WO2020195250A1 - 蛍光体および光照射装置 - Google Patents

蛍光体および光照射装置 Download PDF

Info

Publication number
WO2020195250A1
WO2020195250A1 PCT/JP2020/005135 JP2020005135W WO2020195250A1 WO 2020195250 A1 WO2020195250 A1 WO 2020195250A1 JP 2020005135 W JP2020005135 W JP 2020005135W WO 2020195250 A1 WO2020195250 A1 WO 2020195250A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
activator
present
blue light
concentration
Prior art date
Application number
PCT/JP2020/005135
Other languages
English (en)
French (fr)
Inventor
充 高井
達也 照井
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to CN202080011035.9A priority Critical patent/CN113348225A/zh
Priority to US17/427,808 priority patent/US20220140206A1/en
Priority to JP2021508210A priority patent/JPWO2020195250A1/ja
Publication of WO2020195250A1 publication Critical patent/WO2020195250A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • C01F17/34Aluminates, e.g. YAlO3 or Y3-xGdxAl5O12
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/08Downward pulling
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/508Wavelength conversion elements having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer, wavelength conversion layer with a concentration gradient of the wavelength conversion material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to a fluorescent substance and a light irradiation device using the fluorescent substance.
  • Patent Document 1 a blue light emitting diode that emits blue light and a phosphor that is excited by receiving the blue light of the blue light emitting diode and emits yellow fluorescence are provided, and blue light (blue transmitted light) that has passed through the phosphor is provided.
  • a light irradiation device that mixes yellow fluorescence and emits white light is being studied. However, changing the wavelength of fluorescence in one phosphor has not been studied.
  • an object of the present invention is to provide a phosphor having a variable wavelength and a light irradiation device having the phosphor.
  • [1] Contains an activator, A fluorophore having a concentration gradient of the activator along at least one direction.
  • the phosphor is columnar and has a columnar shape.
  • the activator concentration When the ratio of the content of the activator to the content of elements other than oxygen contained in the phosphor is defined as the activator concentration.
  • a light irradiation device comprising the phosphor according to any one of [1] to [9] and means for changing the irradiation position of light from a light source for exciting the phosphor.
  • the light irradiation device according to the above [10], further comprising a light source, wherein the light source is at least one of a blue light emitting diode and a blue semiconductor laser.
  • FIG. 1 is a front view of a light irradiation device according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a single crystal manufacturing apparatus for manufacturing a phosphor according to an embodiment of the present invention.
  • FIG. 3 is a schematic view showing a method for producing a phosphor according to an embodiment of the present invention.
  • FIG. 4 is a front view of the light irradiation device according to another embodiment of the present invention.
  • FIG. 5 is a front view of the light irradiation device according to another embodiment of the present invention.
  • FIG. 6 is a front view of the light irradiation device according to another embodiment of the present invention.
  • FIG. 1 is a front view of a light irradiation device according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a single crystal manufacturing apparatus for manufacturing a phosphor according to an embodiment of the present invention.
  • FIG. 3 is a schematic view
  • FIG. 7 is a front view of the light irradiation device according to another embodiment of the present invention.
  • FIG. 8 is a graph showing an embodiment of the present invention.
  • FIG. 9 is a graph showing an embodiment of the present invention.
  • FIG. 10 is a graph showing an embodiment of the present invention.
  • FIG. 1 shows a light irradiation device 2 according to the present embodiment.
  • the light irradiation device 2 according to the present embodiment has a phosphor 4 and a blue light emitting element 10 inside the reflection substrate 6 and the cover 8.
  • the blue light emitting element 10 is provided on the reflective substrate 6.
  • the material of the cover 8 is not particularly limited.
  • the material of the cover 8 is, for example, transparent glass or resin.
  • the blue light emitting element 10 emits blue light L1 which is excitation light for exciting the phosphor 4.
  • a part of the blue light L1 incident on the first surface 4a of the phosphor 4 is absorbed by the phosphor 4 and wavelength-converted to emit fluorescence.
  • the fluorescence emitted in this way and the blue light L1 are mixed to emit white light L2 from the second surface 4b of the phosphor 4.
  • the phosphor 4 according to the present embodiment contains an activator, and as shown in FIG. 1, is a columnar shape in which the direction perpendicular to the optical path of the blue light L1 is the longitudinal direction (X-axis direction).
  • the activator is gradually reduced along the direction of the arrow on the X-axis of FIG. 1, and the phosphor 4 has a concentration gradient of the activator.
  • the portion where the concentration of the activator is high (high concentration portion) and the portion where the concentration of the activator is low (low concentration portion) are irradiated with the same excitation light and excited, the portion is emitted from the high concentration portion. Fluorescence tends to have a longer wavelength than fluorescence emitted from a low-concentration portion.
  • the phosphor 4 changes in the order of purple, indigo, blue, green, yellow, orange, and red as the wavelength becomes longer.
  • 380 nm to 430 nm is purple
  • 430 nm to 460 nm is indigo
  • 460 nm to 500 nm is blue
  • 500 nm to 530 nm is green
  • 530 nm to 590 nm is yellow
  • 590 nm to 650 nm is orange.
  • 650 nm to 780 nm are red.
  • purple, indigo, blue, green, yellow, orange or red fluorescence is emitted by changing the portion of one phosphor 4 to be irradiated with the excitation light. be able to. It should be noted that the above wavelength range partially overlaps with each color, because the color change is continuous and the relationship between the color and the wavelength cannot be completely matched.
  • the blue light emitting element 10 can move in the direction of XL or XR along the X-axis direction. Therefore, the blue light emitting element 10 can be moved to change the portion of the phosphor 4 irradiated by the blue light L1.
  • the wavelength of the emitted fluorescence can be changed by changing the portion irradiated by the blue light L1 in one phosphor 4, that is, fluorescence. You can change the color of. Therefore, the blue light emitting element 10 is moved on the reflective substrate 6 in the direction of XL or XR along the X-axis direction to change the portion of the phosphor 4 irradiated by the blue light L1.
  • the wavelength of the fluorescence emitted from 4 that is, the color of the fluorescence can be changed.
  • the wavelength of fluorescence used for a white light source is 530 nm to 540 nm, and the wavelength of blue light L1 can be arbitrarily selected from those of 405 nm to 460 nm.
  • blue light L1 used for a white light source A wavelength of 425 nm to 460 nm is generally used.
  • the wavelength of the fluorescence generated by receiving the excitation light in one phosphor is fixed. Therefore, it was not possible to change the wavelength of fluorescence in one phosphor.
  • the color of the fluorescence emitted from the phosphor 4 can be changed.
  • the color of the fluorescence can be finely adjusted in order to bring the white light L2 obtained by combining the blue light L1 and the fluorescence closer to the desired white light L2.
  • the wavelength of fluorescence can be finely adjusted in order to obtain JIS standard white light L2.
  • the wavelength of fluorescence of the phosphor 4 according to this embodiment is not particularly limited.
  • the wavelength of fluorescence of one phosphor 4 can be changed in the range of 380 nm to 780 nm, and more preferably in the range of 530 nm to 645 nm. More preferably, it can be varied in the range of 534 nm to 630 nm.
  • the blue light emitting element 10 of the present embodiment is a light source for exciting the phosphor 4. Further, the blue light emitting element 10 of the present embodiment can emit white light L2 by mixing with fluorescence, and can also emit blue light L1 whose wavelength can be converted into fluorescence by the phosphor 4. Examples of such a blue light emitting element 10 include a blue light emitting diode (blue LED) or a blue semiconductor laser (blue LD).
  • the fluorescent material 4 shown in FIG. 1 is columnar and is a single crystal.
  • the fact that the phosphor 4 is a single crystal can be confirmed by confirming the crystal peak of the ⁇ AG single crystal ( ⁇ indicates the following element ⁇ ) by, for example, XRD.
  • the phosphor 4 is a single crystal, the transmittance of blue light L1 can be improved as compared with the case where the phosphor is a transparent ceramic or a co-crystal. This is because the transmittance of transparent ceramics tends to decrease due to light scattering at the grain boundaries, and the transmittance of co-crystals tends to decrease due to light scattering at the phase boundary. Therefore, the single crystal phosphor 4 has higher brightness than the transparent ceramics and the co-crystal.
  • the composition of the phosphor 4 of the present embodiment is not particularly limited.
  • the composition of the phosphor 4 of the present embodiment is, for example, a trace amount of a sulfide-based substance such as zinc sulfide or an inorganic substance such as a silicate, borate, rare earth element salt, uranyl salt, platinum cyanide complex salt or tungstate.
  • a sulfide-based substance such as zinc sulfide or an inorganic substance such as a silicate, borate, rare earth element salt, uranyl salt, platinum cyanide complex salt or tungstate.
  • an activator such as a heavy metal element or a rare earth element is added.
  • the heavy metal element used as the activator of the phosphor 4 of the present embodiment is not particularly limited.
  • Examples of the heavy metal element used as the activator of the phosphor 4 of the present embodiment include Mn and Cr.
  • the rare earth element used as the activator of the phosphor 4 of the present embodiment is not particularly limited.
  • the rare earth element used as the activator of the phosphor 4 of the present embodiment is at least one selected from the group consisting of, for example, Ce, Pr, Sm, Eu, Tb, Dy, Tm and Yb.
  • the composition of the phosphor 4 of the present embodiment is, for example, ⁇ 3 Al 5 O 12 : ⁇ 3+ (“ ⁇ ” is an element ⁇ described later, and “ ⁇ ” is an element ⁇ described later).
  • composition of the phosphor 4 of the present embodiment is preferably ⁇ 3 Al 5 O 12 : ⁇ 3+ .
  • ⁇ 3 Al 5 O 12 : ⁇ 3+ is represented by ( ⁇ 1-x ⁇ x ) 3 + a Al 5-a O 12 (0.0001 ⁇ x ⁇ 0.007, ⁇ 0.016 ⁇ a ⁇ 0.315). Will be done.
  • the element ⁇ is at least one selected from the group consisting of at least Y, Lu, Gd, Tb and La.
