WO2020199514A1 - 一种tbs的确定方法及装置 - Google Patents

一种tbs的确定方法及装置 Download PDF

Info

Publication number
WO2020199514A1
WO2020199514A1 PCT/CN2019/105790 CN2019105790W WO2020199514A1 WO 2020199514 A1 WO2020199514 A1 WO 2020199514A1 CN 2019105790 W CN2019105790 W CN 2019105790W WO 2020199514 A1 WO2020199514 A1 WO 2020199514A1
Authority
WO
WIPO (PCT)
Prior art keywords
tbs
threshold
frequency domain
intermediate variable
mcs
Prior art date
Application number
PCT/CN2019/105790
Other languages
English (en)
French (fr)
Inventor
杨洪建
官磊
夏金环
邵家枫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA3135514A priority Critical patent/CA3135514C/en
Priority to CN201980094995.3A priority patent/CN113678389B/zh
Priority to EP19922660.6A priority patent/EP3952153A4/en
Priority to PCT/CN2019/116699 priority patent/WO2020199588A1/zh
Priority to AU2019439793A priority patent/AU2019439793B2/en
Publication of WO2020199514A1 publication Critical patent/WO2020199514A1/zh
Priority to US17/489,327 priority patent/US20220021474A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure

Definitions

  • This application relates to the field of wireless communication technologies, and in particular to a method and device for determining a transport block size (Transport Block Size, TBS).
  • TBS Transport Block Size
  • LTE Long Term Evolution
  • 5G fifth-generation mobile communication technology
  • CP cyclic prefix
  • OFDM Orthogonal Frequency Division Multiplexing
  • the UE determines the modulation order and TBS number according to the high-level configuration of the MCS number of the physical multicast channel (Physical Multicast Channel, PMCH), and the first table, where the first table is the MCS number and modulation The corresponding relationship between the order and the TBS number.
  • the UE determines the TBS according to the TBS number, the number of resource blocks (Resource Block, RB) and the second table, where the number of RBs is the total number of downlink (DL) RBs, and the second table is the TBS number, RB Correspondence between number and TBS.
  • the CP length of the new numerology introduced by WI exceeds 300 ⁇ s, the symbol length excluding CP exceeds 2.4 milliseconds (ms), and the length of the entire OFDM symbol exceeds 2.7ms, then the length of a subframe exceeds 2.7ms and is larger than the existing one in LTE The length of the subframe is 1ms.
  • the existing method is used to determine the amount of data transmitted within 1ms.
  • the amount of data configured according to the existing method is also the amount of data transmitted within 1ms at most, which causes MBSFN to use the symbol length.
  • the TBS of the numerology configuration exceeding 1ms is too small, and the amount of data transmitted on each subframe is too small, which limits the signal transmission rate of the system.
  • This application provides a method and device for determining TBS to solve the problem of limited signal transmission rate of the system in the prior art.
  • a method for determining TBS including the following processes:
  • the communication device determines the TBS corresponding to the first broadcast channel by one or more of the following methods according to the modulation and coding mode MCS corresponding to the first broadcast channel and the frequency domain resources occupied by the first broadcast channel:
  • the communication device determines the first TBS number according to the MCS number and the first table, determines the first intermediate variable according to the first TBS number, the frequency domain resource and the second table, and determines the first intermediate variable according to the first intermediate variable
  • a third table to determine the TBS the first table includes the correspondence between MCS numbers and TBS numbers
  • the second table includes the correspondence between frequency domain resources, TBS numbers, and first intermediate variables
  • the third table The corresponding relationship between the TBS and the first intermediate variable is included
  • the third table corresponds to a TBS table with a transport block mapping layer number greater than 1, and the transport block mapping layer number carried by the first broadcast channel is 1;
  • the communication device determines a first TBS number according to the number of the MCS and the first table, determines a second intermediate variable according to the first TBS number, the frequency domain resource and the second table, and A second intermediate variable and a first expansion factor determine the TBS, and the first expansion factor is greater than 1;
  • the communication device determines the number of REs according to the frequency domain resource, and determines the TBS according to the number of REs and the number of the MCS.
  • the first broadcast channel has at least one or a combination of the following features: the time domain resources occupied by the cyclic prefix CP are not less than the first threshold, and the time domain resources occupied by the OFDM symbols are not less than the second Threshold, the sub-carrier spacing SCS is not greater than the third threshold, and the fast Fourier transform FFT length is not less than the fourth threshold.
  • the first threshold is 300 microseconds ⁇ s
  • the second threshold is 2.4 milliseconds ms
  • the third threshold is 417 Hz
  • the fourth threshold is 36864.
  • the communication device can use one or more of the TBS can be determined by the method of determining TBS.
  • the existing method or other methods can be used to determine TBS, which makes the method of determining TBS more diverse and flexible.
  • the frequency domain resource is greater than a fifth threshold
  • the fifth threshold is pre-defined or configured by higher layer signaling
  • the fifth threshold is predefined or sent to the UE by the network side device.
  • the communication device can use the first method provided in this application to determine the TBS, and use the third part of the TBS table whose number of layers mapped to the transport block is greater than 1.
  • the value of TBS determined in the table is larger, and the amount of data that can be transmitted in each subframe is also more, thereby further improving the signal transmission rate of the system.
  • the third table also corresponds to a TBS table with a transport block mapping layer number of 2, or the third table also corresponds to a TBS table with a transport block mapping layer number of 3, or, The third table also corresponds to a TBS table with 4 layers of transport block mapping.
  • a TBS table with multiple layers of transport block mapping can be used, and the existing table can be reused, saving maintenance costs.
  • the first expansion factor is 3 or 4.
  • the communication device expands the second intermediate variable according to the first expansion factor greater than 1. Since the determined TBS is related to the expanded TBS, the value of the determined TBS is larger. The amount of data that can be transmitted is also more, which further increases the signal transmission rate of the system.
  • the communication device determining the number of REs according to the frequency domain resource includes: the communication device determining the number of REs according to the frequency domain resource and a sixth threshold, and the sixth The threshold is greater than 156 and less than or equal to 846, and the sixth threshold is a threshold corresponding to the number of available REs of one or more RBs in the frequency domain resource.
  • An upper limit that is, a sixth threshold, can be set for the determined number of REs, and the communication device determines the number of REs according to the set upper limit and frequency domain resources, so as to meet possible restrictions on REs in the communication system.
  • a device for determining TBS has the function of realizing the behavior of the communication device in the foregoing method, and includes the means for performing the steps or functions described in the foregoing method.
  • the steps or functions can be realized by software, or by hardware (such as a circuit), or by a combination of hardware and software.
  • the foregoing device includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform corresponding functions of the communication device in the foregoing method.
  • the device may further include one or more memories, where the memory is used for coupling with the processor and stores necessary program instructions and/or data for the device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the above device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory so that the device executes the first aspect or any one of the first aspect It is possible to implement the method completed by the communication device in the mode.
  • the foregoing device includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform corresponding functions of the communication device in the foregoing method.
  • the apparatus may further include one or more memories, where the memories are configured to be coupled with the processor, and the memory stores necessary program instructions and/or data for the communication device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the device may be located in a communication device or be a communication device.
  • the above device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory, so that the device executes the first aspect or any one of the first aspect.
  • the method used by the communication device in the realization mode is used to control the transceiver or the input/output circuit to send and receive signals.
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory, so that the device executes the first aspect or any one of the first aspect.
  • a computer-readable storage medium for storing a computer program, and the computer program includes instructions for executing the method in the first aspect or any one of the possible implementation manners of the first aspect.
  • a computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute any one of the first aspect or the first aspect. The method in the possible implementation mode.
  • Figure 1 is a complete OFDM symbol structure
  • Figure 2 is a schematic structural diagram of a communication system
  • FIG. 3 is a schematic diagram of the relationship between a CP length and the delay extension of multiple cell signals in an embodiment of the application;
  • FIG. 4 is a schematic diagram of a process of determining a TBS applicable in an embodiment of this application.
  • FIG. 5 is a schematic diagram of a process of determining a TBS applicable in an embodiment of this application.
  • FIG. 6 is a schematic diagram of a process of determining a TBS applicable in an embodiment of this application.
  • FIG. 7 is a schematic diagram of a process for determining a TBS applicable in an embodiment of this application.
  • FIG. 8 is a schematic diagram of a process of determining a TBS applicable in an embodiment of the application.
  • FIG. 9 is a schematic diagram of a process of determining a TBS applicable in an embodiment of this application.
  • FIG. 10 is a schematic diagram of a process for determining a TBS applicable in an embodiment of this application.
  • FIG. 11 is a schematic diagram of a process for determining a TBS applicable in an embodiment of this application.
  • Fig. 12 is a structural diagram of a device for determining a TBS applicable in an embodiment of this application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as the fourth generation (4th Generation, 4G), the 4G system includes the long term evolution (LTE) system, and the worldwide interconnection for microwave access (worldwide interoperability).
  • 4G fourth generation
  • WiMAX microwave access
  • 5G future 5th Generation
  • NR new-generation radio access technology
  • 6G future communication systems
  • one entity needs to send a signal
  • another entity needs to receive the signal
  • the size of the signal transmission block needs to be determined.
  • the entity can be understood as a communication device in the communication system.
  • the communication system is composed of a base station and UE1 to UE3.
  • the base station can send downlink data to UE1 to UE3.
  • the base station mentioned in the present invention can be a high-tower high-power base station with a high sky position, large transmission power and far coverage, or a low-tower low-power base station with a low sky position, small transmission power, and close coverage.
  • the term "exemplary” is used to indicate an example, illustration, or illustration. Any embodiment or design solution described as an "example” in this application should not be construed as being more preferable or advantageous than other embodiments or design solutions. Rather, the term example is used to present the concept in a concrete way.
  • Radio Access Network (RAN) equipment is an entity on the network side that transmits or receives signals, such as eNB, gNB, etc.
  • UE is a terminal device, which is an entity on the user side for receiving signals, such as mobile phone UE, large-screen TV, etc.
  • Broadcast channel an information channel that transmits information in a broadcast manner, for example, includes a physical multicast channel (PMCH).
  • PMCH physical multicast channel
  • TBS Transport Block Size
  • Frequency domain resources transmission resources in the frequency domain, including, for example, RB and Resource Element (RE).
  • RE Resource Element
  • the "and/or” in this application describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone. This situation.
  • the character "/” generally indicates that the associated objects before and after are in an "or” relationship.
  • the multiple involved in this application refers to two or more.
  • the eMBMS service uses Multimedia Broadcast Multicast Service (Single Frequency Network, MBSFN) to jointly send eMBMS signals on the same time, frequency, and space resources through multiple cells synchronized with each other, and then form naturally in the air Combination of multi-cell signals. Because this combination occurs on the same frequency, it is also called single frequency network (Single Frequency Network, SFN) combination. Multiple cells that jointly send signals are distributed in a certain geographic location, which is called an MBSFN area.
  • MBSFN Multimedia Broadcast Multicast Service
  • the LTE downlink transmission mechanism is based on Orthogonal Frequency Division Multiplexing (OFDM), which uses orthogonal multiple carriers (called sub-carriers) to transmit information streams.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SCS Sub-Carrier Spacing
  • Tu Tu
  • a complete OFDM symbol also contains a cyclic prefix (CP).
  • CP is a cyclic extension signal generated by moving the signal at the end of the OFDM symbol to the head, thereby forming a guard interval between symbols.
  • ISI Inter-Symbol Interference
  • the signals sent by multiple cell base stations in the MBSFN area are all regarded as useful signals.
  • the CP needs to cover the delay extension of the signals of multiple cells.
  • Figure 3 explains the relationship between the CP length and the delay extension of signals in multiple cells: Signal 1 arrives at the UE at the earliest time, and the delays of signals 2 and 3 relative to signal 1 do not exceed the CP length, which will not cause ISI to signal 1; The time delay of signal 4 relative to signal 1 exceeds the CP length, which will cause the received energy loss of OFDM symbols and ISI, but some symbol energy can still be captured by the receiver; the time delay of signal 5 relative to signal 1 exceeds the entire symbol The length of all symbols cannot be captured by the receiver, and it causes ISI.
  • MBSFN in LTE adopts Extended Cyclic Prefix (ECP)
  • ECP Extended Cyclic Prefix
  • the supported SCS is 15kHz, 7.5kHz and 1.25kHz
  • the corresponding CP length is 16.7 ⁇ s, 33.3 ⁇ s and 200 ⁇ s respectively.
  • LTE R16 introduces a new WI-5G terrestrial broadcasting based on LTE.
  • One of the important work items is the new baseband parameter (numerology) with a CP length of more than 300 ⁇ s. Standardization work.
  • Step 1 The higher layer (generally refers to the network side equipment) configures the PMCH MCS number I MCS for the UE, and the UE determines the modulation order Q m and the TBS number I according to the MCS number I MCS and the first table TBS .
  • the first table is the correspondence between the MCS number I MCS and the modulation order Q m and the TBS number I TBS .
  • the high-level configuration UE supports different modulation modes, and the corresponding first table is different. Specifically, if the high-level configuration UE can use quadrature phase shift keying (Quadrature Phase Shift Keying, QPSK), 16 quadrature amplitude modulation ( Quadrature Amplitude Modulation (QAM), 64QAM and 256QAM are decoded, then the first table may be as shown in Table 1 below; otherwise, the first table may be as shown in Table 2 below, where reserved is reserved data.
  • QPSK Quadrature Phase Shift Keying
  • QAM Quadrature Amplitude Modulation
  • 64QAM Quadrature Amplitude Modulation
  • 256QAM 256QAM
  • Step 2 The UE determines the TBS according to the TBS number I TBS , the RB number N PRB and the second table.
  • the number of RBs N PRB is the total number of downlink (DL) RBs
  • the second table is the corresponding relationship between the number of TBS I TBS , the number of RBs N PRB and TBS, and the second table may be as described in Table 3 below.
  • the CP length of the new numerology introduced by R16 WI exceeds 300 ⁇ s, the symbol length excluding CP exceeds 2.4ms, and the length of the entire symbol exceeds 2.7ms, so the subframe length exceeds 2.7ms and is 1ms longer than the existing LTE subframe.
  • the TBS determined by the UE according to the MCS number I MCS and the RB number N PRB and the second table is less than the actual TBS, which means that the existing method above obtains the data transmitted within 1 ms However, what you should actually get is the amount of data transmitted in more than 2.7ms.
  • MBSFN uses a numerology configuration with a symbol length of more than 1ms to have a smaller TBS, and the amount of data transmitted on each subframe is too small, which limits the signal transmission rate of the system.
  • Existing method 1 When the UE configures the TBS of the PDSCH, the number of RBs is scaled in the following three scenarios, and then the TBS is determined according to the determined TBS number, the number of scaled RBs, and the second table.
  • Scenario 1 If the high-level parameters altMCS-Table and altMCS-Table-scaling are configured for the UE, and the MCS number I MCS meets the set conditions, the determined scaling factor is used to scale the number of RBs.
  • the set conditions are for the technology in the field It is obvious to the personnel, so I won't repeat it here.
  • the scaling factor can be set as a high-level parameter altMCS-Table-scaling, and the value of the scaling factor can be one of ⁇ 0.5, 0.625, 0.75, 0.875, 1 ⁇ .
  • N'PRB is the actual number of RBs configured by the UE
  • is the determined scaling factor
  • N PRB is the number of RBs after scaling.
  • Scenario 2 If the subframe belongs to the set special subframe, according to the special subframe to which the subframe belongs, select the method of scaling the number of RBs in the following two scaling methods: with N'PRB is the actual number of RBs configured by the UE, and N PRB is the number of RBs after scaling. It is believed that the set special subframes are clear to those skilled in the art, and therefore will not be repeated here.
  • Scenario 3 If both scenario 1 and scenario 2 are satisfied at the same time, the number of RBs can be scaled by combining the above two scaling methods.
  • the specific formula is with N'PRB is the actual number of RBs configured by the UE, ⁇ is the determined scaling factor, and N PRB is the number of RBs after scaling.
  • the number of RBs after scaling is generally rounded down, the number of RBs after scaling is usually less than or equal to the actual number of RBs, so it is determined by the number of RBs after scaling, the TBS number and the second table TBS is smaller than the TBS determined by the actual number of RBs, TBS numbers, and the second table. Therefore, the TBS determined in this way for subframes longer than 1ms is too small, and the amount of data transmitted on each subframe is still too small. small.
  • the UE For the Shortened Transmission Time Interval (sTTI) technology, the UE first determines the modulation order Q m and the TBS number I TBS according to the MCS number I MCS and the first table, and then according to the TBS number I TBS , The number of RBs N PRB and the second table determine the first TBS intermediate variable.
  • sTTI Shortened Transmission Time Interval
  • the UE uses the scaling factor to scale the first TBS intermediate variable to obtain the second TBS intermediate variable.
  • the scaling factor is set to 0.5
  • the scaling factor is set to Then select the closest value to the second TBS intermediate variable obtained by scaling in the set TBS resource pool as the TBS.
  • TBS is mapped to different numbers of space layers and uses different TBS resource pools. If TBS is mapped to 1 space layer, the corresponding TBS resource pool of layer 1 is used. If TBS is mapped to 2 space layers, a combination of layer 1 and layer 2 is used. If the TBS is mapped to 3 space layers, the TBS resource pool composed of 1 and 3 layers is used, and if the TBS is mapped to 4 space layers, the TBS resource pool composed of 1 and 4 layers is used.
  • the scaling factor in the existing method two is less than 1, and the second TBS intermediate variable obtained after scaling according to the scaling factor is smaller than the first TBS intermediate variable before scaling. Therefore, this method is adopted for subframes with a length of more than 1ms. The determined TBS is too small, and the amount of data transmitted on each subframe is still too small.
  • TBS For a case where a TBS is mapped to layer 2 spatial multiplexing, layer 3 spatial multiplexing, or layer 4 spatial multiplexing, the UE uses the following method to determine TBS.
  • the following is the case where TBS is mapped to layer 2 spatial multiplexing as As an example, the situation where TBS is mapped to layer 3 spatial multiplexing or mapped to layer 4 spatial multiplexing is similar to the situation of mapping to layer 2 spatial multiplexing, so it will not be repeated.
  • the expansion factor is determined to be 2
  • the number of RBs after expansion is determined to be twice the actual number of RBs
  • the cutoff value is determined according to 110 and the expansion factor, and the cutoff value is 55.
  • the UE determines the TBS according to the TBS number, the actual number of RBs twice as much as the second table; if the actual number of RBs is not less than 56 and not more than 110, the UE will determine the TBS according to the TBS number and the actual number of RBs.
  • the second TBS intermediate variable is the TBS to be determined
  • the third table is the first Correspondence between the TBS intermediate variable TBS_L1 and the second TBS intermediate variable TBS_L2.
  • the corresponding third table is shown in Table 4, and when TBS is mapped to layer 3 spatial multiplexing, the corresponding third table is shown in Table 5, where TBS_L3 is the middle of the third TBS.
  • the third intermediate variable is the TBS to be determined
  • the corresponding third table when TBS is mapped to 4-layer spatial multiplexing is shown in Table 6, where TBS_L4 is the fourth TBS intermediate variable, and the fourth intermediate variable is The TBS to be determined.
  • the existing method three can only expand TBS by 2 times, 3 times, or 4 times, and does not support other multiple expansions. It can only be used when TBS is mapped to multiple layers of space. Therefore, it is not flexible enough, and When there is no multi-layer spatial multiplexing, expansion cannot be performed, and the determination of TBS for subframes longer than 1ms cannot be satisfied in all cases, and the amount of data transmitted on the subframe is still small when it is not satisfied.
  • this application proposes a method for determining TBS to achieve subframes with a length exceeding 1ms. Determine the TBS of the frame.
