WO2022270675A1 - 코너 구조체 및 이를 갖는 액화가스 저장탱크 - Google Patents

코너 구조체 및 이를 갖는 액화가스 저장탱크 Download PDF

Info

Publication number
WO2022270675A1
WO2022270675A1 PCT/KR2021/009472 KR2021009472W WO2022270675A1 WO 2022270675 A1 WO2022270675 A1 WO 2022270675A1 KR 2021009472 W KR2021009472 W KR 2021009472W WO 2022270675 A1 WO2022270675 A1 WO 2022270675A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
storage tank
liquefied gas
corner structure
insulation
Prior art date
Application number
PCT/KR2021/009472
Other languages
English (en)
French (fr)
Inventor
임기호
한해철
양영철
서흥석
김영균
진교국
윤용근
Original Assignee
한국가스공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국가스공사 filed Critical 한국가스공사
Priority to EP21947265.1A priority Critical patent/EP4361016A1/en
Priority to US18/036,887 priority patent/US20240019081A1/en
Priority to CN202180076448.XA priority patent/CN116529520A/zh
Publication of WO2022270675A1 publication Critical patent/WO2022270675A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/04Vessels not under pressure with provision for thermal insulation by insulating layers
    • F17C3/06Vessels not under pressure with provision for thermal insulation by insulating layers on the inner surface, i.e. in contact with the stored fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • F17C2203/0333Polyurethane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0624Single wall with four or more layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/044Avoiding pollution or contamination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the present invention relates to a corner structure of a liquefied gas storage tank, and more particularly, to a corner structure arranged to install a sealing wall at a corner portion of a liquefied gas storage tank for storing liquefied gas, which is a liquid in a cryogenic state. It is about.
  • liquefied gas includes liquefied natural gas (LNG), liquefied petroleum gas (Liquefied Petroleum Gas, LPG), liquefied ethane gas, liquefied ethylene gas, liquefied nitrogen, liquefied carbon dioxide, liquefied ammonia, and the like.
  • LNG liquefied natural gas
  • LPG liquefied Petroleum Gas
  • ethane gas liquefied ethane gas
  • ethylene gas liquefied nitrogen
  • nitrogen liquefied carbon dioxide
  • ammonia liquefied ammonia
  • liquefied natural gas is liquefied natural gas, which is one of the fossil fuels, and liquefied natural gas storage tanks are installed on the ground or buried in the ground depending on the location of the liquefied natural gas storage tanks or transportation vehicles such as cars and ships. It is divided into mobile storage tanks installed in
  • Liquefied gases such as liquefied natural gas and liquefied petroleum gas described above have a risk of explosion when exposed to impact, and are stored in a cryogenic state.
  • the storage tank for storing them has a structure in which impact resistance and liquid tightness are firmly maintained. .
  • liquefied gas storage tanks installed in vehicles and ships with flow must take measures against mechanical stress caused by flow.
  • a liquefied gas storage tank installed on a ship equipped with countermeasures against mechanical stress can of course also be used for a land storage tank, the structure of a liquefied gas storage tank installed on a ship will be described as an example in this specification.
  • a ship in which a liquefied gas storage tank such as liquefied natural gas is installed usually has a dual structure hull consisting of an outer wall forming an outer shape and an inner wall formed inside the outer wall.
  • the inner wall and the outer wall of the vessel are integrally formed by being connected by a connecting wall, and in some cases, the inner wall may be formed of a unitary structure of the hull without the presence of the inner wall.
  • the inside of the hull ie the inside of the inner wall, may be divided by one or more bulkheads.
  • the bulkhead may be formed by a known cofferdam installed in a typical LNG carrier or the like.
  • Each of the internal spaces divided by the partition wall may be utilized as a storage tank for storing cryogenic liquid such as liquefied natural gas.
  • the inner circumferential wall of the storage tank is sealed in a liquid-tight state by a sealing wall. That is, the sealing wall forms one storage space by integrally connecting a plurality of metal plates to each other by welding, and accordingly, the storage tank can store and transport liquefied natural gas without leakage.
  • This sealing wall is connected to the inner wall or bulkhead of the ship by a plurality of anchor structures. Therefore, the sealing wall cannot be moved relative to the hull.
  • a heat insulating wall is arranged between the sealing wall and the inner wall or partition wall so as to form a heat insulating layer.
  • the insulating wall may include a corner structure disposed at a corner portion of the storage tank, an anchor structure disposed around the anchor member, and a flat structure disposed at a flat portion of the storage tank. That is, the entire insulation layer can be formed in the storage tank by these corner structures, anchor structures and planar structures.
  • the anchor structure is composed of an anchor member that directly connects and fixes between the hull and the sealing wall, and a heat insulating material installed around the anchor member.
  • the sealing wall is mainly supported by the anchor structure, and the planar structure only supports the load of the LNG applied to the sealing wall, and there is no direct coupling between the planar structure and the anchor structure.
  • FIG. 1 is a cross-sectional view showing a portion of a corner of a liquefied natural gas storage tank according to the prior art.
  • the conventional liquefied natural gas storage tank 10 shown in FIG. 1 has secondary insulation walls 22, 32, 42 and primary insulation walls 24, 34 on the inner wall 12 or bulkhead 14, which is a hull structure. , 44) are installed in sequence to insulate the inside and outside of the storage tank.
  • secondary sealing walls 23, 33, 43 are installed between the secondary thermal insulation walls 22, 32, 42 and the primary thermal insulation walls 24, 34, 44, and the primary thermal insulation walls 24 , 34, 44) is installed on the surface of the primary sealing wall 50, to seal between the inside and outside of the storage tank over the second.
  • the liquefied natural gas storage tank 10 configured as described above includes a corner structure 20 installed at an inner corner portion, an anchor structure 30 installed at regular intervals on the bottom surface, and a corner structure 20 and an anchor structure ( 30) is disposed between or between the anchor structure 30 and the anchor structure 30, and includes a planar structure 40 capable of sliding movement.
  • the corner structure 20, the anchor structure 30, and the flat structure 40 may be prefabricated as respective unit modules and then assembled to the storage tank 10, and the primary sealing wall 50 It is installed thereon to provide a space in which liquefied natural gas (LNG) can be stored in the inner space by making the insulating wall liquid-tight.
  • LNG liquefied natural gas
  • the corner structure 20, the anchor structure 30, and the flat structure 40 are respectively primary insulation walls 24, 34, and 44, secondary insulation walls 22, 32, 42) and secondary sealing walls (23, 33, 43).
  • the secondary sealing wall of each unit module and the contact surface of each heat insulation wall may be integrally formed by bonding with an adhesive.
  • the secondary insulation walls 22, 32, and 42 are composed of polyurethane foam, which is an insulation material, and a plate material attached thereto.
  • the primary insulation walls 24, 34, 44 are made of polyurethane foam and a plate material attached thereto with an adhesive.
  • the primary sealing wall is installed on top of the primary insulating walls 24, 34, 44 and fixed to the anchor structure 30 by welding.
  • a flange 42a larger than the secondary insulation wall 42 is formed at the lower end of the secondary insulation wall 42 of the flat structure 40 .
  • the flange 42a is inserted into the groove formed at the lower end of the anchor structure 30, and is installed to enable some sliding movement.
  • each anchor structure 30 has an anchor support rod 36, a fixing member 37 located at the bottom, an anchor secondary insulation wall 32 and an anchor primary insulation wall 34, and the anchor 2
  • a secondary sealing wall 33 is connected between the primary insulating wall 32 and the anchor primary insulating wall 34 .
  • One end of the anchor support rod 36 is connected to the primary sealing wall 50 and the other end is connected to the inner wall 12 of the hull by the fixing member 37.
  • the primary sealing wall 50 is welded and coupled to the top of the anchor support rod 36 .
  • the anchor structure 30 is located at the connection point of the adjacent planar structures 40 to interconnect them, and the planar structure 40 is the inner wall 12 or the bulkhead 14 constituting the storage tank 10 ) is fixed at In addition, the fixing member 37 of the anchor structure 30 is installed around the anchor support rod 36.
  • the structure of the insulation wall structure is composed of primary and secondary insulation walls and a secondary sealing wall interposed therebetween, and the structure is complicated.
  • the structure for connecting the secondary sealing walls of each unit module to each other is complicated, and the connection work is not easy.
  • the structure and installation work of the connection part of the anchor part or the secondary sealing wall is difficult, the reliability of LNG sealing in the secondary sealing wall is lowered, and there is a concern that LNG leaks.
  • An object of the present invention for solving the above problems is to simplify the structure of the insulation wall and the sealing wall and their coupling structure in a liquefied gas storage tank and improve the work to be easy, increase the reliability of sealing, and assemble It is to simplify the structure and manufacturing process to shorten the drying time of the tank, and to provide a corner structure of a liquefied gas storage tank of an improved structure that can more efficiently relieve the mechanical stress generated in the corner portion of the storage tank.
  • a corner structure of a liquefied gas storage tank installed at the corner of a storage tank for loading liquefied gas and supporting a sealing wall preventing leakage of liquefied gas, the hull structure being oriented in different directions.
  • two heat insulating members disposed on the inner surface of the wall; a movable member installed on each of the heat insulating members and to which the sealing wall is bonded; Including, the movable member is coupled to enable sliding displacement with respect to the heat insulating member, a corner of the liquefied gas storage tank in which a plurality of the movable members are arranged in a straight line at intervals with respect to one heat insulating member
  • a structure may be provided.
  • the sealing wall includes a first membrane and a second membrane
  • the movable member is formed to have a step difference between a primary joining portion to which the first membrane is joined and the first joining portion, and A secondary joint to which the secondary membrane is joined and a flange portion extending from the secondary joint for coupling with the heat insulating member, wherein the flange portion is formed between upper plates of the heat insulating member made of two plywoods.
  • the secondary junction and the flange are formed by bending a single metal plate
  • the primary junction is formed by bending a metal rod having a rectangular cross section or a single metal plate on the secondary junction. It can be formed by attaching a 'shaped steel'.
  • the heat insulating member a lower plate and an upper plate having a flat plate shape; a lower insulator stacked on the lower plate; It includes an upper insulator interposed between the lower insulator and the upper plate, and the upper insulator and the lower insulator may be made of the same material as the insulator.
  • the lower insulator may have a density equal to or lower than that of the upper insulator.
  • it may further include two heat insulating members oriented in different directions and an intermediate heat insulating material disposed in a space surrounded by the hull structural wall.
  • the intermediate insulating material may have a density equal to or lower than that of the upper insulating material and the lower insulating material.
  • the corner structure may further include a curved member disposed between the upper plates of the two heat insulating members to support the sealing wall and having a curved surface facing the inside of the storage tank.
  • the heat insulating member includes two upper plates
  • the movable member includes a joint portion to which the sealing wall is joined and a flange portion extending from the joint portion, and is located below the two upper plates.
  • the first upper plate includes a concave portion into which the flange portion can be seated, and a second upper plate positioned above the first upper plate includes an opening through which the joint portion passes, and the flange portion is positioned within the concave portion. It may be interposed between the first upper plate and the second upper plate.
  • the length and width of the concave portion may be greater than or equal to the length and width of the flange portion, and the length and width of the opening portion may be greater than the length and width of the joining portion.
  • a liquefied gas storage tank including a corner structure installed at a corner to support a sealing wall preventing leakage of liquefied gas, wherein the corner structure is oriented in a different direction from each other, the hull structure two heat insulating members disposed on the inner surface of the wall; a movable member installed on each of the heat insulating members and to which the sealing wall is bonded; Including, the movable member is coupled to enable sliding displacement with respect to the heat insulating member, and a plurality of the movable members are arranged in a straight line at intervals with respect to one heat insulating member, a liquefied gas storage tank is provided. It can be.
  • a planar structure is disposed around the corner structure, and the planar structure is attached to the secondary insulation panel installed on the hull structure wall and the secondary insulation panel to be adjacent to the sealing wall. It includes a primary insulation panel, wherein the primary insulation material included in the primary insulation panel and the secondary insulation material included in the secondary insulation panel are made of the same material as the insulation material, and the secondary insulation material is the primary insulation material. density may be less than or equal to.
  • the sealing wall includes a first membrane in direct contact with liquefied gas and a second membrane installed to be spaced apart from the first membrane by a predetermined distance, and there is a gap between the first membrane and the second membrane.
  • a support plate for maintaining a constant may be interposed.
  • the structure of the insulation wall and the sealing wall and their coupling structure are simplified and improved to facilitate operation, while increasing the reliability of sealing, assembly structure and manufacturing
  • a corner structure of an improved liquefied gas storage tank can be provided by simplifying the process, shortening the drying time of the tank, and more efficiently relieving the mechanical stress generated in the corner portion of the storage tank.
  • FIG. 1 is a cross-sectional view showing a part of a storage tank for liquefied natural gas according to the prior art
  • FIG. 2 is a perspective view of a corner structure according to an embodiment of the present invention, showing primary and secondary membranes and a part of a planar structure together;
  • FIG. 3 is a cross-sectional view of a corner structure according to an embodiment of the present invention.
  • 4 to 8 are cross-sectional views for explaining an assembly process of a corner structure according to an embodiment of the present invention.
  • Figure 9 is a perspective view for explaining a movable member displaceably installed with respect to the heat insulating member of the corner structure according to an embodiment of the present invention.
  • FIG. 10 is an enlarged perspective view of the movable member shown in FIG. 9;
  • FIG. 11 is a cross-sectional view of a main part for explaining a state in which primary and secondary membranes are bonded to a corner structure according to an embodiment of the present invention
  • FIG. 12 is a cross-sectional view for explaining various embodiments of a movable member
  • FIG. 13 is a perspective view for explaining various embodiments of a movable member
  • FIG. 14 is a cross-sectional view of a corner structure according to another embodiment of the present invention.
  • 15 is a cross-sectional view of a corner structure according to another embodiment of the present invention.
  • each corner structure or flat structure before being attached to the structural wall of the hull to form a storage tank, and are not based on the entire storage tank.
