WO2024031620A1 - 一种信息确定方法及装置、通信设备 - Google Patents

一种信息确定方法及装置、通信设备 Download PDF

Info

Publication number
WO2024031620A1
WO2024031620A1 PCT/CN2022/112067 CN2022112067W WO2024031620A1 WO 2024031620 A1 WO2024031620 A1 WO 2024031620A1 CN 2022112067 W CN2022112067 W CN 2022112067W WO 2024031620 A1 WO2024031620 A1 WO 2024031620A1
Authority
WO
WIPO (PCT)
Prior art keywords
resources
resource
transmission
channel
time domain
Prior art date
Application number
PCT/CN2022/112067
Other languages
English (en)
French (fr)
Inventor
林亚男
徐婧
张轶
梁彬
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/112067 priority Critical patent/WO2024031620A1/zh
Publication of WO2024031620A1 publication Critical patent/WO2024031620A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of mobile communication technology, and specifically relate to an information determination method and device, and communication equipment.
  • the transport block size (TBS) corresponding to the channel is determined based on the number of transmission resources of the channel.
  • TBS transport block size
  • the channel is transmitted periodically, and the number of transmission resources of each channel for periodic transmission is the same, that is, the TBS of each channel for periodic transmission is the same.
  • different channels for periodic transmission may have differences. For example, the available resources of different channels are different. The current way of determining the TBS of a channel does not take the differences of the channels into account, resulting in inaccurate TBS determination. .
  • Embodiments of the present application provide an information determination method and device, communication equipment, chips, computer-readable storage media, computer program products, and computer programs.
  • the first device determines the TBS corresponding to the first channel based on the resource quantity of the first part of resources
  • the transmission resources pre-configured for transmitting the first channel are first transmission resources
  • the first transmission resources include the first part of resources and the second part of resources
  • the second part of resources are not used for the third part of resources.
  • the information determining device provided by the embodiment of the present application is applied to the first device, and the device includes:
  • a determining unit configured to determine the TBS corresponding to the first channel based on the resource quantity of the first part of the resources
  • the transmission resources pre-configured for transmitting the first channel are first transmission resources
  • the first transmission resources include the first part of resources and the second part of resources
  • the second part of resources are not used for the third part of resources.
  • the communication device provided by the embodiment of the present application includes a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer programs stored in the memory to perform the above information determination method.
  • the chip provided by the embodiment of the present application is used to implement the above information determination method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above-mentioned information determination method.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program.
  • the computer program causes the computer to execute the above-mentioned information determination method.
  • the computer program product provided by the embodiment of the present application includes computer program instructions, which cause the computer to execute the above information determination method.
  • the computer program provided by the embodiment of the present application when run on a computer, causes the computer to perform the above information determination method.
  • the transmission resources used to transmit the first channel are preconfigured first transmission resources, and the first transmission resources include a first part of resources and a second part of resources, The second part of the resources are not used for transmission of the first channel.
  • the first device determines the TBS corresponding to the first channel based on the number of resources of the first part of the resources. It can be seen that the first device determines The TBS corresponding to the first channel is based on the number of resources of the first part of the first transmission resource of the first channel (which can be understood as the number of resources of the available part of the first transmission resource). This determination of TBS The method flexibly adapts to the available resources of the channel and is more accurate.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is an adaptation diagram of the XR business cycle and SPS/CG transmission cycle
  • Figure 3 is a schematic diagram of the SPS/CG transmission position under five SPS/CG configurations
  • Figure 4 is a schematic flowchart of the information determination method provided by the embodiment of the present application.
  • Figure 5 is a schematic diagram 1 of the transmission resources occupied by SPS PDSCH provided by the embodiment of the present application;
  • Figure 6 is a schematic diagram 2 of the transmission resources occupied by SPS PDSCH provided by the embodiment of the present application.
  • Figure 7 is a schematic diagram 3 of the transmission resources occupied by SPS PDSCH provided by the embodiment of the present application.
  • Figure 8 is a schematic structural diagram of an information determination device provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (also known as a communication terminal or terminal).
  • the network device 110 can provide communication coverage for a specific geographical area and can communicate with terminal devices located within the coverage area.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and other numbers of terminals may be included within the coverage of each network device.
  • Equipment the embodiments of this application do not limit this.
  • the network device in Figure 1 can be any access network node.
  • network equipment may refer to base stations, satellites with base station functions, etc.
  • terminal device in Figure 1 can be any terminal device.
  • terminal equipment may refer to access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user Agent or user device.
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, IoT devices, satellite handheld terminals, Wireless Local Loop (WLL) stations, Personal Digital Assistants (Personal Digital Assistant) , PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolution networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistants
  • handheld devices with wireless communication functions computing devices or other processing devices connected to wireless modems
  • vehicle-mounted devices wearable devices
  • terminal devices in 5G networks or terminal devices in future evolution networks etc.
  • FIG. 1 only illustrates the system to which the present application is applicable in the form of an example.
  • the method shown in the embodiment of the present application can also be applied to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship that describes related objects, indicating that three relationships can exist. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • the character "/" in this article generally indicates that the related objects are an "or” relationship.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • the "correspondence" mentioned in the embodiments of this application can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed. , configuration and configured relationship.
  • predefined can refer to what is defined in the protocol.
  • protocol may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this. .
  • the Physical Downlink Shared Channel can be semi-static transmission, and the PDSCH of semi-static transmission is also Semi-Persistent Scheduling (SPS) PDSCH.
  • SPS Semi-Persistent Scheduling
  • the network side pre-configures transmission resources through Radio Resource Control (RRC) signaling, and then activates the transmission resources through Downlink Control Information (DCI) signaling, and then the terminal device can
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the SPS PDSCH is periodically transmitted on preconfigured transmission resources, and the transmission resources of each SPS PDSCH include the same number of resources.
  • the parameters configured when RRC signaling preconfigures transmission resources include but are not limited to at least one of the following: Configured Scheduling-Radio Network Temporary Identity (CS-RNTI), period (periodicity), HARQ Number of processes (nrofHARQ-Processes), HARQ process offset (harq-ProcID-Offset).
  • CS-RNTI Configured Scheduling-Radio Network Temporary Identity
  • period period
  • period period
  • HARQ Number of processes nrofHARQ-Processes
  • HARQ process offset HARQ process offset
  • numberOfSlotsPerFrame represents the number of slots included in a wireless frame
  • SFN represents the wireless frame number
  • slot number in the frame represents the slot number in which the SPS PDSCH resource appears in a wireless frame
  • SFN start time and slot start time represent the transmission resources being used.
  • periodicity represents the period.
  • the time slot number in which the first SPS PDSCH appears is indicated by DCI signaling (the DCI signaling is used to activate transmission resources), and the time slot in which subsequent periodically appearing SPS PDSCH appears is determined by the above formula.
  • the optional periods of SPS PDSCH transmission are ⁇ 10, 20, 32, 40, 64, 80... ⁇ ms. These periods mainly support voice over IP (VoIP) services.
  • the cycle of SPS PDSCH transmission supports a minimum cycle configuration of one time slot (slot), such as 15kHz supported
  • the optional period is ⁇ 1...640 ⁇ slot
  • the optional period supported by 30kHz is ⁇ 1...1280 ⁇ slot
  • the optional period supported by 60kHz is ⁇ 1...2560 ⁇ slot
  • the optional period supported by 120kHz is ⁇ 1...5120 ⁇ slot.
  • the Physical Uplink Shared Channel can be semi-static transmission, and the PUSCH of semi-static transmission is also the Configured Grant (CG) PUSCH.
  • CG PUSCH includes the following two types:
  • type-1 CG PUSCH For type-1 CG PUSCH, after the network side pre-configures transmission resources through RRC signaling, the transmission resources do not require DCI activation to take effect.
  • type-2 CG PUSCH For type-2 CG PUSCH, after the network side pre-configures transmission resources through RRC signaling, the transmission resources need to be activated by DCI to take effect.
  • the working mode of type-2 CG PUSCH is basically the same as that of SPS PDSCH. You can refer to the aforementioned description of SPS PDSCH.
  • the cycle of CG PUSCH transmission supports ⁇ 2,7 ⁇ symbol and ⁇ 1,2,4,5,8,10,16,20,32,40... ⁇ slot.
  • NR uses a frame length of 10ms, and one frame contains 10 subframes. Five subframes form a half frame, and subframes numbered 0 to 4 and subframes numbered 5 to 9 are in different half frames respectively.
  • the NR frame structure is based on time slots.
  • Each time slot in the basic frame structure can be divided into the following three categories: uplink time slot, downlink time slot, and flexible time slot.
  • uplink time slot In the case of conventional cyclic prefix (CP), each time slot contains 14 symbols.
  • extended CP In the case of extended CP, each slot contains 12 symbols.
  • the symbols in each time slot can be divided into the following three categories: downlink symbols, uplink symbols and flexible symbols. According to the actual scheduling of the base station, flexible symbols can be used to transmit downlink data or uplink data, that is, the transmission direction of the symbol is not fixed.
  • the configuration of the NR frame structure adopts a combination of RRC signaling semi-static configuration and DCI signaling dynamic configuration for flexible configuration.
  • RRC signaling semi-static configuration supports two methods: semi-static configuration of cell-specific RRC signaling and semi-static configuration of UE-specific RRC signaling.
  • DCI signaling dynamic configuration supports two methods: the slot format indication information (Slot Format Indication, SFI) directly indicates the configuration and the DCI scheduling determines the configuration.
  • SFI Slot Format Indication
  • the system configures the frame structure based on cycles (which can be understood as uplink and downlink transmission cycles, or TDD uplink and downlink switching cycles). There is only one conversion point from downlink resources to uplink resources in each cycle.
  • the period of the frame structure may be 0.5ms, 0.625ms, 1ms, 1.25ms, 2ms, 2.5ms, 5ms, 10ms.
  • the research scenarios include Augmented Reality (AR), Virtual Reality (VR), Mixed Reality (MR), Cloud Gaming , CG) etc.
  • One of the main services of XR is the video stream service. Its arrival rate (measured in fps, which is the number of frames per second) can be 30fps, 60fps, 90fps, or 120fps. Then the corresponding video stream cycle are 33.33ms, 16.67ms, 11.11ms, and 8.33ms.
  • TBS transport block
  • N RE min(156,N' RE ) ⁇ n PRB ;
  • n PRB represents the number of PRBs included in the PDSCH transmission resource.
  • N info N RE ⁇ R ⁇ Q m ⁇ , and determine TBS based on N info .
  • R represents the coding rate
  • Q m represents the modulation order
  • represents the number of transmission layers.
  • determining TBS according to N info can be achieved through the following steps:
  • the calculation method of the TBS corresponding to the PUSCH is the same as the calculation method of the TBS corresponding to the PDSCH. You can refer to the calculation method of the TBS corresponding to the PDSCH to calculate the TBS corresponding to the PUSCH.
  • the TBS corresponding to a channel is determined based on the number of transmission resources of the channel (that is, the number of REs).
  • the channel is transmitted periodically, and the number of transmission resources of each channel for periodic transmission is the same, that is, the TBS of each channel for periodic transmission is the same.
  • different channels for periodic transmission may have differences.
  • the available resources of different channels are different.
  • the current way of determining the TBS of the channel does not take the differences of the channels into account, resulting in a lack of flexibility in the TBS of the channel. .
  • the XR service has periodic characteristics, so using SPS PDSCH or CG PUSCH to transmit the XR service will help reduce the service transmission delay (because there is no need to wait for the DCI of the scheduled service) and reduce the power consumption of the terminal equipment ( Because there is no need to detect the DCI of the scheduling service).
  • the optional periods of the XR service are ⁇ 33.33ms, 16.67ms, 11.11ms, 8.33ms ⁇ , while the lengths of the time slots supported in the NR system are 1ms, 0.5ms, 0.25ms, and 0.125ms.
  • the transmission cycle of SPS PDSCH or CG PUSCH (referred to as SPS/CG transmission cycle) cannot match the integer multiple of the XR service cycle.
  • SPS/CG transmission cycle the transmission cycle of SPS PDSCH or CG PUSCH
  • the SPS/CG transmission cycle can be repeated in the manner of ⁇ 17ms, 17ms, 16ms ⁇ , matching three XR service cycles of 16.67ms to the greatest extent. as shown in picture 2.
  • the time domain location (such as time slot, sub-time slot) of SPS PDSCH or CG PUSCH (referred to as SPS/CG) transmission ) may belong to the flexible time slot.
