JP2003275599A - Composite photocatalyst for reducing carbon dioxide and carbon dioxide photo-reducing method using the same - Google Patents

Composite photocatalyst for reducing carbon dioxide and carbon dioxide photo-reducing method using the same

Info

Publication number
JP2003275599A
JP2003275599A JP2002076830A JP2002076830A JP2003275599A JP 2003275599 A JP2003275599 A JP 2003275599A JP 2002076830 A JP2002076830 A JP 2002076830A JP 2002076830 A JP2002076830 A JP 2002076830A JP 2003275599 A JP2003275599 A JP 2003275599A
Authority
JP
Japan
Prior art keywords
carbon dioxide
photocatalyst
composite
dioxide reduction
composite photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002076830A
Other languages
Japanese (ja)
Other versions
JP3876305B2 (en
Inventor
Akira Yoshida
章 吉田
Kunikiyo Kan
国清 官
Tetsuya Kida
徹也 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002076830A priority Critical patent/JP3876305B2/en
Publication of JP2003275599A publication Critical patent/JP2003275599A/en
Application granted granted Critical
Publication of JP3876305B2 publication Critical patent/JP3876305B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new catalyst for producing a useful compound by efficiently reducing carbon dioxide using sunbeam as energy. <P>SOLUTION: A composite photocatalyst for reducing carbon dioxide is composed of a composite material of a semiconductor photocatalytic component and a carbon dioxide reducing catalyst component. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、太陽光を利用して
反応を行わせ、有用な化合物を製造するための新規な複
合光触媒及びそれを用いて水と二酸化炭素から各種の有
機化合物を製造する方法に関するものである。
TECHNICAL FIELD The present invention relates to a novel composite photocatalyst for producing a useful compound by carrying out a reaction using sunlight, and a variety of organic compounds produced from water and carbon dioxide using the same. It is about how to do it.

【0002】[0002]

【従来の技術】化石燃料の大量消費による埋蔵量の枯渇
とともに、その燃料に伴う大気中の二酸化炭素濃度の急
速な増加が地球の温暖化、海面の上昇、異常気象の面で
大きな社会問題となってきている。そのため、最近、化
石燃料に代わるべきエネルギー源として太陽光の有効利
用方法とともに、二酸化炭素の有用資源化についての研
究が盛んに行われている。
2. Description of the Related Art With the depletion of reserves due to the large consumption of fossil fuels, the rapid increase in the carbon dioxide concentration in the atmosphere due to the fuels has become a major social problem in terms of global warming, sea level rise, and abnormal weather. It has become to. Therefore, recently, researches on effective utilization of sunlight as an energy source that should replace fossil fuels and the utilization of carbon dioxide as a useful resource have been actively conducted.

【0003】そして、これまで二酸化炭素を還元固定化
し、炭素源として利用する方法としては、鉄系又は銅系
の二酸化炭素還元触媒の存在下に水素を暗反応させてメ
タン、メチルアルコールを生成させる接触水素化固定化
法、有機化合物例えばサリチル酸合成の際の反応体とし
て二酸化炭素を利用する有機化学的固定化法、金属電極
上で水を電気分解し、発生する水素を還元剤として二酸
化炭素を還元して、ギ酸、アルデヒド、炭化水素などを
生成させる電気化学的固定化法、半導体光触媒を用い、
光照射によりメタン、メチルアルコールを生成させる光
触媒的固定化方法などが知られている。
As a method of reducing and fixing carbon dioxide and utilizing it as a carbon source, hydrogen is darkly reacted in the presence of an iron-based or copper-based carbon dioxide reduction catalyst to produce methane and methyl alcohol. Catalytic hydrogenation immobilization method, organic chemical immobilization method that uses carbon dioxide as a reactant in the synthesis of salicylic acid, for example, electrolysis of water on a metal electrode, and hydrogen generated is converted to carbon dioxide as a reducing agent. Using an electrochemical immobilization method to reduce formic acid, aldehydes, hydrocarbons, etc., semiconductor photocatalyst,
A photocatalytic immobilization method in which methane and methyl alcohol are generated by light irradiation is known.

【0004】これらの方法は、多量のエネルギーを消費
せずにクリーンな条件下で二酸化炭素を固定化できる点
では非常に好ましいものといえるが、生成効率の点で問
題があり、実用化するにはまだ十分満足すべきものとは
いえない。
Although these methods can be said to be very preferable in that carbon dioxide can be immobilized under clean conditions without consuming a large amount of energy, they have a problem in production efficiency, and are practically used. Is not yet very satisfactory.

【0005】他方、TiO2、ZnO、CdS、Ga
P、SiC、SrTiO3などの半導体触媒の粉末を水
に懸濁させ、二酸化炭素を通しながらキセノンランプや
高圧水銀灯のような人工光源からの光照射を行うと、ホ
ルムアルデヒド、ギ酸、メタン、メチルアルコールなど
が生成すること[「ネイチュア(Nature)」,第
277巻,第637〜638ページ(1979)]、こ
の際半導体光触媒に貴金属を添加すれば活性が向上する
こと[「触媒」,第39巻,第24〜31ページ(19
97)、「キャタリスト・トゥデイ(Catalyst
Today)」,第39巻,第169〜175ページ
(1997)]が知られている。
On the other hand, TiO 2 , ZnO, CdS, Ga
When a powder of semiconductor catalyst such as P, SiC, SrTiO 3 is suspended in water and light is emitted from an artificial light source such as a xenon lamp or a high pressure mercury lamp while passing carbon dioxide, formaldehyde, formic acid, methane, methyl alcohol are obtained. And the like [“Nature”, vol. 277, pp. 637-638 (1979)], and the activity is improved by adding a noble metal to the semiconductor photocatalyst at this time [“catalyst”, vol. 39]. , Pages 24-31 (19
97), "Catalyst Today (Catalyst
Today, "39, 169-175 (1997)].

