2 min 至糊化为金黄色,冷却备用;
(43)喷雾干燥
将已糊化的麦芽糊精与菌株发酵液混合,得到混合液,将混合液置于磁力搅拌器中以500 r/min 持续搅拌混合均匀,经蠕动泵均匀进样到喷雾干燥机,喷雾干燥后收集产物,得到包覆芽孢杆菌的微胶囊。
优选的,步骤(1)中:所述沙子为河沙或海沙,沙子的粒径为0.2mm-0.3mm或0.6mm-1.18mm。
优选的,步骤(41)中,所述发酵培养基的配方如下:淀粉24g,蛋白粉30g,CaCO 3 4.8g,K 2HPO 4 2g,KH 2PO 4 0.6g,糖蜜15 g,水1 L,pH 7.0。
优选的,步骤(43)中,所述已糊化的麦芽糊精与菌株发酵液的配比为:m(麦芽糊精)∶V(发酵液) =1∶1。
本发明的有益技术效果是:
1) 本发明在混凝土拌合料中掺入低表面能物质,在铜网和生物菌的共同作用下,制成疏水亲油可降解油污的海洋混凝土,与现有技术相比不需另外配备涂层,因此制备工艺便捷,有利于大面积施工。
2) 本发明制备的海洋混凝土中富含有微胶囊包覆芽孢杆菌,其能够生物降解进入混凝土内部的污油。
3) 本发明使用的低表面能物质为硬脂酸,硬脂酸成本相对于氟类和硅烷类较低廉,无毒无污染,稳定性好。
4)  本发明制备了疏水亲油可降解油污的海洋混凝土,其表面不仅具有疏水性能,还可以有效吸收海上泄漏的油污,并自行降解,从而缓解海洋油污污染问题。
有益效果
本发明所采用的硬脂酸是一种低表面能物质,可修饰混凝土的微观结构;混凝土外侧壁的铜网有利于加强混凝土微表面结构,使得混凝土表面具有微米/纳米结构,可促进超疏水混凝土疏水亲油效果,提高混凝土的机械性能(如耐磨性等)。
本发明将制备的包覆芽孢杆菌的微胶囊置入混凝土中,且在混凝土振捣的过程中,微胶囊破裂,芽孢杆菌进入混凝土并生存繁殖,进而可降解污油。其中所述芽孢杆菌生命力强,在高低温和酸碱环境下都可以存活,繁殖快速;混凝土由于水泥矿物组分的水化产生的是氢氧化钙碱性溶液,有利于芽孢杆菌存活。
本发明所选用的芽孢杆菌本身具有较强的污油降解能力,另外海洋油污本身含有可降解石油烃的微生物,通过芽孢杆菌刺激的方式还可以激活这部分微生物发挥降解海洋油污的作用。
附图说明
下面结合附图与具体实施方式对本发明作进一步说明:
图1为本发明所制得的海洋混凝土表面对水滴和油滴的润湿性的俯视图;
图2为本发明所制得的海洋混凝土表面对水滴和油滴的润湿性的侧视图。
图中:11为油滴,12为水滴。
本发明的实施方式
在沿海地带,由于船舶燃油外溢,油舱破裂造成的渗漏,对海洋环境造成污染。本发明制备的一种疏水亲油可降解油污的海洋混凝土,可以有效的吸收海洋中因船舶渗漏的污油,改善海洋环境,而且进入混凝土的污油可以由生物菌降解,不会使桥梁混凝土内部的结构发生变化。同时这种疏水亲油可降解油污的海洋混凝土还可以防止海水的侵入,避免混凝土内的钢筋受到侵蚀。
一种疏水亲油可降解油污的海洋混凝土的制备方法,包括以下步骤:
(1)选取水泥、沙子、无水乙醇、水和硬脂酸作为原材料,水泥、沙子、无水乙醇、水和硬脂酸的重量份配比为100∶100∶12∶45∶1。所述沙子为河沙或海沙,沙子的粒径可选择0.2mm-0.3mm或0.6mm-1.18mm。
(2)先使用磁力搅拌器将低表面能物质硬脂酸和无水乙醇搅拌成混合溶液,搅拌时间控制在40min~60min。
    (3)再将步骤(2)配制的混合溶液与水泥、沙子、水按上述配比搅拌均匀制成新鲜混凝土,搅拌时间控制在30min内。
(4)采用喷雾干燥法制备包覆芽孢杆菌的微胶囊
(41)发酵
将枯草芽孢杆菌接种于细菌基础培养基中,于 30 ℃、200 r/min 摇床培养 12 h 后,按5%接种量转接于发酵培养基(淀粉 24 g,蛋白粉30 g,CaCO 3 4. 8 g,K 2 HPO 4 2 g,KH 2 PO 4 0. 6 g,糖蜜15 g,水1 L,pH 7. 0)中,在30 ℃、200 r/min 条件下培养,待发酵液芽孢率(将发酵液置于结晶紫染色后光学显微镜下镜检,视野内芽孢杆菌含量与总菌含量的比值为芽孢率)大于 90%时停止发酵,得到菌株发酵液。
上述5%接种量指的是按照发酵重量计算的接入菌种的比例。
(42)糊化
将麦芽糊精与水按体积比2∶1混合搅拌均匀,加热至 60 ℃,持续 2 min 至糊化为金黄色,冷却备用;
(43)喷雾干燥
将已糊化的麦芽糊精与菌株发酵液混合,得到混合液,将混合液置于磁力搅拌器中以500 r/min 持续搅拌混合均匀,经蠕动泵均匀进样到喷雾干燥机,喷雾干燥后收集产物,得到包覆芽孢杆菌的微胶囊。
喷雾干燥制备包覆枯草芽孢杆菌的微胶囊时,随壁材麦芽糊精比例的增加,菌体存活率提高,壁材与芯材的最佳配比为 m(麦芽糊精) : V(发酵液) =1:1。
所制得的包覆枯草芽孢杆菌的微胶囊,麦芽糊精为壁材,枯草芽孢杆菌发酵液)为芯材。
(5)将模具内侧壁和底壁用180目紫铜网覆盖,然后将新鲜混凝土置入模具中,同时向模具中添加包覆芽孢杆菌的微胶囊,之后采用***式振捣器振捣混凝土,振捣完毕后刮平表面,最后在顶部覆盖铜网。混凝土外侧壁的铜网有利于加强混凝土微表面结构,促进海洋混凝土疏水亲油效果,提高混凝土的机械性能。
包覆芽孢杆菌的微胶囊在混凝土搅拌过程中添加进去即可,微胶囊的添加量可根据需要及应用环境进行调整。
(6)在室温下硬化24小时后,脱模,除去铜网,得到混凝土试块。
(7)将混凝土试块放入标准养护箱中(标准养护箱的室温为20°c±2°;湿度为不小于95%),养护28天后,得到疏水亲油可降解油污的海洋混凝土。
上述方式中未述及的部分采取或借鉴已有技术即可实现。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的保护范围由所附权利要求及其等同物限定。