  • the TDD uplink and downlink switching period is 5ms
  • the uplink and downlink configuration of the NR frame structure is ⁇ D, D, D, F, U ⁇ , where D represents the downlink time slot, F represents the flexible time slot, and U represents the uplink time slot. gap.
  • Figure 3 illustrates five SPS/CG configurations.
  • the first SPS/CG transmission is located in time slot 0 of the first wireless frame
  • the second SPS/CG transmission is located in slot 0 of the first wireless frame.
  • the time slot 7 of the two wireless frames the third SPS/CG transmission is located in the time slot 0 of the third wireless frame
  • the periods of these three SPS/CG transmissions are ⁇ 17ms, 17ms, 16ms ⁇ respectively.
  • the difference between other SPS/CG configurations is that the starting position of the first SPS/CG transmission is different and has a certain offset.
  • SPS/CG configurations that use flexible time slots to transmit SPS/CG.
  • the transmission position of SPS/CG is a flexible time slot
  • the time domain symbols occupied by SPS/CG in the flexible time slot do not have uplink and downlink conflicts (for example, for SPS PDSCH, the time domain symbols occupied by SPS/CG are downlink symbols and/or flexible symbols)
  • the SPS/CG is transmitted normally; if the time domain symbols occupied by the SPS/CG in the flexible time slot have uplink and downlink conflicts (for example, for SPS PDSCH, the time domain symbols occupied by the SPS/CG are upstream symbol), the SPS/CG is abandoned for transmission.
  • non-conflicting time domain symbols in flexible time slots (downlink symbols and flexible symbols for SPS PDSCH, uplink symbols and flexible symbols for CG PUSCH) are used as transmission resources for XR services
  • other time slots i.e. non-flexible symbols
  • FIG 4 is a schematic flow chart of an information determination method provided by an embodiment of the present application. As shown in Figure 4, the information determination method includes the following steps:
  • Step 401 The first device determines the TBS corresponding to the first channel based on the resource quantity of the first part of the resources; wherein the transmission resources preconfigured for transmitting the first channel are the first transmission resources, and the first transmission resources include the The first part of resources and the second part of resources, the second part of resources are not used for the transmission of the first channel.
  • the first channel is used to transmit service data.
  • the first device may be a receiver of service data (ie, a receiver of the first channel), or may be a sender of service data (ie, a sender of the first channel).
  • the first device is a terminal device. In other implementations, the first device is a network device.
  • the TBS corresponding to the first channel refers to the size of the transport block carried by the first channel.
  • the transmission resource of the first channel is the first transmission resource preconfigured by the base station.
  • the first channel is SPS PDSCH.
  • the first channel is CG PUSCH.
  • SPS PDSCH and CG PUSCH can be understood with reference to the aforementioned relevant descriptions.
  • the first transmission resource of the first channel includes a first part of resources and a second part of resources, and the second part of resources is not used for transmission of the first channel.
  • the first part of resources may refer to part of the first transmission resources except the second part of resources.
  • the first part of resources is used for transmission of the first channel.
  • the first part of the resources can also be understood as the available resources in the first transmission resources, that is, the resources used to transmit the first channel; the second part of the resources can also be understood as the unavailable resources in the first transmission resources. resources, that is, resources that cannot be used to transmit the first channel.
  • transmission resources may include at least one of the following resources: time domain symbols (may also be referred to as symbols for short), PRBs, and REs.
  • the first channel is a downlink channel, such as SPS PDSCH.
  • the second part of resources includes at least one of the following resources: uplink transmission resources, resources occupied by guard intervals, resources occupied by control resource sets, resources occupied by synchronization signals, resources occupied by broadcast channels, and first preconfigured resources, so The first preconfigured resource is a resource that cannot be occupied by the preconfigured downlink channel.
  • the uplink transmission resources may include at least one of the following resources: uplink symbols, uplink PRBs, and uplink REs.
  • the resources occupied by the guard interval may include at least one of the following resources: a time domain guard interval and a frequency domain guard interval.
  • the time domain guard interval is used to avoid uplink and downlink transmission interference, and its length can be, but is not limited to, symbol level.
  • the frequency domain guard interval is used to avoid interference between frequency bands, and its length can be but is not limited to PRB level.
  • the first preconfigured resource may be a resource that cannot be occupied by the downlink channel preconfigured by the base station.
  • the first channel is an uplink channel, such as CG PUSCH.
  • the second part of resources includes at least one of the following resources: downlink transmission resources, resources occupied by guard intervals, resources occupied by control resource sets, resources occupied by synchronization signals, resources occupied by broadcast channels, and second preconfigured resources, so The second preconfigured resources are resources that cannot be occupied by the preconfigured uplink channel.
  • the downlink transmission resources may include at least one of the following resources: downlink symbols, downlink PRBs, and downlink REs.
  • the resources occupied by the guard interval may include at least one of the following resources: a time domain guard interval and a frequency domain guard interval.
  • the time domain guard interval is used to avoid uplink and downlink transmission interference, and its length can be, but is not limited to, symbol level.
  • the frequency domain guard interval is used to avoid interference between frequency bands, and its length can be but is not limited to PRB level.
  • the second preconfigured resource may be a resource that cannot be occupied by the uplink channel preconfigured by the base station.
  • the base station pre-configures resources that cannot be occupied by the downlink channel and resources that cannot be occupied by the uplink channel
  • the resources that cannot be occupied by the downlink channel and the resources that cannot be occupied by the uplink channel can be independently configured.
  • the first part of resources is part of the first transmission resources except the second part of resources.
  • the first part of resources may be continuous resources or non-continuous resources.
  • the first part of resources is a continuous resource; in this case, the first channel can utilize all the resources of the first part of resources for transmission, and accordingly, the first device uses the first part of resources to transmit The total number of resources determines the TBS corresponding to the first channel.
  • the first part of resources are non-contiguous resources.
  • the first part of resources include multiple non-contiguous groups of resources, and the resources in each group of resources are continuous; in this case, option 1 )
  • the first channel can utilize all the resources of the first part of the resources for transmission. Accordingly, the first device determines the TBS corresponding to the first channel based on the number of all resources of the first part of the resources.
  • Option 2 The first channel may utilize a set of resources of the first part of resources for transmission, and accordingly, the first device determines the TBS corresponding to the first channel based on the number of resources of a set of resources in the plurality of sets of resources.
  • a group of resources among the plurality of groups of resources may be determined by, but is not limited to, the following methods:
  • One group of resources among the plurality of groups of resources is a group of resources with the largest number of resources among the plurality of groups of resources; or,
  • One group of resources among the plurality of groups of resources is a group of resources with the smallest resource number among the plurality of groups of resources; or,
  • One group of resources among the plurality of groups of resources is a group of resources with the largest resource number among the plurality of groups of resources; or,
  • One group of resources among the plurality of groups of resources is the earliest group of resources among the plurality of groups of resources; or,
  • One group of resources among the plurality of groups of resources is the latest group of resources among the plurality of groups of resources.
  • one group of resources among the plurality of groups of resources is a group of resources with the largest number of resources among the plurality of groups of resources, which can ensure that the first channel can utilize the group of resources with the largest number of resources among the first portion of resources for transmission. , improve resource utilization.
  • one group of resources among the plurality of groups of resources is a group of resources with the smallest resource number among the plurality of groups of resources, which can ensure that the first channel can utilize the group of resources with the smallest resource number among the first part of resources for transmission. , reduce transmission delay.
  • the group of resources with the smallest resource number among the plurality of groups of resources may be the first group of resources among the plurality of groups of resources.
  • one group of resources among the plurality of groups of resources is the earliest group of resources among the plurality of groups of resources, which can ensure that the first channel can use the earliest group of resources among the first part of resources for transmission, reducing the Transmission delay.
  • the earliest group of resources among the plurality of groups of resources may be the first group of resources among the plurality of groups of resources.
  • Each group of resources in the plurality of groups of resources has a sequence in time, and the time of a group of resources can refer to the time of a certain resource (for example, the first resource) in the group of resources.
  • the first device determines the TBS corresponding to the first channel based on the resource quantity of the first part of resources, including:
  • the first device determines the resource quantity of the first part of resources
  • the first device determines the TBS corresponding to the first channel based on the resource quantity of the first part of resources.
  • the first device determines the resource quantity of the first part of resources, which can be achieved in the following manner:
  • the first transmission resource includes N1 time domain symbols and includes N2 PRBs; the second part of the resource includes M1 time domain symbols among the N1 time domain symbols and includes the N2 M2 PRBs among PRBs, N1 and N2 are positive integers; among them, M1 is a positive integer less than N1, M2 is a positive integer less than or equal to N2; or, M1 is a positive integer less than or equal to N1, M2 is less than N2 is a positive integer.
  • the first device determines based on the number of time domain symbols included in the first transmission resource, the number of PRBs included in the first transmission resource, and the number of time domain symbols included in the second part of the resource. The number of resources in the first part of resources.
  • the first device determines the number of REs corresponding to one PRB in the first part of the resource based on the number of time domain symbols included in the first transmission resource and the number of time domain symbols included in the second part of the resource; The first device determines the number of REs of the first part of the resources based on the number of PRBs included in the first transmission resource and the number of REs corresponding to one PRB in the first part of the resources.
  • the first channel is SPS PDSCH
  • the first transmission resource occupied by SPS PDSCH is preconfigured.
  • (Right now ) time domain symbols and occupy n PRBs (that is, N2 n PRBs ) PRBs.
  • the time domain symbols include M1 uplink symbols, the resources corresponding to the M1 uplink symbols are the second part of resources, and the resources in the first transmission resources except the second part of resources are the first part of resources.
  • the first device determines the number of resources (that is, the number of REs) of the first part of resources through the following steps:
  • N RE min(156,N' RE ) ⁇ n PRB .
  • the first device determines the number of time domain symbols included in the first transmission resource, the number of PRBs included in the first transmission resource, and the number of PRBs included in the second part of the resource. The number of resources for the first part of the resource.
  • the first device determines the number of REs corresponding to one PRB in the first transmission resource based on the number of time domain symbols included in the first transmission resource; the first device determines the number of REs corresponding to one PRB in the first transmission resource based on the number of time domain symbols included in the first transmission resource.
  • the number of PRBs included in the second part of the resource and the number of REs corresponding to one PRB in the first transmission resource are used to determine the number of REs of the first part of the resource.
  • the first channel is SPS PDSCH
  • the first transmission resource occupied by SPS PDSCH is preconfigured.
  • (Right now ) time domain symbols and occupy n PRBs (that is, N2 n PRBs ) PRBs.
  • M2 PRBs among the n PRBs are uplink PRBs and interval PRBs, the resources corresponding to the M2 PRBs are the second part of resources, and the resources in the first transmission resources other than the second part of resources are the first part of resources.
  • the first device determines the number of resources (that is, the number of REs) of the first part of resources through the following steps:
  • N RE min(156,N' RE ) ⁇ (n PRB -M2).
  • the first device determines the number of time domain symbols based on the number of time domain symbols included in the first transmission resource, the number of PRBs included in the first transmission resource, the number of time domain symbols included in the second part of the resource, and the number of time domain symbols included in the second part of the resource.
  • the number of PRBs included in the second part of resources determines the number of resources in the first part of resources.
  • the first device determines the number of REs corresponding to one PRB in the first part of the resource based on the number of time domain symbols included in the first transmission resource and the number of time domain symbols included in the second part of the resource; The first device determines the number of REs of the first part of the resources based on the number of PRBs included in the first transmission resource, the number of PRBs included in the second part of the resources, and the number of REs corresponding to one PRB in the first part of the resources.