【0006】ところで、このような光触媒反応は、光照
射により半導体表面に生成する電子と正孔の高い還元力
及び酸化力を利用する反応であるが、この際ある種の半
導体光触媒を用いると水を水素と酸素に分解して、この
水素を二酸化炭素の還元剤として使用することができる
ので、この場合には、前記した接触水素化固定化法を利
用することが可能になる。
By the way, such a photocatalytic reaction is a reaction utilizing the high reducing power and oxidizing power of electrons and holes generated on the semiconductor surface by light irradiation. At this time, when a certain kind of semiconductor photocatalyst is used, water is used. Can be decomposed into hydrogen and oxygen, and this hydrogen can be used as a reducing agent for carbon dioxide. In this case, therefore, the above-mentioned catalytic hydrogenation immobilization method can be used.

【0007】したがって、このようにして二酸化炭素を
メタン、メチルアルコールなどに変換できれば、高効率
の燃料を得ることができ、また人工光源に代えて太陽光
を用いれば、さらにエネルギーの有効利用をはかること
ができるにもかかわらず、これまでこのような試みは全
くなされていなかった。
Therefore, if carbon dioxide can be converted into methane, methyl alcohol, etc. in this way, a highly efficient fuel can be obtained, and if sunlight is used instead of the artificial light source, more effective use of energy can be achieved. Despite being able to do so, no such attempt has been made so far.

【0008】[0008]

【発明が解決しようとする課題】本発明は、このような
事情のもとで、太陽光をエネルギー源とし、効率よく二
酸化炭素を還元して有用な化合物を生成するための新規
な触媒を提供することを目的としてなされたものであ
る。
Under the circumstances, the present invention provides a novel catalyst for efficiently reducing carbon dioxide by using sunlight as an energy source to produce a useful compound. It was made for the purpose of doing.

【0009】[0009]

【課題を解決するための手段】本発明者らは、太陽光を
用いて二酸化炭素を有用な化合物に変換するための方法
について鋭意研究を重ねた結果、半導体光触媒と二酸化
炭素還元触媒とを複合化した新規な触媒を用いることに
より、その目的を達成しうることを見出し、この知見に
基づいて本発明をなすに至った。
Means for Solving the Problems As a result of intensive studies on the method for converting carbon dioxide into a useful compound by using sunlight, the present inventors have combined a semiconductor photocatalyst and a carbon dioxide reduction catalyst. It was found that the object can be achieved by using the modified novel catalyst, and the present invention has been completed based on this finding.

【0010】すなわち、本発明は、半導体光触媒成分と
二酸化炭素還元触媒成分との複合化物から成る二酸化炭
素還元用複合光触媒、及びこの複合光触媒の存在下で、
水と二酸化炭素の混合物に太陽光を照射し、ホルムアル
デヒド、ギ酸、メタン、メチルアルコール及びエチルア
ルコールの中から選ばれる少なくとも1種の化合物を生
成させることを特徴とする二酸化炭素光還元方法を提供
するものである。
That is, the present invention provides a composite photocatalyst for carbon dioxide reduction comprising a composite of a semiconductor photocatalyst component and a carbon dioxide reduction catalyst component, and in the presence of this composite photocatalyst,
A method for photoreducing carbon dioxide, which comprises irradiating a mixture of water and carbon dioxide with sunlight to produce at least one compound selected from formaldehyde, formic acid, methane, methyl alcohol and ethyl alcohol. It is a thing.

【0011】[0011]

【発明の実施の形態】本発明の複合光触媒は、半導体光
触媒成分と二酸化炭素還元触媒成分とから構成されてい
るが、この半導体光触媒成分としては、これまで二酸化
炭素に光照射して、メタンやメチルアルコールとして固
定化する際に使用されていた公知の半導体光触媒の中か
ら任意に選んで用いることができる。このような半導体
光触媒としては、例えば、TiO2、ZnO、CdS、
GaP、SiC、SrTiO3などが知られているが、
特に、Na2Ti613、K2Ti613、KTiNbO5
などのチタン系複合酸化物が、太陽光照射下での水素発
生率が高く、二酸化炭素の還元効率が高いので好まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION The composite photocatalyst of the present invention is composed of a semiconductor photocatalyst component and a carbon dioxide reduction catalyst component. It can be arbitrarily selected from known semiconductor photocatalysts used for immobilization as methyl alcohol. Examples of such semiconductor photocatalysts include TiO 2 , ZnO, CdS,
GaP, SiC, SrTiO 3 and the like are known,
In particular, Na 2 Ti 6 O 13 , K 2 Ti 6 O 13 , KTiNbO 5
Titanium-based composite oxides such as are preferable because they have a high hydrogen generation rate under sunlight irradiation and a high carbon dioxide reduction efficiency.

【0012】また、半導体光触媒には所望に応じ助触媒
として貴金属、例えば白金、ニッケル、ルテニウム、ロ
ジウム、パラジウム又はそれらの酸化物などを担持させ
て、光触媒活性を向上させることができる。この貴金属
の担持量としては、半導体光触媒全質量に基づき、0.
1〜1.0質量%、好ましくは0.2〜0.4質量%の
範囲で選ばれる。
If desired, the semiconductor photocatalyst may be loaded with a noble metal such as platinum, nickel, ruthenium, rhodium, palladium or an oxide thereof as a co-catalyst to improve the photocatalytic activity. The amount of the noble metal supported is 0.
It is selected in the range of 1 to 1.0% by mass, preferably 0.2 to 0.4% by mass.

