WO2020189768A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2020189768A1
WO2020189768A1 PCT/JP2020/012397 JP2020012397W WO2020189768A1 WO 2020189768 A1 WO2020189768 A1 WO 2020189768A1 JP 2020012397 W JP2020012397 W JP 2020012397W WO 2020189768 A1 WO2020189768 A1 WO 2020189768A1
Authority
WO
WIPO (PCT)
Prior art keywords
lighting amount
image display
region
light source
area
Prior art date
Application number
PCT/JP2020/012397
Other languages
English (en)
French (fr)
Inventor
和彦 迫
勉 原田
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2020189768A1 publication Critical patent/WO2020189768A1/ja
Priority to US17/476,857 priority Critical patent/US11948522B2/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/66Transforming electric information into light information
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/0646Modulation of illumination source brightness and image signal correlated to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • the present invention relates to a display device.
  • a display device having a local dimming function that divides a light source device such as a backlight into a plurality of regions and controls the light emission of the light source for each region according to the video signal of the divided regions is known.
  • the light source arranged in the high-luminance region brightens the low-luminance region around the region.
  • a phenomenon called black floating may occur. This phenomenon is known as the so-called Halo (halo) effect.
  • Patent Document 1 When displaying an image in which a high-brightness area and a low-brightness area are mixed as described above, for example, the amount of light from the light source in the low-brightness area around the high-brightness area is corrected to create a natural image.
  • Patent Document 1 For example, Patent Document 1,
  • An object of the present invention is to provide a display device that suppresses blackening in a dark area due to the halo effect.
  • the display device is provided corresponding to an image display panel having an image display surface whose display is controlled based on an image signal, and the image display surface divided into a plurality of partial regions.
  • the signal processing unit includes a light source device having a plurality of light sources and illuminating the image display surface, and a signal processing unit for calculating the lighting amount of the light source for each of the plurality of the partial regions. For each region, the lighting amount is calculated based on the image signal, one of the partial regions is set as the correction target partial region of the lighting amount, and the adjacent portion located around the correction target partial region is set. When the lighting amount of the partial area is equal to or less than a predetermined value, the lighting amount in the correction target partial area is corrected.
  • the display device is provided corresponding to an image display panel having an image display surface whose display is controlled based on an image signal, and the image display surface divided into a plurality of partial regions.
  • the signal processing unit includes a light source device that has the plurality of light sources and illuminates the image display surface, and a signal processing unit that calculates the lighting amount of the light source for each of the plurality of the partial regions. For each of the partial regions, the lighting amount is calculated based on the image signal, and one of the partial regions is set as the correction target partial region of the lighting amount, and the lighting amount of the correction target partial region is set. On the other hand, when the difference value of the lighting amount of the adjacent partial region located around the correction target partial region is equal to or less than a predetermined value, the lighting amount in the correction target partial region is corrected.
  • the display device is provided corresponding to an image display panel having an image display surface whose display is controlled based on an image signal, and the image display surface divided into a plurality of partial regions.
  • the signal processing unit includes a light source device that has the plurality of light sources and illuminates the image display surface, and a signal processing unit that calculates the lighting amount of the light source for each of the plurality of the partial regions. For each of the partial regions, the lighting amount is calculated based on the image signal, and one of the partial regions is set as the correction target partial region of the lighting amount and is located around the correction target partial region.
  • the lighting amount of the adjacent partial area is equal to or less than a predetermined value, or the difference value of the lighting amount of the adjacent partial area located around the correction target partial area is a predetermined value with respect to the lighting amount of the correction target partial area.
  • the display device includes an image display panel on which an image is displayed based on an image signal, a first division region and the first division region facing the image display surface of the image display panel.
  • the image display panel comprises a light source device having a second divided region adjacent to the image signal, and calculates the lighting amount of the first divided region and the lighting amount of the second divided region based on the image signal. When the lighting amount of the second divided area is equal to or less than a predetermined value, the lighting amount of the first divided area is reduced.
  • the display device includes an image display panel on which an image is displayed based on an image signal, a first division region and the first division region facing the image display surface of the image display panel.
  • the image display panel comprises a light source device having a second divided region adjacent to the image signal, and calculates the lighting amount of the first divided region and the lighting amount of the second divided region based on the image signal. When the lighting amount of the first divided area is larger than the lighting amount of the second divided area by a predetermined value or more, the lighting amount of the first divided area is reduced.
  • the display device includes an image display panel on which an image is displayed based on an image signal, a first division region and the first division region facing the image display surface of the image display panel.
  • the image display panel includes a light source device having a second divided region adjacent to the image signal, and calculates the lighting amount of the first divided region and the lighting amount of the second divided region based on the image signal.
  • the lighting amount of the second division area is equal to or less than a predetermined value, or when the lighting amount of the first division area is larger than the lighting amount of the second division area by a predetermined value or more, the lighting of the first division area is lit. Reduce the amount.
  • FIG. 1 is a block diagram showing an example of the configuration of the display device according to the first embodiment.
  • FIG. 2 is a conceptual diagram of the image display panel according to the first embodiment.
  • FIG. 3 is a schematic view showing a screen display surface of the display device according to the first embodiment.
  • FIG. 4 is a diagram showing a light emitting region of the display device according to the first embodiment.
  • FIG. 5 is a functional block diagram showing a configuration example of the signal processing unit.
  • FIG. 6 is a functional block diagram showing a configuration example of the lighting amount calculation unit.
  • FIG. 7 is a schematic view showing an example of the amount of lighting in each partial region on the image display surface.
  • FIG. 8 is a schematic diagram showing a correction example of the lighting amount in each partial region.
  • FIG. 1 is a block diagram showing an example of the configuration of the display device according to the first embodiment.
  • FIG. 2 is a conceptual diagram of the image display panel according to the first embodiment.
  • FIG. 3 is a schematic view showing a
  • FIG. 9 is a diagram showing an example of an input image.
  • FIG. 10A is a diagram showing an image display example when the lighting amount correction unit does not correct the lighting amount.
  • FIG. 10B is a diagram showing an image display example when the lighting amount is corrected by the lighting amount correction unit.
  • FIG. 11A is a flowchart showing an example of the lighting amount correction process according to the first embodiment.
  • FIG. 11B is a flowchart showing a second example of the lighting amount correction process according to the first embodiment.
  • FIG. 11C is a flowchart showing a third example of the lighting amount correction process according to the first embodiment.
  • FIG. 12 is a diagram showing a correction target partial region and an adjacent partial region adjacent to the correction target partial region.
  • FIG. 13 is a diagram showing an image display example when the visual luminance in the bright region of the input image shown in FIG. 9 is low.
  • FIG. 14 is a diagram showing an image display example when the visual luminance in the bright region of the input image shown in FIG. 9 is high.
  • FIG. 15 is a graph showing the relationship between the coefficient value CoefV and the brightness Max (R, G, B).
  • FIG. 16 is a graph showing the relationship between the coefficient value CoefY and the brightness Y (R, G, B).
  • FIG. 17 is a flowchart showing an example of the correction coefficient calculation process according to the second embodiment.
  • FIG. 18 is a flowchart showing an example of the correction coefficient calculation process according to the modified example of the second embodiment.
  • FIG. 19 is a schematic view showing a screen display surface of the display device according to the third embodiment.
  • FIG. 20 is a diagram showing a light emitting region of the display device according to the third embodiment.
  • FIG. 1 is a block diagram showing an example of the configuration of the display device according to the first embodiment.
  • FIG. 2 is a conceptual diagram of the image display panel according to the first embodiment.
  • the display device 10 of the first embodiment includes a signal processing unit 20, an image display panel 40, and a light source unit 60 (light source device).
  • the image display panel 40 includes an image display panel drive unit 30 and a display unit 33.
  • the signal processing unit 20 sends a signal generated by applying a predetermined data conversion process to the input image signal to each unit of the display device 10 according to the input image signal (RGB data) from the image output unit 12 of the control device 11. ..
  • the image display panel drive unit 30 controls the drive of the display unit 33 based on the signal from the signal processing unit 20.
  • the light source unit 60 illuminates the image display surface 41 provided on the display unit 33 of the image display panel 40 from the back surface.
  • the image display panel 40 displays an image by a signal from the image display panel drive unit 30 and light from the light source unit 60.
  • the image display panel 40 displays a frame image on an image display surface 41 for displaying an image.
  • the input image signal indicating the RGB gradation value of each of the plurality of pixels constituting one frame image is input to the signal processing unit 20 within a predetermined period as a unit.
  • the signal processing unit 20 outputs an output signal and a control signal based on the input image signal so that the frame image is displayed on the image display panel 40 within a predetermined one frame period.
  • the control signal is a signal for controlling the operation of the light source unit 60.
  • the light source unit 60 operates under the control of the signal processing unit 20 in response to the control signal, and has the brightness required for the frame image displayed by the image display panel 40 from the light emitting region 61 having a size corresponding to the image display surface 41. It emits light.
  • the brightness of light required for the frame image is the pixel to which the maximum gradation value is given among the gradation values of a plurality of pixels included in the input signal for one screen that is the source of the frame image. This is light having the brightness required to obtain the brightness corresponding to the maximum gradation value.
  • the signal processing unit 20 uniformly adjusts the light of the entire light emitting region 61 in order to obtain the light of the brightness required for the frame image, or the local dimming that adjusts the light from the light emitting region 61 in units of a plurality of subregions. Perform processing.
  • a plurality of pixels 48 are arranged in a two-dimensional matrix (matrix) on the image display surface 41.
  • the display unit 33 functions as a display unit having a plurality of pixels 48.
  • FIG. 1 shows an example in which a plurality of pixels 48 are arranged in a matrix in a two-dimensional coordinate system of XY.
  • the X direction is the row direction and the Y direction is the column direction, but the present invention is not limited to this, and the X direction may be the vertical direction and the Y direction may be the horizontal direction.
  • the pixel 48 has at least two of a first sub-pixel 49R, a second sub-pixel 49G, and a third sub-pixel 49B.
  • the first sub-pixel 49R displays the first color (for example, red).
  • the second sub-pixel 49G displays a second color (for example, green).
  • the third sub-pixel 49B displays a third color (for example, blue).
  • the first color, the second color, and the third color are not limited to red, green, and blue, but may be complementary colors or the like, and the colors may be different from each other.
  • the sub-pixel 49 is referred to. That is, one of the three colors is assigned to one sub-pixel 49.
  • the image display panel 40 of the first embodiment is, for example, a transmissive color liquid crystal display panel.
  • a first color filter for passing the first color is arranged between the first sub-pixel 49R and the image observer.
  • a second color filter for passing the second color is arranged between the second sub-pixel 49G and the image observer.
  • a third color filter for passing the third color is arranged between the third sub-pixel 49B and the image observer.
  • the image display panel drive unit 30 has a signal output circuit 31 and a scanning circuit 32.
  • the image display panel drive unit 30 holds the output signal by the signal output circuit 31, and sequentially outputs the output signal to the display unit 33. More specifically, the signal output circuit 31 outputs an image signal having a predetermined potential corresponding to the output signal from the signal processing unit 20 to the display unit 33.
  • the signal output circuit 31 is electrically connected to the display unit 33 by a signal line DTL.
  • the scanning circuit 32 controls ON / OFF of a switching element for controlling the operation (light transmittance) of the sub-pixel 49 in the display unit 33.
  • the switching element is, for example, a thin film transistor (TFT).
  • TFT thin film transistor
  • the light source unit 60 is arranged on the back surface of the image display panel 40.
  • the light source unit 60 illuminates the image display panel 40 by irradiating the image display panel 40 with light.
  • FIG. 3 is a schematic view showing a screen display surface of the display device according to the first embodiment.
  • the image display surface 41 is divided into a plurality of partial areas.
  • the image display surface 41 is divided into eight equal parts along the X direction, such as X 1 , X 2 , ..., X 8 , and Y 1 , Y 2 , Y 3 , Y 4 along the Y direction.
  • An example is shown in which a partial area of 8 ⁇ 4 is provided by being divided into four equal parts as in.
  • 800 pixels in the X direction and 480 pixels in the Y direction that is, pixels 48 of 800 ⁇ 480 are arranged in a matrix on the image display surface 41
  • one partial region shown in FIG. 3 is 100 ⁇ . It has 120 pixels 48.
  • the division example of the image display surface 41 and the number of pixels in the image display surface 41 shown in FIG. 3 are merely examples and are not limited to these, and can be changed as appropriate.
  • FIG. 4 is a diagram showing a light emitting region of the display device according to the first embodiment.
  • FIG. 4 shows an example in which one light source 6a is arranged corresponding to the partial region of the image display surface 41 shown in FIG.
  • the light source 6a is, for example, a light emitting diode (LED), but this is an example of a specific configuration of the light source 6a and is not limited to this, and can be changed as appropriate.
  • LED light emitting diode
  • FIG. 4 an example in which one light source 6a is arranged facing each partial region of the image display surface 41 shown in FIG. 3 is shown, but the lighting amount can be individually controlled in each partial region.
  • the configuration is not limited to this as long as the lighting amount for each partial area can be controlled, and can be changed as appropriate.
  • FIG. 5 is a functional block diagram showing a configuration example of the signal processing unit.
  • the signal processing unit 20 includes a lighting amount calculation unit 21, a light source control unit 22, a brightness distribution calculation unit 23, and a pixel processing unit 24.
  • FIG. 6 is a functional block diagram showing a configuration example of the lighting amount calculation unit.
  • the lighting amount calculation unit 21 calculates the lighting amount of the light source 6a corresponding to each partial region on the image display surface 41.
  • the lighting amount calculation unit 21 includes a lighting amount setting unit 21a, a lighting amount correction unit 21b, and a storage unit 21c.
  • the lighting amount setting unit 21a sets the lighting amount (first lighting amount) of each light source 6a provided corresponding to each partial region based on the input image signal.
  • the lighting amount setting unit 21a sets the lighting amount (first lighting amount) for each partial area individually for all the partial areas.
  • the lighting amount setting unit 21a calculates the brightness of each pixel 48 included in each partial area.
  • the lighting amount setting unit 21a calculates the brightness of each pixel 48 included in each partial area.
  • each color of the sub-pixel 49 is indicated by an 8-bit gradation value will be described.
  • the 8-bit gradation value can be represented by a numerical value having "0" as the minimum value and "255" as the maximum value.
  • the brightness of the pixel 48 including the second sub-pixel 49G is set to 100 [%].
  • the gradation value of the second sub-pixel 49G is "127”
  • the gradation value of the first sub-pixel 49R and the third sub-pixel 49B included in the pixel 48 including the second sub-pixel 49G is "127”. If it is less than 127, the brightness of the pixel 48 including the second sub-pixel 49G is set to 50 [%].