  • the first channel is SPS PDSCH
  • the first transmission resource occupied by SPS PDSCH is preconfigured.
  • the time domain symbols include M1 uplink symbols
  • the M2 PRBs among the n PRB PRBs are uplink PRBs and interval PRBs.
  • the resources corresponding to the M1 uplink symbols and M2 PRBs are the second part of the resources, and the first transmission resources
  • the resources other than the second part of resources are the first part of resources.
  • the first device determines the number of resources (that is, the number of REs) of the first part of resources through the following steps:
  • N RE min(156,N' RE ) ⁇ (n PRB -M2).
  • the first transmission resource includes N1 time domain symbols and includes N2 PRBs; the second part of the resource includes M3 REs.
  • the first device determines the number of time domain symbols included in the first transmission resource, the number of PRBs included in the first transmission resource, and the number of REs included in the second part of the resource. The number of resources for the first part of the resource.
  • the first device determines the number of REs corresponding to one PRB in the first transmission resource based on the number of time domain symbols included in the first transmission resource; the first device determines the number of REs corresponding to one PRB in the first transmission resource based on the number of time domain symbols included in the first transmission resource.
  • the number of PRBs, the number of REs included in the second part of the resources, and the number of REs corresponding to one PRB in the first transmission resources are used to determine the number of REs of the first part of the resources.
  • the M3 REs in the first transmission resources are unavailable REs, that is, the M3 REs are the second part of resources, and the resources in the first transmission resources other than the second part of resources are the first part of resources.
  • the first device determines the number of resources (that is, the number of REs) of the first part of resources through the following steps:
  • N RE min(156,N' RE -M3) ⁇ n PRB .
  • the first device determines the TBS corresponding to the first channel based on the number of resources in the first part of resources. Specifically, the first device determines the TBS corresponding to the first part of resources based on the number of resources in the first part.
  • the number of resources and at least one parameter determine the TBS corresponding to the first channel, and the at least one parameter includes at least one of the following: coding rate, modulation order, and number of transmission layers.
  • N RE represents the number of resources in the first part of the resource (that is, the number of REs)
  • R represents the coding rate
  • Q m represents the modulation order
  • represents the number of transmission layers.
  • the first device can perform transmission-related processing on the first channel according to the TBS corresponding to the first channel (the first device is the sender) or perform reception-related processing on the first channel. Processing (the first device is the receiver).
  • the transmission-related processing may be, but is not limited to, encoding processing
  • the reception-related processing may be, but is not limited to, decoding processing.
  • the TBS corresponding to the first channel is determined based on the actual number of available resources. In this way, the determined TBS can accurately reflect the actual number of resources available on the first channel. According to the TBS, effective transmission of the first channel can be guaranteed without giving up the transmission of the first channel. In addition, there is no need to configure the first channel as a small-capacity transmission resource in order to accommodate the need for individual cycles. Even if a large-capacity transmission resource is configured for the first channel, the first channel can be determined based on the actual number of available resources. The corresponding TBS ensures the semi-static transmission of the first channel to the greatest extent and improves system efficiency.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in this application.
  • the implementation of the examples does not constitute any limitations.
  • the terms “downlink”, “uplink” and “sidelink” are used to indicate the transmission direction of signals or data, where “downlink” is used to indicate that the transmission direction of signals or data is from the station.
  • uplink is used to indicate that the transmission direction of the signal or data is the second direction from the user equipment of the cell to the site
  • sidelink is used to indicate that the transmission direction of the signal or data is A third direction sent from User Device 1 to User Device 2.
  • downlink signal indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship describing associated objects, indicating that three relationships can exist. Specifically, A and/or B can represent three situations: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the related objects are an "or" relationship.
  • FIG 8 is a schematic structural diagram of an information determination device provided by an embodiment of the present application. It is applied to the first device. As shown in Figure 8, the information determination device includes:
  • Determining unit 801 configured to determine the TBS corresponding to the first channel based on the number of resources in the first part of the resources;
  • the transmission resources pre-configured for transmitting the first channel are first transmission resources
  • the first transmission resources include the first part of resources and the second part of resources
  • the second part of resources are not used for the third part of resources.
  • the first part of resources are continuous resources or non-continuous resources; the determining unit 801 is configured to determine the TBS corresponding to the first channel based on the total number of resources of the first part of resources.
  • the first part of resources includes multiple non-continuous groups of resources, and the resources in each group of resources are continuous; the determining unit 801 is configured to determine the resources based on a group of resources in the multiple groups of resources. The quantity determines the TBS corresponding to the first channel.
  • one group of resources among the plurality of groups of resources is a group of resources with the largest number of resources among the plurality of groups of resources; or, one group of resources among the plurality of groups of resources is the group of resources among the plurality of groups of resources.
  • the first channel is a downlink channel
  • the second part of resources includes at least one of the following resources: uplink transmission resources, resources occupied by guard intervals, resources occupied by control resource sets, and resources occupied by synchronization signals. , resources occupied by the broadcast channel, and first preconfigured resources, where the first preconfigured resources are resources that cannot be occupied by the preconfigured downlink channel.
  • the first channel is SPS PDSCH.
  • the first channel is an uplink channel
  • the second part of resources includes at least one of the following resources: downlink transmission resources, resources occupied by guard intervals, resources occupied by control resource sets, and resources occupied by synchronization signals. , resources occupied by the broadcast channel, and second preconfigured resources, where the second preconfigured resources are resources that cannot be occupied by the preconfigured uplink channel.
  • the first channel is CG PUSCH.
  • the first transmission resource includes N1 time domain symbols and includes N2 PRBs; the second part of the resource includes M1 time domain symbols among the N1 time domain symbols and includes the N2 M2 PRBs among PRBs, N1 and N2 are positive integers;
  • M1 is a positive integer less than N1
  • M2 is a positive integer less than or equal to N2
  • M1 is a positive integer less than or equal to N1
  • M2 is a positive integer less than N2.
  • the determining unit 801 is configured to base on the number of time domain symbols included in the first transmission resource, the number of PRBs included in the first transmission resource, and the number of time domain symbols included in the second part of the resource. number to determine the number of resources in the first part of resources.
  • the determining unit 801 is configured to determine a PRB in the first part of the resource based on the number of time domain symbols included in the first transmission resource and the number of time domain symbols included in the second part of the resource. The corresponding number of REs; determine the number of REs of the first part of the resources based on the number of PRBs included in the first transmission resource and the number of REs corresponding to one PRB in the first part of the resources.
  • the determining unit 801 is configured to based on the number of time domain symbols included in the first transmission resource, the number of PRBs included in the first transmission resource, and the number of PRBs included in the second part of the resources, Determine the resource quantity of the first part of resources.
  • the determining unit 801 is configured to determine the number of REs corresponding to one PRB in the first transmission resource based on the number of time domain symbols included in the first transmission resource; based on the number of time domain symbols included in the first transmission resource; The number of PRBs included, the number of PRBs included in the second part of the resources, and the number of REs corresponding to one PRB in the first transmission resources determine the number of REs of the first part of the resources.
  • the determining unit 801 is configured to base on the number of time domain symbols included in the first transmission resource, the number of PRBs included in the first transmission resource, and the number of time domain symbols included in the second partial resource. and the number of PRBs included in the second part of resources to determine the number of resources in the first part of resources.
  • the determining unit 801 is configured to determine a PRB in the first part of the resource based on the number of time domain symbols included in the first transmission resource and the number of time domain symbols included in the second part of the resource. The corresponding RE number; determine the RE number of the first part of the resource based on the number of PRBs included in the first transmission resource, the number of PRBs included in the second part of the resource, and the number of REs corresponding to one PRB in the first part of the resource. .
  • the first transmission resource includes N1 time domain symbols and includes N2 PRBs; the second part of the resources includes M3 REs.
  • the determining unit 801 is configured to based on the number of time domain symbols included in the first transmission resource, the number of PRBs included in the first transmission resource, and the number of REs included in the second part of the resource, Determine the resource quantity of the first part of resources.
  • the determining unit 801 is configured to determine the number of REs corresponding to one PRB in the first transmission resource based on the number of time domain symbols included in the first transmission resource; based on the number of time domain symbols included in the first transmission resource; The number of REs included in the first part of the resources is determined by the number of PRBs included, the number of REs included in the second part of the resources, and the number of REs corresponding to one PRB in the first transmission resources.
  • the determining unit 801 is configured to determine the TBS corresponding to the first channel based on the number of resources in the first part of the resources and at least one parameter, where the at least one parameter includes at least one of the following: coding rate, modulation order , and the number of transmission layers.
  • Figure 9 is a schematic structural diagram of a communication device 900 provided by an embodiment of the present application.
  • the communication device 900 shown in Figure 9 includes a processor 910.
  • the processor 910 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 900 may further include a memory 920.
  • the processor 910 can call and run the computer program from the memory 920 to implement the method in the embodiment of the present application.
  • the memory 920 may be a separate device independent of the processor 910 , or may be integrated into the processor 910 .
  • the communication device 900 may also include a transceiver 930, and the processor 910 may control the transceiver 930 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 930 may include a transmitter and a receiver.
  • the transceiver 930 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 900 may specifically be the first device in the embodiment of the present application, and the communication device 900 may implement the corresponding processes implemented by the first device in the various methods of the embodiment of the present application. For the sake of brevity, details will not be described here.
  • Figure 10 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1000 shown in Figure 10 includes a processor 1010.
  • the processor 1010 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 1000 may also include a memory 1020 .
  • the processor 1010 can call and run the computer program from the memory 1020 to implement the method in the embodiment of the present application.
  • the memory 1020 may be a separate device independent of the processor 1010, or may be integrated into the processor 1010.
  • the chip 1000 may also include an input interface 1030.
  • the processor 1010 can control the input interface 1030 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 1000 may also include an output interface 1040.
  • the processor 1010 can control the output interface 1040 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the first device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the first device in each method of the embodiment of the present application. For the sake of brevity, details will not be repeated here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the first device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the first device in the various methods of the embodiment of the present application. For the sake of brevity, they will not be repeated here. Repeat.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the first device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the first device in the various methods of the embodiment of the present application. For the sake of brevity, they will not be described again here. .
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the first device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the first device in the various methods of the embodiment of the present application. For the sake of simplicity, in This will not be described again.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present application can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信息确定方法及装置、通信设备,该方法包括:第一设备基于第一部分资源的资源数量确定第一信道对应的传输块大小TBS;其中,预配置用于传输所述第一信道的传输资源为第一传输资源,所述第一传输资源包括所述第一部分资源和第二部分资源,所述第二部分资源不用于所述第一信道的传输。

