WO2020196329A1 - Photocatalyst production method and photocatalyst - Google Patents

Photocatalyst production method and photocatalyst Download PDF

Info

Publication number
WO2020196329A1
WO2020196329A1 PCT/JP2020/012481 JP2020012481W WO2020196329A1 WO 2020196329 A1 WO2020196329 A1 WO 2020196329A1 JP 2020012481 W JP2020012481 W JP 2020012481W WO 2020196329 A1 WO2020196329 A1 WO 2020196329A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
tio2
raw material
photocatalyst
vacuum
Prior art date
Application number
PCT/JP2020/012481
Other languages
French (fr)
Japanese (ja)
Inventor
滋 中澤
Original Assignee
東京印刷機材トレーディング株式会社
滋 中澤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京印刷機材トレーディング株式会社, 滋 中澤 filed Critical 東京印刷機材トレーディング株式会社
Priority to JP2021509341A priority Critical patent/JP7454142B2/en
Publication of WO2020196329A1 publication Critical patent/WO2020196329A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Definitions

  • the conventional technique for producing a suboxide of TiO2 by reducing TiO2 using CaH2 or MgH2 has an oxygen defect in the TiO2 powder using Mg for the purpose of developing a photocatalyst having photocatalytic activity in the visible light region. It was a factor that hindered the motivation for research and development to introduce.
  • the Mg raw material powder is made of Kanto Metal, has a purity of 99.5% or more, and has an average particle diameter D50 of 100 ⁇ m.
  • the vacuum pump 6 was stopped and returned to atmospheric pressure, the graphite crucible 1 was taken out, and a sample powder was obtained.

Abstract

The present invention addresses the problem of providing a photocatalyst having an excellent light absorption characteristic in the visible light region without using expensive and rare W. This invention relates to a method for producing a photocatalyst by uniformly mixing TiO2 powder with Al, Li, Mg or Ca, a hydride thereof or a powder mixture thereof and Fe or Cu, an oxide thereof or a powder mixture thereof, accommodating the obtained first mixed powder in a crucible, placing the crucible in a vacuum heating furnace, evacuating, and then heat treating in a vacuum at a temperature of 350-550°C.