【0013】半導体光触媒に貴金属を担持させるのは、
常法に従い、例えばチタン系複合酸化物粒体に、貴金属
可溶性塩の溶液を含浸させ、乾燥後焼成するか、貴金属
可溶性塩の溶液にチタン系複合酸化物粒子を分散させ、
光を照射して粒子表面に助触媒の金属を沈積させること
によって用うことができる。後者は助触媒として特に白
金族金属を担持させる場合に有利である。この半導体光
触媒成分は、通常、粉砕して0.1〜5.0μmの粉末
として用いられる。この半導体光触媒は、光照射により
半導体表面に生成する電子と正孔の高い還元力及び酸化
力を生じ、これを利用して水を水素と酸素に分解する作
用を有する。
Supporting a noble metal on a semiconductor photocatalyst is
According to a conventional method, for example, titanium-based composite oxide particles, impregnated with a solution of a noble metal-soluble salt, and dried or baked, or dispersed titanium-based composite oxide particles in a solution of a noble metal-soluble salt,
It can be used by irradiating light to deposit the metal of the promoter on the surface of the particles. The latter is advantageous especially when a platinum group metal is supported as a cocatalyst. This semiconductor photocatalyst component is usually pulverized and used as a powder of 0.1 to 5.0 μm. This semiconductor photocatalyst has a function of generating high reducing power and oxidizing power of electrons and holes generated on a semiconductor surface by light irradiation, and utilizing this, water is decomposed into hydrogen and oxygen.

【0014】次に、二酸化炭素還元触媒成分としては、
これまで知られている鉄系二酸化炭素還元触媒や銅系二
酸化炭素還元触媒や、これらの触媒を高い表面積を有す
るゼオライトに担持させた触媒を用いることができる
が、特に脱アルミニウム処理したY型ゼオライトの細孔
内部に移動したアルミナナノ粒子に担持された、Fe−
Cu−K−Al系二酸化炭素還元触媒を用いるのが好ま
しい。
Next, as the carbon dioxide reduction catalyst component,
Conventionally known iron-based carbon dioxide reduction catalysts, copper-based carbon dioxide reduction catalysts, and catalysts obtained by supporting these catalysts on zeolite having a high surface area can be used, but especially dealuminated Y-type zeolite Fe-supported by alumina nanoparticles that have moved inside the pores of
It is preferable to use a Cu-K-Al-based carbon dioxide reduction catalyst.

【0015】このような二酸化炭素還元触媒成分は、例
えば、銅、鉄、カリウムの各水溶性塩を所定の割合で含
む水溶液に、所望に応じ脱アルミニウム処理したY型ゼ
オライトを加え、加熱反応させ、反応混合物を蒸発乾固
したのち粉砕し、酸素気流中300〜500℃で1〜3
時間焼成し、次いで水素気流中300〜500℃で1〜
3時間還元することにより調製される。この際の銅、
鉄、カリウムの混合比は、銅塩1モル当り、鉄塩20〜
50モル、カリウム塩15〜35モルの範囲内で選ばれ
る。また、脱アルミニウム処理したY型ゼオライト10
0質量部に対する各金属の担持量としては、0.1〜1
0質量%の範囲が適当である。
Such a carbon dioxide reduction catalyst component is prepared, for example, by adding dealuminated Y-type zeolite to an aqueous solution containing water-soluble salts of copper, iron and potassium in a predetermined ratio, and reacting with heating. The reaction mixture is evaporated to dryness and then crushed, and the mixture is crushed in an oxygen stream at 300 to 500 ° C.
Baking for 1 hour, then in a hydrogen stream at 300-500 ° C for 1-
Prepared by reducing for 3 hours. Copper at this time,
The mixing ratio of iron and potassium is 20-
It is selected within the range of 50 mol and 15 to 35 mol of potassium salt. Further, dealuminated Y-type zeolite 10
The supported amount of each metal with respect to 0 parts by mass is 0.1 to 1
A range of 0 mass% is suitable.

【0016】本発明の二酸化炭素還元用複合光触媒は、
前記の半導体光触媒成分と二酸化炭素還元触媒成分とを
質量比1:5ないし5:1好ましくは1:2ないし2:
1の割合で混合し、粉砕後、100〜850μmの粒径
に造粒して所望の二酸化炭素還元用複合光触媒を製造す
ることができる。
The composite photocatalyst for carbon dioxide reduction of the present invention comprises:
The mass ratio of the semiconductor photocatalyst component and the carbon dioxide reduction catalyst component is 1: 5 to 5: 1, preferably 1: 2 to 2:
The mixture can be mixed at a ratio of 1, pulverized, and then granulated to have a particle size of 100 to 850 μm to manufacture a desired composite photocatalyst for carbon dioxide reduction.

【0017】次に添付図面に従って本発明方法を説明す
る。図1は、本発明方法を行うのに好適な反応装置の1
例を示す説明図であり、石英製太陽光受光セル1の底部
には吸収材料2例えば蒸留水を吸収させた石英ウールを
充填し、その上に本発明の二酸化炭素還元用複合光触媒
3が載置されている。そして、この複合光触媒3の内部
には温度センサー例えば熱電対4が配置され、これは冷
接点温度補償器5及びデータ収集装置6に接続し、この
データ収集装置6は、さらに温度看視装置7に信号を出
力している。
Next, the method of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a reactor suitable for carrying out the method of the present invention.
FIG. 3 is an explanatory view showing an example, in which the bottom portion of the quartz solar light receiving cell 1 is filled with an absorbing material 2, for example, quartz wool which has absorbed distilled water, and the carbon dioxide reduction composite photocatalyst 3 of the present invention is mounted thereon. It is placed. A temperature sensor, for example, a thermocouple 4 is arranged inside the composite photocatalyst 3, which is connected to a cold junction temperature compensator 5 and a data collecting device 6, and the data collecting device 6 further includes a temperature monitoring device 7 Is outputting a signal to.

