WO2020199268A1 - 一种oled封装结构及oled封装方法 - Google Patents

一种oled封装结构及oled封装方法 Download PDF

Info

Publication number
WO2020199268A1
WO2020199268A1 PCT/CN2019/083600 CN2019083600W WO2020199268A1 WO 2020199268 A1 WO2020199268 A1 WO 2020199268A1 CN 2019083600 W CN2019083600 W CN 2019083600W WO 2020199268 A1 WO2020199268 A1 WO 2020199268A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
array substrate
layer
oled
cover plate
Prior art date
Application number
PCT/CN2019/083600
Other languages
English (en)
French (fr)
Inventor
梁晓明
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2020199268A1 publication Critical patent/WO2020199268A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8423Metallic sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8428Vertical spacers, e.g. arranged between the sealing arrangement and the OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the invention relates to the technical field of display panels, in particular to an OLED packaging structure and an OLED packaging method.
  • Organic Light Emitting Diode OLED Organic Light Emitting Diode
  • OLED Organic Light Emitting Diode
  • the OLED is composed of an anode, a cathode, and one or more layers of organic materials between the electrodes.
  • the holes and electrons injected from the anode and the cathode recombine in the organic light-emitting layer to form excitons, and the exciton radiates transition to emit light.
  • the metal cathode and organic materials in the OLED are susceptible to the influence of water vapor and oxygen, which reduces the efficiency and failure of the OLED, and affects the service life of the OLED. Therefore, the OLED has a high requirement for water and oxygen isolation.
  • the encapsulation effect of OLED largely affects the performance and service life of OLED.
  • OLED packaging mainly includes cover plate packaging and thin film packaging.
  • Cover plate encapsulation technology is to coat ultraviolet curing sealant (epoxy resin, etc.) or laser encapsulated glass glue on the encapsulation glass, so that the OLED has a better effect of isolating water and oxygen.
  • Thin film encapsulation is to alternately deposit multiple layers of inorganic or organic thin films on OLED devices to achieve the purpose of isolating water and oxygen.
  • the ability of these two packaging methods to isolate water and oxygen is still insufficient, resulting in a short lifetime of the OLED device.
  • the embodiments of the present invention provide an OLED packaging structure and an OLED packaging method to solve the problem of insufficient water and oxygen isolation ability of the existing packaging methods.
  • the embodiments of the present invention provide an OLED packaging structure and an OLED packaging method to solve the problem of insufficient water and oxygen isolation ability of the existing packaging methods.
  • the embodiment of the present invention provides an OLED packaging structure, including:
  • the array substrate and the cover plate arranged oppositely;
  • the material of the metal packaging layer is an alloy whose melting point is lower than a preset temperature
  • a thin film encapsulation layer provided on the OLED device.
  • a metal transition layer is further provided on the side of the metal packaging layer facing the cover plate.
  • a metal transition layer is further provided on the side of the metal packaging layer facing the array substrate.
  • an insulating layer is further provided on the side of the metal transition layer facing the array substrate.
  • the alloy is an alloy of at least two metals among bismuth, cadmium, tin, and indium.
  • the material of the metal transition layer is aluminum.
  • the embodiment of the present invention also provides an OLED packaging structure, including:
  • the array substrate and the cover plate arranged oppositely;
  • the OLED device, the sealant and the metal encapsulation layer arranged between the array substrate and the cover plate; the sealant surrounds the OLED device, and the metal encapsulation layer surrounds the sealant ;
  • a thin film encapsulation layer provided on the OLED device.
  • a metal transition layer is further provided on the side of the metal packaging layer facing the cover plate.
  • a metal transition layer is further provided on the side of the metal packaging layer facing the array substrate.
  • an insulating layer is further provided on the side of the metal transition layer facing the array substrate.
  • the material of the metal packaging layer is an alloy of at least two metals among bismuth, cadmium, tin, and indium.
  • the material of the metal transition layer is aluminum.
  • the embodiment of the present invention also provides an OLED packaging method, including:
  • the cover plate and the array substrate are combined, and a metal packaging layer is formed between the combined cover plate and the array substrate; the metal packaging layer surrounds the frame glue.
  • the method further includes:
  • An insulating layer and a metal transition layer are sequentially formed around the sealant
  • a metal transition layer is formed on the cover plate; the metal transition layer on the cover plate corresponds to the position of the metal transition layer on the array substrate.
  • the forming a metal packaging layer between the combined cover plate and the array substrate specifically includes:
  • 3D printing is used to print an alloy whose melting point is lower than a preset temperature between the metal transition layer of the cover plate and the metal transition layer of the array substrate to form a metal packaging layer.
  • the method further includes:
  • a thin film packaging layer is provided between the array substrate and the display area of the cover plate
  • a sealant and a metal packaging layer are provided between the array substrate and the non-display area of the cover plate
  • the metal packaging layer surrounds the sealant
  • FIG. 1 is a schematic structural diagram of an OLED packaging structure provided by an embodiment of the present invention.
  • FIG. 2 is a top view of an array substrate in an OLED packaging structure provided by an embodiment of the present invention.
  • FIG. 3 is another schematic structural diagram of an OLED packaging structure provided by an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of an OLED packaging method provided by an embodiment of the present invention.
  • FIG. 1 it is a schematic structural diagram of an OLED packaging structure provided by an embodiment of the present invention.
  • the OLED packaging structure provided by the embodiment of the present invention includes an array substrate 1 and a cover plate 2. Wherein, the array substrate 1 and the cover plate 2 are arranged oppositely and in parallel. Both the array substrate 1 and the cover plate 2 include a display area and a non-display area, and the display area of the display area of the array substrate 1 and the display area of the cover plate 2 are correspondingly arranged, and the non-display area of the array substrate 1 and the non-display area of the cover plate 2 are arranged correspondingly.
  • An OLED device 3 is provided between the display area of the array substrate 1 and the display area of the cover plate 2, and a thin film encapsulation layer 4 is provided on the OLED device 3.
  • the thin film encapsulation layer 4 includes multiple inorganic or organic thin films for isolating water and oxygen. Enter OLED device 3.
  • a sealant 5 is provided between the non-display area of the array substrate 1 and the non-display area of the cover plate 2.
  • the sealant 5 surrounds the OLED device 3, as shown in FIG. 2, so that the array substrate 1 and the cover plate 2 pass The sealant 5 seals the OLED device 3 to prevent water and oxygen from entering the OLED device 3.
  • the array substrate 1 and the cover plate 2 are also provided with an edge area, which surrounds the seal 5, and a metal encapsulation layer 6 is provided between the edge area of the array substrate 1 and the edge area of the cover plate 2, that is, in the frame A metal encapsulation layer 6 is further provided on the outside of the glue 5, and the metal encapsulation layer 6 surrounds the frame glue 5, as shown in Figure 2, to re-encapsulate the edges of the array substrate 1 and the cover 2 to further isolate water and oxygen from entering OLED device 3.
  • the material of the metal encapsulation layer 6 is a low melting point alloy, that is, an alloy with a melting point lower than a preset temperature.
  • the molten low melting point alloy is printed into the gap between the array substrate 1 and the cover plate 2 by 3D printing.
  • the molten low melting point alloy has certain fluidity and can be spread out between the array substrate 1 and the cover plate 2.
  • the metal encapsulation layer 6 is formed.
  • the melting point of the low melting point alloy is lower than 150° C. to avoid damage to the OLED device due to excessive temperature.
  • the low melting point alloy may be an alloy of metals such as bismuth, cadmium, tin, and indium, such as bismuth-tin alloy, indium-tin alloy, and the like.
  • the side of the metal packaging layer facing the cover plate is further provided with a metal transition layer
  • the side of the metal packaging layer facing the array substrate is further provided with a metal transition layer.
  • the edge area of the array substrate 1 is also provided with a metal transition layer 7, and the edge area of the cover plate 1 is also provided with a metal transition layer 8.
  • the metal packaging layer 6 is provided on the metal transition layer 7 and the metal transition layer. Between 8.
  • the metal transition layer 7 and the metal transition layer 8 are deposited by CVD (Chemical Vapor Deposition) or PECVD (Plasma Enhanced Chemical Vapor Deposition) to improve the low melting point alloy
  • CVD Chemical Vapor Deposition
  • PECVD Plasma Enhanced Chemical Vapor Deposition
  • Al metallic aluminum
  • an insulating layer is further provided on the side of the metal transition layer facing the array substrate. As shown in FIG. 3, an insulating layer 9 is further provided on the edge area of the array substrate 1, and the metal transition layer 7 is provided on the insulating layer 9. An insulating layer 9 is deposited between the array substrate 1 and the metal transition layer 7 to prevent the TFT on the array substrate 1 from contacting the metal transition layer 7 and short-circuit.
  • the material of the insulating layer 9 is silicon dioxide (S i O 2 ).
  • a thin film packaging layer is provided between the array substrate and the display area of the cover plate, and a sealant and a metal packaging layer are provided between the array substrate and the non-display area of the cover plate, and