  • the brightness corresponding to the maximum gradation value is defined as the brightness in the pixel 48.
  • the relationship between the gradation value of the sub-pixel 49 and the brightness can be calculated from, for example, table format data or an arithmetic expression.
  • the lighting amount setting unit 21a calculates the brightness of all the pixels 48 included in each partial area.
  • the lighting amount setting unit 21a derives the brightness of the pixel 48 having the highest calculated brightness among all the pixels 48 included in each partial region as the brightness in the partial region. Then, the brightness in the partial region is set as the lighting amount (first lighting amount) in the partial region, and the first lighting amount information BL1 including the lighting amount (first lighting amount) in each partial region is output.
  • FIG. 7 is a schematic diagram showing an example of the amount of lighting in each partial region on the image display surface.
  • the numerical value written inside the rectangle showing each partial region of FIG. 7 indicates the amount of lighting in each partial region.
  • the lighting amount correction unit 21b is a component for correcting the lighting amount of each partial region set in the lighting amount setting unit 21a.
  • the lighting amount correction unit 21b corrects the lighting amount (first lighting amount) in each partial area based on the first lighting amount information BL1 from the lighting amount setting unit 21a, and the lighting amount (first lighting amount) in each partial area after correction.
  • the second lighting amount information BL2 including the 2 lighting amount) is output.
  • FIG. 8 is a schematic diagram showing a correction example of the lighting amount in each partial region.
  • the lighting amount of the partial area in which the partial area of the lighting amount of 0 [%] is adjacent to the partial area of the lighting amount of 50 [%] is uniformly set to 30 [%]. I am correcting.
  • the lighting amount correction unit 21b sets the lighting amount of the partial area of the lighting amount of 0 [%] to 50 [%] of the partial area of the lighting amount of 50 [%] adjacent to the direction indicated by the arrow in FIG.
  • the correction coefficient k 0.6 is multiplied to calculate the corrected lighting amount (second lighting amount).
  • the value of the correction coefficient k described above is an example and is not limited to 0.6 and can be changed as appropriate, but for example, it is preferably a predetermined value of 0.6 or more and 0.8 or less.
  • the value of the correction coefficient k can be greater than 0 and less than or equal to 1.0 (0 ⁇ k ⁇ 1.0).
  • the lighting amount of the partial area adjacent to the partial area is not limited to 0 [%] and can be changed as appropriate. For example, 10 [%] or more and 15 It is preferably less than a predetermined value less than [%].
  • the storage unit 21c may use discrete data in a data table format indicating the relationship between the gradation value of the sub-pixel 49 and the lighting amount used when calculating the lighting amount of the sub-pixel 49 in the lighting amount setting unit 21a.
  • the calculation formula and the correction coefficient k used when the lighting amount correction unit 21b corrects the lighting amount in each partial region are stored.
  • the light source control unit 22 controls each light source 6a according to the lighting amount (second lighting amount) of each partial region based on the second lighting amount information BL2 from the lighting amount calculation unit 21. Output the light source control signal.
  • the brightness distribution calculation unit 23 calculates the brightness distribution of the entire light source unit 60 brought about by the lighting amount (first lighting amount) of each partial region based on the first lighting amount information BL1 from the lighting amount calculation unit 21. Specifically, the luminance distribution calculation unit 23 calculates the luminance distribution of the entire light source unit 60, for example, using data in a table format or an arithmetic expression.
  • the luminance distribution calculation unit 23 outputs the luminance distribution information BM indicating the luminance distribution to the pixel processing unit 24.
  • the pixel processing unit 24 obtains the gradation value of the pixel 48 for performing display output based on the input image signal with the luminance distribution indicated by the luminance distribution information BM. Specifically, the pixel processing unit 24 corrects the gradation value of each of the sub-pixels 49 constituting the pixel 48 included in each partial region based on the luminance distribution information BM output from the luminance distribution calculation unit 23.
  • FIG. 9 is a diagram showing an example of an input image.
  • FIG. 10A is a diagram showing an image display example when the lighting amount correction unit does not correct the lighting amount.
  • FIG. 10B is a diagram showing an image display example when the lighting amount is corrected by the lighting amount correction unit.
  • FIG. 9 illustrates an input image in which the bright region 41b is displayed in the center of the dark region 41a.
  • the boundary line which divides the image display surface 41 into a plurality of partial regions is clarified.
  • the black floating 42 due to this halo effect exists in a partial region existing on the boundary line between the dark region 41a and the bright region 41b (in the example shown in FIG. 9, it exists inside the broken line and outside the alternate long and short dash line). It occurs not only in the partial region) but also in the partial region existing outside the boundary line between the dark region 41a and the bright region 41b (in the example shown in FIG. 9, the partial region existing outside the broken line). Therefore, as shown in FIG. 10A, in the image display example in which the lighting amount correction unit 21b does not correct the lighting amount, the area where the black floating 42 occurs is wide and the dark area around the bright area 41b is wide. 41a becomes brighter.
  • the lighting amount is a partial region (for example, a predetermined value of 10 [%] or more and less than 15 [%]) or less (in FIG. 9).
  • a predetermined value of 10 [%] or more and less than 15 [%] is corrected by multiplying by a predetermined correction coefficient k which is larger than 0 and 1.0 or less.
  • the partial region existing inside the broken line and outside the alternate long and short dash line is suppressed.
  • black floating in the partial region existing outside the boundary line between the dark region 41a and the bright region 41b (in the example shown in FIG. 9, the partial region existing outside the broken line) is also suppressed. Therefore, as shown in FIG. 10B, it is possible to suppress the black floating 42 in the dark region 41a around the bright region 41b due to the halo effect.
  • the lighting amount correction unit 21b shown in FIG. 10B corrects the lighting amount
  • the image display example when the lighting amount correction unit 21b shown in FIG. 10A does not correct the lighting amount.
  • the region where the black floating 42 is generated can be narrowed, and the brightness of the dark region 41a around the bright region 41b can be darkened.
  • FIG. 11A is a flowchart showing a first example of the lighting amount correction process according to the first embodiment.
  • FIG. 11B is a flowchart showing a second example of the lighting amount correction process according to the first embodiment.
  • FIG. 11C is a flowchart showing a third example of the lighting amount correction process according to the first embodiment.
  • FIG. 12 is a diagram showing a correction target partial region and an adjacent partial region adjacent to the correction target partial region. In the example shown in FIG. 12, a partial region adjacent to the correction target partial region (shaded partial region in the figure) to be corrected for the lighting amount is defined as an adjacent partial region.
  • the lighting amount correction processing shown in FIGS. 11A, 11B, and 11C is mainly performed by the lighting amount correction unit 21b of the lighting amount calculation unit 21.
  • the lighting amount correction unit 21b sequentially selects each partial area of the image display surface 41 shown in FIG. 3, and sets the selected partial area as the lighting amount correction target partial area (step S1).
  • the present disclosure is not limited by the selection order of the partial regions.
  • the lighting amount correction unit 21b sequentially selects the adjacent partial region shown in FIG. 12 and determines the presence or absence of the unselected adjacent partial region (step S2).
  • the present disclosure is not limited by the selection order of the adjacent subregions.
  • step S2 When there is no unselected adjacent partial area, that is, when all the adjacent partial areas have been selected (step S2; No), the process returns to step S1 and a new correction target partial area is set.
  • step S2; Yes it is determined whether or not the lighting amount y2 of the adjacent partial region is equal to or less than a predetermined first threshold value Yth1 (y2 ⁇ Yth1) (step S3).
  • step S3 When the lighting amount y2 of the adjacent partial region is larger than the first threshold value Yth1 (y2> Yth1) (step S3; No), the process returns to step S2, and the step is taken with respect to the newly selected adjacent partial region (step S2; Yes). Perform the processing of S3.
  • the difference value of the lighting amount y2 of the adjacent partial region with respect to the lighting amount y1 of the correction target partial region is the second threshold value Yth2 or more (y1-y2 ⁇ Yth2).
  • the correction coefficient k stored in the storage unit 21c is set to, for example, a value corresponding to the difference value of the lighting amount y2 of the adjacent partial area with respect to the lighting amount y1 of the correction target partial area.
  • the mode may be such that the correction coefficient k is tabulated and stored in the storage unit 21c. Further, the correction coefficient k may be smaller as the difference value of the lighting amount y2 of the adjacent partial region is larger than the lighting amount y1 of the correction target partial region.
  • step S2 when the lighting amount correction unit 21b has an unselected adjacent partial region (step S2; Yes), the difference value of the lighting amount y2 of the adjacent partial region with respect to the lighting amount y1 of the correction target partial region is the second threshold value. It is determined whether or not it is Yth2 or more (y1-y2 ⁇ Yth2) (step S3a).
  • step S3a When the difference value of the lighting amount y2 of the adjacent partial area with respect to the lighting amount y1 of the correction target partial area is smaller than the second threshold value Yth2 (y1-y2 ⁇ Yth2) (step S3a; No), the process returns to step S2 and a new selection is made.
  • the process of step S3a is performed on the adjacent partial region (step S2; Yes).
  • the first example shown in FIG. 11A and the second example shown in FIG. 11B are combined. That is, in the third example shown in FIG. 11C, in the lighting amount correction unit 21b, the lighting amount y2 in the adjacent partial region is equal to or less than the first threshold value Yth1 (y2 ⁇ Yth1), or the lighting amount y1 in the correction target partial region.
  • the difference value of the lighting amount y2 of the adjacent partial region with respect to is the second threshold value Yth2 or more (y1-y2 ⁇ Yth2)
  • the lighting amount correction unit 21b determines whether or not the lighting amount y2 of the adjacent portion region is equal to or less than a predetermined first threshold value Yth1 (y2). ⁇ Yth1) and whether or not the difference value ytd of the lighting amount y2 of the adjacent partial region with respect to the lighting amount y1 of the correction target partial region is equal to or greater than the second threshold value Yth2 (y1-y2 ⁇ Yth2) (step S3b). ).
  • step S3b; No returns to step S2, and the process of step S3b is performed on the newly selected adjacent partial region (step S2; Yes).
  • the bright region for example, the bright region 41b shown in FIG. 10
  • the dark region for example, the dark region 41a shown in FIG. 10
  • the amount of light can be reduced. As a result, it is possible to suppress black floating in the dark region around the bright region due to the halo effect.
  • the display device 10 has an image display panel 40 having an image display surface 41 whose display is controlled based on an input image signal, and an image display surface divided into a plurality of partial regions.
  • a light source unit 60 (light source device) that has a plurality of light sources 6a provided corresponding to 41 and illuminates the image display surface 41, and a signal processing unit that calculates the lighting amount of the light source 6a for each of the plurality of partial regions. 20 and.
  • the signal processing unit 20 calculates the lighting amount for each partial area based on the input image signal, sets one of the partial areas as the correction target partial area of the lighting amount, and sets the correction target partial area.
  • the lighting amount y2 of the adjacent partial region located around the above is equal to or less than the predetermined first threshold value Yth1, the lighting amount y1 in the correction target partial region is corrected.
  • the display device 10 corresponds to an image display panel 40 having an image display surface 41 whose display is controlled based on an input image signal, and an image display surface 41 divided into a plurality of partial areas.
  • a light source unit 60 (light source device) that has a plurality of light sources 6a and illuminates the image display surface 41, and a signal processing unit 20 that calculates the lighting amount of the light source 6a for each of the plurality of partial regions. Be prepared.
  • the signal processing unit 20 calculates the lighting amount for each partial area based on the input image signal, sets one of the partial areas as the correction target partial area of the lighting amount, and sets the correction target partial area.
  • the lighting amount y1 in the correction target partial region is corrected. ..
  • the display device 10 corresponds to an image display panel 40 having an image display surface 41 whose display is controlled based on an input image signal, and an image display surface 41 divided into a plurality of partial areas.
  • a light source unit 60 (light source device) that has a plurality of light sources 6a and illuminates the image display surface 41, and a signal processing unit 20 that calculates the lighting amount of the light source 6a for each of the plurality of partial regions. Be prepared.
  • the signal processing unit 20 calculates the lighting amount for each partial area based on the input image signal, sets one of the partial areas as the correction target partial area of the lighting amount, and sets the correction target partial area.
  • the lighting amount y2 of the adjacent partial region located around the above is equal to or less than the predetermined first threshold value Yth1, or the difference value of the lighting amount y2 of the adjacent partial region with respect to the lighting amount y1 of the correction target partial region is the predetermined second value.
  • the threshold value is Yth2 or less, the lighting amount y1 in the correction target partial region is corrected.
  • the signal processing unit 20 corrects the lighting amount in the correction target partial region by multiplying the lighting amount in the correction target partial region by a correction coefficient k of 1 or less.
  • the display device 10 has the following aspects by setting the "correction target partial area” as the "first division area” and the “adjacent partial area” as the "first division area”. You can also.
  • the display device 10 has an image display panel 40 on which an image is displayed based on an image signal, a first division region and a first division region facing the image display surface 41 of the image display panel 40.
  • a light source unit 60 (light source device) having a second divided area adjacent to the divided area is provided, and the image display panel 40 determines the lighting amount of the first divided area and the lighting amount of the second divided area based on the image signal.
  • the lighting amount of the second divided area is calculated and is equal to or less than a predetermined value, the lighting amount of the first divided area may be reduced.
  • the display device 10 has an image display panel 40 on which an image is displayed based on an image signal, and a first division area and a first division area facing the image display surface 41 of the image display panel 40.
  • a light source unit 60 (light source device) having a second divided area adjacent to the image display panel 40 calculates the lighting amount of the first divided area and the lighting amount of the second divided area based on the image signal. When the lighting amount of the first division area is larger than the lighting amount of the second division area by a predetermined value or more, the lighting amount of the first division area may be reduced.
  • the display device 10 has an image display panel 40 on which an image is displayed based on an image signal, and a first division area and a first division area facing the image display surface 41 of the image display panel 40.
  • a light source unit 60 (light source device) having a second divided area adjacent to the image display panel 40 calculates the lighting amount of the first divided area and the lighting amount of the second divided area based on the image signal. , When the lighting amount of the second divided area is equal to or less than a predetermined value, or when the lighting amount of the first divided area is larger than the predetermined value by the lighting amount of the second divided area, the lighting amount of the first divided area is set. It can also be configured to be smaller.
  • the image display panel 40 multiplies the lighting amount of the first division area by a correction coefficient k of 1 or less to light the first division area.
  • the lighting amount of the partial region adjacent to the partial region whose lighting amount is a predetermined value is corrected to the lighting amount in the partial region.
  • a predetermined value for example, a predetermined value of 10 [%] or more and less than 15 [%]
  • An example of correcting by multiplying by k has been shown, but in the second embodiment, an example of calculating the value of the correction coefficient k according to the input image signal will be described. It should be noted that duplicate description will be omitted for the components equivalent to or the same as those in the first embodiment described above.
  • the brightness of each partial region is used as the lighting amount of the partial region, but in the present embodiment, the relationship between the brightness and the brightness is further focused on.
  • the brightness of the bright region 41b shown in FIG. 9 is substantially the same, for example, when the bright region 41b is displayed in a blue or red window, the bright region 41b is displayed in a green window. Brightness is lower than in some cases.