【0018】また、図2は、この反応装置の太陽受光セ
ル1に太陽光を集光させるための集光型太陽光追尾光反
応機構の斜視図であり、太陽光8は凹面鏡9により集光
され、受光セル1に投射される。この受光セル1は、太
陽を自動的に追尾する赤道儀10に取り付けられ、受光
セル1は常時太陽に対向して回転するようになってい
る。
FIG. 2 is a perspective view of a concentrating sunlight tracking light reaction mechanism for concentrating sunlight on the solar light receiving cell 1 of this reaction apparatus. The sunlight 8 is condensed by the concave mirror 9. And is projected onto the light receiving cell 1. The light-receiving cell 1 is attached to an equatorial mount 10 that automatically tracks the sun, and the light-receiving cell 1 always rotates so as to face the sun.

【0019】本発明方法に従えば、受光セル1中の吸水
材料2に蒸留水を吸収させ、50〜300kPaの圧力
で二酸化炭素を導入し、受光セル1を太陽光の集光点に
位置するように赤道儀10を設定し、受光セル1内で光
反応を行わせる。次いで生成した気体を取り出し、ガス
クロマトグラフィーによって検出し、また液体をマイク
ロシリンジを用いてガスクロマトグラフィに導入し、生
成物を検出した。このようにしてホルムアルデヒド、ギ
酸、メタン、メチルアルコール、エチルアルコールの生
成が認められた。この際の二酸化炭素の供給速度として
は、複合光触媒の質量に基づき1〜100ml/分、好
ましくは5〜20ml/分の範囲で選ばれる。
According to the method of the present invention, the water absorbing material 2 in the light receiving cell 1 is made to absorb distilled water, carbon dioxide is introduced at a pressure of 50 to 300 kPa, and the light receiving cell 1 is positioned at the sunlight condensing point. The equatorial mount 10 is set so that the photoreaction is performed in the light receiving cell 1. The gas produced was then removed and detected by gas chromatography and the liquid was introduced into the gas chromatography using a microsyringe and the product was detected. In this way, formation of formaldehyde, formic acid, methane, methyl alcohol and ethyl alcohol was confirmed. The supply rate of carbon dioxide at this time is selected in the range of 1 to 100 ml / min, preferably 5 to 20 ml / min based on the mass of the composite photocatalyst.

【0020】[0020]

【実施例】次に、実施例により本発明をさらに詳細に説
明するが、本発明は、これらの例によってなんら限定さ
れるものではない。
EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0021】実施例1 硝酸カリウム0.033モルと、硝酸鉄(III)九水
合物0.047モルと、硝酸銅(II)三水合物0.0
014モルを、蒸留水30mlに加え、ガラス棒でよく
混合した。次に脱アルミニウム処理したY型ゼオライト
30グラムをこれに加えて、かきまぜながら蒸発乾固し
た。得られた固形物を磁製乳鉢に移し、乳棒で微粉砕し
たのち、磁製ボートに入れ、酸素気流(流量=30ml
/分)中で、400℃で2時間焼成したのち、さらに水
素気流(流量=20ml/分)で、400℃で2時間還
元を行った。
Example 1 0.033 mol of potassium nitrate, 0.047 mol of iron (III) nitrate nonahydrate and 0.03 mol of copper (II) nitrate trihydrate.
014 mol was added to 30 ml of distilled water and mixed well with a glass rod. Next, 30 g of dealuminated Y-type zeolite was added thereto, and the mixture was evaporated to dryness while stirring. The obtained solid is transferred to a porcelain mortar and finely pulverized with a pestle, and then placed in a porcelain boat, and an oxygen stream (flow rate = 30 ml).
/ Min), and then calcined at 400 ° C. for 2 hours, and then further reduced at 400 ° C. for 2 hours with a hydrogen stream (flow rate = 20 ml / min).

【0022】別に炭酸カリウム0.0208モルと、二
酸化チタン0.125モルとを、蒸留水80mlに加
え、かきまぜながら蒸発乾固した。得られた固形物を1
10℃で乾燥させたのち、空気中940℃で20時間焼
成した。得られたK2Ti613粉末3.0グラムを、2
モル/リットル濃度の炭酸ナトリウム水溶液60mlと
1000ppm塩化白金酸水溶液9mlに加え、よく分
散させたのち、水銀ランプ下10時間照射して白金の担
持を行った。得られた白金担持K2Ti613を水で洗浄
し、120℃で12時間乾燥させた。このようにして調
製した鉄系二酸化炭素還元触媒と白金担持K2Ti613
光触媒とを質量比1:1でよく混合したのち、100〜
850μmの大きさの粒子に造粒することにより、二酸
化炭素還元用光触媒を製造した。
Separately, 0.0208 mol of potassium carbonate and 0.125 mol of titanium dioxide were added to 80 ml of distilled water and evaporated to dryness while stirring. 1 solid obtained
After drying at 10 ° C., it was baked in air at 940 ° C. for 20 hours. 3.0 g of the obtained K 2 Ti 6 O 13 powder was added to 2
After adding 60 ml of an aqueous solution of sodium carbonate having a concentration of mol / liter and 9 ml of an aqueous solution of 1000 ppm chloroplatinic acid to disperse well, irradiation with a mercury lamp was carried out for 10 hours to support platinum. The platinum-supported K 2 Ti 6 O 13 thus obtained was washed with water and dried at 120 ° C. for 12 hours. The iron-based carbon dioxide reduction catalyst thus prepared and platinum-supported K 2 Ti 6 O 13
After mixing well with the photocatalyst at a mass ratio of 1: 1, 100-
A photocatalyst for carbon dioxide reduction was manufactured by granulating into particles having a size of 850 μm.