  • the metal encapsulation layer surrounds the sealant to re-encapsulate the edge of the OLED device on the basis of the cover plate encapsulation and the film encapsulation, so as to improve the ability of the OLED device to isolate water and oxygen, thereby extending the service life of the OLED device.
  • FIG. 4 is a schematic flowchart of an OLED packaging method provided by an embodiment of the present invention.
  • An OLED device and a thin film packaging layer are sequentially formed on the array substrate.
  • the array substrate 1 includes a display area and a non-display area.
  • the OLED device 3 is formed in the display area of the array substrate 1, and the thin film encapsulation layer 4 is formed on the OLED device 3.
  • a sealant 5 is formed in the non-display area of the array substrate 1, and the sealant 5 surrounds the OLED device 3, as shown in FIG. 2.
  • the cover plate 2 is combined with the array substrate 1 so that the array substrate 1 and the cover plate 2 are sealed by the sealant 5 to the OLED device 3 to prevent water and oxygen from entering the OLED device 3.
  • the combined cover plate 2 and the array substrate 1 are provided with an edge area, which surrounds the seal 5, and a metal encapsulation layer 6 is provided between the edge area of the array substrate 1 and the edge area of the cover plate 2, namely A metal encapsulation layer 6 is further provided on the outside of the sealant 5, and the metal encapsulation layer 6 surrounds the sealant 5, as shown in FIG. 2, to re-encapsulate the edges of the array substrate 1 and the cover plate 2 to further isolate water Oxygen enters the OLED device 3.
  • the method further includes:
  • An insulating layer and a metal transition layer are sequentially formed around the sealant
  • a metal transition layer is formed on the cover plate; the metal transition layer on the cover plate corresponds to the position of the metal transition layer on the array substrate.
  • an insulating layer 9 and a metal transition layer 7 are sequentially formed on the edge region of the array substrate 1, a metal transition layer 8 is formed on the edge region of the cover plate 1, and the metal transition layer 7 and A metal encapsulation layer 6 is formed between the metal transition layers 8.
  • the metal transition layer 7 and the metal transition layer 8 are deposited by CVD or PECVD to improve the wettability of the low melting point alloy to glass, so that the metal packaging layer 6 has better contact with the array substrate 1 and the cover plate 2.
  • the material of the metal transition layer 7 and the metal transition layer 8 is metallic aluminum (Al).
  • An insulating layer 9 is deposited between the array substrate 1 and the metal transition layer 7 to prevent the TFT on the array substrate 1 from contacting the metal transition layer 7 and short-circuit.
  • the material of the insulating layer 9 is silicon dioxide (S i O 2 ).
  • the forming a metal packaging layer between the combined cover plate and the array substrate specifically includes:
  • 3D printing is used to print an alloy whose melting point is lower than a preset temperature between the metal transition layer of the cover plate and the metal transition layer of the array substrate to form a metal packaging layer.
  • the material of the metal packaging layer 6 is a low melting point alloy, that is, an alloy with a melting point lower than a preset temperature.
  • the molten low melting point alloy is printed into the gap between the array substrate 1 and the cover plate 2 by 3D printing.
  • the molten low melting point alloy has certain fluidity and can be spread out between the array substrate 1 and the cover plate 2.
  • the metal encapsulation layer 6 is formed.
  • the melting point of the low melting point alloy is lower than 150° C. to avoid damage to the OLED device due to excessive temperature.
  • the low melting point alloy may be an alloy of metals such as bismuth, cadmium, tin, and indium, such as bismuth-tin alloy, indium-tin alloy, and the like.
  • the method further includes:
  • forming a metal encapsulation layer on the edge area of the cover plate and the array substrate may cause the low melting point metal to overflow to the sides of the cover plate and the array substrate.
  • the edges of the cover plate and the array substrate are polished to increase the cover plate and the array substrate. The flatness of the edge of the array substrate.
  • the OLED packaging method provided in this embodiment is provided by providing a thin film packaging layer between the array substrate and the display area of the cover plate, and setting a sealant and a metal packaging layer between the array substrate and the non-display area of the cover plate, and The metal encapsulation layer surrounds the sealant to re-encapsulate the edge of the OLED device on the basis of the cover plate encapsulation and the film encapsulation, so as to improve the ability of the OLED device to isolate water and oxygen, thereby extending the service life of the OLED device.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了一种OLED封装结构及OLED封装方法。所述OLED封装结构包括:相对设置的阵列基板和盖板;设于所述阵列基板和所述盖板之间的OLED器件、框胶和金属封装层;所述框胶围绕在所述OLED器件的四周,所述金属封装层围绕在所述框胶的四周;设于所述OLED器件上的薄膜封装层,从而提高OLED器件隔绝水氧的能力,进而延长OLED器件的使用寿命。