  • Each corner structure or planar structure may be attached not only to the bottom of the storage tank, but also to the ceiling and side walls.
  • each corner structure or planar structure when each corner structure or planar structure is attached to the bottom of the storage tank, each corner structure or Although the 'upper' and 'lower' in the flat structure have the same orientation as the 'upper' and 'lower' in the entire storage tank, each corner structure or flat structure is attached to the ceiling or side of the storage tank In this case, the 'upper part' and the 'lower part' of each corner structure or flat structure have a different orientation from the 'upper part' and 'lower part' of the entire storage tank.
  • the liquefied gas storage tank formed by the corner structure 100 and the planar structure 300 according to an embodiment of the present invention like the storage tank described above with reference to FIG. 14
  • the corner structure according to one embodiment of the present invention is compared to the secondary insulation wall, the secondary sealing wall, the primary insulation wall, and the primary sealing wall being alternately laminated in sequence.
  • a sealing wall is installed on the insulating wall, and the sealing wall is not interposed between the insulating walls.
  • the insulating wall may be formed by arranging a plurality of modularized insulating structures (eg, corner structures 100, planar structures 300, etc.) on the structural walls 12 and 14 of the hull.
  • FIG. 2 is a perspective view of a corner structure according to an embodiment of the present invention
  • FIG. 3 is a cross-sectional view taken along the A-A plane of FIG. 2
  • 2 shows a corner structure 100 according to an embodiment of the present invention together with primary and secondary membranes 51 and 52 and a portion of a planar structure 300 .
  • the shapes of the first and second membranes 51 and 52 and the shape of the planar structure 300 are not limited to those illustrated.
  • the corner structure 100 is a wall that divides the inner space of the hull, that is, the inner wall, so that the storage tank 10 (see FIG. 1) can be installed. (12; see Fig. 1) or a bulkhead (14; see Fig. 1) a heat insulating member (110) disposed on the surface of a hull structural wall, and a sealing membrane (51, 52) supported on the heat insulating member (110) ) includes a movable member 130 to which is bonded.
  • the movable member 130 when the thermal deformation caused by the temperature change due to the loading of LNG in a cryogenic state or the deformation of the hull due to waves, etc. occurs, a fine displacement with respect to the heat insulating member 110 installed to enable That is, the movable member 130 and the heat insulating member 110 are configured to be capable of relative displacement with respect to each other.
  • the heat insulating member 110 has a coupling structure between the movable member 130, but may be configured not to have a coupling structure between the hull structural walls 12 and 14. there is. As will be described later, the heat insulating member 110 is only placed on the hull structural walls 12 and 14 with the mastic 18 interposed therebetween, and may not be coupled by a separate mechanical coupling structure.
  • Each heat insulating member 110 may be made of, for example, a polyurethane foam heat insulating material and plywood. However, the present invention is not limited by the material and structure of the heat insulating member 110 included in the corner structure 100.
  • the heat insulating member 110 may include a lower plate 112 , a lower heat insulating material 114 , an upper heat insulating material 118 , and upper plates 122 and 124 .
  • the lower plate 112 may be made of one sheet of plywood, and the upper plates 122 and 124 may be made of two sheets of plywood.
  • the heat insulating member 110 may further include an intermediate plate 116 interposed between the lower heat insulating material 114 and the upper heat insulating material 118 .
  • the intermediate plate 116 may be made of a single piece of plywood.
  • 3 to 8 show a heat insulating member 110 having an intermediate plate 116
  • FIGS. 14 and 15 show heat insulating members 110A and 110B without an intermediate plate.
  • the present invention is not limited by the presence or absence of the intermediate plate or the structure and shape of the heat insulating member.
  • the upper insulation 118 and the lower insulation 114 may be made of the same material, for example polyurethane foam (PUF) or reinforced-polyurethane foam (R-PUF), and the density of the lower insulation 114 is the upper It may be foam-molded to have a density value equal to or lower than that of the insulator 118 .
  • the upper insulation 118 may have a density of 80 to 240 kg/m 3 .
  • the upper insulator 118 located relatively close to the cryogenic liquefied gas, is manufactured with a relatively high density to improve insulation performance, and the lower insulator 118, located relatively far from the cryogenic liquefied gas (located closer to the hull structural wall side) (114) is manufactured with a relatively low density can reduce the weight of the heat insulating member (110). Therefore, it is possible to simultaneously achieve BOR improvement and weight reduction of the storage tank.
  • a protective layer made of glass wool may be laminated on the side of the heat insulating member 110 to protect the upper heat insulating material 118 and the lower heat insulating material 114 .
  • the heat insulating member 110 includes a lower plate 112 and an intermediate plate ( 116) may include one or more reinforcing plates (not shown).
  • the stiffening plate may be made of plywood.
  • the plurality of reinforcing plates may be arranged in parallel with each other.
  • the number of reinforcing plates installed may vary depending on the size of the heat insulating member 110 or the density of the lower heat insulating material 114.
  • the heat insulating member 110 is formed of a single layer of heat insulating material (ie, the middle plate 116 is omitted), similar to the middle heat insulating material 140 described later, instead of having a two-layer structure of an upper heat insulating material and a lower heat insulating material. ) may also be
  • a mastic 18 may be interposed between the heat insulating member 110 and the hull structural walls 12 and 14. According to the corner structure 100 of this embodiment, the mastic 18 is only interposed between the heat insulating member 110 and the hull structural walls 12 and 14, and the heat insulating member 110 of the corner structure 100 is placed on the hull. It may not have a fixing structure for fixing to the structural walls 12 and 14, for example, mechanical fixing members such as stud bolts and nuts.
  • the movable member 130 has a primary junction 132 to which the primary membrane 51 is joined, and a secondary junction formed to have a step difference from the primary junction 132 and to which the secondary membrane 52 is joined ( 134), and a flange portion 136 extending from the secondary joint 134 for coupling with the heat insulating member 110.
  • the flange portion 136 of the movable member 130 is slidably interposed between the upper plates 122 and 124 of the heat insulating member 110 made of two plywoods, so that the heat insulating member 110 and the movable member 130 is connected
  • the secondary joint 134 and the flange portion 136 can be made by bending a sheet of metal (for example, SUS having a thickness of 3t), and the primary joint 132 is formed on the second joint 134 by bending the cross section. It can be made by attaching this rectangular metal rod (for example, SUS with a thickness of 13t).
  • a sheet of metal for example, SUS having a thickness of 3t
  • the primary joint 132 is formed on the second joint 134 by bending the cross section. It can be made by attaching this rectangular metal rod (for example, SUS with a thickness of 13t).
  • the sealing membrane includes a primary membrane 51 forming a primary sealing wall while directly contacting liquefied gas, and a secondary membrane 52 forming a secondary sealing wall.
  • a primary junction 132 and a secondary junction 134 are provided in the movable member 130 so that the primary membrane 51 and the secondary membrane 52 can be joined at regular intervals, for example, by welding. each can be formed.
  • a difference in height between the first junction 132 and the second junction 134 may be set equal to a gap formed between the first membrane 51 and the second membrane 52 .
  • a support plate 53 may be interposed between the primary membrane 51 and the secondary membrane 52 to maintain a gap and support a load from cargo.
  • the support plate 53 may be made of plywood, for example.
  • two of the plurality of wall surfaces forming the storage tank are connected at an angle other than 90 degrees (eg, 30 degrees, 45 degrees, 60 degrees, 108 degrees, 116 degrees, 135 degrees, 270 degrees, etc.), according to the angle
  • the insulating member may be oriented.
  • a 90 degree corner structure is described as an example, but this is only an example, and the present invention is not limited by the angle formed by the corner structure.
  • the space formed by the two heat insulating members 110 oriented in different directions and the hull structural walls 12 and 14 may be filled with an intermediate heat insulating material 140 having a shape corresponding to the space.
  • the cross-sectional shape of the intermediate insulator 140 is approximately square, but the shape of the intermediate insulator may vary according to the angle formed by the two insulating members 110 .
  • the intermediate insulation 140 may be made of PUF or R-PUF having a density of 40 to 240 kg/m 3 , for example.
  • a gap between the heat insulating member 110 and the intermediate heat insulating material 140 may be filled with a heat insulating material such as glass wool.
  • Glass wool may have a density of less than 90 kg/m 3 , for example. Glass wool may have a density of eg 20 to 50 kg/m 3 .
  • the corner of the intermediate insulator 140 that is, the corner of the portion where the two insulating members 110 are adjacent (the upper right corner of the intermediate insulator 140 in FIG. 4) may be chamfered to prevent damage. there is.
  • the insulating member may have a modified structure to be fixed on the hull structural wall in a mechanical way, for example, by using stud bolts and nuts.
  • the heat insulating member may have a deformed structure so as to be fixed by the adjacent planar structure 300 .
  • the corner structure 100 may further include a curved member 150 having a curved surface facing the inside of the tank.
  • the curved member 150 may be made of, for example, PLW or high-density polyurethane foam (for example, PUF of 80 to 240 kg/m 3 ).
  • the curved member 150 may be made of, for example, an organic heat insulating material having a cell structure.
  • the curved member 150 is disposed between the upper plates 122 and 124 of the two heat insulating members 110 to support the membranes 51 and 52 .
  • FIG. 4 to 8 are cross-sectional views for explaining the assembly process of the corner structure according to an embodiment of the present invention
  • FIG. 9 is a perspective view for explaining a movable member installed to be displaceable with respect to the heat insulating member.
  • 10 is a partially enlarged plan view showing a partially enlarged upper plate of the movable plate of the corner structure and the heat insulating member
  • FIG. 11 is a cross-sectional view of the main part of the corner structure to which the primary and secondary membranes are bonded. is shown.
  • the corner structure 100 may be manufactured as a single module by integrally attaching the movable member 130 to the heat insulating member 110.
  • the insulating member 110 to which the movable member 130 is attached may be manufactured at a site where a ship having a storage tank is built, or may be manufactured as a module in a nearby or remote factory and then transported to the site.
  • the movable member 130 may be slidably coupled to the upper plates 122 and 124 of the heat insulating member 110 .
  • the first upper plate 122 (15t plywood) of the two upper plates of the heat insulating member 110 has a concave portion 122a in which the flange portion 136 of the movable member 130 can be seated. is formed, and an opening 124a into which the secondary joint 134 of the movable member 130 can be inserted is formed in the second upper plate 124 (the plywood of 15t).
  • the length and width of the concave portion 122a have larger dimensions than the length and width of the movable member 130 .
  • the length of the opening 124a has a larger dimension than the length of the secondary joint 134 of the movable member 130 .
  • the width of the opening 124a is equal to or greater than the width of the secondary joint 134 of the movable member 130 .
  • gaps a and b are formed between the opening 124a and the secondary joint 134 of the movable member 130 .
  • a gap is also formed between the side wall surface of the concave portion 122a and the flange portion 136 of the movable member 130.
  • the movable member 130 may be slidably interposed between the first upper plate 122 and the second upper plate 124 .
  • a spacer 126 may be disposed between the secondary joint 134 of the movable member 130 and the bottom surface of the concave portion 122a of the first upper plate 122 .
  • the spacer 126 may be integrally formed with the first upper plate 122 or may be formed as a separate member.
  • a gap is also formed between the spacer and the flange portion 136 .
  • the curved member 150 is positioned between the two heat insulating members 110 . Both edges of the curved portion 152 of the curved member 150 are close to the movable member 130 but do not contact the movable member 130 .
  • a secondary membrane 52, a support plate 53 and a primary membrane 51 may be sequentially stacked on the corner structure 100 according to an embodiment of the present invention.
  • a secondary membrane 52 is bonded to the secondary bonding portion 134 of the movable member 130 .
  • the secondary membrane 52 may include, for example, a secondary curved portion 52a that is bent at 90 degrees and a secondary flat portion 52b formed to have a flat plate shape.
  • the secondary curved portion 52a extends between two movable members 130 disposed on different heat insulating members 110, and has a cross section so that it can be seated on the curved portion 152 of the curved member 150. It has a substantially circular arc shape and is curved round.
  • the secondary flat portion 52b may have wrinkles to respond to thermal deformation of the membrane.
  • a support plate 53 is laminated on the secondary membrane 52 .
  • the support plate 53 may include, for example, a curved support plate 53a that is bent at 90 degrees and a flat support plate 53b formed to have a flat plate shape.
  • the secondary curved portion 52a extends between two movable members 130 disposed on different heat insulating members 110, and has a cross section so that it can be seated on the curved portion 152 of the curved member 150. It has a substantially circular arc shape and is curved round.
  • the curved portion support plate 53a may be made of reinforced-polyurethane foam.
  • a primary membrane 51 is bonded to the primary bonding portion 132 of the movable member 130 .
  • the primary membrane 51 may include, for example, a primary curved portion 51a, which is a portion bent at 90 degrees, and a secondary flat portion 51b formed to have a flat plate shape. there is.
  • the primary curved portion 51a extends between two movable members 130 disposed on different heat insulating members 110, and has a substantially circular arc shape in cross section so that it can be seated on the curved portion support plate 53a. It has a round shape and is curved.
  • the primary flat portion 51b may have wrinkles to respond to thermal deformation of the membrane.
  • the support plate 53 may be interposed over the entirety except for the portion where the first and second membranes 51 and 52 are arranged parallel to each other, that is, the portion where the wrinkles are formed, but among the remaining portions except for the portion where the wrinkles are formed. It may be interposed over a part.
  • polyurethane foam or reinforced polyurethane foam
  • polyurethane foam or reinforced polyurethane foam
  • a plurality of, for example, two movable members 130 may be arranged in a straight line on one heat insulating member 110 .
  • one corner structure 100 including two heat insulating members 110 oriented at a predetermined angle may have, for example, a total of four movable members 130 .
  • the movable members 130 arranged in a straight line on one heat insulating member 110 may be connected by a sheet-shaped sealant such as triplex, for example.
  • the movable member 130 is made by attaching the primary junction 132 to which the primary membrane 51 is coupled to the secondary junction 134 to which the secondary membrane 52 is coupled.
  • the primary junction 132 and the secondary junction 134 are joined by welding, at least one of the primary junction 132 and the secondary junction 134 of the movable member 130 is damaged by heat generated during welding. It can be twisted and deformed.
  • the length of the movable member 130 can be shortened, thereby reducing the amount of deformation. Furthermore, it is possible to reduce the overall weight of the movable member used in the corner structure.