Description

光触媒の製造方法及び光触媒Photocatalyst manufacturing method and photocatalyst
 本発明は、TiO2系光触媒の製造方法に関し、また光触媒に関する。光触媒とは、光吸収により励起され、酸化反応及び還元反応を引き起こす触媒物質である。「不均一系の半導体光触媒」や「均一系の色素光触媒」があるが、本明細書において、「光触媒」は「不均一系の半導体光触媒」を意味する。半導体光触媒は伝導帯と価電子帯が禁制帯によって隔てられたバンド構造を持つ。バンドギャップ(禁制帯幅)以上のエネルギーを持つ光(電磁波)により、価電子帯の電子が伝導帯へ励起され、価電子帯に正孔が生成する。伝導帯に励起された電子は価電子帯の電子より還元力が強く、暗時では起こらない還元反応を起こすことができる。同様に、正孔も強力な酸化反応を起こす。有機物分解の場合、正孔により有機物が酸化されて、最終的にCO2に完全酸化される。そして、伝導帯に励起された電子は酸素を還元し、最終的に水が生成される。 The present invention relates to a method for producing a TiO2-based photocatalyst, and also relates to a photocatalyst. A photocatalyst is a catalytic substance that is excited by light absorption and causes an oxidation reaction and a reduction reaction. There are "non-uniform semiconductor photocatalyst" and "uniform dye photocatalyst", but in the present specification, "photocatalyst" means "non-uniform semiconductor photocatalyst". The semiconductor photocatalyst has a band structure in which the conduction band and the valence band are separated by a forbidden band. Light (electromagnetic waves) with energy equal to or greater than the band gap (forbidden band width) excites electrons in the valence band to the conduction band, and holes are generated in the valence band. The electrons excited in the conduction band have stronger reducing power than the electrons in the valence band, and can cause a reduction reaction that does not occur in the dark. Similarly, holes also cause a strong oxidation reaction. In the case of organic matter decomposition, holes oxidize the organic matter and finally completely oxidize it to CO2. Then, the electrons excited in the conduction band reduce oxygen, and finally water is generated.
 TiO2は紫外光領域に吸収を持つ紫外光触媒として知られている。特にアナターゼ型のTiO2は,バンドギャップが3.2eVの金属酸化物半導体であり,紫外光を吸収して高い触媒活性を示すが、可視光領域においては活性を示さない。 TiO2 is known as an ultraviolet photocatalyst having absorption in the ultraviolet light region. In particular, anatase-type TiO2 is a metal oxide semiconductor having a bandgap of 3.2 eV, which absorbs ultraviolet light and exhibits high catalytic activity, but does not exhibit activity in the visible light region.
 これまでの研究では、金属や硫黄や窒素のドーピングによって可視光の吸収及び触媒活性化の試みがなされてきたが、現状は可視光領域において十分かつ実用レベルでの触媒活性を持つ光触媒は報告されていない。 In previous studies, attempts have been made to absorb visible light and activate the catalyst by doping with metals, sulfur, and nitrogen, but at present, photocatalysts with sufficient and practical level of catalytic activity in the visible light region have been reported. Not.
 例えばイオンビームを照射してTiO2のバルク材や薄膜の結晶構造に酸素欠陥を導入し可視光領域で光吸収を持つようにする方法は知られているが、TiO2の粉末等の微細な材料の結晶構造に酸素欠陥を導入し、欠陥量を制御することは容易ではない。 For example, a method of irradiating an ion beam to introduce oxygen defects into the crystal structure of a bulk material or thin film of TiO2 to have light absorption in the visible light region is known, but for fine materials such as TiO2 powder, It is not easy to introduce oxygen defects into the crystal structure and control the amount of defects.
 また、CaH2やMgH2を用いてTiO2を還元して、TiO2の亜酸化物を製造することは知られている。得られたTiO2の亜酸化物は、結晶構造が変化しているが、可視光を吸収することが確認されている。しかし、得られたTiO2の亜酸化物は光触媒特性を持たない。この従来技術が障害となって、可視光領域において光触媒活性を有する光触媒を開発する目的で、Mgを用いてTiO2粉末に酸素欠陥を導入することに多くの研究者は挑戦しなかったか、あるいは、挑戦するのが困難であったと考えられる。すなわち、CaH2やMgH2を用いてTiO2を還元して、TiO2の亜酸化物を製造する従来技術は、可視光領域において光触媒活性を有する光触媒を開発する目的で、Mgを用いてTiO2粉末に酸素欠陥を導入しようとする研究開発の動機付けを阻害する要因となっていた。 It is also known that TiO2 is reduced using CaH2 or MgH2 to produce a suboxide of TiO2. It has been confirmed that the obtained TiO2 suboxide absorbs visible light although its crystal structure has changed. However, the obtained TiO2 suboxide does not have photocatalytic properties. Many researchers have not tried to introduce oxygen defects into TiO2 powder using Mg for the purpose of developing a photocatalyst having photocatalytic activity in the visible light region because of this conventional technique. It is probable that it was difficult to challenge. That is, the conventional technique for producing a suboxide of TiO2 by reducing TiO2 using CaH2 or MgH2 has an oxygen defect in the TiO2 powder using Mg for the purpose of developing a photocatalyst having photocatalytic activity in the visible light region. It was a factor that hindered the motivation for research and development to introduce.
 再現性があり、また量産性があって、可視光領域において確実な光触媒活性を有する光触媒を製造する方法は知られていなかった。 There was no known method for producing a photocatalyst that is reproducible, mass-producible, and has reliable photocatalytic activity in the visible light region.
 以上のような状況から現在は、紫外光領域ではTiO2系の光触媒が使用され、波長380~800nmの可視光領域ではWO3/CuO系の光触媒が一般的に使用されている。 From the above situation, at present, a TiO2-based photocatalyst is used in the ultraviolet light region, and a WO3 / CuO-based photocatalyst is generally used in the visible light region having a wavelength of 380 to 800 nm.
国際公開第2011/102353号International Publication No. 2011/102353 特開2012-16679号公報Japanese Unexamined Patent Publication No. 2012-16679 国際公開第2012/111709号International Publication No. 2012/111709
 しかしながら、WO3/CuO系の光触媒は可視光領域における揮発性有機化合物(VOC)を完全酸化分解する活性が不十分であるとともにWを原料とするため高価であり資源確保が困難である。本明細書において、「揮発性有機化合物(VOC)」とは、VOC(Volatile Organic Compounds))と呼ばれ、常温常圧で空気中に容易に揮発する有機化合物の総称である。WHOの区分では沸点が50~260℃の有機化合物を示す。ホルムアルデヒドは住宅等の室内空気汚染(シックハウス症候群)の原因物質として知られており、発生源としては、合板、壁紙用接着剤、家具などがある。アセトアルデヒドは実験評価が難しいホルムアルデヒドの代用として光触媒活性を比較する際に使用される最も代表的なVOCであり、またタバコなどの悪臭物質として知られている。トルエンは接着剤や塗料の溶剤及び希釈剤として使用され、内装材等の施工用接着剤・塗料から放散される可能性がある。 However, WO3 / CuO-based photocatalysts have insufficient activity to completely oxidatively decompose volatile organic compounds (VOCs) in the visible light region, and are expensive because W is used as a raw material, making it difficult to secure resources. In the present specification, "volatile organic compounds (VOCs)" are called VOCs (Volatile Organic Compounds), and are a general term for organic compounds that easily volatilize in the air at normal temperature and pressure. In the WHO category, organic compounds having a boiling point of 50 to 260 ° C. are shown. Formaldehyde is known as a causative substance of indoor air pollution (sick house syndrome) in houses and the like, and its sources include plywood, wallpaper adhesives, and furniture. Acetaldehyde is the most typical VOC used when comparing photocatalytic activity as a substitute for formaldehyde, which is difficult to evaluate experimentally, and is also known as a malodorous substance such as tobacco. Toluene is used as a solvent and diluent for adhesives and paints, and may be released from construction adhesives and paints such as interior materials.
 光触媒として、TiO2粉末とMg、その水素化物又はそれらの混合物の粉末を真空化で350℃以上の高温で反応させると、Mgが徐々に酸化を開始し、TiO2の結晶構造を保持したまま酸素欠陥を導入することができ、可視光吸収を増加させることができるとともに表面積を増加させることができることを本発明者は見出した。 When TiO2 powder and Mg, a hydride thereof, or a mixture thereof are reacted at a high temperature of 350 ° C. or higher by vacuuming as a photocatalyst, Mg gradually starts to oxidize and oxygen defects while maintaining the crystal structure of TiO2. The present inventor has found that the visible light absorption can be increased and the surface area can be increased.
 エリンガム図は金属の酸化のしやすさを示す広く知られた図表であり、横軸が温度であり、縦軸がギブス自由エネルギーである。ギブス自由エネルギーのマイナス値が大きいほど、酸素との結合力が大きいことを意味している。エリンガム図において、TiとO2からTiO2が生成される際のギブス自由エネルギーと温度との関係は直線で表される。この直線より下方に存在する金属の酸化を表す直線を見つけ出すことによって、TiよりもOとの結合力が大きな金属を理論的に見出すことができる。エリンガム図からMgと同様にTiO2に酸素欠陥を導入できる金属として、Al、Li、Caを理論的に選択することができる。当然、水素にも還元力があり、Al、Li、Mg、Caの水素化物も還元力が強く、TiO2粉末に酸素欠陥を導入することができると理論的に推論することができる。 The Ellingham diagram is a widely known chart showing the ease of oxidation of metals, with the horizontal axis representing temperature and the vertical axis representing Gibbs free energy. The larger the negative value of the Gibbs free energy, the greater the binding force with oxygen. In the Ellingham diagram, the relationship between the Gibbs free energy and temperature when TiO2 is generated from Ti and O2 is represented by a straight line. By finding a straight line representing the oxidation of the metal existing below this straight line, it is possible to theoretically find a metal having a stronger bonding force with O than Ti. From the Eringham diagram, Al, Li, and Ca can be theoretically selected as metals capable of introducing oxygen defects into TiO2 as in Mg. Naturally, hydrogen also has a reducing power, and hydrides of Al, Li, Mg, and Ca also have a strong reducing power, and it can be theoretically inferred that oxygen defects can be introduced into the TiO2 powder.
 加えて、本発明者は、光触媒の表面に、Fe、Cuなどの金属あるいはその金属酸化物を担持することによって、上記酸素欠陥導入による可視光吸収を妨げることなく、可視光吸収率を更に高めると共に、相乗効果によって光触媒活性を高め、光触媒効率を向上できることを見出した。 In addition, by supporting a metal such as Fe or Cu or a metal oxide thereof on the surface of the photocatalyst, the present inventor further enhances the visible light absorption rate without hindering the visible light absorption due to the introduction of the oxygen defect. At the same time, it was found that the photocatalytic activity can be enhanced by the synergistic effect and the photocatalytic efficiency can be improved.
 なお、熱処理温度が550℃を超えると、TiO2の結晶構造がアナターゼ型からルチル型へ変化することを本発明者は見出した。これらの知見によって、本発明のTiO2粉末の結晶構造を保持したまま酸素欠陥を導入すると共に金属を担持する光触媒の製造方法及び光触媒に至ったものである。 The present inventor has found that when the heat treatment temperature exceeds 550 ° C., the crystal structure of TiO2 changes from the anatase type to the rutile type. Based on these findings, a method for producing a photocatalyst and a photocatalyst that support a metal while introducing oxygen defects while maintaining the crystal structure of the TiO2 powder of the present invention have been reached.
 第1の本発明に係る光触媒の製造方法は、請求項1に記載のように、TiO2粉末とTiO2に対して0.1~5wt%のAl、Li、Mg若しくはCa、その水素化物又はそれらの混合物の粉末とTiO2に対して0.1~5wt%のFe若しくはCu、その酸化物又はそれらの混合物の粉末とを均一に混合して得た第1の混合粉末をるつぼ内に収納し、前記るつぼを真空加熱炉中に配置し、真空排気した後に、真空中で350~550℃の温度で熱処理して光触媒を製造する。 The first method for producing a photocatalyst according to the present invention is, as described in claim 1, 0.1 to 5 wt% of Al, Li, Mg or Ca, a hydride thereof, or a hydride thereof with respect to TiO2 powder and TiO2. The first mixed powder obtained by uniformly mixing the powder of the mixture and powder of 0.1 to 5 wt% Fe or Cu, an oxide thereof, or a mixture thereof with respect to TiO2 is stored in a pot, and the above-mentioned The pot is placed in a vacuum heating furnace, exhausted in a vacuum, and then heat-treated in a vacuum at a temperature of 350 to 550 ° C. to produce a photocatalyst.
 第2の本発明に係る光触媒の製造方法は、請求項2に記載のように、TiO2に対して0.1~5wt%のFe若しくはCu、その酸化物又はそれらの混合物を塩酸又は硝酸で溶解して溶解液を得、前記溶解液とTiO2粉末の水懸濁液とを混合した後に乾燥して得た混合乾燥粉末とTiO2に対して0.1~5wt%のAl、Li、Mg若しくはCa、その水素化物又はそれらの混合物の粉末とを均一に混合して第2の混合粉末を得、前記第2の混合粉末をるつぼ内に収納し、前記るつぼを真空加熱炉中に配置し、真空排気した後に、真空中で350~550℃の温度で熱処理して光触媒を製造する。 In the second method for producing a photocatalyst according to the present invention, as described in claim 2, 0.1 to 5 wt% of Fe or Cu with respect to TIO2, an oxide thereof, or a mixture thereof is dissolved in hydrochloric acid or nitric acid. The solution was obtained by mixing the solution with an aqueous suspension of the TiO2 powder and then drying to obtain a mixed dry powder and 0.1 to 5 wt% of Al, Li, Mg or Ca with respect to TiO2. , The powder of the hydride or a mixture thereof is uniformly mixed to obtain a second mixed powder, the second mixed powder is stored in a pot, the pot is placed in a vacuum heating furnace, and vacuum is applied. After exhausting, the photocatalyst is produced by heat treatment in vacuum at a temperature of 350 to 550 ° C.
 第1又は第2の本発明に係る光触媒の製造方法の好ましい実施態様においては、請求項3に記載のように、TiO2がアナターゼ型、ルチル型、ブルッカイト型又はこれらの混合物である。 In a preferred embodiment of the first or second method for producing a photocatalyst according to the present invention, TiO2 is an anatase type, a rutile type, a brookite type, or a mixture thereof, as described in claim 3.
 第3の本発明に係る光触媒は、請求項4に記載のように、TiO2粉末とTiO2に対して0.1~5wt%のAl、Li、Mg若しくはCa、その水素化物又はそれらの混合物の粉末とTiO2に対して0.1~5wt%のFe若しくはCu、その酸化物又はそれらの混合物の粉末とを均一に混合して得た第1の混合粉末をるつぼ内に収納し、前記るつぼを真空加熱炉中に配置し、真空排気した後に、真空中で350~550℃の温度で熱処理して成り、TiO2粉末の結晶構造を保持したまま酸素欠陥を導入すると共にTiO2粉末の表面にFe若しくはCu、その酸化物又はそれらの混合物を担持している。 As described in claim 4, the third photocatalyst according to the present invention is a powder of TiO2 powder, 0.1 to 5 wt% of Al, Li, Mg or Ca with respect to TiO2, a hydride thereof, or a mixture thereof. The first mixed powder obtained by uniformly mixing 0.1 to 5 wt% of Fe or Cu with respect to TiO2 and the powder of an oxide thereof or a mixture thereof is stored in a pot, and the pot is vacuumed. It is placed in a heating furnace, exhausted in a vacuum, and then heat-treated in a vacuum at a temperature of 350 to 550 ° C. to introduce oxygen defects while maintaining the crystal structure of the TiO2 powder, and Fe or Cu on the surface of the TiO2 powder. , Its oxides or mixtures thereof.
 第4の本発明に係る光触媒は、請求項5に記載のように、TiO2に対して0.1~5wt%のFe若しくはCu、その酸化物又はそれらの混合物を塩酸又は硝酸で溶解して溶解液を得、前記溶解液とTiO2粉末の水懸濁液とを混合した後に乾燥して得た混合乾燥粉末とTiO2に対して0.1~5wt%のAl、Li、Mg若しくはCa、その水素化物又はそれらの混合物の粉末とを均一に混合して第2の混合粉末を得、前記第2の混合粉末をるつぼ内に収納し、前記るつぼを真空加熱炉中に配置し、真空排気した後に、真空中で350~550℃の温度で熱処理して成り、TiO2粉末の結晶構造を保持したまま酸素欠陥を導入すると共にTiO2粉末の表面にFe若しくはCu、その酸化物又はそれらの混合物を担持している。 As described in claim 5, the fourth photocatalyst according to the present invention dissolves Fe or Cu in an amount of 0.1 to 5 wt% with respect to TIO2, an oxide thereof, or a mixture thereof by dissolving it in hydrochloric acid or nitric acid. A liquid was obtained, the solution was mixed with an aqueous suspension of the TiO2 powder, and then dried to obtain a mixed dry powder, and 0.1 to 5 wt% of Al, Li, Mg or Ca, and hydrogen thereof with respect to TiO2. After uniformly mixing the powder of the compound or a mixture thereof to obtain a second mixed powder, the second mixed powder is stored in a pot, the pot is placed in a vacuum heating furnace, and vacuum exhausted. , Heat-treated at a temperature of 350 to 550 ° C. in a vacuum, introduces oxygen defects while maintaining the crystal structure of the TiO2 powder, and carries Fe or Cu, an oxide thereof, or a mixture thereof on the surface of the TiO2 powder. ing.
 (1)本発明の光触媒の製造方法においては、固相-固相反応を利用して、還元金属(Al、Li、Mg又はCa)、その水素化物又はそれらの混合物の粉末によってTiO2の粉末の結晶構造を保持したまま酸素欠陥を導入している。得られた粉末をXRD分析したところTiO2の結晶構造が保持されていることが確認された。 (1) In the method for producing a photocatalyst of the present invention, a powder of a reducing metal (Al, Li, Mg or Ca), a hydride thereof, or a mixture thereof is used to prepare a powder of TiO2 by utilizing a solid-solid reaction. Oxygen defects are introduced while maintaining the crystal structure. When the obtained powder was XRD-analyzed, it was confirmed that the crystal structure of TiO2 was retained.
 このTiO2粉末の結晶構造を保持したまま酸素欠陥を導入することによって、図13に示すように、TiO2のバンドギャップ(禁制帯幅)の中間に酸素欠陥準位が形成されるため、可視光照射による酸化・還元反応が生じやすくなり、可視光の吸収が増加するとともにTiO2結晶の表面積が増加する。 By introducing an oxygen defect while maintaining the crystal structure of the TiO2 powder, as shown in FIG. 13, an oxygen defect level is formed in the middle of the band gap (forbidden band width) of the TiO2, so that visible light irradiation is performed. The oxidation / reduction reaction due to the above is likely to occur, the absorption of visible light is increased, and the surface area of the TiO2 crystal is increased.