  • the UE or the network side device determines the TBS corresponding to the first broadcast channel according to the MCS corresponding to the first broadcast channel and the frequency domain resources occupied by the first broadcast channel, the number of layers mapped by the corresponding transport block is greater than 1 TBS table, and the number of layers of transport block mapping carried by the first broadcast channel is 1, that is, a larger TBS can be determined without multi-layer spatial multiplexing, or the first spreading factor pair is used
  • the intermediate variable is expanded to determine the expanded TBS, so a larger TBS can also be determined, or the number of REs can be determined according to frequency domain resources, because the number of REs in a subframe longer than 1ms is greater than that of a subframe with a length of 1ms Therefore, when the TBS is determined according to the number of REs, a larger TBS can be determined.
  • the specific process of TBS determination is described in detail in the following embodiments. First, referring to the process of determining TBS shown in FIG. 4, the process includes:
  • Step S1 The communication device determines the TBS corresponding to the first broadcast channel from one or more of the following methods according to the MCS corresponding to the first broadcast channel and the frequency domain resources occupied by the first broadcast channel.
  • the communication device is a UE, the first broadcast channel of the UE is mainly used to receive data to implement communication. If the communication device is a network side device, the first broadcast channel of the network side device is mainly used to send data to implement communication.
  • the MCS corresponding to the first broadcast channel may be predefined in the UE or configured by high-level signaling sent by the network side device.
  • the high-level protocol layer is at least one protocol layer in each protocol layer above the physical layer.
  • the high-level protocol layer may specifically be at least one of the following protocol layers: Medium Access Control (MAC) layer, Radio Link Control (RLC) layer, Packet Data Convergence Protocol (Packet Data Convergence) Protocol, PDCP) layer, radio resource control (Radio Resource Control, RRC) layer, and non-access stratum (Non Access Stratum, NAS).
  • MAC Medium Access Control
  • RLC Radio Link Control
  • Packet Data Convergence Protocol Packet Data Convergence Protocol
  • PDCP Packet Data Convergence Protocol
  • RRC Radio Resource Control
  • non-access stratum Non Access Stratum
  • the MCS corresponding to the first broadcast channel may be predefined in the network-side device or sent by the network side to the UE.
  • the frequency domain resources occupied by the first broadcast channel may be predefined in the UE or configured by high-level signaling sent by the network side device.
  • the frequency domain resources occupied by the first broadcast channel may be predefined in the network-side device or sent by the network side to the UE.
  • the communication device uses one or a combination of the following methods to determine the TBS corresponding to the first broadcast channel, specifically using the following methods Which method or combination of methods in the above may be pre-defined in the communication device or configured by the network side device by sending high-level signaling to the UE.
  • the communication device After determining the TBS, the communication device can determine the amount of data that can be transmitted in each subframe during data transmission according to the determined TBS, so as to realize data transmission.
  • the first broadcast channel has at least one or a combination of the following features: the time domain resources occupied by CP are not less than a first threshold, the time domain resources occupied by OFDM symbols are not less than a second threshold, and subcarrier spacing (SCS) ) Is not greater than the third threshold, the fast Fourier transform (FFT) length is not less than the fourth threshold, and is configured with parameters for instructing to use the method provided in this application for TBS determination.
  • SCS subcarrier spacing
  • the time domain resources occupied by CP, the time domain resources occupied by OFDM symbols, SCS and FFT length can all be regarded as parameters related to numerology.
  • the communication device needs to determine a TBS for a subframe whose length exceeds 1 ms.
  • the time domain resources occupied by the CP can be regarded as the length of the CP, and the time domain resources occupied by the CP are not less than a first threshold, and the first threshold is 300 ⁇ s, that is, the time domain resources occupied by the CP are not less than 300 ⁇ s.
  • the time domain resources occupied by OFDM symbols can be regarded as the length of OFDM symbols.
  • the length of specific OFDM symbols can include the symbol length of the entire OFDM symbol and/or the symbol length of OFDM excluding CP.
  • the time domain resources occupied by OFDM symbols are not less than the first Two thresholds, the second threshold is 2.4 ms, that is, the time domain resource occupied by the OFDM symbol is not less than 2.4 ms.
  • the SCS is not greater than the third threshold, and the third threshold is 417Hz or 0.417kHz or 0.417KHz, that is, the SCS is not greater than 417Hz or 0.417kHz or 0.417KHz.
  • the SCS is not A condition not greater than the third threshold.
  • the FFT length is not less than the fourth threshold. If the communication system is a 10MHz system broadband, the fourth threshold is 36864, that is, the FFT length is not less than 36864; if the communication system is a 20MHz system broadband, the fourth threshold can be correspondingly doubled to 73728 , That is, the FFT length is not less than 73728.
  • the instruction uses the method provided in this application to determine the parameters of TBS.
  • the communication device uses the method provided in this application to determine the parameters of TBS according to the instruction, it can It is only necessary to determine the TBS for a subframe longer than 1 ms.
  • the parameter can be configured as altTBS_PMCH.
  • the communication device can determine the TBS using the existing method, that is, determine the TBS number according to the MCS number and the first correspondence relationship , Determine the TBS according to the TBS number, the actual number of RBs and the second correspondence.
  • Step S2-1 The communication device determines the first TBS number according to the MCS number and the first table, determines the first intermediate variable according to the first TBS number, the frequency domain resource and the second table, and An intermediate variable and a third table determine the TBS, the first table includes the correspondence between MCS numbers and TBS numbers, and the second table includes the correspondence between frequency domain resources, TBS numbers, and the first intermediate variable.
  • the third table includes the corresponding relationship between TBS and the first intermediate variable.
  • the third table corresponds to a TBS table with a transport block mapping layer number greater than 1, and the transport block mapping layer number carried by the first broadcast channel is 1.
  • the number of the MCS corresponding to the first broadcast channel may be the number of the MCS configured by the network side device.
  • the communication device determines the first TBS number according to the MCS number and the first table.
  • the first table includes the corresponding relationship between the MCS number and the TBS number.
  • the first table can be shown in Table 1 and/or Table 2.
  • the first table can also be the first table obtained by combining or intercepting Table 1 and Table 2, and the first table can also be expanded on the basis of Table 1 and/or Table 2.
  • the first table, the first table may also be a table applied to the 5G NR system.
  • the communication device determines the first intermediate variable according to the first TBS number, the frequency domain resource, and a second table, and the second table includes the corresponding relationship between the frequency domain resource, the TBS number, and the first intermediate variable.
  • the frequency domain resource includes the number of RBs.
  • the number of RBs may be the actual number of RBs configured for the communication device, or may be the extended number of RBs obtained by extending the actual number of RBs.
  • the second table includes The corresponding relationship between the RB number, the TBS number and the first intermediate variable, the first intermediate variable can be regarded as the first intermediate variable when determining the TBS.
  • the second table also corresponds to a TBS table with a transport block mapping layer number of 1.
  • the second table may use the second table shown in Table 3 above, the second table may also be a second table obtained by intercepting Table 3, and the second table may also be the second table in Table 3.
  • the second table obtained by extension on the basis, the second table may also be a table applied to the 5G NR system.
  • the communication device determines the TBS corresponding to the first broadcast channel according to the first intermediate variable and the third table.
  • the third table includes the corresponding relationship between the TBS and the first intermediate variable.
  • the number of transport block mapping layers carried by the first broadcast channel is 1.
  • the third table corresponds to a TBS table with a transport block mapping layer number greater than 1, when the TBS maps a layer 1 space, and in this application, the TBS does not need to perform multi-layer spatial multiplexing, you can search through the third table To a larger value of TBS, it can be ensured that the TBS corresponding to the determined first broadcast channel is larger, and the amount of data transmitted in each subframe is larger.
  • the third table further corresponds to a TBS table with a transport block mapping layer number of 2, or the third table also corresponds to a TBS table with a transport block mapping layer number of 3, or the third The table also corresponds to the TBS table with 4 layers of transport block mapping.
  • the third table may also be a TBS table with a transport block mapping layer number of 1, a TBS table with a transport block mapping layer number of 2, and a TBS table with a transport block mapping layer number of 3, and a transport block A table obtained by combining multiple tables in a TBS table with a mapped level of 4, or a table obtained by intercepting at least one table.
  • the TBS table with the transport block mapping layer number of 1 may be as shown in Table 3 above, and the TBS table with the transport block mapping layer number of 2 may be as shown in Table 4 above, and the transport block mapping layer number is 3.
  • the TBS table may be as shown in Table 5 above, and the TBS table with 4 transport block mapping layers may be as shown in Table 6 above.
  • the communication device determines that the frequency domain resource is greater than a fifth threshold.
  • the fifth threshold may be predefined or configured by higher layer signaling
  • the fifth threshold may be predefined or sent to the UE by the network-side device.
  • the communication device may determine that the actual number of RBs is greater than the fifth threshold.
  • the communication device may determine the TBS as follows: the communication device determines the first TBS number according to the MCS number and the first table, and according to the first TBS number, The frequency domain resource and the second table determine the TBS.
  • the communication device determines an extended frequency domain resource according to the frequency domain resource; the communication device determines a TBS according to the first TBS number, the extended frequency domain resource, and a second table.
  • the number of extended RBs is determined according to the determined spreading factor and the actual number of RBs, such as To expand the number of RBs, ⁇ is the determined expansion factor, and N PRB is the actual number of RBs.
  • the number of extended RBs is determined according to the determined extension factor and the actual number of RBs, such as or, or, ⁇ is the determined expansion factor, and N PRB is the actual number of RBs.
  • the determined expansion factor may be configured by high-level signaling, and may be determined according to stored data corresponding to parameters related to numerology.
  • the determined expansion factor may be determined by the main information block MIB, or MBMS main information block MIB-MBMS, or system information block type-SIB1, or MBMS system information block type-SIB1-MBMS, or system information block type ten.
  • the expansion factor may be the same as the parameter value corresponding to the parameter configured to indicate that the TBS determination is performed in the manner provided in this application.
  • the determined expansion factor is 2.
  • the determined expansion factor is one of the following possible values.
  • the determined possible value of the expansion factor can be in ⁇ 3, 3.25, 3.375, 3.56, 3.69, 3.875, 3.93, 4, 4.06, 4.375, 4.5, 4.625, 5.75, 5.875 ⁇ , or in ⁇ 3, 3.01, 3.02, 3.03, 3.04, 3.05, 3.06, 3.07, 3.08, 3.09, 3.1, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18, 3.19, 3.2, 3.21, 3.22, 3.23, 3.24, 3.25, 3.26, 3.27, 3.28, 3.29, 3.3, 3.31, 3.32, 3.33, 3.34, 3.35, 3.36, 3.37, 3.38, 3.39, 3.4, 3.41, 3.42, 3.43, 3.44, 3.45, 3.46, 3.47, 3.48, 3.49, 3.5, 3.51, 3.52, 3.53, 3.54, 3.55, 3.56, 3.57, 3.58, 3.59, 3.6, 3.61, 3.62, 3.63, 3.64,
  • the above data set includes all the data between 3 and 6.
  • the data that does not appear in the table can be represented by the existing data in the table. For example, 3.005 does not appear in the table, and it can be represented by 3 or 3.01. Use the above extension Depending on the possible value of the factor, the determined TBS can match the MCS more accurately.
  • the fifth threshold can also be determined according to the determined expansion factor, the relationship between the fifth threshold and the determined expansion factor is or The specific explanation is that the fifth threshold x is equal to 110 divided by ⁇ and rounded down or up. For example, if ⁇ is 3, the fifth threshold value is determined to be 36 according to the relationship (corresponding to the fifth threshold value x obtained by rounding down ) Or 37 (corresponding to the fifth threshold x obtained by rounding up).
  • the fifth threshold can also be determined according to the determined expansion factor, the relationship between the fifth threshold and the determined expansion factor is or or The specific explanation is that the fifth threshold x is equal to 110 divided by ⁇ and rounded down or up or rounded. For example, if ⁇ is 3.375, the fifth threshold value is determined to be 32 according to the relationship (corresponding to the rounded down The fifth threshold x) or 33 (corresponding to the fifth threshold x obtained by rounding up, or corresponding to the fifth threshold x obtained by rounding up).
  • the communication device uses the method shown in step S2-1 to determine the TBS corresponding to the first broadcast channel, the communication device only needs to determine that the first broadcast channel has at least one of the characteristics shown above before determining the first intermediate variable. It can be selected or combined, and the specific timing is not limited.
  • the communication device may first determine that the first broadcast channel has at least one or a combination of the above-mentioned features, and then determine the first TBS number according to the MCS number and the first table, and then determine the first TBS number according to the first TBS number and frequency domain. The resource and the second table determine the first intermediate variable.
  • the communication device may first determine the first TBS number according to the MCS number and the first table, and then determine that the first broadcast channel has at least one of the characteristics shown above Or in combination, the first intermediate variable is determined according to the first TBS number, the frequency domain resource and the second table.
  • the process of determining that the first broadcast channel has at least one or a combination of the above-mentioned features can also be embodied by judging conditions.
  • the communication device determines whether the first broadcast channel has at least one of the above-mentioned features. One or a combination, if yes, it is determined that the first broadcast channel has at least one or a combination of the above-mentioned characteristics.
  • Step S2-2 The communication device determines a first TBS number according to the MCS number and the first table, and determines a second intermediate according to the first TBS number, the frequency domain resource, and the second table. Variable, the TBS is determined according to the second intermediate variable and the first expansion factor, and the first expansion factor is greater than 1.
  • step S2-2 the process of determining the first TBS number by the communication device according to the MCS number and the first table is the same as the process of determining the first TBS number in step S2-1, and will not be repeated here.
  • step S2-2 the process of determining the second intermediate variable by the communication device according to the first TBS number, frequency domain resource and the second table is similar to the process of determining the first intermediate variable in step S2-1. Do repeat.
  • the communication device may determine the TBS according to the second intermediate variable and the first expansion factor, which is specifically equivalent to expanding the second intermediate variable according to the first expansion factor to determine the TBS. Since the expanded TBS is larger than the second intermediate variable, Therefore, the determined TBS corresponding to the first broadcast channel is larger, and the amount of data transmitted in each subframe is also larger.
  • step S2-2 The process of determining the first expansion factor in step S2-2 is the same as the process of determining the expansion factor in step S2-1, and will not be repeated here.
  • the determined possible value of the expansion factor can be in ⁇ 3, 3.25, 3.375, 3.56, 3.69, 3.875, 3.93, 4, 4.06, 4.375, 4.5, 4.625, 5.75, 5.875 ⁇ , or in ⁇ 3, 3.01, 3.02, 3.03, 3.04, 3.05, 3.06, 3.07, 3.08, 3.09, 3.1, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18, 3.19, 3.2, 3.21, 3.22, 3.23, 3.24, 3.25, 3.26, 3.27, 3.28, 3.29, 3.3, 3.31, 3.32, 3.33, 3.34, 3.35, 3.36, 3.37, 3.38, 3.39, 3.4, 3.41, 3.42, 3.43, 3.44, 3.45, 3.46, 3.47, 3.48, 3.49, 3.5, 3.51, 3.52, 3.53, 3.54, 3.55, 3.56, 3.57, 3.58, 3.59, 3.6, 3.61, 3.62, 3.63, 3.64, 3.65
  • the above data set includes all the data between 3 and 6.
  • the data that does not appear in the table can be represented by the existing data in the table. For example, 3.005 does not appear in the table, and it can be represented by 3 or 3.01. Use the above extension Depending on the possible value of the factor, the determined TBS can match the MCS more accurately.
  • the communication device may determine TBS according to the second intermediate variable and the first expansion factor, or or TBS_2 is the determined TBS, ⁇ is the determined first expansion factor, TBS_1 is the second intermediate variable, and y is a positive integer and a multiple of 8, such as 8, 16, 24, 32, etc.
  • the determined TBS that is, TBS_2
  • TBS_2 is equal to the nearest value of the product of the determined first expansion factor ⁇ and the second intermediate variable TBS_1 and is an integer multiple of y, or equal to the value greater than the determined first expansion factor ⁇ and second
  • the product of the intermediate variable TBS_1 is small and is a value that is an integer multiple of y that is closest to the product, or equal to an integer multiple of y that is larger than the product of the determined first expansion factor ⁇ and the second intermediate variable TBS_1 and that is closest to the product The numerical value.
  • the communication device may select the value closest to the first product from the predefined or configured TBS resource pool as the TBS according to the first product of the second intermediate variable and the first expansion factor.
  • the communication device selects the value with the smallest difference from the first product among all the TBS values in the TBS resource pool as the TBS.
  • the communication device selects the value with the smallest difference from the first product among the TBS values smaller than the first product as the TBS.
  • the communication device selects the value with the smallest difference from the first product among the TBS values larger than the first product as the TBS.
  • the TBS resource pool may be composed of the second table and all or part of the TBS values in the second table.
  • the TBS resource pool may be composed of all or part of the TBS values in one or more combinations of Tables 3 to 6, for example, the value of TBS in the TBS resource pool is shown in Table 3, Table 4 All or part of the TBS values in any one of Table 5 and Table 6, or a combination of two or two, or a combination of three, or a combination of four.
  • Table 3 all TBS values appearing in Table 3 can form the TBS resource pool; all TBS values appearing in Table 3, Table 4, Table 5, and Table 6 can also form the TBS resource pool.
  • the TBS resource pool may be as shown in Table 7 below.
  • Table 7 only shows part of the TBS values in the TBS resource, and does not constitute a limitation on all possible TBS values in the TBS resource pool.
  • the communication device uses the method shown in step S2-2 to determine the TBS corresponding to the first broadcast channel, the communication device only needs to determine that the first broadcast channel has at least one of the characteristics shown above before determining the second intermediate variable. It can be selected or combined, and the specific timing is not limited.
  • the communication device may first determine that the first broadcast channel has at least one or a combination of the above-mentioned features, and then determine the first TBS number according to the MCS number and the first table, and then determine the first TBS number according to the first TBS number and frequency domain. The resource and the second table determine the second intermediate variable.
  • the communication device may first determine the first TBS number according to the MCS number and the first table, and then determine that the first broadcast channel has at least one of the characteristics shown above Or in combination, the second intermediate variable is determined according to the first TBS number, the frequency domain resource and the second table.
  • the process of determining that the first broadcast channel has at least one or a combination of the above-mentioned features can also be embodied by judging conditions.
  • the communication device determines whether the first broadcast channel has at least one of the above-mentioned features. One or a combination, if yes, it is determined that the first broadcast channel has at least one or a combination of the above-mentioned characteristics.
  • Step S2-3 The communication device determines the number of REs according to the frequency domain resource, and determines the TBS according to the number of REs and the number of the MCS.
  • the communication device determines the number of REs according to frequency domain resources.
  • the number of REs optionally determined may include the number of REs allocated to the PMCH in an RB, and may include the number of REs allocated to the PMCH on all used RBs, that is, the number of REs allocated to the PMCH Total RE number.
  • the number of REs includes the number of REs allocated to PMCH in one RB, for example, when the communication device determines the number of REs according to frequency domain resources, it can be based on the number of subcarriers in one RB, the number of symbols allocated to PMCH in one subframe, and The number of REs of the MBSFN reference signal (Reference Signal, RS) in each RB is determined.