  • the movable member When installing one movable member having a relatively long length for one heat insulating member 110, for example, the movable member has a length of 1800 mm, and the amount of deformation due to welding reaches 7 to 8 mm. In contrast, when two relatively short movable members are installed in a straight line for one heat insulating member 110, for example, each movable member has a length of 500 to 760 mm, and the amount of deformation due to welding is It is only about 1 to 1.5 mm.
  • the size of the concave portion 122a formed in the first upper plate 122 of the heat insulating member 110 is larger than the size of the flange portion 136 of the movable member 130, Since the size of the opening 124a formed in the second upper plate 124 of the heat insulating member 110 is larger than the size of the secondary joint 134 of the movable member 130, even if displacement occurs, it can absorb it. .
  • the movable member 130 to which the membranes 51 and 52 are bonded may also shrink together. At this time, both ends of the movable member 130 may be displaced while sliding finely toward the central portion of the movable member. As described above, since the flange portion 136 of the movable member 130 is slidably interposed between the first upper plate 122 and the second upper plate 124, the movable member 130 contracts and expands. Even when it occurs, the coupled state of the movable member 130 to the heat insulating member 110 can be maintained continuously.
  • the storage tank 10 is sealed in a liquid-tight state by the first and second membranes 51 and 52 . That is, the storage tank 10 forms one storage space surrounded by a two-ply sealing wall by integrally connecting a plurality of metal plates to each other by welding, and accordingly, the storage tank 10 stores liquefied gas without leakage. and can be transported.
  • the primary membrane 51 in direct contact with liquefied gas such as LNG in a cryogenic state and the secondary membrane 52 installed to be spaced apart from the primary membrane 51 have a temperature according to the loading of the liquefied gas. Wrinkles may form to respond to changes.
  • the shapes and sizes of the primary membrane 51 and the secondary membrane 52, including the wrinkles, are not limited to those shown in the drawings.
  • These primary and secondary membranes 51 and 52 may be indirectly connected to the hull structural walls 12 and 14 of the ship through a plurality of corner structures 100 and anchor structures (not shown).
  • a planar structure 300 may be arranged around the corner structure 100 .
  • the flat structure 300 is different from each other in that it has a structure in which a primary insulation panel 310 and a secondary insulation panel 320 are stacked, compared to the insulation member 110 of the corner structure 100 described above. Do.
  • the planar structure 300 may include a primary insulating panel 310 and a secondary insulating panel 320 It can be, the primary insulation panel 310 and the secondary insulation panel 320 is bonded to each other by, for example, PU bonding (PU bonding) can be integrated.
  • PU bonding PU bonding
  • the primary insulation panel 310 and the secondary insulation panel 320 of the flat structure 300 may be made of, for example, a polyurethane foam insulation material and plywood. More specifically, the primary insulation panel 310 of the flat structure 300 located closer to the sealing wall side includes, for example, a primary insulation material 314 made of polyurethane foam, etc., and the primary insulation material. It may include a primary upper plate 312 and a primary lower plate 316 bonded to the upper and lower surfaces of 314 . Adhesion between the primary insulator 314 and the primary upper and lower plates 312 and 316 may be achieved by, for example, PU bonding.
  • the secondary insulation panel 320 of the flat structure 300 located closer to the hull structural wall side includes, for example, a secondary insulation material 324 made of polyurethane foam or the like, and the secondary insulation material 324 ) It may include a secondary upper plate 322 and a secondary lower plate 326 laminated on the upper and lower surfaces of the.
  • the flat structure 300 by attaching the flat structure 300 to the primary insulation panel 310 and the secondary insulation panel 320 to produce a two-layer structure, heat inflow from the outside to the inside of the storage tank can be better blocked. there is.
  • the planar structure 300 made by attaching the primary insulation panel 310 and the secondary insulation panel 320 to each other is modularized and pre-manufactured in a factory in advance, and each modular unit planar structure is transported to the site and then , it is mounted on the hull structural wall to fabricate a storage tank.
  • a protective layer (not shown) of a glass wool material for protecting the primary insulating material 314 and the secondary insulating material 324 may be laminated on the side surface of the flat structure 300 .
  • An insulating material such as glass wool may be filled between the corner structure 100 and the planar structure 300 .
  • the flat structure 300 may be formed of a single layer of insulator, similar to the above-described intermediate insulator 140, instead of having a two-layer structure of a primary insulator and a secondary insulator.
  • a mastic 18 may be interposed between the planar structure 300 and the hull structure walls 12 and 14.
  • the planar structure 300 of this embodiment it has a fixing structure for fixing the planar structure 300 to the hull structural walls 12 and 14, for example, mechanical fixing members (not shown) such as stud bolts and nuts. may be
  • An anchor unit (not shown) may be mounted at the center of the upper surface of the flat structure 300 to support the sealing wall.
  • the planar structure 300 includes an anchor unit
  • the planar structure having the anchor unit may function as an anchor structure.
  • the anchor structure and the planar structure may be properly arranged and mounted on the hull structure wall.
  • the planar structure 300 is modularized and pre-manufactured in a factory in advance, and each modularized unit planar structure is transported to the site, and then a storage tank is manufactured. It can be mounted on the hull structural wall for
  • Each of the corner structures 100, anchor structures, and planar structures arranged in the storage tank 10 may be manufactured as one module in a separate location, and then transferred to the storage tank 10 and assembled. According to modularization, workability can be improved when manufacturing a storage tank.
  • the primary and secondary membranes 51 and 52 are supported by corner structures 100 and anchor structures, and the planar structures only support the load of LNG applied to the primary and secondary membranes 51 and 52. .
  • it may be configured so that there is no direct coupling relationship between the planar structure and the corner structure 100 or between the planar structure and the anchor structure.
  • the first membrane 51 and the second membrane 52 are spaced apart, and only the support plate 53 is interposed therebetween, and the heat insulating material is interposed therebetween. It is not done.
  • the primary insulation wall is interposed between the primary sealing wall and the secondary sealing wall in direct contact with LNG, so that the primary sealing wall passes through the primary thermal insulation wall and connects the primary sealing wall to the secondary sealing wall. A complex structure was required to support it.
  • corner structure 100 is configured not to interpose a heat insulator performing a separate heat insulating function between the first and second membranes 51 and 52, the first of the movable member 130 And it is possible to relatively easily support the first and second membranes 51 and 52 by the second junction.
  • the first membrane 51 and the second membrane 52 are spaced apart, even if the shape of the storage tank is deformed due to deformation of the hull due to external forces such as waves, the first and second membranes Friction does not occur between (51, 52), and even if damage occurs due to an impact applied to one membrane, it is possible to prevent the damage from being directly propagated to the other membrane.
  • the sealing is described as being made of a double structure by the primary and secondary membranes 51 and 52, it is of course possible to be formed of a multilayer structure of three or more layers.
  • the movable member 130 to which the primary and secondary membranes 51 and 52 are joined is finely slidably connected to the heat insulating member 110 as described above, so that 1
  • the primary and secondary membranes 51 and 52 can be stably supported with respect to the hull. Accordingly, it is possible to reliably absorb stress caused by thermal deformation due to loading of LNG or deformation of the hull due to external forces such as waves.
  • the primary junction of the movable member 130 may be made of a metal rod having a rectangular cross section or a bent metal plate.
  • Figure 12 (a) shows a cross-sectional view before assembly of the movable member 130 having a primary joint 132 made of a metal rod, and in Figure 12 (b), a 'c' formed by bending a sheet of metal
  • Figure 12 (b) shows a cross-sectional view before assembly of the movable member 130A having a primary joining portion 132A made of a shaped steel.
  • the movable member according to the present invention can be deformed as shown in FIG. In (a) of FIG. 13, a movable member in which two relatively short primary joints 132' are joined by arranging them in a straight line at intervals on one relatively long secondary joint 134'. A first variant of 130' is shown.
  • the flange portion 136' may have the same length as the length of the secondary junction portion 134'.
  • a second deformation of the movable member 130" in which one relatively long primary joint 132" is joined to two relatively short secondary joint portions 134" Unlike the movable member 130' of the first modification, the movable member 130 "of the second modification has two secondary joints 134" spaced apart and arranged in a straight line to form one 1 It is bonded to the car junction 132".
  • the flange portion 136" may have the same length as the length of the secondary junction portion 134".
  • the corner structure 100A shown in FIG. 14 includes a movable member 130 having the same configuration as the movable member 130 included in the corner structure 100 shown in FIG. 3 .
  • the movable member 130 is coupled to allow sliding displacement with respect to the heat insulating member 110A, and a plurality of movable members for one heat insulating member 110A ( 130) are the same as the corner structure 100 of FIG. 3 in that they are arranged in a straight line at intervals.
  • the corner structure 100A of FIG. 14 has a difference in structure of the heat insulating member compared to the corner structure 100 of FIG. 3 .
  • corner structure 100A of FIG. 14 differs from the corner structure 100 of FIG. 3 in that the same reference numerals are assigned to components identical or similar to those of the corner structure 100 of FIG. 3 , and detailed descriptions thereof are omitted.
  • the corner structure 100A of FIG. 14 is different from the corner structure 100 of FIG. 3 in that an intermediate plate does not exist between the upper insulation 118A and the lower insulation 114A of the insulation member 110A. Accordingly, the upper insulator 118A and the lower insulator 114A may be in direct contact. In addition, the size of the upper insulator 118A and the size of the lower insulator 114A may be different. For example, in the corner structure 100A of FIG. 14 , the upper insulator 118A is larger than the lower insulator 114A, so that a portion of the upper insulator 118A may protrude from the end surface of the lower insulator 114A.
  • the corner structure 100A of FIG. 14 may have a first top plate 122A smaller than the size of the second top plate 124A.
  • the first top plate 122A has a size capable of covering the entire surface of the upper heat insulating material 118A, but for coupling of the movable member 130. It can be installed only where necessary.
  • the planar structure 300A of FIG. 14 has an upper insulator 314A and a lower insulator 324A, and no plate made of plywood material exists between the upper insulator 314A and the lower insulator 324A. Accordingly, the upper insulator 314A and the lower insulator 324A may directly contact each other.
  • the size of the upper insulator 314A and the lower insulator 324A of the planar structure 300A may be different. For example, in the planar structure 300A of FIG. 14 , the upper insulator 314A may be smaller than the lower insulator 324A.
  • the first and second membranes 51 and 52 are shown only on the corner structure 100A, and are omitted on the planar structure 300A.
  • the corner structure 100B shown in FIG. 15 includes a movable member 130 having the same configuration as the movable member 130 included in the corner structure 100 shown in FIG. 3 .
  • the movable member 130 is coupled to allow sliding displacement with respect to the heat insulating member 110B, and a plurality of movable members for one heat insulating member 110B ( 130) are the same as the corner structure 100 of FIG. 3 in that they are arranged in a straight line at intervals.
  • the corner structure 100B of FIG. 14 has a difference in structure of the heat insulating member compared to the corner structure 100 of FIG. 3 .
  • corner structure 100B of FIG. 15 differs from the corner structure 100 of FIG. 3 in that the same reference numerals are assigned to components identical or similar to those of the corner structure 100 of FIG. 3 , and detailed descriptions thereof are omitted.
  • the middle heat insulating material 140 is arranged between the two heat insulating members 110B, but the corner structure 100B of FIG. 15 does not use the middle heat insulating material, and the heat insulating members 110B
  • the shape of the heat insulating member 110B is deformed so as to directly contact each other. For example, as shown in FIG. 15, when the two heat insulating members 110B are oriented at an angle of 90 degrees, the side surfaces of the two heat insulating members 110B contact each other are formed as inclined surfaces 110Ba at an angle of about 45 degrees. It can be.
  • the corner structure 100B of FIG. 15 is different from the corner structure 100 of FIG. 3 in that there is no intermediate plate between the upper insulation 118B and the lower insulation 114B of the insulation member 110B. Accordingly, the upper insulator 118B and the lower insulator 114B may be in direct contact. In addition, the size of the upper insulator 118B and the size of the lower insulator 114B may be different. For example, in the corner structure 100B of FIG. 15 , the upper insulator 118B is smaller than the lower insulator 114B, so a portion of the lower insulator 114B may protrude from the end surface of the upper insulator 118B.
  • the corner structure 100B of FIG. 15 is an upper secondary heat insulator arranged between the heat insulating member 110B and the planar structure 300B (that is, arranged on the opposite side of the direction in which the two heat insulating members 110B are adjacent to each other) ( 117B) and a lower secondary insulator 115B.
  • the lower auxiliary insulation material 115B may be arranged between the lower insulation material 114B and the planar structure 300B
  • the upper auxiliary insulation material 117B may be arranged between the upper insulation material 118B and the planar structure 300B.
  • the upper secondary insulator 117B may be larger than the lower secondary insulator 115B.
  • the first top plate 122B and the second top plate 124B may have substantially the same size.
  • the planar structure 300B of FIG. 15 has an upper insulator 314B and a lower insulator 324B, and a plywood material plate does not exist between the upper insulator 314B and the lower insulator 324B. Accordingly, the upper insulator 314B and the lower insulator 324B may directly contact each other.
  • the size of the upper insulator 314B and the size of the lower insulator 324B of the planar structure 300B may be different. For example, in the planar structure 300B of FIG. 15 , the upper insulator 314B may be smaller than the lower insulator 324B.
  • the first and second membranes 51 and 52 are shown only on the corner structure 100B and are omitted from the planar structure 300B.
  • planar structure 300B shown in FIG. 15 may be the same as the planar structure 300A shown in FIG. 14 .
  • the heat insulating material, heat insulating member or heat insulating material used in the above embodiment of the present invention is, for example, glass wool, mineral wool, polyester filler, polyurethane foam, memramin foam, polyethylene foam, polypropylene foam, silicone foam, It may be made of polyvinyl chloride foam or the like.
  • the membrane is made of, for example, corrugated stainless steel used for GTT Mark-III type, but the membrane is made of, for example, Invar steel used for No. 96 of GTT. may be
  • the present invention can be equally applied to liquefied gas storage tanks installed on land as well as liquefied gas storage tanks installed inside the hull of the shelf.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