 (2)本発明の光触媒の製造方法においては、TiO2の表面へFe又はCu等の金属あるいはその金属酸化物を担持している。このTiO2の表面へのFe又はCu等の金属あるいはその金属酸化物の担持は図14に見られるように酸素欠陥導入による可視光吸収を妨げることなく、可視光吸収率を更に高めると共に、電子伝導性の付与や電荷蓄積効果と相まって可視光におけるTiO2結晶の光触媒活性を高め、光触媒効率を向上させる。 (2) In the method for producing a photocatalyst of the present invention, a metal such as Fe or Cu or a metal oxide thereof is supported on the surface of TiO2. The support of a metal such as Fe or Cu or a metal oxide thereof on the surface of TiO2 does not hinder the absorption of visible light due to the introduction of oxygen defects as shown in FIG. 14, further enhances the visible light absorption rate, and conducts electrons. Combined with the imparting of properties and the effect of accumulating charges, it enhances the photocatalytic activity of TiO2 crystals in visible light and improves the photocatalytic efficiency.
使用した製造装置の概略図である。It is the schematic of the manufacturing equipment used. 本実施例の光触媒粒子製造の熱処理において実施した温度-時間グラフの概略図である。It is the schematic of the temperature-time graph carried out in the heat treatment of the photocatalyst particle production of this Example. アナターゼ型TiO2原料粉末のX線回折パターン図である。It is an X-ray diffraction pattern figure of the anatase type TiO2 raw material powder. 得られた試料粉末のX線回折パターン図である。It is an X-ray diffraction pattern figure of the obtained sample powder. 得られた試料粉末のX線回折パターン図である。It is an X-ray diffraction pattern figure of the obtained sample powder. 分光反射率(拡散+正反射率)測定の配置を示す概略図である。It is a schematic diagram which shows the arrangement of the spectral reflectance (diffusion + specular reflectance) measurement. 得られた試料粉末の光吸収スペクトルの測定結果を示すグラフである。It is a graph which shows the measurement result of the light absorption spectrum of the obtained sample powder. 得られた試料粉末の光吸収スペクトルの測定結果を示すグラフである。It is a graph which shows the measurement result of the light absorption spectrum of the obtained sample powder. VOC分解評価試験に用いた装置の概略図である。It is the schematic of the apparatus used for the VOC decomposition evaluation test. 得られた試料粉末のVOC分解評価結果を示すグラフである。It is a graph which shows the VOC decomposition evaluation result of the obtained sample powder. 得られた試料粉末のVOC分解評価結果を示すグラフである。It is a graph which shows the VOC decomposition evaluation result of the obtained sample powder. 得られた試料粉末のVOC分解評価結果を示すグラフである。It is a graph which shows the VOC decomposition evaluation result of the obtained sample powder. TiO2に酸素欠陥を導入し金属担持をした際のエネルギーポテンシャル(エネルギー準位)を示す概略図である。It is a schematic diagram which shows the energy potential (energy level) when an oxygen defect is introduced into TiO2 and metal is supported. 酸素欠陥導入+CuO担持TiO2、酸素欠陥導入TiO2及びTiO2の光吸収スペクトルを示すグラフである。It is a graph which shows the light absorption spectrum of the oxygen defect introduction + CuO-supported TiO2, the oxygen defect introduction TiO2 and TiO2.
 以下、本発明の実施例について添付図面を参照して説明する。 Hereinafter, examples of the present invention will be described with reference to the accompanying drawings.
 (A)還元金属MgによるTiO2への酸素欠陥を導入した光触媒粉末についての実施例
 固相-固相反応によってTiO2粉末とMg粉末から酸素欠陥を導入した光触媒TiO2粉末を製造する実施例について説明する。
(A) Example of Photocatalyst Powder in which Oxygen Deficiency in TiO2 by Reduced Metal Mg is Introduced Example of producing photocatalyst TiO2 powder in which oxygen defect is introduced from TiO2 powder and Mg powder by solid-phase reaction will be described. ..
<実施例1>
試料粉末の作製
 TiO2原料粉末は石原産業(株)製のアナターゼ型であり、純度は85%以上であり、1次粒径は7nmである。
<Example 1>
Preparation of sample powder The TiO2 raw material powder is an anatase type manufactured by Ishihara Sangyo Co., Ltd., has a purity of 85% or more, and has a primary particle size of 7 nm.
 Mg原料粉末は、関東金属製であり、純度は99.5%以上であり、平均粒子径D50は100μmである。 The Mg raw material powder is made of Kanto Metal, has a purity of 99.5% or more, and has an average particle diameter D50 of 100 μm.
 TiO2原料粉末80.0gとMg原料粉末1.6gを容器内に秤量して、振とうし、その結果として、TiO2原料粉末とMg原料粉末が均一に混合された原料混合粉末を得た。 80.0 g of TiO2 raw material powder and 1.6 g of Mg raw material powder were weighed in a container and shaken, and as a result, a raw material mixed powder in which the TiO2 raw material powder and the Mg raw material powder were uniformly mixed was obtained.
 図1は試料粉末作製に使用した製造装置の概略図である。黒鉛るつぼ1は内径φ70mm×高さ125mmであり、上面の中央にガス抜き穴11が設けられている。原料混合粉末2を黒鉛るつぼ1内に収納した後に、高周波加熱装置4を備えた真空加熱炉3内に水平に配置した。 FIG. 1 is a schematic view of the manufacturing apparatus used for preparing the sample powder. The graphite crucible 1 has an inner diameter of φ70 mm and a height of 125 mm, and a gas vent hole 11 is provided in the center of the upper surface. After the raw material mixed powder 2 was stored in the graphite crucible 1, it was horizontally arranged in the vacuum heating furnace 3 equipped with the high frequency heating device 4.
 そして、原料混合粉末2が飛散しないように注意しながら、配管5を通じて真空ポンプ6を用いて真空加熱炉3内を8Paまで真空排気した。 Then, while being careful not to scatter the raw material mixed powder 2, the inside of the vacuum heating furnace 3 was evacuated to 8 Pa using the vacuum pump 6 through the pipe 5.
 8Paまで真空排気した直後に、図2に示す熱処理パターンのように、室温(Tr)~550℃(Tmax)まで1時間(0~t1)かけて昇温し、550℃(Tmax)で3時間(t1~t2)保持し、その後、加熱電源をOFFにして、自然冷却した。昇温、保持、冷却の間も真空ポンプ6を用いて真空排気を続けた。 Immediately after vacuum exhausting to 8 Pa, the temperature is raised from room temperature (Tr) to 550 ° C. (Tmax) over 1 hour (0 to t1) as shown in the heat treatment pattern shown in FIG. 2, and the temperature is raised at 550 ° C. (Tmax) for 3 hours. (T1 to t2) was held, and then the heating power was turned off to allow natural cooling. Vacuum pump 6 was used to continue vacuum exhaust during heating, holding, and cooling.
 十分に冷却した後、真空ポンプ6を停止し大気圧に戻し、黒鉛るつぼ1を取り出し、試料粉末を得た。 After sufficiently cooling, the vacuum pump 6 was stopped and returned to atmospheric pressure, the graphite crucible 1 was taken out, and a sample powder was obtained.
 得られた試料粉末を目視観察したところ、元の白色粉体が鼠色に色づいた、一様の微粉末であった。 When the obtained sample powder was visually observed, it was a uniform fine powder in which the original white powder was colored gray.
<実施例1-2>
 熱処理パターンを除く他の条件は、まったく実施例1と同様の条件の下で、8Paまで真空排気した直後に、図2に示す熱処理パターンのように、室温(Tr)~350℃(Tmax)まで1時間(0~t1)かけて昇温し、そのまま350℃(Tmax)で3時間(t1~t2)保持し、その後、加熱電源をOFFにして、自然冷却した。昇温、保持、冷却の間も真空ポンプ6を用いて真空排気を続けた。
<Example 1-2>
The other conditions except for the heat treatment pattern are, under the same conditions as in Example 1, immediately after vacuum exhausting to 8 Pa, from room temperature (Tr) to 350 ° C. (Tmax) as in the heat treatment pattern shown in FIG. The temperature was raised over 1 hour (0 to t1), kept as it was at 350 ° C. (Tmax) for 3 hours (t1 to t2), and then the heating power was turned off to allow natural cooling. Vacuum pump 6 was used to continue vacuum exhaust during heating, holding, and cooling.
 十分に冷却した後、真空ポンプ6を停止し大気圧に戻し、黒鉛るつぼ1を取り出し、試料粉末を得た。 After sufficiently cooling, the vacuum pump 6 was stopped and returned to atmospheric pressure, the graphite crucible 1 was taken out, and a sample powder was obtained.
 得られた試料粉末を目視観察したところ、元の白色粉体が多少黄色に色づいているが、一様の微粉末であった。 When the obtained sample powder was visually observed, the original white powder was slightly colored yellow, but it was a uniform fine powder.
<実施例1-3>
 熱処理パターンを除く他の条件は、まったく実施例1と同様の条件の下で、8Paまで真空排気した直後に、図2に示す熱処理パターンのように、室温(Tr)~600℃(Tmax)まで1時間(0~t1)かけて昇温し、そのまま600℃(Tmax)で3時間(t1~t2)保持し、その後、加熱電源をOFFにして、自然冷却した。昇温、保持、冷却の間も真空ポンプ6を用いて真空排気を続けた。
<Example 1-3>
The other conditions except the heat treatment pattern are, under the same conditions as in Example 1, immediately after vacuum exhausting to 8 Pa, from room temperature (Tr) to 600 ° C. (Tmax) as in the heat treatment pattern shown in FIG. The temperature was raised over 1 hour (0 to t1), kept as it was at 600 ° C. (Tmax) for 3 hours (t1 to t2), and then the heating power was turned off to allow natural cooling. Vacuum pump 6 was used to continue vacuum exhaust during heating, holding, and cooling.
 十分に冷却した後、真空ポンプ6を停止し大気圧に戻し、黒鉛るつぼ1を取り出し、試料粉末を得た。 After sufficiently cooling, the vacuum pump 6 was stopped and returned to atmospheric pressure, the graphite crucible 1 was taken out, and a sample powder was obtained.
 得られた試料粉末を目視観察したところ、元の白色粉体が黒色に変化した、一様の微粉末であった。 When the obtained sample powder was visually observed, it was a uniform fine powder in which the original white powder turned black.
 以上の実施例1、実施例1-2、実施例1-3から、TiO2粉末が350℃位の熱処理温度からMgによる酸化還元反応が起こり始めると共に、熱処理温度が高くなるに従ってTiO2の結晶化が進み、550℃位の温度を超えると結晶構造がアナターゼ型からルチル型へと構造変化を起こすことが判明した。 From Example 1, Example 1-2, and Example 1-3 above, the oxidation-reduction reaction by Mg starts to occur from the heat treatment temperature of about 350 ° C. for the TiO2 powder, and as the heat treatment temperature rises, TiO2 crystallizes. It was found that the crystal structure changed from anatase type to rutile type when the temperature exceeded about 550 ° C.
 (B)還元金属MgによるTiO2への酸素欠陥を導入するとともに粉末状のFeを用いてFe担持した光触媒粉末についての実施例
 固相-固相反応によってTiO2粉末とMg粉末とFe粉末から酸素欠陥を導入するとともにFe担持した光触媒TiO2粉末を製造する実施例について説明する。
(B) Example of a photocatalyst powder in which an oxygen defect in TiO2 due to the reduced metal Mg is introduced and Fe is carried by using powdered Fe. Oxygen defect from TiO2 powder, Mg powder and Fe powder by a solid-phase reaction. An example of producing a photocatalyst TiO2 powder carrying Fe while introducing the above will be described.
<実施例2>
試料粉末の作製
 TiO2原料粉末は石原産業(株)製のアナターゼ型であり、純度は85%以上であり、1次粒径は7nmである。
<Example 2>
Preparation of sample powder The TiO2 raw material powder is an anatase type manufactured by Ishihara Sangyo Co., Ltd., has a purity of 85% or more, and has a primary particle size of 7 nm.
 Mg原料粉末は、関東金属製であり、純度は99.5%以上であり、平均粒子径D50は100μmである。 The Mg raw material powder is made of Kanto Metal, has a purity of 99.5% or more, and has an average particle diameter D50 of 100 μm.
 Fe原料粉末は、Jiangsu Tianyi Ultra Metal Powder Co., Ltd.製であり、純度は98%以上であり、平均粒子径D50は1μmである。 The Fe raw material powder is Jiangsu Tianyi Ultra Metal Powder Co., Ltd. , Ltd. It is manufactured, has a purity of 98% or more, and has an average particle diameter D50 of 1 μm.
 TiO2原料粉末80.0gとMg原料粉末0.8gとFe原料粉末0.8gを容器内に秤量して、振とうしたところ、TiO2原料粉末とMg原料粉末とFe原料粉末が均一に混合された原料混合粉末を得た。 When 80.0 g of TiO2 raw material powder, 0.8 g of Mg raw material powder and 0.8 g of Fe raw material powder were weighed in a container and shaken, the TiO2 raw material powder, Mg raw material powder and Fe raw material powder were uniformly mixed. Raw material mixed powder was obtained.
 図1は試料粉末作製に使用した製造装置の概略図である。黒鉛るつぼ1は内径φ70mm×高さ125mmであり、上面の中央にガス抜き穴11が設けられている。原料混合粉末2を黒鉛るつぼ1内に収納した後に、高周波加熱装置4を備えた真空加熱炉3内に水平に配置した。 FIG. 1 is a schematic view of the manufacturing apparatus used for preparing the sample powder. The graphite crucible 1 has an inner diameter of φ70 mm and a height of 125 mm, and a gas vent hole 11 is provided in the center of the upper surface. After the raw material mixed powder 2 was stored in the graphite crucible 1, it was horizontally arranged in the vacuum heating furnace 3 equipped with the high frequency heating device 4.
 そして、原料混合粉末2が飛散しないように注意しながら、配管5を通じて真空ポンプ6を用いて真空加熱炉3内を8Paまで真空排気した。 Then, while being careful not to scatter the raw material mixed powder 2, the inside of the vacuum heating furnace 3 was evacuated to 8 Pa using the vacuum pump 6 through the pipe 5.
 8Paまで真空排気した直後に、図2に示す熱処理パターンのように、室温(Tr)~500℃(Tmax)まで1時間(0~t1)かけて昇温し、500℃(Tmax)で3時間(t1~t2)保持し、その後、加熱電源をOFFにして、自然冷却した。昇温、保持、冷却の間も真空ポンプ6を用いて真空排気を続けた。 Immediately after vacuum exhausting to 8 Pa, the temperature is raised from room temperature (Tr) to 500 ° C. (Tmax) over 1 hour (0 to t1) as shown in the heat treatment pattern shown in FIG. 2, and the temperature is raised at 500 ° C. (Tmax) for 3 hours. (T1 to t2) was held, and then the heating power was turned off to allow natural cooling. Vacuum pump 6 was used to continue vacuum exhaust during heating, holding, and cooling.
 十分に冷却した後、真空ポンプ6を停止し大気圧に戻し、黒鉛るつぼ1を取り出し、試料粉末を得た。 After sufficiently cooling, the vacuum pump 6 was stopped and returned to atmospheric pressure, the graphite crucible 1 was taken out, and a sample powder was obtained.
 得られた試料粉末を目視観察したところ、多少鼠色系に色づいている一様の微粉末であった。 When the obtained sample powder was visually observed, it was a uniform fine powder that was slightly colored in a grayish color.
<実施例2-2>
試料粉末の作製
 TiO2原料粉末は石原産業(株)製のアナターゼ型であり、純度は85%以上であり、1次粒径は7nmである。
<Example 2-2>
Preparation of sample powder The TiO2 raw material powder is an anatase type manufactured by Ishihara Sangyo Co., Ltd., has a purity of 85% or more, and has a primary particle size of 7 nm.
 MgH2原料粉末は、バイオコーク製であり、純度は98%以上であり、平均粒子径D50は60μmである。 The MgH2 raw material powder is made of biocork, has a purity of 98% or more, and has an average particle diameter D50 of 60 μm.
 Fe原料粉末は、Jiangsu Tianyi Ultra Metal Powder Co., Ltd.製であり、純度は98%以上であり、平均粒子径D50は1μmである。 The Fe raw material powder is Jiangsu Tianyi Ultra Metal Powder Co., Ltd. , Ltd. It is manufactured, has a purity of 98% or more, and has an average particle diameter D50 of 1 μm.
 TiO2原料粉末100.0gとMgH2原料粉末1.1gとFe原料粉末1.0gを容器内に秤量して、振とうしたところ、TiO2原料粉末とMgH2原料粉末とFe原料粉末が均一に混合された原料混合粉末を得た。 When 100.0 g of TiO2 raw material powder, 1.1 g of MgH2 raw material powder and 1.0 g of Fe raw material powder were weighed in a container and shaken, the TiO2 raw material powder, MgH2 raw material powder and Fe raw material powder were uniformly mixed. Raw material mixed powder was obtained.
 図1は試料粉末作製に使用した製造装置の概略図である。黒鉛るつぼ1は内径φ70mm×高さ125mmであり、上面の中央にガス抜き穴11が設けられている。原料混合粉末2を黒鉛るつぼ1内に収納した後に、高周波加熱装置4を備えた真空加熱炉3内に水平に配置した。 FIG. 1 is a schematic view of the manufacturing apparatus used for preparing the sample powder. The graphite crucible 1 has an inner diameter of φ70 mm and a height of 125 mm, and a gas vent hole 11 is provided in the center of the upper surface. After the raw material mixed powder 2 was stored in the graphite crucible 1, it was horizontally arranged in the vacuum heating furnace 3 equipped with the high frequency heating device 4.
 そして、原料混合粉末2が飛散しないように注意しながら、配管5を通じて真空ポンプ6を用いて真空加熱炉3内を8Paまで真空排気した。 Then, while being careful not to scatter the raw material mixed powder 2, the inside of the vacuum heating furnace 3 was evacuated to 8 Pa using the vacuum pump 6 through the pipe 5.
 8Paまで真空排気した直後に、図2に示す熱処理パターンのように、室温(Tr)~500℃(Tmax)まで1時間(0~t1)かけて昇温し、500℃(Tmax)で3時間(t1~t2)保持し、その後、加熱電源をOFFにして、自然冷却した。昇温、保持、冷却の間も真空ポンプ6を用いて真空排気を続けた。昇温時に大きな圧力上昇が認められたが、MgH2が酸化分解してガスが発生したためと考えられる。 Immediately after vacuum exhausting to 8 Pa, the temperature is raised from room temperature (Tr) to 500 ° C. (Tmax) over 1 hour (0 to t1) as shown in the heat treatment pattern shown in FIG. 2, and the temperature is raised at 500 ° C. (Tmax) for 3 hours. (T1 to t2) was held, and then the heating power was turned off to allow natural cooling. Vacuum pump 6 was used to continue vacuum exhaust during heating, holding, and cooling. A large increase in pressure was observed when the temperature was raised, but it is probable that MgH2 was oxidatively decomposed to generate gas.
 十分に冷却した後、真空ポンプ6を停止し大気圧に戻し、黒鉛るつぼ1を取り出し、試料粉末を得た。 After sufficiently cooling, the vacuum pump 6 was stopped and returned to atmospheric pressure, the graphite crucible 1 was taken out, and a sample powder was obtained.
 得られた試料粉末を目視観察したところ、多少鼠色がかった白色系に色づいている一様の微粉末であった。 When the obtained sample powder was visually observed, it was a uniform fine powder that had a slightly grayish white color.