  • Reference Signal Reference Signal
  • N′ RE is the number of REs allocated to PMCH in an RB
  • the number of symbols allocated to PMCH for a subframe Is the number of REs of the MBSFN RS in each RB.
  • the number of subcarriers in one RB, the number of symbols allocated to PMCH in one subframe, and the number of REs of MBSFN RSs in each RB may be determined according to saved data corresponding to parameters related to numerology, for example,
  • the UE is allocated to the PMCH RB RE in determining a number N 'RE time, also consider other resource overhead, for example, determine the number allocated to the PMCH RE one RB using the following formula:
  • the other resource overhead may be configured through high-level parameters of the network side device, or may be obtained through other means, which is not limited here, and optionally,
  • the communication device determines the number of REs allocated to the PMCH in one RB and the number of all RBs allocated to the communication device.
  • N RE N ' RE ⁇ n PRB
  • N RE is the number of REs allocated to PMCH on all used RBs
  • n PRB is the number of all RBs allocated to the communication device.
  • the communication device determining the number of REs according to the frequency domain resource includes: the communication device determining the number of REs according to the frequency domain resource and a sixth threshold.
  • the sixth threshold is a threshold corresponding to the number of available REs of one or more RBs in the frequency domain resource, that is, the upper limit set for the number of REs allocated to the PMCH.
  • the sixth threshold is the threshold corresponding to the number of available REs of one RB in the frequency domain resource, and is similar to the use process of the threshold corresponding to the number of available REs of multiple RBs in the frequency domain resource. Therefore, the sixth threshold is used here as the frequency
  • the threshold value corresponding to the number of available REs of one RB in the domain resources is described as an example.
  • the number of REs allocated to PMCH in one RB, that is, the number of available REs of one RB, is min(a, N'RE ), and N'RE is according to the above formula
  • the calculated number of REs allocated to the PMCH in one RB, a is the threshold corresponding to the number of available REs of one RB, that is, the corresponding sixth threshold.
  • the sixth threshold may be configured through high-level signaling, or may be a predefined value, for example, the sixth threshold is greater than 156 and less than or equal to 846.
  • step S2-3 the number of RBs corresponding to the subframes longer than 1ms is more than the number of RBs corresponding to the subframes longer than 1ms. Therefore, the total number of REs allocated to the PMCH is determined corresponding to the subframes longer than 1ms. The total number of REs corresponding to subframes longer than 1ms, so the determined subframes longer than 1ms correspond to larger TBS, and the amount of data transmitted in each subframe is also larger.
  • the communication device determines the TBS according to the number of REs and the number of the MCS. For example, the communication device determines the modulation order and code rate according to the number of the MCS and the fourth table, and determines the modulation order and code rate according to the total number of REs allocated to the PMCH Determine the TBS, where the fourth table includes the correspondence between the MCS number, modulation order, and code rate.
  • the fourth table may be as shown in Table 8 or Table 9 below, where MCS Index I MCS is the number of MCS, Modulation Order Q m is the modulation order, and Target code Rate R x[1024] is the product of the code rate and 1024 , Spectral efficiency is the spectrum utilization rate, and the code rate is the ratio of Target code Rate R x [1024] to 1024.
  • the communication device determines the number of information bits according to the total number of REs allocated to the PMCH, the determined modulation order and code rate, and determines the TBS according to the determined number of information bits.
  • the communication device determines the TBS according to the determined number of information bits, and the following formula can be used for calculation: or
  • the unit of TBS is bit; the value 24 is used to indicate the overhead of Cyclic Redundancy Check (CRC), and the unit is bit; 8 is used to ensure that TBS is an integer multiple of 8, which is an integer when TBS is converted to Byte ,
  • step S2-1 may adopt the manner shown in FIG. 5 to determine TBS, which includes the following steps:
  • Step 501 The communication device determines a first TBS number according to the MCS number and a first table, and the first table includes the correspondence between the MCS number and the TBS number.
  • step 501 refer to the process of determining the number of the first TBS according to the number of the MCS and the first table in the above step S2-1, which will not be repeated here.
  • Step 502 If the frequency domain resource is less than or equal to the fifth threshold, determine the TBS according to the first TBS number, the number of extended RBs, and a second table, and the number of extended RBs is determined according to the frequency domain resource and the expansion factor
  • the second table includes the corresponding relationship between the TBS number, the number of extended RBs, and the TBS.
  • the frequency domain resources include the number of RBs.
  • the process of determining the number of extended RBs according to the frequency domain resources and the spreading factor can refer to the process shown in the above step S2-1, which will not be repeated here.
  • the second table may use the second table shown in Table 3 above, and the second table may also be the second table obtained by intercepting Table 3, and the second table may also be the second table in Table 3.
  • the second table obtained by extension on the basis, the second table may also be a table applied to the 5G NR system.
  • Step 503 If the frequency domain resource is greater than the fifth threshold, determine the first intermediate variable according to the first TBS number, the frequency domain resource and the second table, and determine the TBS according to the first intermediate variable and the third table ,
  • the second table includes the corresponding relationship between frequency domain resources, TBS numbers and the first intermediate variable
  • the third table includes the corresponding relationship between TBS and the first intermediate variable
  • the third table corresponds to the number of layers mapped by the transport block TBS form greater than 1.
  • step S2-1 For the process of determining the TBS in this step 503, refer to the above step S2-1, which will not be repeated here.
  • step S2-2 may adopt the second manner shown in FIG. 6 to determine the TBS, including the following steps:
  • Step 601 The communication device determines a first TBS number according to the MCS number and a first table, and the first table includes the correspondence between the MCS number and the TBS number.
  • Step 602 If the frequency domain resource is less than or equal to the fifth threshold, determine the TBS according to the first TBS number, the number of extended RBs and the second table, and the number of extended RBs is determined according to the frequency domain resource and the expansion factor
  • the second table includes the corresponding relationship between the TBS number, the number of extended RBs, and the TBS.
  • the frequency domain resources include the number of RBs.
  • the process of determining the number of extended RBs according to the frequency domain resources and the spreading factor can refer to the process shown in the above step S2-1, which will not be repeated here.
  • the second table may use the second table shown in Table 3 above, and the second table may also be the second table obtained by intercepting Table 3, and the second table may also be the second table in Table 3.
  • the second table obtained by extension on the basis, the second table may also be a table applied to the 5G NR system.
  • Step 603 If the frequency domain resource is greater than the fifth threshold, determine a second intermediate variable according to the first TBS number, the frequency domain resource, and the second table, and according to the second intermediate variable and the first extension The factor determines the TBS, and the second table includes the corresponding relationship between frequency domain resources, TBS numbers, and first intermediate variables.
  • step 603 For the process of determining the TBS in this step 603, refer to the above step S2-2, which will not be repeated here.
  • step S2-1 may adopt manner three as shown in FIG. 7 to determine TBS, including the following steps:
  • Step 701 The communication device determines a first TBS number according to the MCS number and a first table, and the first table includes the correspondence between the MCS number and the TBS number.
  • Step 702 If the downlink bandwidth of the frequency domain resource is one of 1.4MHz or 3MHz or 5MHz, or the number of downlink RBs of the frequency domain resource is one of 6 or 15 or 25, according to the first TBS number, extension
  • the number of RBs and a second table determine the TBS, the number of extended RBs is determined according to the frequency domain resource and an extension factor, and the second table includes the corresponding relationship between the number of the TBS, the number of extended RBs, and the TBS.
  • the frequency domain resources include the number of RBs.
  • the process of determining the number of extended RBs according to the frequency domain resources and the spreading factor can refer to the process shown in the above step S2-1, which will not be repeated here.
  • the second table may use the second table shown in Table 3 above, and the second table may also be the second table obtained by intercepting Table 3, and the second table may also be the second table in Table 3.
  • the second table obtained by extension on the basis, the second table may also be a table applied to the 5G NR system.
  • Step 703 If the downlink bandwidth of the frequency domain resource is one of 10MHz, 15MHz, or 20MHz, or the number of downlink RBs of the frequency domain resource is one of 50, 75, or 100, according to the first TBS number, the The frequency domain resource and the second table determine the first intermediate variable, and the TBS is determined according to the first intermediate variable and the third table.
  • the second table includes the corresponding relationship between the frequency domain resource, the TBS number, and the first intermediate variable.
  • the third table includes the correspondence between TBS and the first intermediate variable, and the third table corresponds to a TBS table with a transmission block mapping layer number greater than 1.
  • step S2-2 may adopt manner four as shown in FIG. 8 to determine TBS, including the following steps:
  • Step 801 The communication device determines a first TBS number according to the MCS number and a first table, and the first table includes the correspondence between the MCS number and the TBS number.
  • Step 802 If the downlink bandwidth of the frequency domain resource is one of 1.4MHz, 3MHz, or 5MHz, or the number of downlink RBs of the frequency domain resource is one of 6, 15 or 25, according to the first TBS number, extension
  • the number of RBs and a second table determine the TBS, the number of extended RBs is determined according to the frequency domain resource and an extension factor, and the second table includes the corresponding relationship between the number of the TBS, the number of extended RBs, and the TBS.
  • the frequency domain resources include the number of RBs.
  • the process of determining the number of extended RBs according to the frequency domain resources and the spreading factor can refer to the process shown in the above step S2-1, which will not be repeated here.
  • the second table may use the second table shown in Table 3 above, and the second table may also be the second table obtained by intercepting Table 3, and the second table may also be the second table in Table 3.
  • the second table obtained by extension on the basis, the second table may also be a table applied to the 5G NR system.
  • Step 803 If the downlink bandwidth of the frequency domain resource is one of 10MHz, 15MHz, or 20MHz, or the number of downlink RBs of the frequency domain resource is one of 50, 75, or 100, according to the first TBS number, the The frequency domain resource and the second table determine a second intermediate variable, the TBS is determined according to the second intermediate variable and the first expansion factor, and the second table includes the frequency domain resource, the TBS number, and the information of the first intermediate variable. Correspondence.
  • step 803 For the process of determining TBS in this step 803, refer to the above step S2-2, which will not be repeated here.
  • the TBS determination process includes:
  • Step 0 If the UE determines that the TBS needs to be determined for a subframe longer than 1ms according to the characteristics of the first broadcast channel, the UE uses method A to determine the TBS, otherwise the UE uses method B to determine the TBS.
  • the UE determines that a certain parameter is configured by a higher layer, that is, a setting parameter, or that a numerology configured by a higher layer satisfies a certain condition, that is, a setting condition, it determines using method A to determine TBS.
  • This step 0 can be implemented by referring to the process of determining that the first broadcast channel has at least one or a combination of the following features in the foregoing step 1, and details are not repeated here.
  • Method A The steps of Method A are as follows:
  • Method A step 1 The UE determines the TBS number I TBS according to the MCS number I MCS and the first table.
  • Method A step 2 Determine whether the actual number of RBs N PRB is less than or equal to the fifth threshold, if yes, proceed to method A step 2a, if not, proceed to method A step 2b.1.
  • Method A step 2a UE according to TBS number I TBS , extend the number of RBs And the second table determines TBS.
  • the number of extended RB ⁇ is a parameter configured by a higher layer or an agreed value.
  • Method A step 2b.1 The UE determines the TBS intermediate variable TBS_1 according to the TBS number I TBS , the actual number of RBs N PRB and the second table. Proceed to method A step 2b.2.
  • the TBS intermediate variable TBS_1 can be regarded as the above-mentioned first intermediate variable.
  • Method A step 2b.2 The UE determines the TBS according to the TBS intermediate variable TBS_1 and the third table.
  • the third table is the correspondence between TBS intermediate variables TBS_1 and TBS.
  • Step 2a in method A is mutually exclusive with step 2b.1 and step 2b.2.
  • Method B step 1 The UE determines the TBS number I TBS according to the MCS number I MCS and the first table.
  • Method B step 2 The UE determines the TBS according to the TBS number I TBS , the actual number of RBs N PRB and the second table.
  • the TBS determination process includes:
  • Step 0 If the UE determines that the TBS needs to be determined for a subframe longer than 1ms according to the characteristics of the first broadcast channel, the UE uses method A to determine the TBS, otherwise the UE uses method B to determine the TBS.
  • the UE determines that a certain parameter is configured by a higher layer, that is, a setting parameter, or that a numerology configured by a higher layer satisfies a certain condition, that is, a setting condition, it determines using method A to determine TBS.
  • This step 0 can be implemented by referring to the process of determining that the first broadcast channel has at least one or a combination of the following features in the foregoing step S1, and details are not repeated here.
  • Method A The steps of Method A are as follows:
  • Method A step 1 The UE determines the TBS number I TBS according to the MCS number I MCS and the first table.
  • Method A step 2 The UE determines the TBS intermediate variable TBS_1 according to the TBS number I TBS , the actual number of RBs N PRB and the second table.
  • the TBS intermediate variable TBS_1 can be regarded as the above-mentioned first intermediate variable.
  • Method A step 3a The UE determines the TBS according to the TBS intermediate variable TBS_1 and the third table, where the third table is the correspondence between the TBS intermediate variable TBS_1 and the TBS.
  • the process of determining ⁇ can refer to the process of determining the expansion factor described above, which is not repeated here.
  • Step 3b.2 of Method A The UE selects the closest value to the second TBS intermediate variable TBS_2 from the pre-defined or set TBS resources as the TBS.
  • Step 3a in method A is in parallel with step 3b.1 and step 3b.2.
  • Method B step 1 The UE determines the TBS number I TBS according to the MCS number I MCS and the first table.
  • Method B step 2 The UE determines the TBS according to the TBS number I TBS , the actual number of RBs N PRB and the second table.
  • the TBS determination process includes:
  • Step 0 If the UE determines that the TBS needs to be determined for a subframe longer than 1ms according to the characteristics of the first broadcast channel, the UE uses method A to determine the TBS, otherwise the UE uses method B to determine the TBS.
  • the UE determines that a certain parameter is configured by a higher layer, that is, a setting parameter, or that a numerology configured by a higher layer satisfies a certain condition, that is, a setting condition, it determines using method A to determine TBS.
  • This step 0 can be implemented by referring to the process of determining that the first broadcast channel has at least one or a combination of the following features in the foregoing step S1, and details are not repeated here.
  • Method A The steps of Method A are as follows:
  • Method A step 1 The UE determines the number of REs in a subframe.
  • the specific parameters of this step determine the process of the number of REs according to the frequency domain resources, which is not repeated here.
  • Method A step 2 UE determines TBS according to modulation order and code rate or MCS.
  • the MCS is specifically the number of the MCS, and the modulation order and code rate are determined according to the number of the MCS according to the fourth table.
  • Method B step 1 The UE determines the TBS number I TBS according to the MCS number I MCS and the first table.
  • Method B step 2 The UE determines the TBS according to the TBS number I TBS , the actual number of RBs N PRB and the second table.
  • the TBS determination method of the embodiment of the present application is described in detail above in conjunction with FIGS. 4 to 11. Based on the same inventive concept as the above TBS determination method, as shown in FIG. 12, the present application also provides a TBS determination device Schematic.
  • the apparatus 1200 may be used to implement the method described in the foregoing method embodiment applied to a communication device, and reference may be made to the description of the foregoing method embodiment.
  • the apparatus 1200 may be in a communication device or a communication device.
  • the device 1200 includes one or more processors 1201.
  • the processor 1201 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, terminals, or chips, etc.), execute software programs, and process software program data.
  • the communication device may include a transceiving unit to implement signal input (reception) and output (transmission).
  • the transceiver unit may be a transceiver, a radio frequency chip, or the like.
  • the apparatus 1200 includes one or more processors 1201, and the one or more processors 1201 can implement the method of the communication device in the embodiment shown above.
  • the processor 1201 may execute instructions to cause the apparatus 1200 to execute the method described in the foregoing method embodiment.
  • the instructions may be stored in the processor in whole or in part, such as the instruction 1203, or in the memory 1202 coupled to the processor, in whole or in part, such as the instruction 1204, or the instructions 1203 and 1204 may be used together
  • the apparatus 1200 executes the method described in the foregoing method embodiment.
  • the communication device 1200 may also include a circuit, and the circuit may implement the function of the communication device in the foregoing method embodiment.
  • the device 1200 may include one or more memories 1202, on which instructions 1204 are stored, and the instructions may be executed on the processor, so that the device 1200 executes the above method The method described in the examples.
  • data may also be stored in the memory.
  • the optional processor may also store instructions and/or data.
  • the one or more memories 1202 may store the corresponding relationship described in the foregoing embodiment, or related parameters or tables involved in the foregoing embodiment.
  • the processor and memory can be provided separately or integrated together.
  • the device 1200 may further include a transceiver unit 1205 and an antenna 1206.
  • the processor 1201 may be called a processing unit, and controls a device (terminal or base station).
  • the transceiver unit 1205 may be called a transceiver, a transceiver circuit, or a transceiver, etc., and is used to implement the transceiver function of the device through the antenna 1206.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the embodiment of the present application also provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, the method for determining the TBS described in any of the above-mentioned method embodiments applied to a communication device is implemented.
  • the embodiments of the present application also provide a computer program product, which, when executed by a computer, implements the TBS determination method described in any of the above-mentioned method embodiments applied to a communication device.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (Digital Video Disc, DVD)), or a semiconductor medium (for example, a solid state disk (Solid State Disk, SSD)) etc.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the method for determining TBS described in any of the foregoing method embodiments applied to communication equipment.
  • the foregoing processing device may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, At this time, the processor may be a general-purpose processor, which is implemented by reading the software code stored in the memory, and the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • Computer-readable media include computer storage media and communication media, where communication media includes any media that facilitates the transfer of computer programs from one place to another.
  • the storage medium may be any available medium that can be accessed by a computer.
  • computer readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or can be used to carry or store instructions or data structures
  • Any connection can suitably become a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable , Fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless and microwave are included in the fixing of the media.
  • Disk and disc include compact discs (CD), laser discs, optical discs, digital versatile discs (DVD), floppy discs and Blu-ray discs. Disks usually copy data magnetically, while discs The laser is used to optically copy data. The above combination should also be included in the protection scope of the computer-readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种TBS的确定方法及装置,用以提高***的信号传输速率,该TBS的确定方法为:根据广播信道对应的MCS和占用的频域资源,通过以下任意一种方式确定对应的TBS:根据MCS的编号和第一表格确定TBS编号,根据TBS编号、频域资源和第二表格确定第一中间变量,根据第一中间变量和第三表格确定TBS,第三表格包括TBS和第一中间变量的对应关系,第三表格对应传输块映射的层数大于1的TBS表格,广播信道承载的传输块映射的层数为1;根据确定的TBS编号、频域资源和第二表格确定第二中间变量,根据第二中间变量和扩展因子确定TBS,扩展因子大于1;根据频域资源确定RE数,根据RE数和MCS的编号确定TBS。