액화가스를 적재하는 저장탱크의 모서리에 설치되어, 액화가스의 누출을 방지하는 밀봉벽(51, 52)을 지지하는 액화가스 저장탱크의 코너 구조체(100)가 개시된다. 코너 구조체(100)는, 서로 상이한 방향으로 배향되도록 선체 구조벽의 내부 표면에 배치되는 2개의 단열부재(110)와, 각각의 단열부재(110) 상에 설치되고 밀봉벽(51, 52)이 접합되는 가동부재(130)를 포함할 수 있다. 가동부재(130)는 단열부재(110)에 대하여 슬라이딩 변위가 가능하도록 결합될 수 있으며, 가동부재(130)는 하나의 단열부재에 대해 복수개가 서로 간격을 두고 일직선상으로 배열될 수 있다.

Description

코너 구조체 및 이를 갖는 액화가스 저장탱크
본 발명은, 액화가스 저장탱크의 코너 구조체에 관한 것으로서, 더욱 상세하게는 초저온 상태의 액체인 액화가스를 저장하기 위한 액화가스 저장탱크의 내부에서 모서리 부분에 밀봉벽을 설치할 수 있도록 배열되는 코너 구조체에 관한 것이다.
일반적으로, 액화가스에는 액화천연가스(Liquefied Natural Gas, LNG), 액화석유가스(Liquefied Petroleum Gas, LPG), 액화에탄가스, 액화에틸렌가스, 액화질소, 액화이산화탄소, 액화암모니아 등이 있다.
예를 들어, 액화천연가스는 화석연료의 하나인 천연가스가 액화된 것으로서, 액화천연가스 저장탱크는 설치되는 위치에 따라 지상에 설치되거나 지중에 매립되는 육상 저장탱크 또는 자동차, 선박 등의 운송수단에 설치된 이동형 저장탱크 등으로 구분된다.
전술된 액화천연가스, 액화석유가스 등의 액화가스는 충격에 노출시 폭발의 위험성이 있고, 초저온 상태로 보관되는 바, 이를 보관하는 저장탱크는 내충격성 및 액밀성이 견고하게 유지되는 구조를 이룬다.
그리고, 유동이 거의 없는 육상 저장탱크와 대비하여, 유동이 있는 자동차, 선박에 설치되는 액화가스 저장탱크는 유동에 의한 기계적 응력에 대한 대비책을 강구하여야 한다. 그러나, 기계적 응력에 대하여 대비책이 마련된 선박에 설치된 액화가스 저장탱크는 당연히 육상 저장탱크에도 사용될 수 있으므로, 본 명세서에는 선박에 설치된 액화가스 저장탱크의 구조를 일례로 설명한다.
액화천연가스 등의 액화가스 저장탱크가 설치되는 선박은 통상, 외형을 이루는 외부벽과, 이 외부벽의 내부에 형성된 내부벽으로 이루어지는 이중구조의 선체를 갖는다. 상기 선박의 내부벽과 외부벽은 연결벽에 의해 연결되어 일체로 형성되며, 경우에 따라 상기 내부벽이 존재하지 않는 단일구조의 선체로 이루어질 수도 있다.
또한, 선체의 내부, 즉 내부벽의 내부는 하나 이상의 격벽에 의하여 분할될 수 있다. 상기 격벽은 통상적인 LNG 운반선 등에 설치되는 공지의 코퍼댐(cofferdam)에 의해 형성될 수도 있다.
상기 격벽에 의해 분할된 각각의 내부 공간은 액화천연가스와 같은 초저온 액체를 저장하는 저장탱크로서 활용될 수 있다.
여기에서, 상기 저장탱크의 내주벽면은 밀봉벽에 의해서 액밀 상태로 밀봉된다. 즉, 상기 밀봉벽은 복수개의 금속판들이 용접에 의해 서로 일체로 연결됨으로써 하나의 저장공간을 형성하며, 그에 따라 상기 저장탱크는 액화천연가스를 누출 없이 저장 및 수송할 수 있게 된다.
이러한 밀봉벽은 다수의 앵커 구조체에 의해 선박의 내부벽 또는 격벽과 연결되어 있다. 따라서, 상기 밀봉벽은 선체에 대하여 상대적인 이동이 불가능하다.
밀봉벽과 내부벽 또는 격벽 사이에는 단열층을 형성할 수 있도록 단열벽이 배열된다. 이 단열벽은, 저장탱크의 모서리 부분에 배치되는 코너 구조체와, 앵커 부재의 주변에 배치되는 앵커 구조체와, 저장탱크의 평평한 부분에 배치되는 평면 구조체로 이루어질 수 있다. 즉, 이들 코너 구조체, 앵커 구조체 및 평면 구조체에 의해서 저장탱크에 전체적인 단열층이 형성될 수 있다.
여기에서, 상기 앵커 구조체는, 선체와 밀봉벽 사이를 직접적으로 연결하여 고정하는 앵커 부재와, 이 앵커 부재의 주변에 설치되는 단열재로 이루어진다.
또한, 밀봉벽은 주로 앵커 구조체에 의해서 지지되며, 평면 구조체는 단지 상기 밀봉벽에 가해지는 LNG의 하중만 지지하고, 평면 구조체와 앵커 구조체와의 사이에는 직접적인 결합관계가 없다.
도 1에는 종래 기술에 따른 액화천연가스 저장탱크의 모서리 일부를 도시한 단면도가 도시되어 있다.
도 1에 도시된 종래의 액화천연가스 저장탱크(10)는 선체 구조물인 내부벽(12) 또는 격벽(14) 상에 2차 단열벽(22, 32, 42)과 1차 단열벽(24, 34, 44)이 순차적으로 설치되어 저장탱크의 내부와 외부 사이를 단열시킨다. 또한, 상기 2차 단열벽(22, 32, 42)과 1차 단열벽(24, 34, 44) 사이에는 2차 밀봉벽(23, 33, 43)이 설치되고, 상기 1차 단열벽(24, 34, 44)의 표면에는 1차 밀봉벽(50)이 설치되어, 저장탱크의 내부와 외부 사이를 2차에 걸쳐 밀봉시킨다.
이와 같이 구성된 액화천연가스의 저장탱크(10)는 내부의 코너부에 설치되는 코너 구조체(20), 바닥면에 일정 간격으로 설치되는 앵커 구조체(30), 그리고 코너 구조체(20)와 앵커 구조체(30) 사이 또는 앵커 구조체(30)와 앵커 구조체(30) 사이에 배치되어 슬라이딩 이동 가능한 평면 구조체(40)를 포함한다. 이때, 상기 코너 구조체(20), 앵커 구조체(30), 평면 구조체(40)는 각각의 단위 모듈로 미리 제작된 후, 저장탱크(10)에 조립될 수 있으며, 상기 1차 밀봉벽(50)이 그 위에 설치되어 단열벽을 액밀함으로써, 내측 공간에 액화천연가스(LNG)가 저장할 수 있는 공간을 제공한다.
도 1에 도시된 바와 같이, 코너 구조체(20), 앵커 구조체(30), 및 평면 구조체(40)는 각각의 1차 단열벽(24, 34, 44), 2차 단열벽(22, 32, 42) 및 2차 밀봉벽(23, 33, 43)을 포함할 수 있다.
한편, 각 구조체(20, 30, 40)에 있어서 각 단위 모듈의 2차 밀봉벽 및 각 단열벽의 접촉면은 접착제로 접착되어 일체로 형성될 수 있다. 통상적으로 상기 2차 단열벽(22, 32, 42)은 단열재인 폴리우레탄 폼(Polyurethane foam)과 그 하부에 부착된 판재로 구성된다. 그리고, 상기 1차 단열벽(24, 34, 44)은 폴리우레탄 폼과 그 상부에 접착제로 부착된 판재로 이루어진다. 또한, 상기 1차 밀봉벽은 상기 1차 단열벽(24, 34, 44)의 상부에 설치되어 용접에 의해 상기 앵커 구조체(30)에 고정된다.
또한, 상기 평면 구조체(40)의 2차 단열벽(42)의 하단부에는 상기 2차 단열벽(42) 보다 크게 형성된 플랜지(42a)가 형성된다. 상기 플랜지(42a)는 상기 앵커 구조체(30)의 하단부에 형성된 홈부에 삽입되어, 다소간의 슬라이딩 이동이 가능하게 설치된다.
도시된 예에서 각 앵커 구조체(30)는 앵커지지로드(36), 하부에 위치한 고정부재(37), 앵커 2차 단열벽(32) 그리고 앵커 1차 단열벽(34)을 갖고, 상기 앵커 2차 단열벽(32)과 앵커 1차 단열벽(34) 사이에는 2차 밀봉벽(33)이 연결된다. 상기 앵커지지로드(36)의 한 말단은 1차 밀봉벽(50)에 연결되어 있고 다른 말단은 상기 고정부재(37)에 의해 선체 내부벽(12)에 연결되어 있다.
한편, 상기 앵커 구조체(30)는 상기 앵커지지로드(36)의 상단에 상기 1차 밀봉벽(50)이 용접되어 결합된다.
또한, 상기 앵커 구조체(30)는 이웃하는 평면 구조체(40)의 연결 지점에 위치하여 이들을 상호 연결하며, 상기 평면 구조체(40)는 저장탱크(10)를 이루는 선체 내부벽(12) 또는 격벽(14)에 고정된다. 또한, 상기 앵커 구조체(30)의 고정부재(37)는 앵커지지로드(36)의 주위에 설치된다.
그러나, 종래의 액화천연가스 저장탱크는 단열벽 구조체의 구성이 1차 및 2차 단열벽과, 그 사이에 개재되어 있는 2차 밀봉벽으로 이루어지는 바, 그 구성이 복잡하다. 뿐만 아니라 각 단위 모듈의 2차 밀봉벽들을 서로 연결하기 위한 구조가 복잡하고, 연결 작업이 용이하지 않다. 또한, 앵커부나 2차 밀봉벽의 연결부의 구조와 설치작업이 난해하여 2차 밀봉벽에 LNG의 밀봉의 신뢰성이 저하되어 LNG가 누출(leakage)되는 문제점이 발생할 우려도 있다.
또한, 단지 상기 밀봉벽(50)에 가해지는 LNG의 하중만 지지하고 밀봉벽(50)이 접합되지 않는 종래의 코너 구조체(20)는, 초저온 상태인 LNG의 선하적에 따른 저장탱크의 열변형이나 선체의 변형시 발생하는 응력을 흡수함에 있어서 개선의 여지가 있었다.
그리고, 근래에 들어 엔진 성능이 향상되면서, Boil-Off Gas의 소비가 줄어들고, 이에 보다 낮은 BOR(Boil-off Rate)을 요구하는 수요가 점차 늘어나고 있다. 이를 위해 단열성능이 높아지도록 단열 구조체의 두께를 증가시키면 무게가 증가하게 되고, 슬로싱 충격에 대한 단열 구조체의 수축량이 커져 밀봉벽과 앵커 구조체 간의 상대 변위가 더욱 증가하는 문제가 발생한다. 그로 인해, 밀봉벽에 있어서 LNG의 밀봉의 신뢰성이 저하되어 LNG가 누출(leakage)되는 문제점이 발생할 우려도 있다.
따라서, 단열 구조체의 단열 성능은 그대로 유지하면서 각 단위 모듈의 무게를 더욱 가볍게 제작함으로써, 저장탱크의 제작시 작업효율을 향상시키고 시공 기간과 비용을 절감하기 위한 노력이 계속적으로 이루어질 필요가 있다.
상기한 문제점을 해결하기 위한 본 발명의 목적은, 액화가스 저장탱크에 있어서 단열벽과 밀봉벽의 구조 및 이들의 결합구조를 간단히 하고 작업이 용이하도록 개선하는 동시에, 밀봉의 신뢰성을 증가시키고, 조립구조 및 제조공정을 단순화하여 탱크의 건조시간을 단축시키고, 코너부가 저장탱크에서 발생하는 기계적 응력을 보다 효율적으로 해소할 수 있는, 개선된 구조의 액화가스 저장탱크의 코너 구조체를 제공하고자 하는 것이다.
본 발명의 일 측면에 따르면, 액화가스를 적재하는 저장탱크의 모서리에 설치되어, 액화가스의 누출을 방지하는 밀봉벽을 지지하는 액화가스 저장탱크의 코너 구조체로서, 서로 상이한 방향으로 배향되도록 선체 구조벽의 내부 표면에 배치되는 2개의 단열부재와; 각각의 상기 단열부재 상에 설치되고 상기 밀봉벽이 접합되는 가동부재; 를 포함하며, 상기 가동부재는 상기 단열부재에 대하여 슬라이딩 변위가 가능하도록 결합되며, 하나의 상기 단열부재에 대해 복수의 상기 가동부재가 서로 간격을 두고 일직선상으로 배열되는, 액화가스 저장탱크의 코너 구조체가 제공될 수 있다.
일 실시형태에 따르면, 상기 밀봉벽은 1차 멤브레인 및 2차 멤브레인을 포함하며, 상기 가동부재는, 상기 1차 멤브레인이 접합되는 1차 접합부와, 상기 1차 접합부와는 단차를 가지도록 형성되고 상기 2차 멤브레인이 접합되는 2차 접합부와, 상기 단열부재와의 결합을 위해 상기 2차 접합부로부터 연장되는 플랜지부를 포함하며, 상기 플랜지부가 2장의 플라이우드로 이루어지는 상기 단열부재의 상부 판들 사이에 슬라이딩 가능하게 개재됨으로써 상기 단열부재와 상기 가동부재는 상대적인 슬라이딩 변위가 가능한 방식으로 결합될 수 있다.
일 실시형태에 따르면, 상기 2차 접합부 및 상기 플랜지부는 한 장의 금속판을 구부려서 형성되고, 상기 1차 접합부는 상기 2차 접합부 상에 단면이 직사각형인 금속막대 또는 한 장의 금속판을 절곡하여 형성한 'ㄷ'자 형태의 형강을 부착시켜서 형성될 수 있다.
일 실시형태에 따르면, 상기 단열부재는, 평평한 플레이트 형상을 가지는 하부 판 및 상부 판과; 상기 하부 판 상에 적층되는 하부 단열재와; 상기 하부 단열재와 상기 상부 판 사이에 개재되는 상부 단열재를 포함하며, 상기 상부 단열재 및 상기 하부 단열재는 동일한 소재의 단열재로 만들어질 수 있다.
일 실시형태에 따르면, 상기 하부 단열재는 상기 상부 단열재보다 밀도가 낮거나 같을 수 있다.
일 실시형태에 따르면, 서로 상이한 방향으로 배향된 2개의 단열부재와 상기 선체 구조벽에 의해 둘러싸이는 공간에 배치되는 중간 단열재를 더 포함할 수 있다.
상기 중간 단열재는 상기 상부 단열재 및 상기 하부 단열재보다 밀도가 낮거나 같을 수 있다.
일 실시형태에 따르면, 코너 구조체는, 2개의 상기 단열부재의 상부 판 사이에 배치되어 상기 밀봉벽을 지지하고, 저장탱크 내부를 향하는 표면이 곡면으로 형성되는 곡면부재를 더 포함할 수 있다.
일 실시형태에 따르면, 상기 단열부재는 2개의 상부 판을 포함하고, 상기 가동부재는 상기 밀봉벽이 접합되는 접합부와 상기 접합부로부터 연장되는 플랜지부를 포함하며, 2개의 상부 판 중 아래쪽에 위치되는 제1 상부 판은 상기 플랜지부가 안착될 수 있는 오목부를 포함하고, 상기 제1 상부 판의 위쪽에 위치되는 제2 상부 판은 상기 접합부가 관통하는 개구부를 포함하며, 상기 플랜지부는 상기 오목부 내에서 상기 제1 상부 판과 상기 제2 상부 판 사이에 개재될 수 있다.
일 실시형태에 따르면, 상기 오목부의 길이 및 폭은 상기 플랜지부의 길이 및 폭보다 크거나 같고, 상기 개구부의 길이 및 폭은 상기 접합부의 길이 및 폭보다 클 수 있다.
본 발명의 또 다른 측면에 따르면, 액화가스의 누출을 방지하는 밀봉벽을 지지하기 위해서 모서리에 설치되는 코너 구조체를 포함하는 액화가스 저장탱크로서, 상기 코너 구조체는, 서로 상이한 방향으로 배향되도록 선체 구조벽의 내부 표면에 배치되는 2개의 단열부재와; 각각의 상기 단열부재 상에 설치되고 상기 밀봉벽이 접합되는 가동부재; 를 포함하며, 상기 가동부재는 상기 단열부재에 대하여 슬라이딩 변위가 가능하도록 결합되며, 하나의 상기 단열부재에 대해 복수의 상기 가동부재가 서로 간격을 두고 일직선상으로 배열되는, 액화가스 저장탱크가 제공될 수 있다.