 (C)還元金属MgによるTiO2への酸素欠陥を導入するとともに粉末状のCuを用いてCu担持した光触媒粉末についての実施例
 固相-固相反応によってTiO2粉末とMg粉末とCu粉末から酸素欠陥を導入するとともにCu担持した光触媒TiO2粉末を製造する実施例について説明する。
(C) Example of a photocatalyst powder in which oxygen defects in TiO2 due to the reduced metal Mg are introduced and Cu is carried using powdered Cu. Oxygen defects from TiO2 powder, Mg powder and Cu powder by solid-phase reaction. An example of producing a photocatalyst TiO2 powder carrying Cu while introducing the above will be described.
<実施例3>
試料粉末の作製
 TiO2原料粉末は石原産業(株)製のアナターゼ型であり、純度は85%以上であり、1次粒径は7nmである。
<Example 3>
Preparation of sample powder The TiO2 raw material powder is an anatase type manufactured by Ishihara Sangyo Co., Ltd., has a purity of 85% or more, and has a primary particle size of 7 nm.
 Mg原料粉末は、関東金属製であり、純度は99.5%以上であり、平均粒子径D50は100μmである。 The Mg raw material powder is made of Kanto Metal, has a purity of 99.5% or more, and has an average particle diameter D50 of 100 μm.
 Cu原料粉末は、高純度化学製であり、純度は99.5%以上であり、平均粒子径D50は5μmである。 The Cu raw material powder is made of high-purity chemicals, has a purity of 99.5% or more, and has an average particle diameter D50 of 5 μm.
 TiO2原料粉末80.0gとMg原料粉末0.8gとCu原料粉末0.8gを容器内に秤量して、振とうしたところ、TiO2原料粉末とMg原料粉末とCu原料粉末が均一に混合された原料混合粉末を得た。 When 80.0 g of TiO2 raw material powder, 0.8 g of Mg raw material powder and 0.8 g of Cu raw material powder were weighed in a container and shaken, the TiO2 raw material powder, Mg raw material powder and Cu raw material powder were uniformly mixed. Raw material mixed powder was obtained.
 図1は試料粉末作製に使用した製造装置の概略図である。黒鉛るつぼ1は内径φ70mm×高さ125mmであり、上面の中央にガス抜き穴11が設けられている。原料混合粉末2を黒鉛るつぼ1内に収納した後に、高周波加熱装置4を備えた真空加熱炉3内に水平に配置した。 FIG. 1 is a schematic view of the manufacturing apparatus used for preparing the sample powder. The graphite crucible 1 has an inner diameter of φ70 mm and a height of 125 mm, and a gas vent hole 11 is provided in the center of the upper surface. After the raw material mixed powder 2 was stored in the graphite crucible 1, it was horizontally arranged in the vacuum heating furnace 3 equipped with the high frequency heating device 4.
 そして、原料混合粉末2が飛散しないように注意しながら、配管5を通じて真空ポンプ6を用いて真空加熱炉3内を8Paまで真空排気した。 Then, while being careful not to scatter the raw material mixed powder 2, the inside of the vacuum heating furnace 3 was evacuated to 8 Pa using the vacuum pump 6 through the pipe 5.
 8Paまで真空排気した直後に、図2に示す熱処理パターンのように、室温(Tr)~500℃(Tmax)まで1時間(0~t1)かけて昇温し、500℃(Tmax)で3時間(t1~t2)保持し、その後、加熱電源をOFFにして、自然冷却した。昇温、保持、冷却の間も真空ポンプ6を用いて真空排気を続けた。 Immediately after vacuum exhausting to 8 Pa, the temperature is raised from room temperature (Tr) to 500 ° C. (Tmax) over 1 hour (0 to t1) as shown in the heat treatment pattern shown in FIG. 2, and the temperature is raised at 500 ° C. (Tmax) for 3 hours. (T1 to t2) was held, and then the heating power was turned off to allow natural cooling. Vacuum pump 6 was used to continue vacuum exhaust during heating, holding, and cooling.
 十分に冷却した後、真空ポンプ6を停止し大気圧に戻し、黒鉛るつぼ1を取り出し、試料粉末を得た。 After sufficiently cooling, the vacuum pump 6 was stopped and returned to atmospheric pressure, the graphite crucible 1 was taken out, and a sample powder was obtained.
 得られた試料粉末を目視観察したところ、全体的に少し鼠色系に色づいている一様の微粉末であった。 When the obtained sample powder was visually observed, it was a uniform fine powder that was slightly colored in a grayish color as a whole.
<実施例3-4>
 試料粉末に、TiO2原料粉末80.0gとMg原料粉末0.4gとCu原料粉末0.4gを容器内に秤量して、振とうし、TiO2原料粉末とMg原料粉末とCu原料粉末が均一に混合された原料混合粉末を使用した以外は、まったく実施例3と同じ条件で試験を行った。
<Example 3-4>
80.0 g of TiO2 raw material powder, 0.4 g of Mg raw material powder and 0.4 g of Cu raw material powder are weighed in a container and shaken to make the TiO2 raw material powder, Mg raw material powder and Cu raw material powder uniform. The test was carried out under exactly the same conditions as in Example 3 except that the mixed raw material mixed powder was used.
 得られた試料粉末を目視観察したところ、全体的に少し茶色系に色づいている一様の微粉末であった。 When the obtained sample powder was visually observed, it was a uniform fine powder that was slightly brownish as a whole.
<実施例3-6>
 試料粉末に、TiO2原料粉末80.0gとMg原料粉末0.4gとCu原料粉末3.2gを容器内に秤量して、振とうし、TiO2原料粉末とMg原料粉末とCu原料粉末が均一に混合された原料混合粉末を使用した以外は、まったく実施例3と同じ条件で試験を行った。
<Example 3-6>
80.0 g of TiO2 raw material powder, 0.4 g of Mg raw material powder and 3.2 g of Cu raw material powder are weighed in a container and shaken to make the TiO2 raw material powder, Mg raw material powder and Cu raw material powder uniform. The test was carried out under exactly the same conditions as in Example 3 except that the mixed raw material mixed powder was used.
 得られた試料粉末を目視観察したところ、全体的に少し茶色系に色づいている一様の微粉末であった。 When the obtained sample powder was visually observed, it was a uniform fine powder that was slightly brownish as a whole.
<実施例3-7>
 試料粉末に、TiO2原料粉末80.0gとMg原料粉末3.2gとCu原料粉末0.8gを容器内に秤量し振とうし、TiO2原料粉末とMg原料粉末とCu原料粉末が均一に混合された原料混合粉末を使用した以外は、まったく実施例3と同じ条件で試験を行った。
<Example 3-7>
80.0 g of TiO2 raw material powder, 3.2 g of Mg raw material powder and 0.8 g of Cu raw material powder are weighed in a container and shaken, and the TiO2 raw material powder, Mg raw material powder and Cu raw material powder are uniformly mixed. The test was carried out under exactly the same conditions as in Example 3 except that the raw material mixed powder was used.
 得られた試料粉末を目視観察したところ、全体的に少し茶色系に色づいている一様の微粉末であった。 When the obtained sample powder was visually observed, it was a uniform fine powder that was slightly brownish as a whole.
 (D)硝酸鉄溶液によってTiO2粉末に酸化鉄を担持した後に、還元金属MgによるTiO2への酸素欠陥を導入した光触媒粉末についての実施例
 硝酸鉄溶液によってTiO2粉末に酸化鉄を担持した後に、固相-固相反応によって酸化鉄を担持したTiO2粉末とMg粉末から酸素欠陥を導入した酸化鉄担持光触媒TiO2粉末を製造する実施例について説明する。
(D) Example of a photocatalyst powder in which iron oxide is supported in TiO2 powder by an iron nitrate solution and then oxygen defects are introduced into TiO2 by a reduced metal Mg. After supporting iron oxide in TiO2 powder by an iron nitrate solution, it is hard An example of producing an iron oxide-supporting photocatalyst TiO2 powder in which an oxygen defect is introduced from an iron oxide-supporting TiO2 powder and a Mg powder by a phase-solid phase reaction will be described.
<実施例4>
試料粉末の作製
 TiO2原料粉末は石原産業(株)製のアナターゼ型であり、純度は85%以上であり、1次粒径は7nmである。
<Example 4>
Preparation of sample powder The TiO2 raw material powder is an anatase type manufactured by Ishihara Sangyo Co., Ltd., has a purity of 85% or more, and has a primary particle size of 7 nm.
 Mg原料粉末は、関東金属製であり、純度は99.5%以上であり、平均粒子径D50は100μmである。 The Mg raw material powder is made of Kanto Metal, has a purity of 99.5% or more, and has an average particle diameter D50 of 100 μm.
 まず、25~30%硝酸溶液に担持金属であるFeを0.8g溶解した硝酸鉄溶液を作製し、TiO2原料粉末80.0gを水で懸濁させた水懸濁液と前記硝酸鉄溶液とを混合して撹拌する。次にこの混合溶液を170℃以上の温度で乾燥して得た混合乾燥粉末とMg原料粉末0.8gを容器内に秤量して、振とうしたところ、混合乾燥粉末とMg原料粉末が均一に混合された第2原料混合粉末を得た。 First, an iron nitrate solution was prepared by dissolving 0.8 g of Fe, which is a supporting metal, in a 25 to 30% nitrate solution, and an aqueous suspension in which 80.0 g of TiO2 raw material powder was suspended in water and the iron nitrate solution were used. Is mixed and stirred. Next, 0.8 g of the mixed dry powder and the Mg raw material powder obtained by drying this mixed solution at a temperature of 170 ° C. or higher were weighed in a container and shaken to make the mixed dry powder and the Mg raw material powder uniform. A mixed second raw material mixed powder was obtained.
 図1は試料粉末作製に使用した製造装置の概略図である。黒鉛るつぼ1は内径φ70mm×高さ125mmであり、上面の中央にガス抜き穴11が設けられている。第2原料混合粉末2を黒鉛るつぼ1内に収納した後に、高周波加熱装置4を備えた真空加熱炉3内に水平に配置した。 FIG. 1 is a schematic view of the manufacturing apparatus used for preparing the sample powder. The graphite crucible 1 has an inner diameter of φ70 mm and a height of 125 mm, and a gas vent hole 11 is provided in the center of the upper surface. After the second raw material mixed powder 2 was stored in the graphite crucible 1, it was horizontally arranged in the vacuum heating furnace 3 equipped with the high frequency heating device 4.
 そして、第2原料混合粉末2が飛散しないように注意しながら、配管5を通じて真空ポンプ6を用いて真空加熱炉3内を8Paまで真空排気した。 Then, while being careful not to scatter the second raw material mixed powder 2, the inside of the vacuum heating furnace 3 was evacuated to 8 Pa using the vacuum pump 6 through the pipe 5.
 8Paまで真空排気した直後に、図2に示す熱処理パターンのように、室温(Tr)~500℃(Tmax)まで1時間(0~t1)かけて昇温し、500℃(Tmax)で3時間(t1~t2)保持し、その後、加熱電源をOFFにして、自然冷却した。昇温、保持、冷却の間も真空ポンプ6を用いて真空排気を続けた。 Immediately after vacuum exhausting to 8 Pa, the temperature is raised from room temperature (Tr) to 500 ° C. (Tmax) over 1 hour (0 to t1) as shown in the heat treatment pattern shown in FIG. 2, and the temperature is raised at 500 ° C. (Tmax) for 3 hours. (T1 to t2) was held, and then the heating power was turned off to allow natural cooling. Vacuum pump 6 was used to continue vacuum exhaust during heating, holding, and cooling.
 十分に冷却した後、真空ポンプ6を停止し大気圧に戻し、黒鉛るつぼ1を取り出し、試料粉末を得た。 After sufficiently cooling, the vacuum pump 6 was stopped and returned to atmospheric pressure, the graphite crucible 1 was taken out, and a sample powder was obtained.
 得られた試料粉末を目視観察したところ、薄黄緑色をした一様の微粉末であった。 When the obtained sample powder was visually observed, it was a uniform fine powder having a light yellowish green color.
 (E)硝酸銅溶液によってTiO2粉末に酸化銅を担持した後に、還元金属MgによってTiO2へ酸素欠陥を導入した光触媒粉末についての実施例
 硝酸銅溶液によってTiO2粉末に酸化銅を担持した後に、固相-固相反応によって酸化銅を担持したTiO2粉末とMg粉末から酸素欠陥を導入した酸化銅担持光触媒TiO2粉末を製造する実施例について説明する。
(E) Example of a photocatalyst powder in which an oxygen defect is introduced into TiO2 by a reducing metal Mg after supporting copper oxide in the TiO2 powder with a copper nitrate solution. After supporting copper oxide in the TiO2 powder with a copper nitrate solution, a solid phase is formed. An example of producing a copper oxide-supported photocatalyst TiO2 powder in which an oxygen defect is introduced from a copper oxide-supported TiO2 powder and a Mg powder by a solid phase reaction will be described.
<実施例5>
試料粉末の作製
 TiO2原料粉末は石原産業(株)製のアナターゼ型であり、純度は85%以上であり、1次粒径は7nmである。
<Example 5>
Preparation of sample powder The TiO2 raw material powder is an anatase type manufactured by Ishihara Sangyo Co., Ltd., has a purity of 85% or more, and has a primary particle size of 7 nm.
 Mg原料粉末は、関東金属製であり、純度は99.5%以上であり、平均粒子径D50は100μmである。 The Mg raw material powder is made of Kanto Metal, has a purity of 99.5% or more, and has an average particle diameter D50 of 100 μm.
 まず、25~30%硝酸溶液に担持金属であるCuを0.8g溶解した硝酸銅溶液を作製し、TiO2原料粉末80.0gを水で懸濁させた水懸濁液と前記硝酸銅溶液とを混合して撹拌する。次にこの混合溶液を170℃以上の温度で乾燥して得た混合乾燥粉末とMg原料粉末0.8gを容器内に秤量して、振とうしたところ、混合乾燥粉末とMg原料粉末が均一に混合された第2原料混合粉末を得た。 First, a copper nitrate solution prepared by dissolving 0.8 g of Cu, which is a supporting metal, in a 25 to 30% nitrate solution, and a water suspension in which 80.0 g of TiO2 raw material powder is suspended in water and the copper nitrate solution are used. Is mixed and stirred. Next, 0.8 g of the mixed dry powder and the Mg raw material powder obtained by drying this mixed solution at a temperature of 170 ° C. or higher were weighed in a container and shaken to make the mixed dry powder and the Mg raw material powder uniform. A mixed second raw material mixed powder was obtained.
 図1は試料粉末作製に使用した製造装置の概略図である。黒鉛るつぼ1は内径φ70mm×高さ125mmであり、上面の中央にガス抜き穴11が設けられている。第2原料混合粉末2を黒鉛るつぼ1内に収納した後に、高周波加熱装置4を備えた真空加熱炉3内に水平に配置した。 FIG. 1 is a schematic view of the manufacturing apparatus used for preparing the sample powder. The graphite crucible 1 has an inner diameter of φ70 mm and a height of 125 mm, and a gas vent hole 11 is provided in the center of the upper surface. After the second raw material mixed powder 2 was stored in the graphite crucible 1, it was horizontally arranged in the vacuum heating furnace 3 equipped with the high frequency heating device 4.
 そして、第2原料混合粉末2が飛散しないように注意しながら、配管5を通じて真空ポンプ6を用いて真空加熱炉3内を8Paまで真空排気した。 Then, while being careful not to scatter the second raw material mixed powder 2, the inside of the vacuum heating furnace 3 was evacuated to 8 Pa using the vacuum pump 6 through the pipe 5.
 8Paまで真空排気した直後に、図2に示す熱処理パターンのように、室温(Tr)~500℃(Tmax)まで1時間(0~t1)かけて昇温し、500℃(Tmax)で3時間(t1~t2)保持し、その後、加熱電源をOFFにして、自然冷却した。昇温、保持、冷却の間も真空ポンプ6を用いて真空排気を続けた。 Immediately after vacuum exhausting to 8 Pa, the temperature is raised from room temperature (Tr) to 500 ° C. (Tmax) over 1 hour (0 to t1) as shown in the heat treatment pattern shown in FIG. 2, and the temperature is raised at 500 ° C. (Tmax) for 3 hours. (T1 to t2) was held, and then the heating power was turned off to allow natural cooling. Vacuum pump 6 was used to continue vacuum exhaust during heating, holding, and cooling.
 十分に冷却した後、真空ポンプ6を停止し大気圧に戻し、黒鉛るつぼ1を取り出し、試料粉末を得た。 After sufficiently cooling, the vacuum pump 6 was stopped and returned to atmospheric pressure, the graphite crucible 1 was taken out, and a sample powder was obtained.
 得られた試料粉末を目視観察したところ、多少茶色系に色づいた一様の微粉末であった。 When the obtained sample powder was visually observed, it was a uniform fine powder that was slightly brownish in color.
<実施例5-7>
 第2原料混合粉末中におけるCuとMgの割合を変更した以外は、実施例5とまったく同じ条件で試験を行った。
<Example 5-7>
The test was carried out under exactly the same conditions as in Example 5 except that the ratio of Cu and Mg in the second raw material mixed powder was changed.
 25~30%硝酸溶液に担持金属であるCuを0.08g溶解した硝酸銅溶液を作製し、TiO2原料粉末80.0gを水で懸濁させた水懸濁液と前記硝酸銅溶液とを混合して撹拌する。次にこの混合溶液を170℃以上の温度で乾燥して得た混合乾燥粉末とMg原料粉末0.4gを容器内に秤量して、振とうしたところ、混合乾燥粉末とMg原料粉末が均一に混合された第2原料混合粉末を得た。 A copper nitrate solution in which 0.08 g of Cu, which is a supporting metal, is dissolved in a 25 to 30% nitrate solution is prepared, and an aqueous suspension in which 80.0 g of TiO2 raw material powder is suspended in water is mixed with the copper nitrate solution. And stir. Next, 0.4 g of the mixed dry powder and the Mg raw material powder obtained by drying this mixed solution at a temperature of 170 ° C. or higher were weighed in a container and shaken to make the mixed dry powder and the Mg raw material powder uniform. A mixed second raw material mixed powder was obtained.
 真空中で実施例5と同様の熱処理パターンで加熱、保持、冷却した後、大気圧に戻し、取り出して得られた試料粉末を目視観察したところ、多少茶色系に色づいた一様の微粉末であった。 After heating, holding, and cooling in a vacuum in the same heat treatment pattern as in Example 5, the sample powder was returned to atmospheric pressure, and the sample powder obtained by taking out was visually observed. As a result, it was a uniform fine powder that was slightly brownish in color. there were.
<実施例5-11>
 第2原料混合粉末中におけるCuとMgの割合を変更した以外は、実施例5とまったく同じ条件で試験を行った。
<Example 5-11>
The test was carried out under exactly the same conditions as in Example 5 except that the ratio of Cu and Mg in the second raw material mixed powder was changed.
 25~30%硝酸溶液に担持金属であるCuを3.2g溶解した硝酸銅溶液を作製し、TiO2原料粉末80.0gを水で懸濁させた水懸濁液と前記硝酸銅溶液とを混合して撹拌する。次にこの混合溶液を170℃以上の温度で乾燥して得た混合乾燥粉末とMg原料粉末0.8gを容器内に秤量して、振とうしたところ、混合乾燥粉末とMg原料粉末が均一に混合された第2原料混合粉末を得た。 A copper nitrate solution was prepared by dissolving 3.2 g of Cu, which is a supporting metal, in a 25 to 30% nitrate solution, and a water suspension in which 80.0 g of TiO2 raw material powder was suspended in water was mixed with the copper nitrate solution. And stir. Next, 0.8 g of the mixed dry powder and the Mg raw material powder obtained by drying this mixed solution at a temperature of 170 ° C. or higher were weighed in a container and shaken to make the mixed dry powder and the Mg raw material powder uniform. A mixed second raw material mixed powder was obtained.