【0023】実施例2 石英製太陽光受光セルの底部に、石英ウール0.287
グラムを入れ、蒸留水2.0mlを加えた。さらに、石
英ウール上部に、実施例1で得た複合化二酸化炭素固定
化触媒3.0グラムを入れ、蒸留水2.0mlを加え
た。Pt−Pt/Rh13%熱電対を触媒層の太陽光受
光面に配置し、受光セル内部を真空脱気したのち、二酸
化炭素を2×102kPaの圧で導入し、平成13年1
0月12日午前9時30分から午後4時30分の間、太
陽光を反応セルに焦点照射した。この日、セル中の最高
反応温度は327℃であった。得られた受光セル内部の
生成物を表1に示す。
Example 2 On the bottom of a quartz solar cell, quartz wool 0.287 was applied.
Grams were added and 2.0 ml of distilled water was added. Further, 3.0 g of the composite carbon dioxide-immobilized catalyst obtained in Example 1 was put on the upper part of the quartz wool, and 2.0 ml of distilled water was added. A Pt-Pt / Rh 13% thermocouple was placed on the solar light receiving surface of the catalyst layer, the interior of the light receiving cell was vacuum degassed, and then carbon dioxide was introduced at a pressure of 2 × 10 2 kPa.
Sunlight was focused on the reaction cell from 9:30 am to 4:30 pm on 12th October. On this day, the maximum reaction temperature in the cell was 327 ° C. The products inside the obtained light-receiving cell are shown in Table 1.

【0024】実施例3 石英製太陽光受光セルの底部に、石英ウール0.135
グラムを入れ、蒸留水1.0mlを加えた。さらに、石
英ウール上に、実施例1で製造した複合化二酸化炭素固
定化触媒0.1グラムを入れ、蒸留水1.0mlを加え
た。次いで、受光セル内部を真空脱気したのち、二酸化
炭素を2×102kPaの圧で導入し、平成13年11
月4日午前9時46分から午後4時35分の間、太陽光
を反応セルに焦点照射した。この日、セル中の最高反応
温度は314℃であった。得られた受光セル内部の生成
物を表1に示す。
Example 3 0.135 quartz wool was added to the bottom of the quartz solar cell.
Grams were added and 1.0 ml of distilled water was added. Further, 0.1 g of the composite carbon dioxide-immobilized catalyst produced in Example 1 was put on quartz wool, and 1.0 ml of distilled water was added. Next, after degassing the inside of the light receiving cell in vacuum, carbon dioxide was introduced at a pressure of 2 × 10 2 kPa.
Sunlight was focused on the reaction cell from 9:46 am to 4:35 pm on the 4th of the month. On this day, the maximum reaction temperature in the cell was 314 ° C. The products inside the obtained light-receiving cell are shown in Table 1.

【0025】実施例4 石英製太陽光受光セルの底部に、石英ウール0.301
グラムを入れ、蒸留水2.0mlを加えた。石英ウール
上に、実施例1で製造した複合化二酸化炭素固定化触媒
3.0グラムを入れ、蒸留水を2.0mlを加えた。受
光セル内部を真空脱気したのち、二酸化炭素を85kP
a導入し、平成13年11月7日午前9時28分から午
後4時18分の間、太陽光を反応セルに焦点照射した。
この日、セル中の最高反応温度は278℃であった。受
光セル内の生成物を表1に示す。
Example 4 On the bottom of a quartz solar cell, quartz wool 0.301 was added.
Grams were added and 2.0 ml of distilled water was added. 3.0 g of the composite carbon dioxide-immobilized catalyst produced in Example 1 was put on quartz wool, and 2.0 ml of distilled water was added. After degassing the inside of the light receiving cell in a vacuum, carbon dioxide is supplied at 85 kP
a was introduced and the reaction cell was focused and irradiated with sunlight from 9:28 am to 4:18 pm on November 7, 2001.
On this day, the maximum reaction temperature in the cell was 278 ° C. The products in the light receiving cell are shown in Table 1.

【0026】実施例5 石英製太陽光受光セルの底部に、石英ウール0.273
グラムを入れ、0.1モル/リットル水酸化ナトリウム
1.0mlを加えた。石英ウールに、実施例1で製造し
た複合化二酸化炭素固定化触媒3.0グラムを入れ、
0.1モル/リットル水酸化ナトリウム1.5mlを加
えた。受光セル内部を真空脱気したのち、二酸化炭素を
96kPaの圧で導入し、平成13年11月20日午前
11時10分から午後4時18分の間、及び11月21
日午前9時20分から午後2時30分の間、太陽光を反
応セルに焦点照射した。この間、セル中の最高反応温度
は262℃であった。受光セル内の生成物を表1に示
す。
Example 5 At the bottom of a solar cell made of quartz, 0.273 of quartz wool was used.
Gram was added and 1.0 ml of 0.1 mol / liter sodium hydroxide was added. Quartz wool was charged with 3.0 g of the composite carbon dioxide-immobilized catalyst produced in Example 1,
1.5 ml of 0.1 mol / liter sodium hydroxide was added. After degassing the inside of the light-receiving cell in vacuum, carbon dioxide was introduced at a pressure of 96 kPa, from 11:10 am to 4:18 pm on November 20, 2001, and November 21.
Sunlight was focused on the reaction cell from 9:20 am to 2:30 pm on the day. During this time, the maximum reaction temperature in the cell was 262 ° C. The products in the light receiving cell are shown in Table 1.

【0027】実施例6 石英製太陽光受光セルの底部に、石英ウール0.102
グラムを入れ、0.1モル/リットル水酸化ナトリウム
0.5mlを加えた。石英ウール上に、実施例1で調製
した複合化二酸化炭素固定化光触媒1.0グラムを入
れ、0.1モル/リットル水酸化ナトリウム0.5ml
を加えた。受光セル内部を真空脱気した後、二酸化炭素
を96kPaの圧で導入し、平成13年12月3日午前
9時13分から午後4時28分の間、太陽光を反応セル
に焦点照射した。この間、セル中の最高反応温度は25
8℃であった。受光セル内の生成物を表1に示す。
Example 6 On the bottom of a quartz solar cell, quartz wool 0.102 was used.
Gram was added and 0.5 ml of 0.1 mol / liter sodium hydroxide was added. 1.0 g of the composite carbon dioxide-immobilized photocatalyst prepared in Example 1 was put on quartz wool, and 0.5 ml of 0.1 mol / liter sodium hydroxide was added.
Was added. After degassing the inside of the light-receiving cell in vacuum, carbon dioxide was introduced at a pressure of 96 kPa, and sunlight was focused on the reaction cell from 9:13 am to 4:28 pm on December 3, 2001. During this time, the maximum reaction temperature in the cell is 25
It was 8 ° C. The products in the light receiving cell are shown in Table 1.