Description

一种OLED封装结构及OLED封装方法 技术领域
本发明涉及显示面板技术领域,尤其涉及一种OLED封装结构及OLED封装方法。
背景技术
有机发光二极管OLED(Organic Light Emitting Diode)由于其具有柔性,响应时间快,色域广,能耗低等特点得到很大的关注和发展。OLED由阳极、阴极以及电极之间的一层或多层的有机材料构成,通过从阳极、阴极注入的空穴和电子在有机发光层复合形成激子,激子辐射跃迁发光。但是OLED中金属阴极和有机材料容易受到水汽和氧气的影响,使得OLED效率下降和失效,影响OLED的使用寿命,因此OLED对水氧的隔绝要求很高。OLED的封装效果是很大程度上影响了OLED的性能和使用寿命。
目前OLED的封装主要有盖板封装和薄膜封装。盖板封装技术是在封装玻璃上涂布紫外固化框胶(环氧树脂等)或镭射封装的玻璃胶,使OLED有较好的隔绝水氧的效果。薄膜封装则是在OLED器件上交替沉积多层无机或有机薄膜,达到隔绝水氧的目的。但是,这两种封装方式隔绝水氧的能力仍然不足,导致OLED器件的寿命不长。
技术问题
本发明实施例提供一种OLED封装结构及OLED封装方法,以解决现有封装方式隔绝水氧能力不足的问题。
技术解决方案
本发明实施例提供一种OLED封装结构及OLED封装方法,以解决现有封装方式隔绝水氧能力不足的问题。
本发明实施例提供了一种OLED封装结构,包括:
相对设置的阵列基板和盖板;
设于所述阵列基板和所述盖板之间的OLED器件、框胶和金属封装层,所述框胶围绕在所述OLED器件的四周,所述金属封装层围绕在所述框胶的四周,所述金属封装层的材料为熔点低于预设温度的合金;
设于所述OLED器件上的薄膜封装层。
进一步地,所述金属封装层朝向所述盖板的一侧还设有金属过渡层。
进一步地,所述金属封装层朝向所述阵列基板的一侧还设有金属过渡层。
进一步地,所述金属过渡层朝向所述阵列基板的一侧还设有绝缘层。
进一步地,所述合金为铋、镉、锡、铟中至少两种金属的合金。
进一步地,所述金属过渡层的材料为铝。
本发明实施例还提供了一种OLED封装结构,包括:
相对设置的阵列基板和盖板;
设于所述阵列基板和所述盖板之间的OLED器件、框胶和金属封装层;所述框胶围绕在所述OLED器件的四周,所述金属封装层围绕在所述框胶的四周;
设于所述OLED器件上的薄膜封装层。
进一步地,所述金属封装层朝向所述盖板的一侧还设有金属过渡层。
进一步地,所述金属封装层朝向所述阵列基板的一侧还设有金属过渡层。
进一步地,所述金属过渡层朝向所述阵列基板的一侧还设有绝缘层。
进一步地,所述金属封装层的材料为铋、镉、锡、铟中至少两种金属的合金。
进一步地,所述金属过渡层的材料为铝。
本发明实施例还提供了一种OLED封装方法,包括:
提供阵列基板和盖板;
在所述阵列基板上依次形成OLED器件和薄膜封装层;
在所述OLED器件的四周形成框胶;
将所述盖板与所述阵列基板进行组合,并在组合后的盖板和阵列基板之间形成金属封装层;所述金属封装层围绕在所述框胶的四周。
进一步地,在所述将所述盖板与所述阵列基板进行组合之前,还包括:
在所述框胶的四周依次形成绝缘层和金属过渡层;
在所述盖板上形成金属过渡层;所述盖板上的金属过渡层与所述阵列基板上的金属过渡层的位置相对应。
进一步地,所述在组合后的盖板和阵列基板之间形成金属封装层,具体包括:
采用3D打印的方式将熔点低于预设温度的合金打印到所述盖板的金属过渡层和所述阵列基板的金属过渡层之间,形成金属封装层。
进一步地,所述在组合后的盖板和阵列基板之间形成金属封装层之后,还包括:
对所述盖板和所述阵列基板的边缘进行打磨。
有益效果