 真空中で実施例5と同様の熱処理パターンで加熱、保持、冷却した後、大気圧に戻し、取り出して得られた試料粉末を目視観察したところ、多少茶色系に色づいた一様の微粉末であった。 After heating, holding, and cooling in a vacuum in the same heat treatment pattern as in Example 5, the sample powder was returned to atmospheric pressure, and the sample powder obtained by taking out was visually observed. As a result, it was a uniform fine powder that was slightly brownish in color. there were.
<実施例5-12>
 第2原料混合粉末中におけるCuとMgの割合を変更した以外は、実施例5とまったく同じ条件で試験を行った。
<Example 5-12>
The test was carried out under exactly the same conditions as in Example 5 except that the ratio of Cu and Mg in the second raw material mixed powder was changed.
 25~30%硝酸溶液に担持金属であるCuを0.24g溶解した硝酸銅溶液を作製し、TiO2原料粉末80.0gを水で懸濁させた水懸濁液と前記硝酸銅溶液とを混合して撹拌する。次にこの混合溶液を170℃以上の温度で乾燥して得た混合乾燥粉末とMg原料粉末3.2gを容器内に秤量して、振とうしたところ、混合乾燥粉末とMg原料粉末が均一に混合された第2原料混合粉末を得た。 A copper nitrate solution in which 0.24 g of Cu, which is a supporting metal, is dissolved in a 25 to 30% nitrate solution is prepared, and an aqueous suspension in which 80.0 g of TiO2 raw material powder is suspended in water is mixed with the copper nitrate solution. And stir. Next, 3.2 g of the mixed dry powder and the Mg raw material powder obtained by drying this mixed solution at a temperature of 170 ° C. or higher were weighed in a container and shaken to make the mixed dry powder and the Mg raw material powder uniform. A mixed second raw material mixed powder was obtained.
 真空中で実施例5と同様の熱処理パターンで加熱、保持、冷却した後、大気圧に戻し、取り出して得られた試料粉末を目視観察したところ、多少茶色系に色づいた一様の微粉末であった。 After heating, holding, and cooling in a vacuum in the same heat treatment pattern as in Example 5, the sample powder was returned to atmospheric pressure, and the sample powder obtained by taking out was visually observed. As a result, it was a uniform fine powder that was slightly brownish in color. there were.
 (F)TiO2の結晶構造の異なる光触媒粉末についての実施例
<実施例6>
試料粉末の作製
 TiO2原料粉末は日本アエロジル(株)製のアナターゼ型87%とルチル型13%の混合粉末であり、純度は99%以上であり、1次粒径は20nmである。
(F) Examples of photocatalytic powders having different crystal structures of TiO2 <Example 6>
Preparation of sample powder The TiO2 raw material powder is a mixed powder of 87% anatase type and 13% rutile type manufactured by Nippon Aerosil Co., Ltd., has a purity of 99% or more, and has a primary particle size of 20 nm.
 Mg原料粉末は、関東金属製であり、純度は99.5%以上であり、平均粒子径D50は100μmである。 The Mg raw material powder is made of Kanto Metal, has a purity of 99.5% or more, and has an average particle diameter D50 of 100 μm.
 まず、25~30%硝酸溶液に担持金属であるCuを0.8g溶解した硝酸銅溶液を作製し、TiO2原料粉末80.0gを水で懸濁させた水懸濁液と前記硝酸銅溶液とを混合して撹拌する。次にこの混合溶液を170℃以上の温度で乾燥して得た混合乾燥粉末とMg原料粉末0.8gを容器内に秤量して、振とうしたところ、混合乾燥粉末とMg原料粉末が均一に混合された第2原料混合粉末を得た。 First, a copper nitrate solution prepared by dissolving 0.8 g of Cu, which is a supporting metal, in a 25 to 30% nitrate solution, and a water suspension in which 80.0 g of TiO2 raw material powder is suspended in water and the copper nitrate solution are used. Is mixed and stirred. Next, 0.8 g of the mixed dry powder and the Mg raw material powder obtained by drying this mixed solution at a temperature of 170 ° C. or higher were weighed in a container and shaken to make the mixed dry powder and the Mg raw material powder uniform. A mixed second raw material mixed powder was obtained.
 図1は試料粉末作製に使用した製造装置の概略図である。黒鉛るつぼ1は内径φ70mm×高さ125mmであり、上面の中央にガス抜き穴11が設けられている。原料粉末2を黒鉛るつぼ1内に収納した後に、高周波加熱装置4を備えた真空加熱炉3内に水平に配置した。 FIG. 1 is a schematic view of the manufacturing apparatus used for preparing the sample powder. The graphite crucible 1 has an inner diameter of φ70 mm and a height of 125 mm, and a gas vent hole 11 is provided in the center of the upper surface. After the raw material powder 2 was stored in the graphite crucible 1, it was horizontally arranged in the vacuum heating furnace 3 equipped with the high-frequency heating device 4.
 そして、原料粉末2が飛散しないように注意しながら、配管5を通じて真空ポンプ6を用いて真空加熱炉3内を8Paまで真空排気した。 Then, while being careful not to scatter the raw material powder 2, the inside of the vacuum heating furnace 3 was evacuated to 8 Pa using the vacuum pump 6 through the pipe 5.
 8Paまで真空排気した直後に、図2に示す熱処理パターンのように、室温(Tr)~450℃(Tmax)まで1時間(0~t1)かけて昇温し、450℃(Tmax)で3時間(t1~t2)保持し、その後、加熱電源をOFFにして、自然冷却した。昇温、保持、冷却の間も真空ポンプ6を用いて真空排気を続けた。 Immediately after vacuum exhausting to 8 Pa, the temperature is raised from room temperature (Tr) to 450 ° C. (Tmax) over 1 hour (0 to t1) as shown in the heat treatment pattern shown in FIG. 2, and the temperature is raised at 450 ° C. (Tmax) for 3 hours. (T1 to t2) was held, and then the heating power was turned off to allow natural cooling. Vacuum pump 6 was used to continue vacuum exhaust during heating, holding, and cooling.
 十分に冷却した後、真空ポンプ6を停止し大気圧に戻し、黒鉛るつぼ1を取り出し、試料粉末を得た。 After sufficiently cooling, the vacuum pump 6 was stopped and returned to atmospheric pressure, the graphite crucible 1 was taken out, and a sample powder was obtained.
 得られた試料粉末を目視観察したところ、薄い黄色の一様の微粉末であった。 When the obtained sample powder was visually observed, it was a light yellow uniform fine powder.
<実施例6―2>
試料粉末の作製
 TiO2原料粉末は高純度化学製のルチル型であり、純度は99%以上であり、1次粒径は500nmである。
<Example 6-2>
Preparation of sample powder The TiO2 raw material powder is a rutile type manufactured by high-purity chemicals, has a purity of 99% or more, and has a primary particle size of 500 nm.
 まず、25~30%硝酸溶液に担持金属であるCuを0.8g溶解した硝酸銅溶液を作製し、TiO2原料粉末80.0gを水で懸濁させた水懸濁液と前記硝酸銅溶液とを混合して撹拌する。次にこの混合溶液を170℃以上の温度で乾燥して得た混合乾燥粉末とMg原料粉末0.8gを容器内に秤量して、振とうしたところ、混合乾燥粉末とMg原料粉末が均一に混合された第2原料混合粉末を得た。 First, a copper nitrate solution prepared by dissolving 0.8 g of Cu, which is a supporting metal, in a 25 to 30% nitrate solution, and a water suspension in which 80.0 g of TiO2 raw material powder is suspended in water and the copper nitrate solution are used. Is mixed and stirred. Next, 0.8 g of the mixed dry powder and the Mg raw material powder obtained by drying this mixed solution at a temperature of 170 ° C. or higher were weighed in a container and shaken to make the mixed dry powder and the Mg raw material powder uniform. A mixed second raw material mixed powder was obtained.
 図1は試料粉末作製に使用した製造装置の概略図である。黒鉛るつぼ1は内径φ70mm×高さ125mmであり、上面の中央にガス抜き穴11が設けられている。原料粉末2を黒鉛るつぼ1内に収納した後に、高周波加熱装置4を備えた真空加熱炉3内に水平に配置した。 FIG. 1 is a schematic view of the manufacturing apparatus used for preparing the sample powder. The graphite crucible 1 has an inner diameter of φ70 mm and a height of 125 mm, and a gas vent hole 11 is provided in the center of the upper surface. After the raw material powder 2 was stored in the graphite crucible 1, it was horizontally arranged in the vacuum heating furnace 3 equipped with the high-frequency heating device 4.
 そして、原料粉末2が飛散しないように注意しながら、配管5を通じて真空ポンプ6を用いて真空加熱炉3内を8Paまで真空排気した。 Then, while being careful not to scatter the raw material powder 2, the inside of the vacuum heating furnace 3 was evacuated to 8 Pa using the vacuum pump 6 through the pipe 5.
 8Paまで真空排気した直後に、図2に示す熱処理パターンのように、室温(Tr)~500℃(Tmax)まで1時間(0~t1)かけて昇温し、500℃(Tmax)で3時間(t1~t2)保持し、その後、加熱電源をOFFにして、自然冷却した。昇温、保持、冷却の間も真空ポンプ6を用いて真空排気を続けた。 Immediately after vacuum exhausting to 8 Pa, the temperature is raised from room temperature (Tr) to 500 ° C. (Tmax) over 1 hour (0 to t1) as shown in the heat treatment pattern shown in FIG. 2, and the temperature is raised at 500 ° C. (Tmax) for 3 hours. (T1 to t2) was held, and then the heating power was turned off to allow natural cooling. Vacuum pump 6 was used to continue vacuum exhaust during heating, holding, and cooling.
 十分に冷却した後、真空ポンプ6を停止し大気圧に戻し、黒鉛るつぼ1を取り出し、試料粉末を得た。 After sufficiently cooling, the vacuum pump 6 was stopped and returned to atmospheric pressure, the graphite crucible 1 was taken out, and a sample powder was obtained.
 得られた試料粉末を目視観察したところ、薄い黄土色をした一様の微粉末であった。 When the obtained sample powder was visually observed, it was a uniform fine powder having a light ocher color.
<実施例6―3>
試料粉末の作製
 TiO2原料粉末は高純度化学製のブルッカイト型であり、純度は99%以上であり、1次粒径は30nmである。
<Example 6-3>
Preparation of sample powder The TiO2 raw material powder is a brookite type made by high-purity chemistry, has a purity of 99% or more, and has a primary particle size of 30 nm.
 まず、25~30%硝酸溶液に担持金属であるCuを0.8g溶解した硝酸銅溶液を作製し、TiO2原料粉末80.0gを水で懸濁させた水懸濁液と前記硝酸銅溶液とを混合して撹拌する。次にこの混合溶液を170℃以上の温度で乾燥して得た混合乾燥粉末とMg原料粉末0.8gを容器内に秤量して、振とうしたところ、混合乾燥粉末とMg原料粉末が均一に混合された第2原料混合粉末を得た。 First, a copper nitrate solution prepared by dissolving 0.8 g of Cu, which is a supporting metal, in a 25 to 30% nitrate solution, and a water suspension in which 80.0 g of TiO2 raw material powder is suspended in water and the copper nitrate solution are used. Is mixed and stirred. Next, 0.8 g of the mixed dry powder and the Mg raw material powder obtained by drying this mixed solution at a temperature of 170 ° C. or higher were weighed in a container and shaken to make the mixed dry powder and the Mg raw material powder uniform. A mixed second raw material mixed powder was obtained.
 図1は試料粉末作製に使用した製造装置の概略図である。黒鉛るつぼ1は内径φ70mm×高さ125mmであり、上面の中央にガス抜き穴11が設けられている。原料粉末2を黒鉛るつぼ1内に収納した後に、高周波加熱装置4を備えた真空加熱炉3内に水平に配置した。 FIG. 1 is a schematic view of the manufacturing apparatus used for preparing the sample powder. The graphite crucible 1 has an inner diameter of φ70 mm and a height of 125 mm, and a gas vent hole 11 is provided in the center of the upper surface. After the raw material powder 2 was stored in the graphite crucible 1, it was horizontally arranged in the vacuum heating furnace 3 equipped with the high-frequency heating device 4.
 そして、原料粉末2が飛散しないように注意しながら、配管5を通じて真空ポンプ6を用いて真空加熱炉3内を8Paまで真空排気した。 Then, while being careful not to scatter the raw material powder 2, the inside of the vacuum heating furnace 3 was evacuated to 8 Pa using the vacuum pump 6 through the pipe 5.
 8Paまで真空排気した直後に、図2に示す熱処理パターンのように、室温(Tr)~500℃(Tmax)まで1時間(0~t1)かけて昇温し、500℃(Tmax)で3時間(t1~t2)保持し、その後、加熱電源をOFFにして、自然冷却した。昇温、保持、冷却の間も真空ポンプ6を用いて真空排気を続けた。 Immediately after vacuum exhausting to 8 Pa, the temperature is raised from room temperature (Tr) to 500 ° C. (Tmax) over 1 hour (0 to t1) as shown in the heat treatment pattern shown in FIG. 2, and the temperature is raised at 500 ° C. (Tmax) for 3 hours. (T1 to t2) was held, and then the heating power was turned off to allow natural cooling. Vacuum pump 6 was used to continue vacuum exhaust during heating, holding, and cooling.
 十分に冷却した後、真空ポンプ6を停止し大気圧に戻し、黒鉛るつぼ1を取り出し、試料粉末を得た。 After sufficiently cooling, the vacuum pump 6 was stopped and returned to atmospheric pressure, the graphite crucible 1 was taken out, and a sample powder was obtained.
 得られた試料粉末を目視観察したところ、ほとんど色づいていない白色の一様の微粉末であった。 When the obtained sample powder was visually observed, it was a white uniform fine powder with almost no coloring.
 (G)その他の光触媒粉末についての比較例 (G) Comparative example of other photocatalyst powders
<比較例>
 比較例として市販のアナターゼ型光触媒を入手した。
<Comparison example>
As a comparative example, a commercially available anatase-type photocatalyst was obtained.
 市販のアナターゼ型光触媒は石原産業(株)製のST-01(商品名)であり、純度は87%であり、1次粒径は7nmである。 The commercially available anatase-type photocatalyst is ST-01 (trade name) manufactured by Ishihara Sangyo Co., Ltd., the purity is 87%, and the primary particle size is 7 nm.
 (H)最終試料粉末の測定
 得られた最終試料粉末について、リガク製X線回折装置RINT 2200VK/PCを用いてX線回折分析を行った。測定結果を図3~図5に示す。図3~図5において、曲線は最終試料粉末のX線回折プロファイルであり、アナターゼ型TiO2の標準ピークパターンとともに表示している。図3はアナターゼ型TiO2原料粉末のX線回折プロファイルを示している。図4は実施例1で得られた最終試料粉末のX線回折プロファイルを示している。図4のX線回折プロファイルから分かるように、熱処理温度が550°である実施例1の最終試料粉末は元のアナターゼ型の結晶構造を残したままであることが分かる。
(H) Measurement of Final Sample Powder The obtained final sample powder was subjected to X-ray diffraction analysis using a Rigaku X-ray diffractometer RINT 2200VK / PC. The measurement results are shown in FIGS. 3 to 5. In FIGS. 3-5, the curve is the X-ray diffraction profile of the final sample powder and is shown along with the standard peak pattern of anatase-type TiO2. FIG. 3 shows the X-ray diffraction profile of the anatase-type TiO2 raw material powder. FIG. 4 shows the X-ray diffraction profile of the final sample powder obtained in Example 1. As can be seen from the X-ray diffraction profile of FIG. 4, it can be seen that the final sample powder of Example 1 having a heat treatment temperature of 550 ° retains the original anatase-type crystal structure.
 一方、図5は600℃(Tmax)で3時間熱処理にしたときに得られた最終試料粉末のX線回折プロファイルを示している。図5から熱処理温度が600℃になるとアナターゼ型の結晶構造が崩れてルチル型の結晶に変化していくことが分かる。また、熱処理温度が350℃である実施例1-2においては、熱処理温度が300℃近くになると一時的に炉内温度及び気圧が増大する変化が見られることからTiO2とMgの間に酸化還元反応が生じてTiO2の結晶構造に酸素欠陥が導入され始めるが、300℃未満では炉内の温度及び気圧に急激な変化は見られず、還元金属であるMgによるTiO2の還元反応が生じない。このように、最終試料粉末の結晶構造は350℃~550℃の熱処理温度において原料粉末であるTiO2の結晶構造を維持しつつ、結晶化が進むと同時に、還元金属によるTiO2の還元作用と物質拡散等が生じているものと考えられる。 On the other hand, FIG. 5 shows an X-ray diffraction profile of the final sample powder obtained when heat-treated at 600 ° C. (Tmax) for 3 hours. From FIG. 5, it can be seen that when the heat treatment temperature reaches 600 ° C., the anatase-type crystal structure collapses and changes to rutile-type crystals. Further, in Example 1-2 in which the heat treatment temperature is 350 ° C., a change is observed in which the temperature inside the furnace and the atmospheric pressure temporarily increase when the heat treatment temperature approaches 300 ° C., so that redox between TiO2 and Mg is observed. A reaction occurs and oxygen defects begin to be introduced into the crystal structure of TiO2, but below 300 ° C., no rapid change is observed in the temperature and pressure in the furnace, and the reduction reaction of TiO2 by the reducing metal Mg does not occur. As described above, the crystal structure of the final sample powder maintains the crystal structure of the raw material powder TiO2 at the heat treatment temperature of 350 ° C. to 550 ° C. Etc. are considered to have occurred.
光触媒粉末の特性試験
 次に、実施例1~6-3の光触媒粉末及び比較例の光触媒粉末についての特性試験について説明する。
Characteristic test of photocatalyst powder Next, the property test of the photocatalyst powder of Examples 1 to 6-3 and the photocatalyst powder of Comparative Example will be described.
 (I)光吸収スペクトルの測定結果
 試料粉末を光透過のない厚さで平坦な平板状に成形して分光反射率測定用試料を準備した。
(I) Measurement result of light absorption spectrum A sample for spectral reflectance measurement was prepared by molding the sample powder into a flat flat plate having a thickness without light transmission.
 分光反射率(拡散+正反射率)は、SolidSpec-3700DUV(島津製作所製、ダブルビーム式)を用いて、測定した。 The spectral reflectance (diffusion + specular reflectance) was measured using a SolidSpec-3700DUV (manufactured by Shimadzu Corporation, double beam type).
 図6は分光反射率(拡散+正反射率)測定の配置を示す概略図である。分光反射率測定用試料の測定部分を包むように積分球を配置する。積分球の鉛直方向から8°傾いた部分に光入口を設けてある。不図示の分光器から特定波長の光が光入口を通って分光反射率測定用試料の測定部分に入射される。そして、反射光を測定して、試料の分光反射率(拡散+正反射率)を測定する。 FIG. 6 is a schematic diagram showing the arrangement of spectral reflectance (diffusion + specular reflectance) measurement. An integrating sphere is arranged so as to wrap the measurement portion of the sample for spectral reflectance measurement. An optical inlet is provided at a portion of the integrating sphere that is tilted by 8 ° from the vertical direction. Light of a specific wavelength is incident on the measurement portion of the sample for spectral reflectance measurement through the light inlet from a spectroscope (not shown). Then, the reflected light is measured to measure the spectral reflectance (diffuse + specular reflectance) of the sample.