일 실시형태에 따르면, 상기 코너 구조체의 주변에는 평면 구조체가 배치되며, 상기 평면 구조체는, 상기 선체 구조벽 상에 설치되는 2차 단열패널과, 상기 2차 단열패널 상에 부착되어 밀봉벽과 인접하는 1차 단열패널을 포함하며, 상기 1차 단열패널에 포함된 1차 단열재 및 상기 2차 단열패널에 포함된 2차 단열재는 동일한 소재의 단열재로 만들어지고, 상기 2차 단열재는 상기 1차 단열재보다 밀도가 낮거나 같을 수 있다.
일 실시형태에 따르면, 상기 밀봉벽은 액화가스와 직접 접촉하는 1차 멤브레인과 상기 1차 멤브레인으로부터 일정간격 이격되도록 설치되는 2차 멤브레인을 포함하며, 상기 1차 멤브레인과 상기 2차 멤브레인 사이에는 간격을 일정하게 유지하기 위한 지지판재가 개재될 수 있다.
상술한 바와 같이, 본 발명에 따르면, 액화가스 저장탱크에 있어서 단열벽과 밀봉벽의 구조 및 이들의 결합구조를 간단히 하고 작업이 용이하도록 개선하는 동시에, 밀봉의 신뢰성을 증가시키고, 조립구조 및 제조공정을 단순화하여 탱크의 건조시간을 단축시키고, 코너부가 저장탱크에서 발생하는 기계적 응력을 보다 효율적으로 해소할 수 있는, 개선된 구조의 액화가스 저장탱크의 코너 구조체가 제공될 수 있다.
도 1은 종래 기술에 따른 액화천연가스의 저장탱크 일부를 도시한 단면도,
도 2는 본 발명의 일 실시형태에 따른 코너 구조체의 사시도로서, 1차 및 2차 멤브레인과, 평면 구조체의 일부를 함께 도시한 도면,
도 3은 본 발명의 일 실시형태에 따른 코너 구조체의 단면도,
도 4 내지 도 8은 본 발명의 일 실시형태에 따른 코너 구조체의 조립 과정을 설명하기 위한 단면도,
도 9는 본 발명의 일 실시형태에 따른 코너 구조체의 단열부재에 대하여 변위 가능하게 설치되는 가동부재를 설명하기 위한 사시도,
도 10은 도 9에 도시된 가동부재의 확대 사시도,
도 11은 본 발명의 일 실시형태에 따른 코너 구조체에 1차 및 2차 멤브레인이 접합되는 상태를 설명하기 위한 주요부 단면도,
도 12는 가동부재의 다양한 실시형태를 설명하기 위한 단면도,
도 13은 가동부재의 다양한 실시형태를 설명하기 위한 사시도,
도 14는 본 발명의 다른 실시형태에 따른 코너 구조체의 단면도,
도 15는 본 발명의 또 다른 실시형태에 따른 코너 구조체의 단면도이다.
이하, 본 발명의 일 실시형태에 따른 구성 및 작용을 도면을 참조하여 상세히 설명하면 다음과 같다. 또한 하기 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시형태로 한정되는 것은 아니다.
본 명세서에서 '상부' 및 '하부'라는 표현은, 저장탱크를 형성하기 위해 선체의 구조벽에 부착되기 전의 각각의 코너 구조체 또는 평면 구조체를 기준으로 하며, 저장탱크 전체를 기준으로 하는 것은 아니다. 각각의 코너 구조체 또는 평면 구조체는 저장탱크의 바닥뿐만 아니라, 천장과 측벽에도 부착될 수 있으며, 예를 들어, 각각의 코너 구조체 또는 평면 구조체가 저장탱크의 바닥에 부착된 경우에는 각각의 코너 구조체 또는 평면 구조체에 있어서의 '상부' 및 '하부'가 저장탱크 전체에 있어서의 '상부' 및 '하부'와 동일한 방향성을 가지지만, 각각의 코너 구조체 또는 평면 구조체가 저장탱크의 천장이나 측면에 부착된 경우에는 각각의 코너 구조체 또는 평면 구조체에 있어서의 '상부' 및 '하부'가 저장탱크 전체에 있어서의 '상부' 및 '하부'와 상이한 방향성을 가진다.
본 발명의 일 실시형태에 따른 코너 구조체(100) 및 평면 구조체(300)에 의해 형성되는 액화가스 저장탱크는, 도 1을 참조하여 전술한 저장탱크와 마찬가지로, 선체의 구조벽(hull; 12, 14) 상에 적층되는 단열벽 및 밀봉벽을 갖는다. 다만, 도 1에 도시된 종래의 저장탱크에서는 2차 단열벽, 2차 밀봉벽, 1차 단열벽, 및 1차 밀봉벽이 차례로 번갈아 적층되는 것에 비해, 본 발명의 일 실시형태에 따른 코너 구조체(100) 및 평면 구조체(300)를 갖는 저장탱크는 단열벽 상에 밀봉벽이 설치되고, 단열벽 사이에 밀봉벽이 개재되지 않는다. 단열벽은, 복수개의 모듈화된 단열 구조체(예를 들어, 코너 구조체(100), 평면 구조체(300) 등)들이 선체의 구조벽(12, 14) 상에 배열됨으로써 형성될 수 있다.
도 2에는 본 발명의 일 실시형태에 따른 코너 구조체의 사시도가 도시되어 있고, 도 3에는 도 2의 A-A 평면을 따라 취해진 단면도가 도시되어 있다. 도 2에는 본 발명의 일 실시형태에 따른 코너 구조체(100)가, 1차 및 2차 멤브레인(51, 52), 그리고 평면 구조체(300)의 일부와 함께 도시되어 있다. 1차 및 2차 멤브레인(51, 52)의 형태와 평면 구조체(300)의 형태는 도시된 것만으로 한정되는 것은 아니다.
도 2 및 도 3에 도시된 바와 같이, 본 발명의 일 실시형태에 따른 코너 구조체(100)는, 저장탱크(10; 도 1 참조)가 설치될 수 있도록 선체 내부공간을 구획하는 벽체, 즉 내부벽(12; 도 1 참조)이나 격벽(14; 도 1 참조)과 같은 선체 구조벽의 표면에 배치되는 단열부재(110)와, 상기 단열부재(110) 상에 지지되며 밀봉용 멤브레인(51, 52)이 접합되는 가동부재(130)를 포함한다.
여기에서, 가동부재(130)는, 초저온 상태인 LNG의 선하적에 따른 온도변화로부터 기인하는 열변형이나 파도 등에 의한 선체의 변형이 발생할 경우, 후술하는 바와 같이 단열부재(110)에 대하여 미세한 변위가 가능하도록 설치된다. 즉, 가동부재(130)와 단열부재(110)는 서로에 대해 상대적인 변위가 가능하도록 구성된다.
본 발명의 일 실시형태에 따르면, 단열부재(110)는, 가동부재(130)와의 사이에서는 결합구조를 가지지만, 선체 구조벽(12, 14)과의 사이에서는 결합구조를 가지지 않도록 구성될 수 있다. 후술하는 바와 같이 단열부재(110)는 마스틱(18)을 사이에 두고 선체 구조벽(12, 14) 상에 얹혀있을 뿐, 별도의 기계적인 결합구조에 의해 결합되지 않을 수 있다.
각각의 단열부재(110)는, 예를 들어 폴리우레탄 폼 소재의 단열재와 플라이우드에 의해 만들어질 수 있다. 다만, 코너 구조체(100)에 포함된 단열부재(110)의 소재 및 구조에 의해 본 발명이 한정되는 것은 아니다.
단열부재(110)는, 하부 판(112), 하부 단열재(114), 상부 단열재(118) 및 상부 판(122, 124)을 포함할 수 있다. 하부 판(112)은 한 장의 플라이우드로 이루어질 수 있고, 상부 판(122, 124)은 2장의 플라이우드로 이루어질 수 있다. 단열부재(110)는 하부 단열재(114)와 상부 단열재(118) 사이에 개재되는 중간 판(116)을 더 포함하도록 구성될 수도 있다. 이 경우, 중간 판(116)은 한 장의 플라이우드로 이루어질 수 있다. 도 3 내지 도 8에는 중간 판(116)을 가지는 단열부재(110)가 도시되어 있고, 도 14 및 도 15에는 중간 판을 가지지 않는 단열부재(110A 및 110B)가 도시되어 있다. 본 발명은 중간 판의 존재 여부나, 단열부재의 구조 및 형상 등에 의해 한정되지 않음은 물론이다.
상부 단열재(118)와 하부 단열재(114)는 동일한 소재, 예를 들어 폴리우레탄 폼(PUF) 또는 강화-폴리우레탄 폼(R-PUF)으로 만들어질 수 있으며, 하부 단열재(114)의 밀도는 상부 단열재(118)보다 낮거나 같은 밀도값을 갖도록 발포성형될 수 있다. 예를 들어 상부 단열재(118)는 80 내지 240kg/㎥의 밀도를 가질 수 있다. 극저온의 액화가스와 상대적으로 가깝게 위치되는 상부 단열재(118)는 상대적으로 고밀도로 제작되어 단열성능을 향상시키고, 극저온의 액화가스와 상대적으로 멀리 위치(선체 구조벽 측에 더욱 가깝게 위치)되는 하부 단열재(114)는 상대적으로 저밀도로 제작되어 단열부재(110)의 무게를 경량화시킬 수 있다. 따라서, 저장탱크의 BOR 향상과 경량화를 동시에 달성할 수 있게 된다.
단열부재(110)의 측면에는 상부 단열재(118) 및 하부 단열재(114)를 보호하기 위한 글래스 울 소재의 보호층(도시생략)이 적층될 수 있다.
도시하지는 않았지만, 단열부재(110)는, 하부 단열재(114)가 강도 보강이 요구될 정도로 상대적으로 저밀도로 제작되는 경우, 하부 단열재(114)를 보강하기 위해, 하부 판(112)과 중간 판(116)을 잇는 보강 판(도시생략)을 하나 이상 포함할 수 있다. 보강 판은 플라이우드로 만들어질 수 있다. 하부 단열재(114) 내에 복수개의 보강 판이 설치될 경우, 복수개의 보강 판은 서로 평행하게 배열될 수 있다. 단열부재(110)의 크기나 하부 단열재(114)의 밀도에 따라 설치되는 보강 판의 개수는 달라질 수 있다.
위에서는 단열부재(110)의 하부 단열재(114)를 보강하기 위해, 평행하게 배열되는 보강 판을 사용하는 것을 예시하였으나, 플라이우드 소재의 단열박스를 사용하거나, 보강 판을 격자 형태로 배열하는 등의 변형이 이루어질 수도 있다. 또, 단열부재(110)는 상부 단열재와 하부 단열재의 2층 구조를 가지는 대신에, 후술하는 중간 단열재(140)와 마찬가지로, 단일 층의 단열재로 형성될(즉, 중간 판(116)이 생략될) 수도 있다.
단열부재(110)와 선체 구조벽(12, 14) 사이에는 마스틱(mastic)(18)이 개재될 수 있다. 본 실시형태의 코너 구조체(100)에 따르면, 단열부재(110)와 선체 구조벽(12, 14) 사이에 마스틱(18)이 개재될 뿐, 코너 구조체(100)의 단열부재(110)를 선체 구조벽(12, 14)에 고정시키기 위한 고정구조, 예컨대 스터드 볼트 및 너트와 같은 기계적인 고정부재를 가지지 않을 수 있다.
가동부재(130)는, 1차 멤브레인(51)이 접합되는 1차 접합부(132), 이 1차 접합부(132)와는 단차를 가지도록 형성되고 2차 멤브레인(52)이 접합되는 2차 접합부(134), 및 단열부재(110)와의 결합을 위해 2차 접합부(134)로부터 연장되는 플랜지부(136)를 포함한다. 가동부재(130)의 플랜지부(136)가 2장의 플라이우드로 이루어지는 단열부재(110)의 상부 판(122, 124)들 사이에 슬라이딩 가능하게 개재됨으로써 단열부재(110)와 가동부재(130)가 연결된다.
예를 들어, 2차 접합부(134)와 플랜지부(136)는 한 장의 금속판(예컨대 두께 3t의 SUS)을 구부려서 만들어질 수 있고, 1차 접합부(132)는 2차 접합부(134) 상에 단면이 직사각형인 금속막대(예컨대 두께 13t의 SUS)를 부착시켜서 만들어질 수 있다.
전술한 바와 같이 밀봉용 멤브레인은, 액화가스와 직접 접촉하면서 1차 밀봉벽을 형성하는 1차 멤브레인(51)과, 2차 밀봉벽을 형성하는 2차 멤브레인(52)을 포함한다. 1차 멤브레인(51)과 2차 멤브레인(52)이 서로 일정한 간격을 두고 예를 들어 용접에 의해 접합될 수 있도록, 가동부재(130)에는 1차 접합부(132)와 2차 접합부(134)가 각각 형성될 수 있다. 1차 접합부(132)와 2차 접합부(134) 사이의 높이 차이는 1차 멤브레인(51)과 2차 멤브레인(52) 사이에 형성되는 간격과 동일하게 설정될 수 있다.
1차 멤브레인(51)과 2차 멤브레인(52) 사이에는 간격 유지 및 화물로부터의 하중 지지를 위한 지지판재(53)가 개재될 수 있다. 지지판재(53)는 예를 들어 플라이우드로 제작될 수 있다.
도 2 및 도 3에 도시된 코너 구조체(100)는, 예를 들어, 저장탱크를 형성하는 복수개의 벽면들 중 2개의 벽면이 90도의 각도로 이어지는 모서리 부분에 설치되기 위해, 2개의 단열부재(110)가 90도의 각도로 배향되도록 배치되어 있다. 저장탱크를 형성하는 복수개의 벽면들 중 2개가 90도 이외의 각도(예컨대 30도, 45도, 60도, 108도, 116도, 135도, 270도 등)로 이어지는 경우에는, 그 각도에 맞춰 단열부재를 배향시킬 수 있다. 이어지는 설명 및 도면에서는 90도 코너 구조체를 예로 들어 설명하고 있지만, 이는 예시일 뿐이며, 본 발명은 코너 구조체가 이루는 각도에 의해 제한되는 것은 아니다.
서로 상이한 방향으로 배향된 2개의 단열부재(110)와 선체 구조벽(12, 14)에 의해 구획형성되는 공간은, 해당 공간에 상응하는 형상을 갖는 중간 단열재(140)에 의해 채워질 수 있다. 도 2 및 도 3에서 중간 단열재(140)의 단면 형상은 대략 정사각형을 이루지만, 2개의 단열부재(110)가 이루는 각도에 맞춰 중간 단열재의 형상은 달라질 수 있다. 중간 단열재(140)는 예컨대 40 내지 240 kg/㎥의 밀도를 가지는 PUF 또는 R-PUF로 만들어질 수 있다.
단열부재(110)와 중간 단열재(140) 사이의 간극은 글래스 울 등의 단열재로 충전될 수 있다. 글래스 울은 예컨대 90 kg/㎥보다 작은 밀도를 가질 수 있다. 글래스 울은 예컨대 20 내지 50 kg/㎥의 밀도를 가질 수 있다.
중간 단열재(140)의 모서리 부분, 즉, 2개의 단열부재(110)들이 인접하는 부위의 모서리 부분(도 4에서 중간 단열재(140)의 오른쪽 상부의 모서리 부분)은 파손 방지를 위해 모따기 처리될 수 있다.
단열부재는 선체 구조벽 상에 예를 들어 스터드 볼트 및 너트와 같은 기계적인 방식으로 고정되도록 변형된 구조를 가질 수 있다. 또, 단열부재는 인접하는 평면 구조체(300)에 의해 고정되도록 변형된 구조를 가질 수도 있다.
