WO2020179956A1 - 저온탱크용 진공단열장치 - Google Patents

저온탱크용 진공단열장치 Download PDF

Info

Publication number
WO2020179956A1
WO2020179956A1 PCT/KR2019/002667 KR2019002667W WO2020179956A1 WO 2020179956 A1 WO2020179956 A1 WO 2020179956A1 KR 2019002667 W KR2019002667 W KR 2019002667W WO 2020179956 A1 WO2020179956 A1 WO 2020179956A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
low
tank
low temperature
vacuum jacket
Prior art date
Application number
PCT/KR2019/002667
Other languages
English (en)
French (fr)
Inventor
장대준
박현준
김정욱
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to JP2021547536A priority Critical patent/JP7213363B2/ja
Priority to KR1020217025985A priority patent/KR102567420B1/ko
Priority to CA3130445A priority patent/CA3130445A1/en
Priority to PCT/KR2019/002667 priority patent/WO2020179956A1/ko
Priority to AU2019432673A priority patent/AU2019432673A1/en
Priority to EP19917983.9A priority patent/EP3910232A4/en
Priority to CN201980093751.3A priority patent/CN113544429B/zh
Priority to SG11202108975TA priority patent/SG11202108975TA/en
Priority to US17/593,053 priority patent/US11835182B2/en
Publication of WO2020179956A1 publication Critical patent/WO2020179956A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/001Thermal insulation specially adapted for cryogenic vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/04Vessels not under pressure with provision for thermal insulation by insulating layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/12Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge with provision for thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0308Radiation shield
    • F17C2203/032Multi-sheet layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • F17C2203/0333Polyurethane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0621Single wall with three layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/066Plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/068Special properties of materials for vessel walls
    • F17C2203/0685Special properties of materials for vessel walls flexible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0103Exterior arrangements
    • F17C2205/0107Frames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0153Details of mounting arrangements
    • F17C2205/0188Hanging up devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/221Welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/232Manufacturing of particular parts or at special locations of walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/013Single phase liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/012Reducing weight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to an apparatus for vacuum insulating a low temperature tank, and more particularly, to an apparatus capable of vacuum insulating a low temperature tank for storing and transporting liquefied gas in a cryogenic state.
  • Liquefied Natural Gas refers to a colorless, transparent cryogenic liquid in which natural gas containing methane as its main component is cooled to minus 162°C and its volume is reduced to one-600th.
  • Such liquefied natural gas is an energy resource.
  • an efficient transport plan that can transport in large quantities from the production base to the receiving site at the demand site was reviewed, and as a result, a liquefied natural gas carrier for marine transport of liquefied natural gas appeared. .
  • the liquefied natural gas carrier as described above should be provided with a low-temperature tank capable of storing the liquefied natural gas in a cryogenic state for storage and transportation, and such a low-temperature tank has a medium pressure higher than atmospheric pressure and a boiling temperature of -160°C.
  • a low-temperature tank capable of storing the liquefied natural gas in a cryogenic state for storage and transportation, and such a low-temperature tank has a medium pressure higher than atmospheric pressure and a boiling temperature of -160°C.
  • ultra-low temperatures aluminum alloy, stainless steel, 35% nickel steel, etc.
  • a design that can respond to thermal stress and heat shrinkage and a thermal insulation that can prevent heat intrusion. (Insulation) structure installation, etc. is required.
  • the low-temperature tank applied in the liquefied natural gas carrier may be classified into a membrane type and a self-supporting type according to its structure, and the membrane type tank is Korean Laid-Open Patent Publication No. 10-2017- As disclosed in 0116584 (closed tank with wrinkled sealing membrane, October 19, 2017), the inner surface of the tank in which liquefied gas is stored is a corrugated thin plate membrane made of stainless steel to enable heat shrinkage in response to heat deformation caused by the liquefied gas.
  • a sheet Corrugated Membrane Sheet
  • the present invention was conceived to solve the above problems, and by using an insulating material that is constantly maintained in a vacuum so as to store cryogenic liquefied gases such as liquid nitrogen (LN2) or liquid hydrogen (LH2), it has high heat insulation and vacuum stability.
  • cryogenic liquefied gases such as liquid nitrogen (LN2) or liquid hydrogen (LH2)
  • LN2 liquid nitrogen
  • LH2 liquid hydrogen
  • the vacuum insulation device for a low temperature tank of the present invention is for a low temperature tank capable of storing a cryogenic fluid such as liquefied hydrogen (LH2) or liquid nitrogen (LN2) by maintaining the low temperature insulation layer in a vacuum state.
  • a vacuum insulation device can be provided.
  • a part of the vacuum jacket is configured to have a flexible structure that can be contracted according to the contraction of the low temperature tank or the low temperature insulation layer, so that the low temperature tank itself supports the pressure of the cryogenic fluid stored inside, and the low temperature tank by the temperature of the cryogenic fluid It is possible to provide a vacuum insulation device for a low temperature tank capable of coping with the heat shrinkage of
  • the present invention maintains the low-temperature insulation layer surrounding the outer shell of the low-temperature tank in a vacuum state at all times to maintain a higher insulation efficiency to ensure long-term reliability, and according to the contraction of the low-temperature tank or the low-temperature insulation layer, vacuum
  • As part of the jacket has a flexible structure that can shrink, it supports the pressure of the cryogenic fluid stored inside the low temperature tank itself, and provides a vacuum jacket capable of responding to the heat shrinkage of the low temperature tank by the temperature of the cryogenic fluid, providing long-term reliability. There is an advantage that it is possible to manufacture a high large tank.
  • FIG. 1 is a perspective view showing a vacuum insulation device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a vacuum insulation device according to a first embodiment of the present invention.
  • 3 to 5 are cross-sectional views showing various modified examples of the deformable joint part according to the first embodiment of the present invention.
  • FIG. 6 is a perspective view showing a vacuum insulation device according to a second embodiment of the present invention.
  • FIG 7 and 8 are cross-sectional views showing various modifications of the low-temperature insulation layer according to an embodiment of the present invention.
  • FIG. 9 is a view showing various modifications of the internal exhaust space according to the section AA′ of FIG. 6.
  • FIG. 10 is a cross-sectional view showing a vacuum insulation device according to a third embodiment of the present invention.
  • 11 to 15 are cross-sectional views showing various modified examples of the vacuum insulation device according to the third embodiment of the present invention.
  • 16 is a cross-sectional view showing a vacuum jacket having a double structure according to an embodiment of the present invention.
  • 17 to 21 are cross-sectional views showing a vacuum insulation device according to a fourth embodiment of the present invention.
  • the present invention provides a low-temperature tank having a storage space for accommodating a cryogenic fluid therein, a low-temperature insulating layer provided to surround the outer shell of the low-temperature tank, and the inner space is maintained in a vacuum state, and the low-temperature insulating layer And a vacuum jacket that is sealed to surround the outer surface of and maintains airtightness with the outside, wherein at least a part of the vacuum jacket has a flexible structure capable of contracting or expanding.
  • the vacuum jacket covers the outer surface of the low-temperature insulation layer and is formed of a plurality of flat plates spaced apart from each other by a predetermined distance, and is formed between the plurality of smooth portions to have the flexible structure. May contain vagina.
  • the deformable joint part may be made of a polymeric elastomer that connects the plurality of smoothing parts and is stretchable in response to deformation of the inner space of the vacuum jacket.
  • the polymeric elastomer is interposed between the plurality of smoothing portions and adhered to the outer ends in the width direction of the plurality of smoothing portions.
  • the plurality of smoothing portions are provided so as to overlap each other in the thickness direction with at least one adjacent smoothing portion, and slide when the inner space is deformed to correspond to the contraction or expansion of the inner space
  • the polymer elastic body comprises the plurality of It is provided on an upper surface of a portion overlapping the smooth portions of the vacuum jacket, and is formed to expand and contract in response to deformation of the smooth portion.
  • the low temperature insulating layer is made of a plurality, and the plurality of low temperature insulating layers are provided to be spaced apart from each other, so that an internal discharge space forming a flow path for forming a vacuum between a plurality of adjacent low temperature insulating layers is provided. Can be formed.
  • the plurality of low-temperature insulation layers are provided to form multiple layers in the thickness direction, and are fixed to be spaced apart by a predetermined distance from at least one of the outer shell of the low-temperature tank, a vacuum jacket, or an adjacent low-temperature insulation layer and a fixing bolt. .
  • the vacuum insulator may further include a discharge pipe provided in the inner discharge space and having a suction hole communicating with the inner space of the vacuum jacket on an outer circumferential surface.
  • the deformable joint is formed integrally with the plurality of smoothing portions, and forms an uneven portion curved outward in the thickness direction, and the uneven portion is a contraction of the inner space of the vacuum jacket or It is characterized by being deformed according to expansion.
  • the deformable joint portion may have an internal discharge space forming a flow path for forming a vacuum inside the uneven portion curved outward in the thickness direction.
  • the vacuum jacket is integrally formed by welding the plurality of smoothing portions to each other, but the welding line formed on the outer surface of the vacuum jacket is provided in the inner space of the vacuum jacket, and a position coinciding with the inner discharge space connected to the vacuum pump Can be formed in
  • the vacuum jacket is integrally formed by welding the plurality of smoothing portions to each other, but the vacuum insulation device is provided on the inside of the welding line formed on the outer surface of the vacuum jacket to prevent thermal deformation of the low temperature insulation layer adjacent to the welding line. It may further include a high-temperature insulation.
  • the vacuum jacket includes a first vacuum jacket surrounding an outer surface of the low temperature insulating layer and a second vacuum jacket provided to surround the outer surface of the first vacuum jacket, wherein the vacuum insulating device includes the first vacuum jacket and a first vacuum jacket. 2 It may further include a spacer interposed between the vacuum jacket and provided to separate the first vacuum jacket and the second vacuum jacket by a predetermined distance.
  • the vacuum jacket covers the outer surface of the low temperature insulation layer, and the flexible portion having the flexible structure, and at least a part of the vacuum jacket are configured in a sturdy structure to support the vacuum insulation device. It is characterized by consisting of wealth.
  • the low temperature tank is made of a polyhedron
  • the flexible portion is formed to surround the outer surface of the low temperature insulating layer forming the plane of the vacuum jacket, and the strong portion to surround the outer surface of the low temperature insulating layer forming the corner of the vacuum jacket. Can be formed.
  • the vacuum jacket may have an internal discharge space forming a flow path for forming a vacuum inside the robust part.
  • the robust portion is formed to surround an outer surface of the low temperature insulating layer forming a lower portion of the vacuum jacket, and supports the bottom surface of the vacuum insulating device.
  • the vacuum insulation device may further include a tank support that supports the low temperature tank in a state of being floated in the air, and the lower end of the vacuum jacket is formed to be spaced apart from the ground by a predetermined distance.
  • the tank support supports the tank hanger and the tank hanger connected to the upper surface of the low-temperature tank, and the upper support constituting a part of the vacuum jacket and the lower end of the vacuum jacket are extended upward so as to be spaced apart from the ground. It may include a side support for supporting the upper support.
  • the tank support may include a tank hanger connected to the side of the low temperature tank and a side support that forms a part of the vacuum jacket and extends upward so that the lower end of the vacuum jacket is spaced apart from the ground to support the tank hanger. have.
  • FIG. 1 is a perspective view showing a vacuum insulation device according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing a vacuum insulation device according to a first embodiment of the present invention.
  • the vacuum insulation device 1000 according to an embodiment of the present invention includes a low temperature tank 100 having a storage space for accommodating a cryogenic fluid therein, and a low temperature insulation layer 200 provided to surround the outer shell 110 of the low temperature tank.
  • a vacuum pump 410 for maintaining the heat insulating layer 200 in a vacuum state.
  • the vacuum insulation device 1000 maintains the internal space of the vacuum jacket 300 provided with the low temperature insulation layer 200 at a constant vacuum pressure, suctions the gas or moisture remaining inside and discharges it to the outside. , It is possible to further increase the thermal insulation performance of the low temperature insulating layer 200.
  • the pressure of the low temperature insulating layer 200 is maintained in a vacuum, the low temperature insulating layer 200 is subjected to compression of 1 atmosphere, and a material having sufficient compressive strength should be used so as not to decrease the compressibility accordingly.
  • R-PUF reinforced poly urethane foam
  • the present applicant has confirmed that when the pressure of the low temperature insulating layer 200 is maintained in a vacuum state, the thermal conductivity of the low temperature insulating layer 200 is reduced to less than half than that of the low temperature insulating layer placed under a pressure of 100 KPa.
  • the operation of the vacuum pump 410 for maintaining the internal space at the vacuum pressure means when the cryogenic fluid is stored in the low temperature tank 100, and the operation of the vacuum pump 410 is It is preferable that the low temperature tank 100 is properly operated and controlled for operation, testing, maintenance, etc.
  • the outer shell 110 of the low temperature tank 100 is designed to withstand the static pressure and dynamic pressure of the cryogenic fluid stored therein, and is preferably made integrally sealed so that the fluid inside the tank does not leak.
  • the vacuum jacket 300 of the vacuum insulation device 1000 of the present invention is made to have a flexible structure capable of contracting or expanding at least a part, so that the outer shell 110 of the low temperature tank 100 or the low temperature insulation layer 200 are contracted or It is characterized in that it is formed to deform the outer surface corresponding to the inner space that is deformed according to the expansion.
  • the vacuum jacket 300 is sealed to prevent air from flowing into the low temperature insulation layer 200 interposed therein.
  • the outer shell 110 of the low temperature tank 100 is a cryogenic metal capable of supporting the pressure of the cryogenic fluid stored therein. It can be made of materials (nickel steel, stainless steel, aluminum, etc.), and by having a conventional corrugated surface inside, it overcomes the shortcomings of a membrane type low temperature tank that relies on the hull because it cannot support itself. It is possible to provide a V-PUF insulation type vacuum insulation device capable of contracting and expanding the tank accordingly.
  • the vacuum pump 410 may be configured in plural to maintain a vacuum in the entire area according to the standard of the low temperature tank 100, and an exhaust pipe 430 connected to the inside of the vacuum jacket 300, It may be configured to include an exhaust valve 420 for opening and closing the exhaust pipe 430, and the vacuum pump 410 uses a vacuum pump commonly used commercially to reduce the vacuum inside the vacuum jacket 300. Can be used for
  • the vacuum jacket 300 is formed between a plurality of smoothing portions 310 and the plurality of smoothing portions 310 formed of flat plates spaced apart from each other by a predetermined distance while surrounding the outer surface of the low temperature insulating material 200, so that the flexible structure It may be made including a deformable joint 320 having a, at this time, in order to contract or expand the plurality of smoothing portions 310 as the inner space of the vacuum jacket 300 is contracted or expanded, adjacent deformable joints When the pressure 320 is pressed, the deformable joint part 320 is contracted or expanded, so that it can react to the deformation inside the vacuum jacket 300.
  • the flat plate may be made of metal or plastic having a low gas permeability and rigidity to the vacuum pressure inside the vacuum jacket 300.
  • the vacuum jacket 300 operates the vacuum pump 410 connected during manufacture to form an internal space in a vacuum state, and then seals the vacuum jacket 300 to maintain a vacuum state, A separate measuring means capable of measuring the degree of vacuum in the inner space of the jacket 300 is provided, and when the degree of vacuum in the inner space of the vacuum jacket 300 is lowered, the vacuum pump 410 is re-operated, at least the When the cryogenic fluid is stored in the low temperature tank 100, it is desirable to manage to maintain a vacuum state at all times.
  • FIGS. 3 to 5 are cross-sectional views showing various modified examples of the deformable joint part 320 according to the first embodiment of the present invention.
  • the joint part 320 connects the plurality of smoothing parts 310 and may be made of an elastic polymeric elastomer 231 in response to the deformation of the inner space of the vacuum jacket 300.
  • the polymeric elastomer 231 is interposed between the plurality of smoothing portions 310 and adhered to the outer ends in the width direction of the plurality of smoothing portions 310, so that the plurality of smoothing portions By connecting the 310, it is possible to perform sealing of the vacuum jacket 300.
  • the polymeric elastomer 231 is compressed so that the space between a plurality of adjacent smoothing portions 310 is narrowed, and the vacuum jacket (300) Can respond to internal deformation.