【0028】実施例7 石英製太陽光受光セルの底部に、石英ウール0.243
グラムを入れ、0.1モル/リットル水酸化ナトリウム
0.5mlを加えた。石英ウール上に、実施例1で調製
した複合化二酸化炭素固定化光触媒1.0グラムを入
れ、0.1モル/リットル水酸化ナトリウム0.5ml
を再び加えた。受光セル内部を真空脱気したのち、二酸
化炭素を2.0×102Pa導入し、平成13年12月
6日午前9時30分から午後2時38分の間、及び12
月7日午前9時33分から午後1時42分の間、太陽光
を反応セルに焦点照射した。この間、セル中の最高反応
温度は251℃であった。受光セル内の生成物を表1に
示す。
Example 7 On the bottom of a quartz solar cell, 0.243 quartz wool was used.
Gram was added and 0.5 ml of 0.1 mol / liter sodium hydroxide was added. 1.0 g of the composite carbon dioxide-immobilized photocatalyst prepared in Example 1 was put on quartz wool, and 0.5 ml of 0.1 mol / liter sodium hydroxide was added.
Was added again. After degassing the inside of the light receiving cell in a vacuum, carbon dioxide was introduced at 2.0 × 10 2 Pa, and from 9:30 am to 2:38 pm on December 6, 2001, and 12
Sunlight was focused on the reaction cell from 9:33 am to 1:42 pm on the 7th of the month. During this time, the maximum reaction temperature in the cell was 251 ° C. The products in the light receiving cell are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】本発明によれば、太陽のエネルギーを利
用して、二酸化炭素の還元反応を高い効率で行わせるこ
とにより、ホルムアルデヒド、ギ酸、メタン、メチルア
ルコール、エチルアルコールなどの有用化合物を製造す
ることができる。
INDUSTRIAL APPLICABILITY According to the present invention, useful compounds such as formaldehyde, formic acid, methane, methyl alcohol, and ethyl alcohol are produced by using the energy of the sun to carry out the reduction reaction of carbon dioxide with high efficiency. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明方法を行うのに好適な反応装置の1例
の説明図。
FIG. 1 is an explanatory view of an example of a reaction apparatus suitable for carrying out the method of the present invention.

【図2】 図1の反応装置の集光型太陽光追尾反応機構
の斜視図。
FIG. 2 is a perspective view of a concentrating solar tracking reaction mechanism of the reaction device of FIG.

【符号の説明】[Explanation of symbols]

1 太陽光受光セル 2 吸収材料 3 二酸化炭素還元用複合光触媒 4 熱電対 5 冷接点温度補償器 6 データ収集装置 7 温度看視装置 1 solar light receiving cell 2 absorbing material 3 Composite photocatalyst for carbon dioxide reduction 4 thermocouple 5 Cold junction temperature compensator 6 Data collection device 7 Temperature monitoring device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 9/04 C07C 9/04 27/00 27/00 31/04 31/04 31/08 31/08 47/04 47/04 53/02 53/02 // C07B 61/00 300 C07B 61/00 300 (72)発明者 官 国清 佐賀県鳥栖市宿町字野々下807番地1 独 立行政法人産業技術総合研究所九州センタ ー内 (72)発明者 木田 徹也 佐賀県鳥栖市宿町字野々下807番地1 独 立行政法人産業技術総合研究所九州センタ ー内 Fターム(参考) 4G069 AA02 AA08 BA07B BA48A BB06B BC03B BC31B BC66B BC75B CB62 CB70 CB74 EA02Y 4H006 AA02 AC11 AC41 AC45 AC46 BA02 BA05 BA09 BA10 BA19 BA30 BA71 BA95 BE41 BE60 FE11 4H039 CA60 CA62 CA65 CB20 CL00─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C07C 9/04 C07C 9/04 27/00 27/00 31/04 31/04 31/08 31/08 47 / 04 47/04 53/02 53/02 // C07B 61/00 300 C07B 61/00 300 (72) Inventor Kokusei 807 Nonoshita, No. 1 in the town of Tosu City, Tosu City, Saga Prefecture 1 In the Kyushu Center (72) Inventor Tetsuya Kida 807 Nonoshita, Tojuku-cho, Tosu City, Saga 1 F-Term (Reference) 4K069 AA02 AA08 BA07B BA48A BB06B BC03B BC31B BC66B BC75B CB62 CB70 CB74 EA02Y 4H006 AA02 AC11 AC41 AC45 AC46 BA02 BA05 BA09 BA10 BA19 BA30 BA71 BA95 BE41 BE60 FE11 4H039 CA60 CA62 CA65 CB20 CL00