  • the element ⁇ preferably contains at least Y. When the element ⁇ contains Y, the brightness can be increased.
  • Element ⁇ is an activator.
  • the element ⁇ is at least one selected from the group consisting of, for example, Ce, Pr, Sm, Eu, Tb, Dy, Tm and Yb.
  • the brightness of the phosphor 4 can be increased, and the wavelength of fluorescence can be set to 530 nm to 645 nm.
  • the element ⁇ is preferably Ce or Eu, more preferably Ce.
  • the ratio of the content of the activator to the content of the element other than oxygen contained in the phosphor 4 is defined as the "activator concentration”.
  • the activator concentration of the phosphor 4 of the present embodiment is not particularly limited.
  • the minimum value of the activator concentration in the phosphor 4 according to the present embodiment is preferably 0.05 mol% or more. This makes it possible to increase the brightness of fluorescence.
  • the minimum value of the activator concentration in the phosphor 4 according to the present embodiment is more preferably 0.1 mol% or more.
  • the maximum value of the activator concentration in the phosphor 4 of the present embodiment is more preferably 20 mol% or less. As a result, it is possible to prevent a decrease in transmittance due to the occurrence of different phases.
  • the maximum value of the activator concentration in the phosphor 4 according to the present embodiment is more preferably 15 mol% or less.
  • the phosphor 4 according to the present embodiment has a concentration gradient in which the activator concentration is gradually decreased along the direction of the arrow on the X-axis of FIG.
  • the degree of the concentration gradient of the activator concentration of the phosphor 4 according to the present embodiment is not particularly limited.
  • R (mol% / mm) is preferably 0.05 mol% / mm to 5 mol% / mm, and is 0. .1 mol% / mm to 2 mol% / mm is more preferable.
  • the activator concentration of the phosphor 4 can be measured by LA-ICP-MS, EPMA, EDX, or the like.
  • FIG. 2 shows a schematic cross-sectional view of a single crystal manufacturing device 22 by the ⁇ -PD method (micro pulling method), which is the manufacturing device for the fluorescent substance 4 of the present embodiment.
  • ⁇ -PD method microwave pulling method
  • a melt of the target substance is obtained in the crucible 24 by directly or indirectly heating the crucible 24 containing the sample, and the seed crystal 34 placed below the crucible 24 is placed at the lower end of the crucible 24.
  • This is a melt-solidification method in which a single crystal is grown by bringing it into contact with an opening and pulling down the seed crystal 34 while forming a solid-liquid interface there.
  • the single crystal grows while the activator moves to a place where the temperature is low.
  • a phosphor 4 having a predetermined concentration gradient of the activator is obtained at each cutting position.
  • the pulling direction G of the seed crystal 34 coincides with the longitudinal direction (X0 direction) of the phosphor 4.
  • the pulling direction G of the seed crystal 34 coincides with the vertical direction of the optical path of the blue light L1 transmitted through the phosphor 4.
  • the phosphor 4 according to the present embodiment is produced by the ⁇ -PD method, it tends to have a concentration gradient of the activator as compared with the phosphor produced by the conventional CZ method (Czochralski Method). Therefore, it is preferable that the phosphor 4 according to the present embodiment is produced by the ⁇ -PD method.
  • the single crystal manufacturing apparatus 22 for manufacturing the phosphor 4 includes a crucible 24 installed so that the opening faces downward and a refractory furnace 26 that covers the crucible 24. And.
  • the refractory material furnace 26 is further covered with a quartz tube 28, and an induction heating coil 30 for heating the crucible 24 is installed near the central portion in the vertical direction of the quartz tube 28.
  • a seed crystal 34 held by a seed crystal holding jig 32 is installed in the opening of the crucible 24.
  • An afterheater 36 is installed near the opening of the crucible 24.
  • the single crystal manufacturing apparatus 22 includes a depressurizing means for reducing the pressure inside the refractory material furnace 26, a pressure measuring means for monitoring the decompression, a temperature measuring means for measuring the temperature of the refractory material furnace 26, and a refractory material furnace.
  • a gas supply means for supplying an inert gas is provided inside the 26.
  • the seed crystal 34 uses a single crystal cut out in a rod shape.
  • the seed crystal 34 is preferably a single crystal containing an element constituting the desired phosphor 4 and containing no activator.
  • the material of the seed crystal holding jig 32 is not particularly limited, but dense alumina or the like having little influence at the operating temperature of around 1900 ° C. is preferable.
  • the shape and size of the seed crystal holding jig 32 are also not particularly limited, but a rod-shaped shape having a diameter that does not come into contact with the refractory material furnace 26 is preferable.
  • the materials of the crucible 24 and the afterheater 36 are preferably Ir, Mo and the like. Further, in order to prevent foreign matter from being mixed into the single crystal due to oxidation of the material of the crucible 24, it is more preferable to use Ir as the material of the crucible 24.
  • Ir can be used as the material of the crucible 24. Further, when Pt is used as the material of the crucible 24, crystal growth in the atmosphere is possible.
  • Ir or the like is used as the material of the crucible 24 and the afterheater 36, so that the crystal growth is performed only in an inert gas atmosphere such as Ar.
  • the diameter of the opening of the crucible 24 is preferably about 200 ⁇ m to 400 ⁇ m and a flat shape from the viewpoint of low viscosity of the single crystal melt and wettability with the crucible 24.
  • the material of the refractory furnace 26 is not particularly limited, but alumina is preferable from the viewpoint of heat retention, operating temperature, and prevention of impurities from being mixed into crystals.
  • the ⁇ AG raw material and Ce which are the raw materials for the single crystal, are put into the crucible 24 inside the refractory material furnace 26, and the inside of the furnace is replaced with an inert gas such as N 2 or Ar.
  • the crucible 24 is heated by the induction heating coil (high frequency coil for heating) 30 while allowing the inert gas to flow in at 10 to 100 cm 3 / min, and the raw material is melted to obtain a melt.
  • the induction heating coil high frequency coil for heating
  • the seed crystal 34 When the raw material is sufficiently melted, the seed crystal 34 is gradually brought closer from the lower part of the crucible 24, and the seed crystal 34 is brought into contact with the opening at the lower end of the crucible 24. When the melt comes out from the opening at the lower end of the crucible 24, the seed crystal 34 is lowered to start crystal growth.
  • the rate of descent of the seed crystal 34 here is called the "growth rate".
  • the concentration gradient of the activator in the crystal can be adjusted by changing the growth rate. When the growth rate is low, the activator concentration tends to be low, and when the growth rate is high, the activator concentration tends to be high.
  • the concentration gradient of the activator in the crystal may be formed by lowering the growing rate at the beginning and gradually increasing the growing rate, or increasing the growing rate at the beginning and gradually increasing the growing rate.
  • the concentration gradient of the activator in the crystal may be added by lowering the speed, and the concentration is not particularly limited.
  • the lower portion near the seed crystal 34 has a low activator concentration
  • the upper portion far from the seed crystal 34 has a high activator concentration
  • the breeding speed of this embodiment is not limited.
  • the growth rate of the present embodiment is preferably changed in the range of, for example, 0.01 mm / min to 30 mm / min, and more preferably in the range of 0.01 mm / min to 0.20 mm / min.
  • the crystal growth rate is manually controlled together with the temperature while observing the state of the solid-liquid interface with a CCD camera or a thermo camera.
  • the temperature gradient can be selected in the range of 10 ° C / mm to 100 ° C / mm.
  • the seed crystal 34 is lowered until the melt in the crucible 24 does not come out, and after the seed crystal 34 is separated from the crucible 24, the single crystal is cooled so as not to crack.
  • the inert gas is kept flowing into the refractory furnace 26 under the same conditions as during heating. It is preferable to use an inert gas such as N 2 or Ar for the atmosphere inside the furnace.
  • the phosphor according to the present embodiment contains an activator and has a concentration gradient of the activator along at least one direction.
  • the phosphor 4 according to the present embodiment is columnar and has a concentration gradient of the activator along the longitudinal direction of the phosphor.
  • the wavelength controllability of the phosphor 4 is further enhanced.
  • the phosphor 4 according to the present embodiment has an activator concentration gradient along a direction perpendicular to the direction of the optical path of the light passing through the phosphor 4.
  • the phosphor 4 according to this embodiment is a single crystal.
  • the transmittance of the phosphor 4 can be increased and the brightness can be increased.
  • the activator of the phosphor 4 according to the present embodiment is a heavy metal element or a rare earth element.
  • the brightness of the phosphor 4 can be increased.
  • the minimum value of the activator concentration in the phosphor 4 is set. It is 0.05 mol% and the maximum value is 20 mol%.
  • the transmittance of the phosphor 4 can be increased and the brightness can be increased.
  • the wavelength of fluorescence of the phosphor 4 according to this embodiment is 530 nm to 645 nm.
  • the white light L2 obtained by synthesizing the blue light L1 and the fluorescence can be brought closer to the desired white light.
  • the activator of the fluorescent substance 4 according to the present embodiment is at least one selected from the group consisting of Ce, Pr, Sm, Eu, Tb, Dy, Tm and Yb.
  • the brightness of the phosphor 4 can be further increased, and the wavelength of fluorescence can be set to 530 nm to 645 nm.
  • the phosphor 4 according to this embodiment is produced by the micro-pulling method.
  • the micro pulling method has a high growing speed and is excellent in shape controllability.
  • the light irradiation device 2 includes a phosphor 4 and means for changing the irradiation position of light from a light source for exciting the phosphor 4.
  • the wavelength of the emitted fluorescence can be changed, that is, the color of the fluorescence can be changed by changing the irradiated portion in one phosphor 4. .. Therefore, by changing the irradiation position of the light from the light source in the phosphor 4, the wavelength of the fluorescence emitted from the phosphor 4, that is, the color of the fluorescence can be changed.