  • a concave groove 311A formed so that a part of the polymer elastomer 321 is concave increases the contact area between the polymer elastomer 321 and the smoothing part 310, and sealing force of the vacuum jacket 300 Will be able to increase.
  • the high-molecular elastomer 321 surrounding the low-temperature heat insulating layer 200 is formed in an integral mesh shape in which the space in which the smoothing part 310 is disposed is formed into a hollow mesh.
  • the polymeric elastomer 321 is contracted to be bent inwardly opposite to the low-temperature insulating layer 200, and compresses the low-temperature insulating layer 200 inward, so that the low-temperature insulating layer 200 and the low-temperature tank It is possible to increase the adhesion between the outer skin 110 of (100).
  • the plurality of smoothing portions 310 is at least one adjacent It is provided so as to overlap with each other in the thickness direction with the above smoothing portion 310, and when the inner space is deformed, the overlapping smoothing portions 310 slide to correspond to contraction or expansion of the inner space, and the deformable joint portion
  • the polymeric elastomer 321 constituting 320 is adhered to the upper surface of the portion overlapped with the plurality of smoothing portions 310 and sealed to maintain the airtightness of the vacuum jacket 300, and the smoothing portion 310 It may be formed to expand and contract in response to slipping.
  • the polymeric elastomer 321 having the above-described configuration may be formed in various shapes without departing from the gist of the present invention other than in a semicircular donut shape curved toward the outside.
  • FIG. 6 is a perspective view showing a vacuum insulation device 1000 according to a second embodiment of the present invention
  • FIGS. 7 and 8 are various modifications of the low temperature insulation layer 200 according to the second embodiment of the present invention. It is a cross-sectional view
  • FIG. 9 is a cross-sectional view showing various modifications of the internal exhaust space 210 according to cross-section AA' of FIG. 6, and referring to FIGS.
  • a vacuum according to a second embodiment of the present invention
  • the low temperature insulating layer 200 of the heat insulating device 1000 is formed in plural, the plurality of low temperature insulating layers 200 are provided to be spaced apart from each other, so that the vacuum pump 410 and the vacuum pump 410 and the It is connected, it is possible to form an internal discharge space 210 forming a flow path for forming a vacuum.
  • the internal discharge space 210 is a configuration for inducing an internal exhaust fluid to form a vacuum inside the vacuum jacket 300, and may be formed by perforating a part of the low temperature insulation layer 200, preferably the The low temperature insulating layer 200 may be divided into a plurality, and a space spaced apart between the partitioned plurality of low temperature insulating layers 200 may be utilized.
  • the vacuum pump 410 may be connected to any part of the internal discharge space 210 formed in the vacuum jacket 300 to suck internal fluid for vacuum of the low temperature insulating layer 200.
  • the exhaust pipe 430 that sucks the internal fluid is configured in plural to be connected to the vacuum jacket 300.
  • Figure 7 (a) is a view showing the low temperature insulating layer 200 bonded and chemically attached to the outer shell 110 of the low temperature tank 100
  • Figure 7 (b) is the low temperature tank 100
  • the plurality of low temperature insulating layers 200 May be adhered to and adhered to the outer surface of the outer surface of the outer shell 110 of the low temperature tank 100 and the inner surface of the vacuum jacket 300, but excessive use of adhesive may cause the low temperature heat insulating layer 200 to be vacuumed or to shrink the low temperature tank It may be a problem at the time, and accordingly, by using the fixing bolt 220, by being fixed to the outer shell 110 of the low temperature tank 100, the inner discharge space 210 between the adjacent low temperature insulating material 200 Can be arranged spaced apart to form.
  • FIG. 8 is a view showing a state in which the plurality of low temperature insulating layers 200 are provided to form a multi-layer in the thickness direction, and FIG. 8 (a) is to form a multi-layer with any one low temperature insulating layer 200 in the thickness direction.
  • the other provided low-temperature insulation layer 200 is arranged to adhere only a part of the outer side, and may be adhered to form a continuous inner discharge space 210 through which the interlayer internal fluid stacked in the thickness direction can move.
  • the flow of the internal fluid alternately moves in a direction perpendicular to each other between the layers stacked in the thickness direction, and moves from the low temperature tank 100 to the vacuum jacket 300, and is provided in the internal discharge space 210 It is discharged to the outside through the exhaust pipe 430.
  • the plurality of low temperature insulating materials 300 are provided to form multi-layers in the thickness direction, and the outer shell 110 of the low temperature tank 100, vacuum
  • the jacket 300 or at least one of the adjacent low-temperature insulation 200 and the fixing bolt 220 are fixed to be spaced apart by a predetermined distance, thereby providing an internal discharge space 210 in which the internal fluid can be discharged more smoothly. Can be formed.
  • the vacuum insulation device 1000 is provided in the internal exhaust space 210 However, it may be configured to further include a discharge pipe 440 formed on the outer circumferential surface of the suction hole 441 communicating with the inner space of the vacuum jacket 210.
  • the discharge pipe 440 is composed of a plurality so as to pass between the internal discharge space 210 partitioned in the low temperature insulation layer 200, but may be connected continuously using a pipe joint such as an elbow pipe or a cross pipe. .
  • an exhaust pipe 430 connected to the vacuum pump 410 is connected to a part of the discharge pipe 440 to eject the internal fluid flowing into the discharge pipe 440 to the outside, and the discharge pipe 400 Vacuum pressure may be applied to the low temperature insulating layer 200 by suctioning the internal fluids remaining in the low temperature insulating layer 200 through the suction hole 441 perforated on the outer surface so that the interior and the exterior of the device communicate with each other.
  • FIG. 10 is a cross-sectional view showing a vacuum insulation device 1000 according to a third embodiment of the present invention.
  • the deformable joint part of the vacuum insulation device 1000 according to the third embodiment of the present invention 320 is formed integrally with the plurality of smoothing portions 310, and constitutes an uneven portion 322 curved outward in the thickness direction, and the uneven portion 322 is formed of an inner space of the vacuum jacket 310 It can be deformed by contraction or expansion.
  • the vacuum jacket 300 is entirely formed of steel, reinforcing the outside of the vacuum insulator 1000, and the uneven portion 322 is bent outward in the thickness direction so that the vacuum jacket 300 According to the contraction or expansion of the inner space, it can be deformed while contracting or expanding.
  • the uneven part 322 of the vacuum jacket 300 is contracted to the curved outside, and when the internal space is expanded, the uneven part 322 The curved slope of is deformed to respond to the expansion of the inner space by gently expanding.
  • the concave-convex portion 322 may induce the condensation water generated on the outer surface of the vacuum jacket 300 to flow in the direction of its own weight by condensing.
  • the vacuum jacket 300 may be manufactured to be integrated through welding between a plurality of smoothing portions 310 or uneven portions 320, and at this time, the low temperature insulating layer 200 is thermally deformed and In order to prevent damage, by providing a high temperature insulating material 500 inside the vicinity of the welding, it is possible to prevent damage to the low temperature insulating layer 200.
  • the high-temperature insulating material 500 is inside the welding line B where welding is performed. It is preferable to be provided.
  • the high-temperature insulation material 500 may be made of a heat-resistant material such as glass fiber, carbonized fiber, or silica fiber, and is not deformed by welding heat, but a lightweight material so as not to excessively increase the total weight of the vacuum insulation device 1000. It is preferable to use.
  • FIG. 12 is a view showing a modified example of the vacuum jacket 300 according to the case where the above-described internal discharge space 210 is sufficiently large, and FIGS. 12A and 12B show the internal discharge space 210 ) Shows a modified example in which the discharge pipe 440 is provided, and (c) and (d) show a modified example when the discharge pipe 440 is not provided in the internal discharge space 210, and have.
  • the welding line (B) of the vacuum jacket 300 is provided to match the discharge pipe 440, the discharge pipe 440 and the inner surface of the vacuum jacket 300 It is formed to be spaced apart by a predetermined distance between the outer surfaces of the low temperature insulating layer 200, and may be configured so that welding heat due to welding of the vacuum jacket 300 is not transferred to the low temperature insulating layer 200. In this case, it is preferable that the discharge pipe 440 is formed in a sufficiently large size to minimize heat transfer according to the discharge pipe 440 or made of a material having heat resistance. Referring to (b) of FIG.
  • a part of the vacuum jacket 300 is bent outward to form an internal discharge space 210 inside the bent vacuum jacket 300, and the internal discharge space formed at this time (
  • the welding line (B) so as to contact the upper surface of the discharge pipe 440 provided in 210, it is possible to prevent damage to the low temperature insulating layer 200.
  • FIG. 12(C) shows that the inner discharge space 210 is formed sufficiently wide on the outer surface of the low temperature insulation layer 200, and the adjacent smoothing so that the formed inner discharge space 210 and the welding line (B) coincide.
  • FIG. 13 and 14 are views showing a modified example of the vacuum insulator 1000 configured so that the high-temperature insulation material 500 is provided in the internal discharge space 210 and is configured to coincide with the welding line B.
  • the high temperature insulating material 500 is the inside of the vacuum jacket 300 coinciding with the discharge pipe 440 and the welding line (B) having the internal discharge space (210).
  • the high-temperature insulating material 500 may be formed to be concave inside to accommodate the discharge pipe 440 (a) to (b), and the discharge pipe outside of the high-temperature insulating material 500
  • a welding line (B) formed on the outer surface of the vacuum jacket 300 may be configured to be formed at a position coincident with the high temperature insulating material 500 and the internal discharge space 210.
  • the internal discharge space 210, the high temperature insulation material 500, and the welding line B are formed at the same position, and at this time, the high temperature
  • the heat insulating material 500 is partially concave from the outside to the inside to form the internal discharge space 210 (d), or the internal discharge space 210 formed inside the vacuum jacket 300 bent outward and the low temperature insulation layer ( It is interposed (e) between 200) to prevent deformation and damage of the low temperature insulating layer 200 due to welding.
  • the high-temperature insulating material 500 is formed with a pore to suck the internal fluid remaining in the low-temperature insulating layer 200 by the vacuum pressure sucked from the vacuum pump 410, or is woven into fibers so that the internal fluid can pass. It is preferable that it is made of a material that has pores.
  • the deformable joint 320 is the irregularities curved outward in the thickness direction. It consists of a portion 322, and is connected to the vacuum pump 410 inside the uneven portion 322, and an internal discharge space 210 forming a flow path for forming a vacuum may be formed.
  • the uneven portion 322 is formed by welding the outer ends 310a and 310b of the smoothing portion 310 outwardly and adjacent to each other, and at this time, the smoothing forming the uneven portion 322
  • the angle between the outer ends 310a and 310b of the part 310 and the outer surface of the low temperature insulation layer 200 at the inner side is bent to form an acute angle so that it contracts or expands according to the bottle shape of the inner space of the vacuum jacket 300 Can be configured.
  • the internal discharge space 210 formed inside the uneven portion 322, the high-temperature insulation material 500, and the welding line (B) are arranged so that they can be formed at a position coincident with each other, and the vacuum insulation device 1000 The installation work of the can be more simplified.
  • FIG. 16 is a cross-sectional view showing a vacuum jacket having a double structure according to an embodiment of the present invention.
  • the vacuum insulation device 1000 having a double vacuum insulation structure shows the low temperature insulation layer 200.
  • first vacuum jacket 300A and the second vacuum jacket 300B are connected to separate exhaust pipes 430A and 430B to each have an independent vacuum space.
  • the second vacuum jacket 300B is designed to maintain the vacuum state for a certain period of time or longer to maintain stability during the transport period of the cargo. desirable.
  • FIGS. 17 to 21 are cross-sectional views showing a vacuum insulation device according to a fourth embodiment of the present invention.
  • a vacuum insulation device 1000 according to a fourth embodiment of the present invention is described above.
  • the vacuum jacket 300 surrounds the outer surface of the low temperature insulation layer 200, and the flexible portion 340 having the flexible structure and at least a part of the vacuum jacket 300 are configured in a sturdy structure, and the vacuum insulation device 1000 It is preferable that it is made of a strong part 330 that supports, and in this case, the strong structure can be combined with a reinforcing material or a support for supporting the vacuum insulator 1000 by the vacuum jacket 300 forming the strong part 330 Or it means to have a structure formed to support the load of the vacuum insulation device 1000 by itself, for example, the robust structure is made of Invar steel forming the outer shell 110 of the low temperature tank 100 It is preferable that the flexible part 340 is made of the above-described deformable sound part 320.
  • the low-temperature tank 100 of the vacuum insulator 1000 includes a plurality of It is made of a polyhedron having an edge connecting the plane of the plurality of planes and the flexible part 340 is formed to surround the outer surface of the low temperature insulation layer 200 forming the plane of the vacuum jacket 300, and the robustness
  • the part 330 is formed to surround the outer surface of the low temperature insulation material 200 forming the corner of the vacuum jacket 300, and according to the deformation of the inner space of the vacuum jacket 300, the flexible part 340 It is preferable to form a structure supporting the low temperature insulating layer 200 surrounding the outer shell 110 of the low temperature tank 100 by being compressed inward or expanded outward.
  • the strong part 330 may be fixed to an external structure, and it is preferable to use the space formed inside the strong part 330 as the internal discharge space 210 connected to the vacuum pump 410 Do.
  • FIG. 18 is a cross-sectional view showing a modified example of the vacuum insulation device 1000 according to the fourth embodiment of the present invention
  • FIG. 19 is a sequence of installing the vacuum insulation device 1000 according to FIG.
  • the vacuum insulation device 1000 is configured such that the robust portion 330 covers the outer surface of the low temperature insulation layer 200 forming the lower portion of the vacuum jacket 300. Is formed, it may be configured to support the bottom surface of the vacuum insulator 1000.
  • the flexible part 340 of the vacuum jacket 300 is formed as a deformable joint part 320 that contracts or expands according to the deformation of the internal space of the vacuum jacket 300, and the vacuum insulation device 1000 Except for the lower part of ), expansion and contraction in the upper direction can be performed.
  • the low-temperature tank 100 of the vacuum insulation window 1000 is made of a large tank with a volume of 1000M3 or more, and when manufactured in a cylinder shape that is robust to internal pressure, it is possible to manufacture a large tank with a volume of 10000M3 or more. And, in the case of the large tank as described above, as shown in FIG. 19, the R-PUF constituting the low temperature heat dissipation layer 200 is sprayed or adhered to the inside of the sturdy part 330 seated on the ground. A pre-fabricated low temperature tank 100 is mounted and fixed above the low temperature heat dissipation layer 200 (a).
  • the vacuum insulator 1000 of the present invention having the manufacturing steps as described above makes it possible to manufacture an ultra-large tank and vacuum insulation that cannot be transported on site.
  • the vacuum insulator 1000 for a low-temperature tank is more suitable for transport and storage of cryogenic liquefied gases such as liquefied hydrogen (LH2) or liquefied nitrogen (LN2), and contains the liquefied hydrogen (LH2).
  • cryogenic liquefied gases such as liquefied hydrogen (LH2) or liquefied nitrogen (LN2)
  • LH2 liquefied hydrogen
  • the density of the liquefied hydrogen is 0.08988 g/L, which does not significantly affect the weight of the low temperature tank 100. Therefore, in Figures 20 and 21, the low temperature tank 100 is supported in a state of being floated in the air, and further includes a tank support 10 formed such that the lower end of the vacuum jacket 300 is spaced a predetermined distance from the ground 1 It shows a vacuum insulation device, and referring to FIG.
  • the tank support 20 supports the tank hanger 13 and the tank hanger 130 connected to the upper surface of the low temperature tank 100, and the The upper support 12 forming a part of the vacuum jacket 300 and the layered support 11 extending upward so that the lower end of the vacuum jacket 300 is spaced apart from the ground 1, supporting the upper support 12 It can be configured to include.
  • the vacuum jacket 300 is bonded to the lower surface of the upper support 12 of the tank support 10 to form a unity, so that the upper support 12 plays the role of the robust part of the vacuum jacket 300 described above. Will perform.
  • the tank support 10 in the other aspect of the present invention is a tank hanger 13 connected to the side of the low temperature tank 100 and a part of the vacuum jacket 300 It may be configured to include a side support 13 extending upward so that the lower end of the vacuum jacket is spaced apart from the ground 1 to support the tank hanger.
  • the side support 13 may be bonded to the side surface of the vacuum jacket 300 to serve as the above-described robust part.
  • deformable joint 321 polymer elastomer
  • Adhesive side B Welding line
  • tank support 11 side support
  • the present invention relates to a vacuum insulator for a low-temperature tank for storing and transporting liquefied gas in a cryogenic state, and has an effect capable of manufacturing a large tank capable of storing and transporting liquefied gas in a cryogenic state. That is, there is a possibility of use in the manufacturing industry of a ship or a ground type tank equipped with a low-temperature tank for storing and transporting liquefied gas in a cryogenic state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Thermal Insulation (AREA)