  • the brightness of the bright region 41b is substantially equal, when the brightness of the bright region 41b is low, the brightness of the bright region 41b is higher than that of the case where the brightness of the bright region 41b is high.
  • the black floating 42 in the dark area 41a around the wall may be conspicuous.
  • the input gradation is (Rin, Gin, Bin).
  • the input gradation (Rin, Gin, Bin) is information that can be derived based on the input image signal.
  • Input gradations (Rin, Gin, Bin) are individually given to a plurality of pixels 48.
  • Rin corresponds to the gradation value of the first sub-pixel 49R.
  • Gin corresponds to the gradation value of the second sub-pixel 49G.
  • Bin corresponds to the gradation value of the third sub-pixel 49B. That is, the input image signal constituting the frame image includes information capable of deriving the input gradations (Rin, Gin, Bin) individually given to the plurality of pixels 48.
  • the information from which the input gradation (Rin, Gin, Bin) can be derived is, for example, RGB data (R, G, B).
  • the brightness Y (R, G, B) of the input RGB data (R, G, B) can be expressed by the following equation (1).
  • the brightness Y (R, G, B) is the BT of ITU-R. Equation (1') specified in 709, or BT. It is also possible to use the equation (1 ′′) specified in 601.
  • the luminance Y (R, G, B) that can be expressed by the above equations (1), (1'), and (1 ") is also referred to as” visual luminance ".
  • FIG. 13 is a diagram showing an image display example when the visual luminance in the bright region of the input image shown in FIG. 9 is low.
  • FIG. 14 is a diagram showing an image display example when the visual luminance in the bright region of the input image shown in FIG. 9 is high. 13 and 14 show examples in which the brightness of the bright region 41b is substantially the same and the visual luminance is different.
  • the bright region 41b of the input image shown in FIG. 13 As an example in which the visual luminance of the bright region 41b of the input image shown in FIG. 13 is low, it is assumed that the bright region 41b is displayed in a blue or red window, for example. Further, as an example in which the bright region 41b of the input image shown in FIG. 14 has high visual luminance, it is assumed that the bright region 41b is displayed in a green window, for example. As described above, even when the brightness of the bright region 41b is substantially equal, when the visual brightness of the bright region 41b is low (see FIG. 13), it is higher than when the visual brightness of the bright region 41b is high. (See FIG. 14), the black floating 42 in the dark region 41a around the bright region 41b due to the halo effect becomes conspicuous.
  • the correction coefficient k calculated according to the brightness and brightness of the input image signal is calculated for each partial region, and the lighting amount of the correction target partial region is corrected using the calculated correction coefficient k.
  • the black floating 42 in the dark region 41a around the bright region 41b due to the halo effect can be effectively suppressed.
  • the processing contents performed by each unit of the signal processing unit 20 will be described.
  • the lighting amount correction unit 21b of the lighting amount calculation unit 21 calculates the brightness Y (R, G, B) for each pixel 48 included in each partial region, and all included in each partial region.
  • the brightness Y (R, G, B) of the pixel 48 having the largest calculated brightness Y (R, G, B) among the pixels 48 of the above is derived as the brightness Y (R, G, B) in the partial region. To do.
  • the lighting amount correction unit 21b of the lighting amount calculation unit 21 calculates the brightness of all the pixels 48 included in each partial region as Max (R, G, B), and calculates the brightness in each partial region.
  • the brightness Max (R, G, B) in the pixel 48 having the largest calculated brightness Max (R, G, B) is the brightness Max (R, G, B) in the relevant partial region. ).
  • the correction coefficient k is calculated by the lighting amount correction unit 21b.
  • the formula for calculating the correction coefficient k in this embodiment can be expressed as the following formula (2).
  • G is the same value as the correction coefficient k described in the first embodiment. That is, for example, it can be a predetermined value of 0.6 or more and 0.8 or less.
  • Coef is a coefficient value that can be expressed by the following equation (3).
  • Coef a * CoefY + b * CoefV ... (3)
  • a and b are constants of 0 or more and 1 or less, and have a relationship of a + b ⁇ 1. These values may be appropriately set according to the characteristics of the image display panel 40.
  • CoefV is a coefficient value for the brightness Max (R, G, B) in each partial region.
  • the brightness Max (R, G, B) indicates a value when 100 [%] is normalized to 1.0.
  • FIG. 15 is a graph showing the relationship between the coefficient value CoefV and the brightness Max (R, G, B).
  • the reference data 22f includes a brightness coefficient map showing the relationship between the coefficient value CoefV shown in FIG. 15 and the brightness Max (R, G, B).
  • the horizontal axis represents the brightness Max (R, G, B), and the vertical axis represents the coefficient value CoefV.
  • the coefficient value CoefV can take any value of 0 or more and 1.0 or less (0 ⁇ CoefV ⁇ 1.0).
  • the brightness Max (R, G, B) can take any value of 0 or more and 1.0 or less (0 ⁇ Max (R, G, B) ⁇ 1.0).
  • the coefficient value CoefV is "1.0" in the region where the value of the brightness Max (R, G, B) is 0 or more and less than V, and the region where the value of the brightness Max (R, G, B) is V or more and 1.0 or less.
  • the value V of the brightness Max (R, G, B) can be set to any value of 0.4 or more and 0.8 or less (0.4 ⁇ V ⁇ 0.8), for example.
  • the value V of the brightness Max (R, G, B) is an example, and is not limited to the above-mentioned value.
  • CoefY is a coefficient value with respect to the brightness Y (R, G, B).
  • the brightness Y (R, G, B) indicates a value when the brightness Y (R, G, B) at 100% red, 100% green, and 100% blue is normalized to 1.0. ing.
  • FIG. 16 is a graph showing the relationship between the coefficient value CoefY and the brightness Y (R, G, B).
  • the reference data 22f includes a luminance coefficient map showing the relationship between the coefficient value CoefY and the luminance Y (R, G, B) shown in FIG.
  • the horizontal axis represents the brightness Y (R, G, B), and the vertical axis represents the coefficient value CoefY.
  • the coefficient value CoefY can be any value of 0 or more and 1.0 or less (0 ⁇ CoefY ⁇ 1.0). Further, the brightness Y (R, G, B) can take any value of 0 or more and 1.0 or less (0 ⁇ Y (R, G, B) ⁇ 1.0).
  • the coefficient value CoefY is "0" in the region where the brightness Y (R, G, B) is 0 or more and less than Y1, and "0" in the region where the brightness Y (R, G, B) is Y2 or more and 1.0 or less.
  • the brightness Y (R, G, B) is in the range of “0” or more and “1.0” or less.
  • the value Y1 of the brightness Y (R, G, B) can be set to any value of 0 or more and 0.3 or less (0 ⁇ Y1 ⁇ 0.3), for example.
  • the value Y2 of the brightness Y (R, G, B) can be set to any value of 0.6 or more and 0.8 or less (0.6 ⁇ Y2 ⁇ 0.8), for example.
  • the values Y1 and Y2 of the brightness Y are examples, and are not limited to the above-mentioned values.
  • the storage unit 21c has a data table format discrete data or arithmetic expression that traces the brightness coefficient curve (solid line) shown in FIG. 15, and a data table that traces the brightness coefficient curve (solid line) shown in FIG. Format discrete data and arithmetic expressions are stored.
  • FIG. 17 is a flowchart showing an example of the correction coefficient calculation process according to the second embodiment.
  • the correction coefficient calculation process according to the second embodiment shown in FIG. 17 is mainly performed by the lighting amount correction unit 21b of the lighting amount calculation unit 21.
  • the lighting amount correction unit 21b sequentially selects each partial area of the image display surface 41 shown in FIG. 3, and sets the selected partial area as the correction target partial area (step S11).
  • the present disclosure is not limited by the selection order of the partial regions.
  • the lighting amount correction unit 21b sets the maximum value MaxCoef of the coefficient value Coef in the correction target partial region to “1.0”, and the maximum value MaxV of the brightness Max (R, G, B) of each pixel 48 in the correction target partial region. Is initially set to "0.0" (step S12).
  • the lighting amount correction unit 21b sequentially selects the pixels 48 in the correction target partial region, and the brightness Max (R, G, B) of the pixel 48 is the brightness Max (R, G, B) in the correction target partial region. ) Is greater than the maximum value MaxV (Max (R, G, B)> MaxV) or not (step S13).
  • the present disclosure is not limited by the selection order of the pixels 48 in the correction target partial region.
  • the brightness Max (R, G, B) of the selected pixel 48 is equal to or less than the maximum value MaxV of the brightness Max (R, G, B) in the correction target partial region (Max (R, G, B) ⁇ MaxV) ( Step S13; No)
  • step S15 When the brightness Max (R, G, B) of the pixel 48 is substantially equal to the maximum value MaxV of the brightness Max (R, G, B) in the correction target partial region (step S14; Yes), the lighting amount correction unit 21b is described above.
  • the coefficient value Coef is calculated using the above equation (3) (step S15).
  • the lighting amount correction unit 21b determines whether or not the coefficient value Coef calculated in step S15 is larger than the maximum value MaxCoef of the coefficient value Coef in the correction target partial region (Coef> MaxCoef) (step S16).
  • step S15 When the coefficient value Coef calculated in step S15 is equal to or less than the maximum value MaxCoef (Coef ⁇ MaxCoef) of the coefficient value Coef in the correction target partial region (step S16; No), the process returns to step S13 and the newly selected pixel 48 is , Step S13 and subsequent processes are repeated.
  • MaxCoef Coef ⁇ MaxCoef
  • step S15 When the coefficient value Coef calculated in step S15 is larger than the maximum value MaxCoef of the coefficient value Coef in the correction target partial region (Coef> MaxCoef) (step S16; Yes), the lighting amount correction unit 21b corrects the coefficient value Coef. It is set as the maximum value MaxCoef of the coefficient value Coef in the target partial region (step S17).
  • the lighting amount correction unit 21b calculates the coefficient value Coef using the above equation (3) (step S18), and sets the coefficient value Coef as the maximum value MaxCoef of the coefficient value Coef in the correction target partial region.
  • the brightness Max (R, G, B) of the selected pixel 48 is set as the maximum value MaxV of the brightness Max (R, G, B) in the correction target partial region. (Step S19).
  • the lighting amount correction unit 21b determines the presence or absence of an unselected pixel 48 among the pixels 48 in the correction target partial region (step S20). If there is an unselected pixel 48 (step S20; No), the process returns to step S13, and the processing of step S13 and subsequent steps is repeated for the newly selected pixel 48.
  • step S20 When there is no unselected pixel 48 (step S20; Yes), the lighting amount correction unit 21b calculates a correction coefficient k for the lighting amount of the correction target partial region using the above equation (2) (step S21). ), Returning to the process of step S11, a new correction target partial area is set.
  • the black floating 42 of the dark region 41a around the bright region 41b due to the halo effect can be effectively suppressed. it can.
  • FIG. 14 even when the brightness of the bright region 41b is low, the black floating 42 of the dark region 41a around the bright region 41b due to the halo effect can be effectively suppressed.
  • FIG. 18 is a flowchart showing an example of the correction coefficient calculation process according to the modified example of the second embodiment.
  • the correction coefficient calculation process according to the modification of the second embodiment shown in FIG. 18 is mainly performed by the lighting amount correction unit 21b of the lighting amount calculation unit 21.
  • the lighting amount correction unit 21b sequentially selects each partial area of the image display surface 41 shown in FIG. 3, and sets the selected partial area as the correction target partial area (step S31).
  • the present disclosure is not limited by the selection order of the partial regions.
  • the lighting amount correction unit 21b initially sets the maximum value MaxCoef of the coefficient value Coef in the correction target partial region to “1.0” (step S32).
  • the lighting amount correction unit 21b sequentially selects the pixels 48 in the correction target partial region, and calculates the coefficient value Coef using the above-mentioned equation (3) (step S33).
  • the lighting amount correction unit 21b determines whether or not the coefficient value Coef calculated in step S32 is larger than the maximum value MaxCoef of the coefficient value Coef in the correction target partial region (Coef> MaxCoef) (step S34).
  • step S33 When the coefficient value Coef calculated in step S33 is equal to or less than the maximum value MaxCoef of the coefficient value Coef in the correction target partial region (Coef ⁇ MaxCoef) (step S34; No), the process returns to step S33 and the newly selected pixel 48 , The processing after step S33 is repeated.
  • the lighting amount correction unit 21b corrects the coefficient value Coef. It is set as the maximum value MaxCoef of the coefficient value Coef in the target partial region (step S35).
  • the lighting amount correction unit 21b determines the presence or absence of an unselected pixel 48 among the pixels 48 in the correction target partial region (step S36). When there is an unselected pixel 48 (step S36; No), the process returns to step S33, and the processing of step S33 and subsequent steps is repeated for the newly selected pixel 48.
  • step S36 When there is no unselected pixel 48 (step S36; Yes), the lighting amount correction unit 21b calculates a correction coefficient k for the lighting amount of the correction target partial region using the above equation (2) (step S37). ), Returning to the process of step S31, a new correction target partial area is set.
  • the value of the correction coefficient k is reduced as the value of the brightness Y (R, G, B) in the bright region 41b shown in FIG. be able to.
  • the black floating 42 of the dark region 41a around the bright region 41b due to the halo effect can be effectively suppressed. it can.
  • FIG. 14 even when the brightness of the bright region 41b is low, the black floating 42 of the dark region 41a around the bright region 41b due to the halo effect can be effectively suppressed.
  • the brightness Y (R, G, B) and the brightness Max (R, G, B) correspond to each partial region.
  • the calculated correction coefficient k is calculated, and the calculated correction coefficient k is used to correct the lighting amount of the correction target partial region. As a result, it is possible to effectively suppress black floating in the dark region around the bright region due to the halo effect.
  • the control device 11 reduces the correction coefficient k as the brightness of the input image signal corresponding to the correction target partial region increases. As a result, when the brightness of the bright region is high, it is possible to effectively suppress the black floating of the dark region due to the halo effect.
  • control device 11 reduces the correction coefficient k as the visual luminance of the input image signal corresponding to the correction target partial region becomes lower. As a result, even when the brightness of the bright region is low, it is possible to effectively suppress the black floating of the dark region due to the halo effect.
  • FIG. 19 is a schematic view showing a screen display surface of the display device according to the third embodiment.
  • the image display surface 41 is divided into eight equal parts along the X direction, such as X 1 , X 2 , ..., X 8 , and the Y direction.
  • Y a along, that are bound to be halved as Y b the partial region is provided 8 ⁇ 2.
  • the partial region shown in FIG. 19 is 100 ⁇ . It has 240 pixels 48.
  • the division example of the image display surface 41 and the number of pixels in the image display surface 41 shown in FIG. 19 are merely examples and are not limited to these, and can be changed as appropriate.
  • FIG. 20 is a diagram showing a light emitting region of the display device according to the third embodiment.
  • FIG. 20 shows an example in which one light source 6a is arranged corresponding to the partial region of the image display surface 41 shown in FIG.
  • the light source 6b is, for example, a light emitting diode (Light Emitting Diode: LED) like the light source 6a described in the first embodiment, but this is an example of a specific configuration of the light source 6b, and is not limited to this. It may be a micro LED or a mini LED, and can be changed as appropriate.
  • LED Light Emitting Diode
  • the light of the light source 6b is a mode in which a light guide plate (not shown) is provided in the light emitting region 61 to guide the light toward the image display surface 41 side.
  • FIG. 20 shows an example in which one light source 6b is arranged on the side of each partial region at both ends of the light emitting region 61 in the Y direction, but the lighting amount can be controlled individually in each partial region.
  • the present invention is not limited to this as long as the lighting amount for each partial area can be controlled, and can be changed as appropriate.
  • the lighting amount correction process (see FIG. 11) described in the first embodiment can reduce the amount of light in the bright region adjacent to the dark region. As a result, it is possible to suppress black floating in the dark region around the bright region due to the halo effect.
  • the brightness Y in the bright region The larger the value of (R, G, B), the smaller the value of the correction coefficient k can be.
  • the larger the value of the brightness Max (R, G, B) in the bright region the smaller the value of the correction coefficient k can be.
  • Display device 11 Control device 20 Signal processing unit 21 Lighting amount calculation unit 21a Lighting amount setting unit 21b Lighting amount correction unit 21c Storage unit 22 Light source control unit 23 Brightness distribution calculation unit 24 Pixel processing unit 30 Image display panel drive unit 31 Signal output Circuit 32 Scan circuit 33 Display unit 40 Image display panel 41 Image display surface 41a Dark area 41b Bright area 42 Black floating 48 pixels 49R 1st sub-pixel 49G 2nd sub-pixel 49B 3rd sub-pixel 60 Light source unit (light source device) 6a, 6b Light source DTL signal line SCL scanning line SCL scanning line