  • the light irradiation device 2 further has a light source, and the light source is at least one of a blue light emitting diode and a blue semiconductor laser.
  • white light L2 can be obtained by mixing the blue light L1 and the yellow fluorescence from the phosphor 4, or from the blue light L1 and the phosphor 4.
  • White light L2 can be obtained by mixing the colors of green and red.
  • the light irradiation device 2a according to the present embodiment is the same as the light irradiation device 2 of the first embodiment except as shown below.
  • the light irradiation device 2a according to the present embodiment is emitted from the blue light emitting element 10 by fixing the blue light emitting element 10 to the rotating mechanism 12 and rotating the rotating mechanism 12 in the direction of R1 or R2 as shown in FIG.
  • the irradiation position of the blue light L1 with respect to the phosphor 4 is changed.
  • the white light L2 in FIG. 4 is tilted from the direction perpendicular to the bottom surface of the light irradiation device 2a.
  • the irradiation direction can be changed to be perpendicular to the bottom surface of the light irradiation device 2a.
  • the phosphor may be fixed to the rotation mechanism and the irradiation position of the blue light emitted from the blue light emitting element with respect to the phosphor may be changed by rotating the rotation mechanism. ..
  • the light irradiation device 2b according to the present embodiment is the same as the light irradiation device 2 of the first embodiment except as shown below.
  • the light irradiation device 2b according to the present embodiment is provided with a reflection mechanism 14 that is parallel to the X-axis direction and can move in the direction of XL or XR. That is, by reflecting the blue light L1 from the blue light emitting element 10 by the movable reflection mechanism 14, the irradiation position of the blue light L1 emitted from the blue light emitting element 10 with respect to the phosphor 4 can be changed.
  • the light irradiation device 2c according to the present embodiment is the same as the light irradiation device 2 of the first embodiment except as shown below.
  • the light irradiation device 2c according to the present embodiment is provided with a polarization mechanism 16 capable of polarizing the blue light L1 in a range of an angle ⁇ from a direction parallel to the incident direction of the blue light L1. ing. That is, by polarized the blue light L1 from the blue light emitting element 10 by the polarization mechanism 16, the irradiation position of the blue light L1 emitted from the blue light emitting element 10 with respect to the phosphor 4 can be changed.
  • the white light L2 in FIG. 6 is tilted from the direction perpendicular to the bottom surface of the light irradiation device 2c.
  • the irradiation direction can be changed to be perpendicular to the bottom surface of the light irradiation device 2c.
  • the light irradiation device 2d according to the present embodiment is the same as the light irradiation device 2 of the first embodiment except as shown below. As shown in FIG. 7, the light irradiation device 2d according to the present embodiment is provided with a plurality of blue light emitting elements 10a to 10e in a direction parallel to the X-axis direction. That is, by selecting the blue light emitting element that generates the blue light L1 from the plurality of blue light emitting elements 10a to 10e, the irradiation position of the blue light L1 emitted from the blue light emitting element with respect to the phosphor 4 can be changed.
  • the light irradiation device according to the present embodiment is the same as the light irradiation device 2 of the first embodiment except as shown below.
  • the light irradiation device according to the present embodiment irradiates a phosphor with blue light from a blue light emitting element via an optical fiber. According to this method, the irradiation position of the blue light emitted from the blue light emitting element with respect to the phosphor can be changed by moving the position of the tip of the optical fiber on the phosphor side.
  • the present invention is not limited to the above embodiment, and can be variously modified within the scope of the present invention.
  • the shape of the phosphor is not particularly limited, and the cross section parallel to the optical path may be a polygonal, circular, or elliptical columnar shape. Further, the shape of the phosphor may be a disk shape having a circular or elliptical cross section perpendicular to the optical path, or a spherical or rugby ball shape.
  • the blue light emitting element 10 is used as the light source for exciting the phosphor 4, but a purple light emitting element may be used instead of the blue light emitting element 10.
  • the violet light emitting element can excite blue, green and red phosphors to obtain white light.
  • the composition of the phosphor that can be excited by the light from the purple light emitting device is not particularly limited.
  • the composition of the phosphor that can be excited by the light from the purple light emitting element is, for example, (Sr, Ca) S: Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ , CaAlSi 5 N 8 : Eu 2+ , CaAlSiN.
  • the method of changing the irradiation position of the blue light L1 on the phosphor 4 is not particularly limited.
  • the position of the blue light emitting element 10 may be fixed and the irradiation position of the blue light L1 on the phosphor 4 may be changed by moving the phosphor 4.
  • the irradiation position of the blue light L1 on the phosphor 4 may be changed by moving the blue light emitting element 10 and the phosphor 4 respectively.
  • the activator concentration gradually decreases along the direction of the arrow on the X-axis of FIG. 1, but the form of the activator concentration gradient is not particularly limited.
  • the activator concentration may gradually decrease along the direction opposite to the direction of the arrow on the X-axis.
  • the activator may gradually decrease and then gradually increase along the direction of the arrow on the X-axis, or may have a plurality of inflection points of the activator concentration.
  • the surface layer portion of the phosphor 4 has a concentration gradient of the activator, and the concentration of the activator in the surface layer portion of the phosphor 4 is higher than the concentration of the activator in the central portion of the phosphor 4. It may be expensive.
  • the surface layer portion of the phosphor 4 has a concentration gradient of the activator, and the concentration of the activator in the surface layer portion of the phosphor 4 is higher than the concentration of the activator in the central portion of the phosphor 4.
  • the high transmittance allows the phosphor 4 to have an appropriate transmittance.
  • the range of the surface layer portion of the phosphor 4 is not particularly limited.
  • the surface layer portion of the phosphor 4 is 20 m from the outermost surface of the cross section toward the center of the cross section. It is a range included in the distance of%, preferably a range included in a distance of 10% of m from the outermost surface of the cross section toward the center of the cross section.
  • the range of the central portion of the phosphor 4 is not particularly limited.
  • the range of the central portion of the phosphor 4 is, for example, a portion of the phosphor 4 other than the surface layer portion.
  • the concentration of the activator in the central portion of the phosphor 4 may be higher than the concentration of the activator in the surface layer portion of the phosphor 4. It is preferable that the concentration of the activator in the surface layer portion of the phosphor 4 is higher than the concentration of the activator in the central portion of the phosphor 4 because it is easy to obtain an appropriate transmittance.
  • the method of increasing the activator concentration in the surface layer portion of the phosphor 4 as compared with the activator concentration in the central portion of the phosphor 4 or having the activator concentration gradient only in the surface layer portion is not particularly limited.
  • the concentration of the activator in the surface layer portion of the phosphor 4 can be made higher than the concentration of the activator in the central portion of the phosphor 4.
  • the temperature of the growing atmosphere of the single crystal it is possible to have the concentration gradient of the activator only on the surface layer portion of the phosphor 4.
  • the single crystal to be the phosphor 4 is generated by the ⁇ -PD method, the temperature at the crucible 24 or less is controlled by the afterheater 36, and the phosphor is controlled by the EFG method. It can also be obtained by raising 4.
  • the EFG method is a state in which the raw material is put into the crucible and melted by heating, and the raw material is guided to the opening of the slit die installed upright in the crucible, and the seed crystal is brought into contact with the raw material at this opening. This is a method of growing crystals by pulling up seed crystals with.
  • the phosphor 4 according to the present invention can be used, for example, for in-vehicle headlights, fluorescent lamps, fluorescent plates, luminescent paints, electroluminescence, scintillation counters, cathode ray tubes, design lighting, and the like.
  • the color temperature of the in-vehicle headlight can be adjusted to a desired white light, or the color temperature of the in-vehicle headlight can be changed to yellow to make a fog lamp.
  • a Ce: YAG (Yttrium aluminum garnet) single crystal was produced by the ⁇ -PD method using the single crystal production apparatus 22 shown in FIG.
  • heating of the crucible 24 was started and gradually heated over 1 hour until the melting point of the YAG single crystal was reached.
  • a YAG single crystal was used as the seed crystal 34, and the seed crystal 34 was raised to near the melting point of YAG.
  • the tip of the seed crystal 34 was brought into contact with the opening at the lower end of the crucible 24, and the temperature was gradually raised until the melt came out from the opening.
  • the seed crystal 34 is gradually lowered to 0.01 mm / min at the beginning and 0.2 mm / min at the end, and the crystal growth is gradually changed by gradually changing the speed. went.
  • This Ce: YAG single crystal was cut into a column of 2 mm square and a length (X0) of 55 mm in the longitudinal direction.
  • the cut out single crystal was evaluated by the method shown below.
  • the wavelength and transmittance of fluorescence were measured at each point of the cut out single crystal at the central portion in the lateral direction and at intervals of 5 mm on the line along the longitudinal direction.
  • the fluorescence wavelength was measured at 25 ° C, 200 ° C and 300 ° C using an F-7000 type spectrofluorometer manufactured by Hitachi High-Techn Corporation.
  • the measurement mode was a fluorescence spectrum, and the measurement conditions were an excitation wavelength of 450 nm and a photomal voltage of 400 V.
  • the transmittance was measured using a V660 spectrometer manufactured by JASCO Corporation as a measuring device.
  • the measurement wavelength was 390 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)