Abstract

본 발명은 액체질소(LN2) 또는 액체수소(LH2) 등의 초저온 액화기체를 저장할 수 있도록 상시 진공으로 유지되는 저온단열재를 이용하여, 높은 단열성과 진공안정성을 갖는 대형 저온탱크의 진공단열장치에 관한 것으로, 저온탱크 또는 저온단열층의 수축에 따라 진공자켓의 일부가 수축 가능한 유연한 구조를 갖는 저온탱크용 진공단열장치에 관한 것이다.

Description

저온탱크용 진공단열장치
본 발명은 저온탱크를 진공단열하는 장치에 관한 것으로, 보다 상세하게는 초저온 상태의 액화가스를 저장 및 운송하기 위한 저온탱크를 진공단열할 수 있는 장치에 관한 것이다.
일반적으로 액화천연가스(Liquefied Natural Gas, LNG)는 메탄을 주성분으로 하는 천연가스를 영하 162℃로 냉각하여 그 부피를 6백분의 1로 줄인 무색투명한 초저온 액체를 말하며, 이러한 액화천연가스가 에너지 자원으로 등장함에 따라 이 가스를 에너지로 이용하기 위해서는 생산기지로부터 수요지의 인수지까지 대량으로 수송할 수 있는 효율적인 운송방안이 검토되었으며, 그 결과물로서 액화천연가스의 해상수송을 위한 액화천연가스 운반선이 나타났다.
상술한 바와 같은 액화천연가스 운반선에는 초저온 상태로 액화시킨 액화천연가스의 보관 및 운송을 위해 이를 저장할 수 있는 저온탱크가 구비되어야 하며, 이러한 저온탱크는 대기압 보다 높은 중기압과 영하 160℃의 비등온도를 갖는 액화천연가스를 저장하기 위하여, 초저온에 견딜 수 있는 재료(알루미늄 합금, 스테인리스강, 35% 니켈강 등)로 제작되어야 하며, 열응력 및 열수축에 대응할 수 있는 설계와 열침입을 막을 수 있는 단열(Insulation)구조의 설치 등이 요구된다.
여기에서, 액화천연가스 운반선에서 적용되는 저온탱크는 그 구조에 따라 멤브레인(membrane)형과 독립(Self-supporting)형으로 분류될 수 있으며, 상기 멤브레인형 탱크는 한국 공개특허공보 제10-2017-0116584호(주름진 실링 멤브레인을 갖는 밀폐 탱크, 2017.10.19.)에서 개시된 바와 같이, 액화가스가 저장되는 탱크의 내면은 액화가스에 따른 열변형에 대응되어 열 수축이 가능하도록 스테인리스 재질의 주름진 박판 멤브레인 시트(Corrugated Membrane Sheet)가 이용되며, 상기 멤브레인 시트를 지지하기 위해 외면을 감싸는 단열재층 및 수송선의 선체에 지지되는 2차 방벽을 이루도록 형성되어, 탱크 내부에서 발생하는 압력을 선체가 지탱하는 방식으로 이루어진다.
이때, 종래에는 상기 단열재층에 잔존하는 수분이 냉각되어 단열재의 성능을 저하시키는 것을 방지하기 위하여, 내부에 영하 50 ~ 60℃의 이슬점을 갖는 건조한 공기(dry air)를 충전하였으나, 액화되어 영하 250℃의 비등온도를 갖는 액화수소(LH2)의 경우, 내부에 충전된 건조한 공기의 산소 및 질소가 액화수소 탱크 표면 부근에서 액화 및 응결되어 단열재의 성능을 현저히 저하시켜, 전체 단열층의 성능 실패를 유발하며, 탱크의 안정성에 장기적인 신뢰성이 의심된다는 문제점들이 야기되고 있다.
본 발명은 상기한 문제점을 해결하고자 안출된 것으로, 액체질소(LN2) 또는 액체수소(LH2)등의 초저온 액화기체를 저장할 수 있도록 상시 진공으로 유지되는 단열재를 이용하여, 높은 단열성과 진공안정성을 갖는 대형 저온탱크의 진공단열장치를 제공하고자 한다.
상기한 기술적 과제를 해결하기 위하여, 본 발명의 저온탱크용 진공단열장치는 저온단열층을 진공상태로 유지하여, 액화수소(LH2) 또는 액화질소(LN2)와 같은 초저온 유체의 저장이 가능한 저온탱크용 진공단열장치를 제공할 수 있다.
또한, 상기 저온탱크 또는 저온단열층의 수축에 따라, 진공자켓의 일부가 수축 가능한 유연한 구조를 갖도록 구성하여, 저온탱크 스스로 내부에 저장되는 초저온 유체의 압력을 지지하며, 초저온 유체의 온도에 의해 저온탱크의 열수축에 대응 가능한 저온탱크용 진공단열장치를 제공할 수 있다.
상기한 구성에 따른 본 발명은, 저온탱크의 외피를 감싸는 저온단열층을 항시 진공상태로 유지하여, 더욱 높은 단열효율을 유지함으로써 장기적인 신뢰성을 확보하며, 상기 저온탱크 또는 저온단열층의 수축에 따라, 진공자켓의 일부가 수축 가능한 유연한 구조를 갖음으로써, 저온탱크 스스로 내부에 저장되는 초저온 유체의 압력을 지지하며, 초저온 유체의 온도에 의해 저온탱크의 열수축에 대응 가능한 진공자켓을 제공함으로써, 장기간에 신뢰성이 높은 대형탱크의 제작이 가능한 장점이 있다.
도 1은 본 발명의 일실시예에 따른 진공단열장치를 도시한 사시도.
도 2는 본 발명의 제1실시예에 따른 진공단열장치를 도시한 단면도.
도 3 내지 도 5는 본 발명의 제1실시예에 따른 변형성이음부의 다양한 변형예를 도시한 단면도.
도 6은 본 발명의 제2실시예에 따른 진공단열장치를 도시한 사시도.
도 7 및 도 8은 본 발명의 일실시예에 따른 저온단열층의 다양한 변형예를 도시한 단면도.
도 9는 도 6의 AA’단면에 따른 내부배기공간의 다양한 변형예를 도시한 도면.
도 10은 본 발명의 제3실시예에 따른 진공단열장치를 도시한 단면도.
도 11 내지 도 15는 본 발명의 제3실시예에 따른 진공단열장치의 다양한 변형예를 도시한 단면도.
도 16은 본 발명의 일실시예에 따른 이중 구조를 갖는 진공자켓을 도시한 단면도.
도 17 내지 도 21은 본 발명의 제4실시예에 따른 진공단열장치를 도시한 단면도.
상기한 과제를 해결하기 위한, 본 발명은 내부에 초저온 유체를 수용하는 저장공간을 갖는 저온탱크와, 저온탱크의 외피를 감싸도록 구비되는 저온단열층, 내부공간이 진공상태로 유지되며, 상기 저온단열층의 외면을 감싸도록 밀봉되어 외부와의 기밀을 유지하는 진공자켓을 포함하며, 상기 진공자켓은 적어도 일부가 수축 또는 팽창 가능한 유연구조를 갖는 것을 특징으로 한다.
이때, 본 발명의 일 방면으로, 상기 진공자켓은 상기 저온단열층의 외면을 감싸며 서로 소정거리 이격된 평판으로 이루어진 복수의 평활부와, 상기 복수의 평활부 사이에 형성되어 상기 유연구조를 갖는 변형성이음부를 포함할 수 있다.
또한, 상기 변형성이음부는 상기 복수의 평활부를 연결하며, 상기 진공자켓의 내부공간의 변형에 대응되어 신축 가능한 고분자탄성체로 이루어질 수 있다.
또한, 상기 고분자탄성체는 상기 복수의 평활부 사이에 개재되어, 상기 복수의 평활부의 넓이 방향으로의 외측단에 접착되는 것을 특징으로 한다.
또한, 상기 복수의 평활부는 인접하는 적어도 하나 이상의 평활부와 두께방향으로 서로 겹쳐지도록 구비되어, 상기 내부공간의 변형 시에 미끄러지며 상기 내부공간의 수축 또는 팽창에 대응되며, 상기 고분자탄성체는 상기 복수의 평활부들에 겹쳐진 부위의 상면에 구비되어, 상기 진공자켓의 기밀을 유지하며, 상기 평활부의 변형에 대응되어 신축되도록 형성되는 것을 특징으로 한다.
또한, 본 발명의 다른 일방면으로, 상기 저온단열층은 복수로 이루어지되, 상기 복수의 저온단열층은 서로 이격되도록 구비되어, 인접하는 복수의 저온단열층 사이에 진공형성을 위한 유로를 이루는 내부배출공간을 형성할 수 있다.
이때, 상기 복수의 저온단열층은 두께방향으로 다층을 이루도록 구비되되, 상기 저온탱크의 외피, 진공자켓 또는 인접하는 저온단열층 중 적어도 하나 이상과 고정볼트를 이용하여 소정거리 이격되도록 고정되는 것을 특징으로 한다.
또한, 상기 진공단열장치는 상기 내부배출공간에 구비되되, 외주면에 상기 진공자켓의 내부공간과 연통된 흡입공이 형성된 배출파이프를 더 포함할 수 있다.
또한, 본 발명의 다른 일방면으로, 상기 변형성이음부는 상기 복수의 평활부와 일체로 형성되되, 두께방향으로의 외측으로 만곡된 요철부를 이루며, 상기 요철부는 상기 진공자켓의 내부공간의 수축 또는 팽창에 따라 변형되는 것을 특징으로 한다.
이때, 상기 변형성이음부는 두께방향의 외측으로 만곡된 상기 요철부의 내측으로 진공형성을 위한 유로를 이루는 내부배출공간을 형성될 수 있다.
또한, 상기 진공자켓은 상기 복수의 평활부가 서로 용접되어 일체를 이루되,상기 진공자켓의 외면에 이루어지는 용접선은 상기 진공자켓의 내부공간에 구비되어 상기 진공펌프와 연결되는 내부배출공간과 일치하는 위치에 형성될 수 있다.
또한, 상기 진공자켓은 상기 복수의 평활부가 서로 용접되어 일체를 이루되, 상기 진공단열장치는 상기 진공자켓의 외면에 이루어지는 용접선의 내측에 구비되어, 상기 용접선 인근의 저온단열층의 열변형을 방지하는 고온단열재를 더 포함할 수 있다.
또한, 상기 진공자켓은 상기 저온단열층의 외면을 감싸는 제1진공자켓 및 상기 제1진공자켓의 외면을 감싸도록 구비되는 제2진공자켓을 포함하되, 상기 진공단열장치는 상기 제1진공자켓과 제2진공자켓 사이에 개재되어, 상기 제1진공자켓과 제2진공자켓을 일정거리 이격시키도록 구비되는 스페이서를 더 포함할 수 있다.
또한, 본 발명의 다른 일방면으로, 상기 진공자켓은 상기 저온단열층의 외면을 감싸며 상기 유연구조를 갖는 유연부와, 상기 진공자켓의 적어도 일부가 강건한 구조로 구성되어 상기 진공단열장치를 지지하는 강건부로 이루어지는 것을 특징으로 한다.
이때, 상기 저온탱크는 다면체로 이루어지되, 상기 유연부는 상기 진공자켓의 평면을 이루는 상기 저온단열층의 외면을 감싸도록 형성되며, 상기 강건부는 상기 진공자켓의 모서리를 이루는 상기 저온단열층의 외면을 감싸도록 형성될 수 있다.
이때, 상기 진공자켓은 상기 강건부의 내측으로 진공형성을 위한 유로를 이루는 내부배출공간이 형성될 수 있다.
또한, 상기 강건부는 상기 진공자켓의 하부를 이루는 상기 저온단열층의 외면을 감싸도록 형성되어, 상기 진공단열장치의 저면을 지지하는 것을 특징으로 한다.
또한, 상기 진공단열장치는 상기 저온탱크를 공중에 띄운 상태로 지지하며, 상기 진공자켓의 하단이 지반으로부터 소정거리 이격되도록 형성되는 탱크지지체를 더 포함할 수 있다.