Description

一种TBS的确定方法及装置
相关申请的交叉引用
本申请要求在2019年03月29日提交国际专利局、申请号为PCT/CN2019/080674、发明名称为“一种TBS的确定方法及装置”的PCT专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,特别涉及一种传输块大小(Transport Block Size,TBS)的确定方法及装置。
背景技术
为了支持多媒体广播多播单频网(Multimedia Broadcast multicast service Single Frequency Network,MBSFN)为更大覆盖范围内的用户终端(User Equipment,UE)提供广播业务,长期演进(Long Term Evolution,LTE)R(Release,版本)16引入了新的工作项目(Work Item,WI)——基于LTE的第五代移动通信技术(5th-Generation,5G)地面广播,其中一个重要的工作项是循环前缀(Cyclic prefix,CP)长度超过300μs的新基带参数(numerology)的标准化工作,如图1所示,一个完整的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号包括CP和OFDM符号。
现有子帧的长度为1ms时,UE根据高层配置物理多播信道(Physical Multicast Channel,PMCH)的MCS编号,和第一表格确定调制阶数和TBS编号,其中第一表格是MCS编号与调制阶数和TBS编号的对应关系,UE根据TBS编号,资源块(Resource Block,RB)数和第二表格确定TBS,其中RB数是下行(DL)总RB数,第二表格是TBS编号、RB数和TBS的对应关系。
R16 WI引入的新numerology的CP长度超过300μs,不包含CP的符号长度超过2.4毫秒(ms),整个OFDM符号的长度超过了2.7ms,那么一个子帧长度超过了2.7ms并且大于LTE现有一个子帧的长度1ms。而采用现有方式确定的是1ms时间内传输的数据量,对于符号长度超过1ms的numerology来说,依照现有方式配置的数据量也最多为1ms内传输的数据量,就导致MBSFN使用符号长度超过1ms的numerology配置的TBS偏小,每个子帧上传输的数据量偏小,限制了***的信号传输速率。
发明内容
本申请提供一种TBS的确定方法及装置,用以解决现有技术中存在的***的信号传输速率受限的问题。
第一方面,提供了一种TBS的确定方法,包括如下过程:
通信设备根据第一广播信道对应的调制编码方式MCS和所述第一广播信道占用的频域资源,通过以下方式中的一种或多种确定所述第一广播信道对应的TBS:
所述通信设备根据所述MCS的编号和第一表格确定第一TBS编号,根据所述第一TBS 编号、所述频域资源和第二表格确定第一中间变量,根据所述第一中间变量和第三表格确定所述TBS,所述第一表格包括MCS编号和TBS编号的对应关系,所述第二表格包括频域资源、TBS编号和第一中间变量的对应关系,所述第三表格包括TBS和第一中间变量的对应关系,所述第三表格对应传输块映射的层数大于1的TBS表格,所述第一广播信道承载的传输块映射的层数为1;
所述通信设备根据所述MCS的编号和所述第一表格确定第一TBS编号,根据所述第一TBS编号、所述频域资源和所述第二表格确定第二中间变量,根据所述第二中间变量和第一扩展因子确定所述TBS,所述第一扩展因子大于1;
所述通信设备根据所述频域资源确定RE数,根据所述RE数和所述MCS的编号确定所述TBS。
在一种可能的实现中,所述第一广播信道具有如下特征中的至少一种或者组合:循环前缀CP占用的时域资源不小于第一阈值,OFDM符号占用的时域资源不小于第二阈值,子载波间隔SCS不大于第三阈值,快速傅里叶变换FFT长度不小于第四阈值。
在一种可能的实现中,所述第一阈值为300微秒μs,所述第二阈值为2.4毫秒ms,所述第三阈值为417赫兹Hz,所述第四阈值为36864。
当通信设备确定第一广播信道具体有上述特征中的至少一种或组合时,相当于通信设备确定需要为长度超过1ms时的子帧时,通信设备可以采用本申请中的一种或多种的方式确定TBS,当不满足这个条件时,可以采用现有方式或其他方式确定TBS,使得确定TBS的过程中方式更加多样和灵活。
在一种可能的实现中,所述频域资源大于第五阈值;
如果所述通信设备为终端设备UE,所述第五阈值为预先定义或高层信令配置的;
如果所述通信设备为网络侧设备,所述第五阈值为预先定义或所述网络侧设备发送给UE的。
当通信设备确定第一广播信道占用的频域资源大于第五阈值时,通信设备可以采用本申请提供的第一种方式确定TBS,采用为传输块映射的层数大于1的TBS表格的第三表格确定的TBS的数值更大,每个子帧上能传输的数据量也更多,从而进一步提高了***的信号传输速率。
在一种可能的实现中,所述第三表格还对应传输块映射的层数为2的TBS表格,或者,所述第三表格还对应传输块映射的层数为3的TBS表格,或者,所述第三表格还对应传输块映射的层数为4的TBS表格。
通信设备通过第三表格确定TBS时,可以采用传输块映射的层数为多层的TBS表格,并且可以实现对现有表格的复用,节省了维护成本。
在一种可能的实现中,所述第一扩展因子为3或4。
第一扩展因子大于1时,通信设备根据该大于1的第一扩展因子对第二中间变量进行扩展,确定的TBS由于与扩展后的TBS相关,因此确定的TBS的数值更大,每个自身上能传输的数据量也更多,从而进一步提高了***的信号传输速率。
在一种可能的实现中,所述通信设备根据所述频域资源确定所述RE数,包括:所述通信设备根据所述频域资源和第六阈值确定所述RE数,所述第六阈值大于156且小于或等于846,所述第六阈值为所述频域资源中一个或多个RB的可用RE数对应的阈值。
可以对确定的RE数设置上限即第六阈值,通信设备根据该设置的上限和频域资源确 定RE数,从而满足通信***中可能对RE存在的限制。
第二方面,提供了一种TBS的确定装置,本申请提供的装置具有实现上述方法方面通信设备行为的功能,其包括用于执行上述方法方面所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件(如电路)实现,或者通过硬件和软件结合来实现。
在一种可能的设计中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中通信设备相应的功能。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存装置必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该装置执行第一方面或第一方面中任一种可能实现方式中通信设备完成的方法。
在一种可能的设计中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中通信设备相应的功能。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存通信设备必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述装置可以位于通信设备中,或为通信设备。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第一方面或第一方面中任一种可能实现方式中通信设备完成的方法。
第三方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面中任一种可能实现方式中的方法的指令。
第四方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面或第一方面中任一种可能实现方式中的方法。
附图说明
图1为一种完整的OFDM符号的结构意图;
图2为一种通信***的结构示意图;
图3为本申请实施例中一种CP长度和多个小区信号的时延扩展的关系示意图;
图4为本申请实施例中适用的一种TBS的确定的流程示意图;
图5为本申请实施例中适用的一种TBS的确定的流程示意图;
图6为本申请实施例中适用的一种TBS的确定的流程示意图;
图7为本申请实施例中适用的一种TBS的确定的流程示意图;
图8为本申请实施例中适用的一种TBS的确定的流程示意图;
图9为本申请实施例中适用的一种TBS的确定的流程示意图;
图10为本申请实施例中适用的一种TBS的确定的流程示意图;
图11为本申请实施例中适用的一种TBS的确定的流程示意图;
图12为本申请实施例中适用的一种TBS的确定装置结构图。
具体实施方式
下面将结合附图对本发明作进一步地详细描述。
本申请实施例的技术方案可以应用于各种通信***,例如:***(4th Generation,4G),4G***包括***长期演进(long term evolution,LTE)***,全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***,未来的第五代(5th Generation,5G)***,如新一代无线接入技术(new radio access technology,NR),及未来的通信***,如6G***等,只要该通信***中存在一个实体需要发送信号,另一个实体需要接收该信号,并需要确定信号传输块的大小均可,实体可以理解为通信***中的通信设备。
例如可以为如图2所示的通信***,该通信***由基站(Base station)和UE1~UE3组成,在该通信***中,基站可以发送下行数据给UE1~UE3。本发明中提到的基站可以是天面位置高、发射功率大、覆盖范围远的高塔高功率基站,也可以是天面位置低、发射功率小、覆盖范围近的低塔低功率基站。
本申请将围绕可包括多个设备、组件、模块等的***来呈现各个方面、实施例或特征。应当理解和明白的是,各个***可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
以下对本申请实施例的部分用语进行解释说明,以便于本领域技术人员理解。
1)通信设备,包括无线接入网(Radio Access Network,RAN)设备和用户设备(User Equipment,UE),RAN设备为网络侧的一种用于发射或接收信号的实体,如eNB,gNB等,UE为终端设备,是用户侧的一种用于接收信号的实体,如手机UE、大屏电视等。
2)、广播信道,通过广播的方式传输信息的信息通道,例如包括物理多播信道(Physical Multicast Channel,PMCH)。
3)、传输块大小(Transport Block Size,TBS),TBS是每个子帧上能够传输的数据量,主要由子帧(subframe)长度、调制编码方式(Modulation and Coding Scheme,MCS)和资源块(Resource Block,RB)数决定。
4)、频域资源,在频域上的传输资源,例如包括RB和资源粒子(Resource Element,RE)。
本申请中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/” 一般表示前后关联对象是一种“或”的关系。
本申请中所涉及的多个,是指两个或两个以上。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
为了便于理解本申请实施例,首先对本申请使用的应用场景进行说明。
先简单对广播的和多播技术进行介绍:互联网技术的快速发展以及大屏幕多媒体终端的快速普及,催生了大量的大带宽高速率的多媒体业务,例如电视广播、球赛转播、互联网直播、视频会议等。与一般移动数据业务相比,上述多媒体业务允许多个用户同时接收相同的数据,并且具有数据传输速率高、覆盖范围大的特点。为了有效的利用无线网络资源,第三代伙伴计划(3rd Generation Partnership Project,3GPP)引入了演进的多媒体广播/组播服务(evolved Multimedia Broadcast/Multicast Service,eMBMS),实现点对多点的数据传输,提高了空口资源的利用率。传统的长期演进(Long Term Evolution,LTE)中定义了物理多播信道(Physical Multicast Channel,PMCH)用于eMBMS业务的传输数据。
eMBMS业务使用多媒体广播多播单频网(Multimedia Broadcast multicast service Single Frequency Network,MBSFN)通过相互同步的多个小区在相同的时域、频域和空域资源上联合发送eMBMS信号,然后在空中自然形成多小区信号的合并,这种合并因为发生在同一个频率上,因此又称为单频网(Single Frequency Network,SFN)合并。联合发送信号的多个小区分布在一定的地理位置内,这个一定的地理位置称为MBSFN区域。
其次对PMCH的numerology进行介绍:LTE下行链路传输机制基于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM),采用彼此正交的多载波(称为子载波)来传送信息流。相邻子载波在频域的间隔就是子载波间隔(Sub-Carrier Spacing,SCS),且SCS越小,OFDM符号周期Tu越长(Tu=1/SCS)。一个完整的OFDM符号还会包含循环前缀(Cyclic prefix,CP),如图1所示,CP是将OFDM符号尾部的信号搬移到头部产生的循环扩展信号,从而在符号间形成保护间隔,用于抵抗符号间干扰(Inter-Symbol Interference,ISI)。
在MBSFN***中,MBSFN区域内的多个小区基站发出的信号均被看作有用信号,这种情况下CP需要覆盖多个小区信号的时延扩展。图3解释了CP长度和多个小区信号的时延扩展的关系:信号1到达UE时间最早,信号2和信号3相对于信号1的时延没有超过CP长度,不会对信号1造成ISI;信号4相对于信号1的时延超过了CP长度,会造成OFDM符号的接收能量损失以及ISI,但是仍然有部分符号能量可以被接收机捕捉;信号5相对于信号1的时延超过了整个符号的长度,全部符号能量都不能被接收机捕捉,而且造成ISI。
如果MBSFN区域扩大,那么多小区信号的时延扩展会增加,需要更大的CP来抵抗ISI。目前,LTE中MBSFN采用扩展循环前缀(Extended Cyclic Prefix,ECP),支持的SCS为15kHz、7.5kHz和1.25kHz,对应的CP长度分别为16.7μs、33.3μs和200μs。为了支持MBSFN为更大覆盖范围内的UE提供广播业务,LTE R16引入了新的WI——基于LTE的5G地面广播,其中一个重要的工作项是CP长度超过300μs的新基带参数(numerology)的标准化工作。
然后简单说明PMCH的TBS计算方法:步骤1:高层(一般指网络侧设备)为UE配置PMCH的MCS编号I MCS,UE根据MCS编号I MCS和第一表格确定调制阶数Q m和TBS 编号I TBS。其中第一表格是MCS编号I MCS与调制阶数Q m和TBS编号I TBS的对应关系。
高层配置的UE支持的调制方式不同,对应的采用的第一表格存在区别,具体地,如果高层配置UE可以使用正交相移键控(Quadrature Phase Shift Keying,QPSK)、16正交振幅调制(Quadrature Amplitude Modulation,QAM)、64QAM和256QAM进行解码,那么第一表格可以如下述表1所示,否则,第一表格可以如下述表2所示,其中reserved为预留数据。
表1
Figure PCTCN2019105790-appb-000001
Figure PCTCN2019105790-appb-000002
表2
Figure PCTCN2019105790-appb-000003
Figure PCTCN2019105790-appb-000004
步骤2:UE根据TBS编号I TBS、RB数N PRB和第二表格确定TBS。其中RB数N PRB是下行(DL)总RB数,第二表格是TBS编号I TBS、RB数N PRB和TBS的对应关系,第二表格可以如下表3所述。
表3
Figure PCTCN2019105790-appb-000005
Figure PCTCN2019105790-appb-000006
Figure PCTCN2019105790-appb-000007
Figure PCTCN2019105790-appb-000008
Figure PCTCN2019105790-appb-000009
Figure PCTCN2019105790-appb-000010
Figure PCTCN2019105790-appb-000011
Figure PCTCN2019105790-appb-000012
Figure PCTCN2019105790-appb-000013
Figure PCTCN2019105790-appb-000014
Figure PCTCN2019105790-appb-000015
Figure PCTCN2019105790-appb-000016
Figure PCTCN2019105790-appb-000017
Figure PCTCN2019105790-appb-000018
Figure PCTCN2019105790-appb-000019
Figure PCTCN2019105790-appb-000020
R16 WI引入的新numerology的CP长度超过300μs,不包含CP的符号长度超过2.4ms,整个符号的长度超过了2.7ms,那么子帧长度超过了2.7ms并且大于LTE现有子帧的长度1ms。如果继续使用现有PMCH确定TBS方法的话,UE根据MCS编号I MCS和RB数N PRB和第二表格确定的TBS小于实际的TBS,也就是说现有上述方法得到的是1ms时间内传输的数据量,而实际应该得到的是超过2.7ms时间内传输的数据量。这样导致的后果是,MBSFN使用符号长度超过1ms的numerology配置的TBS偏小,每个子帧上传输的数据量偏小,限制了***的信号传输速率。
现有技术中为了实现长度超过1ms的子帧的传输,提供了以下三种方式:
现有方式一:UE在配置PDSCH的TBS时,在以下三个场景下会对RB数进行缩放处理,再根据确定的TBS编号,和缩放后的RB数以及第二表格,确定TBS。
场景一:如果为UE配置了高层参数altMCS-Table以及altMCS-Table-scaling,且MCS编号I MCS满足设定条件,采用确定的缩放因子对RB数进行缩放处理,该设定条件对于本领域技术人员来说是显而易见地,因此在此不进行赘述。
该缩放因子可以设置为高层参数altMCS-Table-scaling,并且该缩放因子在的取值可以是{0.5,0.625,0.75,0.875,1}中的一个。
采用确定的该缩放因子对RB数进行缩放处理的公式为
Figure PCTCN2019105790-appb-000021
N' PRB为UE配置的实际RB数,α为确定的该缩放因子,N PRB为缩放后的RB数。
场景二:如果子帧属于设定的特殊子帧,根据子帧归属的特殊子帧的不同,在下面这两种缩放方法中选择缩放RB数的方式:
Figure PCTCN2019105790-appb-000022
Figure PCTCN2019105790-appb-000023
N' PRB为UE配置的实际RB数,N PRB为缩放后的RB数,相信该设定的特殊子帧对于本领域技术人员是清楚,因此在此不进行赘述。
场景三:如果同时满足场景一和场景二,那么可以结合上面两种缩放方法对RB数进行缩放,具体的公式为
Figure PCTCN2019105790-appb-000024
Figure PCTCN2019105790-appb-000025
N' PRB为UE配置的实际RB数,α为确定的该缩放因子,N PRB为缩放后的RB数。
但是现有方式一中由于缩放后的RB数一般是向下取整,因此缩放后的RB数通常是小于或等于实际RB数,因此通过缩放后的RB数、TBS编号和第二表格确定的TBS,相比于通过实际RB数、TBS编号和第二表格确定的TBS要小,因此对于长度超过1ms的子帧采用这种方式确定的TBS偏小,每个子帧上传输的数据量仍然偏小。
现有方式二:对于短传输时间间隔(Shortened Transmission Time Interval,sTTI)技术,UE先根据MCS编号I MCS和第一表格确定调制阶数Q m和TBS编号I TBS,然后再根据TBS编号I TBS、RB数N PRB和第二表格确定第一TBS中间变量。
UE使用缩放因子对第一TBS中间变量进行缩放得到第二TBS中间变量,对于slot-PDSCH,缩放因子设置为0.5,对于subslot-PDSCH,缩放因子设置为
Figure PCTCN2019105790-appb-000026
然后在设置的TBS资源池中选择距离缩放得到的第二TBS中间变量最近的数值作为TBS。
TBS映射到不同数量的空间层上使用的TBS资源池不同,如果TBS映射到1个空间层则使用1层对应的TBS资源池,如果TBS映射到2个空间层则使用1层和2层组合成的TBS资源池,如果TBS映射到3个空间层则使用1层和3层组合成的TBS资源池,如果TBS映射到4个空间层则使用1层和4层组合成的TBS资源池。
但是现有方式二中缩放因子小于1,根据缩放因子进行缩放后得到的第二TBS中间变量要相对于缩放前的第一TBS中间变量要小,因此对于长度超过1ms的子帧采用这种方式确定的TBS偏小,每个子帧上传输的数据量仍然偏小。
现有方式三:对于一个TBS映射到2层空间复用、3层空间复用或4层空间复用的情况,UE使用以下方法确定TBS,下面以TBS映射到2层空间复用的情况为例进行说明,TBS映射到3层空间复用或映射到4层空间复用的情况与映射到2层空间复用的情况相似,因此不进行赘述。
对于映射到2层空间复用的情况,确定扩展因子为2,确定扩展后的RB数为2倍的 实际RB数,根据110和扩展因子确定分界值的,得到分界值为55。
如果实际RB数不小于1且不大于55,UE根据TBS编号、2倍的实际RB数和第二表格确定TBS;如果实际RB数不小于56且不大于110,UE根据TBS编号、实际RB数和第二表格确定第一TBS中间变量,然后再根据第一TBS中间变量和第三表格确定第二TBS中间变量,该第二TBS中间变量即为所要确定的TBS,其中第三表格为第一TBS中间变量TBS_L1和第二TBS中间变量TBS_L2的对应关系。具体地,TBS映射到2层空间复用时对应的第三表格如表4所示,TBS映射到3层空间复用时对应的第三表格如表5所示,其中TBS_L3为第三TBS中间变量,该第三中间变量即为所要确定的TBS,TBS映射到4层空间复用时对应的第三表格如表6所示,其中TBS_L4为第四TBS中间变量,该第四中间变量即为所要确定的TBS。
表4
TBS_L1 TBS_L2 TBS_L1 TBS_L2 TBS_L1 TBS_L2 TBS_L1 TBS_L2
1544 3112 3752 7480 10296 20616 28336 57336
1608 3240 3880 7736 10680 21384 29296 59256
1672 3368 4008 7992 11064 22152 30576 61664
1736 3496 4136 8248 11448 22920 31704 63776
1800 3624 4264 8504 11832 23688 32856 66592
1864 3752 4392 8760 12216 24496 34008 68808
1928 3880 4584 9144 12576 25456 35160 71112
1992 4008 4776 9528 12960 25456 36696 73712
2024 4008 4968 9912 13536 27376 37888 76208
2088 4136 5160 10296 14112 28336 39232 78704
2152 4264 5352 10680 14688 29296 40576 81176
2216 4392 5544 11064 15264 30576 42368 84760
2280 4584 5736 11448 15840 31704 43816 87936
2344 4776 5992 11832 16416 32856 45352 90816
2408 4776 6200 12576 16992 34008 46888 93800
2472 4968 6456 12960 17568 35160 48936 97896
2536 5160 6712 13536 18336 36696 51024 101840
2600 5160 6968 14112 19080 37888 52752 105528
2664 5352 7224 14688 19848 39232 55056 110136
2728 5544 7480 14688 20616 40576 57336 115040
2792 5544 7736 15264 21384 42368 59256 119816
2856 5736 7992 15840 22152 43816 61664 124464
2984 5992 8248 16416 22920 45352 63776 128496
3112 6200 8504 16992 23688 46888 66592 133208
3240 6456 8760 17568 24496 48936 68808 137792
3368 6712 9144 18336 25456 51024 71112 142248
3496 6968 9528 19080 26416 52752 73712 146856
3624 7224 9912 19848 27376 55056 75376 149776
76208 152976 81176 161760 87936 175600 93800 187712
78704 157432 84760 169544 90816 181656 97896 195816
100752 201936 101840 203704 105528 211936    
107832 214176 110136 220296 112608 226416 115040 230104
117256 236160 119816 239656 124464 248272 125808 251640
表5
TBS_L1 TBS_L3 TBS_L1 TBS_L3 TBS_L1 TBS_L3 TBS_L1 TBS_L3
1032 3112 2664 7992 8248 24496 26416 78704
1064 3240 2728 8248 8504 25456 27376 81176
1096 3240 2792 8248 8760 26416 28336 84760
1128 3368 2856 8504 9144 27376 29296 87936
1160 3496 2984 8760 9528 28336 30576 90816
1192 3624 3112 9144 9912 29296 31704 93800
1224 3624 3240 9528 10296 30576 32856 97896
1256 3752 3368 9912 10680 31704 34008 101840
1288 3880 3496 10296 11064 32856 35160 105528
1320 4008 3624 10680 11448 34008 36696 110136
1352 4008 3752 11064 11832 35160 37888 115040