Abstract

【課題】波長が可変である蛍光体、およびその蛍光体を有する光照射装置を提供すること。 【解決手段】賦活剤を含有し、少なくとも1つの方向に沿って賦活剤の濃度勾配を有する蛍光体。

Description

蛍光体および光照射装置
 本発明は蛍光体およびその蛍光体を用いた光照射装置に関する。
 特許文献1では、青色光を発する青色発光ダイオードと、この青色発光ダイオードの青色光を受けて励起され、黄色蛍光を発する蛍光体とを備え、蛍光体を透過した青色光(青色透過光)と黄色蛍光を混合させて白色光を放射する光照射装置が研究されている。しかし、一つの蛍光体において、蛍光の波長を変化させることについては研究されていない。
特開2015-81314号公報
 本発明はこれらの課題を鑑み、波長が可変である蛍光体、およびその蛍光体を有する光照射装置を提供することを目的とする。
 上記目的を達成するための本発明の態様は下記の通りである。
[1]賦活剤を含有し、
少なくとも1つの方向に沿って前記賦活剤の濃度勾配を有する蛍光体。
[2]前記蛍光体は柱状であり、
前記蛍光体の長手方向に沿って前記賦活剤の濃度勾配を有する前記[1]に記載の蛍光体。
[3]前記蛍光体を透過する光の光路の方向に垂直な方向に沿って前記賦活剤の濃度勾配を有する前記[1]または[2]に記載の蛍光体。
[4]前記蛍光体は単結晶である前記[1]~[3]のいずれかに記載の蛍光体。
[5]前記賦活剤は重金属元素または希土類元素である前記[1]~[4]のいずれかに記載の蛍光体。
 [6]前記蛍光体に含まれる酸素以外の元素の含有量に対する前記賦活剤の含有量の割合を賦活剤濃度としたとき、
前記蛍光体における前記賦活剤濃度が0.05モル%以上、20モル%以下である前記[1]~[5]のいずれかに記載の蛍光体。
[7]前記蛍光体の蛍光の波長は530nm~645nmである前記[1]~[6]のいずれかに記載の蛍光体。
[8]前記賦活剤は、Ce、Pr、Sm、Eu、Tb、Dy、TmおよびYbからなる群から選ばれる少なくとも1つである前記[1]~[7]のいずれかに記載の蛍光体。
[9]前記[1]~[8]のいずれかに記載の蛍光体であって、前記蛍光体はマイクロ引き下げ法によって生成されることを特徴とする蛍光体。
[10]前記[1]~[9]のいずれかに記載の蛍光体と、前記蛍光体を励起させるための光源からの光の照射位置を変える手段と、を有する光照射装置。
[11]光源をさらに有し、前記光源は、青色発光ダイオードおよび青色半導体レーザーのうち少なくともいずれか一方である前記[10]に記載の光照射装置。
図1は、本発明の一実施形態に係る光照射装置の正面図である。 図2は、本発明の一実施形態に係る蛍光体を製造するための単結晶製造装置の概略断面図である。 図3は、本発明の一実施形態に係る蛍光体の製造方法を示す模式図である。 図4は、本発明の他の実施形態に係る光照射装置の正面図である。 図5は、本発明の他の実施形態に係る光照射装置の正面図である。 図6は、本発明の他の実施形態に係る光照射装置の正面図である。 図7は、本発明の他の実施形態に係る光照射装置の正面図である。 図8は、本発明の実施例を示すグラフである。 図9は、本発明の実施例を示すグラフである。 図10は、本発明の実施例を示すグラフである。
[第1実施形態]
1.光照射装置
 本実施形態に係る光照射装置2を図1に示す。本実施形態に係る光照射装置2は、反射基板6およびカバー8の内部に蛍光体4と、青色発光素子10とを有する。青色発光素子10は、反射基板6上に備えられている。
 カバー8の材質は特に限定されない。カバー8の材質としては、たとえば、透明なガラスまたは樹脂である。
 図1に示すように、青色発光素子10は蛍光体4を励起するための励起光である青色光L1を発する。蛍光体4の第1面4aに入射した青色光L1のうちの一部は蛍光体4に吸収されて波長変換され、蛍光を発する。このようにして発せられた蛍光と青色光L1とが混合して蛍光体4の第2面4bから白色光L2を発する。
 本実施形態に係る蛍光体4は賦活剤を含み、図1に示すように、青色光L1の光路に垂直な方向が長手方向(X軸方向)である柱状である。本実施形態の蛍光体4は、図1のX軸の矢印の向きに沿って賦活剤が漸減しており、賦活剤の濃度勾配を有する。賦活剤の濃度が高い部分(高濃度部分)と、賦活剤の濃度が低い部分(低濃度部分)とを、同一の励起光により照射して、励起させた場合に、高濃度部分から発せられる蛍光は、低濃度部分から発せられる蛍光に比べて、波長が長くなる傾向となる。
 蛍光体4は一般的に、波長が長くなるにしたがって、紫色、藍色、青色、緑色、黄色、橙色、赤色の順番に変化する。概ね、380nm~430nmが紫色であり、430nm~460nmが藍色であり、460nm~500nmが青色であり、500nm~530nmが緑色であり、530nm~590nmが黄色であり、590nm~650nmが橙色であり、650nm~780nmが赤色である。すなわち、本実施形態の蛍光体4によれば、一つの蛍光体4において、励起光を照射する部分を変化させることにより、紫色、藍色、青色、緑色、黄色、橙色または赤色の蛍光を発することができる。なお、上記の波長の範囲は、各色で一部重複しているが、これは色の変化が連続的であるため、色と波長の関係を完全に対応させることができないためである。
 図1に示すように、青色発光素子10は、X軸方向に沿ってXLまたはXRの方向に移動することができる。このため、青色発光素子10を移動させて、蛍光体4の中で青色光L1により照射される部分を変化させることができる。
 上記の通り、本実施形態の蛍光体4によれば、一つの蛍光体4において、青色光L1により照射される部分を変化させることにより、発せられる蛍光の波長を変化させることができる、すなわち蛍光の色を変化させることができる。このため、青色発光素子10を反射基板6上においてX軸方向に沿ってXLまたはXRの方向に移動させて蛍光体4の中で青色光L1により照射される部分を変化させることにより、蛍光体4から発せられる蛍光の波長を変化させることができる、すなわち蛍光の色を変化させることができる。
 一般的に白色光源に使用される蛍光の波長は530nm~540nmであり、青色光L1の波長は405nm~460nmのものから任意に選択が可能であり、特に白色光源に使用される青色光L1の波長は、425nm~460nmのものが一般的に用いられる。これらの混合光である白色光L2とJIS規格の白色には色度表上においてズレが生じている。
 また、従来の蛍光体は、一つの蛍光体において励起光を受けて発生する蛍光の波長が固定されていた。このため、一つの蛍光体において蛍光の波長を変化させることができなかった。
 本実施形態によれば、上記の通り、蛍光体4から発せられる蛍光の色を変化させることができる。その結果、青色光L1と蛍光の合成により得られる白色光L2をより所望の白色光L2に近づけるために蛍光の色を微調整することができる。具体的には、本実施形態によれば、JIS規格の白色光L2を得るために、蛍光の波長の微調整をすることができる。
 本実施形態に係る蛍光体4の蛍光の波長は特に限定されない。本実施形態に係る蛍光体4は一つの蛍光体4において、蛍光の波長を、380nm~780nmの範囲で変化させることができることが好ましく、530nm~645nmの範囲で変化させることができることがより好ましく、534nm~630nmの範囲で変化させることができることがさらに好ましい。
1-2.青色発光素子
 本実施形態の青色発光素子10は、蛍光体4を励起させるための光源である。また、本実施形態の青色発光素子10は、蛍光と混合することにより白色光L2を発し、なおかつ蛍光体4により蛍光に波長変換されることができる青色光L1を発することができる。このような青色発光素子10としては、たとえば青色発光ダイオード(青色LED)または青色半導体レーザー(青色LD)が挙げられる。
1-3.蛍光体
 図1に示す蛍光体4は柱状であり、単結晶である。蛍光体4が単結晶であることは、たとえばXRDにより、αAG単結晶(αは、下記元素αを示す)の結晶ピークを確認することにより確認できる。
 蛍光体4が単結晶であることにより、蛍光体が透明セラミックスや共晶体の場合に比べて青色光L1の透過率を向上させることができる。なぜならば、透明セラミックスは結晶粒界での光散乱により、透過率が低下する傾向となり、共晶体は相境界での光散乱により、透過率が低下する傾向となるからである。したがって、単結晶の蛍光体4は、透明セラミックスや共晶体に比べて高輝度となる。
 本実施形態の蛍光体4の組成は特に限定されない。本実施形態の蛍光体4の組成は、たとえば、硫化亜鉛等の硫化物系またはケイ酸塩、ホウ酸塩、希土類元素塩、ウラニル塩、白金シアン錯塩もしくはタングステン酸塩などの無機物質に微量の重金属元素または希土類元素などの賦活剤を加えた組成が挙げられる。
 本実施形態の蛍光体4の賦活剤として用いられる重金属元素は特に限定されない。本実施形態の蛍光体4の賦活剤として用いられる重金属元素としては、たとえばMn、Crなどが挙げられる。
 本実施形態の蛍光体4の賦活剤として用いられる希土類元素は特に限定されない。本実施形態の蛍光体4の賦活剤として用いられる希土類元素としては、たとえばCe、Pr、Sm、Eu、Tb、Dy、TmおよびYbからなる群から選ばれる少なくとも1つである。
 本実施形態の蛍光体4の組成は、具体的には、たとえばαAl12:β3+、(「α」は後述する元素αであり、「β」は後述する元素βである)、CaGa:Eu2+、(Sr,Ca,Ba)SiO:Eu2+、(Sr,Ca)S:Eu2+、(Ca,Sr)Si:Eu2+、CaAlSiN:Eu2+、(Sr,Ba)SiO:Eu2+、KSiF:Mn、Y(Al,Ga)12:Ce3+、SrGa:Eu2+、(Ba,Sr)SiO:Eu2+、CaScSi12:Ce3+、CaSc:Ce3+、(Sr,Ba)Si:Eu2+またはBaSi12:Eu2+などである。
 本実施形態の蛍光体4の組成は、αAl12:β3+であることが好ましい。αAl12:β3+は、(α1-xβ3+aAl5-a12(0.0001≦x≦0.007、-0.016≦a≦0.315)で表される。
 元素αは少なくともY、Lu、Gd、TbおよびLaからなる群から選ばれる少なくとも1つである。なお、元素αは少なくともYを含むことが好ましい。元素αがYを含むことにより、輝度を高めることができる。
 元素βは、賦活剤である。元素βはたとえばCe、Pr、Sm、Eu、Tb、Dy、TmおよびYbからなる群から選ばれる少なくとも1つである。これにより、蛍光体4を高輝度化できるとともに、蛍光の波長を530nm~645nmとすることができる。元素βは好ましくはCeまたはEuであり、より好ましくはCeである。
 本実施形態では、蛍光体4に含まれる酸素以外の元素の含有量に対する賦活剤の含有量の割合を「賦活剤濃度」とする。
 本実施形態の蛍光体4の賦活剤濃度は特に限定されない。本実施形態に係る蛍光体4における賦活剤濃度の最小値は、0.05モル%以上であることが好ましい。これにより蛍光の輝度を高めることができる。本実施形態に係る蛍光体4における賦活剤濃度の最小値は、0.1モル%以上であることがより好ましい。
 本実施形態の蛍光体4における賦活剤濃度の最大値は、20モル%以下であることがより好ましい。これにより、異相の発生による透過率の低下を防ぐことができる。本実施形態に係る蛍光体4における賦活剤濃度の最大値は、15モル%以下であることがさらに好ましい。
 本実施形態に係る蛍光体4は、図1のX軸の矢印の方向に沿って賦活剤濃度が漸減している濃度勾配を有する。本実施形態に係る蛍光体4の賦活剤濃度の濃度勾配の程度は特に限定されない。1mmあたりの賦活剤濃度の変化量をR(モル%/mm)としたとき、R(モル%/mm)は、0.05モル%/mm~5モル%/mmであることが好ましく、0.1モル%/mm~2モル%/mmであることがより好ましい。
 蛍光体4の賦活剤濃度は、LA-ICP-MS、EPMA、EDXなどで測定できる。
2.蛍光体の製造方法
 図2に、本実施形態の蛍光体4の製造装置であるμ-PD法(マイクロ引き下げ法)による単結晶製造装置22の概略断面図を示す。μ-PD法は、試料を入れた坩堝24を直接または間接的に加熱することにより坩堝24内に対象物質の融液を得て、坩堝24の下方に設置した種結晶34を坩堝24下端の開口部へ接触させ、そこで固液界面を形成しつつ種結晶34を引き下げることにより単結晶を成長させる溶融凝固法である。
 溶融凝固法においては、温度の低い箇所に賦活剤が移動しつつ単結晶が成長していく。生成した単結晶から個々の部分を切り出す際に、各切り出し位置において、賦活剤の所定の濃度勾配を有する蛍光体4が得られる。特にμ-PD法では、図3に示すように種結晶34の引き下げ方向Gが、蛍光体4の長手方向(X0方向)に一致する。言い換えると、種結晶34の引き下げ方向Gが、蛍光体4を透過する青色光L1の光路の垂直方向と一致する。
 本実施形態に係る蛍光体4は、μ-PD法により生成されることにより、従来のCZ法(Czochralski Method)により生成される蛍光体に比べて、賦活剤の濃度勾配を有し易い。このため、本実施形態に係る蛍光体4はμ-PD法により生成されることが好ましい。
 図2に示すように、本実施形態に係る蛍光体4を製造するための単結晶製造装置22は、開口部が下向きになるように設置してある坩堝24とその周りを覆う耐火材炉26とを備える。耐火材炉26はさらに石英管28により覆われており、石英管28の縦方向の中央部付近には、坩堝24の加熱のための誘導加熱コイル30が設置されている。
 坩堝24の開口部には種結晶保持治具32により保持された種結晶34が設置されている。また、坩堝24の開口部付近にはアフターヒーター36が設置されている。
 なお、図示しないが、単結晶製造装置22には、耐火材炉26の内部を減圧する減圧手段、減圧をモニターする圧力測定手段、耐火材炉26の温度を測定する温度測定手段および耐火材炉26の内部に不活性ガスを供給するガス供給手段が設けられている。
 種結晶34は単結晶を棒状に切り出した物を使用する。種結晶34は、所望の蛍光体4を構成する元素を含み、なおかつ賦活剤を含まない単結晶が好ましい。
 種結晶保持治具32の素材は特に限定されないが、使用温度である1900℃付近において影響の少ない緻密アルミナなどが好ましい。種結晶保持治具32の形状と大きさも特に限定されないが、耐火材炉26に接触しない程度の径である棒状の形状であることが好ましい。
 単結晶の融点が高いため、坩堝24およびアフターヒーター36の材質はIr、Moなどが好ましい。また、坩堝24の材質の酸化による単結晶への異物混入を防止するために、坩堝24の材質としてはIrを用いることがより好ましい。なお、1500℃以下の融点の物質を対象とする場合は坩堝24の材質としてPtを使用することが可能である。また、坩堝24の材質としてPtを使用する場合には、大気中での結晶成長が可能である。1500℃を超える高融点物質を対象とする場合は、坩堝24およびアフターヒーター36の材質として、Irなどを用いるため、結晶成長はArなどの不活性ガス雰囲気下でのみ行われる。
 坩堝24の開口部の径は単結晶の融液の粘度が低いことや坩堝24との濡れ性の点から、200μm~400μm程度で平らな形状が好ましい。
 耐火材炉26の材質は特に限定されないが、保温性や使用温度、結晶への不純物混入防止の観点からアルミナであることが好ましい。
 次に、本実施形態に係る蛍光体4(単結晶)の製造方法について説明する。以下では、特にαAG:Ce系の蛍光体4の製造方法について説明する。
 まず、耐火材炉26内部の坩堝24に単結晶の原料であるαAG原料とCeを入れ、炉内をNやArなどの不活性ガスで置換する。
 次に、不活性ガスを10~100cm/minで流入させながら誘導加熱コイル(加熱用高周波コイル)30で坩堝24を加熱し、原料を溶融して融液を得る。
 原料を十分溶融したところで種結晶34を坩堝24下部から徐々に近づけ、坩堝24下端の開口部に種結晶34を接触させる。融液が坩堝24下端の開口部から出た所で種結晶34を下降させ、結晶成長を開始させる。
 ここでの種結晶34の降下速度を「育成速度」という。なお、結晶中の賦活剤の濃度勾配は、この育成速度を変化させることにより調整することができる。育成速度が低い場合は、賦活剤濃度が低くなり、育成速度が高い場合は、賦活剤濃度が高くなる傾向となる。
 本実施形態では、始めは育成速度を低くして、徐々に育成速度を高くすることにより結晶中の賦活剤の濃度勾配をつけてもよいし、始めは育成速度を高くして、徐々に育成速度を低くすることにより結晶中の賦活剤の濃度勾配をつけてもよく、特に限定されない。
 本実施形態では、安定な結晶成長が得られる理由から、始めは育成速度を低くして、徐々に育成速度を高くすることが好ましい。この場合、図3における蛍光体4は、種結晶34に近い下方の部分は賦活剤濃度が低く、種結晶34から遠い上方の部分は賦活剤濃度が高くなる。
 本実施形態の育成速度は限定されない。本実施形態の育成速度は、たとえば0.01mm/min~30mm/minの範囲で変化させることが好ましく、0.01mm/min~0.20mm/minの範囲で変化させることがより好ましい。
 結晶成長速度は固液界面の様子をCCDカメラ、またはサーモカメラで観察しながらマニュアルで温度と共にコントロールする。
 誘導加熱コイル30の移動により、温度勾配は10℃/mm~100℃/mmの範囲で選択可能である。
 坩堝24内の融液が出なくなるまで種結晶34を下降させ、坩堝24から種結晶34が離れた後、単結晶にクラックが入らない様に冷却を行う。このように坩堝24とアフターヒーター36以下にかけて急峻な温度勾配とすることで融液の引き出し速度を上げて、育成速度を高くすることが可能となる。
 耐火材炉26内部には、上記の結晶成長および冷却の間も、加熱時と同条件で不活性ガスを流入したままにする。炉内雰囲気はNやAr等の不活性ガスを使用することが好ましい。
3.本実施形態のまとめ
 本実施形態に係る蛍光体は、賦活剤を含有し、少なくとも1つの方向に沿って賦活剤の濃度勾配を有する。
 これにより、紫外から赤外までの所望の波長の蛍光を得ることができ、波長制御性を有する蛍光体を得ることができる。
 本実施形態に係る蛍光体4は柱状であり、蛍光体の長手方向に沿って賦活剤の濃度勾配を有する。
 これにより、蛍光体4の波長制御性がより高まる。
 本実施形態に係る蛍光体4は、蛍光体4を透過する光の光路の方向に垂直な方向に沿って賦活剤の濃度勾配を有する。
 これにより、蛍光体4の波長制御性の効果をより発揮させ易くなる。
 本実施形態に係る蛍光体4は単結晶である。
 これにより、蛍光体4の透過率を高め、輝度を高めることができる。
 本実施形態に係る蛍光体4の賦活剤は重金属元素または希土類元素である。
 これにより、蛍光体4の輝度を高めることができる。
 本実施形態に係る蛍光体4は、蛍光体4に含まれる酸素以外の元素の含有量に対する賦活剤の含有量の割合を賦活剤濃度としたとき、蛍光体4における賦活剤濃度の最小値が0.05モル%であり、最大値が20モル%である。
 これにより、蛍光体4の透過率を高め、輝度を高めることができる。
 本実施形態に係る蛍光体4の蛍光の波長は530nm~645nmである。
 これにより、青色光L1と蛍光の合成により得られる白色光L2をより所望の白色光に近づけることができる。
 本実施形態に係る蛍光体4の賦活剤は、Ce、Pr、Sm、Eu、Tb、Dy、TmおよびYbからなる群から選ばれる少なくとも1つである。
 これにより、蛍光体4をより高輝度化できるとともに、蛍光の波長を530nm~645nmとすることができる。
 本実施形態に係る蛍光体4はマイクロ引き下げ法によって生成される。
 これにより、濃度勾配を有する蛍光体が作製し易くなる。また、マイクロ引き下げ法は、育成速度が速く、形状制御性に優れる。
 本実施形態に係る光照射装置2は、蛍光体4と、蛍光体4を励起させるための光源からの光の照射位置を変える手段と、を備える。
 本実施形態の蛍光体4によれば、一つの蛍光体4において、照射される部分を変化させることにより、発せられる蛍光の波長を変化させることができる、すなわち蛍光の色を変化させることができる。このため、蛍光体4における光源からの光の照射位置を変えることにより、蛍光体4から発せられる蛍光の波長、すなわち蛍光の色を変化させることができる。
 本実施形態に係る光照射装置2は、さらに光源を有し、光源は、青色発光ダイオードおよび青色半導体レーザーのうち少なくともいずれか一方である。
 光源がこのような青色光L1を照射する青色発光素子10であることにより、青色光L1と蛍光体4からの黄色蛍光との混色により白色光L2を得たり、青色光L1と蛍光体4からの緑色および赤色との混色により白色光L2を得たりすることができる。
[第2実施形態]
 本実施形態に係る光照射装置2aは、以下に示す以外は第1実施形態の光照射装置2と同様である。本実施形態に係る光照射装置2aは、図4に示すように青色発光素子10を回転機構12に固定し、回転機構12をR1またはR2の方向に回転させることにより青色発光素子10から発せられる青色光L1の蛍光体4に対する照射位置を変える。
 なお、図4の白色光L2は、光照射装置2aの底面に対して垂直方向から傾いている。これに対しては、たとえば白色光L2を偏光機構に通すことにより、照射方向を光照射装置2aの底面に対して垂直方向に変えることができる。
 また、図示していないが、図4とは反対に、蛍光体を回転機構に固定し、回転機構を回転させることにより青色発光素子から発せられる青色光の蛍光体に対する照射位置を変えてもよい。
[第3実施形態]
 本実施形態に係る光照射装置2bは、以下に示す以外は第1実施形態の光照射装置2と同様である。本実施形態に係る光照射装置2bは、図5に示すように、X軸方向に平行なXLまたはXRの方向に移動可能な反射機構14が設けられている。すなわち、青色発光素子10からの青色光L1を移動可能な反射機構14により反射させることにより、青色発光素子10から発せられる青色光L1の蛍光体4に対する照射位置を変えることができる。
[第4実施形態]
 本実施形態に係る光照射装置2cは、以下に示す以外は第1実施形態の光照射装置2と同様である。本実施形態に係る光照射装置2cは、図6に示すように、青色光L1の入射方向に平行な方向から角度θの範囲において青色光L1を偏光することが可能な偏光機構16を設けられている。すなわち、青色発光素子10からの青色光L1を偏光機構16により偏光させることにより、青色発光素子10から発せられる青色光L1の蛍光体4に対する照射位置を変えることができる。
 なお、図6の白色光L2は、光照射装置2cの底面に対して垂直方向から傾いている。これに対しては、白色光L2を、図示していない他の偏光機構に通すことにより、照射方向を光照射装置2cの底面に対して垂直方向に変えることができる。
[第5実施形態]
 本実施形態に係る光照射装置2dは、以下に示す以外は第1実施形態の光照射装置2と同様である。本実施形態に係る光照射装置2dは、図7に示すように、X軸方向に平行な方向に複数の青色発光素子10a~10eが設けられている。すなわち、複数の青色発光素子10a~10eから、青色光L1を発生させる青色発光素子を選択することにより、青色発光素子から発せられる青色光L1の蛍光体4に対する照射位置を変えることができる。
[第6実施形態]
 本実施形態に係る光照射装置は、以下に示す以外は第1実施形態の光照射装置2と同様である。本実施形態に係る光照射装置は、青色発光素子から光ファイバーを介して蛍光体に青色光を照射する。この方法によれば、光ファイバーの蛍光体側の先端部の位置を移動することにより、青色発光素子から発せられる青色光の蛍光体に対する照射位置を変えることができる。
 本発明は、上記の実施形態に限定されるものではなく、本発明の範囲内で種々に改変することができる。
 たとえば、蛍光体の形状は、特に限定されず、光路に平行な断面が多角形、円または楕円の柱状であってもよい。また、蛍光体の形状は、光路に垂直な断面が円または楕円である円盤状であったり、球またはラグビーボール型であってもよい。
 また、上記の実施形態では、蛍光体4を励起させるための光源として、青色発光素子10を用いたが、青色発光素子10の代わりに紫色発光素子を用いてもよい。紫色発光素子を用いる場合、紫色発光素子により、青色、緑色および赤色の蛍光体を励起して白色光を得ることができる。
 紫色発光素子からの光で励起できる蛍光体の組成は特に限定されない。紫色発光素子からの光で励起できる蛍光体の組成としては、たとえば(Sr,Ca)S:Eu2+、(Ca,Sr)Si:Eu2+、CaAlSi:Eu2+、CaAlSiN:Eu2+、LaS:Eu3+、LiEuW、3.5MgO・0.5MgF・GeO:Mn4+、(Sr,Ca,Ba,Mg)10(POCl:Eu2+,Mn2+、BaMgSi:Eu2+,Mn2+、SrGa:Eu2+、SrSi:Eu2+、BaSi12:Eu2+、BaMgAl1017:Eu2+,Mn2+、SrAl:Eu2+、(Sr,Ca,Ba,Mg)10(POCll2:Eu2+、(Ba,Sr)MgAl1017:Eu2+、SrSiAl19ON31:Eu2+または(Sr,Ba)MgSi:Eu2+などが挙げられる。
 本発明において、蛍光体4における青色光L1の照射位置を変える方法は特に限定されない。
 たとえば、青色発光素子10の位置は固定して、蛍光体4を移動させることにより、蛍光体4における青色光L1の照射位置を変えてもよい。
 たとえば、青色発光素子10および蛍光体4をそれぞれ移動させることにより、蛍光体4における青色光L1の照射位置を変えてもよい。
 上記の実施形態の蛍光体4は、図1のX軸の矢印の向きに沿って賦活剤濃度が漸減しているが、賦活剤の濃度勾配の形態は特に限定されない。たとえばX軸の矢印の向きとは反対の向きに沿って賦活剤濃度が漸減していてもよい。また、X軸の矢印の向きに沿って賦活剤が漸減した後、漸増したり、賦活剤濃度の変曲点を複数有していてもよい。
 たとえば、蛍光体4の表層部においては、賦活剤の濃度勾配を有しており、なおかつ、蛍光体4の表層部における賦活剤濃度が、蛍光体4の中心部における賦活剤の濃度に比べて高くてもよい。
 蛍光体4における賦活剤濃度が高過ぎると透過率が低下する傾向となる。このため、蛍光体4の表層部においては、賦活剤の濃度勾配を有しており、なおかつ、蛍光体4の表層部における賦活剤濃度が、蛍光体4の中心部における賦活剤の濃度に比べて高いことで、蛍光体4が適度な透過率を有することができる。
 蛍光体4の表層部の範囲は、特に限定されない。蛍光体4の青色光L1の光路に平行な断面の最表面から中心までの距離をmとしたとき、たとえば蛍光体4の表層部は、断面の最表面から断面の中心に向かってmの20%の距離に含まれる範囲であり、好ましくは断面の最表面から断面の中心に向かってmの10%の距離に含まれる範囲である。
 蛍光体4の中心部の範囲は、特に限定されない。蛍光体4の中心部の範囲は、たとえば蛍光体4のうち表層部以外の部分である。
 蛍光体4の中心部における賦活剤濃度が、蛍光体4の表層部における賦活剤の濃度に比べて高くてもよい。なお、適度な透過率を得やすいとの理由から、蛍光体4の表層部における賦活剤濃度が、蛍光体4の中心部における賦活剤濃度に比べて高いことが好ましい。
 なお、蛍光体4の表層部における賦活剤濃度を蛍光体4の中心部における賦活剤濃度に比べて高くしたり、表層部のみに賦活剤の濃度勾配を有するようにする方法は特に限定されない。たとえば、単結晶の育成速度を調整することにより、蛍光体4の表層部における賦活剤濃度を蛍光体4の中心部における賦活剤濃度に比べて高くすることができる。また、たとえば、単結晶の育成雰囲気温度を調整することにより、蛍光体4の表層部のみに賦活剤の濃度勾配を有するようにできる。
 蛍光体4における賦活剤の濃度勾配は、蛍光体4となる単結晶をμ-PD法により生成したり、アフターヒーター36により坩堝24以下での温度を制御する以外にも、EFG法により蛍光体4を育成することによっても得ることができる。なお、EFG法とは、坩堝に原料を投入し加熱することで融解し、原料を坩堝に直立設置されたスリットダイの開口部に導き、この開口部にて原料に種結晶を接触させた状態で種結晶を引き上げることにより、結晶を育成させる方法である。
 本発明に係る蛍光体4は、たとえば車載ヘッドライト、蛍光灯、蛍光板、発光塗料、エレクトロルミネセンス、シンチレーションカウンタ、ブラウン管、または意匠用照明などに用いることができる。
 本発明に係る蛍光体4を車載ヘッドライトに用いた場合、車載ヘッドライトの色温度を所望の白色光に調整したり、車載ヘッドライトの色温度を黄色にしてフォグランプにすることができる。
 以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。
 図2に示す単結晶製造装置22を用いてμ-PD法によりCe:YAG(Yttrium Aluminum Garnet)単結晶を生成した。
 内径20mmのIr製の坩堝24に出発原料としてYAG原料を10質量部投入し、賦活剤としてCeを投入した。原料を投入した坩堝24を耐火材炉26に投入し、耐火材炉26内の圧力を減圧雰囲気とし、Nガスを50cm/minの流量でフローを行った。
 その後、坩堝24の加熱を開始しYAG単結晶の融点に達するまで1時間かけて徐々に加熱した。YAG単結晶を種結晶34として用い、種結晶34をYAGの融点近くまで上昇させた。
 種結晶34の先端を坩堝24下端の開口部に接触させて、開口部から融液が出るまで温度を徐々に上昇させた。坩堝24下端の開口部から融液が出たら種結晶34を徐々に降下させながら、最初は0.01mm/minとし、最後は0.2mm/minとして、徐々に速度を変化させて結晶成長を行った。
 その結果、直径5mm、長手方向の長さ93mmのCe:YAG単結晶が得られた。
 このCe:YAG単結晶を2mm角、長手方向の長さ(X0)55mmの柱状に切り出した。
 切り出した単結晶を以下に示す方法により評価した。なお、蛍光の波長と透過率は、切り出した単結晶について、短手方向の中央部であり、かつ長手方向に沿う線上の5mm間隔の各点において測定した。
・単結晶
 XRDによりYAG単結晶の結晶ピークを確認して、異相成分が含まないことを確認することにより、単結晶であることを確認した。
・蛍光の波長
 蛍光の波長は、日立ハイテク株式会社製 F-7000形分光蛍光光度計を用いて、25℃、200℃および300℃において測定した。測定モードは蛍光スペクトル、測定条件は励起波長450nm、ホトマル電圧400Vとした。
・透過率
 透過率の測定は、測定装置としてJASCO株式会社製 V660 スペクトロメーターを用いた。測定波長は390nmとした。
Figure JPOXMLDOC01-appb-T000001
 表1、図8より、蛍光体の長手方向に沿って賦活剤濃度の濃度勾配が存在することが確認できた。
 表1、図9および図10より、賦活剤濃度が低いと蛍光の波長が短くなり、透過率が高くなる傾向となることが確認できた。
 表1、図9および図10より、賦活剤濃度が高いと蛍光の波長が長くなり、透過率が低くなる傾向となることが確認できた。
2,2a,2b,2c,2d 光照射装置
4 蛍光体
4a 第1面
4b 第2面
6 反射基板
8 カバー
10,10a,10b,10c,10d,10e 青色発光素子
12 回転機構
14 反射機構
16 偏光機構
22 単結晶製造装置
24 坩堝
26 耐火材炉
28 石英管
30 誘導加熱コイル
32 種結晶保持治具
34 種結晶
36 アフターヒーター