이때, 상기 탱크지지체는 상기 저온탱크의 상면에 연결되는 탱크걸이와 상기 탱크걸이를 지지하되, 상기 진공자켓의 일부를 이루는 상부지지체 및 상기 진공자켓의 하단이 지반으로부터 이격되도록 상방으로 연장되어, 상기 상부지지체를 지지하는 측면지지체를 포함할 수 있다.
또한, 상기 탱크지지체는 상기 저온탱크의 측면에 연결되는 탱크걸이와 상기 진공자켓의 일부를 이루며 상기 진공자켓의 하단이 지반으로부터 이격되도록 상방으로 연장되어 상기 탱크걸이를 지지하는 측면지지체를 포함할 수 있다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명을 하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
어떤 구성요소가 다른 구성요소에 “연결되어” 있다거나 “접속되어” 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 본 발명의 기술적 사상을 첨부된 도면을 사용하여 더욱 구체적으로 설명한다.
첨부된 도면은 본 발명의 기술적 사상을 더욱 구체적으로 설명하기 위하여 도시한 일예에 불과하므로 본 발명의 기술적 사상이 첨부된 도면의 형태에 한정되는 것은 아니다.
도 1은 본 발명의 일실시예에 따른 진공단열장치를 도시한 사시도이고, 도 2는 본 발명의 제1실시예에 따른 진공단열장치를 도시한 단면도로서, 도 1 및 도 2를 참조하면, 본 발명의 일실시예에 따른 진공단열장치(1000)는 내부에 초저온 유체를 수용하는 저장공간을 갖는 저온탱크(100)와, 상기 저온탱크의 외피(110)를 감싸도록 구비되는 저온단열층(200)과, 상기 저온단열층(200)의 외면을 감싸도록 형성되어, 외부와의 기밀을 유지하는 진공자켓(300) 및 상기 진공자켓(300)의 내부공간에 연결되어, 상기 내부공간에 개재된 저온단열층(200)을 진공상태로 유지시키는 진공펌프(410)를 포함하여 구성될 수 있다.
이때, 상기 진공단열장치(1000)는 상기 저온단열층(200)이 구비되는 상기 진공자켓(300)의 내부공간을 상시 진공압으로 유지하여, 내부에 잔존하는 기체 또는 수분을 흡입하여 외부로 배출시킴으로써, 상기 저온단열층(200)의 단열 성능을 더욱 증대시킬 수 있다. 여기에서 상기 저온단열층(200)의 압력을 진공으로 유지하면 상기 저온단열층(200)은 1기압의 압축을 받게 되며, 이에 따른 압축성이 저하되지 않도록 충분한 압축강도를 갖는 재료를 사용해야 하며, 바람직하게는 강화 고분자(Reinforced Poly Urethane Foam : R-PUF)를 사용하여 충분한 단열성능과 압축강도를 확보할 수 있다. 또한, 본 출원인은 상기 저온단열층(200)의 압력을 진공상태로 유지하였을 시, 100KPa의 압력 하에 놓인 저온단열층보다 상기 저온단열층(200)의 열전도도가 절반 이하로 감소하는 것을 확인하였다. 여기에서, 상기 내부공간을 상기 진공압으로 유지하는 상기 진공펌프(410)의 작동은 상기 저온탱크(100) 내부에 초저온 유체가 저장되었을 시를 의미 하며, 상기 진공펌프(410)의 작동은 상기 저온탱크(100)의 운용 또는 시험, 정비 등에 적절하게 조작, 제어되는 것이 바람직하다.
이때, 상기 저온탱크(100)의 외피(110)는 내부에 저장되는 초저온 유체의 정적압력 및 동적압력을 견디도록 설계되어, 탱크 내부의 유체가 누설되지 않도록 밀폐된 일체로 이루어지는 것이 바람직하며, 본 발명의 진공단열장치(1000)의 진공자켓(300)은 적어도 일부가 수축 또는 팽창 가능한 유연구조를 갖도록 이루어짐으로써, 상기 저온탱크(100)의 외피(110) 또는 상기 저온단열층(200)의 수축 또는 팽창 에 따라 변형되는 내부공간에 대응되어 외표면을 변형하도록 형성되는 것을 특징으로 한다.
즉, 전술한 바와 같이, 본 발명의 진공단열장치(1000)는 상기 진공자켓(300)은 내부에 개재된 상기 저온단열층(200)으로 공기가 유입되는 것을 방지하도록 밀봉되며, 열수축에 대비하여 상기 저온탱크(100)의 외표면을 이루는 진공자켓(300)이 수축 또는 팽창됨에 따라서, 상기 저온탱크(100)의 외피(110)는 내부에 저장되는 초저온 유체의 압력을 탱크 자체가 지지 가능한 초저온 금속재료(니켈강, 스테인레스강, 알루미늄 등)로 이루어 질 수 있으며, 종래의 주름진 표면을 내부에 갖음으로써, 스스로 지지할 수 없어 선체에 의지하는 멤브레인형 저온탱크의 단점을 극복하며, 내부 유체의 온도에 따른 탱크의 수축 및 팽창을 수행 가능한 V-PUF Insulation 타입의 진공단열장치를 제공할 수 있다.
이때, 상기 진공펌프(410)는 상기 저온탱크(100)의 규격에 따라 전면적에서의 진공을 유지하기 위해 복수로 구성될 수 있으며, 상기 진공자켓(300)의 내부와 연결되는 배기관(430), 상기 배기관(430)의 개폐를 수행하는 배기밸브(420)를 포함하여 구성될 수 있으며, 상기 진공펌프(410)는 상업적으로 흔히 사용되는 진공펌프를 이용하여 상기 진공자켓(300) 내부의 진공을 위해 활용될 수 있다.
또한, 상기 진공자켓(300)은 상기 저온단열재(200)의 외면을 감싸며 서로 소정거리 이격된 평판으로 이루어진 복수의 평활부(310)와 상기 복수의 평활부(310) 사이에 형성되어 상기 유연구조를 갖는 변형성이음부(320)를 포함하여 이루어질 수 있으며, 이때 상기 진공자켓(300)의 내부공간이 수축 또는 팽창됨에 따라 상기 복수의 평활부(310)가 수축 또는 팽창되기 위하여, 인접한 변형성이음부(320)를 가압하게 되고, 이에 따라 상기 변형성이음부(320)가 수축 또는 팽창되어, 상기 진공자켓(300) 내부의 변형에 반응할 수 있다. 이때, 상기 평판은 상기 진공자켓(300) 내부의 진공압에 견고한 강성과 낮은 기체투과도를 갖는 금속 또는 플라스틱으로 이루어질 수 있다. 여기에서, 상기 진공자켓(300)은 제작시에 연결된 상기 진공펌프(410)를 작동하여 내부공간을 진공상태로 형성시키고, 이후 상기 진공자켓(300)을 밀봉하여 진공상태를 유지하되, 상기 진공자켓(300)의 내부공간의 진공도를 측정할 수 있는 별도의 측정수단을 구비하여, 이후 상기 진공자켓(300)의 내부공간에 진공도가 낮아지면 상기 진공펌프(410)를 재 작동시켜, 적어도 상기 저온탱크(100) 내부에 초저온 유체가 저장되있을 시에는 항시 진공상태를 유지하도록 관리하는 것이 바람직하다.
< 제1실시예 >
도 3 내지 도 5는 본 발명의 제1실시예에 따른 변형성이음부(320)의 다양한 변형예를 도시한 단면도로서, 도 1 내지 도 5를 참조하면, 본 발명의 제1실시예에 따른 변형성이음부(320)는 상기 복수의 평활부(310)를 연결하며, 상기 진공자켓(300)의 내부공간의 변형에 대응되어 신축 가능한 고분자탄성체(231)로 이루어질 수 있다.
도 3을 참조하면, 상기 고분자탄성체(231)는 상기 복수의 평활부(310) 사이에 개재되어, 상기 복수의 평활부(310)의 넓이 방향으로의 외측단에 접착됨으로써, 상기 복수의 평활부(310)들을 연결하고, 상기 진공자켓(300)의 밀봉을 수행할 수 있다. 이때 도 3의 (b)에 도시된 바와 같이, 상기 진공자켓(300) 내부가 수축되면, 인접하는 복수의 평활부(310) 사이가 좁아지도록 상기 고분자탄성체(231)가 압축되어, 상기 진공자켓(300) 내부의 변형에 대응할 수 있다.
이때, 상기 고분자탄성체(321)와 상기 평활부(310)의 외측단(311)의 접촉면적을 넓히기 위하여 도 4에 도시된 바와 같이, 상기 평활부(310)의 넓이방향으로의 외측단(311)에 상기 고분자탄성체(321)의 일부가 요입되도록 형성된 요입홈(311A)이 형성되어 상기 고분자탄성체(321)와 상기 평활부(310)간의 접촉면적을 늘리며, 상기 진공자켓(300)의 밀봉력을 증대시킬 수 있을 것이다. 또한, 상기 저온단열층(200)을 감싸는 상기 고분자탄성체(321)는 상기 평활부(310)가 배치되는 공간이 중공된 매쉬(mesh)를 이루는 일체의 그물망 형상으로 형성되어 상기 저온단열층(200)의 외면을 감싸도록 설치되어 상기 평활부(310)와의 결합을 더욱 용이하게 수행할 수 있을 것이다. 더하여, 상기 고분자탄성체(321)는 상기 저온단열층(200)과 대향되는 내측으로 만곡(彎曲)되도록 수축되어, 상기 저온단열층(200)을 내측으로 압축함으로써, 상기 저온단열층(200)과 상기 저온탱크(100)의 외피(110)간의 밀착력을 증대시킬 수 있다.
도 5는 본 발명의 고분자탄성체(321)와 상기 평활부(310)의 결합의 다른 일양태를 도시한 예시도로서, 도 5를 참조하면, 상기 복수의 평활부(310)는 인접하는 적어도 하나 이상의 평활부(310)와 두께방향으로 서로 겹쳐지도록 구비되어, 상기 내부공간의 변형 시에 상기 겹쳐진 복수의 평활부(310)가 미끄러지며 상기 내부공간의 수축 또는 팽창에 대응되며, 상기 변형성이음부(320)를 이루는 고분자탄성체(321)는 상기 복수의 평활부(310)들에 겹쳐진 부위의 상면에 접착되어, 상기 진공자켓(300)의 기밀을 유지하도록 밀봉되며, 상기 평활부(310)의 미끄러짐에 대응되어 신축되도록 형성될 수 있다. 이때, 상술한 구성을 갖는 상기 고분자탄성체(321)는 외측을 향하도록 만곡된 반원형의 도넛형상으로 이외의 본 발명의 요지에 벗어 남이 없이 다양한 형상으로 이루어 질 수 있다.
< 제2실시예 >
도 6은 본 발명의 제2실시예에 따른 진공단열장치(1000)를 도시한 사시도이고, 도 7 및 도 8은 본 발명의 제2실시예에 따른 저온단열층(200)의 다양한 변형예를 도시한 단면도이며, 도 9는 도 6의 AA’단면에 따른 내부배기공간(210)의 다양한 변형예를 도시한 단면도로서, 도 6내지 도 9를 참조하면, 본 발명의 제2실시예에 따른 진공단열장치(1000)의 저온단열층(200)은 복수로 이루어지되, 상기 복수의 저온단열층(200)은 서로 이격되도록 구비되어, 인접하는 복수의 저온단열층(200) 사이에 상기 진공펌프(410)와 연결되며, 진공형성을 위한 유로를 이루는 내부배출공간(210)을 형성할 수 있다.