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 半導体光触媒成分と二酸化炭素還元触媒
成分との複合化物から成る二酸化炭素還元用複合光触
媒。
1. A composite photocatalyst for carbon dioxide reduction comprising a composite of a semiconductor photocatalyst component and a carbon dioxide reduction catalyst component.
【請求項2】 半導体光触媒成分と二酸化炭素還元触媒
成分との含有割合が1:5ないし5:1の範囲内にある
請求項1記載の二酸化炭素還元用複合光触媒。
2. The composite photocatalyst for carbon dioxide reduction according to claim 1, wherein the content ratio of the semiconductor photocatalyst component and the carbon dioxide reduction catalyst component is in the range of 1: 5 to 5: 1.
【請求項3】 半導体光触媒成分が貴金属助触媒を担持
したチタン系複合酸化物である請求項1又は2記載の二
酸化炭素還元用複合光触媒。
3. The composite photocatalyst for reducing carbon dioxide according to claim 1, wherein the semiconductor photocatalyst component is a titanium-based composite oxide carrying a noble metal promoter.
【請求項4】 二酸化炭素還元触媒成分が、Fe−Cu
−K−Al系触媒である請求項1、2又は3記載の二酸
化炭素還元用複合光触媒。
4. The carbon dioxide reduction catalyst component is Fe--Cu.
The composite photocatalyst for carbon dioxide reduction according to claim 1, 2 or 3, which is a -K-Al based catalyst.
【請求項5】 Fe−Cu−K−Al系触媒がゼオライ
トに担持されている請求項4記載の二酸化炭素還元用複
合光触媒。
5. The composite photocatalyst for carbon dioxide reduction according to claim 4, wherein the Fe—Cu—K—Al catalyst is supported on zeolite.
【請求項6】 半導体光触媒成分が白金担持K2Ti6
13であり、二酸化炭素還元触媒成分がゼオライトに担持
されたFe−Cu−K−Al系触媒である請求項1ない
し5のいずれかに記載の二酸化炭素還元用複合光触媒。
6. The semiconductor photocatalyst component is platinum-supported K 2 Ti 6 O.
13. The composite photocatalyst for carbon dioxide reduction according to claim 1, wherein the carbon dioxide reduction catalyst component is 13 and is a Fe—Cu—K—Al-based catalyst supported on zeolite.
【請求項7】 請求項1ないし6のいずれかに記載の二
酸化炭素還元用複合光触媒の存在下で、水と二酸化炭素
の混合物に太陽光を照射し、ホルムアルデヒド、ギ酸、
メタン、メチルアルコール及びエチルアルコールの中か
ら選ばれる少なくとも1種の化合物を生成させることを
特徴とする二酸化炭素光還元方法。
7. A mixture of water and carbon dioxide is irradiated with sunlight in the presence of the composite photocatalyst for reducing carbon dioxide according to claim 1 to formaldehyde, formic acid,
A carbon dioxide photoreduction method characterized by producing at least one compound selected from methane, methyl alcohol and ethyl alcohol.
【請求項8】 集光型太陽光追尾光反応機構を用いて行
う請求項7記載の二酸化炭素光還元方法。
8. The carbon dioxide photoreduction method according to claim 7, which is carried out by using a concentrating solar tracking photoreaction mechanism.
JP2002076830A 2002-03-19 2002-03-19 Composite photocatalyst for carbon dioxide reduction and carbon dioxide photoreduction method using the same Expired - Lifetime JP3876305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002076830A JP3876305B2 (en) 2002-03-19 2002-03-19 Composite photocatalyst for carbon dioxide reduction and carbon dioxide photoreduction method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002076830A JP3876305B2 (en) 2002-03-19 2002-03-19 Composite photocatalyst for carbon dioxide reduction and carbon dioxide photoreduction method using the same

Publications (2)

Publication Number Publication Date
JP2003275599A true JP2003275599A (en) 2003-09-30
JP3876305B2 JP3876305B2 (en) 2007-01-31

Family

ID=29205457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002076830A Expired - Lifetime JP3876305B2 (en) 2002-03-19 2002-03-19 Composite photocatalyst for carbon dioxide reduction and carbon dioxide photoreduction method using the same

Country Status (1)