1384 4136 3880 11448 12216 36696 39232 119816
1416 4264 4008 11832 12576 37888 40576 119816
1480 4392 4136 12576 12960 39232 42368 128496
1544 4584 4264 12960 13536 40576 43816 133208
1608 4776 4392 12960 14112 42368 45352 137792
1672 4968 4584 13536 14688 43816 46888 142248
1736 5160 4776 14112 15264 45352 48936 146856
1800 5352 4968 14688 15840 46888 51024 152976
1864 5544 5160 15264 16416 48936 52752 157432
1928 5736 5352 15840 16992 51024 55056 165216
1992 5992 5544 16416 17568 52752 57336 171888
2024 5992 5736 16992 18336 55056 59256 177816
2088 6200 5992 18336 19080 57336 61664 185728
2152 6456 6200 18336 19848 59256 63776 191720
2216 6712 6456 19080 20616 61664 66592 199824
2280 6712 6712 19848 21384 63776 68808 205880
2344 6968 6968 20616 22152 66592 71112 214176
2408 7224 7224 21384 22920 68808 73712 221680
2472 7480 7480 22152 23688 71112 75376 226416
2536 7480 7736 22920 24496 73712    
2600 7736 7992 23688 25456 76208    
76208 230104 81176 245648 87936 266440 93800 284608
78704 236160 84760 254328 90816 275376 97896 293736
105528 314888 107832 324336 110136 324336 112608 336576
115040 339112 117256 351224 119816 363336 124464 373296
125808 375448            
表6
TBS_L1 TBS_L4 TBS_L1 TBS_L4 TBS_L1 TBS_L4 TBS_L1 TBS_L4
776 3112 2280 9144 7224 29296 24496 97896
808 3240 2344 9528 7480 29296 25456 101840
840 3368 2408 9528 7736 30576 26416 105528
872 3496 2472 9912 7992 31704 27376 110136
904 3624 2536 10296 8248 32856 28336 115040
936 3752 2600 10296 8504 34008 29296 115040
968 3880 2664 10680 8760 35160 30576 124464
1000 4008 2728 11064 9144 36696 31704 128496
1032 4136 2792 11064 9528 37888 32856 133208
1064 4264 2856 11448 9912 39232 34008 137792
1096 4392 2984 11832 10296 40576 35160 142248
1128 4584 3112 12576 10680 42368 36696 146856
1160 4584 3240 12960 11064 43816 37888 151376
1192 4776 3368 13536 11448 45352 39232 157432
1224 4968 3496 14112 11832 46888 40576 161760
1256 4968 3624 14688 12216 48936 42368 169544
1288 5160 3752 15264 12576 51024 43816 175600
1320 5352 3880 15264 12960 51024 45352 181656
1352 5352 4008 15840 13536 55056 46888 187712
1384 5544 4136 16416 14112 57336 48936 195816
1416 5736 4264 16992 14688 59256 51024 203704
1480 5992 4392 17568 15264 61664 52752 211936
1544 6200 4584 18336 15840 63776 55056 220296
1608 6456 4776 19080 16416 66592 57336 230104
1672 6712 4968 19848 16992 68808 59256 236160
1736 6968 5160 20616 17568 71112 61664 245648
1800 7224 5352 21384 18336 73712 63776 254328
1864 7480 5544 22152 19080 76208 66592 266440
1928 7736 5736 22920 19848 78704 68808 275376
1992 7992 5992 23688 20616 81176 71112 284608
2024 7992 6200 24496 21384 84760 73712 293736
2088 8248 6456 25456 22152 87936 75376 299856
2152 8504 6712 26416 22920 90816    
2216 8760 6968 28336 23688 93800    
76208 305976 81176 324336 87936 351224 93800 375448
78704 314888 84760 339112 90816 363336 97896 391656
105528 422232 107832 422232 110136 440616 112608 452832
115040 460232 117256 471192 119816 478400 124464 501792
125808 502624            
但是现有方式三中只能对TBS进行2倍、3倍或4倍的扩展,不支持其他倍数的扩展,并在只能在TBS映射多层空间复用时使用,因此对于不够灵活,并且在未多层空间复用时,无法进行扩展,无法满足长度超过1ms的子帧在所有情况下TBS的确定,在不满足时子帧上传输的数据量仍然偏小。
基于上述对现有技术中TBS确定方式的描述,可知现有技术中对于长度超过1ms的子帧采用这种方式确定的TBS偏小,每个子帧上传输的数据量仍然偏小。鉴于此,为了保证长度超过1ms的子帧确定的TBS大,每个子帧上传输的数据量大,提高***的信号传输速率,本申请提出了一种TBS的确定方法来实现长度超过1ms的子帧的TBS的确定。
具体地,UE或者网络侧设备根据第一广播信道对应的MCS和该第一广播信道占用的频域资源,确定该第一广播信道对应的TBS的过程中,采用对应传输块映射的层数大于1的TBS表格,且第一广播信道承载的传输块映射的层数为1,即在不进行多层空间复用时也能够确定出较大的TBS,或是采用第一扩展因子对得到的中间变量进行扩展确定出扩展后的TBS,因此也能够确定出较大的TBS,或者是根据频域资源确定RE数,由于长度超过1ms的子帧的RE数大于长度为1ms的子帧的RE数,因此根据RE数确定TBS时也能够确定出较大的TBS。以下述实施例详细说明TBS确定的具体过程,首先参见图4所示的TBS的确定过程,该过程包括:
步骤S1:通信设备根据第一广播信道对应的MCS和所述第一广播信道占用的频域资源,从以下方式中的一种或多种确定所述第一广播信道对应的TBS。
如果通信设备为UE,UE的第一广播信道主要用于接收数据以实现通信,如果通信设备为网络侧设备,网络侧设备的第一广播信道主要用于发送数据以实现通信。
可选地,如果通信设备为UE,第一广播信道对应的MCS可以为在UE中预先定义的,或者是由网络侧设备发送的高层信令配置的。
高层协议层为物理层以上的每个协议层中的至少一个协议层。其中,高层协议层具体可以为以下协议层中的至少一个:媒体接入控制(Medium Access Control,MAC)层、无线链路控制(Radio Link Control,RLC)层、分组数据会聚协议(Packet Data Convergence Protocol,PDCP)层、无线资源控制(Radio Resource Control,RRC)层和非接入层(Non Access Stratum,NAS)。可以理解的是,高层信令一般也可以等同于配置信息。
可选地,如果通信设备为网络侧设备,第一广播信道对应的MCS可以为在网络侧设备中预先定义的,或者是由网络侧发送给UE的。
可选地,如果通信设备为UE,第一广播信道占用的频域资源可以为在UE中预先定义的,或者是由网络侧设备发送的高层信令配置的。
可选地,如果通信设备为网络侧设备,第一广播信道占用的频域资源可以为在网络侧 设备中预先定义的,或者是由网络侧发送给UE的。
通信设备根据该第一广播信道对应的MCS和该第一广播信道占用的频域资源,采用以下方式中的一种或多种方式的组合确定该第一广播信道对应的TBS,具体采用以下方式中的哪一种方式或哪几种方式进行组合可以是预先定义在通信设备中或者是网络侧设备通过向UE发送高层信令进行配置等。
通信设备确定TBS后可以根据确定的该TBS确定数据传输时每个子帧能够传输的数据量,从而实现数据传输。
所述第一广播信道具有如下特征中的至少一种或者组合:CP占用的时域资源不小于第一阈值,OFDM符号占用的时域资源不小于第二阈值,子载波间隔(subcarrier spacing,SCS)不大于第三阈值,快速傅里叶变换(fast Fourier transform,FFT)长度不小于第四阈值,配置有用于指示采用本申请提供的方法进行TBS确定的参数。
其中CP占用的时域资源、OFDM符号占用的时域资源、SCS和FFT长度均可以看作是与numerology相关的参数。
当第一广播信道具有如下特征中的至少一种或者至少一种的组合时,可以认为通信设备需要为长度超过1ms的子帧确定TBS。
CP占用的时域资源可以看作是CP的长度,CP占用的时域资源不小于第一阈值,所述第一阈值为300μs,即CP占用的时域资源不小于300μs。
OFDM符号占用的时域资源可以看作是OFDM符号的长度,具体OFDM符号的长度可以包括整个OFDM的符号长度和/或不包括CP的OFDM的符号长度,OFDM符号占用的时域资源不小于第二阈值,所述第二阈值为2.4ms,即OFDM符号占用的时域资源不小于2.4ms。
SCS不大于第三阈值,所述第三阈值为417Hz或者0.417kHz或者0.417KHz,即SCS不大于417Hz或者0.417kHz或者0.417KHz,例如,如果高层配置的SCS是Δf=0.625kHz,则SCS不满足不大于第三阈值的条件。
FFT长度不小于第四阈值,如果通信***为10MHz***宽带,所述第四阈值为36864,即FFT长度不小于36864;如果通信***为20MHz***宽带,则所述第四阈值可以对应加倍为73728,即FFT长度不小于73728。
配置有用于指示采用本申请提供的方式进行TBS确定的参数,该指示采用本申请提供的方式进行TBS确定的参数任意,只要通信设备根据该指示采用本申请提供的方式进行TBS确定的参数,能够确定为长度超过1ms的子帧确定TBS即可,例如该参数可以配置为altTBS_PMCH。
如果通信设备根据第一广播信道具有的特征,确定通信设备不需要为长度超过1ms的子帧确定TBS时,通信设备可以采用现有方法确定TBS,即根据MCS编号和第一对应关系确定TBS编号,根据TBS编号,实际RB数和第二对应关系确定TBS。
步骤S2-1:所述通信设备根据所述MCS的编号和第一表格确定第一TBS编号,根据所述第一TBS编号、所述频域资源和第二表格确定第一中间变量,根据第一中间变量和第三表格确定所述TBS,所述第一表格包括MCS编号和TBS编号的对应关系,所述第二表格包括频域资源、TBS编号和第一中间变量的对应关系,所述第三表格包括TBS和第一中间变量的对应关系,所述第三表格对应传输块映射的层数大于1的TBS表格,所述第一广播信道承载的传输块映射的层数为1。
其中,如果通信设备为UE时,该第一广播信道对应的MCS的编号可以为网络侧设备配置的MCS的编号。
通信设备根据MCS的编号和第一表格确定第一TBS编号,该第一表格包括MCS编号和TBS编号的对应关系,可选地,该第一表格可以采用上述表1和/或表2所示的第一表格,该第一表格也可以为将表1和表2进行组合或截取后得到的第一表格,该第一表格也可以为在表1和/或表2的基础上扩展得到的第一表格,该第一表格也可以为应用于5G NR***中的表格。
通信设备根据第一TBS编号、频域资源和第二表格确定第一中间变量,该第二表格包括频域资源、TBS编号和第一中间变量的对应关系。示例的,该频域资源包括RB数,可选地该RB数可以为为通信设备配置的实际RB数,可以为对实际RB数进行扩展后得到的扩展后的RB数,该第二表格包括RB数、TBS编号和第一中间变量的对应关系,第一中间变量可以看作是确定TBS时的第一中间变量。
可选地,所述第二表格还对应传输块映射的层数为1的TBS表格。
可选地,该第二表格可以采用上述表3所示的第二表格,该第二表格也可以为将表3进行截取后得到的第二表格,该第二表格也可以为在表3的基础上扩展得到的第二表格,该第二表格也可以为应用于5G NR***中的表格。
通信设备根据第一中间变量和第三表格确定第一广播信道对应的TBS,该第三表格包括TBS和第一中间变量的对应关系,该第一广播信道承载的传输块映射的层数为1,该第三表格对应传输块映射的层数大于1的TBS表格,则在TBS映射1层空间时,并且本申请中TBS也不必须进行多层空间复用,就可以通过该第三表格查找到更大数值的TBS,因此能够保证确定的第一广播信道对应的TBS更大,每个子帧上传输的数据量更大。
可选地,所述第三表格还对应传输块映射的层数为2的TBS表格,或者,所述第三表格还对应传输块映射的层数为3的TBS表格,或者,所述第三表格还对应传输块映射的层数为4的TBS表格。
可选地,所述第三表格还可以为传输块映射的层数为1的TBS表格、传输块映射的层数为2的TBS表格、传输块映射的层数为3的TBS表格和传输块映射的层数为4的TBS表格中多个表格组合得到的表格,或对至少一个表格截取后得到的表格。
可选地,传输块映射的层数为1的TBS表格可以如上述表3所示,传输块映射的层数为2的TBS表格可以如上述表4所示,传输块映射的层数为3的TBS表格可以如上述表5所示,传输块映射的层数为4的TBS表格可以如上述表6所示。
可选地,在使用该方式确定第一广播信道对应的TBS时,通信设备确定所述频域资源大于第五阈值。
如果所述通信设备为终端设备UE,所述第五阈值可以为预先定义或高层信令配置的;
如果所述通信设备为网络侧设备,所述第五阈值可以为预先定义或所述网络侧设备发送给UE的。
示例的,通信设备确定该频域资源大于第五阈值,可以是通信设备确定实际RB数大于该第五阈值。
可选地,通信设备如果确定该频域资源小于或等于该第五阈值,通信设备可以下述确定TBS:通信设备根据MCS的编号和第一表格确定第一TBS编号,根据第一TBS编号、频域资源和第二表格确定TBS。
可选地,通信设备根据所述频域资源,确定扩展频域资源;通信设备根据所述第一TBS编号、所述扩展频域资源和第二表格确定TBS。
如果频域资源包括RB数,可选地,扩展RB数根据确定的扩展因子和实际RB数确定,如
Figure PCTCN2019105790-appb-000027
为扩展RB数,α为确定的扩展因子,N PRB为实际RB数。
可选的,扩展RB数根据确定的扩展因子和实际RB数确定,如
Figure PCTCN2019105790-appb-000028
或者,
Figure PCTCN2019105790-appb-000029
或者,
Figure PCTCN2019105790-appb-000030
α为确定的扩展因子,N PRB为实际RB数。
可选地,确定的该扩展因子可以由高层信令配置,可以是根据保存的与numerology相关的参数对应的数据确定。
可选地,确定的该扩展因子可以由主信息块MIB,或者MBMS主信息块MIB-MBMS,或者***信息块类型一SIB1,或者MBMS***信息块类型一SIB1-MBMS,或者***信息块类型十三SIB13配置。
示例的,如果确定的该扩展因子由高层信令配置,则该扩展因子可以与上述配置的用于指示采用本申请提供的方式进行TBS确定的参数对应的参数值相同。
示例的,如果确定该扩展因子根据保存的与numerology相关的参数对应的数据确定,且SCS是Δf=0.625kHz,那么确定的该扩展因子为2。
示例地,如果确定该扩展因子根据保存的与numerology相关的参数对应的数据确定,且SCS是Δf=0.37kHz或者Δf=0.371kHz,那么确定的该扩展因子为以下可能的值中的一个。
即,确定的该扩展因子可能的值,可以在{3,3.25,3.375,3.56,3.69,3.875,3.93,4,4.06,4.375,4.5,4.625,5.75,5.875}中,也可以在{3,3.01,3.02,3.03,3.04,3.05,3.06,3.07,3.08,3.09,3.1,3.11,3.12,3.13,3.14,3.15,3.16,3.17,3.18,3.19,3.2,3.21,3.22,3.23,3.24,3.25,3.26,3.27,3.28,3.29,3.3,3.31,3.32,3.33,3.34,3.35,3.36,3.37,3.38,3.39,3.4,3.41,3.42,3.43,3.44,3.45,3.46,3.47,3.48,3.49,3.5,3.51,3.52,3.53,3.54,3.55,3.56,3.57,3.58,3.59,3.6,3.61,3.62,3.63,3.64,3.65,3.66,3.67,3.68,3.69,3.7,3.71,3.72,3.73,3.74,3.75,3.76,3.77,3.78,3.79,3.8,3.81,3.82,3.83,3.84,3.85,3.86,3.87,3.88,3.89,3.9,3.91,3.92,3.93,3.94,3.95,3.96,3.97,3.98,3.99,4,4.01,4.02,4.03,4.04,4.05,4.06,4.07,4.08,4.09,4.1,4.11,4.12,4.13,4.14,4.15,4.16,4.17,4.18,4.19,4.2,4.21,4.22,4.23,4.24,4.25,4.26,4.27,4.28,4.29,4.3,4.31,4.32,4.33,4.34,4.35,4.36,4.37,4.38,4.39,4.4,4.41,4.42,4.43,4.44,4.45,4.46,4.47,4.48,4.49,4.5,4.51,4.52,4.53,4.54,4.55,4.56,4.57,4.58,4.59,4.6,4.61,4.62,4.63,4.64,4.65,4.66,4.67,4.68,4.69,4.7,4.71,4.72,4.73,4.74,4.75,4.76,4.77,4.78,4.79,4.8,4.81,4.82,4.83,4.84,4.85,4.86,4.87,4.88,4.89,4.9,4.91,4.92,4.93,4.94,4.95,4.96,4.97,4.98,4.99,5,5.01,5.02,5.03,5.04,5.05,5.06,5.07,5.08,5.09,5.1,5.11,5.12,5.13,5.14,5.15,5.16,5.17,5.18,5.19,5.2,5.21,5.22,5.23,5.24,5.25,5.26,5.27,5.28,5.29,5.3,5.31,5.32,5.33,5.34,5.35,5.36,5.37,5.38,5.39,5.4,5.41,5.42,5.43,5.44,5.45,5.46,5.47,5.48,5.49,5.5,5.51,5.52,5.53,5.54,5.55,5.56,5.57,5.58,5.59,5.6,5.61,5.62,5.63,5.64,5.65,5.66,5.67,5.68,5.69,5.7,5.71,5.72,5.73,5.74,5.75,5.76,5.77,5.78,5.79,5.8,5.81,5.82,5.83,5.84,5.85,5.86,5.87,5.88,5.89,5.9, 5.91,5.92,5.93,5.94,5.95,5.96,5.97,5.98,5.99,6}中,示例的,确定的该扩展因子为3或4。上述数据集合包括3到6之间所有的数据,没有在表格中出现的数据可以使用表格中已有的数据来表示,比如3.005没有出现在表格中,可以使用3或者3.01来表示,使用上述扩展因子可能的值,确定的TBS可以和MCS匹配的更加准确。
可选地,如果该第五阈值还可以根据确定的该扩展因子确定,则第五阈值与确定的该扩展因子之间的关系为
Figure PCTCN2019105790-appb-000031
或者
Figure PCTCN2019105790-appb-000032
具体解释为,第五阈值x等于110除以α并向下取整或者向上取整,例如α为3,则根据该关系确定第五阈值为36(对应向下取整得到的第五阈值x)或37(对应向上取整得到的第五阈值x)。
可选地,如果该第五阈值还可以根据确定的该扩展因子确定,则第五阈值与确定的该扩展因子之间的关系为
Figure PCTCN2019105790-appb-000033
或者
Figure PCTCN2019105790-appb-000034
或者
Figure PCTCN2019105790-appb-000035
具体解释为,第五阈值x等于110除以α并向下取整或者向上取整或者四舍五入取整,例如α为3.375,则根据该关系确定第五阈值为32(对应向下取整得到的第五阈值x)或33(对应向上取整得到的第五阈值x,或者对应四舍五入取整得到的第五阈值x)。
如果通信设备采用该步骤S2-1所示的方式确定第一广播信道对应的TBS时,通信设备只需要在确定第一中间变量前,确定第一广播信道具有上述所示的特征中的至少一种或组合即可,具体的确定时机不做限制。可选地,通信设备可以先确定第一广播信道具有上述所示的特征中的至少一种或组合,然后根据MCS的编号和第一表格确定第一TBS编号,根据第一TBS编号、频域资源和第二表格确定第一中间变量,可选地,通信设备可以先根据MCS的编号和第一表格确定第一TBS编号,然后确定第一广播信道具有上述所示的特征中的至少一种或组合,根据第一TBS编号、频域资源和第二表格确定第一中间变量。
可选地,确定第一广播信道具有上述所示的特征中的至少一种或组合的过程也可以通过判断条件来体现,如通信设备判断第一广播信道是否具有上述所示的特征中的至少一种或组合,如果是,确定第一广播信道具有上述所示的特征中的至少一种或组合。
步骤S2-2:所述通信设备根据所述MCS的编号和所述第一表格确定第一TBS编号,根据所述第一TBS编号、所述频域资源和所述第二表格确定第二中间变量,根据所述第二中间变量和第一扩展因子确定所述TBS,所述第一扩展因子大于1。
该步骤S2-2确定TBS的方式中,通信设备根据MCS的编号和第一表格确定第一TBS编号的过程与步骤S2-1中确定第一TBS编号的过程相同,这里不再重复赘述。
该步骤S2-2确定TBS的方式中,通信设备根据第一TBS编号、频域资源和第二表格确定第二中间变量的过程与步骤S2-1中确定第一中间变量的过程相似,这里不做赘述。
通信设备可以根据第二中间变量和第一扩展因子确定TBS,具体地相当于根据第一扩展因子对该第二中间变量进行扩展确定TBS,由于扩展后的TBS相对于第二中间变量更大,因此确定的该第一广播信道对应的TBS更大,每个子帧上传输的数据量也更大。
该步骤S2-2中确定该第一扩展因子的过程同步骤S2-1中确定扩展因子的过程相同, 这里不再重复赘述。
确定的该扩展因子可能的值,可以在{3,3.25,3.375,3.56,3.69,3.875,3.93,4,4.06,4.375,4.5,4.625,5.75,5.875}中,也可以在{3,3.01,3.02,3.03,3.04,3.05,3.06,3.07,3.08,3.09,3.1,3.11,3.12,3.13,3.14,3.15,3.16,3.17,3.18,3.19,3.2,3.21,3.22,3.23,3.24,3.25,3.26,3.27,3.28,3.29,3.3,3.31,3.32,3.33,3.34,3.35,3.36,3.37,3.38,3.39,3.4,3.41,3.42,3.43,3.44,3.45,3.46,3.47,3.48,3.49,3.5,3.51,3.52,3.53,3.54,3.55,3.56,3.57,3.58,3.59,3.6,3.61,3.62,3.63,3.64,3.65,3.66,3.67,3.68,3.69,3.7,3.71,3.72,3.73,3.74,3.75,3.76,3.77,3.78,3.79,3.8,3.81,3.82,3.83,3.84,3.85,3.86,3.87,3.88,3.89,3.9,3.91,3.92,3.93,3.94,3.95,3.96,3.97,3.98,3.99,4,4.01,4.02,4.03,4.04,4.05,4.06,4.07,4.08,4.09,4.1,4.11,4.12,4.13,4.14,4.15,4.16,4.17,4.18,4.19,4.2,4.21,4.22,4.23,4.24,4.25,4.26,4.27,4.28,4.29,4.3,4.31,4.32,4.33,4.34,4.35,4.36,4.37,4.38,4.39,4.4,4.41,4.42,4.43,4.44,4.45,4.46,4.47,4.48,4.49,4.5,4.51,4.52,4.53,4.54,4.55,4.56,4.57,4.58,4.59,4.6,4.61,4.62,4.63,4.64,4.65,4.66,4.67,4.68,4.69,4.7,4.71,4.72,4.73,4.74,4.75,4.76,4.77,4.78,4.79,4.8,4.81,4.82,4.83,4.84,4.85,4.86,4.87,4.88,4.89,4.9,4.91,4.92,4.93,4.94,4.95,4.96,4.97,4.98,4.99,5,5.01,5.02,5.03,5.04,5.05,5.06,5.07,5.08,5.09,5.1,5.11,5.12,5.13,5.14,5.15,5.16,5.17,5.18,5.19,5.2,5.21,5.22,5.23,5.24,5.25,5.26,5.27,5.28,5.29,5.3,5.31,5.32,5.33,5.34,5.35,5.36,5.37,5.38,5.39,5.4,5.41,5.42,5.43,5.44,5.45,5.46,5.47,5.48,5.49,5.5,5.51,5.52,5.53,5.54,5.55,5.56,5.57,5.58,5.59,5.6,5.61,5.62,5.63,5.64,5.65,5.66,5.67,5.68,5.69,5.7,5.71,5.72,5.73,5.74,5.75,5.76,5.77,5.78,5.79,5.8,5.81,5.82,5.83,5.84,5.85,5.86,5.87,5.88,5.89,5.9,5.91,5.92,5.93,5.94,5.95,5.96,5.97,5.98,5.99,6}中,示例的,确定的该第一扩展因子为3或4。上述数据集合包括3到6之间所有的数据,没有在表格中出现的数据可以使用表格中已有的数据来表示,比如3.005没有出现在表格中,可以使用3或者3.01来表示,使用上述扩展因子可能的值,确定的TBS可以和MCS匹配的更加准确。