상기 내부배출공간(210)은 상기 진공자켓(300) 내부의 진공형성을 위해 내부의 배기 유체를 유도하기 위한 구성으로써, 상기 저온단열층(200)의 일부가 천공되어 이루어질 수 있으며, 바람직하게는 상기 저온단열층(200)을 복수로 구획하고 구획된 복수의 저온단열층(200)간에 이격된 사이의 공간을 활용할 수 있다. 이때, 상기 진공펌프(410)는 상기 진공자켓(300) 내부에 형성된 내부배출공간(210) 중 어느 일부에 연결되어, 상기 저온단열층(200)의 진공을 위해 내부 유체를 흡입할 수 있다. 이때, 상기 저온탱크(100)의 크기가 커질수록, 상기 저온탱크(100)의 외피(110)를 감싸는 저온단열층(200)의 표면적이 증대됨에 따라, 상기 저온단열층(200)의 균일한 진공을 위해 내부 유체를 흡입하는 배기관(430)이 복수로 구성되어 상기 진공자켓(300)과 연결되는 것이 바람직하다.
이때, 도 7의 (a)는 접착되어 상기 저온탱크(100)의 외피(110)에 화학적으로 부착된 저온단열층(200)을 도시한 도면이고, 도 7의 (b)는 상기 저온탱크(100)의 외피(110)에 용접 또는 타공되어 고정된 고정볼트(220)에 의해 물리적으로 부착된 상기 저온단열층(200)을 도시한 도면으로서, 도 7을 참조하면, 상기 복수의 저온단열층(200)은 상기 저온탱크(100)의 외피(110)의 외면 및 상기 진공자켓(300)의 내면과 접착되어 부착될 수 있으나, 과도한 접착제의 사용은 상기 저온단열층(200)의 진공형성 시 또는 저온탱크 수축 시에 문제가 될 수 있고, 이에 따라 상기 고정볼트(220)를 이용하여, 상기 저온탱크(100)의 외피(110)에 고정됨으로써, 인접하는 저온단열재(200) 간에 상기 내부배출공간(210)을 형성하도록 이격시켜 배치할 수 있다.
도 8은 상기 복수의 저온단열층(200)이 두께방향으로 다층을 이루도록 구비된 일 앙태를 도시한 도면으로써, 도 8의 (a)는 어느 하나의 저온단열층(200)과 두께방향으로 다층을 이루도록 구비된 다른 하나의 저온단열층(200)이 외측의 일부만 접착되도록 배열되어, 두께방향으로 적층된 층간 내부 유체가 이동할 수 있는 연속된 내부배출공간(210)을 형성하도록 접착될 수 있다. 이때 상기 내부유체의 흐름은 상기 두께방향으로 적층된 층간 서로 직교하는 방향으로 교번되며 이동하여 상기 저온탱크(100)로부터 상기 진공자켓(300)방향으로 이동하며, 상기 내부배출공간(210)에 구비된 배기관(430)을 통해 외부로 배출된다.
이때, 본 발명의 다른 일 방면으로 도 8의 (b)를 참조하면, 상기 복수의 저온단열재(300)는 두께방향으로 다층을 이루도록 구비되되, 상기 저온탱크(100)의 외피(110), 진공자켓(300) 또는 인접하는 저온단열재(200) 중 적어도 하나 이상과 상기 고정볼트(220)를 이용하여 소정거리 이격되도록 고정됨으로써, 더욱 원활하게 내부 유체가 배출될 수 있는 내부배출공간(210)을 형성할 수 있다.
도 9는 도 6의 AA’단면에 따른 내부배기공간(210)의 다양한 변형예를 도시한 단면도로서, 도 9를 참조하면, 상기 진공단열장치(1000)는 상기 내부배출공간(210)에 구비되되, 외주면에 상기 진공자켓(210)의 내부공간과 연통된 흡입공(441)이 형성된 배출파이프(440)을 더 포함하여 구성될 수 있다.
상기 배출파이프(440)는 상기 저온단열층(200)에 구획된 내부배출공간(210)사이를 지나도록 복수로 구성되되, 엘보관 또는 십자관 등의 관이음부를 이용하여 연속되게 연결될 수 있을 것이다. 이때, 상기 배출파이프(440)의 일부에 상기 진공펌프(410)와 연결된 배기관(430)이 연결되어, 상기 배출파이프(440) 내부로 흐르는 내부 유체를 외부로 분출시키며, 상기 배출파이프(400)의 내부와 외부가 연통되도록 외면에 타공된 흡입공(441)을 통해 상기 저온단열층(200) 내에 잔존하는 내부 유체들을 흡입함으로써, 상기 저온단열층(200)에 진공압을 인가할 수 있다.
< 제3실시예 >
도 10은 본 발명의 제3실시예에 따른 진공단열장치(1000)를 도시한 단면도로서, 도 10을 참조하면, 본 발명의 제3실시예에 따른 진공단열장치(1000)의 상기 변형성이음부(320)는 상기 복수의 평활부(310)와 일체로 형성되되, 두께방향의 외측으로 만곡된 요철부(322)를 이루며, 상기 요철부(322)는 상기 진공자켓(310)의 내부공간의 수축 또는 팽창에 따라 변형될 수 있다.
이때, 상기 진공자켓(300)은 전체가 강재로 형성되어, 상기 진공단열장치(1000)의 외부를 보강하며, 상기 요철부(322)는 두께방향의 외측으로 절곡되어 상기 진공자켓(300)의 내부공간의 수축 또는 팽창에 따라 수축 또는 팽창을 병행하며 변형될 수 있다. 더욱 자세하게는 상기 진공자켓(300)의 내부공간이 수축될 시에, 상기 진공자켓(300)의 요철부(322)가 만곡된 외측으로 수축되고, 상기 내부공간이 팽창되면 상기 요철부(322)의 만곡된 경사가 완만하게 펴짐으로써 상기 내부공간의 팽창에 반응하도록 변형된다. 또한, 상기 요철부(322)는 상기 진공자켓(300)의 외면에 발생하는 결로수를 응집시켜 자중방향으로 흐르도록 유도하는 할 수 있다.
또한, 상기 진공자켓(300)은 복수의 평활부(310) 또는 요철부(320) 간 용접을 통해 일체를 이루도록 제작될 수 있으며, 이때 용접에 따른 열에 의해 상기 저온단열층(200)을 열변형 및 파손을 방지하기 위하여, 상기 용접이 이루어지는 부근의 내측에 고온단열재(500)를 구비하여, 상기 저온단열층(200)의 파손을 방지할 수 있다.
하기에서는 도 11 내지 도 14를 참조하여, 본 발명의 제3실시예에 따른 진공단열장치(1000)의 내부배기공간(210), 저온단열층(200) 및 고온단열재(500)간의 다양한 변형예를 설명하기로 한다.
우선, 도 11에 도시된 바와 같이, 상기 진공자켓(300)은 복수의 평활부(310)가 서로 용접되어 일체를 이루며, 이때 용접이 이루어지는 용접선(B)의 내측으로 상기 고온단열재(500)가 구비되는 것이 바람직하다. 이때 상기 고온단열재(500)는유리 섬유, 탄화 섬유 또는 실리카 섬유 등의 내열성 재질로 이루어질 수 있으며 용접열에 의해 변형되지 않되, 상기 진공단열장치(1000)의 총무게를 과도하게 증대시키지 않도록 가벼운 소재를 사용하는 것이 바람직하다.
이때, 상기 저온단열층(200)의 외면에 형성되는 내부배출공간(210)이 충분히 크게 형성될 경우에는 상기 고온단열재(500)를 구비하지 않아도, 용접에 따른 저온단열층(200)의 파손을 방지할 수 있다. 도 12는 상술한 상기 내부배출공간(210)이 충분히 큰 경우에 따른 상기 진공자켓(300)의 변형예를 도시한 도면으로서, 도 12의 (a) 및 (b)는 상기 내부배출공간(210)에 상기 배출파이프(440)가 구비된 변형예를 도시하고, (c) 및 (d)는 상기 내부배출공간(210)에 상기 배출파이프(440)가 구비되지 않았을 시의 변형예를 도시하고 있다.
도 12의 (a)를 참조하면, 상기 진공자켓(300)의 용접선(B)은 상기 배출파이프(440)와 일치하도록 구비되되, 상기 배출파이프(440)가 상기 진공자켓(300)의 내면과 상기 저온단열층(200)의 외면 사이를 소정거리 이격시키도록 형성되어, 상기 진공자켓(300)의 용접에 따른 용접열이 상기 저온단열층(200)으로 전달되지 않도록 구성될 수 있다. 이때, 상기 배출파이프(440)는 충분히 큰 사이즈로 형성되어 상기 배출파이프(440)에 따른 열전달을 최소화 하거나, 내열성을 갖는 소재로 이루어지는 것이 바람직하다. 도 12의 (b)를 참조하면, 상기 진공자켓(300)의 일부가 외측으로 절곡되어 상기 절곡된 진공자켓(300)의 내부로 내부배출공간(210)을 형성하고, 이때 형성된 내부배출공간(210)에 구비된 배출파이프(440)의 상면과 접하도록 용접선(B)을 일치시킴으로써, 상기 저온단열층(200)의 파손을 방지할 수 있다.
도 12의 (C)는 상기 내부배출공간(210)이 상기 저온단열층(200)의 외면 상에 충분히 넓게 형성되고, 형성된 내부배출공간(210)과 상기 용접선(B)이 일치되도록 상기 인접하는 평활부(310a, 310b)를 용접함으로써, 상기 저온단열층(200)의 파손을 방지할 수 있으며, 도 12의 (d)에 도시된 바와 같이, 외측으로 일부가 절곡된 진공자켓(300)의 내측에 형성되는 내부배출공간(210)과 상기 용접선(B)이 일치하도록 상기 인접하는 평활부(310a, 310b)를 용접함으로써, 상기 저온단열층(200)의 파손을 방지할 수 있다.
도 13 및 14는 상기 고온단열재(500)가 상기 내부배출공간(210)에 구비되어, 상기 용접선(B)과 일치되도록 구성된 진공단열장치(1000)의 변형예를 도시한 도면으로서, 도 13의 (a) 내지 (c)를 참조하면, 상기 고온단열재(500)는 상기 내부배출공간(210)을 갖는 상기 배출파이프(440) 및 상기 용접선(B)과 일치되는 상기 진공자켓(300)의 내측에 구비될 수 있으며, 상기 고온단열재(500)는 내부가 요입되어 상기 배출파이프(440)를 수용(a)~(b)하도록 형성될 수 있으며, 상기 고온단열재(500)의 외부에 상기 배출파이프(440)가 구비되어 상기 진공자켓(300)의 외면에 형성되는 용접선(B)이 상기 고온단열재(500) 및 내부배출공간(210)에 일치하는 위치에 형성되도록 구성될 수 있다.
또는, 도 14에 도시된 바와 같이, 상기 배출파이프(440)를 배제하여, 상기 내부배출공간(210)과 상기 고온단열재(500) 및 용접선(B)을 일치하는 위치에 형성하고, 이때 상기 고온단열재(500)는 외측으로부터 내측으로 일부 요입되어 상기 내부배출공간(210)을 형성(d)하거나, 외측으로 절곡된 진공자켓(300)의 내부에 형성된 내부배출공간(210)과 상기 저온단열층(200) 사이에 개재(e)되어 용접에 따른 상기 저온단열층(200)의 변형 및 파손을 방지할 수 있다.