 250~700nmにおける光吸収スペクトルの測定結果が図7及び図8に比較例と共に示されている。 The measurement results of the light absorption spectrum at 250 to 700 nm are shown in FIGS. 7 and 8 together with comparative examples.
 図7には、実施例1、実施例2、実施例2-2、実施例3、実施例4、実施例5及び比較例で得られた試料粉末の光吸収スペクトルの測定結果が示されている。図8には、実施例5、実施例6、実施例6-2、実施例6-3及び比較例で得られた試料粉末の光吸収スペクトルの測定結果が示されている。350nm以下の波長(紫外光領域)では、実施例1、実施例2、実施例2-2、実施例3、実施例4、実施例5、実施例6、実施例6-2、実施例6-3及び比較例の吸収率は約90~95%であり、ほぼ同等である。400~700nmの波長(可視光領域)においては、実施例1の吸収率が48~18%であり、実施例2の吸収率が62~59%であり、実施例2-2の吸収率が62~58%であり、実施例3の吸収率が30~28%であり、実施例4の吸収率が76~24%であり、実施例5の吸収率が67~42%であり、実施例6の吸収率が62~45%であり、実施例6-2の吸収率が67~35%であり、実施例6-3の吸収率が57~47%であり、比較例の吸収率が28~5%である。実施例1~6-3の光触媒は、いずれも、比較例に比べて、可視光領域での吸収率ははるかに優れていることがわかる。 FIG. 7 shows the measurement results of the light absorption spectra of the sample powders obtained in Example 1, Example 2, Example 2-2, Example 3, Example 4, Example 5, and Comparative Example. There is. FIG. 8 shows the measurement results of the light absorption spectra of the sample powders obtained in Example 5, Example 6, Example 6-2, Example 6-3, and Comparative Example. At wavelengths of 350 nm or less (ultraviolet light region), Example 1, Example 2, Example 2-2, Example 3, Example 4, Example 5, Example 6, Example 6-2, Example 6 The absorption rates of -3 and Comparative Examples are about 90 to 95%, which are almost the same. At a wavelength of 400 to 700 nm (visible light region), the absorption rate of Example 1 is 48 to 18%, the absorption rate of Example 2 is 62 to 59%, and the absorption rate of Example 2-2 is. The absorption rate of Example 3 is 62 to 58%, the absorption rate of Example 3 is 30 to 28%, the absorption rate of Example 4 is 76 to 24%, and the absorption rate of Example 5 is 67 to 42%. The absorption rate of Example 6 is 62 to 45%, the absorption rate of Example 6-2 is 67 to 35%, the absorption rate of Example 6-3 is 57 to 47%, and the absorption rate of Comparative Example. Is 28 to 5%. It can be seen that the photocatalysts of Examples 1 to 6-3 are far superior in absorption rate in the visible light region as compared with Comparative Examples.
 実施例2及び実施例2-2の光触媒は比較例の光触媒に比べて、可視光領域における吸収率が特に優れており、紫外光から可視光領域(250~700nm)において、還元材として還元金属(Mg)又はその水素化物(MgH2)を使用してもその光吸収スペクトルは殆ど同じであり、光触媒特性も殆ど同じであることが予測される。また、実施例5、実施例6、実施例6-2、実施例6-3の光触媒は、比較例の光触媒に比べて、可視光領域における吸収率が優れており、アナターゼ型、ルチル型、ブルッカイト型のいずれの結晶型であっても、本発明によって、市販のアナターゼ型光触媒よりも可視光領域における光吸収率を高められることがわかる。 The photocatalysts of Examples 2 and 2-2 have a particularly excellent absorption rate in the visible light region as compared with the photocatalysts of Comparative Examples, and the reducing metal as a reducing material in the ultraviolet to visible light region (250 to 700 nm). Even if (Mg) or a hydride thereof (MgH2) is used, its light absorption spectrum is almost the same, and it is predicted that the photocatalytic properties are also almost the same. Further, the photocatalysts of Examples 5, 6, 6, 6-2, and 6-3 have an excellent absorption rate in the visible light region as compared with the photocatalysts of Comparative Examples, and are anatase type, rutile type, and so on. It can be seen that in any of the brookite type crystal types, the present invention can increase the light absorption rate in the visible light region as compared with the commercially available anatase type photocatalyst.
 本実施例の光触媒は、いずれも資源も豊富で安価なTiO2をベースにしており、可視光領域における光触媒として使用されている酸化タングステン光触媒(WO3)のように高価で希少なWを使用せずに、優れた可視光領域の光吸収特性をもたせられることがわかる。 The photocatalysts of this example are all based on TiO2, which is abundant in resources and inexpensive, and do not use expensive and rare W like the tungsten oxide photocatalyst (WO3) used as a photocatalyst in the visible light region. In addition, it can be seen that it can have excellent light absorption characteristics in the visible light region.
 (J)光触媒によるVOC分解評価試験
 本発明に係る光触媒は、揮発性有機化合物(VOC)を分解することが期待されている。VOCを分解する能力の優劣を評価するために、気化したイソプロピルアルコール(IPA)が充満した容器内に実施例や比較例の光触媒を配置し、キセノンランプから発する光がUVカットフィルターを通して光触媒に照射されて、時間経過とともに変化するIPA残存率及びCO2発生量を測定した。IPAは光照射された光触媒によって一次分解されアセトンが生成され、アセトンがさらに二次分解されてCO2が発生する反応を利用するものである。
(J) VOC Decomposition Evaluation Test Using Photocatalyst The photocatalyst according to the present invention is expected to decompose volatile organic compounds (VOCs). In order to evaluate the superiority or inferiority of the ability to decompose VOC, the photocatalysts of Examples and Comparative Examples are placed in a container filled with vaporized isopropyl alcohol (IPA), and the light emitted from the xenon lamp irradiates the photocatalyst through a UV cut filter. Then, the IPA residual rate and the amount of CO2 generated, which changed with the passage of time, were measured. IPA utilizes a reaction in which acetone is first decomposed by a photocatalyst irradiated with light to generate acetone, and acetone is further secondarily decomposed to generate CO2.
 図9に光触媒によるVOC分解評価試験に用いた装置の概観を示す。バッチ式パイレックス製反応器を用いて、下記条件で試験を行った。
 i) 反応器容量:約392ml
 ii) 光源:キセノンランプ300W(波長範囲:300~800nm)
 iii) カットフィルター:420nm(420nm以下の波長をカットするときに使用)
 iv) 雰囲気:乾燥空気(エアーコンプレッサーより供給)、室温
 v) VOC(揮発性有機化合物)種類:IPA(イソプロピルアルコール)
 vi) VOC濃度:約258ppm
 vii) CO2及びVOCはガスクロマトグラフ(GC)(アジレント(株)製,Agilent 3000A MicroGC)のPlot Qカラム及びOV-1カラムを用いて検出した。CO2濃度はCO2センサー(理研計器(株)製,RI-2150)で測定した空気中の濃度を基にGCの積分値から簡易的に割り出した。VOCの初期濃度は光イオン化ガス検出センサー(RAE Systems社製、MiniRAE 3000)で測定し、系内のVOC濃度減少率はGC積分値の変化から計算した。
FIG. 9 shows an overview of the apparatus used for the VOC decomposition evaluation test using a photocatalyst. The test was conducted under the following conditions using a batch Pyrex reactor.
i) Reactor capacity: Approximately 392 ml
ii) Light source: Xenon lamp 300W (wavelength range: 300 to 800 nm)
iii) Cut filter: 420 nm (used when cutting wavelengths of 420 nm or less)
iv) Atmosphere: Dry air (supplied from air compressor), room temperature v) VOC (volatile organic compound) Type: IPA (isopropyl alcohol)
vi) VOC concentration: Approximately 258 ppm
vi) CO2 and VOC were detected using a Plot Q column and an OV-1 column of a gas chromatograph (GC) (Agilent 3000A MicroGC, manufactured by Agilent, Inc.). The CO2 concentration was simply calculated from the integrated value of GC based on the concentration in the air measured by a CO2 sensor (RI-2150 manufactured by RIKEN KEIKI Co., Ltd.). The initial concentration of VOC was measured with a photoionized gas detection sensor (MiniRAE 3000 manufactured by RAE Systems), and the rate of decrease in VOC concentration in the system was calculated from the change in the GC integrated value.
 図10には、300~800nmの光(紫外光から可視光)を照射した場合における実施例2、実施例2-2、実施例3、実施例3-4、実施例3-6、実施例3-7、実施例4、実施例5及び比較例で得られた試料粉末のVOC分解評価結果が示されている。なお、(a)はVOC残存率(%)を示し、(b)はCO2発生量(ppm)を示す。 FIG. 10 shows Example 2, Example 2-2, Example 3, Example 3-4, Example 3-6, and Example when irradiated with light of 300 to 800 nm (from ultraviolet light to visible light). The VOC decomposition evaluation results of the sample powders obtained in 3-7, Example 4, Example 5 and Comparative Example are shown. In addition, (a) shows VOC residual rate (%), and (b) shows CO2 generation amount (ppm).
 300~800nmの光(紫外光から可視光)を照射した場合には、実施例4を除く実施例3、実施例3-4、実施例3-6、実施例3-7、実施例2、実施例2-2、比較例、実施例5の光触媒は、3時間以内でほとんどのVOCを完全分解しており、実施例3、実施例3-6、実施例2、実施例4、実施例2-2、実施例3-7、比較例、実施例5、実施例4の光触媒の順に、VOCが分解されて発生するCO2の量が多いことがわかる。特に、300~800nmの光(紫外光から可視光)を照射した場合には、実施例3、実施例3-4、実施例3-6、実施例3-7、実施例2、実施例2-2の光触媒は、比較例としたアナターゼ型の光触媒よりCO2の発生量が多く、また実施例5も3時間以降では比較例よりもCO2発生量が多くなると予測され、いずれの光触媒も、比較例の光触媒より光触媒としての性能(光触媒性能)が高いことが分かる。 When irradiated with light of 300 to 800 nm (from ultraviolet light to visible light), Examples 3, Except for Example 4, Example 3-4, Example 3-6, Example 3-7, Example 2, The photocatalysts of Example 2-2, Comparative Example, and Example 5 completely decomposed most of the VOCs within 3 hours, and Example 3, Example 3-6, Example 2, Example 4, and Example. It can be seen that the amount of CO2 generated by decomposing VOCs is large in the order of 2-2, Example 3-7, Comparative Example, Example 5, and Example 4. In particular, when light of 300 to 800 nm (from ultraviolet light to visible light) is irradiated, Example 3, Example 3-4, Example 3-6, Example 3-7, Example 2, Example 2 The photocatalyst of -2 generates more CO2 than the anatase-type photocatalyst used as a comparative example, and it is predicted that the amount of CO2 generated in Example 5 will be higher than that of the comparative example after 3 hours. It can be seen that the performance as a photocatalyst (photocatalyst performance) is higher than that of the example photocatalyst.
 図11には、420nm以上の光(可視光)を照射した場合における実施例2、実施例3、実施例4、実施例5、実施例5-7、実施例5-11、実施例5-12で得られた試料粉末のVOC分解評価結果が示されている。なお、(a)はVOC残存率(%)を示し、(b)はCO2発生量(ppm)を示す。 FIG. 11 shows Example 2, Example 3, Example 4, Example 5, Example 5-7, Example 5-11, and Example 5-when irradiated with light (visible light) of 420 nm or more. The VOC decomposition evaluation result of the sample powder obtained in No. 12 is shown. In addition, (a) shows VOC residual rate (%), and (b) shows CO2 generation amount (ppm).
 420nm以上の光(可視光)を照射した場合には、比較例の光触媒はほとんど活性を示さない。実施例5の光触媒は14時間の内にVOCの残存率はほぼ0となり、24時間でほぼ完全分解に近い状態にあり、約3000ppmのCO2が発生している。この値は、紫外光から可視光領域における比較例の光触媒のVOC分解によるCO2の発生量とほぼ同等のレベルである。実施例2の光触媒は実施例5には及ばないが、23時間でVOCの残存率はほぼ0となり、24時間で約2500ppmのCO2が発生しており、更にCO2の発生量は多くなると予測され、この値は光触媒として十分な特性を持っていることが分かる。実施例5-7、実施例5-11、実施例5-12はIPAの分解、CO2の発生量共に実施例5には及ばないものの十分な光触媒特性を有している。実施例3や実施例4の光触媒も時間の経過と共にVOCの減少が見られ、またそれに伴ってCO2の発生も見られることから、可視光領域で活性を示す光触媒といえる。実施例2~5のVOCの残存率が、減少後に一旦増加した後に減少する変化は、光照射された光触媒によってIPAが一次分解されアセトンが生成されることによるガス気体の増加のためであり、その後アセトンは二次分解されて容器内のVOCは減少すると同時に完全分解されたCO2量が増加していく。 When irradiated with light of 420 nm or more (visible light), the photocatalyst of the comparative example shows almost no activity. In the photocatalyst of Example 5, the residual rate of VOC became almost 0 within 14 hours, and it was in a state of almost complete decomposition in 24 hours, and about 3000 ppm of CO2 was generated. This value is almost the same level as the amount of CO2 generated by VOC decomposition of the photocatalyst of the comparative example in the ultraviolet to visible light region. Although the photocatalyst of Example 2 is not as good as that of Example 5, it is predicted that the residual rate of VOC will be almost 0 in 23 hours, about 2500 ppm of CO2 will be generated in 24 hours, and the amount of CO2 generated will be further increased. , It can be seen that this value has sufficient characteristics as a photocatalyst. Examples 5-7, 5-11, and 5-12 have sufficient photocatalytic properties, although the decomposition of IPA and the amount of CO2 generated are not as high as those of Example 5. Since the photocatalysts of Examples 3 and 4 also show a decrease in VOC with the passage of time and CO2 generation is also observed, it can be said that they are photocatalysts showing activity in the visible light region. The change in the residual rate of VOCs in Examples 2 to 5 after increasing once after decreasing is due to the increase in gas gas due to the primary decomposition of IPA by the photocatalyst irradiated with light to produce acetone. After that, acetone is secondarily decomposed, the VOC in the container decreases, and at the same time, the amount of completely decomposed CO2 increases.
 図12には、420nm以上の光(可視光)を照射した場合における、TiO2の結晶型が異なる実施例5、実施例6、実施例6-2、実施例6-3で得られた試料粉末のVOC分解評価結果が示されている。なお、(a)はVOC残存率(%)を示し、(b)はCO2発生量(ppm)を示す。 FIG. 12 shows the sample powders obtained in Examples 5, 6, 6, 6-2, and 6-3, which have different crystal types of TiO2 when irradiated with light of 420 nm or more (visible light). The VOC decomposition evaluation result of is shown. In addition, (a) shows VOC residual rate (%), and (b) shows CO2 generation amount (ppm).
 420nm以上の光(可視光)を照射した場合には、実施例5、6、6-2、6-3の順に、VOCが分解されて発生するCO2の量が減少しており、TiO2の結晶型によって光触媒としての性能が異なることが分かる。実施例5の触媒は可視光領域で非常に高い光触媒性能を示し、比較例の触媒の紫外光から可視光領域で見られるVOC分解によるCO2の発生量と同等の光触媒性能を示している。実施例6、実施例6-2、実施例6-3の可視光領域での光触媒性能は実施例5程ではないが、24時間で数100ppm以上のCO2が発生しており、光触媒性能が高いことが分かる。 When irradiated with light of 420 nm or more (visible light), the amount of CO2 generated by decomposing VOCs decreases in the order of Examples 5, 6, 6-2, and 6-3, and the TiO2 crystals. It can be seen that the performance as a photocatalyst differs depending on the type. The catalyst of Example 5 exhibits extremely high photocatalytic performance in the visible light region, and exhibits photocatalytic performance equivalent to the amount of CO2 generated by VOC decomposition observed in the visible light region from the ultraviolet light of the catalyst of the comparative example. The photocatalytic performance in the visible light region of Example 6, Example 6-2, and Example 6-3 is not as high as that of Example 5, but CO2 of several hundred ppm or more is generated in 24 hours, and the photocatalytic performance is high. You can see that.
 本発明に係る光触媒は、紫外光から可視光領域においては、市販の紫外線光触媒に比べてVOC分解能力が優れていると同時に、特に可視光照射した場合においてもVOC分解能力が優れているので、室外で建造物の壁等の汚れ防止に用いることができるばかりでなく、一般家庭や事務所や映画館や自動車や列車(特に地下鉄列車)の室内やトンネル内に設置して、シックハウス原因物質や有害有機化合物を分解して、より健全な環境を保つことができる。また、本発明に係る光触媒を空気中に配置することによって、空気の清浄化に役立つばかりでなく、本発明に係る光触媒を水中に配置すると、大腸菌などを殺菌することができ、水の清浄化にも役立ち、トイレ、風呂、プール、理容院、病院の内部や周辺に配置することによって、衛生的な水の環境を維持することができる。また、本発明に係る光触媒によって、臭いの原因物質を分解することができ、トイレ、風呂、プール、理容院、病院、鉄道列車、自動車の内部や周辺に配置することによって、衛生的で悪臭の少ない環境を維持することができる。 The photocatalyst according to the present invention has an excellent VOC decomposition ability in the ultraviolet to visible light region as compared with a commercially available ultraviolet photocatalyst, and at the same time, has an excellent VOC decomposition ability even when irradiated with visible light. Not only can it be used outdoors to prevent stains on the walls of buildings, but it can also be installed indoors or in tunnels of ordinary households, offices, movie theaters, automobiles and trains (especially subway trains) to cause sick house causative substances. Hazardous organic compounds can be decomposed to maintain a healthier environment. Further, by arranging the photocatalyst according to the present invention in the air, not only is it useful for purifying the air, but also by arranging the photocatalyst according to the present invention in water, Escherichia coli and the like can be sterilized, and the water can be purified. It is also useful, and by arranging it inside or around toilets, baths, pools, barbers, and hospitals, a sanitary water environment can be maintained. In addition, the photocatalyst according to the present invention can decompose the causative substance of odor, and by arranging it in or around toilets, baths, pools, barber shops, hospitals, railway trains, and automobiles, it is hygienic and has a bad odor. It is possible to maintain a small environment.
 1 黒鉛るつぼ
 2 原料混合粉末
 3 真空加熱炉
 4 高周波加熱装置
 5 配管
 6 真空ポンプ
 11 ガス抜き穴
1 Graphite crucible 2 Raw material mixed powder 3 Vacuum heating furnace 4 High frequency heating device 5 Piping 6 Vacuum pump 11 Degassing hole