Description

一种信息确定方法及装置、通信设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种信息确定方法及装置、通信设备。
背景技术
信道对应的传输块大小(Transport Block Size,TBS)基于该信道的传输资源的资源数量确定。对于半静态配置的信道来说,信道是周期性传输的,并且周期性传输的每个信道的传输资源的资源数量是相同的,也即周期性传输的每个信道的TBS是相同的。然而,对于周期性传输的不同信道来说,可能具有差异性,例如不同信道的可用资源不同,目前的这种确定信道的TBS的方式并没有考虑信道的差异性,导致确定出的TBS不准确。
发明内容
本申请实施例提供一种信息确定方法及装置、通信设备、芯片、计算机可读存储介质、计算机程序产品、计算机程序。
本申请实施例提供的信息确定方法,包括:
第一设备基于第一部分资源的资源数量确定第一信道对应的TBS;
其中,预配置用于传输所述第一信道的传输资源为第一传输资源,所述第一传输资源包括所述第一部分资源和第二部分资源,所述第二部分资源不用于所述第一信道的传输。
本申请实施例提供的信息确定装置,应用于第一设备,所述装置包括:
确定单元,用于基于第一部分资源的资源数量确定第一信道对应的TBS;
其中,预配置用于传输所述第一信道的传输资源为第一传输资源,所述第一传输资源包括所述第一部分资源和第二部分资源,所述第二部分资源不用于所述第一信道的传输。
本申请实施例提供的通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的信息确定方法。
本申请实施例提供的芯片,用于实现上述的信息确定方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的信息确定方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的信息确定方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的信息确定方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的信息确定方法。
本申请实施例的技术方案中,对于第一信道来说,用于传输第一信道的传输资源 为预配置的第一传输资源,所述第一传输资源包括第一部分资源和第二部分资源,所述第二部分资源不用于所述第一信道的传输,这种情况下,第一设备基于所述第一部分资源的资源数量确定所述第一信道对应的TBS,可见,第一设备在确定第一信道对应的TBS时,依据的是第一信道的第一传输资源中的第一部分资源的资源数量(可以理解为第一传输资源中的可用部分资源的资源数量),这种确定TBS的方式灵活适配信道的可用资源,更具准确性。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信***的架构示意图;
图2是XR业务周期和SPS/CG传输周期的适配图;
图3是5种SPS/CG配置下的SPS/CG传输位置的示意图;
图4是本申请实施例提供的信息确定方法的流程示意图;
图5是本申请实施例提供的SPS PDSCH占据的传输资源的示意图一;
图6是本申请实施例提供的SPS PDSCH占据的传输资源的示意图二;
图7是本申请实施例提供的SPS PDSCH占据的传输资源的示意图三;
图8是本申请实施例提供的信息确定装置的结构组成示意图;
图9是本申请实施例提供的一种通信设备示意性结构图;
图10是本申请实施例的芯片的示意性结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例提供的一种通信***的架构示意图。如图1所示,通信***100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,在本申请一些实施例中,该通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
图1中的网络设备可以是任意接入网节点。例如网络设备可以指基站、具有基站功能的卫星等。
图1中的终端设备可以是任意终端设备。例如,终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、IoT设备、卫星手持终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
需要说明的是,图1只是以示例的形式示意本申请所适用的***,当然,本申请实施例所示的方法还可以适用于其它***。此外,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信***中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
SPS PDSCH
物理下行共享信道(Physical Downlink Shared Channel,PDSCH)可以是半静态传输,半静态传输的PDSCH也即半持续调度(Semi-Persistent Scheduling,SPS)PDSCH。对于SPS PDSCH来说,网络侧通过无线资源控制(Radio Resource Control,RRC)信令预配置传输资源,再通过下行控制信息(Downlink Control Information,DCI)信令激活该传输资源后,终端设备便可以在预配置的传输资源上周期性地传输SPS PDSCH,且每个SPS PDSCH的传输资源包括的资源数量相同。其中,RRC信令预配置传输资源时所配置的参数包括但不限于以下至少之一:配置调度-无线网络临时标识(Configured Scheduling-Radio Network Temporary Identity,CS-RNTI)、周期(periodicity)、HARQ进程数(nrofHARQ-Processes)、HARQ进程偏移(harq-ProcID-Offset)。网络侧预配置并激活传输资源后,周期性的传输资源(即SPS PDSCH资源)出现的时隙为基于以下公式确定:
(numberOfSlotsPerFrame×SFN+slot number in the frame)=[(numberOfSlotsPerFrame×SFN start time+slot start time)+N×periodicity×numberOfSlotsPerFrame/10]modulo(1024×numberOfSlotsPerFrame)
其中,numberOfSlotsPerFrame代表一个无线帧包括的时隙数,SFN代表无线帧号,slot number in the frame代表SPS PDSCH资源在一个无线帧中出现的时隙号,SFN start time和slot start time代表传输资源被激活后,第一个SPS PDSCH出现的帧号和时隙号,periodicity代表周期。第一个SPS PDSCH出现的时隙号通过DCI信令(该DCI信令用于激活传输资源)指示,后续周期性出现的SPS PDSCH出现的时隙通过上述公式确定。
在一些实施方式中,SPS PDSCH传输的可选周期为{10,20,32,40,64,80…}ms,这些周期主要是支持基于IP的语音(Voice over IP,VoIP)业务。在一些实施方式中,为了支持高可靠和低延迟通信(Ultra-Reliable and Low-Latency Communications,URLLC)业务,SPS PDSCH传输的周期支持最小为一个时隙(slot)的周期配置,例如15kHz支持的可选周期为{1…640}slot,30kHz支持的可选周期为{1…1280}slot,60kHz支持的可选周期为{1…2560}slot,120kHz支持的可选周期为{1…5120}slot。
CG PUSCH
物理上行共享信道(Physical Uplink Shared Channel,PUSCH)可以是半静态传输,半静态传输的PUSCH也即配置授权(Configured Grant,CG)PUSCH。CG PUSCH包括以下两种类型:
type-1 CG PUSCH:对于type-1 CG PUSCH来说,网络侧通过RRC信令预配置传输资源后,该传输资源不需要DCI激活即生效。
type-2 CG PUSCH:对于type-2 CG PUSCH来说,网络侧通过RRC信令预配置传输资源后,该传输资源需要DCI激活后生效。type-2 CG PUSCH的工作方式和SPS PDSCH的工作方式基本相同,可以参照前述关于SPS PDSCH的描述。
在一些实施方式中,CG PUSCH传输的周期支持{2,7}symbol以及{1,2,4,5,8,10,16,20,32,40…}slot。
NR帧结构
NR采用10ms的帧长度,一个帧中包含10个子帧。5个子帧组成一个半帧,编号0~4的子帧和编号5~9的子帧分别处于不同的半帧。
NR帧结构以时隙为单位,基本帧结构中的每个时隙可被分为以下三类:上行时隙、下行时隙、灵活时隙。常规循环前缀(Cyclic Prefix,CP)情况下,每个时隙包含14个符号。扩展CP情况下,每个时隙包含12个符号。每个时隙中的符号可被分为以下三类:下行符号、上行符号和灵活符号。根据基站的实际调度,灵活符号可以用于传输下行数据或上行数据,即该符号的传输方向不固定。
NR帧结构的配置采用RRC信令半静态配置和DCI信令动态配置结合的方式进行灵活配置。其中,RRC信令半静态配置支持小区专用RRC信令的半静态配置和UE专用RRC信令的半静态配置两种方式。DCI信令动态配置支持由时隙格式指示信息(Slot Format Indication,SFI)直接指示配置和DCI调度确定配置两种方式。其中,对于半静态配置NR帧结构的方式,***基于周期(可以理解为上下行传输周期,或者TDD上下行切换周期)配置帧结构,每个周期中只有一个下行资源到上行资源的转换点,以保证每个周期中下行资源是连续的,上行资源是连续的。在一些实施方式中,帧结构的周期可以为0.5ms,0.625ms,1ms,1.25ms,2ms,2.5ms,5ms,10ms。
XR
在扩展现实(EXtended Reality,XR)的研究项目中,研究的场景包括增强现实(Augmented Reality,AR)、虚拟现实(Virtual Reality,VR)、混合现实(Mixed Reality,MR)、云游戏(Cloud Gaming,CG)等。XR的一项主要业务即为视频流(video stream)业务,其到达速率(以fps衡量,fps,即每秒的帧数)可以为30fps、60fps、90fps、120fps,那么对应的视频流的周期为33.33ms、16.67ms、11.11ms、8.33ms。
TBS
PDSCH承载的传输块的大小(即TBS)根据如下方式确定:
1、确定PDSCH的传输资源包括的资源单元(Resource Element,RE)数(N RE)。
1-1)确定PDSCH的传输资源中一个物理资源块(Physical Resource Block,PRB)对应的RE数为:
Figure PCTCN2022112067-appb-000001
其中,
Figure PCTCN2022112067-appb-000002
代表一个RB对应的子载波数量;
Figure PCTCN2022112067-appb-000003
代表PDSCH的传输资源包括的时域符号数;
Figure PCTCN2022112067-appb-000004
代表解调参考信号包括的RE数;
Figure PCTCN2022112067-appb-000005
为高层信令配置的参数,其取值为6,12或18(若高层信令未配置该参数,则该参数置为0)。
1-2)确定PDSCH的传输资源包括的RE数为:
N RE=min(156,N' RE)·n PRB
其中,n PRB代表PDSCH的传输资源包括的PRB数。
2、计算N info=N RE·R·Q m·υ,根据N info确定TBS。
这里,R代表编码速率,Q m代表调制阶数,υ代表传输层数。
这里,根据N info确定TBS可以通过以下步骤来实现:
2-1)判断N info是否小于或等于3824;若是,则执行步骤2-2),若否,则执行步骤2-3)。
2-2)计算
Figure PCTCN2022112067-appb-000006
根据N′ info和配置表确定TBS。
2-3)计算
Figure PCTCN2022112067-appb-000007
判断R是否小于或等于1/4,若是,则执行步骤2-4),若否,则执行步骤2-5)。
2-4)计算
Figure PCTCN2022112067-appb-000008
2-5)判断N′ info是否大于或等于8424,若是,则执行步骤2-6),若否,则执行步骤2-7)。
2-6)计算
Figure PCTCN2022112067-appb-000009
2-7)计算
Figure PCTCN2022112067-appb-000010
PUSCH对应的TBS的计算方式与上述PDSCH对应的TBS的计算方式同理,可以参照上述PDSCH对应的TBS的计算方式,来计算PUSCH对应的TBS。
根据以上描述可知,信道对应的TBS基于该信道的传输资源的资源数量(即RE数)确定。对于半静态配置的信道来说,信道是周期性传输的,并且周期性传输的每个信道的传输资源的资源数量是相同的,也即周期性传输的每个信道的TBS是相同的。然而,对于周期性传输的不同信道来说,可能具有差异性,例如不同信道的可用资源不同,目前的这种确定信道的TBS的方式并没有考虑信道的差异性,导致信道的TBS缺乏灵活性。