이때, 상기 고온단열재(500)는 진공펌프(410)로부터 흡입되는 진공압에 의해 상기 저온단열층(200)에 잔존하는 내부 유체를 흡입할 수 있도록 다공이 형성되거나, 섬유질로 짜여져 내부 유체가 지나갈 수 있는 기공이 형성되는 재질로 이루어지는 것이 바람직하다.
도 15는 본 발명의 제3실시에에 따른 진공단열장치(1000)의 변형예를 도시한 단면도로서, 도 15를 참조하면, 상기 변형성이음부(320)는 두께방향의 외측으로 만곡된 상기 요철부(322)로 이루어지되, 상기 요철부(322)의 내측으로 상기 진공펌프(410)와 연결되어, 진공형성을 위한 유로를 이루는 내부배출공간(210)이 형성될 수 있다. 이때, 상기 요철부(322)는 상기 평활부(310)의 외측단(310a, 310b)이 외측으로 절곡되어 서로 인접하는 외측단과 용접되어 형성되며, 이때, 상기 요철부(322)를 이루는 상기 평활부(310)의 외측단(310a, 310b)과 내측의 상기 저온단열층(200)의 외측면과 이루는 각도가 예각을 이루도록 절곡되어 상기 진공자켓(300)의 내부공간의 병형에 따라 수축 또는 팽창되도록 구성될 수 있다. 더하여, 상기 요철부(322)의 내측으로 형성되는 내부배출공간(210)과 고온단열재(500) 및 용접선(B)은 서로 일치하는 위치에 형성될 수 있도록 배치하여, 상기 진공단열장치(1000)의 설치작업을 더욱 간략히 할 수 있다.
도 16은 본 발명의 일실시예에 따른 이중 구조를 갖는 진공자켓을 도시한 단면도로서, 도 16을 참조하면, 이중 진공 단열구조를 갖는 상기 진공단열장치(1000)는 상기 저온단열층(200)의 외면을 감싸는 제1진공자켓(300A) 및 상기 제1진공자켓(300A)의 외면을 감싸도록 구비되는 제2진공자켓(300B)을 포함하되, 상기 제1진공자켓(300A)과 제2진공자켓(300B) 사이에 개재되어, 상기 제1진공자켓(300A)과 제2진공자켓(300B)을 일정거리 이격시키며, 이격된 공간의 진공압을 견디도록 구비되는 스페이서(600)을 더 포함하여 구성될 수 있다.
이때, 상기 제1진공자켓(300A) 및 제2진공자켓(300B)은 각기 별도의 배기관(430A, 430B)으로 연결되어 각기 독립된 진공공간을 갖도록 형성되는 것이 바람직하다. 이때, 상기 제2진공자켓(300B)은 상기 제1진공자켓(300A)의 진공이 유실될 시에, 일정 기간 이상 진공 상태를 유지하여, 화물의 운송 기간 동안의 안정성을 유지할 수 있도록 설계 되는 것이 바람직하다.
< 제4실시예 >
도 17 내지 도 21은 본 발명의 제4실시예에 따른 진공단열장치를 도시한 단면도로서, 도 17 내지 도 21을 참고하면, 본 발명의 제4실시예에 따른 진공단열장치(1000)는 상기 진공자켓(300)이 상기 저온단열층(200)의 외면을 감싸며, 상기 유연구조를 갖는 유연부(340)와 상기 진공자켓(300)의 적어도 일부가 강건한 구조로 구성되어 상기 진공단열장치(1000)를 지지하는 강건부(330)로 이루어지는 것이 바람직하며, 이때 상기 강건한 구조는 상기 강건부(330)를 이루는 진공자켓(300)이 상기 진공단열장치(1000)를 지지하기 위한 보강재 또는 지지체 등과 결합가능하거나 스스로 상기 진공단열장치(1000)의 하중을 지지할 수 있도록 형성된 구조를 갖는 것을 의미하며, 예컨대 상기 강건한 구조는 상기 저온탱크(100)의 외피(110)를 이루는 인바강(invar steel)로 이루어지며, 상기 유연부(340)는 전술한 변형성이음부(320)로 이루어지는 것이 바람직하다.
도 17은 본 발명의 제4실시예에 따른 진공단열장치(1000)의 일 변형예를 도시한 단면도로서, 도 17을 참조하면, 상기 진공단열장치(1000)의 상기 저온탱크(100)는 복수의 평면과 상기 복수의 평면을 잇는 모서리를 갖는 다면체로 이루어지되, 상기 유연부(340)는 상기 진공자켓(300)의 평면을 이루는 상기 저온단열층(200)의 외면을 감싸도록 형성되며, 상기 강건부(330)는 상기 진공자켓(300)의 모서리를 이루는 상기 저온단열재(200)의 외면을 감싸도록 형성되어, 상기 진공자켓(300)의 내부공간의 변형에 따라, 상기 유연부(340)가 내측으로 압축 또는 외측으로 팽창되어, 상기 저온탱크(100)의 외피(110)를 감싸는 저온단열층(200)을 지지하는 구조를 이루는 것이 바람직하다. 이때, 상기 강건부(330)는 외부의 구조물에 고정될 수 있으며, 상기 강건부(330)의 내부에 형성된 공간을 상기 진공펌프(410)와 연결되는 내부배출공간(210)으로 활용하는 것이 바람직하다.
도 18은 본 발명의 제4실시예에 따른 진공단열장치(1000)의 다른 일방면으로의 변형예를 도시한 단면도이고, 도 19는 도 18에 따른 진공단열장치(1000)를 설치하는 순서를 도시한 예시도로서, 도 18 내지 19를 참고하면, 상기 진공단열장치(1000)는 상기 강건부(330)가 상기 진공자켓(300)의 하부를 이루는 상기 저온단열층(200)의 외면을 감싸도록 형성되어, 상기 진공단열장치(1000)의 저면을 지지하도록 구성될 수 있다. 이때, 상기 진공자켓(300)의 유연부(340)는 상기 진공자켓(300)의 내부공간의 변형에 따라 수축 또는 팽창을 수행하는 변형성이음부(320)로 형성되어, 상기 진공단열장치(1000)의 하부를 제외한 상방으로의 팽창 및 수축을 수행할 수 있다.
이때, 상기 진공단열창치(1000)의 저온탱크(100)는 부피 1000M³이상 급의 대형탱크로 이루어지며, 내부 압력에 강건한 실린더 형상으로 제작될 시 10000M³이상의 부피를 갖는 대형탱크로의 제작이 가능하며, 전술한 바와 같은 대형탱크의 경우, 도 19에 도시된 바와 같이, 지면에 안착된 강건부(330)의 내부에 저온방열층(200)을 이루는 R-PUF를 분사 또는 접착하고, 접착된 저온방열층(200)의 상부로 미리 제작된 저온탱크(100)를 안착하여 고정한다(a). 이후, 고정된 저온탱크(100)의 외면을 따라 상기 저온방열층(200)을 형성하고, 이후 상기 진공자켓(300)의 상부를 결합하여 상기 진공자켓(300)의 상부 및 하부의 결합면을 용접함으로써 제작할 수 있다. 상술한 바와 같은 제작단계를 갖는 본 발명의 진공단열장치(1000)는 운반이 불가능한 초대형 탱크 및 진공 단열을 현장에서 제작 가능하게 한다.
상술한 구성에 따른 본 발명의 저온탱크용 진공단열장치(1000)는 액화수소(LH2) 또는 액화질소(LN2)와 같은 초저온 액화기체의 수송 및 저장에 더욱 적합하며, 상기 액화수소(LH2)를 저장하는 저온탱크의 경우, 상기 액화수소의 밀도는 0.08988g/L로 상기 저온탱크(100)의 무게에 큰 영향을 미치지 않는다. 따라서, 도 20 및 21에서는 상기 저온탱크(100)를 공중에 띄운 상태로 지지하며, 상기 진공자켓(300)의 하단이 지반(1)으로부터 소정거리 이격되도록 형성되는 탱크지지체(10)를 더 포함하는 진공단열장치를 도시하고 있으며, 도 20을 참조하면, 상기 탱크지지체(20)는 상기 저온탱크(100)의 상면에 연결되는 탱크걸이(13)와 상기 탱크걸이(130)를 지지하되, 상기 진공자켓(300)의 일부를 이루는 상부지지체(12) 및 상기 진공자켓(300)의 하단이 지반(1)으로부터 이격되도록 상방으로 연장되어, 상기 상부지지체(12)를 지지하는 층면지지체(11)를 포함하여 구성될 수 있다. 이때 상기 탱크지지체(10)의 상부지지체(12)의 하면에 상기 진공자켓(300)이 접합되어 일체를 이룸으로써, 상기 상부지지체(12)가 전술하였던 상기 진공자켓(300)의 강건부의 역할을 수행하게 된다.
또한, 도 21에 도시된 바와 같이, 본 발명의 다른 일방면으로의 상기 탱크지지체(10)는 상기 저온탱크(100)의 측면에 연결되는 탱크걸이(13)와 상기 진공자켓(300)의 일부를 이루며 상기 진공자켓의 하단이 지반(1)으로부터 이격되도록 상방으로 연장되어 상기 탱크걸이를 지지하는 측면지지체(13)를 포함하여 구성될 수 있다. 이때, 상기 측면지지체(13)는 상기 진공자켓(300)의 측면에 접합되어 전술한 강건부의 역할을 수행할 수 있다.
이때, 상술한 구성에 따른 탱크지지체(10)를 통하여 상기 진공단열장치(1000)를 지반(1)으로부터 이격시킴으로써, 상기 지반(1)으로부터 상기 저온탱크(100) 및 진공자켓(300)의 하단으로 유입되는 열을 차단할 수 있으며, 상기 저온탱크(100)의 하단에 외측으로 절곡된 상기 진공자켓(300)의 변형성이음부(320)를 구비할 수 있는 장점이 있다.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 다양한 변형 실시가 가능한 것은 물론이다.
<부호의 설명>
1000 : 진공단열장치
100 : 저온탱크 110 : 탱크외피
200 : 저온단열층 210 : 내부배기공간
220 : 고정볼트
300 : 진공자켓 310 : 평활부
311 : 외측단 311A : 요홈
320 : 변형성이음부 321 : 고분자탄성체
322 : 요철부
330 : 강건부 340 : 유연부
410 : 진공펌프 420 : 배기밸브
430 : 배기관
440 : 배출파이프 441 : 흡기공
500 : 고온단열재 600 : 스페이서
A : 접착면 B : 용접선
1 : 지반
10 : 탱크지지체 11 : 측면지지체
12 : 상부지지체 13 : 탱크걸이
본 발명은 초저온 상태의 액화가스를 저장 및 운송하기 위한 저온탱크의 진공단열장치에 관한 것으로, 초저온 상태의 액화가스를 저장 및 운송 가능한 대형 탱크를 제작 가능한 효과가 있다. 즉, 초저온 상태의 액화가스를 저장 및 운송 하는 저온탱크를 탑재하는 선박 또는 지상형 탱크의 제조산업상 이용 가능성이 있다.