Country Link
JP (1) JP3876305B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012148245A2 (en) * 2011-04-29 2012-11-01 서강대학교산학협력단 Composite structure for an artificial photosynthesis reaction and integrated reaction device for artificial photosynthesis including same, and composite structure for a water splitting reaction and integrated reaction device for water splitting including same
JP2012219233A (en) * 2011-04-13 2012-11-12 Nippon Telegr & Teleph Corp <Ntt> Apparatus for recycling carbon dioxide
JP2012236847A (en) * 2005-04-15 2012-12-06 Univ Of Southern California Efficient and selective chemical recycling of carbon dioxide to methanol, dimethyl ether and derived products
US8696883B2 (en) 2010-10-06 2014-04-15 Panasonic Corporation Method for reducing carbon dioxide
JP2015504872A (en) * 2011-12-19 2015-02-16 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing racemic α-amino acid or glycine, mixture, composition and method for producing complexing agent
US9157158B2 (en) 2012-07-05 2015-10-13 Panasonic Intellectual Property Management Co., Ltd. Method for producing alcohol
CN105195131A (en) * 2015-10-15 2015-12-30 南昌航空大学 Preparation method of graphene quantum dot/vanadium-doped mesoporous titanium dioxide composite photocatalyst
US9551077B2 (en) 2012-08-27 2017-01-24 Panasonic Intellectual Property Management Co., Ltd. Photoelectrode used for carbon dioxide reduction and method for reducing carbon dioxide using the photoelectrode
US9598779B2 (en) 2013-07-05 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Method for reducing carbon dioxide
US9598781B2 (en) 2013-05-21 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Carbon dioxide reducing method, carbon dioxide reducing cell, and carbon dioxide reducing apparatus
WO2020196329A1 (en) * 2019-03-27 2020-10-01 東京印刷機材トレーディング株式会社 Photocatalyst production method and photocatalyst
CN114481201A (en) * 2021-12-30 2022-05-13 海南师范大学 Silver-modified copper-loaded zeolite Ag/Cu-TS-1 photo-driven CO2Reduction method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8414758B2 (en) 2011-03-09 2013-04-09 Panasonic Corporation Method for reducing carbon dioxide
WO2013031062A1 (en) 2011-08-31 2013-03-07 パナソニック株式会社 Method for reducing carbon dioxide
JP5236125B1 (en) 2011-08-31 2013-07-17 パナソニック株式会社 How to reduce carbon dioxide
CN104785259B (en) * 2015-04-21 2018-02-02 福州大学 The preparation and its application of plasma gold/zinc oxide compound nano chip arrays device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236847A (en) * 2005-04-15 2012-12-06 Univ Of Southern California Efficient and selective chemical recycling of carbon dioxide to methanol, dimethyl ether and derived products
US8696883B2 (en) 2010-10-06 2014-04-15 Panasonic Corporation Method for reducing carbon dioxide
JP2012219233A (en) * 2011-04-13 2012-11-12 Nippon Telegr & Teleph Corp <Ntt> Apparatus for recycling carbon dioxide
US9259706B2 (en) 2011-04-29 2016-02-16 Sogang University Research Foundation Composite structure for an artificial photosynthesis reaction and integrated reaction device for artificial photosynthesis including same, and composite structure for a water splitting reaction and integrated reaction device for water splitting including same
WO2012148245A3 (en) * 2011-04-29 2013-03-07 서강대학교산학협력단 Composite structure for an artificial photosynthesis reaction and integrated reaction device for artificial photosynthesis including same, and composite structure for a water splitting reaction and integrated reaction device for water splitting including same
WO2012148245A2 (en) * 2011-04-29 2012-11-01 서강대학교산학협력단 Composite structure for an artificial photosynthesis reaction and integrated reaction device for artificial photosynthesis including same, and composite structure for a water splitting reaction and integrated reaction device for water splitting including same
JP2015504872A (en) * 2011-12-19 2015-02-16 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing racemic α-amino acid or glycine, mixture, composition and method for producing complexing agent
US9157158B2 (en) 2012-07-05 2015-10-13 Panasonic Intellectual Property Management Co., Ltd. Method for producing alcohol
US9551077B2 (en) 2012-08-27 2017-01-24 Panasonic Intellectual Property Management Co., Ltd. Photoelectrode used for carbon dioxide reduction and method for reducing carbon dioxide using the photoelectrode
US9598781B2 (en) 2013-05-21 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Carbon dioxide reducing method, carbon dioxide reducing cell, and carbon dioxide reducing apparatus
US9598779B2 (en) 2013-07-05 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Method for reducing carbon dioxide
CN105195131A (en) * 2015-10-15 2015-12-30 南昌航空大学 Preparation method of graphene quantum dot/vanadium-doped mesoporous titanium dioxide composite photocatalyst
WO2020196329A1 (en) * 2019-03-27 2020-10-01 東京印刷機材トレーディング株式会社 Photocatalyst production method and photocatalyst
JPWO2020196329A1 (en) * 2019-03-27 2020-10-01
JP7454142B2 (en) 2019-03-27 2024-03-22 フォトジェン株式会社 Photocatalyst manufacturing method and photocatalyst
CN114481201A (en) * 2021-12-30 2022-05-13 海南师范大学 Silver-modified copper-loaded zeolite Ag/Cu-TS-1 photo-driven CO2Reduction method
CN114481201B (en) * 2021-12-30 2023-12-12 海南师范大学 Light-driven CO of silver-modified copper-loaded zeolite Ag/Cu-TS-1 2 Reduction method

Also Published As

Publication number Publication date
JP3876305B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
JP3876305B2 (en) Composite photocatalyst for carbon dioxide reduction and carbon dioxide photoreduction method using the same
Usubharatana et al. Photocatalytic process for CO2 emission reduction from industrial flue gas streams
Kočí et al. Photocatalytic reduction of CO2 over TiO2 based catalysts
Biswal et al. Conversion of carbon dioxide to methanol: A comprehensive review
Yentekakis et al. Grand challenges for catalytic remediation in environmental and energy applications toward a cleaner and sustainable future
Ma et al. Improved and reduced performance of Cu-and Ni-substituted Co3O4 catalysts with varying CoOh/CoTd and Co3+/Co2+ ratios for the complete catalytic oxidation of VOCs
JP6370371B2 (en) NATAO3: LA2O3 catalyst with cocatalyst composition for photocatalytic reduction of carbon dioxide
JP4158850B2 (en) Carbon dioxide reduction method using photocatalyst
US20150217276A1 (en) Photocatalyst comprising gold-palladium alloy, method for preparation, photolysis system
Sarwar et al. Synergistic effect of photo-reduced Ni–Ag loaded g-C3N4 nanosheets for efficient visible Light‐Driven photocatalytic hydrogen evolution
JPH075281B2 (en) Method for producing hydrogen and oxygen from water by metal-supported semiconductor photocatalyst using highly concentrated carbonate aqueous solution
Ren et al. Stepwise photoassisted decomposition of carbohydrates to H2
JPH06126189A (en) Production of hydrogen and oxygen by using semiconductor photocatalyst and production of hydrogen, oxygen and carbon monoxide
US20150101923A1 (en) Photocatalyst, method for preparation, photolysis system
AlSalka et al. TiO2-based photocatalytic hydrogen production: How to transfer it to an applicable approach?
JP4528944B2 (en) Photocatalyst carrying Ir oxide cocatalyst in oxidative atmosphere in the presence of nitrate ion and method for producing the same
JP2004275946A (en) Perovskite type multicomponent oxide visible light responsive photocatalyst, hydrogen manufacturing method using the same and harmful chemical substance decomposing method
Wu et al. CO2 Hydrogenation to Methanol over In2O3: The Size Effect
Darji et al. Advancement and State-of-art of heterogeneous catalysis for selective CO2 hydrogenation to methanol
JP2004196581A (en) Hydrogen production method and catalyst used for the same
Melchionna et al. Sustainability and nanomaterials in concert
JP3096728B2 (en) Method and apparatus for decomposing water by sunlight
JP2002224570A (en) Catalyst for co shift reaction
Ichikawa Chemical conversion of carbon dioxide by catalytic hydrogenation and room temperature photoelectrocatalysis
JP3735711B2 (en) Visible light-responsive rare earth compound photocatalyst, hydrogen production method using the same, and hazardous chemical decomposition method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060928

R150 Certificate of patent or registration of utility model

Ref document number: 3876305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term