一种示例的,通信设备可以将第二中间变量和第一扩展因子的第一乘积直接确定为TBS,即TBS_2=α·TBS_1,TBS_2为第一乘积,α为确定的第一扩展因子,TBS_1为第二中间变量。
另一种示例的,通信设备可以根据第二中间变量和第一扩展因子确定TBS,
Figure PCTCN2019105790-appb-000036
或者
Figure PCTCN2019105790-appb-000037
或者
Figure PCTCN2019105790-appb-000038
TBS_2为确定的TBS,α为确定的第一扩展因子,TBS_1为第二中间变量,y为正整数且为8的倍数,例如8、16、24、32等。具体解释为,确定的TBS即TBS_2等于距离确定的第一扩展因子α和第二中间变量TBS_1的乘积最近的且为y的整数倍的数值,或者等于比确定的第一扩展因子α和第二中间变量TBS_1的乘积小且距离所述乘积最近的y的整数倍的数值,或者等于比确定的第一扩展因子α和第二中间变量TBS_1的乘积大且 距离所述乘积最近的y的整数倍的数值。
另一种示例的,通信设备可以根据第二中间变量和第一扩展因子的第一乘积,在预定义的或者配置的TBS资源池中选取与该第一乘积最近的数值作为TBS。
可选地,通信设备在TBS资源池的所有TBS数值中,选取与该第一乘积的差值最小的数值作为TBS。
可选地,通信设备在TBS资源池中,在比该第一乘积小的TBS数值中,选取与该第一乘积的差值最小的数值作为TBS。
可选地,通信设备在TBS资源池中,在比该第一乘积大的TBS数值中,选取与该第一乘积的差值最小的数值作为TBS。
可选地,该TBS资源池可以由第二表格和第二表格中的全部或部分TBS数值组成。
可选地,该TBS资源池可以由上述表3~表6中的一个或多个的组合中的全部或部分TBS数值组成,例如该TBS资源池中的TBS的数值由表3、表4、表5、表6中的任意一个或者其中两两组合或者3个的组合或者4个的组合中的全部或部分TBS数值组成。例如,表3中所有出现的TBS数值可以组成该TBS资源池;所有在表3、表4、表5、表6中出现的TBS数值也可以组成该TBS资源池。
可选地,该TBS资源池可以如下表7所示,表7仅示出TBS资源中的部分TBS数值,并不构成对TBS资源池中的全部可能的TBS数值的限定。
表7
16 552 1544 4264 13536 45352 125808 239656
24 568 1544 4392 14112 46888 128496 245648
32 584 1608 4584 14688 48936 130392 248272
40 600 1672 4776 15264 51024 133208 251640
56 616 1736 4968 15840 52752 137792 254328
72 632 1800 5160 16416 55056 142248 266440
88 648 1864 5352 16992 57336 146856 275376
104 680 1928 5544 17568 59256 149776 284608
120 696 1992 5736 18336 61664 151376 293736
136 712 2024 5992 19080 63776 152976 299856
144 744 2088 6200 19848 66592 157432 305976
152 776 2152 6456 20616 68808 161760 314888
176 808 2216 6712 21384 71112 165216 324336
208 840 2280 6968 22152 73712 169544 336576
224 872 2344 7224 22920 75376 171888 339112
256 904 2408 7480 23688 76208 175600 351224
280 936 2472 7736 24496 78704 177816 363336
288 968 2536 7992 25456 81176 181656 373296
296 1000 2600 8248 26416 84760 185728 375448
328 1032 2664 8504 27376 87936 187712 391656
336 1064 2728 8760 28336 90816 191720 422232
344 1096 2792 9144 29296 93800 195816 440616
376 1128 2856 9528 30576 97896 199824 452832
392 1160 2984 9912 31704 100752 201936 460232
408 1192 3112 10296 32856 101840 203704 471192
424 1224 3240 10680 34008 105528 205880 478400
440 1256 3368 11064 35160 107832 211936 501792
456 1288 3496 11448 36696 110136 214176 502624
472 1320 3624 11832 37888 112608 220296  
488 1352 3752 12216 39232 115040 221680  
504 1384 3880 12384 40576 117256 226416  
520 1416 4008 12576 42368 119816 230104  
536 1480 4136 12960 43816 124464 236160  
如果通信设备采用该步骤S2-2所示的方式确定第一广播信道对应的TBS时,通信设备只需要在确定第二中间变量前,确定第一广播信道具有上述所示的特征中的至少一种或组合即可,具体的确定时机不做限制。可选地,通信设备可以先确定第一广播信道具有上述所示的特征中的至少一种或组合,然后根据MCS的编号和第一表格确定第一TBS编号,根据第一TBS编号、频域资源和第二表格确定第二中间变量,可选地,通信设备可以先根据MCS的编号和第一表格确定第一TBS编号,然后确定第一广播信道具有上述所示的特征中的至少一种或组合,根据第一TBS编号、频域资源和第二表格确定第二中间变量。
可选地,确定第一广播信道具有上述所示的特征中的至少一种或组合的过程也可以通过判断条件来体现,如通信设备判断第一广播信道是否具有上述所示的特征中的至少一种或组合,如果是,确定第一广播信道具有上述所示的特征中的至少一种或组合。
步骤S2-3:所述通信设备根据所述频域资源确定RE数,根据所述RE数和所述MCS的编号确定所述TBS。
通信设备根据频域资源确定RE数,可选地确定的该RE数可以包括一个RB内分配给PMCH的RE数,可以包括在所有使用的RB上分配给PMCH的RE数,即分配给PMCH的总RE数。
如果RE数包括一个RB内分配给PMCH的RE数,示例的,通信设备根据频域资源确定RE数时,可以根据一个RB内的子载波数、一个子帧分配给PMCH的符号数、和每个RB内MBSFN参考信号(Reference Signal,RS)的RE数确定。
具体地,根据一个RB内的子载波数、一个子帧分配给PMCH的符号数、和每个RB内MBSFN RS的RE数确定RE数时,可以使用如下公式计算确定:
Figure PCTCN2019105790-appb-000039
N′ RE为一个RB内分配给PMCH的RE数,
Figure PCTCN2019105790-appb-000040
为一个RB内的子载波数,
Figure PCTCN2019105790-appb-000041
为一个子帧分配给PMCH的符号数,
Figure PCTCN2019105790-appb-000042
为每个RB内MBSFN RS的RE数。
可选地,一个RB内的子载波数、一个子帧分配给PMCH的符号数、和每个RB内MBSFN的RS的RE数可以是根据保存的与numerology相关的参数对应的数据确定,例如,与numerology相关的参数为SCS且SCS时Δf=15kHz,一个RB内的子载波数
Figure PCTCN2019105790-appb-000043
一个子帧分配给PMCH的符号数
Figure PCTCN2019105790-appb-000044
每个RB内MBSFN RS的RE数
Figure PCTCN2019105790-appb-000045
可选的,UE在确定一个RB内分配给PMCH的RE数N′ RE时,还可以考虑其它的资源开销,例如可以采用如下公式确定一个RB内分配给PMCH的RE数:
Figure PCTCN2019105790-appb-000046
除了MBSFN RS之外其它的资源开销。可选地,该其他的资源开销可以是通过网络侧设备高层参数配置的,也可以是通过其他方式获得,在此不做限定,并且可选地,
Figure PCTCN2019105790-appb-000047
如果RE数包括在所有使用的RB上分配给PMCH的RE数,示例的,通信设备根据分配给该通信设备的所有RB数,和一个RB内分配给PMCH的RE数确定。
具体地,根据分配给该通信设备的所有RB数,和一个RB内分配给PMCH的RE数 确定在所有使用的RB上分配给PMCH的RE数时,可以使用如下公式计算确定:N RE=N' RE·n PRB,N RE为在所有使用的RB上分配给PMCH的RE数,n PRB为分配给该通信设备的所有RB数。
可选地,所述通信设备根据所述频域资源确定所述RE数,包括:所述通信设备根据所述频域资源和第六阈值确定所述RE数。
所述第六阈值为所述频域资源中一个或多个RB的可用RE数对应的阈值,即对分配给PMCH的RE数设置的上限。
第六阈值为频域资源中一个RB的可用RE数对应的阈值,与为频域资源中的多个RB数的可用RE数对应的阈值的使用过程相似,因此在此以第六阈值为频域资源中一个RB的可用RE数对应的阈值为例进行说明,一个RB内分配给PMCH的RE数即一个RB的可用RE数为min(a,N' RE),N' RE为按照上述公式计算得到的一个RB内分配给PMCH的RE数,a为一个RB的可用RE数对应的阈值即对应的第六阈值。那么总RE的计算公式为N RE=min(a,N' RE)·n PRB
其中第六阈值可以通过高层信令配置,也可以是预定义的数值,例如所述第六阈值大于156且小于或等于846。
示例的,如果第六阈值为一个RB的可用RE数对应的阈值,且第六阈值为156,上述总RE的计算公式为N RE=min(156,N' RE)·n PRB
在步骤S2-3中,长度超过1ms的子帧对应的RB数多于长度为1ms的子帧对应的RB数,因此长度超过1ms的子帧对应的确定的分配给PMCH的总RE数,也多于长度为1ms的子帧对应的总RE数,因此确定的长度超过1ms的子帧对应的TBS也更大,每个子帧上传输的数据量也更大。
通信设备根据RE数和MCS的编号确定TBS,示例的,通信设备根据MCS的编号及第四表格确定调制阶数和码率,根据分配给PMCH的总RE数,确定的调制阶数和码率确定TBS,其中第四表格包括MCS的编号、调制阶数和码率的对应关系。
示例的,第四表格可以如下述表8或表9所示,其中MCS Index I MCS为MCS的编号Modulation Order Q m为调制阶数,Target code Rate R x[1024]为码率与1024的乘积,Spectral efficiency为频谱利用率,码率为Target code Rate R x[1024]与1024的比值。
表8
Figure PCTCN2019105790-appb-000048
Figure PCTCN2019105790-appb-000049
表9
Figure PCTCN2019105790-appb-000050
Figure PCTCN2019105790-appb-000051
可选地,通信设备根据分配给PMCH的总RE数,确定的调制阶数和码率,确定信息比特数,根据确定的该信息比特数确定TBS。
通信设备根据分配给PMCH的总RE数,确定的调制阶数和码率,确定信息比特数可以采用下述公式进行计算:N info=N RE·Q m·υ,为信息比特数,Q m为调制阶数,υ为码率。
可选地,如果PMCH配置了多层数据,根据分配给PMCH的总RE数,确定的调制阶数和码率,确定信息比特数可以采用下述公式进行计算:N info=N RE·R·Q m·υ,R是层数,可以表示空间复用的层数,或者其它影响信息比特数的层数。
示例的,通信设备根据确定的信息比特数确定TBS,可以采用下述公式进行计算:
Figure PCTCN2019105790-appb-000052
Figure PCTCN2019105790-appb-000053
其中TBS单位是bit;数值24用于表示循环冗余校验码(Cyclic Redundancy Check,CRC)的开销,单位是bit;8用于保证TBS为8的整数倍,在TBS转换成Byte时为整数,转换公式如下:1Byte(B)=8bits(b)。
可选的,在一种实现方式中,步骤S2-1可以采用如图5所示的方式一确定TBS,包括以下步骤:
步骤501:所述通信设备根据所述MCS的编号和第一表格确定第一TBS编号,所述第一表格包括MCS编号和TBS编号的对应关系。
该步骤501可以参见上述步骤S2-1中根据MCS的编号和第一表格确定第一TBS编号的过程,在此不做赘述。
步骤502:如果所述频域资源小于等于第五阈值,根据所述第一TBS编号、扩展RB数和第二表格确定所述TBS,所述扩展RB数根据所述频域资源和扩展因子确定,所述第二表格包括TBS编号、扩展RB数和TBS的对应关系。
所述频域资源包括RB数。
根据所述频域资源和扩展因子确定扩展RB的数的过程可以参见上述步骤S2-1中所示的过程,在此不做赘述。
可选的,该第二表格可以采用上述表3所示的第二表格,该第二表格也可以为将表3进行截取后得到的第二表格,该第二表格也可以为在表3的基础上扩展得到的第二表格,该第二表格也可以为应用于5G NR***中的表格。
步骤503:如果所述频域资源大于第五阈值,根据所述第一TBS编号、所述频域资源和第二表格确定第一中间变量,根据第一中间变量和第三表格确定所述TBS,所述第二表格包括频域资源、TBS编号和第一中间变量的对应关系,所述第三表格包括TBS和第一中间变量的对应关系,所述第三表格对应传输块映射的层数大于1的TBS表格。
该步骤503中确定TBS的过程可以参见上述步骤S2-1,在此不做赘述。
可选的,在一种实现方式中,步骤S2-2可以采用如图6所示的方式二确定TBS,包括以下步骤:
步骤601:所述通信设备根据所述MCS的编号和第一表格确定第一TBS编号,所述第一表格包括MCS编号和TBS编号的对应关系。
步骤602:如果所述频域资源小于等于第五阈值,根据所述第一TBS编号、扩展RB数和第二表格确定所述TBS,所述扩展RB数根据所述频域资源和扩展因子确定,所述第二表格包括TBS编号、扩展RB数和TBS的对应关系。
所述频域资源包括RB数。
根据所述频域资源和扩展因子确定扩展RB的数的过程可以参见上述步骤S2-1中所示的过程,在此不做赘述。
可选的,该第二表格可以采用上述表3所示的第二表格,该第二表格也可以为将表3进行截取后得到的第二表格,该第二表格也可以为在表3的基础上扩展得到的第二表格,该第二表格也可以为应用于5G NR***中的表格。
步骤603:如果所述频域资源大于第五阈值,根据所述第一TBS编号、所述频域资源和所述第二表格确定第二中间变量,根据所述第二中间变量和第一扩展因子确定所述TBS,所述第二表格包括频域资源、TBS编号和第一中间变量的对应关系。
该步骤603中确定TBS的过程可以参见上述步骤S2-2,在此不做赘述。
可选的,在一种实现方式中,步骤S2-1可以采用如图7所示的方式三确定TBS,包括以下步骤:
步骤701:所述通信设备根据所述MCS的编号和第一表格确定第一TBS编号,所述第一表格包括MCS编号和TBS编号的对应关系。
步骤702:如果所述频域资源下行带宽为1.4MHz或3MHz或5MHz中的一个,或者所述频域资源下行RB数为6或15或25中的一个,根据所述第一TBS编号、扩展RB数和第二表格确定所述TBS,所述扩展RB数根据所述频域资源和扩展因子确定,所述第二 表格包括TBS编号、扩展RB数和TBS的对应关系。
所述频域资源包括RB数。
根据所述频域资源和扩展因子确定扩展RB的数的过程可以参见上述步骤S2-1中所示的过程,在此不做赘述。
可选的,该第二表格可以采用上述表3所示的第二表格,该第二表格也可以为将表3进行截取后得到的第二表格,该第二表格也可以为在表3的基础上扩展得到的第二表格,该第二表格也可以为应用于5G NR***中的表格。
步骤703:如果所述频域资源下行带宽为10MHz或15MHz或20MHz中的一个,或者所述频域资源下行RB数为50或75或100中的一个,根据所述第一TBS编号、所述频域资源和第二表格确定第一中间变量,根据第一中间变量和第三表格确定所述TBS,所述第二表格包括频域资源、TBS编号和第一中间变量的对应关系,所述第三表格包括TBS和第一中间变量的对应关系,所述第三表格对应传输块映射的层数大于1的TBS表格。
该步骤703中确定TBS的过程可以参见上述步骤S2-1,在此不做赘述。
可选的,在一种实现方式中,步骤S2-2可以采用如图8所示的方式四确定TBS,包括以下步骤:
步骤801:所述通信设备根据所述MCS的编号和第一表格确定第一TBS编号,所述第一表格包括MCS编号和TBS编号的对应关系。
步骤802:如果所述频域资源下行带宽为1.4MHz或3MHz或5MHz中的一个,或者所述频域资源下行RB数为6或15或25中的一个,根据所述第一TBS编号、扩展RB数和第二表格确定所述TBS,所述扩展RB数根据所述频域资源和扩展因子确定,所述第二表格包括TBS编号、扩展RB数和TBS的对应关系。
所述频域资源包括RB数。
根据所述频域资源和扩展因子确定扩展RB的数的过程可以参见上述步骤S2-1中所示的过程,在此不做赘述。
可选的,该第二表格可以采用上述表3所示的第二表格,该第二表格也可以为将表3进行截取后得到的第二表格,该第二表格也可以为在表3的基础上扩展得到的第二表格,该第二表格也可以为应用于5G NR***中的表格。
步骤803:如果所述频域资源下行带宽为10MHz或15MHz或20MHz中的一个,或者所述频域资源下行RB数为50或75或100中的一个,根据所述第一TBS编号、所述频域资源和所述第二表格确定第二中间变量,根据所述第二中间变量和第一扩展因子确定所述TBS,所述第二表格包括频域资源、TBS编号和第一中间变量的对应关系。
该步骤803中确定TBS的过程可以参见上述步骤S2-2,在此不做赘述。
下面以三个具体的实施例对本申请的TBS的确定过程进行说明。
实施例一,参见如图9所示的TBS的确定流程,TBS的确定过程包括:
步骤0:如果UE根据第一广播信道具有的特征,确定需要为长度超过1ms的子帧确定TBS,UE使用方法A确定TBS,否则UE使用方法B确定TBS。
具体地,在该步骤0中,UE如果确定高层配置了某个参数即设定参数,或者高层配置的numerology满足某条件即设定条件,则确定使用方法A确定TBS。
该步骤0可以参见上述步骤1中确定第一广播信道具有如下特征中的至少一种或者组合的过程实现,在此不再重复赘述。
方法A的步骤如下:
方法A步骤1:UE根据MCS编号I MCS和第一表格确定TBS编号I TBS
该第一对应关系具体可以参见上述第一表格,在此不赘述。
方法A步骤2:判断实际RB数N PRB是否小于或等于第五阈值,如果是,进行方法A步骤2a,如果否,进行方法A步骤2b.1。
方法A步骤2a:UE根据TBS编号I TBS、扩展RB数
Figure PCTCN2019105790-appb-000054
和第二表格确定TBS。其中扩展RB数
Figure PCTCN2019105790-appb-000055
α是高层配置的参数或者约定的数值。
方法A步骤2b.1:UE根据TBS编号I TBS、实际RB数N PRB和第二表格确定TBS中间变量TBS_1。进行方法A步骤2b.2。
该TBS中间变量TBS_1可以看作为上述第一中间变量。
方法A步骤2b.2:UE根据TBS中间变量TBS_1和第三表格确定TBS。其中第三表格是TBS中间变量TBS_1和TBS的对应关系。
在方法A中的步骤2a与步骤2b.1和步骤2b.2是互斥关系。
方法B步骤1:UE根据MCS编号I MCS和第一表格确定TBS编号I TBS
方法B步骤2:UE根据TBS编号I TBS、实际RB数N PRB和第二表格确定TBS。
实施例二,参见如图10所示的TBS的确定流程,TBS的确定过程包括:
步骤0:如果UE根据第一广播信道具有的特征,确定需要为长度超过1ms的子帧确定TBS,UE使用方法A确定TBS,否则UE使用方法B确定TBS。
具体地,在该步骤0中,UE如果确定高层配置了某个参数即设定参数,或者高层配置的numerology满足某条件即设定条件,则确定使用方法A确定TBS。
该步骤0可以参见上述步骤S1中确定第一广播信道具有如下特征中的至少一种或者组合的过程实现,在此不再重复赘述。
方法A的步骤如下:
方法A步骤1:UE根据MCS编号I MCS和第一表格确定TBS编号I TBS
方法A步骤2:UE根据TBS编号I TBS、实际RB数N PRB和第二表格确定TBS中间变量TBS_1。
该TBS中间变量TBS_1可以看作为上述第一中间变量。
方法A步骤3a:UE根据TBS中间变量TBS_1和第三表格确定TBS,其中第三表格是TBS中间变量TBS_1和TBS的对应关系。
方法A步骤3b.1:UE根据高层配置的参数或者约定的数值α对TBS中间变量TBS_1扩展确定第二TBS中间变量TBS_2,其中TBS_2=α·TBS_1。
该α的确定过程可以参见上述确定扩展因子的过程,在此不赘述。
方法A步骤3b.2:UE从预先定义或设置的TBS资源中选择离第二TBS中间变量TBS_2最近的一个数值作为TBS。
该步骤3b.2的具体实现过程可以参见上述根据第二中间变量和第一扩展因子确定TBS的过程,在此不赘述。
在方法A中的步骤3a与步骤3b.1和步骤3b.2是并列关系。
方法B步骤1:UE根据MCS编号I MCS和第一表格确定TBS编号I TBS
方法B步骤2:UE根据TBS编号I TBS、实际RB数N PRB和第二表格确定TBS。
实施例三,参见如图11所示的TBS的确定流程,TBS的确定过程包括:
步骤0:如果UE根据第一广播信道具有的特征,确定需要为长度超过1ms的子帧确定TBS,UE使用方法A确定TBS,否则UE使用方法B确定TBS。
具体地,在该步骤0中,UE如果确定高层配置了某个参数即设定参数,或者高层配置的numerology满足某条件即设定条件,则确定使用方法A确定TBS。
该步骤0可以参见上述步骤S1中确定第一广播信道具有如下特征中的至少一种或者组合的过程实现,在此不再重复赘述。
方法A的步骤如下:
方法A步骤1:UE确定一个子帧内的RE数。
该步骤具体参数根据所述频域资源确定RE数的过程,在此不赘述。
方法A步骤2:UE根据调制阶数和码率或者MCS确定TBS。
该步骤中MCS具体为MCS的编号,调制阶数和码率为根据MCS的编号根据第四表格确定的,具体参见根据RE数和MCS的编号确定TBS的过程,在此不赘述。
方法B步骤1:UE根据MCS编号I MCS和第一表格确定TBS编号I TBS
方法B步骤2:UE根据TBS编号I TBS、实际RB数N PRB和第二表格确定TBS。
以上结合图4至图11详细说明了本申请实施例的TBS的确定方法,基于与上述TBS的确定方法的同一发明构思,如图12所示,本申请还提供了一种TBS的确定装置的结构示意图。装置1200可用于实现上述应用于通信设备的方法实施例中描述的方法,可以参见上述方法实施例的说明书。所述装置1200可以处于通信设备中或为通信设备。
所述装置1200包括一个或多个处理器1201。所述处理器1201可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。所述通信装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,所述收发单元可以为收发器,射频芯片等。
所述装置1200包括一个或多个所述处理器1201,所述一个或多个处理器1201可实现上述所示的实施例中通信设备的方法。
可选的,一种设计中,处理器1201可以执行指令,使得所述装置1200执行上述方法实施例中描述的方法。所述指令可以全部或部分存储在所述处理器内,如指令1203,也可以全部或部分存储在与所述处理器耦合的存储器1202中,如指令1204,也可以通过指令1203和1204共同使得装置1200执行上述方法实施例中描述的方法。
在又一种可能的设计中,通信装置1200也可以包括电路,所述电路可以实现前述方法实施例中通信设备的功能。
在又一种可能的设计中所述装置1200中可以包括一个或多个存储器1202,其上存有指令1204,所述指令可在所述处理器上被运行,使得所述装置1200执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指 令和/或数据。例如,所述一个或多个存储器1202可以存储上述实施例中所描述的对应关系,或者上述实施例中所涉及的相关的参数或表格等。所述处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,所述装置1200还可以包括收发单元1205以及天线1206。所述处理器1201可以称为处理单元,对装置(终端或者基站)进行控制。所述收发单元1205可以称为收发机、收发电路、或者收发器等,用于通过天线1206实现装置的收发功能。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述应用于通信设备的任一方法实施例所述的TBS的确定方法。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述应用于通信设备的任一方法实施例所述的TBS的确定方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、 计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器,用于执行上述应用于通信设备的任一方法实施例所述的TBS的确定方法。
应理解,上述处理装置可以是一个芯片,所述处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,改存储器可以集成在处理器中,可以位于所述处理器之外,独立存在。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算 机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本申请所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (17)