本发明的有益效果为:阵列基板和盖板的显示区之间设置薄膜封装层,阵列基板和盖板的非显示区之间设置框胶和金属封装层,且金属封装层围绕在框胶的四周,以在盖板封装和薄膜封装的基础上,对OLED器件的边缘进行再次封装,提高OLED器件隔绝水氧的能力,进而延长OLED器件的使用寿命。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的OLED封装结构的结构示意图;
图2为本发明实施例提供的OLED封装结构中阵列基板的俯视图;
图3为本发明实施例提供的OLED封装结构的另一结构示意图;
图4为本发明实施例提供的OLED封装方法的流程示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。
参见图1,是本发明实施例提供的OLED封装结构的结构示意图。
本发明实施例提供的OLED封装结构包括阵列基板1和盖板2。其中,阵列基板1和盖板2相对且平行设置。阵列基板1和盖板2均包括显示区和非显示区,且阵列基板1的显示区域盖板2的显示区对应设置,阵列基板1的非显示区和盖板2的非显示区对应设置。
阵列基板1的显示区和盖板2的显示区之间设置有OLED器件3,OLED器件3上设有薄膜封装层4,该薄膜封装层4包括多层无机或有机薄膜,用于隔绝水氧进入OLED器件3。
阵列基板1的非显示区和盖板2的非显示区之间设置有框胶5,该框胶5围绕在OLED器件3的四周,如图2所示,使得阵列基板1和盖板2通过框胶5将OLED器件3进行密封,以隔绝水氧进入OLED器件3。
阵列基板1和盖板2上还设有边缘区域,该边缘区域围绕在框胶5的四周,阵列基板1的边缘区域和盖板2的边缘区域之间设置有金属封装层6,即在框胶5的外侧再设置金属封装层6,且金属封装层6围绕在框胶5的四周,如图2所示,以对阵列基板1和盖板2的边缘进行再次封装,进一步隔绝水氧进入OLED器件3。
在一个具体的实施方式中,金属封装层6的材料为低熔点合金,即熔点低于预设温度的合金。通过3D打印的方式将熔融的低熔点合金打印到阵列基板1和盖板2之间的间隙中,熔融的低熔点合金具有一定的流动性,能够在阵列基板1和盖板2之间铺展开来,形成金属封装层6。其中,低熔点合金的熔点低于150℃,以避免温度过高对OLED器件造成破坏。低熔点合金可以为铋、镉、锡、铟等金属的合金,例如铋锡合金、铟锡合金等。
进一步地,所述金属封装层朝向所述盖板的一侧还设有金属过渡层,所述金属封装层朝向所述阵列基板的一侧还设有金属过渡层。如图3所示,阵列基板1的边缘区域上还设有金属过渡层7,盖板1的边缘区域上还设有金属过渡层8,金属封装层6设于金属过渡层7和金属过渡层8之间。其中,金属过渡层7和金属过渡层8采用CVD(Chemical Vapor Deposition,化学气相淀积)或PECVD(Plasma Enhanced Chemical Vapor Deposition,等离子体增强化学气相沉积)的方式进行沉积,以提高低熔点合金对玻璃的浸润性,使低熔点合金与阵列基板1、盖板2有更好的接触。在一个具体的实施方式中,金属过渡层7和金属过渡层8的材料为金属铝(Al)。
进一步地,所述金属过渡层朝向所述阵列基板的一侧还设有绝缘层。如图3所示,阵列基板1的边缘区域上还设有绝缘层9,金属过渡层7设于绝缘层9上。阵列基板1和金属过渡层7之间沉积一层绝缘层9,以避免阵列基板1上的TFT与金属过渡层7接触而短路。在一个具体的实施方式中,绝缘层9的材料为二氧化硅(S iO 2)。
由上述可知,本实施例提供的OLED封装结构,通过在阵列基板和盖板的显示区之间设置薄膜封装层,阵列基板和盖板的非显示区之间设置框胶和金属封装层,且金属封装层围绕在框胶的四周,以在盖板封装和薄膜封装的基础上,对OLED器件的边缘进行再次封装,提高OLED器件隔绝水氧的能力,进而延长OLED器件的使用寿命。