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

表示装置は、入力画像信号に基づいて表示が制御される画像表示面を有する画像表示パネルと、複数の部分領域に分割された画像表示面に対応して設けられた複数の光源を有し、画像表示面を照明する光源ユニット(光源装置)と、複数の部分領域毎に、光源の点灯量を算出する信号処理部と、を備える。信号処理部は、部分領域毎に、入力画像信号に基づいて点灯量を算出すると共に、部分領域のうちの1つを、当該点灯量の補正対象部分領域として設定し、当該補正対象部分領域の周囲に位置する隣接部分領域の点灯量が所定値以下である場合に、補正対象部分領域における点灯量を補正する。

Description

表示装置
 本発明は、表示装置に関する。
 バックライト等の光源装置を複数の領域に分割し、該分割した領域の映像信号に応じて領域毎に光源の発光を制御するローカルディミング機能を備えた表示装置が知られている。このような表示装置において、輝度が高い領域と低い領域とが混在している画像を表示した場合、輝度が高い領域に配置された光源によって、当該領域の周囲の輝度が低い領域が明るくなる、所謂黒浮きという現象が発生することがある。この現象は、所謂ハロー(Halo:後光)効果として知られている。
 上述したような輝度が高い領域と低い領域とが混在している画像を表示する場合に、例えば、輝度が高い領域の周辺の輝度が低い領域の光源の光量を補正して、違和感のない画像を表示する技術が開示されている(例えば、特許文献1)。
特開2012-226178号公報
 上記従来技術では、輝度が低い領域における違和感は軽減されるものの、輝度が高い領域とのコントラストが低下する。また、ハロー効果による所謂黒浮きの抑制効果は期待できないという課題がある。
 本発明は、ハロー効果による暗部領域の黒浮きを抑制する表示装置を提供することを目的とする。
 本発明の一態様に係る表示装置は、画像信号に基づいて表示が制御される画像表示面を有する画像表示パネルと、複数の部分領域に分割された前記画像表示面に対応して設けられた複数の光源を有し、前記画像表示面を照明する光源装置と、複数の前記部分領域毎に、前記光源の点灯量を算出する信号処理部と、を備え、前記信号処理部は、前記部分領域毎に、前記画像信号に基づいて点灯量を算出すると共に、前記部分領域のうちの1つを、当該点灯量の補正対象部分領域として設定し、当該補正対象部分領域の周囲に位置する隣接部分領域の点灯量が所定値以下である場合に、前記補正対象部分領域における点灯量を補正する。
 また、本発明の一態様に係る表示装置は、画像信号に基づいて表示が制御される画像表示面を有する画像表示パネルと、複数の部分領域に分割された前記画像表示面に対応して設けられた複数の光源を有し、前記画像表示面を照明する光源装置と、複数の前記部分領域毎に、前記光源の点灯量を算出する信号処理部と、を備え、前記信号処理部は、前記部分領域毎に、前記画像信号に基づいて点灯量を算出すると共に、前記部分領域のうちの1つを、当該点灯量の補正対象部分領域として設定し、当該補正対象部分領域の点灯量に対し、前記補正対象部分領域の周囲に位置する隣接部分領域の点灯量の差分値が所定値以下である場合に、前記補正対象部分領域における点灯量を補正する。
 また、本発明の一態様に係る表示装置は、画像信号に基づいて表示が制御される画像表示面を有する画像表示パネルと、複数の部分領域に分割された前記画像表示面に対応して設けられた複数の光源を有し、前記画像表示面を照明する光源装置と、複数の前記部分領域毎に、前記光源の点灯量を算出する信号処理部と、を備え、前記信号処理部は、前記部分領域毎に、前記画像信号に基づいて点灯量を算出すると共に、前記部分領域のうちの1つを、当該点灯量の補正対象部分領域として設定し、当該補正対象部分領域の周囲に位置する隣接部分領域の点灯量が所定値以下であるか、又は、前記補正対象部分領域の点灯量に対し、前記補正対象部分領域の周囲に位置する隣接部分領域の点灯量の差分値が所定値以下である場合に、前記補正対象部分領域における点灯量を補正する。
 また、本発明の一態様に係る表示装置は、画像信号に基づいて画像が表示される画像表示パネルと、前記画像表示パネルの画像表示面に対向して第1分割領域と前記第1分割領域に隣接する第2分割領域を有する光源装置と、を備え、前記画像表示パネルは、前記画像信号に基づいて前記第1分割領域の点灯量及び前記第2分割領域の点灯量を算出し、前記第2分割領域の点灯量が所定値以下である場合に、前記第1分割領域の点灯量を小さくする。
 また、本発明の一態様に係る表示装置は、画像信号に基づいて画像が表示される画像表示パネルと、前記画像表示パネルの画像表示面に対向して第1分割領域と前記第1分割領域に隣接する第2分割領域を有する光源装置と、を備え、前記画像表示パネルは、前記画像信号に基づいて前記第1分割領域の点灯量及び前記第2分割領域の点灯量を算出し、前記第1分割領域の点灯量が前記第2分割領域の点灯量よりも所定値以上大きい場合に、前記第1分割領域の点灯量を小さくする。
 また、本発明の一態様に係る表示装置は、画像信号に基づいて画像が表示される画像表示パネルと、前記画像表示パネルの画像表示面に対向して第1分割領域と前記第1分割領域に隣接する第2分割領域を有する光源装置と、を備え、前記画像表示パネルは、前記画像信号に基づいて前記第1分割領域の点灯量及び前記第2分割領域の点灯量を算出し、前記第2分割領域の点灯量が所定値以下であるか、又は、前記第1分割領域の点灯量が前記第2分割領域の点灯量よりも所定値以上大きい場合に、前記第1分割領域の点灯量を小さくする。
図1は、実施形態1に係る表示装置の構成の一例を示すブロック図である。 図2は、実施形態1に係る画像表示パネルの概念図である。 図3は、実施形態1に係る表示装置の画面表示面を示す模式図である。 図4は、実施形態1に係る表示装置の発光領域を示す図である。 図5は、信号処理部の構成例を示す機能ブロック図である。 図6は、点灯量算出部の構成例を示す機能ブロック図である。 図7は、画像表示面上の各部分領域における点灯量の一例を示す模式図である。 図8は、各部分領域における点灯量の補正例を示す模式図である。 図9は、入力画像の一例を示す図である。 図10Aは、点灯量補正部による点灯量の補正を行わない場合の画像表示例を示す図である。 図10Bは、点灯量補正部による点灯量の補正を行った場合の画像表示例を示す図である。 図11Aは、実施形態1に係る点灯量補正処理の一例を示すフローチャートである。 図11Bは、実施形態1に係る点灯量補正処理の第2例を示すフローチャートである。 図11Cは、実施形態1に係る点灯量補正処理の第3例を示すフローチャートである。 図12は、補正対象部分領域と当該補正対象部分領域に隣接する隣接部分領域を示す図である。 図13は、図9に示す入力画像の明部領域の視感輝度が低い場合の画像表示例を示す図である。 図14は、図9に示す入力画像の明部領域の視感輝度が高い場合の画像表示例を示す図である。 図15は、係数値CoefVと明度Max(R,G,B)との関係を示すグラフである。 図16は、係数値CoefYと輝度Y(R,G,B)との関係を示すグラフである。 図17は、実施形態2に係る補正係数演算処理の一例を示すフローチャートである。 図18は、実施形態2の変形例に係る補正係数演算処理の一例を示すフローチャートである。 図19は、実施形態3に係る表示装置の画面表示面を示す模式図である。 図20は、実施形態3に係る表示装置の発光領域を示す図である。
 本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。なお、以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。また、開示はあくまで一例にすぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。
(実施形態1)
 図1は、実施形態1に係る表示装置の構成の一例を示すブロック図である。図2は、実施形態1に係る画像表示パネルの概念図である。図1に示すように、実施形態1の表示装置10は、信号処理部20と、画像表示パネル40と、光源ユニット60(光源装置)とを有する。画像表示パネル40は、画像表示パネル駆動部30と表示部33とを含む。信号処理部20は、制御装置11の画像出力部12からの入力画像信号(RGBデータ)に応じて、入力画像信号に所定のデータ変換処理を加えて生成した信号を表示装置10の各部に送る。画像表示パネル駆動部30は、信号処理部20からの信号に基づいて表示部33の駆動を制御する。光源ユニット60は、画像表示パネル40の表示部33に設けられた画像表示面41を背面から照明する。画像表示パネル40は、画像表示パネル駆動部30からの信号及び光源ユニット60からの光により画像を表示させる。
 より具体的な例を以て説明すると、画像表示パネル40は、画像を表示するための画像表示面41でフレーム画像を表示する。実施形態1では、1つのフレーム画像を構成する複数の画素の各々のRGB階調値を示す入力画像信号が一まとまりの単位として所定期間内に信号処理部20に入力される。信号処理部20は、所定の1フレーム期間内に画像表示パネル40でフレーム画像が表示されるよう、入力画像信号に基づいて出力信号及び制御信号を出力する。制御信号は、光源ユニット60の動作を制御するための信号である。光源ユニット60は、制御信号に応じて信号処理部20の制御下で動作し、画像表示面41に対応する大きさの発光領域61から画像表示パネル40が表示するフレーム画像に必要な明るさの光を発する。フレーム画像に必要な明るさの光とは、フレーム画像の元になった1画面分の入力信号に含まれる複数の画素の階調値のうち最大の階調値が与えられていた画素で、当該最大の階調値に対応する輝度を得るために必要な明るさの光である。信号処理部20は、フレーム画像に必要な明るさの光を得るため、発光領域61全体の光を一律に調節するディミング処理又は発光領域61からの光を複数の部分領域単位で調節するローカルディミング処理を行う。
 表示部33は、画像表示面41に、複数の画素48が、2次元のマトリクス状(行列状)に配列されている。このように、表示部33は、複数の画素48を有する表示部として機能する。図1に示す例は、XYの2次元座標系に複数の画素48がマトリクス状に配列されている例を示している。この例において、X方向は、行方向であり、Y方向は、列方向であるが、これに限られず、X方向が垂直方向であってY方向が水平方向であってもよい。
 画素48は、第1副画素49Rと、第2副画素49Gと、第3副画素49Bのうち少なくとも2つを有する。第1副画素49Rは、第1色(例えば、赤色)を表示する。第2副画素49Gは、第2色(例えば、緑色)を表示する。第3副画素49Bは、第3色(例えば、青色)を表示する。第1色、第2色及び第3色は、赤色、緑色及び青色に限られず、補色などでもよく、互いに色が異なっていればよい。以下において、第1副画素49Rと、第2副画素49Gと、第3副画素49Bとをそれぞれ区別する必要がない場合、副画素49という。すなわち、1つの副画素49には、3色のうちいずれか1色が割り当てられている。
 実施形態1の画像表示パネル40は、例えば透過式のカラー液晶表示パネルである。表示部33の画像表示面41には、第1副画素49Rと画像観察者との間に第1色を通過させる第1カラーフィルタが配置されている。また、表示部33の画像表示面41には、第2副画素49Gと画像観察者との間に第2色を通過させる第2カラーフィルタが配置されている。また、表示部33の画像表示面41には、第3副画素49Bと画像観察者との間に第3色を通過させる第3カラーフィルタが配置されている。
 画像表示パネル駆動部30は、信号出力回路31及び走査回路32を有する。画像表示パネル駆動部30は、信号出力回路31によって出力信号を保持し、順次、表示部33に出力する。より詳しくは、信号出力回路31は、信号処理部20からの出力信号に応じた所定の電位を有する画像信号を、表示部33に出力する。信号出力回路31は、信号線DTLによって表示部33と電気的に接続されている。走査回路32は、表示部33における副画素49の動作(光透過率)を制御するためのスイッチング素子のON/OFFを制御する。当該スイッチング素子は、例えば薄膜トランジスタ(TFT:Thin Film Transistor)である。走査回路32は、走査線SCLによって表示部33と電気的に接続されている。
 光源ユニット60は、画像表示パネル40の背面に配置されている。光源ユニット60は、画像表示パネル40に向けて光を照射することで、画像表示パネル40を照明する。
 図3は、実施形態1に係る表示装置の画面表示面を示す模式図である。画像表示面41は、複数の部分領域に区分けされる。図3では、画像表示面41がX方向に沿ってX,X,…,Xのように8等分されるとともに、Y方向に沿ってY,Y,Y,Yのように4等分されるように区切られることで、8×4の部分領域が設けられた例を示している。また、一例として、画像表示面41において、X方向に800個、Y方向に480個、すなわち、800×480の画素48がマトリクス状に並ぶ場合、図3に示す1つの部分領域は、100×120の画素48を有する。図3に示す画像表示面41の分割例及び画像表示面41における画素数はあくまで一例であってこれに限られるものでなく、適宜変更可能である。