Claims (4)

  1. 一种疏水亲油可降解油污的海洋混凝土的制备方法,其特征在于包括以下步骤:
    (1)选取水泥、沙子、无水乙醇、水和硬脂酸作为原材料,水泥、沙子、无水乙醇、水和硬脂酸的重量份配比为100∶100∶12∶45∶0.6-1;
    (2)先使用磁力搅拌器将硬脂酸和无水乙醇搅拌成混合溶液,搅拌时间控制在40min~60min;
        (3)再将步骤(2)配制的混合溶液与水泥、沙子、水按上述配比搅拌制成新鲜混凝土;
    (4)制备包覆芽孢杆菌的微胶囊;
    (5)将模具内侧壁和底壁用180目紫铜网覆盖,然后将新鲜混凝土置入模具中,同时向模具中添加包覆芽孢杆菌的微胶囊,之后采用***式振捣器振捣混凝土,振捣完毕后刮平表面,最后在顶部覆盖铜网;
    (6)在室温下硬化24小时后,脱模,除去铜网,得到混凝土试块;
    (7)将混凝土试块放入标准养护箱中养护28天后,得到疏水亲油可降解油污的海洋混凝土;
    上述步骤(4)中,包覆芽孢杆菌的微胶囊的制备方法包括以下步骤:
    (41)发酵
    将枯草芽孢杆菌接种于细菌基础培养基中,于 30 ℃、200 r/min 摇床培养 12 h 后,按5%接种量转接于发酵培养基中,在30 ℃、200 r/min 条件下培养,待发酵液芽孢率大于 90%时停止发酵,得到菌株发酵液;
    (42)糊化
    将麦芽糊精与水按体积比2∶1混合搅拌均匀,加热至 60 ℃,持续 2 min 至糊化为金黄色,冷却备用;
    (43)喷雾干燥
    将已糊化的麦芽糊精与菌株发酵液混合,得到混合液,将混合液置于磁力搅拌器中以500 r/min 持续搅拌混合均匀,经蠕动泵均匀进样到喷雾干燥机,喷雾干燥后收集产物,得到包覆芽孢杆菌的微胶囊。
  2. 根据权利要求1所述的一种疏水亲油可降解油污的海洋混凝土的制备方法,其特征在于,步骤(1)中:所述沙子为河沙或海沙,沙子的粒径为0.2mm-0.3mm或0.6mm-1.18mm。
  3. 根据权利要求1所述的一种疏水亲油可降解油污的海洋混凝土的制备方法,其特征在于,步骤(41)中,所述发酵培养基的配方如下:淀粉24g,蛋白粉30g,CaCO 3 4.8g,K 2HPO 4 2g,KH 2PO 4 0.6g,糖蜜15 g,水1 L,pH 7.0。
  4. 根据权利要求1所述的一种疏水亲油可降解油污的海洋混凝土的制备方法,其特征在于,步骤(43)中,所述已糊化的麦芽糊精与菌株发酵液的配比为:m(麦芽糊精)∶V(发酵液) =1∶1。
PCT/CN2020/082084 2019-04-04 2020-03-30 一种疏水亲油可降解油污的海洋混凝土的制备方法 WO2020200169A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910268373.X 2019-04-04
CN201910268373.XA CN109928682B (zh) 2019-04-04 2019-04-04 一种疏水亲油可降解油污的海洋混凝土的制备方法