参见图4,是本发明实施例提供的OLED封装方法的流程示意图。
本实施例提供的OLED封装方法可以包括以下步骤:
101、提供阵列基板和盖板。
102、在所述阵列基板上依次形成OLED器件和薄膜封装层。
本实施例中,如图1所示,阵列基板1包括显示区和非显示区,OLED器件3形成于阵列基板1的显示区,薄膜封装层4形成在OLED器件3上,该薄膜封装层4包括多层无机或有机薄膜,用于隔绝水氧进入OLED器件3。
103、在所述OLED器件的四周形成框胶。
本实施例中,如图1所示,阵列基板1的非显示区形成框胶5,且框胶5围绕在OLED器件3的四周,如图2所示。
104、将所述盖板与所述阵列基板进行组合,并在组合后的盖板和阵列基板之间形成金属封装层;所述金属封装层围绕在所述框胶的四周。
本实施例中,如图1所示,将盖板2与阵列基板1进行组合,使阵列基板1和盖板2通过框胶5将OLED器件3进行密封,以隔绝水氧进入OLED器件3。组合后的盖板2和阵列基板1上设有边缘区域,该边缘区域围绕在框胶5的四周,阵列基板1的边缘区域和盖板2的边缘区域之间设置有金属封装层6,即在框胶5的外侧再设置金属封装层6,且金属封装层6围绕在框胶5的四周,如图2所示,以对阵列基板1和盖板2的边缘进行再次封装,进一步隔绝水氧进入OLED器件3。
进一步地,在所述将所述盖板与所述阵列基板进行组合之前,还包括:
在所述框胶的四周依次形成绝缘层和金属过渡层;
在所述盖板上形成金属过渡层;所述盖板上的金属过渡层与所述阵列基板上的金属过渡层的位置相对应。
需要说明的是,如图3所示,在阵列基板1的边缘区域上依次形成绝缘层9和金属过渡层7,在盖板1的边缘区域上形成金属过渡层8,在金属过渡层7和金属过渡层8之间形成金属封装层6。其中,金属过渡层7和金属过渡层8采用CVD或PECVD的方式进行沉积,以提高低熔点合金对玻璃的浸润性,使金属封装层6与阵列基板1、盖板2有更好的接触。在一个具体的实施方式中,金属过渡层7和金属过渡层8的材料为金属铝(Al)。阵列基板1和金属过渡层7之间沉积一层绝缘层9,以避免阵列基板1上的TFT与金属过渡层7接触而短路。在一个具体的实施方式中,绝缘层9的材料为二氧化硅(S iO 2)。
进一步地,所述在组合后的盖板和阵列基板之间形成金属封装层,具体包括:
采用3D打印的方式将熔点低于预设温度的合金打印到所述盖板的金属过渡层和所述阵列基板的金属过渡层之间,形成金属封装层。
需要说明的是,金属封装层6的材料为低熔点合金,即熔点低于预设温度的合金。通过3D打印的方式将熔融的低熔点合金打印到阵列基板1和盖板2之间的间隙中,熔融的低熔点合金具有一定的流动性,能够在阵列基板1和盖板2之间铺展开来,形成金属封装层6。其中,低熔点合金的熔点低于150℃,以避免温度过高对OLED器件造成破坏。低熔点合金可以为铋、镉、锡、铟等金属的合金,例如铋锡合金、铟锡合金等。
进一步地,所述在组合后的盖板和阵列基板之间形成金属封装层之后,还包括:
对所述盖板和所述阵列基板的边缘进行打磨。
需要说明的是,在盖板和阵列基板的边缘区域形成金属封装层,可能导致低熔点金属溢出到盖板和阵列基板的侧面,通过对盖板和阵列基板的边缘进行打磨,增加盖板和阵列基板边缘的平坦性。
由上述可知,本实施例提供的OLED封装方法,通过在阵列基板和盖板的显示区之间设置薄膜封装层,阵列基板和盖板的非显示区之间设置框胶和金属封装层,且金属封装层围绕在框胶的四周,以在盖板封装和薄膜封装的基础上,对OLED器件的边缘进行再次封装,提高OLED器件隔绝水氧的能力,进而延长OLED器件的使用寿命。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (16)