본 발명의 일 실시형태에 따른 코너 구조체(100)는, 탱크 내부를 향하는 표면이 곡면으로 형성되는 곡면부재(150)를 더 포함할 수 있다. 곡면부재(150)는 예를 들어 PLW 혹은 고밀도 폴리우레탄 폼(예컨대 80 내지 240 kg/㎥의 PUF) 소재로 이루어질 수 있다. 또는, 곡면부재(150)는 예를 들어 셀 구조를 갖는 유기 단열재로 이루어질 수 있다. 곡면부재(150)는 2개의 단열부재(110)의 상부 판(122, 124) 사이에 배치되어 멤브레인(51, 52)을 지지한다.
도 4 내지 도 8에는 본 발명의 일 실시형태에 따른 코너 구조체의 조립 과정을 설명하기 위한 단면도가 도시되어 있고, 도 9에는 단열부재에 대하여 변위 가능하게 설치되는 가동부재를 설명하기 위한 사시도가 도시되어 있고, 도 10에는 코너 구조체의 가동 플레이트와 단열부재의 상부 판을 부분적으로 확대하여 도시한 일부 확대 평면도가 도시되어 있고, 도 11에는 1차 및 2차 멤브레인이 접합되어 있는 코너 구조체의 주요부 단면도가 도시되어 있다.
본 발명의 일 실시형태에 따른 코너 구조체(100)는 가동부재(130)가 단열부재(110)에 대해 일체로 부착되어 하나의 모듈로서 제작될 수 있다. 가동부재(130)가 부착된 단열부재(110)는, 저장탱크를 갖는 선박을 건조하는 현장에서 제작될 수도 있고, 또는 인근이나 원격지의 공장에서 모듈로서 제작된 후 현장으로 운반될 수도 있다.
도 4, 도 10 및 도 11에 도시된 바와 같이, 가동부재(130)는 단열부재(110)의 상부 판(122, 124)에 슬라이딩 가능하게 결합될 수 있다. 상세하게는, 단열부재(110)의 2개의 상부 판 중 제1 상부 판(122)(15t의 플라이우드)에는 가동부재(130)의 플랜지부(136)가 안착될 수 있는 오목부(122a)가 형성되고, 제2 상부 판(124)(15t의 플라이우드)에는 가동부재(130)의 2차 접합부(134)가 삽입될 수 있는 개구부(124a)가 형성되어 있다.
오목부(122a)의 길이 및 폭은 가동부재(130)의 길이 및 폭보다 더 큰 치수를 갖는다. 개구부(124a)의 길이는 가동부재(130)의 2차 접합부(134)의 길이보다 더 큰 치수를 갖는다. 개구부(124a)의 폭은 가동부재(130)의 2차 접합부(134)의 폭과 같거나 더 큰 치수를 갖는다. 도 10에 도시된 바와 같이, 개구부(124a)와 가동부재(130)의 2차 접합부(134)와의 사이에는 간극(a, b)이 형성되어 있다. 또, 도 11에 도시된 바와 같이, 오목부(122a)의 측벽면과 가동부재(130)의 플랜지부(136)와의 사이에도 간극이 형성되어 있다.
따라서, 제1 상부 판(122), 가동부재(130) 및 제2 상부 판(124)을 차례로 적층시키고, 제1 상부 판(122)과 제2 상부 판(124)을 서로에 대해 고정시킴으로써, 가동부재(130)는 제1 상부 판(122)과 제2 상부 판(124) 사이에서 슬라이딩 가능하게 개재될 수 있다.
가동부재(130)의 2차 접합부(134)와 제1 상부 판(122)의 오목부(122a)의 바닥면과의 사이에는 스페이서(126)가 배치될 수 있다. 이 스페이서(126)는 제1 상부 판(122)과 일체로 형성될 수도 있고, 별도의 부재로 형성될 수도 있다. 스페이서와 플랜지부(136) 사이에도 간극이 형성되어 있다.
도 5에 도시된 바와 같이, 곡면부재(150)는 2개의 단열부재(110)의 사이에 위치된다. 곡면부재(150)의 곡면부(152)의 양쪽 가장자리는 가동부재(130)와 근접하지만 가동부재(130)와 접촉하지는 않는다.
도 6 내지 도 8에 도시된 바와 같이, 본 발명의 일 실시형태에 따른 코너 구조체(100) 상에는 2차 멤브레인(52), 지지판재(53) 및 1차 멤브레인(51)이 차례로 적층될 수 있다.
가동부재(130)의 2차 접합부(134) 상에는 2차 멤브레인(52)이 접합된다. 2차 멤브레인(52)은, 예를 들어 90도로 구부러지는 부분인 2차 곡면부(52a)와, 편평한 판 형상을 가지도록 형성된 2차 평면부(52b)를 포함할 수 있다. 2차 곡면부(52a)는 서로 다른 단열부재(110) 상에 배치된 2개의 가동부재(130) 사이에서 연장되며, 곡면부재(150)의 곡면부(152) 상에 안착될 수 있도록 단면이 대략 원호형상을 가지면서 둥글게 만곡되어 있다. 2차 평면부(52b)는 멤브레인의 열변형에 대응하기 위해 주름을 가질 수 있다.
2차 멤브레인(52) 상에는 지지판재(53)가 적층된다. 2차 멤브레인과 마찬가지로, 지지판재(53)는 예를 들어 90도로 구부러지는 부분인 곡면부 지지판재(53a)와, 편평한 판 형상을 가지도록 형성된 평면부 지지판재(53b)를 포함할 수 있다. 2차 곡면부(52a)는 서로 다른 단열부재(110) 상에 배치된 2개의 가동부재(130) 사이에서 연장되며, 곡면부재(150)의 곡면부(152) 상에 안착될 수 있도록 단면이 대략 원호형상을 가지면서 둥글게 만곡되어 있다. 곡면부 지지판재(53a)는 강화-폴리우레탄 폼으로 만들어질 수도 있다.
가동부재(130)의 1차 접합부(132) 상에는 1차 멤브레인(51)이 접합된다. 2차 멤브레인과 마찬가지로, 1차 멤브레인(51)은, 예를 들어 90도로 구부러지는 부분인 1차 곡면부(51a)와, 편평한 판 형상을 가지도록 형성된 2차 평면부(51b)를 포함할 수 있다. 1차 곡면부(51a)는 서로 다른 단열부재(110) 상에 배치된 2개의 가동부재(130) 사이에서 연장되며, 곡면부 지지판재(53a) 상에 안착될 수 있도록 단면이 대략 원호형상을 가지면서 둥글게 만곡되어 있다. 1차 평면부(51b)는 멤브레인의 열변형에 대응하기 위해 주름을 가질 수 있다.
지지판재(53)는 1차 및 2차 멤브레인(51, 52)이 서로 평행하게 배열된 부분, 즉 주름이 형성된 부분을 제외한 나머지 전체에 걸쳐서 개재될 수 있지만, 주름이 형성된 부분을 제외한 나머지 부분 중 일부에 걸쳐서 개재될 수도 있다.
지지판재(53)로서는, 일정한 두께의 플라이우드가 단독으로 사용된 것, 일정한 두께의 폴리우레탄 폼(또는 강화 폴리우레탄 폼)이 단독으로 사용된 것, 혹은 폴리우레탄 폼(또는 강화 폴리우레탄 폼)에 플라이우드가 부착된 것 등을 사용할 수 있다.
도 9에 도시된 바와 같이, 하나의 단열부재(110) 상에는 복수개, 예를 들어 2개의 가동부재(130)가 일직선상으로 배열될 수 있다. 그에 따라, 소정의 각도로 배향된 2개의 단열부재(110)를 포함하는 1개의 코너 구조체(100)는 예를 들어 총 4개의 가동부재(130)를 가질 수 있다. 하나의 단열부재(110) 상에서 일직선상으로 배열된 가동부재(130)들은 예를 들어 트리플렉스 등과 같은 시트 형상의 밀봉재로 연결될 수 있다.
전술한 바와 같이 가동부재(130)는, 2차 멤브레인(52)이 접합되는 2차 접합부(134) 상에, 1차 멤브레인(51)이 접합되는 1차 접합부(132)를 부착시켜 만들어진다. 1차 접합부(132)와 2차 접합부(134)를 용접에 의해 접합하는 경우, 용접시 발생하는 열에 의해 가동부재(130)의 1차 접합부(132) 및 2차 접합부(134) 중 적어도 하나가 뒤틀려 형상이 변형될 수 있다.
여기서, 하나의 단열부재(110)에 대해 2개의 가동부재를 일직선상으로 배열할 경우, 하나의 단열부재(110)에 대해 기다란 1개의 가동부재를 배열하는 것에 비해 가동부재(130)의 길이를 짧게 할 수 있으며, 그로 인해 변형량을 감소시킬 수 있게 된다. 나아가서 코너 구조체에 사용되는 가동부재의 전체 무게를 감소시킬 수 있게 된다.
하나의 단열부재(110)에 대해 상대적으로 길이가 긴 1개의 가동부재를 설치할 경우, 예를 들어, 이 가동부재는 1800mm의 길이를 가지며, 용접으로 인한 변형량은 7 ~ 8mm에 달한다. 그에 비해, 하나의 단열부재(110)에 대해 상대적으로 길이가 짧은 2개의 가동부재를 일직선상으로 설치할 경우, 예를 들어, 각각의 가동부재는 500 ~ 760mm의 길이를 가지며, 용접으로 인한 변형량은 대략 1 ~ 1.5mm에 불과하다.
또한, 하나의 단열부재(110)에 대해 상대적으로 길이가 긴 1개의 가동부재를 설치할 경우, 하나의 코너 구조체에 사용되는 가동부재(2개)의 총 무게가 33.4kg에 달한다. 그에 비해, 하나의 단열부재(110)에 대해 상대적으로 길이가 짧은 2개의 가동부재를 일직선상으로 설치할 경우, 하나의 코너 구조체에 사용되는 가동부재(4개)의 총 무게가 24 ~ 28kg에 불과하다.
이와 같이, 하나의 단열부재(110)에 대해 2개 이상의 가동부재(130)를 일직선상으로 배열하여 설치하면, 가동부재(130)의 제작시 발생할 수 있는 변형량을 감소시킬 수 있는 동시에 하나의 코너 구조체에 사용되는 가동부재(130)의 총 무게를 감시킬 수 있어, 무게가 가볍고 정밀한 코너 구조체를 만들어낼 수 있다.
한편, 전술한 바와 같이 화물의 선적 및 하역시나 해상에서의 외력 발생시, 선체나 멤브레인의 변형 등에 기인하여 가동부재(130)와 단열부재(110)는 서로에 대해 상대적인 변위가 발생할 수 있다. 도 10 및 도 11에 도시된 바와 같이, 단열부재(110)의 제1 상부 판(122)에 형성된 오목부(122a)의 크기가 가동부재(130)의 플랜지부(136)의 크기보다 크고, 단열부재(110)의 제2 상부 판(124)에 형성된 개구부(124a)의 크기가 가동부재(130)의 2차 접합부(134)의 크기보다 크기 때문에, 변위가 발생하더라도 이를 흡수할 수 있게 된다.
또한, 액화가스의 선적시 발생하는 열변형에 의해 멤브레인(51, 52)이 수축할 경우, 멤브레인(51, 52)이 접합되어 있는 가동부재(130)도 함께 수축할 수 있다. 이 때 가동부재(130)의 양쪽 끝부분은 가동부재의 중앙부분 쪽으로 미세하게 슬라이딩하면서 변위할 수 있다. 전술한 바와 같이 가동부재(130)의 플랜지부(136)가 제1 상부 판(122)과 제2 상부 판(124)의 사이에 슬라이딩 가능하게 개재되어 있으므로, 가동부재(130)의 수축 및 팽창 발생시에도 단열부재(110)에 대한 가동부재(130)의 결합 상태는 계속 유지될 수 있다.
상술한 바와 같이, 상기 저장탱크(10)는 1차 및 2차 멤브레인(51, 52)에 의해서 액밀 상태로 밀봉된다. 즉, 저장탱크(10)는 복수개의 금속판이 용접에 의해 서로 일체로 연결됨으로써 2겹의 밀봉벽으로 둘러싸인 하나의 저장공간을 형성하며, 그에 따라 상기 저장탱크(10)는 액화가스를 누출 없이 저장 및 수송할 수 있게 된다.
초저온 상태인 LNG 등의 액화가스와 직접 접촉하는 1차 멤브레인(51)과, 이 1차 멤브레인(51)으로부터 이격되도록 설치되는 2차 멤브레인(52)에는 공지된 바와 같이 액화가스의 선하적에 따른 온도변화에 대응하기 위해 주름이 형성될 수 있다. 주름부를 비롯하여 1차 멤브레인(51)과 2차 멤브레인(52)의 형상, 크기 등은 도면에 도시된 것으로 한정되지 않는다.
이러한 1차 및 2차 멤브레인(51, 52)은 다수의 코너 구조체(100)와 앵커 구조체(도시생략)를 통하여 선박의 선체 구조벽(12, 14)에 간접적으로 연결될 수 있다.
다시 도 2 및 도 3을 참조하면, 코너 구조체(100)의 주변에는 평면 구조체(300)가 배열될 수 있다. 평면 구조체(300)는, 전술한 코너 구조체(100)의 단열부재(110)와 비교하여, 1차 단열패널(310)과 2차 단열패널(320)이 적층된 구조를 가진다는 점에서 서로 상이하다.
도 2 및 도 3에 도시된 바와 같이, 단열벽을 형성하기 위한 본 발명의 일 실시형태에 따른 평면 구조체(300)는, 1차 단열패널(310)과 2차 단열패널(320)을 포함할 수 있으며, 1차 단열패널(310)과 2차 단열패널(320)은 예를 들어 PU 본딩(PU bonding)에 의해 서로 접착되어 일체화될 수 있다.
평면 구조체(300)의 1차 단열패널(310)과 2차 단열패널(320)은, 예를 들어 폴리우레탄 폼 소재의 단열재와 플라이우드에 의해 만들어질 수 있다. 보다 상세하게는, 밀봉벽 측에 더욱 가깝게 위치되는 평면 구조체(300)의 1차 단열패널(310)은, 예를 들어 폴리우레탄 폼 등으로 만들어지는 1차 단열재(314)와, 이 1차 단열재(314)의 상부면 및 하부면에 접착되는 1차 상부 판(312) 및 1차 하부 판(316)을 포함할 수 있다. 1차 단열재(314)와 1차 상부 및 하부 판(312, 316) 사이의 접착은 예를 들어 PU 본딩에 의해 이루어질 수 있다.
또한, 선체 구조벽 측에 더욱 가깝게 위치되는 평면 구조체(300)의 2차 단열패널(320)은, 예를 들어 폴리우레탄 폼 등으로 만들어지는 2차 단열재(324)와, 이 2차 단열재(324)의 상부면 및 하부면에 적층되는 2차 상부 판(322) 및 2차 하부 판(326)을 포함할 수 있다.
본 발명에 따르면, 평면 구조체(300)를 1차 단열패널(310)과 2차 단열패널(320)을 부착시켜 2층으로 제작함으로써 저장탱크의 외부로부터 내부로의 열 유입을 더욱 양호하게 차단할 수 있다.
1차 단열패널(310)과 2차 단열패널(320)을 서로 부착시켜 만들어지는 평면 구조체(300)는 사전에 공장에서 모듈화되어 사전-제작되며, 모듈화된 각 단위 평면 구조체는 현장으로 운반된 후, 저장탱크를 제작하기 위해 선체 구조벽에 장착된다.
평면 구조체(300)의 측면에는 1차 단열재(314) 및 2차 단열재(324)를 보호하기 위한 글래스 울 소재의 보호층(도시생략)이 적층될 수 있다. 코너 구조체(100)와 평면 구조체(300) 사이에는 글래스 울 등의 단열물질이 채워질 수 있다.