以XR业务为例,XR业务具有周期特性,因此采用SPS PDSCH或CG PUSCH传输XR业务,这将有利于降低业务传输时延(因为不需要等待调度业务的DCI),降低终端设备的功耗(因为不需要检测调度业务的DCI)。XR业务的可选周期为{33.33ms,16.67ms,11.11ms,8.33ms},而NR***中支持的时隙的长度为1ms、0.5ms、0.25ms、0.125ms。可以发现XR业务周期的长度与NR时隙的长度是不能整数倍匹配的,因此SPS PDSCH或CG PUSCH的传输周期(简称为SPS/CG传输周期)也不能与XR业务的周期整数倍匹配。为此提出了一种解决方案,以XR业务的周期为16.67ms来说,SPS/CG传输周期可以以{17ms,17ms,16ms}的方式重复,最大程度匹配3个16.67ms的XR业务周期,如图2所示。采用图2所示的方式来传输XR业务存在如下问题:根据帧结构以及SPS/CG传输周期,SPS PDSCH或CG PUSCH(简称为SPS/CG)传输的时域位置(如时隙、子时隙)可能是属于灵活时隙。如图3所示,TDD上下行切换周期为5ms,NR帧结构的上下行配置为{D、D、D、F、U},D代表下行时隙,F代表灵活时隙,U代表上行时隙。图3示意出了5种SPS/CG配置,以第一种SPS/CG配置为 例,第1个SPS/CG传输位于第一个无线帧的时隙0,第2个SPS/CG传输位于第二个无线帧的时隙7,第3个SPS/CG传输位于第三个无线帧的时隙0,这3个SPS/CG传输的周期分别为{17ms,17ms,16ms}。其他SPS/CG配置相对于第一种SPS/CG配置来说,区别在于第1个SPS/CG传输的起始位置不同,具有一定的偏移量。从图3可以看出,有3种(即第2种、第4种、第5种)SPS/CG配置是存在使用灵活时隙传输SPS/CG的。在NR***中,SPS/CG的传输位置为灵活时隙时,若SPS/CG在该灵活时隙内占用的时域符号不存在上下行冲突(例如对于SPS PDSCH,其占用的时域符号是下行符号和/或灵活符号),则该SPS/CG被正常传输;若SPS/CG在该灵活时隙内占用的时域符号存在上下行冲突(例如对于SPS PDSCH,其占用的时域符号有上行符号),则该SPS/CG被放弃传输。若按照灵活时隙中的非冲突时域符号(对于SPS PDSCH为下行符号和灵活符号,对于CG PUSCH为上行符号和灵活符号)作为XR业务的传输资源,则将造成其他时隙(即非灵活时隙)中传输资源利用不充分的问题。例如按照灵活时隙中的非冲突时域符号配置SPS PDSCH占用时隙内的8个符号,这会导致在其他下行时隙中会有14-8=6个符号没有被使用。可见,如果想要充分利用传输资源,无论SPS/CG在非灵活时隙上传输还是在灵活时隙上传输,都需要最大程度占据时隙内的传输资源。然而,SPS/CG在非灵活时隙上传输相比较SPS/CG在灵活时隙上传输来说,可用资源具有差异性,如果按照目前的方式确定SPS/CG对应的TBS,会存在不准确的问题,导致该SPS/CG被放弃传输。为此,提出了本申请实施例的以下技术方案。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图4是本申请实施例提供的信息确定方法的流程示意图,如图4所示,所述信息确定方法包括以下步骤:
步骤401:第一设备基于第一部分资源的资源数量确定第一信道对应的TBS;其中,预配置用于传输所述第一信道的传输资源为第一传输资源,所述第一传输资源包括所述第一部分资源和第二部分资源,所述第二部分资源不用于所述第一信道的传输。
本申请实施例中,第一信道用于传输业务数据。第一设备可以是业务数据的接收方(也即第一信道的接收方),也可以是业务数据的发送方(也即第一信道的发送方)。在一些实施方式中,第一设备为终端设备。在另一些实施方式中,第一设备为网络设备。
本申请实施例中,第一信道对应的TBS是指第一信道承载的传输块大小。
本申请实施例中,第一信道的传输资源为基站预配置的第一传输资源。在一些实施方式中,所述第一信道为SPS PDSCH。在另一些实施方式中,所述第一信道为CG PUSCH。这里,SPS PDSCH和CG PUSCH可以参照前述相关描述进行理解。
本申请实施例中,第一信道的第一传输资源包括第一部分资源和第二部分资源,所述第二部分资源不用于所述第一信道的传输。所述第一部分资源可以是指所述第一传输资源中除所述第二部分资源以外的部分资源。所述第一部分资源用于所述第一信道的传输。
这里,所述第一部分资源也可以理解为第一传输资源中的可用资源,即可用于传输所述第一信道的资源;所述第二部分资源也可以理解为第一传输资源中的不可用资源,即不可用于传输所述第一信道的资源。
需要说明的是,本申请实施例中描述的“传输资源”或者“资源”可以包括以下至少一种资源:时域符号(也可简称为符号)、PRB、以及RE。
在一些实施方式中,所述第一信道为下行信道,例如:SPS PDSCH。所述第二部分资源包括以下至少一种资源:上行传输资源、保护间隔占用的资源、控制资源集 合占用的资源、同步信号占用的资源、广播信道占用的资源、以及第一预配置资源,所述第一预配置资源为预配置的所述下行信道不能够占用的资源。
这里,所述上行传输资源可以包括以下至少一种资源:上行符号、上行PRB、以及上行RE。
这里,所述保护间隔占用的资源可以包括以下至少一种资源:时域保护间隔、以及频域保护间隔。其中,时域保护间隔用于避免上下行传输干扰,其长度可以但不局限是符号级。频域保护间隔用于避免频带之间的干扰,其长度可以但不局限是PRB级。
这里,所述第一预配置资源可以是基站预配置的下行信道不能够占用的资源。
在一些实施方式中,所述第一信道为上行信道,例如CG PUSCH。所述第二部分资源包括以下至少一种资源:下行传输资源、保护间隔占用的资源、控制资源集合占用的资源、同步信号占用的资源、广播信道占用的资源、以及第二预配置资源,所述第二预配置资源为预配置的所述上行信道不能够占用的资源。
这里,所述下行传输资源可以包括以下至少一种资源:下行符号、下行PRB、以及下行RE。
这里,所述保护间隔占用的资源可以包括以下至少一种资源:时域保护间隔、以及频域保护间隔。其中,时域保护间隔用于避免上下行传输干扰,其长度可以但不局限是符号级。频域保护间隔用于避免频带之间的干扰,其长度可以但不局限是PRB级。
这里,所述第二预配置资源可以是基站预配置的上行信道不能够占用的资源。
当基站预配置的下行信道不能够占用的资源和上行信道不能够占用的资源的时,可以独立配置下行信道不能够占用的资源和上行信道不能够占用的资源。
本申请实施例中,所述第一部分资源是所述第一传输资源中除所述第二部分资源以外的部分资源,鉴于所述第二部分资源在所述第一传输资源中有不同的分布情况,导致所述第一部分资源可以是连续的资源或者是非连续的资源。
在一些实施方式中,所述第一部分资源为连续的资源;这种情况下,第一信道可以利用所述第一部分资源的全部资源进行传输,相应地,所述第一设备基于所述第一部分资源的全部资源数量确定第一信道对应的TBS。
在一些实施方式中,所述第一部分资源为非连续的资源,具体地,所述第一部分资源包括非连续的多组资源,每组资源内的资源是连续的;这种情况下,选项1)第一信道可以利用所述第一部分资源的全部资源进行传输,相应地,所述第一设备基于所述第一部分资源的全部资源数量确定第一信道对应的TBS。选项2)第一信道可以利用所述第一部分资源的一组资源进行传输,相应地,所述第一设备基于所述多组资源中的一组资源的资源数量确定第一信道对应的TBS。这里,所述多组资源中的一组资源可以但不局限于通过以下方式确定:
所述多组资源中的一组资源为所述多组资源中的资源数量最多的一组资源;或者,
所述多组资源中的一组资源为所述多组资源中的资源编号最小的一组资源;或者,
所述多组资源中的一组资源为所述多组资源中的资源编号最大的一组资源;或者,
所述多组资源中的一组资源为所述多组资源中的时间最早的一组资源;或者,
所述多组资源中的一组资源为所述多组资源中的时间最晚的一组资源。
这里,所述多组资源中的一组资源为所述多组资源中的资源数量最多的一组资源,可以保障第一信道能够利用所述第一部分资源中资源数量最多的一组资源进行传输,提高资源利用率。
这里,所述多组资源中的一组资源为所述多组资源中的资源编号最小的一组资源, 可以保障第一信道能够利用所述第一部分资源中资源编号最小的一组资源进行传输,降低传输时延。其中,所述多组资源中的资源编号最小的一组资源可以是所述多组资源中的第一组资源。
这里,所述多组资源中的一组资源为所述多组资源中的时间最早的一组资源,可以保障第一信道能够利用所述第一部分资源中时间最早的一组资源进行传输,降低传输时延。其中,所述多组资源中的时间最早的一组资源可以是所述多组资源中的第一组资源。所述多组资源中的每组资源在时间上具有先后顺序,一组资源的时间可以参考该组资源中的某个资源(例如第一个资源)的时间。
本申请实施例中,所述第一设备基于第一部分资源的资源数量确定第一信道对应的TBS,包括:
所述第一设备确定第一部分资源的资源数量;
所述第一设备基于第一部分资源的资源数量确定第一信道对应的TBS。
本申请实施例中,所述第一设备确定第一部分资源的资源数量,可以通过以下方式来实现:
方案一
本申请实施例中,所述第一传输资源包括N1个时域符号且包括N2个PRB;所述第二部分资源包括所述N1个时域符号中的M1个时域符号且包括所述N2个PRB中的M2个PRB,N1和N2为正整数;其中,M1为小于N1的正整数,M2为小于或等于N2的正整数;或者,M1为小于或等于N1的正整数,M2为小于N2的正整数。
方案A)
在一些实施方式中,所述第一设备基于所述第一传输资源包括的时域符号数、所述第一传输资源包括的PRB数以及所述第二部分资源包括的时域符号数,确定所述第一部分资源的资源数量。
具体地,所述第一设备基于所述第一传输资源包括的时域符号数以及所述第二部分资源包括的时域符号数,确定所述第一部分资源中一个PRB对应的RE数;所述第一设备基于所述第一传输资源包括的PRB数以及所述第一部分资源中一个PRB对应的RE数,确定所述第一部分资源的RE数。
在一个示例中,如图5所示,第一信道为SPS PDSCH,预配置SPS PDSCH的第一传输资源占用
Figure PCTCN2022112067-appb-000011
(即
Figure PCTCN2022112067-appb-000012
)个时域符号且占用n PRB(即N2=n PRB)个PRB。
Figure PCTCN2022112067-appb-000013
个时域符号中包括M1个上行符号,M1个上行符号对应的资源为所述第二部分资源,第一传输资源中除所述第二部分资源以外的资源为第一部分资源。第一设备通过以下步骤确定所述第一部分资源的资源数量(即RE数):
1、确定第一部分资源中的一个PRB对应的RE数为:
Figure PCTCN2022112067-appb-000014
其中,
Figure PCTCN2022112067-appb-000015
代表一个RB对应的子载波数量;
Figure PCTCN2022112067-appb-000016
代表解调参考信号包括的RE数;
Figure PCTCN2022112067-appb-000017
为高层信令配置的参数,其取值为6,12或18(若高层信令未配置该参数,则该参数置为0)。
2、确定第一部分资源的RE数为:
N RE=min(156,N' RE)·n PRB
方案B)
在一些实施方式中,所述第一设备基于所述第一传输资源包括的时域符号数、所 述第一传输资源包括的PRB数以及所述第二部分资源包括的PRB数,确定所述第一部分资源的资源数量。
具体地,所述第一设备基于所述第一传输资源包括的时域符号数,确定所述第一传输资源中一个PRB对应的RE数;所述第一设备基于所述第一传输资源包括的PRB数、所述第二部分资源包括的PRB数以及所述第一传输资源中一个PRB对应的RE数,确定所述第一部分资源的RE数。
在一个示例中,如图6所示,第一信道为SPS PDSCH,预配置SPS PDSCH的第一传输资源占用
Figure PCTCN2022112067-appb-000018
(即
Figure PCTCN2022112067-appb-000019
)个时域符号且占用n PRB(即N2=n PRB)个PRB。n PRB个PRB中的M2个PRB为上行PRB和间隔PRB,M2个PRB对应的资源为所述第二部分资源,第一传输资源中除所述第二部分资源以外的资源为第一部分资源。第一设备通过以下步骤确定所述第一部分资源的资源数量(即RE数):
1、确定第一传输资源中的一个PRB对应的RE数为:
Figure PCTCN2022112067-appb-000020
其中,
Figure PCTCN2022112067-appb-000021
代表一个RB对应的子载波数量;
Figure PCTCN2022112067-appb-000022
代表解调参考信号包括的RE数;
Figure PCTCN2022112067-appb-000023
为高层信令配置的参数,其取值为6,12或18(若高层信令未配置该参数,则该参数置为0)。
2、确定第一部分资源的RE数为:
N RE=min(156,N' RE)·(n PRB-M2)。
方案C)
在一些实施方式中,所述第一设备基于所述第一传输资源包括的时域符号数、所述第一传输资源包括的PRB数、所述第二部分资源包括的时域符号数以及所述第二部分资源包括的PRB数,确定所述第一部分资源的资源数量。
具体地,所述第一设备基于所述第一传输资源包括的时域符号数以及所述第二部分资源包括的时域符号数,确定所述第一部分资源中一个PRB对应的RE数;所述第一设备基于所述第一传输资源包括的PRB数、所述第二部分资源包括的PRB数以及所述第一部分资源中一个PRB对应的RE数,确定所述第一部分资源的RE数。
在一个示例中,如图7所示,第一信道为SPS PDSCH,预配置SPS PDSCH的第一传输资源占用
Figure PCTCN2022112067-appb-000024
(即
Figure PCTCN2022112067-appb-000025
)个时域符号且占用n PRB(即N2=n PRB)个PRB。
Figure PCTCN2022112067-appb-000026
个时域符号中包括M1个上行符号,n PRB个PRB中的M2个PRB为上行PRB和间隔PRB,M1个上行符号和M2个PRB对应的资源为所述第二部分资源,第一传输资源中除所述第二部分资源以外的资源为第一部分资源。第一设备通过以下步骤确定所述第一部分资源的资源数量(即RE数):
1、确定第一部分资源中的一个PRB对应的RE数为:
Figure PCTCN2022112067-appb-000027
其中,
Figure PCTCN2022112067-appb-000028
代表一个RB对应的子载波数量;
Figure PCTCN2022112067-appb-000029
代表解调参考信号包括的RE数;
Figure PCTCN2022112067-appb-000030
为高层信令配置的参数,其取值为6,12或18(若高层信令未配置该参数,则该参数置为0)。
2、确定第一部分资源的RE数为:
N RE=min(156,N' RE)·(n PRB-M2)。
方案二
本申请实施例中,所述第一传输资源包括N1个时域符号且包括N2个PRB;所述第二部分资源包括M3个RE。
在一些实施方式中,所述第一设备基于所述第一传输资源包括的时域符号数、所述第一传输资源包括的PRB数以及所述第二部分资源包括的RE数,确定所述第一部分资源的资源数量。
具体地,所述第一设备基于所述第一传输资源包括的时域符号数,确定所述第一传输资源中一个PRB对应的RE数;所述第一设备基于所述第一传输资源包括的PRB数、所述第二部分资源包括的RE数以及所述第一传输资源中一个PRB对应的RE数,确定所述第一部分资源的RE数。
在一个示例中,第一信道为SPS PDSCH,预配置SPS PDSCH的第一传输资源占用
Figure PCTCN2022112067-appb-000031
(即
Figure PCTCN2022112067-appb-000032
)个时域符号且占用n PRB(即N2=n PRB)个PRB。第一传输资源中的M3个RE为不可用RE,即M3个RE为所述第二部分资源,第一传输资源中除所述第二部分资源以外的资源为第一部分资源。第一设备通过以下步骤确定所述第一部分资源的资源数量(即RE数):
1、确定第一传输资源中的一个PRB对应的RE数为:
Figure PCTCN2022112067-appb-000033
其中,
Figure PCTCN2022112067-appb-000034
代表一个RB对应的子载波数量;
Figure PCTCN2022112067-appb-000035
代表解调参考信号包括的RE数;
Figure PCTCN2022112067-appb-000036
为高层信令配置的参数,其取值为6,12或18(若高层信令未配置该参数,则该参数置为0)。
2、确定第一部分资源的RE数为:
N RE=min(156,N' RE-M3)·n PRB
本申请实施例中,第一设备通过上述方案确定出第一部分资源的资源数量后,基于所述第一部分资源的资源数量确定第一信道对应的TBS,具体地,所述第一设备基于第一部分资源的资源数量以及至少一个参数确定第一信道对应的TBS,所述至少一个参数包括以下至少之一:编码速率、调制阶数、以及传输层数。
具体地,所述第一设备计算N info=N RE·R·Q m·υ,根据N info确定TBS。这里,N RE代表第一部分资源的资源数量(即RE数),R代表编码速率,Q m代表调制阶数,υ代表传输层数。这里,根据N info确定TBS可以通过前述相关描述来实现。
通过上述方案确定出第一信道对应的TBS后,第一设备可以根据第一信道对应的TBS对第一信道进行发送相关的处理(第一设备为发送方)或者对第一信道进行接收相关的处理(第一设备为接收方)。这里,发送相关的处理可以但不局限于是编码处理,接收相关的处理可以但不局限于是解码处理。
本申请实施例的技术方案,对于半静态配置的第一信道,若第一信道的传输资源中有不可用资源,则根据实际可用的资源数量确定第一信道对应的TBS。如此,确定出的TBS可以准确反映第一信道实际可用的资源数量,根据该TBS可以保障第一信道的有效传输,而不必放弃第一信道的传输。此外,不需要为了迁就个别周期需要使用小容量传输资源而将第一信道配置为小容量传输资源,即使为第一信道配置了大容量传输资源,也可以根据实际可用的资源数量确定第一信道对应的TBS,最大程度的保证了第一信道的半静态传输,提高了***效率。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施 方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”、“上行”和“侧行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,“侧行”用于表示信号或数据的传输方向为从用户设备1发送至用户设备2的第三方向。例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图8是本申请实施例提供的信息确定装置的结构组成示意图,应用于第一设备,如图8所示,所述信息确定装置包括:
确定单元801,用于基于第一部分资源的资源数量确定第一信道对应的TBS;
其中,预配置用于传输所述第一信道的传输资源为第一传输资源,所述第一传输资源包括所述第一部分资源和第二部分资源,所述第二部分资源不用于所述第一信道的传输。
在一些实施方式中,所述第一部分资源为连续的资源或者非连续的资源;所述确定单元801,用于基于第一部分资源的全部资源数量确定第一信道对应的TBS。
在一些实施方式中,所述第一部分资源包括非连续的多组资源,每组资源内的资源是连续的;所述确定单元801,用于基于所述多组资源中的一组资源的资源数量确定第一信道对应的TBS。
在一些实施方式中,所述多组资源中的一组资源为所述多组资源中的资源数量最多的一组资源;或者,所述多组资源中的一组资源为所述多组资源中的资源编号最小的一组资源;或者,所述多组资源中的一组资源为所述多组资源中的资源编号最大的一组资源;或者,所述多组资源中的一组资源为所述多组资源中的时间最早的一组资源;或者,所述多组资源中的一组资源为所述多组资源中的时间最晚的一组资源。
在一些实施方式中,所述第一信道为下行信道,所述第二部分资源包括以下至少一种资源:上行传输资源、保护间隔占用的资源、控制资源集合占用的资源、同步信号占用的资源、广播信道占用的资源、以及第一预配置资源,所述第一预配置资源为预配置的所述下行信道不能够占用的资源。
在一些实施方式中,所述第一信道为SPS PDSCH。
在一些实施方式中,所述第一信道为上行信道,所述第二部分资源包括以下至少一种资源:下行传输资源、保护间隔占用的资源、控制资源集合占用的资源、同步信号占用的资源、广播信道占用的资源、以及第二预配置资源,所述第二预配置资源为预配置的所述上行信道不能够占用的资源。
在一些实施方式中,所述第一信道为CG PUSCH。
在一些实施方式中,所述第一传输资源包括N1个时域符号且包括N2个PRB;所述第二部分资源包括所述N1个时域符号中的M1个时域符号且包括所述N2个PRB中的M2个PRB,N1和N2为正整数;
其中,M1为小于N1的正整数,M2为小于或等于N2的正整数;或者,M1为小于或等于N1的正整数,M2为小于N2的正整数。
在一些实施方式中,所述确定单元801,用于基于所述第一传输资源包括的时域符号数、所述第一传输资源包括的PRB数以及所述第二部分资源包括的时域符号数,确定所述第一部分资源的资源数量。
在一些实施方式中,所述确定单元801,用于基于所述第一传输资源包括的时域符号数以及所述第二部分资源包括的时域符号数,确定所述第一部分资源中一个PRB对应的RE数;基于所述第一传输资源包括的PRB数以及所述第一部分资源中一个PRB对应的RE数,确定所述第一部分资源的RE数。
在一些实施方式中,所述确定单元801,用于基于所述第一传输资源包括的时域符号数、所述第一传输资源包括的PRB数以及所述第二部分资源包括的PRB数,确定所述第一部分资源的资源数量。
在一些实施方式中,所述确定单元801,用于基于所述第一传输资源包括的时域符号数,确定所述第一传输资源中一个PRB对应的RE数;基于所述第一传输资源包括的PRB数、所述第二部分资源包括的PRB数以及所述第一传输资源中一个PRB对应的RE数,确定所述第一部分资源的RE数。
在一些实施方式中,所述确定单元801,用于基于所述第一传输资源包括的时域符号数、所述第一传输资源包括的PRB数、所述第二部分资源包括的时域符号数以及所述第二部分资源包括的PRB数,确定所述第一部分资源的资源数量。
在一些实施方式中,所述确定单元801,用于基于所述第一传输资源包括的时域符号数以及所述第二部分资源包括的时域符号数,确定所述第一部分资源中一个PRB对应的RE数;基于所述第一传输资源包括的PRB数、所述第二部分资源包括的PRB数以及所述第一部分资源中一个PRB对应的RE数,确定所述第一部分资源的RE数。
在一些实施方式中,所述第一传输资源包括N1个时域符号且包括N2个PRB;所述第二部分资源包括M3个RE。
在一些实施方式中,所述确定单元801,用于基于所述第一传输资源包括的时域符号数、所述第一传输资源包括的PRB数以及所述第二部分资源包括的RE数,确定所述第一部分资源的资源数量。
在一些实施方式中,所述确定单元801,用于基于所述第一传输资源包括的时域符号数,确定所述第一传输资源中一个PRB对应的RE数;基于所述第一传输资源包括的PRB数、所述第二部分资源包括的RE数以及所述第一传输资源中一个PRB对应的RE数,确定所述第一部分资源的RE数。
在一些实施方式中,所述确定单元801,用于基于第一部分资源的资源数量以及至少一个参数确定第一信道对应的TBS,所述至少一个参数包括以下至少之一:编码速率、调制阶数、以及传输层数。
本领域技术人员应当理解,本申请实施例的上述信息确定装置的相关描述可以参照本申请实施例的信息确定方法的相关描述进行理解。
图9是本申请实施例提供的一种通信设备900示意性结构图。图9所示的通信设备900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,通信设备900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,如图9所示,通信设备900还可以包括收发器930,处理器910可以控制该收发器930与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器930可以包括发射机和接收机。收发器930还可以进一步包括天线,天线的数量可以为一个或多个。
该通信设备900具体可为本申请实施例的第一设备,并且该通信设备900可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
图10是本申请实施例的芯片的示意性结构图。图10所示的芯片1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,芯片1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,该芯片1000还可以包括输入接口1030。其中,处理器1010可以控制该输入接口1030与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1000还可以包括输出接口1040。其中,处理器1010可以控制该输出接口1040与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
该芯片可应用于本申请实施例中的第一设备,并且该芯片可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器 (Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质可应用于本申请实施例中的第一设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。该计算机程序产品可应用于本申请实施例中的第一设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。该计算机程序可应用于本申请实施例中的第一设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是 各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (25)