  1. 一种OLED封装结构,其中,包括:
    相对设置的阵列基板和盖板;
    设于所述阵列基板和所述盖板之间的OLED器件、框胶和金属封装层,所述框胶围绕在所述OLED器件的四周,所述金属封装层围绕在所述框胶的四周,所述金属封装层的材料为熔点低于预设温度的合金;
    设于所述OLED器件上的薄膜封装层。
  2. 根据权利要求1所述的OLED封装结构,其中,所述金属封装层朝向所述盖板的一侧还设有金属过渡层。
  3. 根据权利要求1所述的OLED封装结构,其中,所述金属封装层朝向所述阵列基板的一侧还设有金属过渡层。
  4. 根据权利要求3所述的OLED封装结构,其中,所述金属过渡层朝向所述阵列基板的一侧还设有绝缘层。
  5. 根据权利要求1所述的OLED封装结构,其中,所述合金为铋、镉、锡、铟中至少两种金属的合金。
  6. 根据权利要求2所述的OLED封装结构,其中,所述金属过渡层的材料为铝。
  7. 一种OLED封装结构,其中,包括:
    相对设置的阵列基板和盖板;
    设于所述阵列基板和所述盖板之间的OLED器件、框胶和金属封装层;所述框胶围绕在所述OLED器件的四周,所述金属封装层围绕在所述框胶的四周;
    设于所述OLED器件上的薄膜封装层。
  8. 根据权利要求7所述的OLED封装结构,其中,所述金属封装层朝向所述盖板的一侧还设有金属过渡层。
  9. 根据权利要求7所述的OLED封装结构,其中,所述金属封装层朝向所述阵列基板的一侧还设有金属过渡层。
  10. 根据权利要求9所述的OLED封装结构,其中,所述金属过渡层朝向所述阵列基板的一侧还设有绝缘层。
  11. 根据权利要求7所述的OLED封装结构,其中,所述金属封装层的材料为铋、镉、锡、铟中至少两种金属的合金。
  12. 根据权利要求8所述的OLED封装结构,其中,所述金属过渡层的材料为铝。
  13. 一种OLED封装方法,其中,包括:
    提供阵列基板和盖板;
    在所述阵列基板上依次形成OLED器件和薄膜封装层;
    在所述OLED器件的四周形成框胶;
    将所述盖板与所述阵列基板进行组合,并在组合后的盖板和阵列基板之间形成金属封装层;所述金属封装层围绕在所述框胶的四周。
  14. 根据权利要求13所述的OLED封装方法,其中,在所述将所述盖板与所述阵列基板进行组合之前,还包括:
    在所述框胶的四周依次形成绝缘层和金属过渡层;
    在所述盖板上形成金属过渡层;所述盖板上的金属过渡层与所述阵列基板上的金属过渡层的位置相对应。
  15. 根据权利要求14所述的OLED封装方法,其中,所述在组合后的盖板和阵列基板之间形成金属封装层,具体包括:
    采用3D打印的方式将熔点低于预设温度的合金打印到所述盖板的金属过渡层和所述阵列基板的金属过渡层之间,形成金属封装层。
  16. 根据权利要求13所述的OLED封装方法,其中,所述在组合后的盖板和阵列基板之间形成金属封装层之后,还包括:
    对所述盖板和所述阵列基板的边缘进行打磨。
PCT/CN2019/083600 2019-04-04 2019-04-22 一种oled封装结构及oled封装方法 WO2020199268A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910271992.4A CN110071223A (zh) 2019-04-04 2019-04-04 一种oled封装结构及oled封装方法
CN201910271992.4 2019-04-04