Claims (5)

  1.   TiO2粉末とTiO2に対して0.1~5wt%のAl、Li、Mg若しくはCa、その水素化物又はそれらの混合物の粉末とTiO2に対して0.1~5wt%のFe若しくはCu、その酸化物又はそれらの混合物の粉末とを均一に混合して得た第1の混合粉末をるつぼ内に収納し、前記るつぼを真空加熱炉中に配置し、真空排気した後に、真空中で350~550℃の温度で熱処理して光触媒を製造する方法。 0.1 to 5 wt% of Al, Li, Mg or Ca with respect to TiO2 powder and TiO2, a hydride thereof or a mixture thereof, 0.1 to 5 wt% of Fe or Cu with respect to TiO2, and an oxide thereof. Alternatively, the first mixed powder obtained by uniformly mixing the powder of the mixture thereof is stored in a pot, the pot is placed in a vacuum heating furnace, exhausted in a vacuum, and then in a vacuum at 350 to 550 ° C. A method of producing a photocatalyst by heat treatment at the temperature of.
  2.  TiO2に対して0.1~5wt%のFe若しくはCu、その酸化物又はそれらの混合物を塩酸又は硝酸で溶解して溶解液を得、前記溶解液とTiO2粉末の水懸濁液とを混合した後に乾燥して得た混合乾燥粉末とTiO2に対して0.1~5wt%のAl、Li、Mg若しくはCa、その水素化物又はそれらの混合物の粉末とを均一に混合して第2の混合粉末を得、前記第2の混合粉末をるつぼ内に収納し、前記るつぼを真空加熱炉中に配置し、真空排気した後に、真空中で350~550℃の温度で熱処理して光触媒を製造する方法。 0.1 to 5 wt% of Fe or Cu with respect to TiO, an oxide thereof, or a mixture thereof was dissolved in hydrochloric acid or nitric acid to obtain a solution, and the solution was mixed with an aqueous suspension of TiO2 powder. A second mixed powder is obtained by uniformly mixing the mixed dry powder obtained by drying later and the powder of 0.1 to 5 wt% Al, Li, Mg or Ca, a hydride thereof, or a mixture thereof with respect to TiO2. A method in which the second mixed powder is stored in a pot, the pot is placed in a vacuum heating furnace, exhausted in a vacuum, and then heat-treated at a temperature of 350 to 550 ° C. in a vacuum to produce a photocatalyst. ..
  3.  TiO2がアナターゼ型、ルチル型、ブルッカイト型又はこれらの混合物である請求項1又は2に記載の光触媒を製造する方法。 The method for producing a photocatalyst according to claim 1 or 2, wherein TiO2 is an anatase type, a rutile type, a broccite type or a mixture thereof.
  4.  TiO2粉末とTiO2に対して0.1~5wt%のAl、Li、Mg若しくはCa、その水素化物又はそれらの混合物の粉末とTiO2に対して0.1~5wt%のFe若しくはCu、その酸化物又はそれらの混合物の粉末とを均一に混合して得た第1の混合粉末をるつぼ内に収納し、前記るつぼを真空加熱炉中に配置し、真空排気した後に、真空中で350~550℃の温度で熱処理して成り、TiO2粉末の結晶構造を保持したまま酸素欠陥を導入すると共にTiO2粉末の表面にFe若しくはCu、その酸化物又はそれらの混合物を担持している光触媒。 0.1 to 5 wt% of Al, Li, Mg or Ca with respect to TiO2 powder and TiO2, a hydride thereof or a mixture thereof, 0.1 to 5 wt% of Fe or Cu with respect to TiO2, and an oxide thereof. Alternatively, the first mixed powder obtained by uniformly mixing the powder of the mixture thereof is stored in a pot, the pot is placed in a vacuum heating furnace, exhausted in a vacuum, and then in a vacuum at 350 to 550 ° C. A photocatalyst which is heat-treated at the above temperature to introduce oxygen defects while maintaining the crystal structure of the TiO2 powder and to carry Fe or Cu, an oxide thereof, or a mixture thereof on the surface of the TiO2 powder.
  5.  TiO2に対して0.1~5wt%のFe若しくはCu、その酸化物又はそれらの混合物を塩酸又は硝酸で溶解して溶解液を得、前記溶解液とTiO2粉末の水懸濁液とを混合した後に乾燥して得た混合乾燥粉末とTiO2に対して0.1~5wt%のAl、Li、Mg若しくはCa、その水素化物又はそれらの混合物の粉末とを均一に混合して第2の混合粉末を得、前記第2の混合粉末をるつぼ内に収納し、前記るつぼを真空加熱炉中に配置し、真空排気した後に、真空中で350~550℃の温度で熱処理して成り、TiO2粉末の結晶構造を保持したまま酸素欠陥を導入すると共にTiO2粉末の表面にFe若しくはCu、その酸化物又はそれらの混合物を担持している光触媒。 0.1 to 5 wt% of Fe or Cu with respect to TiO, an oxide thereof, or a mixture thereof was dissolved in hydrochloric acid or nitric acid to obtain a solution, and the solution and an aqueous suspension of TiO2 powder were mixed. A second mixed powder is obtained by uniformly mixing the mixed dry powder obtained by drying later and the powder of 0.1 to 5 wt% Al, Li, Mg or Ca, a hydride thereof, or a mixture thereof with respect to TiO2. The second mixed powder was stored in a pot, the pot was placed in a vacuum heating furnace, exhausted in a vacuum, and then heat-treated in a vacuum at a temperature of 350 to 550 ° C. to form a TiO2 powder. A photocatalyst in which oxygen defects are introduced while maintaining the crystal structure and Fe or Cu, an oxide thereof, or a mixture thereof is supported on the surface of the TiO2 powder.
PCT/JP2020/012481 2019-03-27 2020-03-19 Photocatalyst production method and photocatalyst WO2020196329A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021509341A JP7454142B2 (en) 2019-03-27 2020-03-19 Photocatalyst manufacturing method and photocatalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-061613 2019-03-27
JP2019061613 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020196329A1 true WO2020196329A1 (en) 2020-10-01