  1. 一种传输块大小TBS的确定方法,其特征在于,包括:
    通信设备根据第一广播信道对应的调制编码方式MCS和所述第一广播信道占用的频域资源,通过以下方式中的一种确定所述第一广播信道对应的TBS:
    所述通信设备根据所述MCS的编号和第一表格确定第一TBS编号,根据所述第一TBS编号、所述频域资源和第二表格确定第一中间变量,根据所述第一中间变量和第三表格确定所述TBS,所述第一表格包括MCS编号和TBS编号的对应关系,所述第二表格包括频域资源、TBS编号和第一中间变量的对应关系,所述第三表格包括TBS和第一中间变量的对应关系,所述第三表格对应传输块映射的层数大于1的TBS表格,所述第一广播信道承载的传输块映射的层数为1;
    所述通信设备根据所述MCS的编号和所述第一表格确定第一TBS编号,根据所述第一TBS编号、所述频域资源和所述第二表格确定第二中间变量,根据所述第二中间变量和第一扩展因子确定所述TBS,所述第一扩展因子大于1;
    所述通信设备根据所述频域资源确定RE数,根据所述RE数和所述MCS的编号确定所述TBS。
  2. 根据权利要求1所述的方法,其特征在于,所述第一广播信道具有如下特征中的至少一种或者组合:循环前缀CP占用的时域资源不小于第一阈值,OFDM符号占用的时域资源不小于第二阈值,子载波间隔SCS不大于第三阈值,快速傅里叶变换FFT长度不小于第四阈值。
  3. 根据权利要求2所述的方法,其特征在于,所述第一阈值为300微秒μs,所述第二阈值为2.4毫秒ms,所述第三阈值为417赫兹Hz,所述第四阈值为36864。
  4. 根据权利要求1所述的方法,其特征在于,所述频域资源大于第五阈值;
    如果所述通信设备为终端设备UE,所述第五阈值为预先定义或高层信令配置的;
    如果所述通信设备为网络侧设备,所述第五阈值为预先定义或所述网络侧设备发送给UE的。
  5. 根据权利要求1所述的方法,其特征在于,所述第三表格还对应传输块映射的层数为2的TBS表格,或者,所述第三表格还对应传输块映射的层数为3的TBS表格,或者,所述第三表格还对应传输块映射的层数为4的TBS表格。
  6. 根据权利要求1所述的方法,其特征在于,所述第一扩展因子为3或4。
  7. 根据权利要求1所述的方法,其特征在于,所述通信设备根据所述频域资源确定所述RE数,包括:所述通信设备根据所述频域资源和第六阈值确定所述RE数,所述第六阈值大于156且小于或等于846,所述第六阈值为所述频域资源中一个或多个RB的可用RE数对应的阈值。
  8. 一种传输块大小TBS的确定装置,其特征在于,包括处理器和存储器,所述处理器与所述存储器耦合;
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如下过程:
    根据第一广播信道对应的调制编码方式MCS和所述第一广播信道占用的频域资源,通过以下方式中的一种确定所述第一广播信道对应的TBS:
    根据所述MCS的编号和第一表格确定第一TBS编号,根据所述第一TBS编号、所述频域资源和第二表格确定第一中间变量,根据所述第一中间变量和第三表格确定所述TBS,所述第一表格包括MCS编号和TBS编号的对应关系,所述第二表格包括频域资源、TBS编号和第一中间变量的对应关系,所述第三表格包括TBS和第一中间变量的对应关系,所述第三表格对应传输块映射的层数大于1的TBS表格,所述第一广播信道承载的传输块映射的层数为1;
    根据所述MCS的编号和所述第一表格确定第一TBS编号,根据所述第一TBS编号、所述频域资源和所述第二表格确定第二中间变量,根据所述第二中间变量和第一扩展因子确定所述TBS,所述第一扩展因子大于1;
    所述通信设备根据所述频域资源确定RE数,根据所述RE数和所述MCS的编号确定所述TBS。
  9. 根据权利要求8所述的装置,其特征在于,所述第一广播信道具有如下特征中的至少一种或者组合:循环前缀CP占用的时域资源不小于第一阈值,OFDM符号占用的时域资源不小于第二阈值,子载波间隔SCS不大于第三阈值,快速傅里叶变换FFT长度不小于第四阈值。
  10. 根据权利要求9所述的装置,其特征在于,所述第一阈值为300微秒μs,所述第二阈值为2.4毫秒ms,所述第三阈值为417赫兹Hz,所述第四阈值为36864。
  11. 根据权利要求8所述的装置,其特征在于,所述频域资源大于第五阈值;
    如果所述装置为终端设备UE,所述第五阈值为预先定义或高层信令配置的;
    如果所述装置为网络侧设备,所述第五阈值为预先定义或所述装置发送给UE的。
  12. 根据权利要求8所述的装置,其特征在于,所述第三表格还对应传输块映射的层数为2的TBS表格,或者,所述第三表格还对应传输块映射的层数为3的TBS表格,或者,所述第三表格还对应传输块映射的层数为4的TBS表格。
  13. 根据权利要求8所述的装置,其特征在于,所述第一扩展因子为3或4。
  14. 根据权利要求8所述的装置,其特征在于,所述处理器,具体用于根据所述频域资源和第六阈值确定所述RE数,所述第六阈值大于156且小于或等于846,所述第六阈值为所述频域资源中一个或多个RB的可用RE数对应的阈值。
  15. 一种计算机可读存储介质,其特征在于,包括程序或指令,当所述程序或指令在计算机上运行时,如权利要求1-7中任意一项所述的方法被执行。
  16. 一种计算机程序产品,其特征在于,包括程序或指令,当所述程序或指令在计算机上运行时,如权利要求1-7中任意一项所述的方法被执行。
  17. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以执行权利要求1-7中任意一项所述的方法。
PCT/CN2019/105790 2019-03-29 2019-09-12 一种tbs的确定方法及装置 WO2020199514A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3135514A CA3135514C (en) 2019-03-29 2019-11-08 Tbs determining method and apparatus
CN201980094995.3A CN113678389B (zh) 2019-03-29 2019-11-08 一种tbs的确定方法及装置
EP19922660.6A EP3952153A4 (en) 2019-03-29 2019-11-08 METHOD AND APPARATUS FOR DETERMINING TBS
PCT/CN2019/116699 WO2020199588A1 (zh) 2019-03-29 2019-11-08 一种tbs的确定方法及装置
AU2019439793A AU2019439793B2 (en) 2019-03-29 2019-11-08 TBS determination method and apparatus
US17/489,327 US20220021474A1 (en) 2019-03-29 2021-09-29 Tbs determining method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2019/080674 2019-03-29
PCT/CN2019/080674 WO2020199044A1 (zh) 2019-03-29 2019-03-29 一种tbs的确定方法及装置