Claims (20)

  1. 내부에 초저온 유체를 수용하는 저장공간을 갖는 저온탱크;
    저온탱크의 외피를 감싸도록 구비되는 저온단열층; 및
    내부공간이 진공상태로 유지되며, 상기 저온단열층의 외면을 감싸도록 밀봉되어 외부와의 기밀을 유지하는 진공자켓;을 포함하며,
    상기 진공자켓은 적어도 일부가 수축 또는 팽창 가능한 유연구조를 갖는 것을 특징으로 하는 저온탱크용 진공단열장치.
  2. 제1항에 있어서,
    상기 진공자켓은,
    상기 저온단열층의 외면을 감싸며 서로 소정거리 이격된 평판으로 이루어진 복수의 평활부와,
    상기 복수의 평활부 사이에 형성되어 상기 유연구조를 갖는 변형성이음부를 포함하는 것을 특징으로 하는 저온탱크용 진공단열장치.
  3. 제2항에 있어서,
    상기 변형성이음부는 상기 복수의 평활부를 연결하며, 상기 진공자켓의 내부공간의 변형에 대응되어 신축 가능한 고분자탄성체로 이루어지는 것을 특징으로 하는 저온탱크용 진공단열장치.
  4. 제3항에 있어서,
    상기 고분자탄성체는 상기 복수의 평활부 사이에 개재되어, 상기 복수의 평활부의 넓이 방향으로의 외측단에 접착되는 것을 특징으로 하는 저온탱크용 진공단열장치.
  5. 제3항에 있어서,
    상기 복수의 평활부는 인접하는 적어도 하나 이상의 평활부와 두께방향으로 서로 겹쳐지도록 구비되어, 상기 내부공간의 변형 시에 미끄러지며 상기 내부공간의 수축 또는 팽창에 대응되며,
    상기 고분자탄성체는 상기 복수의 평활부들에 겹쳐진 부위의 상면에 구비되어, 상기 진공자켓의 기밀을 유지하며, 상기 평활부의 변형에 대응되어 신축되도록 형성되는 것을 특징으로 하는 저온탱크용 진공단열장치.
  6. 제1항에 있어서,
    상기 저온단열층은 복수로 이루어지되,
    상기 복수의 저온단열층은 서로 이격되도록 구비되어, 인접하는 복수의 저온단열층 사이에 진공형성을 위한 유로를 이루는 내부배출공간을 형성하는 것을 특징으로 하는 저온탱크용 진공단열장치.
  7. 제6항에 있어서,
    상기 복수의 저온단열층은 두께방향으로 다층을 이루도록 구비되되,
    상기 저온탱크의 외피, 진공자켓 또는 인접하는 저온단열층 중 적어도 하나 이상과 고정볼트를 이용하여 소정거리 이격되도록 고정되는 것을 특징으로 하는 저온탱크용 진공단열장치.
  8. 제7항에 있어서,
    상기 진공단열장치는 상기 내부배출공간에 구비되되, 외주면에 상기 진공자켓의 내부공간과 연통된 흡입공이 형성된 배출파이프;
    를 더 포함하는 것을 특징으로 하는 저온탱크용 진공단열장치.
  9. 제2항에 있어서,
    상기 변형성이음부는 상기 복수의 평활부와 일체로 형성되되, 두께방향으로의 외측으로 만곡된 요철부를 이루며, 상기 요철부는 상기 진공자켓의 내부공간의 수축 또는 팽창에 따라 변형되는 것을 특징으로 하는 저온탱크용 진공단열장치.
  10. 제9항에 있어서,
    상기 변형성이음부는 두께방향의 외측으로 만곡된 상기 요철부의 내측으로, 진공형성을 위한 유로를 이루는 내부배출공간을 형성하는 것을 특징으로 하는 저온탱크용 진공단열장치.
  11. 제9항에 있어서,
    상기 진공자켓은 상기 복수의 평활부가 서로 용접되어 일체를 이루되, 상기 진공자켓의 외면에 이루어지는 용접선은 상기 진공자켓의 내부공간에 구비되어 상기 내부배출공간과 일치하는 위치에 형성되는 것을 특징으로 하는 저온탱크용 진공단열장치.
  12. 제9항에 있어서,
    상기 진공자켓은 상기 복수의 평활부가 서로 용접되어 일체를 이루되,
    상기 진공단열장치는 상기 진공자켓의 외면에 이루어지는 용접선의 내측에 구비되어, 상기 용접선 인근의 저온단열층의 열변형을 방지하는 고온단열재;
    를 더 포함하는 것을 특징으로 하는 저온탱크용 진공단열장치.
  13. 제1항에 있어서,
    상기 진공자켓은 상기 저온단열층의 외면을 감싸는 제1진공자켓 및 상기 제1진공자켓의 외면을 감싸도록 구비되는 제2진공자켓을 포함하되,
    상기 진공단열장치는 상기 제1진공자켓과 제2진공자켓 사이에 개재되어, 상기 제1진공자켓과 제2진공자켓을 일정거리 이격시키도록 구비되는 스페이서;
    를 더 포함하는 것을 특징으로 하는 저온탱크용 진공단열장치.
  14. 제1항 내지 제13항 중 어느 하나의 항에 있어서,
    상기 진공자켓은 상기 저온단열층의 외면을 감싸며 상기 유연구조를 갖는 유연부와, 상기 진공자켓의 적어도 일부가 강건한 구조로 구성되어 상기 진공단열장치를 지지하는 강건부로 이루어지는 것을 특징으로 하는 저온탱크용 진공단열장치.
  15. 제14항에 있어서,
    상기 저온탱크는 다면체로 이루어지되,
    상기 유연부는 상기 진공자켓의 평면을 이루는 상기 저온단열층의 외면을 감싸도록 형성되며, 상기 강건부는 상기 진공자켓의 모서리를 이루는 상기 저온단열층의 외면을 감싸도록 형성되는 것을 특징으로 하는 저온탱크용 진공단열장치.
  16. 제14항에 있어서,
    상기 진공자켓은 상기 강건부의 내측으로 진공형성을 위한 유로를 이루는 내부배출공간을 형성하는 것을 특징으로 하는 저온탱크용 진공단열장치.
  17. 제14항에 있어서,
    상기 강건부는 상기 진공자켓의 하부를 이루는 상기 저온단열층의 외면을 감싸도록 형성되어, 상기 진공단열장치의 저면을 지지하는 것을 특징으로 하는 저온탱크용 진공단열장치.
  18. 제14항에 있어서,
    상기 진공단열장치는 상기 저온탱크를 공중에 띄운 상태로 지지하며, 상기 진공자켓의 하단이 지반으로부터 소정거리 이격되도록 형성되는 탱크지지체;
    를 더 포함하는 것을 특징으로 하는 저온탱크용 진공단열장치.
  19. 제18항에 있어서,
    상기 탱크지지체는,
    상기 저온탱크의 상면에 연결되는 탱크걸이와,
    상기 탱크걸이를 지지하되, 상기 진공자켓의 일부를 이루는 상부지지체 및
    상기 진공자켓의 하단이 지반으로부터 이격되도록 상방으로 연장되어, 상기 상부지지체를 지지하는 측면지지체,
    를 포함하는 것을 특징으로 하는 저온탱크용 진공단열장치.
  20. 제18항에 있어서,
    상기 탱크지지체는,
    상기 저온탱크의 측면에 연결되는 탱크걸이와,
    상기 진공자켓의 일부를 이루며 상기 진공자켓의 하단이 지반으로부터 이격되도록 상방으로 연장되어 상기 탱크걸이를 지지하는 측면지지체,
    를 포함하는 것을 특징으로 하는 저온탱크용 진공단열장치.
PCT/KR2019/002667 2019-03-07 2019-03-07 저온탱크용 진공단열장치 WO2020179956A1 (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2021547536A JP7213363B2 (ja) 2019-03-07 2019-03-07 低温タンク用真空断熱装置
KR1020217025985A KR102567420B1 (ko) 2019-03-07 2019-03-07 저온탱크용 진공단열장치
CA3130445A CA3130445A1 (en) 2019-03-07 2019-03-07 Vacuum heat-insulation device for low-temperature tank
PCT/KR2019/002667 WO2020179956A1 (ko) 2019-03-07 2019-03-07 저온탱크용 진공단열장치
AU2019432673A AU2019432673A1 (en) 2019-03-07 2019-03-07 Vacuum heat-insulation device for low-temperature tank
EP19917983.9A EP3910232A4 (en) 2019-03-07 2019-03-07 VACUUM HEAT INSULATION DEVICE FOR LOW TEMPERATURE TANK
CN201980093751.3A CN113544429B (zh) 2019-03-07 2019-03-07 低温罐用真空隔热装置
SG11202108975TA SG11202108975TA (en) 2019-03-07 2019-03-07 Vacuum heat-insulation device for low-temperature tank
US17/593,053 US11835182B2 (en) 2019-03-07 2019-03-07 Vacuum heat-insulation device for low-temperature tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/002667 WO2020179956A1 (ko) 2019-03-07 2019-03-07 저온탱크용 진공단열장치