Publications (1)

Publication Number Publication Date
WO2020200169A1 true WO2020200169A1 (zh) 2020-10-08

Family

ID=66989242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082084 WO2020200169A1 (zh) 2019-04-04 2020-03-30 一种疏水亲油可降解油污的海洋混凝土的制备方法

Country Status (2)

Country Link
CN (1) CN109928682B (zh)
WO (1) WO2020200169A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113480941B (zh) * 2021-07-27 2022-05-20 辽宁工业大学 一种超疏水涂料及使用该涂料制备水泥基超疏水表面的方法
CN116217169B (zh) * 2023-02-27 2023-09-22 深圳市国艺园林建设有限公司 一种用于制备油污吸附植生混凝土的方法及植生混凝土

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302842A (ja) * 1996-05-16 1997-11-25 Sumitomo Metal Ind Ltd コンクリート用耐食性被覆鉄筋
KR20100113399A (ko) * 2009-04-13 2010-10-21 (주)대우건설 유·무기 하이브리드 나노실리카를 이용한 해양 콘크리트 방식공법
KR20110108955A (ko) * 2010-03-30 2011-10-06 (주)유비플러스 유·무기 나노복합입자, 상기 유·무기 나노복합입자의 제조방법 및 이를 포함하는 해양 콘크리트 혼화재
CN102992673A (zh) * 2012-12-11 2013-03-27 同济大学 一种地下结构混凝土化学微胶囊抗氯盐腐蚀***
CN103043937A (zh) * 2012-12-27 2013-04-17 同济大学 一种内置好氧型微生物的复合胶囊地下结构混凝土自修复***
CN104193216A (zh) * 2014-06-24 2014-12-10 济南大学 一种葡萄糖高聚体海工混凝土抗分散剂及制备方法
CN105238218A (zh) * 2015-10-30 2016-01-13 华南理工大学 一种自渗透海洋混凝土防腐材料及其制备方法与应用
CN105669073A (zh) * 2016-01-08 2016-06-15 海南瑞泽新型建材股份有限公司 一种提高海工混凝土抗渗、抗裂性能的外加剂
CN105778919A (zh) * 2016-03-09 2016-07-20 上海交通大学 巨大芽孢杆菌-壳聚糖微胶囊及其制备方法
CN108546483A (zh) * 2018-04-04 2018-09-18 济南大学 一种海工混凝土用超疏水防腐涂料及其制备方法
CN108823198A (zh) * 2018-07-20 2018-11-16 山东科技大学 一种可持续自修复煤矿堵漏风材料裂缝的微胶囊及其制备方法
CN109097313A (zh) * 2018-10-10 2018-12-28 上海芳甸生物科技有限公司 一种芽孢杆菌的发酵方法及应用
CN109231906A (zh) * 2018-09-29 2019-01-18 佛山齐安建筑科技有限公司 一种抗压自修复混凝土的制备方法
CN109337944A (zh) * 2018-10-30 2019-02-15 浙江海洋大学 一种利用海洋芽孢杆菌制备絮凝剂的方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302842A (ja) * 1996-05-16 1997-11-25 Sumitomo Metal Ind Ltd コンクリート用耐食性被覆鉄筋
KR20100113399A (ko) * 2009-04-13 2010-10-21 (주)대우건설 유·무기 하이브리드 나노실리카를 이용한 해양 콘크리트 방식공법
KR20110108955A (ko) * 2010-03-30 2011-10-06 (주)유비플러스 유·무기 나노복합입자, 상기 유·무기 나노복합입자의 제조방법 및 이를 포함하는 해양 콘크리트 혼화재
CN102992673A (zh) * 2012-12-11 2013-03-27 同济大学 一种地下结构混凝土化学微胶囊抗氯盐腐蚀***
CN103043937A (zh) * 2012-12-27 2013-04-17 同济大学 一种内置好氧型微生物的复合胶囊地下结构混凝土自修复***
CN104193216A (zh) * 2014-06-24 2014-12-10 济南大学 一种葡萄糖高聚体海工混凝土抗分散剂及制备方法
CN105238218A (zh) * 2015-10-30 2016-01-13 华南理工大学 一种自渗透海洋混凝土防腐材料及其制备方法与应用
CN105669073A (zh) * 2016-01-08 2016-06-15 海南瑞泽新型建材股份有限公司 一种提高海工混凝土抗渗、抗裂性能的外加剂
CN105778919A (zh) * 2016-03-09 2016-07-20 上海交通大学 巨大芽孢杆菌-壳聚糖微胶囊及其制备方法
CN108546483A (zh) * 2018-04-04 2018-09-18 济南大学 一种海工混凝土用超疏水防腐涂料及其制备方法
CN108823198A (zh) * 2018-07-20 2018-11-16 山东科技大学 一种可持续自修复煤矿堵漏风材料裂缝的微胶囊及其制备方法
CN109231906A (zh) * 2018-09-29 2019-01-18 佛山齐安建筑科技有限公司 一种抗压自修复混凝土的制备方法
CN109097313A (zh) * 2018-10-10 2018-12-28 上海芳甸生物科技有限公司 一种芽孢杆菌的发酵方法及应用
CN109337944A (zh) * 2018-10-30 2019-02-15 浙江海洋大学 一种利用海洋芽孢杆菌制备絮凝剂的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIEZHEN HU , DENG PEICHANG, LI XIAOGANG, ZHANG JIBIAO, WANG GUI: "The vertical Non-uniform corrosion of Reinforced concrete exposed to the marine environments", CONSTRUCTION AND BUILDING MATERIALS, vol. 183, 20 September 2018 (2018-09-20), pages 180 - 188, XP055739846, ISSN: 0950-0618, DOI: 10.1016/j.conbuildmat.2018.06.015 *
YU SUN, SHUI ZHONG-HE , YU RUI , GUO DONG , ZHANG XIAO-FEN: "Development of Microorganisms Used in Marine Concrete Crack Self-repairing", THE WORLD OF BUILDING MATERIALS, vol. 39, no. 1, 15 February 2018 (2018-02-15), pages 10 - 14, XP055739850, ISSN: 1674-6066, DOI: 10.3963/j.issn.1674-6066.2018.01.003 *