 図4は、実施形態1に係る表示装置の発光領域を示す図である。図4では、図3に示す画像表示面41の部分領域に対応して、1つの光源6aが配置された例を示している。光源6aは、例えば発光ダイオード(Light Emitting Diode:LED)であるが、これは光源6aの具体的構成の一例であってこれに限られるものでなく、適宜変更可能である。また、図4では、図3に示す画像表示面41の各部分領域に対向して1つの光源6aが配置された例を示したが、各部分領域で個別に点灯量の制御が可能であり、部分領域毎の点灯量を制御可能な構成であればこれに限られるものでなく適宜変更可能である。
 次に、信号処理部20について説明する。図5は、信号処理部の構成例を示す機能ブロック図である。信号処理部20は、点灯量算出部21、光源制御部22、輝度分布計算部23、及び画素処理部24を備える。
 図6は、点灯量算出部の構成例を示す機能ブロック図である。点灯量算出部21は、画像表示面41上の各部分領域に対応する光源6aの点灯量を算出する。
 図6に示すように、点灯量算出部21は、点灯量設定部21a、点灯量補正部21b、及び記憶部21cを備える。
 点灯量設定部21aは、入力画像信号に基づき、各部分領域に対応して設けられた各光源6aの点灯量(第1点灯量)を設定する。点灯量設定部21aは、部分領域毎の点灯量(第1点灯量)の設定を全ての部分領域に対して個別に行う。
 具体的に、点灯量設定部21aは、各部分領域に含まれる画素48毎の明度を算出する。ここでは、一例として、副画素49の各色を8ビットの階調値で示す場合について説明する。
 8ビットの階調値は、「0」を最小値とし、「255」を最大値とする数値で表すことができる。本実施形態では、例えば、第2副画素49Gの階調値が「255」である場合、当該第2副画素49Gを含む画素48の明度を100[%]とする。また、例えば、第2副画素49Gの階調値が「127」であり、当該第2副画素49Gを含む画素48に含まれる第1副画素49R及び第3副画素49Bの階調値が「127」未満である場合、当該第2副画素49Gを含む画素48の明度を50[%]とする。すなわち、画素48に含まれる副画素49の階調値のうち、最大の階調値に対応する明度を、当該画素48における明度とする。副画素49の階調値と明度との関係は、例えば、テーブル形式のデータや演算式により算出することができる。
 点灯量設定部21aは、各部分領域に含まれる全ての画素48毎の明度を算出する。点灯量設定部21aは、各部分領域に含まれる全ての画素48のうち、算出された明度が最も大きい画素48における明度を、当該部分領域における明度として導出する。そして、当該部分領域における明度を、当該部分領域における点灯量(第1点灯量)とし、各部分領域の点灯量(第1点灯量)を含む第1点灯量情報BL1を出力する。
 図7は、画像表示面上の各部分領域における点灯量の一例を示す模式図である。図7の各部分領域を示す矩形の内側に記載されている数値は、各部分領域における点灯量を示している。
 点灯量補正部21bは、点灯量設定部21aにおいて設定された各部分領域の点灯量を補正するための構成部である。点灯量補正部21bは、点灯量設定部21aからの第1点灯量情報BL1に基づき、各部分領域における点灯量(第1点灯量)を補正し、補正後の各部分領域の点灯量(第2点灯量)を含む第2点灯量情報BL2を出力する。
 図8は、各部分領域における点灯量の補正例を示す模式図である。図8では、図7に示すように、点灯量50[%]の部分領域のうち、点灯量0[%]の部分領域が隣接している部分領域の点灯量を、一律30[%]に補正している。具体的に、点灯量補正部21bは、点灯量0[%]の部分領域が図8中の矢示方向に隣接している点灯量50[%]の部分領域の点灯量50[%]に対し、補正係数k=0.6を乗じて、補正後の点灯量(第2点灯量)を算出している。
 なお、上述した補正係数kの値は一例であって、0.6に限るものではなく、適宜変更可能であるが、例えば0.6以上0.8以下の所定値であることが好ましい。補正係数kの値は、0よりも大きく、かつ1.0以下の値を取ることができる(0<k≦1.0)。また、部分領域の点灯量を補正する際に、当該部分領域に隣接する部分領域の点灯量は、0[%]に限るものではなく、適宜変更可能であるが、例えば10[%]以上15[%]未満の所定値以下であることが好ましい。
 本実施形態において、記憶部21cは、点灯量設定部21aにおいて副画素49の点灯量を算出する際に用いる副画素49の階調値と点灯量との関係を示すデータテーブル形式の離散データや演算式、及び、点灯量補正部21bにおいて各部分領域における点灯量を補正する際に用いる補正係数kが記憶される。
 図5に戻り、光源制御部22は、点灯量算出部21からの第2点灯量情報BL2に基づき、各部分領域の点灯量(第2点灯量)に応じて各光源6aを制御するための光源制御信号を出力する。輝度分布計算部23は、点灯量算出部21からの第1点灯量情報BL1に基づき、各部分領域の点灯量(第1点灯量)によってもたらされる光源ユニット60全体の輝度分布を計算する。具体的に、輝度分布計算部23は、例えば、テーブル形式のデータや演算式により、光源ユニット60全体の輝度分布を計算する。輝度分布計算部23は、この輝度分布を示す輝度分布情報BMを画素処理部24に出力する。
 画素処理部24は、輝度分布情報BMが示す輝度分布で入力画像信号に基づいた表示出力を行うための画素48の階調値を求める。具体的に、画素処理部24は、輝度分布計算部23から出力される輝度分布情報BMに基づき、各部分領域に含まれる画素48を構成する副画素49の各々の階調値を補正する。
 次に、本実施形態に係る表示装置10の効果について、図9、図10A、図10Bを参照して説明する。図9は、入力画像の一例を示す図である。図10Aは、点灯量補正部による点灯量の補正を行わない場合の画像表示例を示す図である。図10Bは、点灯量補正部による点灯量の補正を行った場合の画像表示例を示す図である。図9では、暗部領域41aの中心に明部領域41bが表示されるような入力画像を例示示している。なお、図9では、画像表示面41を複数の部分領域に区分けする境界線を明示している。
 図9に示すように、例えば、暗部領域41aの中心に明部領域41bが表示されるような入力画像を画像表示面41に表示した場合、図9の破線内に示す明部領域41bに重なる部分領域の光が暗部領域41a側に漏れて、明部領域41bの周囲の暗部領域41aが明るくなる、所謂黒浮き42が生じる。この黒浮き42は、所謂ハロー(Halo:後光)効果として知られる。
 このハロー効果による黒浮き42は、暗部領域41aと明部領域41bとの境界線上に存在する部分領域(図9に示す例では、破線の内側に存在し、且つ、一点鎖線の外側に存在する部分領域)だけでなく、暗部領域41aと明部領域41bとの境界線の外側に存在する部分領域(図9に示す例では、破線の外側に存在する部分領域)においても生じる。このため、図10Aに示すように、点灯量補正部21bによる点灯量の補正を行わない場合の画像表示例では、黒浮き42が生じる領域が広く、かつ、明部領域41bの周囲の暗部領域41aがより明るくなる。
 本実施形態では、上述したように、点灯量補正部21bにおいて、点灯量が所定の点灯量閾値(例えば、10[%]以上15[%]未満の所定値)以下の部分領域(図9に示す例では、破線の外側に存在する部分領域)に隣接する部分領域(図9に示す例では、破線の内側に存在し、且つ、一点鎖線の外側に存在する部分領域)の点灯量に対し、0よりも大きく、かつ1.0以下の所定の補正係数kを乗じて補正する。これにより、暗部領域41aと明部領域41bとの境界線上に存在する部分領域(図9に示す例では、破線の内側に存在し、且つ、一点鎖線の外側に存在する部分領域)における黒浮きが抑制される。また、これに伴い、暗部領域41aと明部領域41bとの境界線の外側に存在する部分領域(図9に示す例では、破線の外側に存在する部分領域)における黒浮きも抑制される。このため、図10Bに示すように、ハロー効果による明部領域41bの周囲の暗部領域41aの黒浮き42を抑制することができる。具体的に、図10Bに示す点灯量補正部21bによる点灯量の補正を行った場合の画像表示例では、図10Aに示す点灯量補正部21bによる点灯量の補正を行わない場合の画像表示例よりも黒浮き42が生じる領域を狭く、かつ、明部領域41bの周囲の暗部領域41aの明るさを暗くすることができる。
 次に、実施形態1に係る点灯量補正部による点灯量の補正処理について、図11A、図11B、図11C、及び図12を参照して説明する。
 図11Aは、実施形態1に係る点灯量補正処理の第1例を示すフローチャートである。図11Bは、実施形態1に係る点灯量補正処理の第2例を示すフローチャートである。図11Cは、実施形態1に係る点灯量補正処理の第3例を示すフローチャートである。図12は、補正対象部分領域と当該補正対象部分領域に隣接する隣接部分領域を示す図である。図12に示す例では、点灯量の補正対象とする補正対象部分領域(図中網掛けした部分領域)の周囲の8方向に隣接する部分領域を隣接部分領域としている。本実施形態において、図11A、図11B、及び図11Cに示す点灯量補正処理は、主に、点灯量算出部21の点灯量補正部21bが行う。
 図11Aに示す第1例において、点灯量補正部21bは、隣接部分領域の点灯量y2が第1閾値Yth1以下(y2≦Yth1)である場合に、補正対象部分領域の点灯量y1に補正係数kを乗じて補正(y1=ky1)する。
 具体的に、点灯量補正部21bは、図3に示す画像表示面41の各部分領域を順次選択し、選択した部分領域を点灯量の補正対象部分領域に設定する(ステップS1)。なお、部分領域の選択順序により本開示が限定されるものではない。
 続いて、点灯量補正部21bは、図12に示す隣接部分領域を順次選択し、未選択の隣接部分領域の有無を判定する(ステップS2)。なお、隣接部分領域の選択順序により本開示が限定されるものではない。
 未選択の隣接部分領域がない場合、すなわち、全ての隣接部分領域が選択済みである場合(ステップS2;No)、ステップS1の処理に戻り、新たな補正対象部分領域を設定する。未選択の隣接部分領域がある場合(ステップS2;Yes)、当該隣接部分領域の点灯量y2が所定の第1閾値Yth1以下であるか否か(y2≦Yth1)を判定する(ステップS3)。隣接部分領域の点灯量y2が第1閾値Yth1よりも大きい(y2>Yth1)場合(ステップS3;No)、ステップS2に戻り、新たに選択した隣接部分領域(ステップS2;Yes)に対し、ステップS3の処理を行う。
 隣接部分領域の点灯量y2が第1閾値Yth1以下(y2≦Yth1)である場合(ステップS3;Yes)、補正対象部分領域の点灯量y1に補正係数kを乗じて補正(y1=ky1)し(ステップS4)、ステップS1に戻る。そして、新たに設定した補正対象部分領域(ステップS1)に対し、ステップS4までの処理を繰り返す。
 図11Bに示す第2例において、点灯量補正部21bは、補正対象部分領域の点灯量y1に対する隣接部分領域の点灯量y2の差分値が第2閾値Yth2以上(y1-y2≧Yth2)である場合に、補正対象部分領域の点灯量y1に補正係数kを乗じて補正(y1=ky1)する。なお、図11Bに示す第2例において、記憶部21cに記憶される補正係数kは、例えば、補正対象部分領域の点灯量y1に対する隣接部分領域の点灯量y2の差分値に応じた値に設定される態様であっても良いし、当該補正係数kがテーブル化されて記憶部21cに記憶されている態様であっても良い。また、補正対象部分領域の点灯量y1に対する隣接部分領域の点灯量y2の差分値が大きいほど補正係数kの値が小さくなるような態様であっても良い。
 具体的に、点灯量補正部21bは、未選択の隣接部分領域がある場合(ステップS2;Yes)、補正対象部分領域の点灯量y1に対する隣接部分領域の点灯量y2の差分値が第2閾値Yth2以上であるか否か(y1-y2≧Yth2)を判定する(ステップS3a)。補正対象部分領域の点灯量y1に対する隣接部分領域の点灯量y2の差分値が第2閾値Yth2よりも小さい(y1-y2<Yth2)場合(ステップS3a;No)、ステップS2に戻り、新たに選択した隣接部分領域(ステップS2;Yes)に対し、ステップS3aの処理を行う。
 補正対象部分領域の点灯量y1に対する隣接部分領域の点灯量y2の差分値が第2閾値Yth2以上(y1-y2≧Yth2)である場合(ステップS3a;Yes)、補正対象部分領域の点灯量y1に補正係数kを乗じて補正(y1=ky1)する(ステップS4)。
 図11Cに示す第3例では、図11Aに示す第1例と図11Bに示す第2例とを組み合わせている。すなわち、図11Cに示す第3例において、点灯量補正部21bは、隣接部分領域の点灯量y2が第1閾値Yth1以下(y2≦Yth1)であるか、又は、補正対象部分領域の点灯量y1に対する隣接部分領域の点灯量y2の差分値が第2閾値Yth2以上(y1-y2≧Yth2)である場合に、補正対象部分領域の点灯量y1に補正係数kを乗じて補正(y1=ky1)する。