Claims (10)

  1.  賦活剤を含有し、
    少なくとも1つの方向に沿って前記賦活剤の濃度勾配を有する蛍光体。
  2.  前記蛍光体は柱状であり、
    前記蛍光体の長手方向に沿って前記賦活剤の濃度勾配を有する請求項1に記載の蛍光体。
  3.  前記蛍光体を透過する光の光路の方向に垂直な方向に沿って前記賦活剤の濃度勾配を有する請求項1または2に記載の蛍光体。
  4.  前記蛍光体は単結晶である請求項1~3のいずれかに記載の蛍光体。
  5.  前記賦活剤は重金属元素または希土類元素である請求項1~4のいずれかに記載の蛍光体。
  6.  前記蛍光体に含まれる酸素以外の元素の含有量に対する前記賦活剤の含有量の割合を賦活剤濃度としたとき、
    前記蛍光体における前記賦活剤濃度が0.05モル%以上、20モル%以下である請求項1~5のいずれかに記載の蛍光体。
  7.  前記蛍光体の蛍光の波長は530nm~645nmである請求項1~6のいずれかに記載の蛍光体。
  8.  前記賦活剤は、Ce、Pr、Sm、Eu、Tb、Dy、TmおよびYbからなる群から選ばれる少なくとも1つである請求項1~7のいずれかに記載の蛍光体。
  9.  請求項1~8のいずれかに記載の蛍光体と、前記蛍光体を励起させるための光源からの光の照射位置を変える手段と、を有する光照射装置。
  10.  光源をさらに有し、前記光源は、青色発光ダイオードおよび青色半導体レーザーのうち少なくともいずれか一方である請求項9に記載の光照射装置。
PCT/JP2020/005135 2019-03-27 2020-02-10 蛍光体および光照射装置 WO2020195250A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080011035.9A CN113348225A (zh) 2019-03-27 2020-02-10 荧光体和光照射装置
US17/427,808 US20220140206A1 (en) 2019-03-27 2020-02-10 Phosphor and light irradiation device
JP2021508210A JPWO2020195250A1 (ja) 2019-03-27 2020-02-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-060935 2019-03-27
JP2019060935 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020195250A1 true WO2020195250A1 (ja) 2020-10-01

Family

ID=72608782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005135 WO2020195250A1 (ja) 2019-03-27 2020-02-10 蛍光体および光照射装置

Country Status (4)

Country Link
US (1) US20220140206A1 (ja)
JP (1) JPWO2020195250A1 (ja)
CN (1) CN113348225A (ja)
WO (1) WO2020195250A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287373A (en) * 1992-08-17 1994-02-15 Alliedsignal Inc. Gradient doped solid state laser gain media
JP2010541283A (ja) * 2007-10-01 2010-12-24 インテマティックス・コーポレーション 色可変光放出デバイス
JP2013168602A (ja) * 2012-02-17 2013-08-29 Stanley Electric Co Ltd 光源装置および照明装置
JP2013539477A (ja) * 2010-07-19 2013-10-24 レンセレイアー ポリテクニック インスティテュート フルスペクトル半導体白色光源、製造方法および応用
JP2014514368A (ja) * 2011-02-24 2014-06-19 日東電工株式会社 蛍光体成分を有する発光複合材
JP2014529566A (ja) * 2011-08-16 2014-11-13 レイセオン カンパニー ゾーン処理を用いてレーザー結晶内のドーパントプロファイルを調節する方法
CN107253854A (zh) * 2017-05-18 2017-10-17 北京科技大学 一种梯度掺杂的激光透明陶瓷及其制备方法
JP2018527743A (ja) * 2015-07-02 2018-09-20 ルミレッズ ホールディング ベーフェー 波長変換発光デバイス

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060884A (ja) * 2009-09-08 2011-03-24 Sharp Corp 半導体発光装置および車両用灯具
CN103347982B (zh) * 2010-12-01 2016-05-25 日东电工株式会社 具有掺杂浓度梯度的发射性陶瓷材料及其制造方法和使用方法
RU2721996C2 (ru) * 2015-04-01 2020-05-25 Филипс Лайтинг Холдинг Б.В. Светоизлучающее устройство высокой яркости

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287373A (en) * 1992-08-17 1994-02-15 Alliedsignal Inc. Gradient doped solid state laser gain media
JP2010541283A (ja) * 2007-10-01 2010-12-24 インテマティックス・コーポレーション 色可変光放出デバイス
JP2013539477A (ja) * 2010-07-19 2013-10-24 レンセレイアー ポリテクニック インスティテュート フルスペクトル半導体白色光源、製造方法および応用
JP2014514368A (ja) * 2011-02-24 2014-06-19 日東電工株式会社 蛍光体成分を有する発光複合材
JP2014529566A (ja) * 2011-08-16 2014-11-13 レイセオン カンパニー ゾーン処理を用いてレーザー結晶内のドーパントプロファイルを調節する方法
JP2013168602A (ja) * 2012-02-17 2013-08-29 Stanley Electric Co Ltd 光源装置および照明装置
JP2018527743A (ja) * 2015-07-02 2018-09-20 ルミレッズ ホールディング ベーフェー 波長変換発光デバイス
CN107253854A (zh) * 2017-05-18 2017-10-17 北京科技大学 一种梯度掺杂的激光透明陶瓷及其制备方法

Also Published As

Publication number Publication date
JPWO2020195250A1 (ja) 2020-10-01
CN113348225A (zh) 2021-09-03
US20220140206A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
US8044572B2 (en) Light conversion structure and light-emitting device using the same
US8771547B2 (en) Oxycarbonitride phosphors and light emitting devices using the same
WO2017170609A1 (ja) 蛍光体、発光装置、照明装置及び画像表示装置
TWI515175B (zh) A ceramic composite for optical conversion, a method for manufacturing the same, and a light-emitting device provided with the same
JP6119739B2 (ja) 光変換用セラミック複合体およびそれを用いた発光装置
JP5354114B2 (ja) 光変換用セラミック複合体、その製造方法、及びそれを備えた発光装置
CN108603113B (zh) 荧光体及其制造方法、含荧光体构件以及发光装置或投影仪
Tratsiak et al. On the stabilization of Ce, Tb, and Eu ions with different oxidation states in silica-based glasses
WO2020195250A1 (ja) 蛍光体および光照射装置
KR20160005769A (ko) 광대역 발광 재료 및 백색광 발광 재료
CN109943333A (zh) 稀土类铝酸盐荧光体及其制造方法
Ouyang et al. Near-white light-emitting Dy 3+-doped transparent glass ceramics containing Ba 2 LaF 7 nanocrystals
US11634630B2 (en) Phosphor and light source device
JP7139988B2 (ja) 蛍光体および光源装置
WO2023063251A1 (ja) 蛍光体、発光装置、照明装置、画像表示装置及び車両用表示灯
JP7253214B1 (ja) 発光装置、照明装置、画像表示装置及び車両用表示灯
JP7311866B1 (ja) 蛍光体
WO2023139823A1 (ja) 蛍光体、発光装置、照明装置、画像表示装置及び車両用表示灯
JP2023142167A (ja) 蛍光体および光源装置
JP2023118531A (ja) 蛍光体および光源装置
JP2023137938A (ja) 波長変換部材および光源装置
JP2021172796A (ja) 単結晶蛍光体および結晶体の製造方法
JP2023057391A (ja) 蛍光体
JP2022115378A (ja) 結晶体、蛍光素子および発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778762

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508210

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778762

Country of ref document: EP

Kind code of ref document: A1