Publications (1)

Publication Number Publication Date
WO2020199514A1 true WO2020199514A1 (zh) 2020-10-08

Family

ID=72664830

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/080674 WO2020199044A1 (zh) 2019-03-29 2019-03-29 一种tbs的确定方法及装置
PCT/CN2019/105790 WO2020199514A1 (zh) 2019-03-29 2019-09-12 一种tbs的确定方法及装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080674 WO2020199044A1 (zh) 2019-03-29 2019-03-29 一种tbs的确定方法及装置

Country Status (6)

Country Link
US (1) US20220021474A1 (zh)
EP (1) EP3952153A4 (zh)
CN (1) CN113678389B (zh)
AU (1) AU2019439793B2 (zh)
CA (1) CA3135514C (zh)
WO (2) WO2020199044A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210352527A1 (en) * 2020-05-11 2021-11-11 Qualcomm Incorporated Scalable sizing of transport blocks for uplink transmissions
WO2024031620A1 (zh) * 2022-08-12 2024-02-15 Oppo广东移动通信有限公司 一种信息确定方法及装置、通信设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101640579A (zh) * 2008-07-30 2010-02-03 大唐移动通信设备有限公司 自适应调制和编码方法、***及装置
CN103378924A (zh) * 2012-04-18 2013-10-30 中兴通讯股份有限公司 传输块大小的确定方法及装置、同步方法、装置及***
US20130329661A1 (en) * 2012-06-12 2013-12-12 Qualcomm Incorporated Transport block size determination in new carrier type in lte
CN108462556A (zh) * 2017-02-22 2018-08-28 华为技术有限公司 传输数据的方法和装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8284732B2 (en) * 2009-02-03 2012-10-09 Motorola Mobility Llc Method and apparatus for transport block signaling in a wireless communication system
CN102448122B (zh) * 2011-12-30 2017-07-14 中兴通讯股份有限公司 一种确定子帧中传输块大小的方法和基站
EP2662991B1 (en) * 2012-05-10 2019-06-26 Alcatel Lucent Multiple-input-multiple-output (MIMO) communication
CN103580776B (zh) * 2012-07-19 2016-11-23 电信科学技术研究院 数据传输方法和装置
US10123344B2 (en) * 2013-03-06 2018-11-06 Qualcomm Incorporated Methods and apparatus for multi-subframe scheduling
ES2746751T3 (es) * 2013-03-21 2020-03-06 Huawei Device Co Ltd Método de transmisión de datos, estación base y equipo de usuario
WO2015141960A1 (ko) * 2014-03-21 2015-09-24 주식회사 케이티 하향링크 제어정보 송수신 방법 및 장치
US10257807B2 (en) * 2014-12-05 2019-04-09 Lg Electronics Inc. Method and apparatus for supporting variable transport block size without associated downlink control information in wireless communication system
WO2017063193A1 (zh) * 2015-10-16 2017-04-20 华为技术有限公司 一种确定传输块大小的方法用户设备和基站
US10425938B2 (en) * 2015-11-06 2019-09-24 Kt Corporation Method of determining modulation order and transport block size in downlink data channel, and apparatus thereof
US10225041B2 (en) * 2016-01-15 2019-03-05 Qualcomm Incorporated Methods and apparatus for higher modulation support in LTE
WO2017166078A1 (zh) * 2016-03-29 2017-10-05 华为技术有限公司 比特块大小确定方法及设备
CN107306453B (zh) * 2016-04-25 2019-12-17 华为技术有限公司 一种生成传输块的方法和装置
EP3516801A1 (en) * 2016-10-04 2019-07-31 Huawei Technologies Co., Ltd. Multiuser superposed transission with flexible transport block size selection
CN109565361B (zh) * 2017-03-23 2021-10-01 Lg电子株式会社 用于确定传输块大小的方法及无线装置
CN109150370B (zh) * 2017-06-13 2021-07-16 维沃移动通信有限公司 一种传输块大小的确定方法及通信设备
CN109150403B (zh) * 2017-06-16 2020-01-03 华为技术有限公司 确定传输块大小的方法及装置
CN109495968B (zh) * 2017-09-12 2023-01-13 华为技术有限公司 用于进行数据传输的方法和装置
EP3782311A4 (en) * 2018-04-18 2022-01-12 CommScope Technologies LLC SELECTING A MODULATION AND CODING SCHEME AND A TRANSMIT BLOCK SIZE IN LONG TERM EVOLUTION

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101640579A (zh) * 2008-07-30 2010-02-03 大唐移动通信设备有限公司 自适应调制和编码方法、***及装置
CN103378924A (zh) * 2012-04-18 2013-10-30 中兴通讯股份有限公司 传输块大小的确定方法及装置、同步方法、装置及***
US20130329661A1 (en) * 2012-06-12 2013-12-12 Qualcomm Incorporated Transport block size determination in new carrier type in lte
CN108462556A (zh) * 2017-02-22 2018-08-28 华为技术有限公司 传输数据的方法和装置

Also Published As

Publication number Publication date
CN113678389B (zh) 2023-04-04
AU2019439793B2 (en) 2023-04-13
CA3135514A1 (en) 2020-10-08
CN113678389A (zh) 2021-11-19
AU2019439793A1 (en) 2021-11-11
EP3952153A4 (en) 2022-04-27
EP3952153A1 (en) 2022-02-09
WO2020199044A1 (zh) 2020-10-08
CA3135514C (en) 2024-04-30
US20220021474A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
KR102219746B1 (ko) 다운링크 제어 정보의 전송 방법 및 장치
TWI751475B (zh) 喚配信號(wus)控制動作
Zhang et al. 5G: Towards energy-efficient, low-latency and high-reliable communications networks
US9414358B2 (en) Communication units and methods for control change notification in broadcast communication
JP2020022178A (ja) Tddワイヤレス通信システムのためのダウンリンク及びアップリンクサブフレーム割当の動的シグナリング
JP6962197B2 (ja) 装置及び方法
US9094182B2 (en) Communication units and methods for resource change notification in broadcast communication
AU2017228737A1 (en) Narrow-band broadcast/multi-cast design
US11071162B2 (en) Broadcast or multicast physical layer configuration and channel structure
WO2021057829A1 (zh) 时域资源确定方法、装置、设备及存储介质
WO2018166421A1 (zh) 传输控制信息的方法、设备和***
WO2019153145A1 (zh) 通信方法与通信装置
US10368344B2 (en) User equipment, network side device and method for controlling user equipment
WO2020063275A1 (zh) 一种信息指示方法及装置
WO2019029734A9 (zh) 一种信息的发送方法及设备
US20220021474A1 (en) Tbs determining method and apparatus
TW202123735A (zh) 用於雙活動協定堆疊(daps)交遞的盲解碼限制
US9491725B2 (en) User equipment and methods for device-to-device communication over an LTE air interface
WO2023040582A1 (zh) 一种动态指示ecp时隙的方法、基站及存储介质
WO2018049988A1 (zh) 一种用户设备、基站中的发射功率调整的方法和装置
WO2020199588A1 (zh) 一种tbs的确定方法及装置
WO2013159442A1 (zh) 一种控制信令发送方法及控制信令处理装置及终端
WO2021031317A1 (zh) 一种pdcch的检测方法及装置
CN110662254B (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2022174818A1 (zh) 一种用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922515

Country of ref document: EP

Kind code of ref document: A1