  1. 一种信息确定方法,所述方法包括:
    第一设备基于第一部分资源的资源数量确定第一信道对应的传输块大小TBS;
    其中,预配置用于传输所述第一信道的传输资源为第一传输资源,所述第一传输资源包括所述第一部分资源和第二部分资源,所述第二部分资源不用于所述第一信道的传输。
  2. 根据权利要求1所述的方法,其中,所述第一部分资源为连续的资源或者非连续的资源;
    所述第一设备基于第一部分资源的资源数量确定第一信道对应的TBS,包括:
    所述第一设备基于第一部分资源的全部资源数量确定第一信道对应的TBS。
  3. 根据权利要求1所述的方法,其中,所述第一部分资源包括非连续的多组资源,每组资源内的资源是连续的;
    所述第一设备基于第一部分资源的资源数量确定第一信道对应的TBS,包括:
    所述第一设备基于所述多组资源中的一组资源的资源数量确定第一信道对应的TBS。
  4. 根据权利要求3所述的方法,其中,
    所述多组资源中的一组资源为所述多组资源中的资源数量最多的一组资源;或者,
    所述多组资源中的一组资源为所述多组资源中的资源编号最小的一组资源;或者,
    所述多组资源中的一组资源为所述多组资源中的资源编号最大的一组资源;或者,
    所述多组资源中的一组资源为所述多组资源中的时间最早的一组资源。
  5. 根据权利要求1至4中任一项所述的方法,其中,所述第一信道为下行信道,所述第二部分资源包括以下至少一种资源:上行传输资源、保护间隔占用的资源、控制资源集合占用的资源、同步信号占用的资源、广播信道占用的资源、以及第一预配置资源,所述第一预配置资源为预配置的所述下行信道不能够占用的资源。
  6. 根据权利要求5所述的方法,其中,所述第一信道为半持续调度的物理下行共享信道SPS PDSCH。
  7. 根据权利要求1至4中任一项所述的方法,其中,所述第一信道为上行信道,所述第二部分资源包括以下至少一种资源:下行传输资源、保护间隔占用的资源、控制资源集合占用的资源、同步信号占用的资源、广播信道占用的资源、以及第二预配置资源,所述第二预配置资源为预配置的所述上行信道不能够占用的资源。
  8. 根据权利要求7所述的方法,其中,所述第一信道为配置授权的物理上行共享信道CG PUSCH。
  9. 根据权利要求1至8中任一项所述的方法,其中,所述第一传输资源包括N1个时域符号且包括N2个物理资源块PRB;所述第二部分资源包括所述N1个时域符号中的M1个时域符号且包括所述N2个PRB中的M2个PRB,N1和N2为正整数;
    其中,M1为小于N1的正整数,M2为小于或等于N2的正整数;或者,M1为小于或等于N1的正整数,M2为小于N2的正整数。
  10. 根据权利要求1至9中任一项所述的方法,其中,所述方法还包括:
    所述第一设备基于所述第一传输资源包括的时域符号数、所述第一传输资源包括的PRB数以及所述第二部分资源包括的时域符号数,确定所述第一部分资源的资源数量。
  11. 根据权利要求10所述的方法,其中,所述第一设备基于所述第一传输资源 包括的时域符号数、所述第一传输资源包括的PRB数以及所述第二部分资源包括的时域符号数,确定所述第一部分资源的资源数量,包括:
    所述第一设备基于所述第一传输资源包括的时域符号数以及所述第二部分资源包括的时域符号数,确定所述第一部分资源中一个PRB对应的资源单元RE数;
    所述第一设备基于所述第一传输资源包括的PRB数以及所述第一部分资源中一个PRB对应的RE数,确定所述第一部分资源的RE数。
  12. 根据权利要求1至9中任一项所述的方法,其中,所述方法还包括:
    所述第一设备基于所述第一传输资源包括的时域符号数、所述第一传输资源包括的PRB数以及所述第二部分资源包括的PRB数,确定所述第一部分资源的资源数量。
  13. 根据权利要求12所述的方法,其中,所述第一设备基于所述第一传输资源包括的时域符号数、所述第一传输资源包括的PRB数以及所述第二部分资源包括的PRB数,确定所述第一部分资源的资源数量,包括:
    所述第一设备基于所述第一传输资源包括的时域符号数,确定所述第一传输资源中一个PRB对应的RE数;
    所述第一设备基于所述第一传输资源包括的PRB数、所述第二部分资源包括的PRB数以及所述第一传输资源中一个PRB对应的RE数,确定所述第一部分资源的RE数。
  14. 根据权利要求1至9中任一项所述的方法,其中,所述方法还包括:
    所述第一设备基于所述第一传输资源包括的时域符号数、所述第一传输资源包括的PRB数、所述第二部分资源包括的时域符号数以及所述第二部分资源包括的PRB数,确定所述第一部分资源的资源数量。
  15. 根据权利要求14所述的方法,其中,所述第一设备基于所述第一传输资源包括的时域符号数、所述第一传输资源包括的PRB数、所述第二部分资源包括的时域符号数以及所述第二部分资源包括的PRB数,确定所述第一部分资源的资源数量,包括:
    所述第一设备基于所述第一传输资源包括的时域符号数以及所述第二部分资源包括的时域符号数,确定所述第一部分资源中一个PRB对应的RE数;
    所述第一设备基于所述第一传输资源包括的PRB数、所述第二部分资源包括的PRB数以及所述第一部分资源中一个PRB对应的RE数,确定所述第一部分资源的RE数。
  16. 根据权利要求1至8中任一项所述的方法,其中,所述第一传输资源包括N1个时域符号且包括N2个PRB;所述第二部分资源包括M3个RE。
  17. 根据权利要求1至8、16中任一项所述的方法,其中,所述方法还包括:
    所述第一设备基于所述第一传输资源包括的时域符号数、所述第一传输资源包括的PRB数以及所述第二部分资源包括的RE数,确定所述第一部分资源的资源数量。
  18. 根据权利要求17所述的方法,其中,所述第一设备基于所述第一传输资源包括的时域符号数、所述第一传输资源包括的PRB数以及所述第二部分资源包括的RE数,确定所述第一部分资源的资源数量,包括:
    所述第一设备基于所述第一传输资源包括的时域符号数,确定所述第一传输资源中一个PRB对应的RE数;
    所述第一设备基于所述第一传输资源包括的PRB数、所述第二部分资源包括的RE数以及所述第一传输资源中一个PRB对应的RE数,确定所述第一部分资源的RE数。
  19. 根据权利要求1至18中任一项所述的方法,其中,所述第一设备基于第一 部分资源的资源数量确定第一信道对应的TBS,包括:
    所述第一设备基于第一部分资源的资源数量以及至少一个参数确定第一信道对应的TBS,所述至少一个参数包括以下至少之一:编码速率、调制阶数、以及传输层数。
  20. 一种信息确定装置,应用于第一设备,所述装置包括:
    确定单元,用于基于第一部分资源的资源数量确定第一信道对应的TBS;
    其中,预配置用于传输所述第一信道的传输资源为第一传输资源,所述第一传输资源包括所述第一部分资源和第二部分资源,所述第二部分资源不用于所述第一信道的传输。
  21. 一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至19中任一项所述的方法。
  22. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至19中任一项所述的方法。
  23. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至19中任一项所述的方法。
  24. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至19中任一项所述的方法。
  25. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至19中任一项所述的方法。
PCT/CN2022/112067 2022-08-12 2022-08-12 一种信息确定方法及装置、通信设备 WO2024031620A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/112067 WO2024031620A1 (zh) 2022-08-12 2022-08-12 一种信息确定方法及装置、通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/112067 WO2024031620A1 (zh) 2022-08-12 2022-08-12 一种信息确定方法及装置、通信设备