위에서는 평면 구조체(300)의 2차 단열재(324)를 보강하기 위해, 평행하게 배열되는 보강 판을 사용하는 것을 예시하였으나, 플라이우드 소재의 단열박스를 사용하거나, 보강 판을 격자 형태로 배열하는 등의 변형이 이루어질 수도 있다. 또, 평면 구조체(300)는 1차 단열재와 2차 단열재의 2층 구조를 가지는 대신에, 전술한 중간 단열재(140)와 마찬가지로, 단일 층의 단열재로 형성될 수도 있다.
평면 구조체(300)와 선체 구조벽(12, 14) 사이에는 마스틱(mastic)(18)이 개재될 수 있다. 본 실시형태의 평면 구조체(300)에 따르면, 평면 구조체(300)를 선체 구조벽(12, 14)에 고정시키기 위한 고정구조, 예컨대 스터드 볼트 및 너트와 같은 기계적인 고정부재(도시생략)를 가질 수도 있다.
평면 구조체(300)의 상부표면 중앙에는 밀봉벽을 지지하기 위한 앵커 유닛(도시생략)이 장착될 수 있다. 평면 구조체(300)가 앵커 유닛을 포함하는 경우, 앵커 유닛을 갖는 평면 구조체는 앵커 구조체로서 기능할 수 있다. 액화가스 저장탱크의 제작시, 필요에 따라, 앵커 구조체와 평면 구조체를 적절히 배열하여 선체 구조벽에 장착할 수 있다.
코너 구조체(100)의 단열부재(110)와 마찬가지로, 평면 구조체(300)는 사전에 공장에서 모듈화되어 사전-제작되며, 모듈화된 각각의 단위 평면 구조체는 현장으로 운반된 후, 저장탱크를 제작하기 위해 선체 구조벽에 장착될 수 있다.
저장탱크(10)에 배열되는 각각의 코너 구조체(100), 앵커 구조체 및 평면 구조체는 별도의 장소에서 각각 하나의 모듈로서 제조된 후, 저장탱크(10)로 옮겨져 조립될 수 있다. 모듈화함에 따라 저장탱크의 제작시 작업성이 향상될 수 있다.
1차 및 2차 멤브레인(51, 52)은 코너 구조체(100)와 앵커 구조체에 의해서 지지되며, 평면 구조체는 단지 상기 1차 및 2차 멤브레인(51, 52)에 가해지는 LNG의 하중만 지지한다. 또한, 평면 구조체와 코너 구조체(100), 또는 평면 구조체와 앵커 구조체 사이에는 직접적인 결합관계가 없도록 구성될 수 있다.
상기된 바와 같이, 본 발명의 일 실시형태에 따르면, 1차 멤브레인(51)과 2차 멤브레인(52) 사이가 이격되어 있으며, 그 사이에는 지지판재(53)가 개재되어 있을 뿐, 단열재가 개재되어 있지는 않다. 종래의 대부분의 단열 방벽 구조는, LNG와 직접 접하는 1차 밀봉벽과 2차 밀봉벽 사이에 1차 단열벽을 개재시키고 있었기 때문에 1차 단열벽을 통과하여 1차 밀봉벽을 2차 밀봉벽에 의해 지지하기 위해 복잡한 구조가 요구되었다. 하지만, 본 발명에 따른 코너 구조체(100)는 1차 및 2차 멤브레인(51, 52) 사이에는 별도의 단열 기능을 수행하는 단열재를 개재시키지 않도록 구성되어 있기 때문에, 가동부재(130)의 1차 및 2차 접합부에 의해 상대적으로 용이하게 1차 및 2차 멤브레인(51, 52)을 지지할 수 있다.
또한, 본 발명에 따르면, 1차 멤브레인(51)과 2차 멤브레인(52) 사이가 이격되어 있기 때문에, 파도 등의 외력으로 인해 선체가 변형되어 저장탱크의 형상이 변형되더라도 1차 및 2차 멤브레인(51, 52) 사이에서 마찰이 일어나지 않고, 어느 한 쪽의 멤브레인에 충격이 가해져 손상이 발생하더라도 그 손상이 다른 한 쪽의 멤브레인에 직접적으로 전파되는 것을 방지할 수 있다.
한편, 밀봉은 1차 및 2차 멤브레인(51, 52)에 의해 이중 구조로 이루어진 것으로 설명하고 있으나, 3층 이상의 다중 구조로 적층되어 이루어지는 것도 물론 가능하다.
또, 본 발명에 따르면, 1차 및 2차 멤브레인(51, 52)이 접합되어 있는 가동부재(130)가, 전술한 바와 같이, 단열부재(110)에 대해서 미세하게 슬라이딩 가능하게 연결됨으로써, 1차 및 2차 멤브레인(51, 52)이 선체에 대하여 안정적으로 지지될 수 있다. 그에 따라, LNG의 선하적에 따른 열변형이나 파도 등의 외력에 의한 선체의 변형으로 인해 발생한 응력을 확실하게 흡수할 수 있게 된다.
가동부재(130)의 1차 접합부는, 도 12에 도시된 바와 같이, 단면이 직사각형인 금속막대로 만들어질 수 있거나, 절곡된 금속판으로 만들어질 수 있다. 도 12의 (a)에는 금속막대로 만들어진 1차 접합부(132)를 가지는 가동부재(130)의 조립 전 단면도가 도시되어 있고, 도 12의 (b)에는 한 장의 금속판을 절곡하여 형성한 'ㄷ' 자 형태의 형강으로 만들어진 1차 접합부(132A)를 가지는 가동부재(130A)의 조립 전 단면도가 도시되어 있다.
또한, 본 발명에 따른 가동부재는 도 13에 도시된 바와 같이 변형될 수 있다. 도 13의 (a)에는 상대적으로 길이가 짧은 2개의 1차 접합부(132')를 상대적으로 길이가 긴 1개의 2차 접합부(134') 상에 간격을 두고 일직선상으로 배열하여 접합시킨 가동부재(130')의 제1 변형예가 도시되어 있다. 플랜지부(136')는 2차 접합부(134')의 길이와 동일한 길이를 가질 수 있다.
도 13의 (b)에는 상대적으로 길이가 긴 1개의 1차 접합부(132")를 상대적으로 길이가 짧은 2개의 2차 접합부(134") 상에 접합시킨 가동부재(130")의 제2 변형예가 도시되어 있다. 제1 변형예의 가동부재(130')와는 달리, 제2 변형예의 가동부재(130")는 2개의 2차 접합부(134")가 간격을 두고 일직선상으로 배열하여 1개의 1차 접합부(132")에 대해 접합된다. 플랜지부(136")는 2차 접합부(134")의 길이와 동일한 길이를 가질 수 있다.
도 14에는 본 발명의 다른 실시형태에 따른 코너 구조체의 단면도가 도시되어 있다. 도 14에 도시된 코너 구조체(100A)는, 도 3에 도시된 코너 구조체(100)에 포함된 가동부재(130)와 동일한 구성의 가동부재(130)를 포함하고 있다. 또한, 도 14의 코너 구조체(100A)는, 가동부재(130)가 단열부재(110A)에 대해 슬라이딩 변위가 가능하도록 결합되어 있다는 점과, 하나의 단열부재(110A)에 대해 복수의 가동부재(130)가 간격을 두고 직선상으로 배열되어 있다는 점 등에 있어서도 도 3의 코너 구조체(100)와 동일하다. 다만, 도 14의 코너 구조체(100A)는, 도 3의 코너 구조체(100)에 비해, 단열부재의 구조에 있어서 차이점이 존재한다.
이하에서는 도 14의 코너 구조체(100A)와 도 3의 코너 구조체(100) 사이의 차이점을 중심으로 설명한다. 도 14의 코너 구조체(100A)에 있어서 도 3의 코너 구조체(100)와 동일하거나 유사한 구성요소에는 동일한 도면부호를 부여하고, 상세한 설명은 생략한다.
도 14의 코너 구조체(100A)는 단열부재(110A)의 상부 단열재(118A)와 하부 단열재(114A) 사이에 중간 판이 존재하지 않는다는 점에서 도 3의 코너 구조체(100)와 상이하다. 그에 따라 상부 단열재(118A)와 하부 단열재(114A)는 직접 접촉할 수 있다. 또, 상부 단열재(118A)의 크기와 하부 단열재(114A)의 크기가 상이할 수 있다. 예를 들어, 도 14의 코너 구조체(100A)에 있어서, 상부 단열재(118A)는 하부 단열재(114A)보다 커서, 상부 단열재(118A)의 일부가 하부 단열재(114A)의 끝면으로부터 돌출될 수 있다.
도 14의 코너 구조체(100A)는 제2 상부판(124A)의 크기보다 작은 제1 상부판(122A)을 가질 수 있다. 예를 들어, 도 14의 코너 구조체(100A)에 있어서, 제1 상부판(122A)은 상부 단열재(118A)의 표면 전체를 덮을 수 있는 크기를 가지는 대신에, 가동부재(130)의 결합을 위해 필요한 부분에만 설치될 수 있다.
한편, 도 14를 참조하면, 평면 구조체(300A)에 있어서도 도 3에 도시된 평면 구조체(300)와의 사이에서 차이점이 존재한다. 도 14의 평면 구조체(300A)는 상부 단열재(314A)와 하부 단열재(324A)를 가지며, 상부 단열재(314A)와 하부 단열재(324A) 사이에는 플라이우드 소재의 판이 존재하지 않는다. 그에 따라 상부 단열재(314A)와 하부 단열재(324A)는 직접 접촉할 수 있다. 평면 구조체(300A)의 상부 단열재(314A)의 크기와 하부 단열재(324A)의 크기는 상이할 수 있다. 예를 들어, 도 14의 평면 구조체(300A)에 있어서, 상부 단열재(314A)는 하부 단열재(324A)보다 작을 수 있다.
도시의 편의상, 도 14에는 1차 및 2차 멤브레인(51, 52)이 코너 구조체(100A) 상에만 도시되어 있고, 평면 구조체(300A) 상에서는 생략되어 있다.
도 15에는 본 발명의 또 다른 실시형태에 따른 코너 구조체의 단면도가 도시되어 있다. 도 15에 도시된 코너 구조체(100B)는, 도 3에 도시된 코너 구조체(100)에 포함된 가동부재(130)와 동일한 구성의 가동부재(130)를 포함하고 있다. 또한, 도 15의 코너 구조체(100B)는, 가동부재(130)가 단열부재(110B)에 대해 슬라이딩 변위가 가능하도록 결합되어 있다는 점과, 하나의 단열부재(110B)에 대해 복수의 가동부재(130)가 간격을 두고 직선상으로 배열되어 있다는 점 등에 있어서도 도 3의 코너 구조체(100)와 동일하다. 다만, 도 14의 코너 구조체(100B)는, 도 3의 코너 구조체(100)에 비해, 단열부재의 구조에 있어서 차이점이 존재한다.
이하에서는 도 15의 코너 구조체(100B)와 도 3의 코너 구조체(100) 사이의 차이점을 중심으로 설명한다. 도 15의 코너 구조체(100B)에 있어서 도 3의 코너 구조체(100)와 동일하거나 유사한 구성요소에는 동일한 도면부호를 부여하고, 상세한 설명은 생략한다.
도 3의 코너 구조체(100)는 2개의 단열부재(110B) 사이에 중간 단열재(140)가 배열되어 있지만, 도 15의 코너 구조체(100B)는 중간 단열재를 사용하지 않고, 단열부재(110B)들끼리 직접 접하도록 단열부재(110B)의 형상을 변형시키고 있다. 예를 들어, 도 15에 도시된 바와 같이 2개의 단열부재(110B)가 90도 각도로 배향되는 경우, 2개의 단열부재(110B)들이 서로 접하는 측면은 대략 45도 각도의 경사면(110Ba)으로 형성될 수 있다.
도 15의 코너 구조체(100B)는 단열부재(110B)의 상부 단열재(118B)와 하부 단열재(114B) 사이에 중간 판이 존재하지 않는다는 점에서 도 3의 코너 구조체(100)와 상이하다. 그에 따라 상부 단열재(118B)와 하부 단열재(114B)는 직접 접촉할 수 있다. 또, 상부 단열재(118B)의 크기와 하부 단열재(114B)의 크기가 상이할 수 있다. 예를 들어, 도 15의 코너 구조체(100B)에 있어서, 상부 단열재(118B)는 하부 단열재(114B)보다 작아서, 하부 단열재(114B)의 일부가 상부 단열재(118B)의 끝면으로부터 돌출될 수 있다.
또, 도 15의 코너 구조체(100B)는 단열부재(110B)와 평면 구조체(300B) 사이에 배열(즉, 2개의 단열부재(110B)의 서로 인접하는 방향의 반대쪽에 배열)되는 상부 보조 단열재(117B) 및 하부 보조 단열재(115B)를 포함할 수 있다. 하부 보조 단열재(115B)는 하부 단열재(114B)와 평면 구조체(300B) 사이에 배열되고, 상부 보조 단열재(117B)는 상부 단열재(118B)와 평면 구조체(300B) 사이에 배열될 수 있다. 예를 들어, 도 15의 코너 구조체(100B)에 있어서, 상부 보조 단열재(117B)는 하부 보조 단열재(115B)보다 클 수 있다.
도 15의 코너 구조체(100B)에 있어서, 제1 상부판(122B)과 제2 상부판(124B)은 대략 동일한 크기를 가질 수 있다.
한편, 도 15를 참조하면, 평면 구조체(300B)에 있어서도 도 3에 도시된 평면 구조체(300)와의 사이에서 차이점이 존재한다. 도 15의 평면 구조체(300B)는 상부 단열재(314B)와 하부 단열재(324B)를 가지며, 상부 단열재(314B)와 하부 단열재(324B) 사이에는 플라이우드 소재의 판이 존재하지 않는다. 그에 따라 상부 단열재(314B)와 하부 단열재(324B)는 직접 접촉할 수 있다. 평면 구조체(300B)의 상부 단열재(314B)의 크기와 하부 단열재(324B)의 크기는 상이할 수 있다. 예를 들어, 도 15의 평면 구조체(300B)에 있어서, 상부 단열재(314B)는 하부 단열재(324B)보다 작을 수 있다.
도시의 편의상, 도 15에는 1차 및 2차 멤브레인(51, 52)이 코너 구조체(100B) 상에만 도시되어 있고, 평면 구조체(300B) 상에서는 생략되어 있다.
도 15에 도시된 평면 구조체(300B)는 도 14에 도시된 평면 구조체(300A)와 동일한 것일 수 있다.
본 발명의 상기 실시형태에서 사용되는 단열재, 단열부재 또는 단열물질은, 예를 들어, 글래스 울, 미네랄 울, 폴리에스테르 충전재, 폴리우레탄 발포체, 멤라민 발포체, 폴리에틸렌 발포체, 폴리프로필렌 발포체, 실리콘 발포체, 폴리비닐클로라이드 발포체 등으로 이루어질 수 있다.
또한, 본 발명의 상기 실시형태에서, 멤브레인이 예컨대 GTT Mark-Ⅲ형에 사용되는 주름진(corrugated) 스테인리스강으로 이루어진 것에 대해 기재하고 있으나, 멤브레인은 예컨대 GTT의 No.96에 사용되는 인바강으로 이루어질 수도 있다.
더불어, 본 발명은 선반의 선체 내부에 설치되는 액화가스 저장탱크뿐만 아니라, 육상에 설치되는 액화가스 저장탱크에도 동일하게 적용할 수 있음은 물론이다.