Family

ID=72611918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012481 WO2020196329A1 (en) 2019-03-27 2020-03-19 Photocatalyst production method and photocatalyst

Country Status (2)

Country Link
JP (1) JP7454142B2 (en)
WO (1) WO2020196329A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003275599A (en) * 2002-03-19 2003-09-30 National Institute Of Advanced Industrial & Technology Composite photocatalyst for reducing carbon dioxide and carbon dioxide photo-reducing method using the same
JP2007090336A (en) * 2005-09-01 2007-04-12 Kyushu Institute Of Technology Photocatalyst, photocatalyst composition, building material for interior, coating, synthetic resin molding, fiber, method for using photocatalyst and method for decomposing hazardous material
JP2012214348A (en) * 2011-04-01 2012-11-08 National Institute For Materials Science Method for synthesizing reduction type titanium oxide
CN104399464A (en) * 2014-12-09 2015-03-11 齐鲁工业大学 Photocatalyst for activation of organic chlorine inert pollutant molecules in water treatment process, as well as preparation method and application of photocatalyst
CN105195146A (en) * 2015-09-30 2015-12-30 中国科学院新疆理化技术研究所 Preparation method and application of black TiO2 clad metal copper nanometer photocatalyst
JP2018177553A (en) * 2017-04-04 2018-11-15 東京印刷機材トレーディング株式会社 Method for manufacturing titanium suboxide particle and titanium suboxide particle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003275599A (en) * 2002-03-19 2003-09-30 National Institute Of Advanced Industrial & Technology Composite photocatalyst for reducing carbon dioxide and carbon dioxide photo-reducing method using the same
JP2007090336A (en) * 2005-09-01 2007-04-12 Kyushu Institute Of Technology Photocatalyst, photocatalyst composition, building material for interior, coating, synthetic resin molding, fiber, method for using photocatalyst and method for decomposing hazardous material
JP2012214348A (en) * 2011-04-01 2012-11-08 National Institute For Materials Science Method for synthesizing reduction type titanium oxide
CN104399464A (en) * 2014-12-09 2015-03-11 齐鲁工业大学 Photocatalyst for activation of organic chlorine inert pollutant molecules in water treatment process, as well as preparation method and application of photocatalyst
CN105195146A (en) * 2015-09-30 2015-12-30 中国科学院新疆理化技术研究所 Preparation method and application of black TiO2 clad metal copper nanometer photocatalyst
JP2018177553A (en) * 2017-04-04 2018-11-15 東京印刷機材トレーディング株式会社 Method for manufacturing titanium suboxide particle and titanium suboxide particle

Also Published As

Publication number Publication date
JPWO2020196329A1 (en) 2020-10-01
JP7454142B2 (en) 2024-03-22

Similar Documents

Publication Publication Date Title
JP5711582B2 (en) Photocatalyst and organic compound oxidation method using the same
TW592820B (en) Photocatalyst, process for producing the same and photocatalyst coating composition comprising the same
Nasir et al. Characterization and activity of the Ce and N co-doped TiO2 prepared through hydrothermal method
Zaleska Doped-TiO2: a review
Sajjad et al. Bismuth‐doped ordered mesoporous TiO2: visible‐light catalyst for simultaneous degradation of phenol and chromium
Peng et al. Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity
Hu et al. Hydrothermal synthesis of well-dispersed ultrafine N-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light
JP6342225B2 (en) Photocatalyst composite material and method for producing the same
TWI476043B (en) Photocatalytic materials and process for producing the same
Pang et al. Effect of carbon and nitrogen co-doping on characteristics and sonocatalytic activity of TiO2 nanotubes catalyst for degradation of Rhodamine B in water
KR100945035B1 (en) Tungstates based visible-light induced oxides photocatalysts and synthesis methods thereof
Zhu et al. Fabricate and characterization of Ag/BaAl2O4 and its photocatalytic performance towards oxidation of gaseous toluene studied by FTIR spectroscopy
Munoz-Batista et al. Effect of exfoliation and surface deposition of MnOx species in g-C3N4: toluene photo-degradation under UV and visible light
US20170072391A1 (en) Photocatalytic hydrogen production from water over mixed phase titanium dioxide nanoparticles
Štengl et al. In3+‐doped TiO2 and TiO2/In2S3 nanocomposite for photocatalytic and stoichiometric degradations
Fang et al. A novel ternary Mica/TiO2/Fe2O3 composite pearlescent pigment for the photocatalytic degradation of acetaldehyde
JP4842607B2 (en) Visible light responsive photocatalyst, visible light responsive photocatalyst composition, and method for producing the same
JP5591683B2 (en) Metal ion-supported titanium oxide particles having an exposed crystal face and method for producing the same
KR101548296B1 (en) Manufacturing method of bimetallic transition metal doped titanium dioxide
JP2002126517A (en) Photocatalyst, method for producing the same, and photocatalytic coating agent containing the same
JP2003019437A (en) Photocatalyst, method for producing hydrogen using the photocatalyst, and method for decomposing harmful matter
JP4997627B2 (en) Visible light responsive photocatalyst
WO2020196329A1 (en) Photocatalyst production method and photocatalyst
JP4265685B2 (en) Photocatalyst body, method for producing the same, and photocatalyst body coating agent using the same
JP4000378B2 (en) Visible light responsive complex oxide photocatalyst and method for decomposing and removing harmful chemicals using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777619

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509341

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20777619

Country of ref document: EP

Kind code of ref document: A1