 具体的に、点灯量補正部21bは、未選択の隣接部分領域がある場合(ステップS2;Yes)、当該隣接部分領域の点灯量y2が所定の第1閾値Yth1以下であるか否か(y2≦Yth1)、及び、補正対象部分領域の点灯量y1に対する隣接部分領域の点灯量y2の差分値ytdが第2閾値Yth2以上であるか否か(y1-y2≧Yth2)を判定する(ステップS3b)。隣接部分領域の点灯量y2が第1閾値Yth1よりも大きく(y2>Yth1)、且つ、補正対象部分領域の点灯量y1に対する隣接部分領域の点灯量y2の差分値が第2閾値Yth2よりも小さい(y1-y2<Yth2)場合、(ステップS3b;No)、ステップS2に戻り、新たに選択した隣接部分領域(ステップS2;Yes)に対し、ステップS3bの処理を行う。
 隣接部分領域の点灯量y2が第1閾値Yth1以下(y2≦Yth1)であるか、又は、補正対象部分領域の点灯量y1に対する隣接部分領域の点灯量y2の差分値が第2閾値Yth2以上(y1-y2≧Yth2)である場合(ステップS3b;Yes)、補正対象部分領域の点灯量y1に補正係数kを乗じて補正(y1=ky1)する(ステップS4)。
 上述した図11A、図11B、又は図11Cに示す点灯量補正処理により、暗部領域(例えば、図10に示す暗部領域41a)に隣接する明部領域(例えば、図10に示す明部領域41b)の光量を下げることができる。これにより、ハロー効果による明部領域の周囲の暗部領域の黒浮きを抑制することができる。
 以上説明したように、実施形態1に係る表示装置10は、入力画像信号に基づいて表示が制御される画像表示面41を有する画像表示パネル40と、複数の部分領域に分割された画像表示面41に対応して設けられた複数の光源6aを有し、画像表示面41を照明する光源ユニット60(光源装置)と、複数の部分領域毎に、光源6aの点灯量を算出する信号処理部20と、を備える。信号処理部20は、部分領域毎に、入力画像信号に基づいて点灯量を算出すると共に、部分領域のうちの1つを、当該点灯量の補正対象部分領域として設定し、当該補正対象部分領域の周囲に位置する隣接部分領域の点灯量y2が所定の第1閾値Yth1以下である場合に、補正対象部分領域における点灯量y1を補正する。
 また、実施形態1に係る表示装置10は、入力画像信号に基づいて表示が制御される画像表示面41を有する画像表示パネル40と、複数の部分領域に分割された画像表示面41に対応して設けられた複数の光源6aを有し、画像表示面41を照明する光源ユニット60(光源装置)と、複数の部分領域毎に、光源6aの点灯量を算出する信号処理部20と、を備える。信号処理部20は、部分領域毎に、入力画像信号に基づいて点灯量を算出すると共に、部分領域のうちの1つを、当該点灯量の補正対象部分領域として設定し、当該補正対象部分領域の点灯量y1に対し、補正対象部分領域の周囲に位置する隣接部分領域の点灯量y2の差分値が所定の第2閾値Yth2以下である場合に、補正対象部分領域における点灯量y1を補正する。
 また、実施形態1に係る表示装置10は、入力画像信号に基づいて表示が制御される画像表示面41を有する画像表示パネル40と、複数の部分領域に分割された画像表示面41に対応して設けられた複数の光源6aを有し、画像表示面41を照明する光源ユニット60(光源装置)と、複数の部分領域毎に、光源6aの点灯量を算出する信号処理部20と、を備える。信号処理部20は、部分領域毎に、入力画像信号に基づいて点灯量を算出すると共に、部分領域のうちの1つを、当該点灯量の補正対象部分領域として設定し、当該補正対象部分領域の周囲に位置する隣接部分領域の点灯量y2が所定の第1閾値Yth1以下であるか、又は、補正対象部分領域の点灯量y1に対する隣接部分領域の点灯量y2の差分値が所定の第2閾値Yth2以下である場合に、補正対象部分領域における点灯量y1を補正する。
 上記構成において、信号処理部20は、補正対象部分領域における点灯量に対し、1以下の補正係数kを乗じて補正対象部分領域における点灯量を補正する。
 また、実施形態1に係る表示装置10は、「補正対象部分領域」を「第1分割領域」とし、「隣接部分領域」を「第1分割領域」とすることで、以下の態様とすることもできる。
 具体的に、実施形態1に係る表示装置10は、画像信号に基づいて画像が表示される画像表示パネル40と、画像表示パネル40の画像表示面41に対向して第1分割領域と第1分割領域に隣接する第2分割領域を有する光源ユニット60(光源装置)と、を備え、画像表示パネル40は、画像信号に基づいて第1分割領域の点灯量と第2分割領域の点灯量を算出し、第2分割領域の点灯量が所定値以下である場合に、第1分割領域の点灯量を小さくする構成とすることもできる。
 また、実施形態1に係る表示装置10は、画像信号に基づいて画像が表示される画像表示パネル40と、画像表示パネル40の画像表示面41に対向して第1分割領域と第1分割領域に隣接する第2分割領域を有する光源ユニット60(光源装置)と、を備え、画像表示パネル40は、画像信号に基づいて第1分割領域の点灯量と第2分割領域の点灯量を算出し、第1分割領域の点灯量が第2分割領域の点灯量よりも所定値以上大きい場合に、第1分割領域の点灯量を小さくする構成とすることもできる。
 また、実施形態1に係る表示装置10は、画像信号に基づいて画像が表示される画像表示パネル40と、画像表示パネル40の画像表示面41に対向して第1分割領域と第1分割領域に隣接する第2分割領域を有する光源ユニット60(光源装置)と、を備え、画像表示パネル40は、画像信号に基づいて第1分割領域の点灯量と第2分割領域の点灯量を算出し、第2分割領域の点灯量が所定値以下であるか、又は、第1分割領域の点灯量が第2分割領域の点灯量よりも所定値以上大きい場合に、第1分割領域の点灯量を小さくする構成とすることもできる。
 上記構成において、画像表示パネル40は、第1分割領域の点灯量に対し、1以下の補正係数kを乗じて第1分割領域を点灯させる。
 上記構成により、ハロー効果による暗部領域の黒浮きを抑制することができる。
 本実施形態により、ハロー効果による暗部領域の黒浮きを抑制する表示装置10を得ることができる。
(実施形態2)
 実施形態1では、点灯量が所定値(例えば、10[%]以上15[%]未満の所定値)以下の部分領域に隣接する部分領域の点灯量を、当該部分領域における点灯量に補正係数kを乗じて補正する例を示したが、実施形態2では、補正係数kの値を、入力画像信号に応じて算出する例について説明する。なお、上述した実施形態1と同等あるいは同一の構成部については、重複する説明を省略する。
 実施形態1では、部分領域毎の明度を当該部分領域の点灯量としたが、本実施形態では、さらに、明度と輝度との関係に着目する。例えば、図9に示す明部領域41bの明度が略等しい場合であっても、例えば、明部領域41bが青や赤のウィンドウ表示である場合には、明部領域41bが緑のウィンドウ表示である場合よりも輝度が低くなる。このように、明部領域41bの明度が略等しい場合であっても、明部領域41bの輝度が低い場合には、明部領域41bの輝度が高い場合よりも、ハロー効果による明部領域41bの周囲の暗部領域41aの黒浮き42が目立つ場合がある。
 以下の説明では、入力階調を(Rin,Gin,Bin)とする。入力階調(Rin,Gin,Bin)は、入力画像信号に基づいて導出可能な情報である。入力階調(Rin,Gin,Bin)は、複数の画素48に対して個別に与えられている。Rinは、第1副画素49Rの階調値に対応する。Ginは、第2副画素49Gの階調値に対応する。Binは、第3副画素49Bの階調値に対応する。すなわち、フレーム画像を構成する入力画像信号には、複数の画素48に対して個別に与えられた入力階調(Rin,Gin,Bin)を導出可能な情報が含まれている。入力階調(Rin,Gin,Bin)を導出可能な情報は、例えばRGBデータ(R,G,B)である。
 入力RGBデータ(R,G,B)の輝度Y(R,G,B)は、下記(1)式で表すことができる。
 Y(R,G,B)=0.25*R+0.5*G+0.25*B ・・・(1)
 なお、輝度Y(R,G,B)は、ITU-RのBT.709で規定された(1’)式、又は、ITU-RのBT.601で規定された(1”)式を用いることも可能である。
 Y(R,G,B)=0.2126*R+0.7152*G+0.0722*B ・・・(1’)
 Y(R,G,B)=0.299*R+0.587*G+0.144*B ・・・(1”)
 以下、上記(1)式、(1’)式、(1”)式で表せる輝度Y(R,G,B)を、「視感輝度」とも称する。
 図13は、図9に示す入力画像の明部領域の視感輝度が低い場合の画像表示例を示す図である。図14は、図9に示す入力画像の明部領域の視感輝度が高い場合の画像表示例を示す図である。図13及び図14では、それぞれ明部領域41bの明度が略等しく、視感輝度が異なる例を示している。
 図13に示す入力画像の明部領域41bの視感輝度が低い例として、例えば、明部領域41bが青や赤のウィンドウ表示である場合が想定される。また、図14に示す入力画像の明部領域41bの視感輝度が高い例として、例えば、明部領域41bが緑のウィンドウ表示である場合が想定される。このように、明部領域41bの明度が略等しい場合であっても、明部領域41bの視感輝度が低い場合には(図13参照)、明部領域41bの視感輝度が高い場合よりも(図14参照)、ハロー効果による明部領域41bの周囲の暗部領域41aの黒浮き42が目立つこととなる。
 本実施形態では、部分領域ごとに、入力画像信号の明度及び輝度に応じて算出した補正係数kを算出し、算出した補正係数kを用いて補正対象部分領域の点灯量を補正する。これにより、ハロー効果による明部領域41bの周囲の暗部領域41aの黒浮き42を効果的に抑制することができる。以下、信号処理部20の各部が行う処理内容について説明する。
 本実施形態において、点灯量算出部21の点灯量補正部21bは、各部分領域に含まれる全ての画素48毎の輝度Y(R,G,B)を算出し、各部分領域に含まれる全ての画素48のうち、算出された輝度Y(R,G,B)が最も大きい画素48における輝度Y(R,G,B)を、当該部分領域における輝度Y(R,G,B)として導出する。
 また、本実施形態において、点灯量算出部21の点灯量補正部21bは、各部分領域に含まれる全ての画素48毎の明度をMax(R,G,B)として算出し、各部分領域に含まれる全ての画素48のうち、算出された明度Max(R,G,B)が最も大きい画素48における明度Max(R,G,B)を、当該部分領域における明度Max(R,G,B)として導出する。
 また、本実施形態において、補正係数kは、点灯量補正部21bが算出する。本実施形態における補正係数kの算出式は、以下の(2)式として表せる。
 k=(1.0-G)*Coef+G ・・・(2)
 上記(2)式において、Gは、実施形態1において説明した補正係数kと同値である。すなわち、例えば0.6以上0.8以下の所定値とすることができる。
 また、上記(2)式において、Coefは、下記(3)式で表せる係数値である。
 Coef=a*CoefY+b*CoefV ・・・(3)
 上記(3)式において、a及びbは、0以上1以下の定数であり、a+b≦1の関係を有する。これらの値は、画像表示パネル40の特性に合わせて適宜設定すれば良い。
 また、上記(3)式において、CoefVは、各部分領域における明度Max(R,G,B)に対する係数値である。本実施形態において、明度Max(R,G,B)は、100[%]を1.0に正規化した場合の値を示している。
 図15は、係数値CoefVと明度Max(R,G,B)との関係を示すグラフである。本実施形態において、参照データ22fは、図15に示す係数値CoefVと明度Max(R,G,B)との関係を示す明度係数マップを含む。
 図15において、横軸は明度Max(R,G,B)を示し、縦軸は係数値CoefVを示している。係数値CoefVは、0以上1.0以下(0≦CoefV≦1.0)の任意の値を取り得る。また、明度Max(R,G,B)は、0以上1.0以下(0≦Max(R,G,B)≦1.0)の任意の値を取り得る。係数値CoefVは、明度Max(R,G,B)の値が0以上V未満の領域では「1.0」、明度Max(R,G,B)の値がV以上1.0以下の領域では、「0」以上「1.0」以下の範囲内において、明度Max(R,G,B)の値が大きいほど係数値CoefVが小さくなるようにしている。明度Max(R,G,B)の値Vは、例えば、0.4以上0.8以下(0.4≦V≦0.8)の任意の値に設定することができる。
 なお、明度Max(R,G,B)の値Vは一例であって、上述した値に限るものではない。
 また、上記(3)式において、CoefYは、輝度Y(R,G,B)に対する係数値である。本実施形態において、輝度Y(R,G,B)は、赤100%、緑100%、青100%における輝度Y(R,G,B)を1.0に正規化した場合の値を示している。
 図16は、係数値CoefYと輝度Y(R,G,B)との関係を示すグラフである。本実施形態において、参照データ22fは、図16に示す係数値CoefYと輝度Y(R,G,B)との関係を示す輝度係数マップを含む。
 図16において、横軸は輝度Y(R,G,B)を示し、縦軸は係数値CoefYを示している。係数値CoefYは、0以上1.0以下(0≦CoefY≦1.0)の任意の値を取り得る。また、輝度Y(R,G,B)は、0以上1.0以下(0≦Y(R,G,B)≦1.0)の任意の値を取り得る。係数値CoefYは、輝度Y(R,G,B)の値が0以上Y1未満の領域では「0」、輝度Y(R,G,B)の値がY2以上1.0以下の領域では「1.0」となり、輝度Y(R,G,B)の値がY1以上Y2未満の領域では、「0」以上「1.0」以下の範囲内において、輝度Y(R,G,B)の値が小さいほど係数値CoefYが小さくなるようにしている。輝度Y(R,G,B)の値Y1は、例えば、0以上0.3以下(0≦Y1≦0.3)の任意の値に設定することができる。輝度Y(R,G,B)の値Y2は、例えば、0.6以上0.8以下(0.6≦Y2≦0.8)の任意の値に設定することができる。
 なお、輝度Y(R,G,B)の値Y1及びY2は一例であって、上述した値に限るものではない。
 本実施形態において、記憶部21cは、図15に示す明度係数カーブ(実線)をトレースするデータテーブル形式の離散データや演算式、及び、図16に示す輝度係数カーブ(実線)をトレースするデータテーブル形式の離散データや演算式が記憶される。
 次に、実施形態2に係る補正係数kの演算処理について、図17を参照して説明する。
 図17は、実施形態2に係る補正係数演算処理の一例を示すフローチャートである。本実施形態において、図17に示す実施形態2に係る補正係数演算処理は、主に、点灯量算出部21の点灯量補正部21bが行う。
 点灯量補正部21bは、まず、図3に示す画像表示面41の各部分領域を順次選択し、選択した部分領域を補正対象部分領域に設定する(ステップS11)。なお、部分領域の選択順序により本開示が限定されるものではない。
 点灯量補正部21bは、補正対象部分領域における係数値Coefの最大値MaxCoefを「1.0」、当該補正対象部分領域内の各画素48の明度Max(R,G,B)の最大値MaxVを「0.0」に初期設定する(ステップS12)。
 続いて、点灯量補正部21bは、補正対象部分領域内の画素48を順次選択し、当該画素48の明度Max(R,G,B)が補正対象部分領域における明度Max(R,G,B)の最大値MaxVよりも大きい(Max(R,G,B)>MaxV)か否かを判定する(ステップS13)。なお、補正対象部分領域内の画素48の選択順序により本開示が限定されるものではない。
 選択した画素48の明度Max(R,G,B)が補正対象部分領域における明度Max(R,G,B)の最大値MaxV以下(Max(R,G,B)≦MaxV)である場合(ステップS13;No)、点灯量補正部21bは、当該画素48の明度Max(R,G,B)が補正対象部分領域における明度Max(R,G,B)の最大値MaxVと略等しい(Max(R,G,B)=MaxV)か否かを判定し(ステップS14)、画素48の明度Max(R,G,B)が補正対象部分領域における明度Max(R,G,B)の最大値MaxV未満(Max(R,G,B)<MaxV)であれば(ステップS14;No)、ステップS13に戻り、新たに選択した画素48に対し、ステップS13以降の処理を繰り返す。
 画素48の明度Max(R,G,B)が補正対象部分領域における明度Max(R,G,B)の最大値MaxVと略等しい場合(ステップS14;Yes)、点灯量補正部21bは、上述した(3)式を用いて、係数値Coefを算出する(ステップS15)。
 続いて、点灯量補正部21bは、ステップS15において算出した係数値Coefが補正対象部分領域における係数値Coefの最大値MaxCoefよりも大きい(Coef>MaxCoef)か否かを判定する(ステップS16)。
 ステップS15において算出した係数値Coefが補正対象部分領域における係数値Coefの最大値MaxCoef以下(Coef≦MaxCoef)である場合(ステップS16;No)、ステップS13に戻り、新たに選択した画素48に対し、ステップS13以降の処理を繰り返す。
 ステップS15において算出した係数値Coefが補正対象部分領域における係数値Coefの最大値MaxCoefよりも大きい(Coef>MaxCoef)場合(ステップS16;Yes)、点灯量補正部21bは、当該係数値Coefを補正対象部分領域における係数値Coefの最大値MaxCoefとして設定する(ステップS17)。
 選択した画素48の明度Max(R,G,B)が補正対象部分領域における明度Max(R,G,B)の最大値MaxVよりも大きい(Max(R,G,B)>MaxV)場合(ステップS13;Yes)、点灯量補正部21bは、上述した(3)式を用いて係数値Coefを算出し(ステップS18)、当該係数値Coefを補正対象部分領域における係数値Coefの最大値MaxCoefとして設定すると共に、選択した画素48の明度Max(R,G,B)を補正対象部分領域における明度Max(R,G,B)の最大値MaxVとして設定する。(ステップS19)。
 点灯量補正部21bは、補正対象部分領域内の各画素48のうち、未選択の画素48の有無を判定する(ステップS20)。未選択の画素48がある場合(ステップS20;No)、ステップS13に戻り、新たに選択した画素48に対し、ステップS13以降の処理を繰り返す。
 未選択の画素48がない場合(ステップS20;Yes)、点灯量補正部21bは、上述した(2)式を用いて、当該補正対象部分領域の点灯量に対する補正係数kを算出し(ステップS21)、ステップS11の処理に戻り、新たな補正対象部分領域を設定する。
 上述した補正係数演算処理により、例えば、図9に示す明部領域41bにおける輝度Y(R,G,B)の値が大きいほど補正係数kの値を小さくすることができる。これにより、例えば、図13に示すように、明部領域41bの視感輝度が高い場合に、ハロー効果による明部領域41bの周囲の暗部領域41aの黒浮き42を効果的に抑制することができる。また、例えば、図9に示す明部領域41bにおける明度Max(R,G,B)の値が小さいほど補正係数kの値を小さくすることができる。これにより、例えば、図14に示すように、明部領域41bの明度が低い場合でも、ハロー効果による明部領域41bの周囲の暗部領域41aの黒浮き42を効果的に抑制することができる。
(変形例)
 図18は、実施形態2の変形例に係る補正係数演算処理の一例を示すフローチャートである。本実施形態において、図18に示す実施形態2の変形例に係る補正係数演算処理は、主に、点灯量算出部21の点灯量補正部21bが行う。
 点灯量補正部21bは、まず、図3に示す画像表示面41の各部分領域を順次選択し、選択した部分領域を補正対象部分領域に設定する(ステップS31)。なお、部分領域の選択順序により本開示が限定されるものではない。
 点灯量補正部21bは、補正対象部分領域における係数値Coefの最大値MaxCoefを「1.0」に初期設定する(ステップS32)。
 続いて、点灯量補正部21bは、補正対象部分領域内の画素48を順次選択し、上述した(3)式を用いて、係数値Coefを算出する(ステップS33)。
 続いて、点灯量補正部21bは、ステップS32において算出した係数値Coefが補正対象部分領域における係数値Coefの最大値MaxCoefよりも大きい(Coef>MaxCoef)か否かを判定する(ステップS34)。
 ステップS33において算出した係数値Coefが補正対象部分領域における係数値Coefの最大値MaxCoef以下(Coef≦MaxCoef)である場合(ステップS34;No)、ステップS33に戻り、新たに選択した画素48に対し、ステップS33以降の処理を繰り返す。
 ステップS33において算出した係数値Coefが補正対象部分領域における係数値Coefの最大値MaxCoefよりも大きい(Coef>MaxCoef)場合(ステップS34;Yes)、点灯量補正部21bは、当該係数値Coefを補正対象部分領域における係数値Coefの最大値MaxCoefとして設定する(ステップS35)。
 点灯量補正部21bは、補正対象部分領域内の各画素48のうち、未選択の画素48の有無を判定する(ステップS36)。未選択の画素48がある場合(ステップS36;No)、ステップS33に戻り、新たに選択した画素48に対し、ステップS33以降の処理を繰り返す。
 未選択の画素48がない場合(ステップS36;Yes)、点灯量補正部21bは、上述した(2)式を用いて、当該補正対象部分領域の点灯量に対する補正係数kを算出し(ステップS37)、ステップS31の処理に戻り、新たな補正対象部分領域を設定する。
 実施形態2の変形例においても、上述した補正係数演算処理により、例えば、図9に示す明部領域41bにおける輝度Y(R,G,B)の値が大きいほど補正係数kの値を小さくすることができる。これにより、例えば、図13に示すように、明部領域41bの視感輝度が高い場合に、ハロー効果による明部領域41bの周囲の暗部領域41aの黒浮き42を効果的に抑制することができる。また、例えば、図9に示す明部領域41bにおける明度Max(R,G,B)の値が大きいほど補正係数kの値を小さくすることができる。これにより、例えば、図14に示すように、明部領域41bの明度が低い場合でも、ハロー効果による明部領域41bの周囲の暗部領域41aの黒浮き42を効果的に抑制することができる。
 上述したように、実施形態2及び実施形態2の変形例に係る表示装置10によれば、部分領域ごとに、輝度Y(R,G,B)及び明度Max(R,G,B)に応じて算出した補正係数kを算出し、算出した補正係数kを用いて補正対象部分領域の点灯量を補正する。これにより、ハロー効果による明部領域の周囲の暗部領域の黒浮きを効果的に抑制することができる。
 以上説明したように、実施形態2において、制御装置11は、補正対象部分領域に対応する入力画像信号の明度が高いほど補正係数kを小さくする。これにより、明部領域の輝度が高い場合に、ハロー効果による暗部領域の黒浮きを効果的に抑制することができる。
 また、制御装置11は、補正対象部分領域に対応する入力画像信号の視感輝度が低いほど補正係数kを小さくする。これにより、明部領域の明度が低い場合でも、ハロー効果による暗部領域の黒浮きを効果的に抑制することができる。
 本実施形態により、ハロー効果による暗部領域の黒浮きを抑制する表示装置10を得ることができる。
(実施形態3)
 図19は、実施形態3に係る表示装置の画面表示面を示す模式図である。本実施形態において、画像表示面41は、図19に示すように、画像表示面41がX方向に沿ってX,X,…,Xのように8等分されるとともに、Y方向に沿ってY,Yのように2等分されるように区切られることで、8×2の部分領域が設けられる。また、一例として、画像表示面41において、X方向に800個、Y方向に480個、すなわち、800×480の画素48がマトリクス状に並ぶ場合、図19に示す1つの部分領域は、100×240の画素48を有する。図19に示す画像表示面41の分割例及び画像表示面41における画素数はあくまで一例であってこれに限られるものでなく、適宜変更可能である。
 図20は、実施形態3に係る表示装置の発光領域を示す図である。図20では、図19に示す画像表示面41の部分領域に対応して、1つの光源6aが配置された例を示している。光源6bは、実施形態1において説明した光源6aと同様に、例えば発光ダイオード(Light Emitting Diode:LED)であるが、これは光源6bの具体的構成の一例であって、これに限らず、例えばマイクロLEDやミニLEDであっても良く、適宜変更可能である。
 図20に示す例において、光源6bの光は、発光領域61に導光板(不図示)を設けて画像表示面41側に光を誘導する態様である。また、図20では、発光領域61のY方向の両端に、各部分領域の側方に1つの光源6bが配置された例を示したが、各部分領域で個別に点灯量の制御が可能であり、部分領域毎の点灯量を制御可能な構成であればこれに限られるものでなく適宜変更可能である。
 図19及び図20に示す構成においても、上述した実施形態1,2と同様の処理を行うことで、ハロー効果による暗部領域の黒浮きを抑制することができる。
 具体的に、実施形態1において説明した点灯量補正処理(図11参照)により、暗部領域に隣接する明部領域の光量を下げることができる。これにより、ハロー効果による明部領域の周囲の暗部領域の黒浮きを抑制することができる。
 また、具体的に、実施形態2において説明した補正係数演算処理(図17参照)、又は、実施形態2の変形例において説明した補正係数演算処理(図18参照)により、明部領域の輝度Y(R,G,B)の値が大きいほど補正係数kの値を小さくすることができる。これにより、例えば、明部領域の視感輝度が高い場合に、ハロー効果による明部領域の周囲の暗部領域の黒浮きを効果的に抑制することができる。また、明部領域の明度Max(R,G,B)の値が大きいほど補正係数kの値を小さくすることができる。これにより、明部領域の明度が低い場合でも、ハロー効果による明部領域の周囲の暗部領域の黒浮きを効果的に抑制することができる。
 以上、本発明の好適な実施の形態を説明したが、本発明はこのような実施の形態に限定されるものではない。実施の形態で開示された内容はあくまで一例にすぎず、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。本発明の趣旨を逸脱しない範囲で行われた適宜の変更についても、当然に本発明の技術的範囲に属する。
10 表示装置
11 制御装置
20 信号処理部
21 点灯量算出部
21a 点灯量設定部
21b 点灯量補正部
21c 記憶部
22 光源制御部
23 輝度分布計算部
24 画素処理部
30 画像表示パネル駆動部
31 信号出力回路
32 走査回路
33 表示部
40 画像表示パネル
41 画像表示面
41a 暗部領域
41b 明部領域
42 黒浮き
48 画素
49R 第1副画素
49G 第2副画素
49B 第3副画素
60 光源ユニット(光源装置)
6a,6b 光源
DTL 信号線
SCL 走査線