Claims (13)

  1. 액화가스를 적재하는 저장탱크의 모서리에 설치되어, 액화가스의 누출을 방지하는 밀봉벽을 지지하는 액화가스 저장탱크의 코너 구조체로서,
    서로 상이한 방향으로 배향되도록 선체 구조벽의 내부 표면에 배치되는 2개의 단열부재와;
    각각의 상기 단열부재 상에 설치되고 상기 밀봉벽이 접합되는 가동부재;
    를 포함하며,
    상기 가동부재는 상기 단열부재에 대하여 슬라이딩 변위가 가능하도록 결합되며,
    하나의 상기 단열부재에 대해 복수의 상기 가동부재가 서로 간격을 두고 일직선상으로 배열되는, 액화가스 저장탱크의 코너 구조체.
  2. 청구항 1에 있어서,
    상기 밀봉벽은 1차 멤브레인 및 2차 멤브레인을 포함하며,
    상기 가동부재는, 상기 1차 멤브레인이 접합되는 1차 접합부와, 상기 1차 접합부와는 단차를 가지도록 형성되고 상기 2차 멤브레인이 접합되는 2차 접합부와, 상기 단열부재와의 결합을 위해 상기 2차 접합부로부터 연장되는 플랜지부를 포함하며,
    상기 플랜지부가 2장의 플라이우드로 이루어지는 상기 단열부재의 상부 판들 사이에 슬라이딩 가능하게 개재됨으로써 상기 단열부재와 상기 가동부재는 상대적인 슬라이딩 변위가 가능한 방식으로 결합되는, 액화가스 저장탱크의 코너 구조체.
  3. 청구항 2에 있어서,
    상기 2차 접합부 및 상기 플랜지부는 한 장의 금속판을 구부려서 형성되고, 상기 1차 접합부는 상기 2차 접합부 상에 단면이 직사각형인 금속막대 또는 한 장의 금속판을 절곡하여 형성한 'ㄷ' 자 형태의 형강을 부착시켜서 형성되는, 액화가스 저장탱크의 코너 구조체.
  4. 청구항 1에 있어서,
    상기 단열부재는, 평평한 플레이트 형상을 가지는 하부 판 및 상부 판과; 상기 하부 판 상에 적층되는 하부 단열재와; 상기 하부 단열재와 상기 상부 판 사이에 개재되는 상부 단열재를 포함하며,
    상기 상부 단열재 및 상기 하부 단열재는 동일한 소재의 단열재로 만들어지는, 액화가스 저장탱크의 코너 구조체.
  5. 청구항 4에 있어서,
    상기 하부 단열재는 상기 상부 단열재보다 밀도가 낮거나 같은, 액화가스 저장탱크의 코너 구조체.
  6. 청구항 1에 있어서,
    서로 상이한 방향으로 배향된 2개의 단열부재와 상기 선체 구조벽에 의해 둘러싸이는 공간에 배치되는 중간 단열재를 더 포함하는, 액화가스 저장탱크의 코너 구조체.
  7. 청구항 4에 있어서,
    서로 상이한 방향으로 배향된 2개의 단열부재와 상기 선체 구조벽에 의해 둘러싸이는 공간에 배치되는 중간 단열재를 더 포함하며,
    상기 중간 단열재는 상기 상부 단열재 및 상기 하부 단열재보다 밀도가 낮거나 같은, 액화가스 저장탱크의 코너 구조체.
  8. 청구항 1에 있어서,
    2개의 상기 단열부재의 상부 판 사이에 배치되어 상기 밀봉벽을 지지하고, 저장탱크 내부를 향하는 표면이 곡면으로 형성되는 곡면부재를 더 포함하는, 액화가스 저장탱크의 코너 구조체.
  9. 청구항 1에 있어서,
    상기 단열부재는 2개의 상부 판을 포함하고, 상기 가동부재는 상기 밀봉벽이 접합되는 접합부와 상기 접합부로부터 연장되는 플랜지부를 포함하며,
    2개의 상부 판 중 아래쪽에 위치되는 제1 상부 판은 상기 플랜지부가 안착될 수 있는 오목부를 포함하고, 상기 제1 상부 판의 위쪽에 위치되는 제2 상부 판은 상기 접합부가 관통하는 개구부를 포함하며,
    상기 플랜지부는 상기 오목부 내에서 상기 제1 상부 판과 상기 제2 상부 판 사이에 개재되는, 액화가스 저장탱크의 코너 구조체.
  10. 청구항 9에 있어서,
    상기 오목부의 길이 및 폭은 상기 플랜지부의 길이 및 폭보다 크거나 같고, 상기 개구부의 길이 및 폭은 상기 접합부의 길이 및 폭보다 큰, 액화가스 저장탱크의 코너 구조체.
  11. 액화가스의 누출을 방지하는 밀봉벽을 지지하기 위해서 모서리에 설치되는 코너 구조체를 포함하는 액화가스 저장탱크로서,
    상기 코너 구조체는,
    서로 상이한 방향으로 배향되도록 선체 구조벽의 내부 표면에 배치되는 2개의 단열부재와;
    각각의 상기 단열부재 상에 설치되고 상기 밀봉벽이 접합되는 가동부재;
    를 포함하며,
    상기 가동부재는 상기 단열부재에 대하여 슬라이딩 변위가 가능하도록 결합되며,
    하나의 상기 단열부재에 대해 복수의 상기 가동부재가 서로 간격을 두고 일직선상으로 배열되는, 액화가스 저장탱크.
  12. 청구항 11에 있어서,
    상기 코너 구조체의 주변에는 평면 구조체가 배치되며,
    상기 평면 구조체는, 상기 선체 구조벽 상에 설치되는 2차 단열패널과, 상기 2차 단열패널 상에 부착되어 밀봉벽과 인접하는 1차 단열패널을 포함하며,
    상기 1차 단열패널에 포함된 1차 단열재 및 상기 2차 단열패널에 포함된 2차 단열재는 동일한 소재의 단열재로 만들어지고, 상기 2차 단열재는 상기 1차 단열재보다 밀도가 낮거나 같은, 액화가스 저장탱크.
  13. 청구항 11에 있어서,
    상기 밀봉벽은 액화가스와 직접 접촉하는 1차 멤브레인과 상기 1차 멤브레인으로부터 일정간격 이격되도록 설치되는 2차 멤브레인을 포함하며,
    상기 1차 멤브레인과 상기 2차 멤브레인 사이에는 간격을 일정하게 유지하기 위한 지지판재가 개재되어 있는, 액화가스 저장탱크.
PCT/KR2021/009472 2021-06-23 2021-07-22 코너 구조체 및 이를 갖는 액화가스 저장탱크 WO2022270675A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21947265.1A EP4361016A1 (en) 2021-06-23 2021-07-22 Corner structure and liquefied gas storage tank having same
US18/036,887 US20240019081A1 (en) 2021-06-23 2021-07-22 Corner structure and liquefied gas storage tank having same
CN202180076448.XA CN116529520A (zh) 2021-06-23 2021-07-22 转角结构及具有该转角结构的液化气储罐

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210081444A KR102427277B1 (ko) 2021-06-23 2021-06-23 코너 구조체 및 이를 갖는 액화가스 저장탱크
KR10-2021-0081444 2021-06-23

Publications (1)

Publication Number Publication Date
WO2022270675A1 true WO2022270675A1 (ko) 2022-12-29

Family

ID=82844264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009472 WO2022270675A1 (ko) 2021-06-23 2021-07-22 코너 구조체 및 이를 갖는 액화가스 저장탱크

Country Status (5)

Country Link
US (1) US20240019081A1 (ko)
EP (1) EP4361016A1 (ko)
KR (1) KR102427277B1 (ko)
CN (1) CN116529520A (ko)
WO (1) WO2022270675A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117685492B (zh) * 2024-02-01 2024-06-11 沪东中华造船(集团)有限公司 液化气绝缘储罐用密封膜单元、密封膜、加工方法及储罐

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07217796A (ja) * 1994-01-28 1995-08-15 Mitsubishi Heavy Ind Ltd 低温タンクのメンブレン固定構造
KR20140019458A (ko) * 2014-01-24 2014-02-14 삼성중공업 주식회사 코너부 단열 구조체 및 이를 구비한 액화 천연가스 저장 탱크
KR20170104078A (ko) * 2016-03-04 2017-09-14 삼성중공업 주식회사 코너벽체 및 그를 이용한 액화가스 화물창의 시공방법
KR20200049963A (ko) * 2018-10-30 2020-05-11 한국가스공사 단열 구조체 및 이를 갖는 액화가스 저장탱크
KR102248137B1 (ko) * 2019-12-10 2021-05-04 한국가스공사 액화가스 저장탱크의 코너 구조체

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07217796A (ja) * 1994-01-28 1995-08-15 Mitsubishi Heavy Ind Ltd 低温タンクのメンブレン固定構造
KR20140019458A (ko) * 2014-01-24 2014-02-14 삼성중공업 주식회사 코너부 단열 구조체 및 이를 구비한 액화 천연가스 저장 탱크
KR20170104078A (ko) * 2016-03-04 2017-09-14 삼성중공업 주식회사 코너벽체 및 그를 이용한 액화가스 화물창의 시공방법
KR20200049963A (ko) * 2018-10-30 2020-05-11 한국가스공사 단열 구조체 및 이를 갖는 액화가스 저장탱크
KR102248137B1 (ko) * 2019-12-10 2021-05-04 한국가스공사 액화가스 저장탱크의 코너 구조체

Also Published As

Publication number Publication date
KR102427277B1 (ko) 2022-08-01
CN116529520A (zh) 2023-08-01
EP4361016A1 (en) 2024-05-01
US20240019081A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
WO2016021948A1 (ko) 액화천연가스 저장탱크의 코너 구조체
CN107820554B (zh) 配备有波纹金属板的拐角布置的次密封膜的密封隔热罐
WO2017034117A1 (ko) 앵커 스트립이 제거된 액화가스 화물창의 인슐레이션 구조, 그 인슐레이션 구조를 구비하는 화물창, 및 그 화물창을 구비하는 액화가스 운반선
WO2020138846A1 (ko) 액화천연가스 저장탱크의 코너부 단열구조
WO2017034118A1 (ko) 액화가스 화물창의 90도 코너 부의 단열 구조, 그 단열 구조를 구비하는 화물창, 및 그 화물창을 제조하는 시공방법
CN112789442B (zh) 用于密封隔热容器的转角结构
KR100649317B1 (ko) 액화천연가스 저장탱크의 코너 구조체
WO2012015158A2 (ko) 액화 가스 수송 선박의 화물창
CN114568030B (zh) 密封且热绝缘的罐、船、转移***及对船进行装卸的方法
WO2016006940A1 (ko) 앵커 구조체 및 상기 앵커 구조체를 포함하는 액화천연가스 저장탱크
WO2022270675A1 (ko) 코너 구조체 및 이를 갖는 액화가스 저장탱크
WO2013089359A1 (ko) 액화천연가스 저장탱크의 펌프타워 설치구조체 및 이의 제작방법
WO2021118014A1 (ko) 액화가스 저장탱크의 코너 구조체
WO2013169076A1 (ko) 이중구조의 액화천연가스 저장용기
WO2022119045A1 (ko) 코너 구조체 및 이를 갖는 액화가스 저장탱크
KR20220034992A (ko) 이중 금속 방벽 구조를 가지는 액화가스 저장탱크의 단열시스템
WO2017034121A1 (ko) 멤브레인형 액화가스 화물창의 주름 멤브레인 시트 자동 용접시스템, 멤브레인형 액화가스 화물창의 주름 멤브레인 시트 자동 용접장치 가이드 고정구조, 및 멤브레인형 액화가스 화물창의 주름 멤브레인 시트 자동 용접장치 가이드 구조
WO2019132535A1 (ko) 멤브레인 접합구조 및 상기 멤브레인 접합구조를 포함하는 액화가스 저장탱크
CN114502873A (zh) 密封且热绝缘的罐
JP7504293B2 (ja) 液化ガス貯蔵タンクを組み立てる、および設置するための方法
KR102639901B1 (ko) 액화가스 화물창 및 그 시공방법
KR102361516B1 (ko) 액화가스 저장탱크의 단열시스템
KR102445672B1 (ko) 액화가스 저장탱크 및 이의 제작방법
KR102480577B1 (ko) 단열 구조체가 구비된 액화가스 화물창
KR102297304B1 (ko) 액화천연가스 저장탱크 및 그 시공방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947265

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180076448.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18036887

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021947265

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021947265

Country of ref document: EP

Effective date: 20240123