Publications (1)

Publication Number Publication Date
WO2020199268A1 true WO2020199268A1 (zh) 2020-10-08

Family

ID=67367168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083600 WO2020199268A1 (zh) 2019-04-04 2019-04-22 一种oled封装结构及oled封装方法

Country Status (2)

Country Link
CN (1) CN110071223A (zh)
WO (1) WO2020199268A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110854294A (zh) * 2019-11-20 2020-02-28 上海大学 一种oled的封装方法以及封装得到的oled
CN114665041A (zh) * 2022-03-16 2022-06-24 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103035849A (zh) * 2012-12-20 2013-04-10 友达光电股份有限公司 一种有机发光二极管封装结构
CN104916789A (zh) * 2015-06-30 2015-09-16 京东方科技集团股份有限公司 一种oled封装方法及oled器件
CN107248550A (zh) * 2017-06-26 2017-10-13 深圳市华星光电技术有限公司 Oled面板的封装方法
CN107863453A (zh) * 2017-11-08 2018-03-30 固安翌光科技有限公司 一种基于端面封装的oled器件及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103035849A (zh) * 2012-12-20 2013-04-10 友达光电股份有限公司 一种有机发光二极管封装结构
CN104916789A (zh) * 2015-06-30 2015-09-16 京东方科技集团股份有限公司 一种oled封装方法及oled器件
CN107248550A (zh) * 2017-06-26 2017-10-13 深圳市华星光电技术有限公司 Oled面板的封装方法
CN107863453A (zh) * 2017-11-08 2018-03-30 固安翌光科技有限公司 一种基于端面封装的oled器件及其制备方法

Also Published As

Publication number Publication date
CN110071223A (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
US10333105B2 (en) Organic light emitting display packaging structure and manufacturing method thereof
KR100885843B1 (ko) 유기전계발광 표시소자 및 그 제조방법
WO2018113018A1 (zh) Oled显示面板及其制作方法
WO2018113006A1 (zh) 柔性oled显示面板的制作方法
WO2018133147A1 (zh) Oled封装方法与oled封装结构
KR100433992B1 (ko) 듀얼패널타입 유기전계발광 소자 및 그의 제조방법
KR20110015205A (ko) 봉지기판, 이를 포함하는 유기전계발광표시장치 및 이의 제조방법
WO2020155441A1 (zh) 显示面板以及显示装置
KR101503313B1 (ko) 유기전계발광 표시소자 및 그 제조방법
KR20020056619A (ko) 액정표시장치 및 그 제조방법
WO2017161628A1 (zh) Oled基板的封装方法与oled封装结构
JP2009123645A (ja) 有機el表示装置およびその製造方法
WO2019127702A1 (zh) Oled面板及其制作方法
WO2021031417A1 (zh) 一种柔性封装结构及柔性显示面板
WO2020124805A1 (zh) 显示屏及显示装置
WO2020029351A1 (zh) 一种复合膜层及制作方法、oled显示面板的制作方法
WO2020215421A1 (zh) 显示面板及其封装方法、显示装置
WO2020199551A1 (zh) 显示器封装结构及其制造方法
WO2019227784A1 (zh) Oled显示器封装结构
WO2020199272A1 (zh) 量子点柔性oled显示装置及制备方法
WO2020199268A1 (zh) 一种oled封装结构及oled封装方法
JP2006253097A (ja) 自発光パネルおよび自発光パネルの製造方法
JP6294670B2 (ja) 表示装置及び表示装置の製造方法
JP2020510952A (ja) エレクトロルミネッセンスディスプレイパネル及びその製造方法、表示装置
WO2020077698A1 (zh) 一种有机发光二极管器件的封装结构及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922786

Country of ref document: EP

Kind code of ref document: A1