Claims (16)

  1.  画像信号に基づいて表示が制御される画像表示面を有する画像表示パネルと、
     複数の部分領域に分割された前記画像表示面に対応して設けられた複数の光源を有し、前記画像表示面を照明する光源装置と、
     複数の前記部分領域毎に、前記光源の点灯量を算出する信号処理部と、
     を備え、
     前記信号処理部は、
     前記部分領域毎に、前記画像信号に基づいて点灯量を算出すると共に、前記部分領域のうちの1つを、当該点灯量の補正対象部分領域として設定し、当該補正対象部分領域の周囲に位置する隣接部分領域の点灯量が所定値以下である場合に、前記補正対象部分領域における点灯量を補正する
     表示装置。
  2.  画像信号に基づいて表示が制御される画像表示面を有する画像表示パネルと、
     複数の部分領域に分割された前記画像表示面に対応して設けられた複数の光源を有し、前記画像表示面を照明する光源装置と、
     複数の前記部分領域毎に、前記光源の点灯量を算出する信号処理部と、
     を備え、
     前記信号処理部は、
     前記部分領域毎に、前記画像信号に基づいて点灯量を算出すると共に、前記部分領域のうちの1つを、当該点灯量の補正対象部分領域として設定し、当該補正対象部分領域の点灯量に対し、前記補正対象部分領域の周囲に位置する隣接部分領域の点灯量の差分値が所定値以下である場合に、前記補正対象部分領域における点灯量を補正する
     表示装置。
  3.  画像信号に基づいて表示が制御される画像表示面を有する画像表示パネルと、
     複数の部分領域に分割された前記画像表示面に対応して設けられた複数の光源を有し、前記画像表示面を照明する光源装置と、
     複数の前記部分領域毎に、前記光源の点灯量を算出する信号処理部と、
     を備え、
     前記信号処理部は、
     前記部分領域毎に、前記画像信号に基づいて点灯量を算出すると共に、前記部分領域のうちの1つを、当該点灯量の補正対象部分領域として設定し、当該補正対象部分領域の周囲に位置する隣接部分領域の点灯量が所定値以下であるか、又は、前記補正対象部分領域の点灯量に対し、前記補正対象部分領域の周囲に位置する隣接部分領域の点灯量の差分値が所定値以下である場合に、前記補正対象部分領域における点灯量を補正する
     表示装置。
  4.  前記信号処理部は、
     前記補正対象部分領域における点灯量に対し、1以下の補正係数を乗じて前記補正対象部分領域における点灯量を補正する
     請求項1から3の何れか一項に記載の表示装置。
  5.  前記信号処理部は、
     前記補正対象部分領域に対応する前記画像信号の明度が高いほど前記補正係数を小さくする
     請求項4に記載の表示装置。
  6.  前記信号処理部は、
     前記補正対象部分領域に対応する前記画像信号の輝度が低いほど前記補正係数を小さくする
     請求項4又は5に記載の表示装置。
  7.  前記光源装置は、
     前記部分領域に対向して前記光源が設けられている
     請求項1から6の何れか一項に記載の表示装置。
  8.  前記光源装置は、
     前記部分領域の側方に前記光源が設けられている
     請求項1から6の何れか一項に記載の表示装置。
  9.  画像信号に基づいて画像が表示される画像表示パネルと、
     前記画像表示パネルの画像表示面に対向して第1分割領域と前記第1分割領域に隣接する第2分割領域を有する光源装置と、を備え、
     前記画像表示パネルは、前記画像信号に基づいて前記第1分割領域の点灯量及び前記第2分割領域の点灯量を算出し、前記第2分割領域の点灯量が所定値以下である場合に、前記第1分割領域の点灯量を小さくする
     表示装置。
  10.  画像信号に基づいて画像が表示される画像表示パネルと、
     前記画像表示パネルの画像表示面に対向して第1分割領域と前記第1分割領域に隣接する第2分割領域を有する光源装置と、を備え、
     前記画像表示パネルは、前記画像信号に基づいて前記第1分割領域の点灯量及び前記第2分割領域の点灯量を算出し、前記第1分割領域の点灯量が前記第2分割領域の点灯量よりも所定値以上大きい場合に、前記第1分割領域の点灯量を小さくする
     表示装置。
  11.  画像信号に基づいて画像が表示される画像表示パネルと、
     前記画像表示パネルの画像表示面に対向して第1分割領域と前記第1分割領域に隣接する第2分割領域を有する光源装置と、を備え、
     前記画像表示パネルは、前記画像信号に基づいて前記第1分割領域の点灯量及び前記第2分割領域の点灯量を算出し、前記第2分割領域の点灯量が所定値以下であるか、又は、前記第1分割領域の点灯量が前記第2分割領域の点灯量よりも所定値以上大きい場合に、前記第1分割領域の点灯量を小さくする
     表示装置。
  12.  前記画像表示パネルは、
     前記第1分割領域の点灯量に対し、1以下の補正係数を乗じて前記第1分割領域を点灯させる
     請求項9から11の何れか一項に記載の表示装置。
  13.  前記画像表示パネルは、
     前記第1分割領域に対応する前記画像信号の明度が高いほど前記補正係数を小さくする
     請求項12に記載の表示装置。
  14.  前記画像表示パネルは、
     前記第1分割領域に対応する前記画像信号の輝度が低いほど前記補正係数を小さくする
     請求項12又は13に記載の表示装置。
  15.  前記光源装置は、
     前記第1分割領域および前記第2分割領域に対向して光源が設けられている
     請求項9から14の何れか一項に記載の表示装置。
  16.  前記光源装置は、
     前記第1分割領域および前記第2分割領域の側方に光源が設けられている
     請求項9から14の何れか一項に記載の表示装置。
PCT/JP2020/012397 2019-03-19 2020-03-19 表示装置 WO2020189768A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/476,857 US11948522B2 (en) 2019-03-19 2021-09-16 Display device with light adjustment for divided areas using an adjustment coefficient

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-051813 2019-03-19
JP2019051813A JP2020154102A (ja) 2019-03-19 2019-03-19 表示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/476,857 Continuation US11948522B2 (en) 2019-03-19 2021-09-16 Display device with light adjustment for divided areas using an adjustment coefficient

Publications (1)

Publication Number Publication Date
WO2020189768A1 true WO2020189768A1 (ja) 2020-09-24

Family

ID=72520265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012397 WO2020189768A1 (ja) 2019-03-19 2020-03-19 表示装置

Country Status (3)

Country Link
US (1) US11948522B2 (ja)
JP (1) JP2020154102A (ja)
WO (1) WO2020189768A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114464143A (zh) * 2020-11-10 2022-05-10 上海天马微电子有限公司 控制显示装置的背光源的方法及显示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230099953A (ko) 2021-12-28 2023-07-05 엘지디스플레이 주식회사 표시 장치
WO2023219624A1 (en) * 2022-05-12 2023-11-16 Hewlett-Packard Development Company, L.P. Power levels of light-emitting diodes drivers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051905A (ja) * 2006-08-22 2008-03-06 Sharp Corp 液晶表示装置、及びそのバックライト駆動方法
US20120105507A1 (en) * 2009-06-26 2012-05-03 Lg Electronics Liquid crystal display device and drive method for same
JP2012123100A (ja) * 2010-12-07 2012-06-28 Hitachi Consumer Electronics Co Ltd 液晶表示装置
CN108447449A (zh) * 2018-01-12 2018-08-24 友达光电股份有限公司 信号处理方法及显示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7176878B2 (en) * 2002-12-11 2007-02-13 Nvidia Corporation Backlight dimming and LCD amplitude boost
JP4237220B2 (ja) * 2006-11-13 2009-03-11 シャープ株式会社 透過型ディスプレイ装置
JP5122927B2 (ja) * 2007-12-04 2013-01-16 株式会社東芝 画像表示装置および画像表示方法
JP2010134435A (ja) * 2008-10-28 2010-06-17 Panasonic Corp バックライト装置および表示装置
KR101623592B1 (ko) * 2009-11-25 2016-05-24 엘지디스플레이 주식회사 액정표시장치
JP4966383B2 (ja) * 2010-01-13 2012-07-04 株式会社東芝 液晶表示装置
JP5335851B2 (ja) * 2011-04-20 2013-11-06 シャープ株式会社 液晶表示装置、マルチディスプレイ装置、発光量決定方法、プログラム、及び記録媒体
JP2012226178A (ja) 2011-04-20 2012-11-15 Sharp Corp 表示制御装置、表示システム、画像データ出力方法、プログラム、及び記録媒体
JP2012226176A (ja) * 2011-04-20 2012-11-15 Sharp Corp マルチディスプレイシステム
CN103854613B (zh) * 2014-02-14 2016-04-13 北京京东方显示技术有限公司 光源控制模块、背光模组及其驱动方法、显示装置
JP2016212195A (ja) * 2015-05-01 2016-12-15 キヤノン株式会社 画像表示装置、画像表示システム、およびそれらの制御方法
CN105118474B (zh) * 2015-10-16 2017-11-07 青岛海信电器股份有限公司 液晶显示亮度控制方法和装置以及液晶显示设备
KR102637702B1 (ko) * 2016-08-30 2024-02-15 엘지디스플레이 주식회사 액정 표시 장치 및 액정 표시 장치의 로컬 디밍 방법
KR102333764B1 (ko) * 2017-03-20 2021-11-30 엘지전자 주식회사 영상표시장치
CN107909970A (zh) * 2017-12-29 2018-04-13 晨星半导体股份有限公司 显示装置及其对应的区域调光驱动方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051905A (ja) * 2006-08-22 2008-03-06 Sharp Corp 液晶表示装置、及びそのバックライト駆動方法
US20120105507A1 (en) * 2009-06-26 2012-05-03 Lg Electronics Liquid crystal display device and drive method for same
JP2012123100A (ja) * 2010-12-07 2012-06-28 Hitachi Consumer Electronics Co Ltd 液晶表示装置
CN108447449A (zh) * 2018-01-12 2018-08-24 友达光电股份有限公司 信号处理方法及显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114464143A (zh) * 2020-11-10 2022-05-10 上海天马微电子有限公司 控制显示装置的背光源的方法及显示装置

Also Published As

Publication number Publication date
US20220005420A1 (en) 2022-01-06
JP2020154102A (ja) 2020-09-24
US11948522B2 (en) 2024-04-02

Similar Documents

Publication Publication Date Title
JP5122927B2 (ja) 画像表示装置および画像表示方法
TWI413098B (zh) 顯示裝置
WO2018120609A1 (zh) 液晶显示装置及其驱动方法
US10923014B2 (en) Liquid crystal display device
KR101231445B1 (ko) 표시 장치 및 표시 방법
KR101161522B1 (ko) 영상 표시 장치
US9524664B2 (en) Display device, display panel driver and drive method of display panel
WO2020189768A1 (ja) 表示装置
EP2320412B1 (en) Image display device, and image display method
KR101134269B1 (ko) 디스플레이 장치 및 디스플레이 장치의 휘도 조정 방법
KR20120127239A (ko) 영상데이터를 혼합 하는 방법, 이를 이용한 표시 시스템, 및 이를 실행하기 위한 컴퓨터 판독가능한 기록매체
WO2013035635A1 (ja) 画像表示装置および画像表示方法
KR20120127211A (ko) 영상표시방법 및 표시 시스템
KR20100011464A (ko) 표시영상의 부스팅 방법, 이를 수행하기 위한 콘트롤러유닛 및 이를 갖는 표시장치
US8378959B2 (en) Method of dimming light sources, light source apparatus for performing the method, and display apparatus having the light source apparatus
KR20220059684A (ko) 디스플레이패널 구동 장치 및 방법, 그리고, 디스플레이장치
JP2018097203A (ja) 表示装置及び表示装置の駆動方法
JP4894358B2 (ja) バックライト駆動装置、表示装置及びバックライト駆動方法
US20120056905A1 (en) Image display apparatus and information processing apparatus
KR102582660B1 (ko) 표시 장치 및 그 구동 방법
JP2012068655A (ja) 映像表示装置
JP7481828B2 (ja) 表示装置および制御方法
US6972778B2 (en) Color re-mapping for color sequential displays
KR20120128091A (ko) 영상데이터 조합방법, 표시 시스템 및 비일시적인 컴퓨터 판독 가능한 메모리
JP7240828B2 (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20772721

Country of ref document: EP

Kind code of ref document: A1