Also Published As

Publication number Publication date
CN109928682B (zh) 2020-10-09
CN109928682A (zh) 2019-06-25

Similar Documents

Publication Publication Date Title
WO2020200169A1 (zh) 一种疏水亲油可降解油污的海洋混凝土的制备方法
De Muynck et al. Microbial carbonate precipitation in construction materials: a review
CN108341635A (zh) 一种超疏水水泥及其制备方法和应用
WO2005068400A1 (en) Hydrophobic coating composition
CN110305553B (zh) 一种地聚物基抗菌涂料及其制备方法与应用
KR102643249B1 (ko) 탄산화 및 염해 저항성이 향상된 균열 자기치유 보수 모르타르의 제조 방법
CN105837733B (zh) [(12‑丙烯酰‑氧)‑脱氢松香酸‑辣椒素酯]‑丙烯酸共聚物及其制备与应用
CN106987165A (zh) 一种石墨烯聚合物防水涂料母料及制备方法
CN110105017A (zh) 一种装饰混凝土制品及其制备方法
CN106587786A (zh) 一种钻井废弃物制砖方法
KR101448068B1 (ko) 미생물 캡슐을 이용한 콘크리트 및 그 제조방법
CN115029041A (zh) 石墨烯改性纳米级防水防腐涂料
CN104927546B (zh) 一种海洋微生物防污涂料的制备方法
CN110342895A (zh) 一种缓释型硅烷粉末、超疏水水泥基柔性防水涂料及其制备方法
CN115636634A (zh) 一种防滑透水砖
CN107285811A (zh) 一种菱镁水泥装饰板的表面处理方法
CN110305565A (zh) 一种排粪便管道的防腐涂料及其制备方法
CN106082865A (zh) 一种水泥基防水涂料及其制备方法
CN111410894A (zh) 一种抗霉防潮剂及制备方法
CN108178566A (zh) 一种防青苔免烧砖的制备方法
CN104926225B (zh) 抗硫酸盐腐蚀混凝土路缘石的配方及路缘石的制作方法
CN107056182A (zh) 仿清水混凝土骨料及其制备方法
CN1687257A (zh) 一种外墙腻子
CN110218407A (zh) 一种膨润土改性聚乙烯材料
CN115418165B (zh) 一种环境友好型污损生物防护涂层(膜)及其制备和应用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782615

Country of ref document: EP

Kind code of ref document: A1