Publications (1)

Publication Number Publication Date
WO2024031620A1 true WO2024031620A1 (zh) 2024-02-15

Family

ID=89850485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112067 WO2024031620A1 (zh) 2022-08-12 2022-08-12 一种信息确定方法及装置、通信设备

Country Status (1)

Country Link
WO (1) WO2024031620A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104885543A (zh) * 2012-12-03 2015-09-02 Lg电子株式会社 用于在无线通信***中确定传输块大小的方法和设备
WO2021062613A1 (zh) * 2019-09-30 2021-04-08 Oppo广东移动通信有限公司 数据传输的方法和设备
CN112655264A (zh) * 2020-12-14 2021-04-13 北京小米移动软件有限公司 传输块大小的确定方法、装置及通信设备
US20210258827A1 (en) * 2020-02-13 2021-08-19 Qualcomm Incorporated Transport block size determination for two stage control
CN113678389A (zh) * 2019-03-29 2021-11-19 华为技术有限公司 一种tbs的确定方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104885543A (zh) * 2012-12-03 2015-09-02 Lg电子株式会社 用于在无线通信***中确定传输块大小的方法和设备
CN113678389A (zh) * 2019-03-29 2021-11-19 华为技术有限公司 一种tbs的确定方法及装置
WO2021062613A1 (zh) * 2019-09-30 2021-04-08 Oppo广东移动通信有限公司 数据传输的方法和设备
US20210258827A1 (en) * 2020-02-13 2021-08-19 Qualcomm Incorporated Transport block size determination for two stage control
CN112655264A (zh) * 2020-12-14 2021-04-13 北京小米移动软件有限公司 传输块大小的确定方法、装置及通信设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SPREADTRUM COMMUNICATIONS: "TBS calculation for small packet sizes", 3GPP DRAFT; R1-1800276_TBS CALCULATION FOR SMALL PACKET SIZES, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Vancouver, Canada; 20180122 - 20180126, 12 January 2018 (2018-01-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051384298 *

Similar Documents

Publication Publication Date Title
CN109218000B (zh) 控制信息传输方法和设备
CN109150456B (zh) 一种无线通信方法和设备
EP3528515B1 (en) Data transmission method, apparatus, system, terminal, and access network device
CN108886807B (zh) 发送上行信息的方法和装置及接收上行信息的方法和装置
WO2020047922A1 (zh) 配置信息的传输方法和终端设备
WO2015196460A1 (zh) Pusch的传输方法及装置
CN111770577B (zh) 确定传输资源的方法及装置
US20200045733A1 (en) Uplink Scheduling For NR-U
WO2019141123A1 (zh) 信号传输的方法和装置
KR102267182B1 (ko) 다운 링크 리소스 집합을 결정하기 위한 방법 및 장치, 및 리소스 위치 정보를 송신하기 위한 방법 및 장치
CN110972300B (zh) 传输数据的方法及装置
CN109076513A (zh) 下行控制信息的发送方法、检测方法和设备
WO2018165987A1 (zh) 上行传输方法、装置、终端设备、接入网设备及***
WO2013102407A1 (zh) 一种机器终端通信方法、装置和***
WO2017132964A1 (zh) 一种上行数据传输方法及相关设备
CN113597005B (zh) 一种资源指示方法、终端设备及网络设备
US20230199740A1 (en) Communication method and apparatus
CN114667796A (zh) 在无线通信***中使用一个载波中的保护频带发送和接收信道的方法及其装置
CN113490276B (zh) 发送和接收信息的方法及装置
CN110971362B (zh) 一种发现参考信号发送方法及装置
CN111726311B (zh) 数据信道的传输方法及装置
CN114451044A (zh) 一种通信方法及装置
US9397813B2 (en) Extending the control channel region of a communications system in backwards compatible manner
JP2018537907A (ja) スケジューリング情報送信方法および装置
CN112887074B (zh) 信息发送方法、装置、终端、接入网设备及***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954580

Country of ref document: EP

Kind code of ref document: A1