Publications (1)

Publication Number Publication Date
WO2020179956A1 true WO2020179956A1 (ko) 2020-09-10

Family

ID=72337838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002667 WO2020179956A1 (ko) 2019-03-07 2019-03-07 저온탱크용 진공단열장치

Country Status (9)

Country Link
US (1) US11835182B2 (ko)
EP (1) EP3910232A4 (ko)
JP (1) JP7213363B2 (ko)
KR (1) KR102567420B1 (ko)
CN (1) CN113544429B (ko)
AU (1) AU2019432673A1 (ko)
CA (1) CA3130445A1 (ko)
SG (1) SG11202108975TA (ko)
WO (1) WO2020179956A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022108322A1 (ko) * 2020-11-20 2022-05-27 한국과학기술원 유체탱크의 복합단열장치
KR102497839B1 (ko) * 2021-08-24 2023-02-09 강림인슈 주식회사 극저온 탱크의 스프레이 마감장치 및 이의 시공방법
WO2023182743A1 (ko) * 2022-03-23 2023-09-28 (주)이노스페이스 발사체용 분리형 2중 겹벽 단열탱크

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023218380A1 (en) * 2022-05-11 2023-11-16 Bennamann Services Ltd Multi-layered vessel wall
KR102649343B1 (ko) * 2022-05-18 2024-03-21 주식회사 래티스테크놀로지 진공단열 초저온탱크
CN115325435B (zh) * 2022-08-23 2024-04-12 安徽扬天金塑新能源装备有限公司 一种用于低温储罐的保温结构及基于该保温结构的低温储罐

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057784A (ja) * 2004-08-23 2006-03-02 Iwatani Industrial Gases Corp 液化ガスタンクの内槽支持装置
KR20090116956A (ko) * 2008-05-08 2009-11-12 삼성중공업 주식회사 액화천연가스 운반선 화물창의 단열구조
US7743940B2 (en) * 2003-02-18 2010-06-29 Magna Steyr Fahrezeugtechnik AG & Co. KG Double-walled container having supports for positioning the inner and outer walls
US8807382B1 (en) * 2009-04-01 2014-08-19 Sierra Lobo, Inc. Storage system having flexible vacuum jacket
KR20170116584A (ko) 2016-04-11 2017-10-19 가즈트랑스포르 에 떼끄니가즈 주름진 실링 멤브레인을 갖는 밀폐 탱크
CN208107632U (zh) * 2018-03-19 2018-11-16 南通中集能源装备有限公司 立式低温液体贮罐

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL297976A (ko) * 1963-05-06
US3416693A (en) * 1966-12-07 1968-12-17 Cryogenic Eng Co Refrigeration shielded dewar vessel
JPS5443725B2 (ko) * 1973-05-28 1979-12-21
US4027379A (en) * 1973-06-15 1977-06-07 The Dow Chemical Company Method of insulating cryogenic vessels
FR2321657A1 (fr) * 1975-08-22 1977-03-18 Gaz Transport Cuve pour le stockage de produits liquides, en particulier pour navires transporteurs de gaz naturels liquefies
US4038832A (en) * 1975-09-08 1977-08-02 Beatrice Foods Co. Liquefied gas container of large capacity
NL9500149A (nl) * 1995-01-27 1996-09-02 Euro Maintenance Lease Prod Bv Samenvouwbare houder.
DE10008985A1 (de) * 2000-02-25 2001-08-30 Linde Ag Speicherbehälter
US7494023B2 (en) * 2005-03-01 2009-02-24 General Motors Corporation Insulation for cryogenic tanks
KR101805667B1 (ko) * 2011-12-06 2017-12-06 삼성중공업 주식회사 액화 천연 가스 저장 탱크
US10982812B2 (en) * 2016-03-04 2021-04-20 Ilc Dover Ip, Inc. Collapsible cryogenic storage vessel
JP2017223327A (ja) 2016-06-17 2017-12-21 株式会社フォームテック 液化ガスタンク用断熱パネルおよび液化ガスタンクの断熱構造
US10082246B2 (en) 2017-02-07 2018-09-25 Lawrence Livermore National Security, Llc Cryogenic pressurized storage with hump-reinforced vacuum jacket
JP6800769B2 (ja) 2017-02-07 2020-12-16 三菱重工業株式会社 防熱パネル集合体及び低温タンク

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7743940B2 (en) * 2003-02-18 2010-06-29 Magna Steyr Fahrezeugtechnik AG & Co. KG Double-walled container having supports for positioning the inner and outer walls
JP2006057784A (ja) * 2004-08-23 2006-03-02 Iwatani Industrial Gases Corp 液化ガスタンクの内槽支持装置
KR20090116956A (ko) * 2008-05-08 2009-11-12 삼성중공업 주식회사 액화천연가스 운반선 화물창의 단열구조
US8807382B1 (en) * 2009-04-01 2014-08-19 Sierra Lobo, Inc. Storage system having flexible vacuum jacket
KR20170116584A (ko) 2016-04-11 2017-10-19 가즈트랑스포르 에 떼끄니가즈 주름진 실링 멤브레인을 갖는 밀폐 탱크
CN208107632U (zh) * 2018-03-19 2018-11-16 南通中集能源装备有限公司 立式低温液体贮罐

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022108322A1 (ko) * 2020-11-20 2022-05-27 한국과학기술원 유체탱크의 복합단열장치
KR20220069228A (ko) * 2020-11-20 2022-05-27 한국과학기술원 유체탱크의 복합단열장치
KR102426395B1 (ko) * 2020-11-20 2022-07-29 한국과학기술원 유체탱크의 복합단열장치
KR102497839B1 (ko) * 2021-08-24 2023-02-09 강림인슈 주식회사 극저온 탱크의 스프레이 마감장치 및 이의 시공방법
WO2023182743A1 (ko) * 2022-03-23 2023-09-28 (주)이노스페이스 발사체용 분리형 2중 겹벽 단열탱크

Also Published As

Publication number Publication date
EP3910232A4 (en) 2022-09-21
CA3130445A1 (en) 2020-09-10
JP2022520267A (ja) 2022-03-29
EP3910232A1 (en) 2021-11-17
CN113544429B (zh) 2023-06-06
KR20210112386A (ko) 2021-09-14
KR102567420B1 (ko) 2023-08-17
SG11202108975TA (en) 2021-09-29
JP7213363B2 (ja) 2023-01-26
AU2019432673A1 (en) 2021-08-26
US11835182B2 (en) 2023-12-05
CN113544429A (zh) 2021-10-22
US20220178496A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
WO2020179956A1 (ko) 저온탱크용 진공단열장치
US8122914B2 (en) Cryogenic transfer hose having a fibrous insulating layer and method of constructing such a transfer hose
WO2017034117A1 (ko) 앵커 스트립이 제거된 액화가스 화물창의 인슐레이션 구조, 그 인슐레이션 구조를 구비하는 화물창, 및 그 화물창을 구비하는 액화가스 운반선
WO2009110728A2 (ko) 액화천연가스 화물창의 멤브레인용 보강재와, 이를 갖는 멤브레인 조립체 및 그 시공방법
BRPI0708415A2 (pt) método para estabelecer um sistema de isolamento criogênico
CN112066250B (zh) 一种基于同心套锥的固定内支撑及具有其的低温容器
WO2009134099A2 (ko) 화물창 인슐레이션 패널의 고정장치 및 이를 이용하는 인슐레이션 패널
WO2017034118A1 (ko) 액화가스 화물창의 90도 코너 부의 단열 구조, 그 단열 구조를 구비하는 화물창, 및 그 화물창을 제조하는 시공방법
WO2018113406A1 (zh) 液化天然气船b型液货舱的绝热***及其构造方法
WO2013169076A1 (ko) 이중구조의 액화천연가스 저장용기
WO2017034109A1 (ko) 멤브레인형 저장탱크의 단열시스템 및 이를 포함하는 멤브레인형 저장탱크
WO2022270675A1 (ko) 코너 구조체 및 이를 갖는 액화가스 저장탱크
US20230324005A1 (en) Insulated tank with integrated or operatively connected support system
JP6306685B2 (ja) 機器を断熱するための方法及び装置
WO2024005251A1 (ko) 허니컴 샌드위치 타입의 진공단열패널 및 진공단열패널 시스템
CN113196029A (zh) 用于测试和用于检查工业设备的保温工程的功能性、特别是围绕管道的隔热层的功能性的方法;包括特别是用于输送冷却介质的管道的***;以及用于这种管道的保温层
WO2022108322A1 (ko) 유체탱크의 복합단열장치
WO2024019015A1 (ja) 極低温流体収容機器
WO2017034107A1 (ko) 멤브레인형 저장탱크의 코너부 단열벽, 그것을 포함하는 멤브레인형 저장탱크 및 액화천연가스 저장탱크의 단열시스템
WO2024112022A1 (ko) 변위흡수구조를 가지는 이중탱크
CN116717653A (zh) 低温真空弯头
JPS5851133A (ja) 送気管の緩衝継手の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917983

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021547536

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3130445

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20217025985

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019917983

Country of ref document: EP

Effective date: 20210810

ENP Entry into the national phase

Ref document number: 2019432673

Country of ref document: AU

Date of ref document: 20190307

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE