WO2020179352A1 - Vehicle lighting fixture - Google Patents

Vehicle lighting fixture Download PDF

Info

Publication number
WO2020179352A1
WO2020179352A1 PCT/JP2020/004836 JP2020004836W WO2020179352A1 WO 2020179352 A1 WO2020179352 A1 WO 2020179352A1 JP 2020004836 W JP2020004836 W JP 2020004836W WO 2020179352 A1 WO2020179352 A1 WO 2020179352A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength conversion
projection lens
laser light
photodetector
Prior art date
Application number
PCT/JP2020/004836
Other languages
French (fr)
Japanese (ja)
Inventor
秀倫 曽根
一臣 村上
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019039158A external-priority patent/JP2020145012A/en
Priority claimed from JP2019071175A external-priority patent/JP2020170783A/en
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Publication of WO2020179352A1 publication Critical patent/WO2020179352A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/29Attachment thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/40Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/70Prevention of harmful light leakage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/12Combinations of only three kinds of elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Definitions

  • the present disclosure relates to a vehicular lamp, and more particularly to a vehicular lamp using a semiconductor laser (also called a laser diode, LD) as a light source.
  • a semiconductor laser also called a laser diode, LD
  • a vehicular lamp configured to use a semiconductor laser as a light source and to allow light from the light source to enter a projection lens is known (for example, see Patent Document 1).
  • a vehicle lamp using a semiconductor laser light source irradiates a laser beam emitted from a semiconductor laser element onto a phosphor that is a wavelength conversion layer, and mixes the laser beam with the light emitted when the phosphor is excited to illuminate a road surface. It is designed to be converted into white light having a proper energy and having appropriate energy for emission.
  • the laser light is high-energy light with high directivity, and for example, when the phosphor is damaged or dropped, the laser light and the phosphor do not come into sufficient contact with each other and are incident on the projection lens as high energy. It is not desirable to be released outside the lamp.
  • a vehicular lamp in which a semiconductor laser element and a wavelength conversion member are combined and the wavelength of laser light emitted from the semiconductor laser element is converted into white light by the wavelength conversion member and used as a light source.
  • vehicle lamps that use a semiconductor laser as a light source if an abnormality such as dropping or breakage occurs in the wavelength conversion member, the laser light is directly emitted with strong coherence without being scattered by the wavelength conversion member, which is dangerous. Is.
  • Patent Document 2 discloses that an opening (pinhole) is provided in a reflector that reflects the light of a light source toward a projection lens, and a photodetector is arranged behind the opening.
  • the projection lens is provided with a light-shielding portion that reflects a part of the light from the light source, and a photodetector is arranged outside the optical path of white light to detect the light reflected by the light-shielding portion. It is disclosed.
  • the photodetector and the light shielding part are arranged on the optical path of the laser light when the wavelength conversion member is dropped or damaged, that is, when it is assumed that the wavelength conversion member does not exist.
  • Japanese Patent Laid-Open No. 2013-38010 Japanese Patent Application Laid-Open No. 2016-58370 Japanese Patent Application Laid-Open No. 2018-106825 Japanese Patent Application Laid-Open No. 2016-207280
  • Patent Document 4 In order to prevent leakage of excitation light in vehicle lighting equipment using a semiconductor laser light source as in Patent Document 1, in Patent Document 4, in vehicle lighting equipment, when a phosphor is abnormal, a reflector that the laser light comes into contact with is used. It has been proposed to form an escape hole penetrating the reflector to allow the laser light to escape to the outside of the reflector and prevent the high energy laser light from being reflected forward from the reflector.
  • the above method requires a special structure such as an escape hole, and there is a problem that the cost becomes large. Further, due to the escape hole, there is a problem that the light in the central portion where the intensity of the white light is the highest cannot be utilized under normal conditions, and the light cannot be utilized effectively.
  • a first object of the present disclosure is to provide a vehicular lamp that does not require a special structure and is low-cost and that is fail-safe with respect to leakage of laser light when the wavelength conversion layer is abnormal. ..
  • Patent Documents 2 and 3 are the white light with the highest luminous intensity corresponding to the optical axis of the laser light when the wavelength conversion member has no abnormality and the vehicular lamp is operating normally. There is a problem in that the light in the central portion of the light enters the photodetector or the light shielding portion and does not enter the lens, and the light flux cannot be effectively used.
  • the present disclosure provides a technique for a vehicle lamp that uses a light source that is a combination of a semiconductor laser and a wavelength conversion member, and that can effectively monitor the leakage of laser light when an abnormality occurs in the wavelength conversion member while effectively using the light flux.
  • the second purpose is to do.
  • the vehicle lighting equipment absorbs a semiconductor laser element that emits laser light and at least a part of the laser light to emit wavelength conversion light.
  • a wavelength conversion layer that emits light and a projection lens that takes in the wavelength conversion light and emits it forward are provided, and the wavelength conversion layer is arranged so that its emission surface faces the projection lens, and the semiconductor is provided.
  • the laser element is arranged so that the light beam of the laser light is outside the range of the acceptance angle of the projection lens when it is assumed that the wavelength conversion layer is not present.
  • a semiconductor laser element is arranged on the optical axis of the projection lens, and a wavelength conversion layer is arranged between the semiconductor laser element and the projection lens.
  • the wavelength conversion layer when the wavelength conversion layer is functioning normally, at least a part of the wavelength of the laser light is converted by the wavelength conversion layer into white diffused light, which is then incident on the projection lens and moved forward. Is irradiated.
  • contact between the laser light and the wavelength conversion layer becomes insufficient or impossible, and laser light with high energy and high directivity enters the projection lens.
  • the semiconductor laser element, the wavelength conversion layer, and the projection lens are subjected to laser light when an abnormality occurs in the wavelength conversion layer.
  • the wavelength conversion layer is functioning normally, similarly, at least a part of the laser light is wavelength-converted by the wavelength conversion layer and is incident on the projection lens as white diffused light, and is forward. Is irradiated to.
  • the semiconductor laser element, the projection lens, and the wavelength conversion layer are When the wavelength conversion layer is arranged so that the rear surface coincides with the focal point of the projection lens, the relational expression: (L + f) x tan ( ⁇ - ⁇ ) -L x tan ⁇ > D / 2 (Equation 1) (Here, L is the distance from the semiconductor laser device to the rear surface of the wavelength conversion layer. f is the focal length of the projection lens, D is the pupil diameter of the projection lens, ⁇ is the angle of the main ray of the laser beam incident on the wavelength conversion layer with respect to the optical axis of the projection lens. ⁇ is the divergence angle of the laser light. ) It is also preferable that they are arranged so as to satisfy.
  • the wavelength conversion layer transmits the laser light from the semiconductor laser element and emits the wavelength converted light toward the projection lens.
  • the lens support part is provided that supports the projection lens, and the lens support part is provided with a light blocking member that absorbs or reflects the laser light.
  • the light shielding member includes a sensor that detects an irradiation state of the laser light and the wavelength conversion light.
  • the vehicle lighting equipment includes a semiconductor laser element that emits laser light and white light or white light by converting at least a part of the laser light into white light.
  • a wavelength conversion member that generates pseudo-white light a lens that captures the white light or the pseudo-white light and emits it forward as illumination light, and a translucent light detector that detects the laser light.
  • the photodetector is arranged on the optical path of the laser light in the case where the wavelength conversion member is not present, and is arranged between the wavelength conversion member and the emission surface of the illumination light. ..
  • the laser light when the lamp is operating normally, the laser light is incident on the lens as white light or pseudo-white light whose wavelength is at least partially converted by the wavelength conversion member.
  • a photodetector is arranged on the extended optical path of the laser light between the wavelength conversion member and the emission surface of the illumination light, but the photodetector is translucent. Therefore, the portion of the white light or the pseudo-white light having the highest luminous intensity can pass through the photodetector and enter the lens. Therefore, the luminous flux of white light can be effectively used.
  • the light detector arranged on the extended optical path of the laser light detects the laser light, it senses a change in the intensity of the laser light, in particular, when an abnormality such as damage or dropout of the wavelength conversion member occurs in the lighting equipment. Therefore, it is possible to properly monitor the leakage of the laser light when the wavelength conversion member is abnormal.
  • the photodetector is provided on the lens.
  • the photodetector is provided on the wavelength conversion member.
  • the photodetector generates a current according to the amount of received laser light, and the vehicle lamp outputs a detection signal according to the current, and the detection circuit. It is also preferable to further include a determination unit that determines an abnormality of the wavelength conversion member based on the signal, and a control unit that controls energization of the semiconductor laser element based on the determination result of the determination unit.
  • warning unit that warns the driver based on the determination result of the determination unit.
  • the vehicle lamp according to the mode for achieving the first object it is possible to enable fail-safe against laser light leakage at low cost without requiring a special structure.
  • the laser light when an abnormality occurs in the wavelength conversion member in the vehicle lighting equipment using a light source combining a semiconductor laser and a wavelength conversion member In order to detect the leakage of light, a translucent light detector was placed on the straight path of the laser light assuming that the wavelength conversion member does not exist, so that the light intensity is the highest when the wavelength conversion member is normal. It is possible to constantly detect the laser light while using the light in the central portion as the illumination light without being shielded by the light blocking member, the photodetector, the escape hole, or the like. Therefore, it is possible to monitor the leakage of laser light when an abnormality occurs in the wavelength conversion member while effectively utilizing the light flux.
  • FIG. 1 It is a vertical cross-sectional view of the vehicle lamp which concerns on 1st Embodiment of this disclosure, and shows schematic structure. It is a figure explaining the positional relationship of the projection lens, the semiconductor laser element, and the wavelength conversion layer in the normal state, and the state of the light ray at the time of light emission of the vehicle lamp which concerns on 1st Embodiment. In the circle shown by the solid line on the right side of the figure, an enlarged view of the part inside the circle shown by the solid line in the center is shown. It is a figure explaining the positional relationship of the projection lens, the semiconductor laser element, and the wavelength conversion layer at the time of abnormality, and the state of the light ray at the time of light emission of the vehicle lamp according to 1st Embodiment. FIG.
  • FIG. 2 is a vertical cross-sectional view of the vehicular lamp according to the first embodiment, which is the same as the vertical cross-sectional view in FIG.
  • FIG. 6 is a vertical cross-sectional view of a vehicle lamp according to a second embodiment of the present disclosure, showing a state of light rays in a normal state. It is a vertical cross-sectional view of the vehicle lamp which concerns on 2nd Embodiment, and shows the state of the light ray at the time of abnormality.
  • FIG. 5 is a vertical cross-sectional view of a vehicular lamp according to a third embodiment of the present disclosure.
  • FIG. 10 is an enlarged view of a rotary reflector of a vehicular lamp according to a seventh embodiment of the present disclosure. It is a horizontal sectional view of the vehicular lamp concerning an 8th embodiment of this indication.
  • an arrow UD indicates a vertical direction when the vehicular lamp is viewed from the front
  • an arrow FB indicates the same longitudinal direction
  • an arrow LR indicates the same lateral direction.
  • FIG. 1 is a vertical cross-sectional view schematically showing a schematic structure of a vehicular lamp (hereinafter, also simply referred to as “lamp”) 10 according to a first embodiment.
  • the vehicular lamp 10 is one of the left and right headlamp units of a vehicular headlamp device having a pair of headlamp units arranged on the left and right in front of the vehicle.
  • the pair of headlamp units have substantially the same configuration.
  • the vehicular lamp 10 includes a box-shaped lamp body 12 having an opening at the front, and a translucent front cover 14 that closes the opening of the lamp body 12.
  • a lamp chamber 18 is defined by the lamp body 12 and the front cover 14.
  • a light emitting device 20 In the lamp chamber 18, a light emitting device 20, a supporting member 22, an optical axis adjusting mechanism 24, a lens supporting portion 26, a projection lens 28, and an extension 30 are generally arranged.
  • the light emitting device 20 includes a cylindrical housing 31, a semiconductor laser element 32, and a wavelength conversion layer 34.
  • the rear end of the housing 31 is fixed to the support member 22.
  • an inclined surface 36 is formed of, for example, a metal such as aluminum.
  • a semiconductor laser element 32 is fixed on the inclined surface 36.
  • the inclined surface 36 functions as a heat sink.
  • a rectangular or circular fixing hole 38 is formed in the center of the front surface of the housing 31.
  • the wavelength conversion layer 34 is fitted into the fixing hole 38, and is fixed by adhesion with a transparent adhesive such as silicone or low melting point glass.
  • the semiconductor laser element 32 is a semiconductor light emitting device that emits laser light.
  • an element that emits laser light having a blue emission wavelength (about 450 nm) or a near-ultraviolet region (about 405 nm) is used.
  • the wavelength conversion layer 34 for example, a phosphor that is a composite of YAG (yttrium aluminum garnet) into which an activator such as cerium Ce is introduced and alumina Al 2 O 3 can be used.
  • the wavelength conversion layer 34 is a plate-shaped body or a layered body including an upper surface and a lower surface arranged substantially in parallel, and the thickness thereof can be appropriately set according to the target chromaticity.
  • wavelength conversion layer 34 a composite of APT (apatite) into which an activator such as europium Eu is introduced and BOS (barium orthosilicate) into which europium Eu or the like is activated may be used.
  • APT apatite
  • BOS barium orthosilicate
  • the wavelength conversion layer 34 absorbs at least a part of the laser light generated by the semiconductor laser element 32, converts the wavelength of the laser light, transmits the laser light, and emits white light generated by color mixing with the laser light from the semiconductor laser element 32.
  • the wavelength conversion layer 34 does not have to be composed only of the wavelength conversion layer main body, and may be, for example, one formed by stacking the above composites with sapphire or the like as a holding member.
  • the fixing hole 38 may have an elliptical shape, and may have any shape as long as it absorbs at least a part of the laser light generated in the semiconductor laser element 32, converts the wavelength, and transmits the laser light. ..
  • the support member 22 is a metal member having a rectangular shape in front view, supports the light emitting device 20, and also connects the light emitting device 20 to the optical axis adjusting mechanism 24.
  • the optical axis adjusting mechanism 24 includes a leveling actuator 40 and a pivot 42.
  • the leveling actuator 40 is attached to the lower part of the support plate 46 via the screw 44, and the pivots 42 are attached to the three corners of the support plate 46 in a front view (not shown). In this way, the support member 22 is supported by the lamp body 12 via the optical axis adjusting mechanism 24.
  • the optical axis adjusting mechanism 24 can tilt the support member 22 with respect to the lamp body 12 by driving the leveling actuator 40. As the support member 22 tilts, the light emitting device 20 and the projection lens 28 tilt, and the optical axis O of the illumination light can be adjusted.
  • the specific configuration of the optical axis adjusting mechanism 24 is not limited to this, and a known configuration can be appropriately adopted.
  • the lens support portion 26 is, for example, a cylindrical body made of translucent resin.
  • the lens support portion 26 includes a holding portion 48 and a leg portion 50, holds the projection lens 28, and is connected to the support member 22.
  • the lens support portion 26 is provided with a flange at the rear end of the leg portion 50 and is fixed to the support member 22 with an appropriate configuration.
  • a light blocking member 49 for blocking the laser light and a sensor 51 for detecting the light emitting state of white light are provided on the inner wall of the leg portion 50 of the lens support portion 26, a light blocking member 49 for blocking the laser light and a sensor 51 for detecting the light emitting state of white light. Details of the light-shielding member 49 and the sensor 51 will be described later.
  • the projection lens 28 is an aspherical lens including a convex surface on the front side and a flat surface on the rear side, and is made of, for example, a transparent resin such as acryl or another translucent material.
  • the projection lens 28 is fixedly held by the holding portion 48 and is arranged on the optical axis O extending in the front-rear direction of the vehicle.
  • the projection lens 28 receives the white light incident from the light emitting device 20 and emits it toward the front of the lamp 10.
  • White light emitted from the emission surface of the projection lens 28 is directed to the front cover 14, passes through the front cover 14, and is emitted to the front of the lamp 10. Due to the action of the projection lens 28, a desired light distribution pattern is formed in front of the lamp 10.
  • the extension 30 is a member made of metal or resin that plays a role of blindfolding the periphery of the projection lens 28 from the front.
  • FIGS. 2 and 3 are diagrams schematically illustrating the positional relationship between the projection lens 28, the semiconductor laser element 32, and the wavelength conversion layer 34, and the state of light rays during light emission.
  • FIG. 2 shows a normal state, that is, a state in which the wavelength conversion layer 34 is fixed in the fixing hole and is not dropped, damaged, or deteriorated.
  • FIG. 3 shows a state in which the wavelength conversion layer 34 is abnormal, that is, the wavelength conversion layer 34 does not operate normally due to dropout, damage, deterioration, or the like.
  • the projection lens 28, the wavelength conversion layer 34, and the semiconductor laser element 32 include the light rays (upper ray UB and lower ray LB) of the laser light emitted from the semiconductor laser element 32, assuming that the wavelength conversion layer 34 does not exist.
  • the entire light beam) is arranged so as to be outside the range of the acceptance angle ⁇ of the projection lens 28.
  • the wavelength conversion layer 34 is arranged so that its rear surface is located at the focal point A of the projection lens 28 and directly faces the projection lens 28.
  • the distance between the semiconductor laser device 32 and the rear surface of the wavelength conversion layer 34 is L.
  • the focal length of the projection lens 28 is f
  • the pupil diameter of the projection lens 28 is D
  • the angle (arrangement angle of the wavelength conversion layer) of the principal ray MB of the laser light incident on the wavelength conversion layer 34 with respect to the optical axis O of the projection lens 28 is ⁇
  • the divergence angle of the laser beam is expressed by ⁇ , the following equation (1) (L + f) x tan ( ⁇ - ⁇ ) -L x tan ⁇ > D / 2 (1) It is arranged so as to satisfy.
  • arranging the wavelength conversion layer 34 at the focal point A of the projection lens 28 does not only mean arranging the wavelength conversion layer 34 at the focal point A of the projection lens 28 completely. , May be included in the vicinity of the focal point A without departing from the object of the present disclosure.
  • the laser light emitted from the semiconductor laser element 32 is incident on the back surface of the wavelength conversion layer 34 at a divergence angle ⁇ , as shown in an enlarged view within a solid circle in FIG.
  • the symbol MB represents the chief ray of the laser light
  • the symbol UB represents the upper ray
  • the symbol LB represents the lower ray.
  • the wavelength of the laser light that has entered the wavelength conversion layer 34 is converted and emitted as white diffused light WL toward the projection lens 28. Since the wavelength conversion layer 34 has a perfect diffusing surface, the white diffused light WL has a circular locus of light intensity as shown in the figure, and the intensity of the central portion (0°) that coincides with the optical axis O of the projection lens 28 is the most.
  • the Lambertian characteristic is high and the periphery of the center part is attenuated by the cosine characteristic.
  • light within the range of the acceptance angle ⁇ of the projection lens 28 enters the projection lens 28 and is emitted as illumination light IL toward the front of the lamp 10.
  • the emission surface of the wavelength conversion layer 34 is orthogonal to the optical axis O of the projection lens 28, and the wavelength conversion layer 34 is disposed so as to face the back surface of the projection lens 28, whereby the white diffused light WL It becomes possible to use the central part. As a result, it is possible to efficiently use the laser beam.
  • the wavelength conversion layer 34 does not exist, as shown in FIG. 3, the light beam of the laser light emitted from the semiconductor laser element 32 passes through the rear focal point A of the projection lens 28 and the optical axis O of the projection lens 28. Travels on a straight optical path forming an angle ⁇ with. At this time, although the laser light is slight, it diverges at the divergence angle ⁇ . However, since the lower ray LB of the laser light is always arranged so as to be outside the range of the acceptance angle ⁇ of the projection lens 28, the laser light emitted from the semiconductor laser element 32 has high energy and high directivity. Are not taken into the projection lens 28. As a result, it is possible to prevent high-energy laser light from passing through the projection lens 28 and being irradiated forward.
  • the light shielding member 49 is, for example, a curved plate-shaped member made of black resin, or made of various metals such as iron, nickel, aluminum, and copper, or an alloy such as stainless steel, the surface of which is black-painted.
  • the light-shielding member 49 is provided along the inner surface of the leg portion 50 of the lens support portion 26.
  • the laser light that has passed through the rear focal point A of the projection lens 28 is incident on the light-shielding member 49 provided on the lens support portion 26 as shown in FIG. 4 with high energy. Become.
  • the laser light is completely blocked and absorbed by the lens support portion 26 by the light blocking member 49. Therefore, it is possible to prevent the high-energy laser light from leaking into the lamp chamber 18. Therefore, it is possible to prevent the laser light leaking into the lamp chamber 18 from being indirectly irradiated to the front of the lamp 10 by being reflected by a member in the lamp chamber 18 a plurality of times.
  • the sensor 51 is connected to a control circuit (not shown).
  • the control circuit is configured to be able to control energization of the semiconductor laser element 32 based on the detection result of the sensor 51.
  • the sensor 51 is provided in the light shielding member 49 at a position where at least a part of the high-energy laser light is incident when the wavelength conversion layer 34 does not exist.
  • the senor 51 for example, a photosensor such as a photodiode that detects the wavelength of white light WL or laser light can be used.
  • the photo sensor detects a change in the received light amount or chromaticity of the white light WL or the laser light of the sensor 51 as an abnormality.
  • a temperature sensor such as a thermistor may be used as the sensor 51.
  • the temperature sensor detects, as an abnormality, a temperature change that occurs because the light shielding member 49 having a light shielding property absorbs high-energy laser light.
  • a strain sensor may be used as the sensor 51.
  • the strain sensor detects the strain of the lens support portion 26 as an abnormality caused by a temperature change caused by the light shielding member 49 absorbing high-energy laser light.
  • the laser light in a high energy state is configured not to be taken into the projection lens 28 when the wavelength conversion layer 34 has an abnormality such as dropping, damage, deterioration or the like.
  • the light shielding member 49 provided on the inner surface of the leg portion 50 of the lens support portion 26 prevents the high energy laser light from leaking to the lamp chamber 18. Therefore, it is unlikely that the laser light having a strong directivity is emitted to the outside of the lamp 10.
  • the light shielding member 49 is provided with the sensor 51 such as the photo sensor, the temperature sensor, and the strain sensor, it is possible to monitor whether or not the lamp 10, particularly the wavelength conversion layer 34 is operating normally. Is. Further, when the sensor 51 detects an abnormal state, by controlling so that the power supply to the semiconductor laser element 32 is stopped, it is possible to prevent a danger such as looking into the lamp 10 from a short distance, so that the lamp 10 is safe. Improves sex.
  • FIG. 5 and 6 are vertical cross-sectional views of the vehicular lamp 110 according to the second embodiment of the present disclosure.
  • FIG. 5 shows a normal state, that is, a state in which the wavelength conversion layer 34 is not dropped, damaged, deteriorated, or the like.
  • FIG. 6 shows a state in which the wavelength conversion layer 34 is abnormal, that is, the wavelength conversion layer 34 does not operate normally due to dropout, damage, deterioration, or the like.
  • the vehicular lamp 110 has a configuration similar to that of the vehicular lamp 10 except for the following points.
  • the lens support portion 26 is made of, for example, a translucent resin, whereas the lens support portion 126 is made of black resin, various metals such as iron, nickel, aluminum, and copper, and alloys such as stainless steel. Will be done.
  • the lens support 126 is made of metal, the lens support 126 may be painted black. That is, the lens support portion 126 does not have a separate light shielding member, but has a light shielding property by being made of a light shielding material or a light absorbing material.
  • the lens support portion 126 is a cylindrical body, and includes a holding portion 148 that holds the projection lens 28 and a leg portion 150.
  • the projection lens 28 is engaged and held by the holding portion 148, and at the rear end of the leg portion 150. , Connected to the support member 122.
  • a fixing hole 138 for fixing the wavelength conversion layer 34 is opened in the center of the bottom surface 139 of the lens support 126, and the wavelength conversion layer 34 is fixed.
  • the sensor 51 is directly provided on the lens support portion 126.
  • the lamp 110 includes a light emitting unit 120 instead of the unitized light emitting device 20.
  • the light emitting section 120 is defined by a standing wall on the front side of the support member 122 and a bottom surface of the lens support section 126.
  • the light emitting section 120 includes the wavelength conversion layer 34 on the bottom surface of the lens supporting section 126 and the semiconductor laser element 32.
  • the semiconductor laser device 32 is arranged on an inclined surface 136 formed on the front surface of the support plate 146 of the support member 122.
  • the projection lens 28, the wavelength conversion layer 34, and the semiconductor laser element 32 are provided with a laser beam emitted from the semiconductor laser element 32 when it is assumed that the wavelength conversion layer 34 does not exist.
  • the light ray (the entire light ray including the upper light ray UB and the lower light ray LB) is arranged so as to be outside the range of the capture angle ⁇ of the projection lens 28.
  • the specific positional relationship satisfies Expression (1).
  • the laser light emitted from the semiconductor laser element 32 is incident on the wavelength conversion layer 34, is wavelength-converted, and becomes white diffused light having Lambersian characteristics. , It is incident on the projection lens 28 and is irradiated forward as illumination light.
  • the laser beam emitted from the semiconductor laser element 32 travels in the extended optical path of the laser beam in a high directivity and high energy state, and functions as a light shielding member 126. It enters the inner wall of the light and is shielded from light. Further, at least a part of the light enters the sensor 51 and is detected as an abnormality.
  • the wavelength conversion layer 34 is fixed to the bottom surface 139 of the lens supporting portion, and the light emitting portion 120 is defined by the lens supporting portion 126 and the supporting member 122. At the same time when the part 126 is assembled, the assembly of the light emitting part 120 is completed. As a result, the lamp 110 can be easily assembled.
  • the semiconductor laser element 32 is provided above the optical axis O of the projection lens 28, but the present invention is not limited to this, and the projection lens 28, the wavelength conversion layer 34, and the semiconductor laser element 32 are provided. With the above positional relationship, the arrangement of the semiconductor laser elements 32 can be designed according to the desired light distribution pattern.
  • FIG. 7 is a vertical cross-sectional view schematically showing the schematic structure of the vehicular lamp 210 according to the third embodiment of the present disclosure.
  • the vehicular lamp 210 is one of the left and right headlamp units of a vehicular headlamp apparatus having a pair of headlamp units arranged on the left and right in front of the vehicle.
  • the pair of headlamp units have substantially the same configuration.
  • a light emitting device 220 In the lamp chamber 18, a light emitting device 220, a support member 222, an optical axis adjusting mechanism 224, a lens support portion 226, a projection lens 228, a photodetector 230, and an extension 232 are generally arranged.
  • the light emitting device 220 is configured to convert the excitation light into white light or pseudo white light and emit it.
  • the pseudo white light is pseudo white light generated by mixing the blue laser light and the yellow light in which a part of the blue laser light is wavelength-converted by the yellow wavelength conversion member.
  • white light may include “pseudo white light”.
  • the light emitting device 220 is, for example, a so-called CAN package type laser diode (LD) module. As shown in FIG. 8A, the light emitting device 220 includes a substrate 234, a cylindrical casing 236, a semiconductor laser element 238, a condenser lens 239, and a wavelength conversion member 240, and the casing 236 and the substrate. 234 and the semiconductor laser device 238.
  • LD CAN package type laser diode
  • the substrate 234 supports the semiconductor laser element 238, and also includes an energization connector and a control connector (not shown), and is connected to an energization device and a control device (not shown). In addition, it also has a function of radiating heat through the support member 222 that functions as a heat sink.
  • the front surface of the housing 236 is provided with a circular emission port 242 for emitting light from the semiconductor laser element 238 in a front view.
  • a wavelength conversion member 240 is fitted into the emission port 242, and is fixedly adhered by a translucent adhesive such as silicone or low melting point glass.
  • the condenser lens 239 is provided between the wavelength conversion member 240 and the semiconductor laser element 238 and condenses the light emitted from the semiconductor laser element 238 onto the wavelength conversion member 240.
  • the semiconductor laser element 238 can adopt the same configuration as the semiconductor laser element 32.
  • the semiconductor laser element 238 is arranged on the optical axis O 1 of the projection lens 228.
  • the wavelength conversion member 240 can adopt the same configuration as the wavelength conversion layer 34.
  • the wavelength conversion member 240 absorbs at least a part of the laser light generated by the semiconductor laser element 238, converts the wavelength, transmits the wavelength, and transmits white light or pseudo white light by color mixing with the laser light from the semiconductor laser element 238. Is released.
  • the emission port 242 can adopt the same structure as the fixed hole 38.
  • the support member 222 is made of metal such as aluminum and is a rectangular member in a front view.
  • the support member 222 supports the light emitting device 220 and also connects the light emitting device 220 to the optical axis adjusting mechanism 224.
  • the optical axis adjusting mechanism 224 includes a leveling actuator 244 and a pivot 246.
  • the leveling actuator 244 is attached to the lower portion of the support member 222 via the screw 248, and the pivots 246 are attached to the three corners of the support member 222 in a front view (not shown).
  • the optical axis adjusting mechanism 224 can tilt the support member 222 with respect to the lamp body 12 by driving the leveling actuator 244. With the tilt of the support member 222, the light emitting device 220 and the projection lens 228 are tilted, and the optical axis of the illumination light can be adjusted.
  • the specific configuration of the optical axis adjusting mechanism 224 is not limited to this, and a known configuration can be appropriately adopted.
  • the lens support portion 226 is, for example, a cylindrical body made of translucent resin.
  • the lens support portion 226 includes a lens holding portion 227 and a leg portion 229, holds the projection lens 228, and is connected to the support member 222.
  • the lens support portion 226 includes a flange at the rear end of the leg portion 229, and is fixed to the support member 222 with an appropriate configuration.
  • the lens support portion 226 does not need to be entirely transparent, and may be formed by two-color molding in which the lens holding portion 227 is a transparent resin and the legs 229 are a transparent resin.
  • the photodetector 230 is, for example, a translucent photodiode composed of graphene and several-layer graphene in which iron (III) chloride FeCl 3 is intercalated as described in Non-Patent Document 1. This is the photodetector used.
  • This translucent photodiode is produced as follows (see Non-Patent Document 1). First, several layers of graphene (Few/Layer/Graphen, FLG) obtained by a mechanical exfoliation method are deposited on a silicon dioxide SiO 2 substrate heavily doped with Si.
  • graphene Few/Layer/Graphen, FLG
  • the SiO 2 substrate on which the above-mentioned few layers of graphene are deposited is brought into contact with anhydrous FeCl 3 powder at a temperature of 360° C. and 2 ⁇ 10 ⁇ 4 Torr by a known method for 7.5 hours to make FeCl 3 intercalation. Perform culling. In this process, FeCl 3 molecules permeate between the graphene layers of FLG to form FeCl 3 -FLC.
  • a chromium/gold contact is formed on each of the FeCl 3 -FLC layer and the FLG layer and used as a photodetector 230.
  • the photodetector 230 is provided on the rear surface of the lens support portion 226 so as to match the optical axis O 1 of the projection lens 228.
  • the photodetector 230 is fixed to the rear surface of the lens support portion 226 using a translucent adhesive such as silicone or low melting point glass.
  • the photodetector 230 extends in the vertical direction over the entire length of the projection lens 228, and is formed in a substantially rectangular shape having a width w in the horizontal direction and a vertically long length in a front view. Further, the photodetector 230 may be formed so as to cover the entire entrance surface or exit surface of the projection lens 228 as described later in the sixth to eighth embodiments.
  • the photodetector 230 is connected to a current-voltage conversion circuit 252 described later.
  • the current-voltage conversion circuit 252 is arranged outside the lens support portion 226 by a known method so as not to prevent the light from being taken into the projection lens 228.
  • the current-voltage conversion circuit 252 is connected to a control device (not shown) by metal wiring or the like.
  • the photodetector 230 detects light having the same wavelength as the laser light that is excitation light, and generates a current according to the amount of received light. Further, in order to avoid erroneous detection of white light and laser light, the photodetector 230 is configured to be able to distinguish between light of the wavelength of white light and light of the wavelength of laser light, or , The light of the wavelength of white light is not detected.
  • the wavelength selectivity of the sensitivity of the photodetector 230 can be realized by, for example, the wavelength response characteristic of the photodiode itself or the combined use of a high pass/low pass filter.
  • the projection lens 228 is an aspherical lens including a convex surface on the front side and a flat surface on the rear side, and is made of, for example, a transparent resin such as acrylic resin or another translucent material.
  • the projection lens 228 is fixedly held by the lens holding portion 227 and arranged on the optical axis O 1 extending in the vehicle front-rear direction.
  • the projection lens 228 receives the white light WL incident from the light emitting device 220 and emits it as the illumination light IL toward the front of the lamp 210.
  • the extension 232 is a member made of metal or resin that plays a role of covering the periphery of the projection lens 228 from the front.
  • the wavelength conversion member 240 is fixed so as not to easily fall off the emission port 242.
  • the light may drop from the emission port 242, may be displaced from the original mounting position, may be wholly or partially melted, may be partially chipped, etc.
  • the possibility that all or part of the conversion member 240 disappears from its original position cannot be completely denied.
  • FIG. 8A is a plan view in a normal state, that is, when the wavelength conversion member 240 is fixed to the emission port 242.
  • FIG. 8B is a plan view at the time of abnormality, that is, when the wavelength conversion member 240 does not exist.
  • the laser light emitted from the semiconductor laser element 238 is condensed by the condenser lens 239 and enters the wavelength conversion member 240.
  • the laser light LB 1 incident on the wavelength conversion member 240 is wavelength-converted and emitted as white diffused light WL toward the projection lens 228 in the first angular range ⁇ 1.
  • the white light WL Since the wavelength converting member 240 has a perfect diffusing surface, the white light WL has the highest intensity in the central portion that coincides with the optical axis O 1 of the projection lens 228, and the Lambertian that attenuates the periphery of the central portion with the cosine characteristic. Shows the characteristics.
  • the white light WL is captured by the projection lens 228 within the range of the capture angle of the projection lens 228, and is emitted to the front of the projection lens 228 as illumination light IL (FIG. 7).
  • the light in the central portion of the white light WL (pseudo white light) is incident on the photodetector 230.
  • the photodetector 230 has a light-transmitting property, most of the light is attenuated though it is slightly attenuated. It is incident on the projection lens 228.
  • the laser light included in the pseudo white light WL is detected by the photodetector 230.
  • the illumination light IL emitted from the emission surface of the projection lens 228 goes to the front cover 14, passes through the front cover 14, and is emitted to the front of the lamp 210. Due to the action of the projection lens 228, a desired light distribution pattern is formed in front of the lamp 210.
  • the laser light emitted from the semiconductor laser element 238 does not act on the wavelength conversion member 240 and goes straight along the optical axis O 1 of the projection lens 228.
  • the lateral width w of the photodetector 230 is configured to be larger than the beam diameter of the laser beam LB 1 from the semiconductor laser element 238. However, it is preferable that the lateral width w of the photodetector 230 is as small as possible within a range larger than the beam diameter of the laser light LB 1 . Since the photodetector 230 has a light-transmitting property, the white light WL is transmitted therethrough, but it may be slightly attenuated.
  • the vehicle lamp 210 When the laser light LB 1 is incident on the photodetector 230, the vehicle lamp 210 is configured so that the power supply to the semiconductor laser element 238 is controlled according to the detection signal thereof, as will be described later. However, in a state of high coherence, the light is not irradiated to the front of the lamp 210.
  • FIG. 10 is a block diagram illustrating a control system of the lamp 210, which uses the photodetector 230.
  • Current-voltage conversion circuit 252 includes a resistor R 1 provided on a path of the current I 1, the voltage drop VD 1 reverse current caused by the photovoltaic effect of the photodetector 230 caused by flowing through the resistor R 1
  • the detection signal S corresponding to the above is output.
  • the detection signal S linearly changes with respect to the current I 1 with a slope according to the resistance value of the resistor R 1 .
  • the determination unit 254 is a circuit that compares the detection signal S with a preset threshold value to determine the presence or absence of an abnormality in the wavelength conversion member 240.
  • the determination unit 254 constitutes a control device of the lamp 210 together with a control unit 256 and a warning unit 258 described later.
  • Examples of the abnormality of the wavelength conversion member 240 include cracks, detachment, melting, and deterioration over time of the wavelength conversion member 240.
  • the wavelength conversion member 240 is functioning normally, the ratio of the laser light included in the light incident on the photodetector 230 is constant, but when an abnormality occurs, the laser light and the wavelength conversion member 240 come into contact with each other. Becomes insufficient and the ratio of laser light increases.
  • the wavelength conversion member 240 is completely dropped or damaged, the light incident on the photodetector 230 is only the laser light. Such an abnormality may occur suddenly or may occur over time.
  • the determination unit 254 has, for example, a normal state in which the wavelength conversion member 240 is functioning normally, an abnormal state in which the wavelength conversion member 240 is completely removed, and some abnormality in the wavelength conversion member 240.
  • Three thresholds Th 1 , Th 2 and Th 3 are preset as thresholds at the boundaries of the four stages of the presumed attention level 1 and attention level 2.
  • the third threshold value Th 3 is set to a limit value that may cause a danger to an oncoming vehicle or the like when the laser light is emitted to the outside of the lamp 210 in excess of Th 3 .
  • the determination unit 254 determines that the state of the lamp 210 (that is, the wavelength conversion member 240) is the corresponding state when the value of the detection signal S output from the photodetector 230 is in the detection signal range of Table 1. ..
  • the control unit 256 is a circuit that controls the light emission of the semiconductor laser element 238 by controlling the energization of the semiconductor laser element 238.
  • the configuration is not particularly limited, and a known circuit can be used.
  • the control unit 256 is configured to control the light emission and the amount of light emitted to the semiconductor laser element 238 according to the determination result of the determination unit 254.
  • the warning unit 258 is a circuit that warns the driver by notifying various higher-level ECUs (Electronic, Control, Unit) based on the judgment result of the judgment unit 254.
  • the warning to the driver may be, for example, a display for calling attention to the instrument panel, a warning by voice/signal sound, a warning by an independent warning light, or the like.
  • FIG. 12 is a flowchart of a process of detecting an abnormality of the wavelength conversion member 240 in the lamp 210. When the lamp 210 is turned on, the process starts.
  • step S101 the photodetector 230 constantly or at predetermined intervals monitors the laser light incident on the photodetector 230, and the current-voltage conversion circuit 252 outputs the detection signal S.
  • step S102 the determination unit 254 determines whether or not the detection signal S is less than or equal to the first threshold value Th 1 .
  • control unit 256 When the detection signal S is less than or equal to the first threshold Th 1 (Yes), the control unit 256 continues energizing the semiconductor laser device 238 in step S103, and then returns to step S101 to detect the detection signal. The output of S (monitoring of laser light) is continued.
  • the determination unit 254 determines that the detection signal S is the second threshold Th 2 or less in step S104. Determine if it exists.
  • control unit 256 controls the energization of the semiconductor laser element 238 so that the light amount decreases in step S105.
  • step S106 the warning unit 258 gives a warning to notify the driver that the lamp 210 is in a state requiring attention. After that, the process returns to S101 and the output of the detection signal S (monitoring of the laser beam) is continued. However, the warning is continuously given until Yes in the repeated step S102.
  • the processes of steps S105 and S106 are not limited to this order, and may be performed at the same time or in the reverse order.
  • the warning in step S106 allows the driver to recognize that the lamp 210 is abnormal and to repair the vehicle, such as replacing the lamp 210. Further, when the repair is not performed and the abnormality of the wavelength conversion member 240 is not eliminated, the warning state is not released, so that the driver can be urged to perform the repair more reliably.
  • the determination unit 254 determines that the detection signal S is the third threshold value Th 3 in step S107. Determine if it is:
  • control unit 256 controls the energization of the semiconductor laser element 238 so that the light amount further decreases in step S108.
  • step S109 as in step S106, the warning unit 258 issues a warning that the lamp 210 is in a state requiring attention. At this time, it is preferable to give a warning so that it can be recognized that the degree of abnormality is higher than the warning in step S106.
  • the warning in step S106 is displayed in yellow light, while the warning in step S109 is displayed in blinking yellow, etc., so that it can be detected that the attention level is higher. Good to do. By doing so, it becomes possible to make the driver aware of the urgency, and it becomes possible to take prompt repairs.
  • steps S108 and S109 are not limited to this order, and may be performed simultaneously or in the reverse order.
  • step S106 After that, the process returns to S101 and the output of the detection signal S (monitoring of the laser beam) is continued, but the warning is continuously issued until Yes in the repeated step S102.
  • the effect is similar to that of step S106.
  • step S107 when the detection signal S exceeds the third threshold value Th 3 (in the case of No), the control unit 256 immediately stops energizing the semiconductor laser element 238 in step S110. , Turn off the lamp 210.
  • the energization is immediately stopped and the lamp 210 can be turned off. Therefore, it is possible to reliably prevent the high-energy laser light that may be dangerous to an oncoming vehicle or the like from being emitted to the outside of the lamp 210.
  • step S111 the warning unit 258 gives a warning to notify the driver that the lamp 210 has been turned off due to an abnormality.
  • the warning in step S109 is a blinking yellow display
  • the above warning allows the driver to stop the vehicle promptly after confirming that the lamp 210 has been turned off.
  • control unit 256 and the warning unit 258 perform the control for one determination result by the determination unit 254, respectively, but the control unit 256 only fails. It is possible to achieve the goal of being safe. However, performing both the control and the warning is more advantageous because the driver can easily recognize the abnormal state.
  • the laser light when the lamp 210 is operating normally, the laser light is white light whose wavelength is at least partially converted by the wavelength conversion member 240. Alternatively, it enters the lens as pseudo-white light.
  • the photodetector 230 is arranged on the extended optical path of the laser light between the wavelength conversion member 240 and the exit surface of the projection lens 228 which is the exit surface of the illumination light, but the photodetector 230 is transparent. is there. Therefore, a portion of white light or pseudo white light having the highest luminous intensity can pass through the photodetector 230 and enter the projection lens 228. Therefore, the luminous flux of white light can be effectively used.
  • the photodetector 230 arranged on the extended optical path of the laser light detects the laser light. Therefore, in particular, when an abnormality such as damage or dropout of the wavelength conversion member 240 occurs, it is possible to detect a change in the intensity of the laser light, and appropriately monitor the leakage of the laser light when the wavelength conversion member 240 is abnormal. can do.
  • the photodetector 230 generates a current according to the amount of received laser light, and a determination unit 254 that determines an abnormality of the wavelength conversion member 240 based on a detection signal corresponding to the current.
  • a control unit 256 that controls energization of the semiconductor laser element 238 based on the determination result of the determination unit 254 is provided.
  • the driver recognizes an abnormality (for example, a stepwise abnormality) of the wavelength conversion member 240. It becomes easy and it becomes possible to take appropriate measures.
  • an abnormality for example, a stepwise abnormality
  • a plurality of thresholds for determining an abnormal state are set in the determination unit 254 and the abnormal state can be detected stepwise, before the wavelength conversion member 240 is completely removed, It is possible to repair or replace the lamp 210, and it is possible to prevent the occurrence of a situation that poses a danger to an oncoming vehicle.
  • a photodetector 230a is formed in a rectangular shape having a width w in the left-right direction and a height h in the up-down direction.
  • the width w and the height h may be formed so as to be larger and smaller than the beam diameter of the laser beam LB 1 . Since the photodetector 230a has a light-transmitting property, the white light WL is transmitted therethrough, but may be slightly attenuated. By doing so, the attenuation of the white light WL can be minimized. It is advantageous.
  • an opaque portion such as a contact or a wiring member of the light-transmissive photodetector 230a may be arranged on the light receiving surface of the projection lens. Since it is small with respect to the incident surface of, its influence is negligible.
  • FIG. 14 is a vertical cross-sectional view of the vehicle lamp 310 according to the fourth embodiment of the present disclosure.
  • the lamp 310 has substantially the same configuration as the vehicle lamp 210, but differs in the following points.
  • the lens support portion 226 is made of, for example, a translucent resin, whereas the lens support portion 326 is made of black resin, various metals such as iron, nickel, aluminum, and copper, or alloys such as stainless steel. To be done.
  • the lens support portion 326 includes a lens holding portion 327 and a leg portion 329, and the lens holding portion 327 does not hold the entire rear surface of the projection lens 228, but holds it at the peripheral edge portion.
  • the photodetector 330 has substantially the same shape and structure as the photodetector 230, but is not provided on the rear surface of the lens holding portion 227 but is directly fixed to the rear surface of the projection lens 228 with a transparent adhesive or the like. Has been done.
  • the solid line arrow indicates the white light WL when the wavelength conversion member 240 is normal, and the broken line arrow indicates the laser light LB 1 when the wavelength conversion member 240 is abnormal, that is, when the wavelength conversion member 240 is not present.
  • the photodetector 330 when the photodetector 330 is provided directly on the projection lens 228, it is advantageous because no special structure for supporting the photodetector 330 is required.
  • FIG. 15 is a vertical cross-sectional view of the vehicle lamp 410 according to the fifth embodiment of the present disclosure.
  • the lamp 410 has substantially the same configuration as the vehicle lamp 310, but differs in the following points.
  • the photodetector 430 is not provided on the rear surface of the projection lens 228, but is fixed to the front surface of the wavelength conversion member 440 having the same configuration as the wavelength conversion member 240 with a transparent adhesive or the like.
  • the photodetector 430 may be integrally formed by stacking a photodiode on the front surface of the wavelength conversion member 440.
  • the above configuration is also advantageous because it does not require a special structure for supporting the photodetector 430. Moreover, since the photodetector 430 functions as a reinforcing member for the wavelength conversion member 440, the life of the wavelength conversion member 440 is extended.
  • FIG. 16A is a horizontal cross-sectional view of the vehicle lamp 510 according to the sixth embodiment of the present disclosure.
  • the lamp 510 is a so-called variable orientation headlamp, which functions as a spatial light modulator to control the desired light distribution pattern to be changeable by scanning the light source light with an oscillating mirror.
  • the lamp 510 includes a lamp unit U1 arranged inside a lamp chamber 18 defined by the lamp body 12 and the front cover 14.
  • the lamp unit U1 includes a semiconductor laser element 538, a condenser lens 539, a swing mirror 560, a wavelength conversion member 540, a photodetector 530, and a projection lens 228, and is fixed to the lamp body 12 via a support member 522. ..
  • the semiconductor laser element 538 has the same configuration as the semiconductor laser element 238, and is attached to a heat sink 522a formed on the front surface of the support member 522.
  • the condenser lens 539 is a transmissive plano-convex lens having a flat incident surface and a convex exit surface, and is fixed to a support member 522 by appropriate means.
  • the oscillating mirror 560 is a MEMS (Micro/Electro/Mechanical/System) mirror, is housed in a cylindrical or rectangular parallelepiped housing 536, and is mounted on the support member 522 by a fixing means (not shown).
  • MEMS Micro/Electro/Mechanical/System
  • the front surface of the housing 536 is provided with a circular exit port 542.
  • An opening 543 for passing light from the semiconductor laser element 538 is provided on the side surface of the housing 536 on the light source side.
  • the wavelength conversion member 540 is a phosphor made of the same material as the wavelength conversion member 240, but has a lens shape with a flat rear surface and a convex front surface.
  • the wavelength conversion member 540 is fixed to the emission port 542 by the same means as the wavelength conversion member.
  • the photodetector 530 has a structure similar to that of the photodetector 330, and is directly fixed with a transparent adhesive or the like so as to cover the entire rear surface which is the incident surface of the projection lens 228.
  • the projection lens 228 is designated by a lens support portion (not shown), and the lens support portion is fixed to the support member 522.
  • the semiconductor laser device 538, the swing mirror 560, and the photodetector 530 are connected to the control unit 556, respectively.
  • the control unit 556 controls the energization of the semiconductor laser element based on the detection result of the photodetector, and also controls the energization of the scanning mechanism, similarly to the control unit 256 of the third embodiment.
  • the swing mirror 560 includes a base 561, a first rotating body 562, a second rotating body 563, a first torsion bar 564, a second torsion bar 565, a pair of first permanent magnets 566, and a pair of second. It has a permanent magnet 567 and a terminal portion 569.
  • the second rotating body 563 is a plate-shaped reflecting mirror.
  • a reflective surface 568 is formed on the front surface of the second rotating body 563 by silver deposition or sputtering.
  • the first rotating body 562 has a plate shape, and is supported by the first torsion bar 564 so as to be rotatable left and right (around the Y axis) with respect to the base 561.
  • the second rotating body 563 is plate-shaped, and is supported by the pair of second torsion bars 565 so as to be vertically rotatable (around the X axis) with respect to the first rotating body 562. ..
  • a pair of first permanent magnets 566 and a pair of second permanent magnets 567 are provided in the base 561 in the extending directions of the pair of first and second torsion bars (564, 565), respectively.
  • the pair of first and second rotating bodies (562, 563) are connected to a first coil and a second coil (not shown) via a terminal portion 569, and are independently energized and controlled by a control unit 556. To be done.
  • the first rotating body 562 tilts around the Y axis of the first torsion bar 564 based on the turning on/off of electricity to the first coil.
  • the second rotating body 563 tilts the second torsion bar 565 around the X-axis based on the on / off of the energization of the second coil.
  • the reflecting surface 568 tilts vertically and horizontally, so that the light incident on the reflecting surface 568 is scanned vertically and horizontally.
  • the laser light emitted from the semiconductor laser element 538 is condensed by the condenser lens 539, passes through the opening 543, and enters the swing mirror 560.
  • the laser light incident on the oscillating mirror 560 is scanned vertically and horizontally by the reflecting surface 568.
  • the light incident on the wavelength conversion member 540 is wavelength-converted at each incident position and emitted forward as white diffused light WL.
  • the light that has entered the wavelength conversion member 540 at the position of the laser light LB 1 in FIG. 16A is wavelength-converted and enters the projection lens 228 as white diffused light WL. Further, the light that is scanned leftward and enters the wavelength conversion member 540 at the position of LB 2 is also wavelength-converted into white diffused light WL. Then, the white diffused light enters the photodetector 530. Since the photodetector 530 has a light-transmitting property, the white diffused light WL passes through the photodetector 530 and is captured by the projection lens 228. The illumination light IL is emitted forward. In this way, the light beams scanned by the scanning mechanism and incident on the respective positions of the wavelength conversion member 540 are overlapped with each other to form a predetermined light distribution pattern.
  • the laser light LB (LB 1 is emitted from the semiconductor laser element 538 and reflected by the reflection surface 568. , LB 2 ) goes straight through the emission port 542 and enters the photodetector 530 while maintaining high energy. Since the laser beam LB is incident on the photodetector 530 and the projection lens 228 while being scanned between LB 1 and LB 2 , the incident range of the laser beam on the incident surface of the projection lens 228 is wide. However, since the photodetector 530 is provided so as to cover the entire incident surface of the projection lens 228, it is possible to reliably monitor leakage of laser light.
  • the photodetector 530 does not necessarily have to be provided so as to cover the entire incident surface of the projection lens 228, and at least, assuming that the wavelength conversion member 540 does not exist, the range in which the laser light is incident by scanning is defined. It may be provided so as to cover it. However, if it is provided so as to cover the whole, as described above, the leakage of the laser light can be reliably monitored, which is advantageous.
  • the wavelength conversion member 540 also effectively utilizes the light beam in the vehicle lighting fixture 510 that forms a predetermined light distribution pattern by the swing mirror 560 by arranging it between the wavelength conversion member 540 and the projection lens 228. It is possible to monitor laser light leakage when an abnormality occurs in the laser.
  • FIG. 18A is a horizontal sectional view of the vehicle lamp 610 according to the seventh embodiment of the present disclosure.
  • the lamp unit 610 has substantially the same configuration as the lamp unit 510 except that the lamp unit U2 includes a rotary reflector 660 as a spatial light modulator instead of the swing mirror 560.
  • FIG. 18B is an enlarged view of the rotary reflector 660.
  • the rotary reflector 660 is housed in the housing 536 and mounted on the support member 522 by a fixing means (not shown).
  • the rotation reflector 660 is controlled by the control unit 656 and rotates in one direction about the rotation axis R by a drive source (not shown).
  • the rotary reflector 660 includes a reflecting surface 668 configured to reflect the light emitted from the semiconductor laser element 538 while rotating and form a desired light distribution pattern.
  • the reflecting surface 668 is configured by providing three blades 660a having the same shape around a tubular rotating portion 660b.
  • the rotation axis R is oblique to the optical axis M of the semiconductor laser element 538, and is provided on a plane including the optical axis M and the semiconductor laser element 538.
  • the shape of the blade 660a of the rotary reflector 660 is configured such that a secondary light source by reflection of the light source (semiconductor laser element 538) is formed near the rear focal point of the projection lens 228. Further, the blade 660a has a twisted shape so that the angle formed by the optical axis M and the reflecting surface 668 changes as it goes in the circumferential direction about the rotation axis R. The rotating reflector 660, while rotating around the rotation axis R, reflects the light reflected by the reflecting surface 668 so that the direction of the light changes, thereby scanning the laser light from the light source in the left-right direction.
  • the laser light emitted from the semiconductor laser element 538 is focused by the condenser lens 539, passes through the aperture 543, and is incident on the rotary reflector 660.
  • the laser light incident on the rotary reflector 660 is scanned left and right by the reflecting surface 668.
  • the light incident on the wavelength conversion member 540 is wavelength-converted at each incident position and emitted forward as white diffused light WL.
  • the white diffused light enters the photodetector 530, but since the photodetector 530 has a light-transmitting property, the white diffused light passes through the photodetector 530 and is captured by the projection lens 228.
  • the light beams scanned by the scanning mechanism and incident on the respective positions of the wavelength conversion member 540 are overlapped with each other to form a predetermined light distribution pattern. This is similar to the behavior of the lamp 510 shown in FIG. 16A.
  • the laser beam LB behaves in the same manner as in the lamp 510 shown in FIG. Since the photodetector 530 is provided so as to cover the entire incident surface of the projection lens 228, it is possible to reliably monitor leakage of laser light.
  • the wavelength conversion member 540 can effectively utilize the light beam. It is possible to monitor the leakage of laser light when an abnormality occurs.
  • FIG. 19 is a horizontal cross-sectional view of the vehicle lamp 710 according to the eighth embodiment of the present disclosure.
  • the lamp 710 differs from the lamp 610 in that the photodetector 730 is attached to the exit surface 228b of the projection lens 228 instead of the entrance surface 228a of the projection lens 228.
  • the photodetector 730 has substantially the same structure as the photodetector 230, and is attached to the exit surface 228b of the projection lens 228 with a transparent adhesive so as to cover the entire exit surface 228b. As a result, the emission surface of the photodetector 730 becomes the emission surface 770 of the illumination light IL.
  • the above embodiment is an example of the present invention, and the present invention is not limited to these embodiments, and may be applied to various vehicle lamps that use a laser light emitting element and a wavelength conversion member as a light source. it can. It is also possible to combine these based on the knowledge of those skilled in the art, and such a form is also included in the scope of the present invention.

Abstract

A vehicle lighting fixture (10) is provided with: a semiconductor laser element (32) which emits laser light; a wavelength conversion layer (34) which absorbs at least part of the laser light and emits wavelength converted light; and a projection lens (28) which captures and emits the wavelength converted light forward. The wavelength conversion layer (34) is arranged to face the projection lens (28). The semiconductor laser element (32) is arranged such that, assuming that the wavelength conversion layer (34) did not exist, light rays of the laser light lie outside the area of a capturing angle θ of the projection lens (28).

Description

車両用灯具Vehicle lighting
 本開示は、車両用灯具に係り、より詳細には、半導体レーザ(レーザダイオード,LDともいわれる。)を光源として使用した車両用灯具に関する。 The present disclosure relates to a vehicular lamp, and more particularly to a vehicular lamp using a semiconductor laser (also called a laser diode, LD) as a light source.
 従来、半導体レーザを光源として用い、光源からの光を投影レンズに入射させるように構成された車両用灯具が知られている(例えば、特許文献1参照)。 BACKGROUND ART Conventionally, a vehicular lamp configured to use a semiconductor laser as a light source and to allow light from the light source to enter a projection lens is known (for example, see Patent Document 1).
 半導体レーザ光源を用いる車両用灯具は、半導体レーザ素子の発するレーザ光を、波長変換層である蛍光体に照射し、蛍光体が励起されて発する光とレーザ光とを混色することにより、路面照射に適し、かつ適度なエネルギーを有する白色光に変換して、出射するように設計されている。 A vehicle lamp using a semiconductor laser light source irradiates a laser beam emitted from a semiconductor laser element onto a phosphor that is a wavelength conversion layer, and mixes the laser beam with the light emitted when the phosphor is excited to illuminate a road surface. It is designed to be converted into white light having a proper energy and having appropriate energy for emission.
 レーザ光は、指向性の高い高エネルギー光であり、例えば、蛍光体の破損や脱落により、レーザ光と蛍光体とが十分に接触せずに高エネルギーのまま、投影レンズに入射して、車両用灯具外に放出されることは望ましくない。 The laser light is high-energy light with high directivity, and for example, when the phosphor is damaged or dropped, the laser light and the phosphor do not come into sufficient contact with each other and are incident on the projection lens as high energy. It is not desirable to be released outside the lamp.
 また、従来、半導体レーザ素子と、波長変換部材とを組み合わせ、半導体レーザ素子から出射されるレーザ光を波長変換部材により白色光に波長変換し、光源として用いる車両用灯具が知られている。半導体レーザを光源とする車両用灯具では、波長変換部材に脱落、破損等の異常が生じると、レーザ光が、波長変換部材によって散乱されることなく、強いコヒーレンスを有する状態で直接出射され、危険である。 Further, conventionally, there is known a vehicular lamp in which a semiconductor laser element and a wavelength conversion member are combined and the wavelength of laser light emitted from the semiconductor laser element is converted into white light by the wavelength conversion member and used as a light source. In vehicle lamps that use a semiconductor laser as a light source, if an abnormality such as dropping or breakage occurs in the wavelength conversion member, the laser light is directly emitted with strong coherence without being scattered by the wavelength conversion member, which is dangerous. Is.
 このため、光検出器を用いて、レーザ光の漏れを監視することが提案されている。例えば特許文献2には、光源の光を投影レンズに向けて反射するリフレクタに開口(ピンホール)を設け、開口の後部に光検出器を配置することが開示されている。 Therefore, it has been proposed to monitor the leakage of laser light using a photodetector. For example, Patent Document 2 discloses that an opening (pinhole) is provided in a reflector that reflects the light of a light source toward a projection lens, and a photodetector is arranged behind the opening.
 また、特許文献3では、投影レンズに光源からの光の一部を反射する遮光部を設け、白色光の光路外に光検出器を配置して、遮光部により反射した光を検出することが開示されている。 Further, in Patent Document 3, the projection lens is provided with a light-shielding portion that reflects a part of the light from the light source, and a photodetector is arranged outside the optical path of white light to detect the light reflected by the light-shielding portion. It is disclosed.
 いずれの場合にも、光検出器や遮光部は、波長変換部材が脱落、破損等した場合、すなわち波長変換部材が存在しないと仮定した場合の、レーザ光の光路上に配置される。 In any case, the photodetector and the light shielding part are arranged on the optical path of the laser light when the wavelength conversion member is dropped or damaged, that is, when it is assumed that the wavelength conversion member does not exist.
日本国特開2013-38010号公報Japanese Patent Laid-Open No. 2013-38010 日本国特開2016-58370号公報Japanese Patent Application Laid-Open No. 2016-58370 日本国特開2018-106825号公報Japanese Patent Application Laid-Open No. 2018-106825 日本国特開2016-207280号公報Japanese Patent Application Laid-Open No. 2016-207280
 特許文献1のような半導体レーザ光源を用いた車両用灯具における励起光の漏れを防止するために、特許文献4では、車両用灯具において、蛍光体の異常時に、レーザ光が接触するリフレクタに、該リフレクタを貫通するエスケープホールを形成して、レーザ光をリフレクタの外側に逃し、高エネルギーのレーザ光がリフレクタから前方に反射することを回避することが提案されている。 In order to prevent leakage of excitation light in vehicle lighting equipment using a semiconductor laser light source as in Patent Document 1, in Patent Document 4, in vehicle lighting equipment, when a phosphor is abnormal, a reflector that the laser light comes into contact with is used. It has been proposed to form an escape hole penetrating the reflector to allow the laser light to escape to the outside of the reflector and prevent the high energy laser light from being reflected forward from the reflector.
 しかしながら、上記方法は、エスケープホールといった特別な構造を必要とするものであり、コストが大になるという問題があった。また、該エスケープホールにより、正常時に、白色光の強度が最も高くなる中心部分の光を利用することができず、光を有効に利用することができないという問題があった。 However, the above method requires a special structure such as an escape hole, and there is a problem that the cost becomes large. Further, due to the escape hole, there is a problem that the light in the central portion where the intensity of the white light is the highest cannot be utilized under normal conditions, and the light cannot be utilized effectively.
 本開示は、特別な構造を必要とすることなく、低コストで、波長変換層の異常時のレーザ光の漏れに対するフェイルセーフを可能とした車両用灯具を提供することを第一の目的とする。 A first object of the present disclosure is to provide a vehicular lamp that does not require a special structure and is low-cost and that is fail-safe with respect to leakage of laser light when the wavelength conversion layer is abnormal. ..
 また、特許文献2及び3の構成とすることは、波長変換部材に異常がなく、車両用灯具が正常に動作している場合に、レーザ光の光軸と対応する、光度が最も高い白色光の中心部分の光が、光検出器や遮光部に入射してレンズに入射せず、光束を有効に利用できないという問題があった。 In addition, the configurations of Patent Documents 2 and 3 are the white light with the highest luminous intensity corresponding to the optical axis of the laser light when the wavelength conversion member has no abnormality and the vehicular lamp is operating normally. There is a problem in that the light in the central portion of the light enters the photodetector or the light shielding portion and does not enter the lens, and the light flux cannot be effectively used.
 本開示は、半導体レーザと波長変換部材を組み合わせた光源を用いた車両用灯具において、光束を有効に利用しつつ、波長変換部材に異常が生じた場合のレーザ光の漏れを監視できる技術を提供することを第二の目的とする。 The present disclosure provides a technique for a vehicle lamp that uses a light source that is a combination of a semiconductor laser and a wavelength conversion member, and that can effectively monitor the leakage of laser light when an abnormality occurs in the wavelength conversion member while effectively using the light flux. The second purpose is to do.
 上記第一の目的を達成するために、本開示の1つの態様に係る車両用灯具は、レーザ光を出射する半導体レーザ素子と、前記レーザ光の少なくとも一部を吸収して、波長変換光を出射する波長変換層と、前記波長変換光を取り込んで、前方へと出射する投影レンズと、を備え、前記波長変換層が、その出射面が前記投影レンズと正対するように配置され、前記半導体レーザ素子が、前記波長変換層が存在しないと仮定したときに、前記レーザ光の光線が前記投影レンズの取り込み角の範囲外となるように配置されている。 In order to achieve the first object, the vehicle lighting equipment according to one aspect of the present disclosure absorbs a semiconductor laser element that emits laser light and at least a part of the laser light to emit wavelength conversion light. A wavelength conversion layer that emits light and a projection lens that takes in the wavelength conversion light and emits it forward are provided, and the wavelength conversion layer is arranged so that its emission surface faces the projection lens, and the semiconductor is provided. The laser element is arranged so that the light beam of the laser light is outside the range of the acceptance angle of the projection lens when it is assumed that the wavelength conversion layer is not present.
 従来の半導体レーザ光源と投影レンズとを用いる車両用灯具では、半導体レーザ素子を投影レンズの光軸上に配置し、半導体レーザ素子と、投影レンズとの間に波長変換層を配置している。従来の構成によれば、波長変換層が正常に機能している場合、レーザ光は、波長変換層により少なくとも一部が波長変換されて白色の拡散光として、投影レンズに入射し、前方へと照射される。しかし、波長変換層に異常が生じた場合には、レーザ光と波長変換層との接触が不十分または不可能となり、高エネルギーで指向性の高いレーザ光が投影レンズに入射してしまう。 In a vehicle lighting device that uses a conventional semiconductor laser light source and a projection lens, a semiconductor laser element is arranged on the optical axis of the projection lens, and a wavelength conversion layer is arranged between the semiconductor laser element and the projection lens. According to the conventional configuration, when the wavelength conversion layer is functioning normally, at least a part of the wavelength of the laser light is converted by the wavelength conversion layer into white diffused light, which is then incident on the projection lens and moved forward. Is irradiated. However, when an abnormality occurs in the wavelength conversion layer, contact between the laser light and the wavelength conversion layer becomes insufficient or impossible, and laser light with high energy and high directivity enters the projection lens.
 本態様では、波長変換層に脱落等の異常が生じた場合を予め仮定して、半導体レーザ素子と、波長変換層と、投影レンズとを、波長変換層に異常が生じた場合に、レーザ光の光線が投影レンズの取り込み角の範囲外となるように配置する。このように配置すると、波長変換層が正常に機能している場合は、同様にレーザ光は、少なくとも一部が波長変換層により波長変換されて白色の拡散光として、投影レンズに入射し、前方へと照射される。 In this embodiment, assuming that an abnormality such as dropping occurs in the wavelength conversion layer in advance, the semiconductor laser element, the wavelength conversion layer, and the projection lens are subjected to laser light when an abnormality occurs in the wavelength conversion layer. Are arranged so that the light ray of is outside the range of the acceptance angle of the projection lens. When arranged in this way, if the wavelength conversion layer is functioning normally, similarly, at least a part of the laser light is wavelength-converted by the wavelength conversion layer and is incident on the projection lens as white diffused light, and is forward. Is irradiated to.
 一方、波長変換層に異常が生じた場合には、レーザ光と波長変換層との接触が不十分または不可能となり、レーザ光が光路を延長して直進するが、投影レンズの取り込み角の範囲外となっているため、レーザ光は投影レンズに入射しない。この結果、レーザ光の漏れを防止することができる。このように、本態様では、追加の部材を必要とせず、レーザ光の漏れを防止することができるので、フェイルセーフのためのコストの増大を防止することが可能となる。 On the other hand, when an abnormality occurs in the wavelength conversion layer, the contact between the laser light and the wavelength conversion layer becomes insufficient or impossible, and the laser light extends the optical path and travels straight, but the range of the capture angle of the projection lens Since it is outside, the laser beam does not enter the projection lens. As a result, leakage of laser light can be prevented. As described above, in this aspect, it is possible to prevent leakage of laser light without requiring an additional member, and thus it is possible to prevent an increase in cost for fail-safe.
 上記態様において、前記半導体レーザ素子と、前記投影レンズと、前記波長変換層とが、
 前記波長変換層を、その後面が、前記投影レンズの焦点と一致するように配置したときに、関係式:
(L+f)×tan(φ-α)-L×tanφ>D/2  (式1)
(ここで、Lは前記半導体レーザ素子から前記波長変換層の後面までの距離であり、
     fは前記投影レンズの焦点距離であり、
     Dは前記投影レンズの瞳径であり、
     φは前記波長変換層へ入射する前記レーザ光の主光線の前記投影レンズの光軸に対する角度であり、
     αは前記レーザ光の発散角である。)
を満たすように配置されていることも好ましい。
In the above aspect, the semiconductor laser element, the projection lens, and the wavelength conversion layer are
When the wavelength conversion layer is arranged so that the rear surface coincides with the focal point of the projection lens, the relational expression:
(L + f) x tan (φ-α) -L x tan φ> D / 2 (Equation 1)
(Here, L is the distance from the semiconductor laser device to the rear surface of the wavelength conversion layer.
f is the focal length of the projection lens,
D is the pupil diameter of the projection lens,
φ is the angle of the main ray of the laser beam incident on the wavelength conversion layer with respect to the optical axis of the projection lens.
α is the divergence angle of the laser light. )
It is also preferable that they are arranged so as to satisfy.
 上記態様において、前記波長変換層は、前記半導体レーザ素子からのレーザ光を透過して、前記波長変換光を前記投影レンズに向けて出射することも好ましい。 In the above aspect, it is also preferable that the wavelength conversion layer transmits the laser light from the semiconductor laser element and emits the wavelength converted light toward the projection lens.
 上記態様において、前記投影レンズを支持するレンズ支持部を備え、前記レンズ支持部は、前記レーザ光を吸収または反射する遮光部材を備えることも好ましい。 In the above aspect, it is also preferable that the lens support part is provided that supports the projection lens, and the lens support part is provided with a light blocking member that absorbs or reflects the laser light.
 上記態様において、前記遮光部材は、前記レーザ光および前記波長変換光の照射状態を検出するセンサを備えることも好ましい。 In the above aspect, it is also preferable that the light shielding member includes a sensor that detects an irradiation state of the laser light and the wavelength conversion light.
 上記第二の目的を達成するために、本開示の一つの態様に係る車両用灯具は、レーザ光を出射する半導体レーザ素子と、前記レーザ光の少なくとも一部を波長変換して、白色光または疑似白色光を生成する波長変換部材と、前記白色光または前記疑似白色光を取り込んで、照明光として前方へと出射するレンズと、前記レーザ光を検出する透光性の光検出器と、を備え、前記光検出器は、前記波長変換部材が存在しないと仮定した場合の前記レーザ光の光路上に配置され、かつ前記波長変換部材と前記照明光の出射面との間に配置されている。 In order to achieve the second object, the vehicle lighting equipment according to one aspect of the present disclosure includes a semiconductor laser element that emits laser light and white light or white light by converting at least a part of the laser light into white light. A wavelength conversion member that generates pseudo-white light, a lens that captures the white light or the pseudo-white light and emits it forward as illumination light, and a translucent light detector that detects the laser light. The photodetector is arranged on the optical path of the laser light in the case where the wavelength conversion member is not present, and is arranged between the wavelength conversion member and the emission surface of the illumination light. ..
 この態様において、灯具が正常に動作している場合には、レーザ光は、少なくとも一部が波長変換部材で波長変換された白色光または疑似白色光としてレンズに入射する。また、波長変換部材と照明光の出射面との間の、レーザ光の延長光路上に光検出器が配置されているが、該光検出器は透光性である。このため、白色光または疑似白色光の最も光度の高い部分は、光検出器を透過して、レンズに入射することができる。したがって、白色光の光束を有効に利用することが可能となる。 In this aspect, when the lamp is operating normally, the laser light is incident on the lens as white light or pseudo-white light whose wavelength is at least partially converted by the wavelength conversion member. Further, a photodetector is arranged on the extended optical path of the laser light between the wavelength conversion member and the emission surface of the illumination light, but the photodetector is translucent. Therefore, the portion of the white light or the pseudo-white light having the highest luminous intensity can pass through the photodetector and enter the lens. Therefore, the luminous flux of white light can be effectively used.
 レーザ光の延長光路上配置された光検出器は、レーザ光を検出するので、特に、灯具に波長変換部材の破損、脱落等の異常が生じた場合の、レーザ光の強度の変化を感知することができ、波長変換部材の異常時のレーザ光の漏れを適切に監視することができる。 Since the light detector arranged on the extended optical path of the laser light detects the laser light, it senses a change in the intensity of the laser light, in particular, when an abnormality such as damage or dropout of the wavelength conversion member occurs in the lighting equipment. Therefore, it is possible to properly monitor the leakage of the laser light when the wavelength conversion member is abnormal.
 上記態様において、前記光検出器が、前記レンズに設けられていることも好ましい。 In the above aspect, it is also preferable that the photodetector is provided on the lens.
 また、上記態様において、前記光検出器が、前記波長変換部材に設けられていることも好ましい。 In the above aspect, it is also preferable that the photodetector is provided on the wavelength conversion member.
 また、上記態様において、前記光検出器が、前記レーザ光の受光量に応じて電流を生成し、前記車両用灯具が、前記電流に応じた検出信号を出力する電流電圧変換回路と、前記検出信号に基づいて、前記波長変換部材の異常を判定する判定部と、前記判定部の判定結果に基づいて、前記半導体レーザ素子への通電を制御する制御部と、をさらに備えることも好ましい。 Further, in the above aspect, the photodetector generates a current according to the amount of received laser light, and the vehicle lamp outputs a detection signal according to the current, and the detection circuit. It is also preferable to further include a determination unit that determines an abnormality of the wavelength conversion member based on the signal, and a control unit that controls energization of the semiconductor laser element based on the determination result of the determination unit.
 また、上記態様において、前記判定部の判定結果に基づいて、運転者への警告を行う警告部をさらに備えることも好ましい。 Further, in the above aspect, it is also preferable to further include a warning unit that warns the driver based on the determination result of the determination unit.
 上記第一の目的を達成するための態様にかかる車両用灯具によれば、特別な構造を必要とすることなく、低コストで、レーザ光の漏れに対するフェイルセーフを可能とすることができる。 According to the vehicle lamp according to the mode for achieving the first object, it is possible to enable fail-safe against laser light leakage at low cost without requiring a special structure.
 上記第二の目的を達成するための態様に係る車両用灯具によれば、半導体レーザと波長変換部材を組み合わせた光源を用いた車両用灯具において、波長変換部材に異常が生じた場合のレーザ光の漏れを検出するために、透光性の光検出器を、波長変換部材が存在しないと仮定した場合のレーザ光の直進光路上に配置したので、波長変換部材の正常時において最も光度の高くなる中心部分の光を遮光部材や、光検出器、エスケープホール等で遮蔽等することなく照明光として利用しながら、常時レーザ光を検出することができる。従って、光束を有効に利用しつつ、波長変換部材に異常が生じた場合のレーザ光の漏れを監視することが可能となる。 According to the vehicle lighting equipment according to the embodiment for achieving the second object, the laser light when an abnormality occurs in the wavelength conversion member in the vehicle lighting equipment using a light source combining a semiconductor laser and a wavelength conversion member. In order to detect the leakage of light, a translucent light detector was placed on the straight path of the laser light assuming that the wavelength conversion member does not exist, so that the light intensity is the highest when the wavelength conversion member is normal. It is possible to constantly detect the laser light while using the light in the central portion as the illumination light without being shielded by the light blocking member, the photodetector, the escape hole, or the like. Therefore, it is possible to monitor the leakage of laser light when an abnormality occurs in the wavelength conversion member while effectively utilizing the light flux.
本開示の第1の実施の形態に係る車両用灯具の鉛直断面図であり、概略構造を模式的に示す。It is a vertical cross-sectional view of the vehicle lamp which concerns on 1st Embodiment of this disclosure, and shows schematic structure. 第1の実施の形態に係る車両用灯具の、正常時における、投影レンズ、半導体レーザ素子、および波長変換層の位置関係、並びに発光時の光線の状態を説明する図である。図中右の実線で示す円内には、中央の実線で示す円内の部分の拡大図を示す。It is a figure explaining the positional relationship of the projection lens, the semiconductor laser element, and the wavelength conversion layer in the normal state, and the state of the light ray at the time of light emission of the vehicle lamp which concerns on 1st Embodiment. In the circle shown by the solid line on the right side of the figure, an enlarged view of the part inside the circle shown by the solid line in the center is shown. 第1の実施の形態に係る車両用灯具の、異常時における、投影レンズ、半導体レーザ素子、及び波長変換層の位置関係、ならびに発光時の光線の状態を説明する図である。It is a figure explaining the positional relationship of the projection lens, the semiconductor laser element, and the wavelength conversion layer at the time of abnormality, and the state of the light ray at the time of light emission of the vehicle lamp according to 1st Embodiment. 第1の実施の形態に係る車両用灯具の、図1と同じ鉛直断面図であり、異常時における光線の状態を示す。FIG. 2 is a vertical cross-sectional view of the vehicular lamp according to the first embodiment, which is the same as the vertical cross-sectional view in FIG. 本開示の第2の実施の形態に係る車両用灯具の鉛直断面図であり、正常時における光線の状態を示す。FIG. 6 is a vertical cross-sectional view of a vehicle lamp according to a second embodiment of the present disclosure, showing a state of light rays in a normal state. 第2の実施の形態に係る車両用灯具の鉛直断面図であり、異常時における光線の状態を示す。It is a vertical cross-sectional view of the vehicle lamp which concerns on 2nd Embodiment, and shows the state of the light ray at the time of abnormality. 本開示の第3の実施の形態に係る車両用灯具の鉛直断面図である。FIG. 5 is a vertical cross-sectional view of a vehicular lamp according to a third embodiment of the present disclosure. 第3の実施の形態に係る車両用灯具の発光装置周辺の、投影レンズの光軸に沿う水平断面図であり、波長変換部材が存在する場合の発光装置の内部構造および光線の光路を示す。It is a horizontal cross-sectional view along the optical axis of a projection lens around a light emitting device of a vehicle lamp according to a third embodiment, and shows the internal structure of the light emitting device and the optical path of light rays when a wavelength conversion member is present. 第3の実施の形態に係る車両用灯具の発光装置周辺の、投影レンズの光軸に沿う水平断面図であり、波長変換部材が存在しない場合の発光装置の内部構造および光線の光路を示す。It is a horizontal cross-sectional view along the optical axis of a projection lens around the light emitting device of the vehicle lamp according to the third embodiment, and shows the internal structure of the light emitting device and the optical path of light rays in the case where the wavelength conversion member is not present. 第3の実施の形態に係る車両用灯具の投影レンズを背面から見た図である。It is the figure which looked at the projection lens of the lighting fixture for vehicles concerning a 3rd embodiment from the back. 第3の実施の形態に係る車両用灯具の制御ブロック図である。It is a control block diagram of the vehicle lamp which concerns on 3rd Embodiment. 第3の実施の形態に係る車両用灯具における光検出器の検出信号と制御のしきい値の関係を示す図である。It is a figure which shows the relationship between the detection signal of the photodetector and the threshold value of control in the vehicle lamp which concerns on 3rd Embodiment. 第3の実施の形態に係る車両用灯具の波長変換部材の異常の検出処理のフローチャートである。It is a flowchart of the detection process of the abnormality of the wavelength conversion member of the vehicle lamp which concerns on 3rd Embodiment. 第3の実施の形態の変形例に係る投影レンズを背面から見た図である。It is the figure which looked at the projection lens concerning the modification of a 3rd embodiment from the back. 本開示の第4の実施の形態に係る車両用灯具の鉛直断面図である。It is a vertical cross section of the vehicle lamp concerning a 4th embodiment of this indication. 本開示の第5の実施の形態に係る車両用灯具の鉛直断面図である。It is a vertical cross-sectional view of a vehicle lamp according to a fifth embodiment of the present disclosure. 本開示の第6の実施の形態に係る車両用灯具の水平断面図である。It is a horizontal sectional view of the vehicular lamp concerning a 6th embodiment of this indication. 本開示の第6の実施の形態に係る車両用灯具の揺動ミラーの拡大図である。It is an enlarged view of a rocking mirror of a vehicular lamp according to a sixth embodiment of the present disclosure. 第6の実施の形態に係る車両用灯具の、波長変換部材が存在しない場合の光線の光路を示す、水平断面図である。It is a horizontal cross section which shows the optical path of the light beam when the wavelength conversion member does not exist of the vehicle lamp which concerns on 6th Embodiment. 本開示の第7の実施の形態に係る車両用灯具の水平断面図である。It is a horizontal sectional view of the vehicular lamp concerning a 7th embodiment of this indication. 本開示の第7の実施の形態に係る車両用灯具の回転リフレクタの拡大図である。FIG. 10 is an enlarged view of a rotary reflector of a vehicular lamp according to a seventh embodiment of the present disclosure. 本開示の第8の実施の形態に係る車両用灯具の水平断面図である。It is a horizontal sectional view of the vehicular lamp concerning an 8th embodiment of this indication.
 以下、本開示の好適な実施の形態について、図面を参照しながら説明する。実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述される全ての特徴およびその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, preferred embodiments of the present disclosure will be described with reference to the drawings. The embodiment is an example, not a limitation of the invention, and all the features and combinations thereof described in the embodiment are not necessarily essential to the invention.
 実施の形態の説明において、同一の構成要素、部材には同一の符号を付し、また、同等の機能を有する構成要素、部材には、同一の名称を付して、重複する説明は適宜省略する。また、図面において、矢印U-Dは車両用灯具を正面視した場合の上下方向を、矢印F-Bは同前後方向を、矢印L-Rは同左右方向を示す。 In the description of the embodiment, the same components and members are designated by the same reference numerals, and the components and members having the same functions are designated by the same names, and duplicate description is appropriately omitted. To do. Further, in the drawings, an arrow UD indicates a vertical direction when the vehicular lamp is viewed from the front, an arrow FB indicates the same longitudinal direction, and an arrow LR indicates the same lateral direction.
(第1の実施の形態)
 図1は、第1の実施の形態に係る車両用灯具(以下、単に「灯具」ともいう。)10の概略構造を模式的に示す鉛直断面図である。車両用灯具10は、車両前方の左右に配置される一対の前照灯ユニットを有する車両用前照灯装置の、左右いずれか一方の前照灯ユニットである。一対の前照灯ユニットは、実質的に同一の構成を有する。
(First embodiment)
FIG. 1 is a vertical cross-sectional view schematically showing a schematic structure of a vehicular lamp (hereinafter, also simply referred to as “lamp”) 10 according to a first embodiment. The vehicular lamp 10 is one of the left and right headlamp units of a vehicular headlamp device having a pair of headlamp units arranged on the left and right in front of the vehicle. The pair of headlamp units have substantially the same configuration.
 車両用灯具10は、前方に開口部を有する箱状のランプボディ12と、ランプボディ12の開口を閉塞する透光性の前面カバー14とを備える。ランプボディ12と、前面カバー14とにより、灯室18が画成されている。 The vehicular lamp 10 includes a box-shaped lamp body 12 having an opening at the front, and a translucent front cover 14 that closes the opening of the lamp body 12. A lamp chamber 18 is defined by the lamp body 12 and the front cover 14.
 灯室18内には、概略として、発光装置20、支持部材22,光軸調整機構24、レンズ支持部26、投影レンズ28、およびエクステンション30が配置されている。 In the lamp chamber 18, a light emitting device 20, a supporting member 22, an optical axis adjusting mechanism 24, a lens supporting portion 26, a projection lens 28, and an extension 30 are generally arranged.
 発光装置20は、円筒状の筐体31と、半導体レーザ素子32と、波長変換層34を備える。 The light emitting device 20 includes a cylindrical housing 31, a semiconductor laser element 32, and a wavelength conversion layer 34.
 筐体31は、後端が支持部材22に固定されている。筐体31の支持部材22側底面の内部には、たとえば、アルミ等の金属により傾斜面36が形成されている。該傾斜面36上には、半導体レーザ素子32が固定されている。傾斜面36は、ヒートシンクの役割を果たす。筐体31の前面の中央には、矩形または円形の固定孔38が形成されている。該固定孔38には、波長変換層34が嵌め込まれ、シリコーンや低融点ガラス等の透明な接着剤により接着固定されている。 The rear end of the housing 31 is fixed to the support member 22. Inside the bottom surface of the housing 31 on the support member 22 side, an inclined surface 36 is formed of, for example, a metal such as aluminum. A semiconductor laser element 32 is fixed on the inclined surface 36. The inclined surface 36 functions as a heat sink. A rectangular or circular fixing hole 38 is formed in the center of the front surface of the housing 31. The wavelength conversion layer 34 is fitted into the fixing hole 38, and is fixed by adhesion with a transparent adhesive such as silicone or low melting point glass.
 半導体レーザ素子32は、レーザ光を放出する半導体発光素子であり、例えば、発光波長が青系(450nm程度)、あるいは近紫外域(405nm程度)のレーザ光を発光する素子が用いられる。 The semiconductor laser element 32 is a semiconductor light emitting device that emits laser light. For example, an element that emits laser light having a blue emission wavelength (about 450 nm) or a near-ultraviolet region (about 405 nm) is used.
 波長変換層34としては、例えば、セリウムCe等の付活剤が導入されたYAG(イットリウム・アルミニウム・ガーネット)と、アルミナAl23との複合体である蛍光体を用いることができる。波長変換層34は、ほぼ平行に配置された上面および下面を含む板状体または層状体であり、その厚みは、目的の色度に応じて適宜設定することができる。 As the wavelength conversion layer 34, for example, a phosphor that is a composite of YAG (yttrium aluminum garnet) into which an activator such as cerium Ce is introduced and alumina Al 2 O 3 can be used. The wavelength conversion layer 34 is a plate-shaped body or a layered body including an upper surface and a lower surface arranged substantially in parallel, and the thickness thereof can be appropriately set according to the target chromaticity.
 また、波長変換層34として、ユーロピウムEu等の付活剤が導入されたAPT(アパタイト)と、ユーロピウムEu等が付活されたBOS(バリウムオルソシリケート)との複合体を用いてもよい。 Alternatively, as the wavelength conversion layer 34, a composite of APT (apatite) into which an activator such as europium Eu is introduced and BOS (barium orthosilicate) into which europium Eu or the like is activated may be used.
 波長変換層34は、半導体レーザ素子32で発生するレーザ光の少なくとも一部を吸収して波長変換して透過し、半導体レーザ素子32からのレーザ光との混色により生成する白色光を放出する。 The wavelength conversion layer 34 absorbs at least a part of the laser light generated by the semiconductor laser element 32, converts the wavelength of the laser light, transmits the laser light, and emits white light generated by color mixing with the laser light from the semiconductor laser element 32.
 なお、波長変換層34は、波長変換層本体のみで構成されるものでなくてもよく、例えば、サファイア等を保持部材として、上記複合体を積層してなるものであっても良い。 The wavelength conversion layer 34 does not have to be composed only of the wavelength conversion layer main body, and may be, for example, one formed by stacking the above composites with sapphire or the like as a holding member.
 また、通常、半導体レーザ素子32にから出射されるレーザ光のビームは、真円ではなく、長円状に発生する。このため、固定孔38は、長円形であってもよく、半導体レーザ素子32に発生するレーザ光を遮蔽することなく、少なくともその一部を吸収して波長変換して透過させる形状であればよい。 Also, normally, the beam of laser light emitted from the semiconductor laser element 32 is generated in an oval shape instead of a perfect circle. Therefore, the fixing hole 38 may have an elliptical shape, and may have any shape as long as it absorbs at least a part of the laser light generated in the semiconductor laser element 32, converts the wavelength, and transmits the laser light. ..
 支持部材22は、正面視矩形の金属製の部材であり、発光装置20を支持すると共に、発光装置20を光軸調整機構24に連結する。 The support member 22 is a metal member having a rectangular shape in front view, supports the light emitting device 20, and also connects the light emitting device 20 to the optical axis adjusting mechanism 24.
 光軸調整機構24は、レベリングアクチュエータ40と、ピボット42とを備える。レベリングアクチュエータ40は、スクリュ44を介して支持板46の下部に取り付けられ、ピボット42は、正面視(図示略)で、支持板46の3隅に取り付けられている。このように、支持部材22は、光軸調整機構24を介してランプボディ12に支持されている。 The optical axis adjusting mechanism 24 includes a leveling actuator 40 and a pivot 42. The leveling actuator 40 is attached to the lower part of the support plate 46 via the screw 44, and the pivots 42 are attached to the three corners of the support plate 46 in a front view (not shown). In this way, the support member 22 is supported by the lamp body 12 via the optical axis adjusting mechanism 24.
 光軸調整機構24は、レベリングアクチュエータ40の駆動により、支持部材22をランプボディ12に対して傾動させることができる。支持部材22の傾動に伴い、発光装置20および投影レンズ28が傾動し、照明光の光軸Oを調整することができる。光軸調整機構24の具体的構成は、これに限らず、公知の構成を適宜採用することができる。 The optical axis adjusting mechanism 24 can tilt the support member 22 with respect to the lamp body 12 by driving the leveling actuator 40. As the support member 22 tilts, the light emitting device 20 and the projection lens 28 tilt, and the optical axis O of the illumination light can be adjusted. The specific configuration of the optical axis adjusting mechanism 24 is not limited to this, and a known configuration can be appropriately adopted.
 レンズ支持部26は、例えば、透光性樹脂で構成される円筒体である。レンズ支持部26は、保持部48および脚部50を備え、投影レンズ28を保持して、支持部材22に連結している。レンズ支持部26は、脚部50の後端において、フランジを備え、支持部材22に適宜の構成により固定されている。 The lens support portion 26 is, for example, a cylindrical body made of translucent resin. The lens support portion 26 includes a holding portion 48 and a leg portion 50, holds the projection lens 28, and is connected to the support member 22. The lens support portion 26 is provided with a flange at the rear end of the leg portion 50 and is fixed to the support member 22 with an appropriate configuration.
 また、レンズ支持部26の脚部50の内壁には、レーザ光を遮光する遮光部材49、および白色光の発光状態を検知するためのセンサ51が設けられている。遮光部材49およびセンサ51の詳細については後述する。 Further, on the inner wall of the leg portion 50 of the lens support portion 26, a light blocking member 49 for blocking the laser light and a sensor 51 for detecting the light emitting state of white light are provided. Details of the light-shielding member 49 and the sensor 51 will be described later.
 投影レンズ28は、前方側の凸表面及び後方側の平面を含む非球面レンズであり、例えば、アクリル等の透明樹脂、またはその他の透光性材料により形成されている。投影レンズ28は、保持部48に固定保持されて、車両前後方向に伸びる光軸O上に配置されている。投影レンズ28は、発光装置20から入射する白色光を受け入れて灯具10前方に向けて出射する。 The projection lens 28 is an aspherical lens including a convex surface on the front side and a flat surface on the rear side, and is made of, for example, a transparent resin such as acryl or another translucent material. The projection lens 28 is fixedly held by the holding portion 48 and is arranged on the optical axis O extending in the front-rear direction of the vehicle. The projection lens 28 receives the white light incident from the light emitting device 20 and emits it toward the front of the lamp 10.
 投影レンズ28の出射面を出た白色光は、前面カバー14へと向かい、前面カバー14を透過して、灯具10前方へ出射される。投影レンズ28の作用により、灯具10前方に所望の配光パターンが形成される。 White light emitted from the emission surface of the projection lens 28 is directed to the front cover 14, passes through the front cover 14, and is emitted to the front of the lamp 10. Due to the action of the projection lens 28, a desired light distribution pattern is formed in front of the lamp 10.
 エクステンション30は、投影レンズ28の周囲を前方から目隠しする役割を果たす金属製または樹脂製の部材である。 The extension 30 is a member made of metal or resin that plays a role of blindfolding the periphery of the projection lens 28 from the front.
 以下、投影レンズ28、半導体レーザ素子32、および波長変換層34の位置関係を図2および図3を参照しながら説明する。 Hereinafter, the positional relationship among the projection lens 28, the semiconductor laser element 32, and the wavelength conversion layer 34 will be described with reference to FIGS. 2 and 3.
 図2および図3は、投影レンズ28、半導体レーザ素子32、および波長変換層34の位置関係、並びに発光時の光線の状態を模式的に説明する図である。図2は、正常時、すなわち、波長変換層34が固定孔に固定され、脱落、破損、または劣化等がない状態を示す。図3は、波長変換層34が、異常時、すなわち波長変換層34が脱落、破損、または劣化等により正常に動作しなくなった状態を示す。 2 and 3 are diagrams schematically illustrating the positional relationship between the projection lens 28, the semiconductor laser element 32, and the wavelength conversion layer 34, and the state of light rays during light emission. FIG. 2 shows a normal state, that is, a state in which the wavelength conversion layer 34 is fixed in the fixing hole and is not dropped, damaged, or deteriorated. FIG. 3 shows a state in which the wavelength conversion layer 34 is abnormal, that is, the wavelength conversion layer 34 does not operate normally due to dropout, damage, deterioration, or the like.
 投影レンズ28、波長変換層34および半導体レーザ素子32は、波長変換層34が存在しないと仮定したときに、半導体レーザ素子32から出射されるレーザ光の光線(上光線UBおよび下光線LBを含む光線全体)が、投影レンズ28の取り込み角θの範囲外となるように配置されている。 The projection lens 28, the wavelength conversion layer 34, and the semiconductor laser element 32 include the light rays (upper ray UB and lower ray LB) of the laser light emitted from the semiconductor laser element 32, assuming that the wavelength conversion layer 34 does not exist. The entire light beam) is arranged so as to be outside the range of the acceptance angle θ of the projection lens 28.
 より詳しくは、波長変換層34をその後面が投影レンズ28の焦点Aに、投影レンズ28に正対するように配置し、
 半導体レーザ素子32と波長変換層34の後面との間の距離をL、
 投影レンズ28の焦点距離をf、
 投影レンズ28の瞳径をD、
 波長変換層34へ入射するレーザ光の主光線MBの投影レンズ28の光軸Oに対する角度(波長変換層の配置角)をφ、
 レーザ光の発散角をαで表した時、下式(1)
(L+f)×tan(φ-α)-L×tanφ>D/2 (1)
を満たすように配置されている。
More specifically, the wavelength conversion layer 34 is arranged so that its rear surface is located at the focal point A of the projection lens 28 and directly faces the projection lens 28.
The distance between the semiconductor laser device 32 and the rear surface of the wavelength conversion layer 34 is L.
The focal length of the projection lens 28 is f,
The pupil diameter of the projection lens 28 is D,
The angle (arrangement angle of the wavelength conversion layer) of the principal ray MB of the laser light incident on the wavelength conversion layer 34 with respect to the optical axis O of the projection lens 28 is φ,
When the divergence angle of the laser beam is expressed by α, the following equation (1)
(L + f) x tan (φ-α) -L x tan φ> D / 2 (1)
It is arranged so as to satisfy.
 なお、本明細書において、波長変換層34を投影レンズ28の焦点Aに配置するとは、波長変換層34を投影レンズ28の焦点Aに完全に一致するように配置することだけをいうのではなく、本開示の目的を逸脱しない範囲において、焦点Aの近傍に配置することを含んでいてもよい。 In this specification, arranging the wavelength conversion layer 34 at the focal point A of the projection lens 28 does not only mean arranging the wavelength conversion layer 34 at the focal point A of the projection lens 28 completely. , May be included in the vicinity of the focal point A without departing from the object of the present disclosure.
 上記配置により、正常時には、半導体レーザ素子32から出射されたレーザ光は、図2中の実線円内に拡大して示すように、波長変換層34の背面に、発散角αで入射する。ここで、符号MBは、レーザ光の主光線を、符号UBは、上光線を、符号LBは下光線を表す。 With the above arrangement, in a normal state, the laser light emitted from the semiconductor laser element 32 is incident on the back surface of the wavelength conversion layer 34 at a divergence angle α, as shown in an enlarged view within a solid circle in FIG. Here, the symbol MB represents the chief ray of the laser light, the symbol UB represents the upper ray, and the symbol LB represents the lower ray.
 波長変換層34に入射したレーザ光は、波長変換されて、白色の拡散光WLとして投影レンズ28に向けて出射される。波長変換層34は完全拡散面を有するため、白色の拡散光WLは、光度の軌跡が図の様に円形となり、投影レンズ28の光軸Oと合致する中心部(0°)の強度が最も高く、当該中心部の周辺がコサイン特性で減衰するランバーシアン特性を示す。これらの白色の拡散光WLのうち、投影レンズ28の取り込み角θの範囲の光が、投影レンズ28に入射し、照明光ILとして灯具10前方へと出射される。 The wavelength of the laser light that has entered the wavelength conversion layer 34 is converted and emitted as white diffused light WL toward the projection lens 28. Since the wavelength conversion layer 34 has a perfect diffusing surface, the white diffused light WL has a circular locus of light intensity as shown in the figure, and the intensity of the central portion (0°) that coincides with the optical axis O of the projection lens 28 is the most. The Lambertian characteristic is high and the periphery of the center part is attenuated by the cosine characteristic. Of these white diffused lights WL, light within the range of the acceptance angle θ of the projection lens 28 enters the projection lens 28 and is emitted as illumination light IL toward the front of the lamp 10.
 このように、波長変換層34の出射面を投影レンズ28の光軸Oと直交させて、波長変換層34を投影レンズ28の背面と正対するように配置することにより、白色の拡散光WLの中心部分を利用することが可能となる。結果として、効率よくレーザ光を利用することが可能である。 As described above, the emission surface of the wavelength conversion layer 34 is orthogonal to the optical axis O of the projection lens 28, and the wavelength conversion layer 34 is disposed so as to face the back surface of the projection lens 28, whereby the white diffused light WL It becomes possible to use the central part. As a result, it is possible to efficiently use the laser beam.
 一方、波長変換層34が存在しない場合、図3に示すように、半導体レーザ素子32から出射したレーザ光の光線は、投影レンズ28の後方焦点Aを通過して、投影レンズ28の光軸Oと角度φをなす、直線光路上を進行する。この時、レーザ光は僅かであるが、発散角αで発散している。しかし、レーザ光の下光線LBは、必ず、投影レンズ28の取り込み角θの範囲外となるように配置されているので、半導体レーザ素子32から出射された、高エネルギーで指向性の高いレーザ光は、投影レンズ28に取り込まれることがない。この結果、高エネルギーのレーザ光が、投影レンズ28を透過して、前方に照射されることを防止できる。 On the other hand, when the wavelength conversion layer 34 does not exist, as shown in FIG. 3, the light beam of the laser light emitted from the semiconductor laser element 32 passes through the rear focal point A of the projection lens 28 and the optical axis O of the projection lens 28. Travels on a straight optical path forming an angle φ with. At this time, although the laser light is slight, it diverges at the divergence angle α. However, since the lower ray LB of the laser light is always arranged so as to be outside the range of the acceptance angle θ of the projection lens 28, the laser light emitted from the semiconductor laser element 32 has high energy and high directivity. Are not taken into the projection lens 28. As a result, it is possible to prevent high-energy laser light from passing through the projection lens 28 and being irradiated forward.
 ここで、遮光部材49およびセンサ51について図4を参照して説明する。
 遮光部材49は、例えば、黒色の樹脂製の、または、鉄、ニッケル、アルミニウム、銅などの各種金属や、ステンレス等の合金製で表面に黒色塗装した、曲板状の部材である。遮光部材49は、レンズ支持部26の脚部50の内面に沿うように設けられている。
Here, the light blocking member 49 and the sensor 51 will be described with reference to FIG.
The light shielding member 49 is, for example, a curved plate-shaped member made of black resin, or made of various metals such as iron, nickel, aluminum, and copper, or an alloy such as stainless steel, the surface of which is black-painted. The light-shielding member 49 is provided along the inner surface of the leg portion 50 of the lens support portion 26.
 波長変換層34が存在しない場合、投影レンズ28の後方焦点Aを通過したレーザ光は、高エネルギーのまま、図4に示すとおり、レンズ支持部26に備えられた遮光部材49に入射することになる。遮光部材49により、レーザ光はレンズ支持部26で完全に遮光され吸収される。したがって、高エネルギーのままのレーザ光が灯室18内に漏れ出ることを防止できる。このため、灯室18内に漏れ出たレーザ光が、灯室18内の部材に複数回反射する等して、間接的に灯具10前方へ照射されることを防止できる。 When the wavelength conversion layer 34 is not present, the laser light that has passed through the rear focal point A of the projection lens 28 is incident on the light-shielding member 49 provided on the lens support portion 26 as shown in FIG. 4 with high energy. Become. The laser light is completely blocked and absorbed by the lens support portion 26 by the light blocking member 49. Therefore, it is possible to prevent the high-energy laser light from leaking into the lamp chamber 18. Therefore, it is possible to prevent the laser light leaking into the lamp chamber 18 from being indirectly irradiated to the front of the lamp 10 by being reflected by a member in the lamp chamber 18 a plurality of times.
 センサ51は、制御回路(図示せず)に接続されている。該制御回路は、センサ51の検出結果に基づいて半導体レーザ素子32への通電を制御しうるように構成されている。センサ51は、図4に示すように、遮光部材49における、波長変換層34が存在しない場合に高エネルギーのレーザ光の少なくとも一部が入射する位置に、設けられている。 The sensor 51 is connected to a control circuit (not shown). The control circuit is configured to be able to control energization of the semiconductor laser element 32 based on the detection result of the sensor 51. As shown in FIG. 4, the sensor 51 is provided in the light shielding member 49 at a position where at least a part of the high-energy laser light is incident when the wavelength conversion layer 34 does not exist.
 センサ51としては、例えば白色光WLまたはレーザ光の波長を検出するフォトダイオード等のフォトセンサを用いることができる。フォトセンサは、波長変換層34に異常が生じた場合、センサ51の白色光WLまたはレーザ光の受光光量や色度の変化を異常として検出する。 As the sensor 51, for example, a photosensor such as a photodiode that detects the wavelength of white light WL or laser light can be used. When an abnormality occurs in the wavelength conversion layer 34, the photo sensor detects a change in the received light amount or chromaticity of the white light WL or the laser light of the sensor 51 as an abnormality.
 あるいは、センサ51として、サーミスタ等の温度センサを用いてもよい。温度センサは、波長変換層34に異常が生じた場合、遮光性を有する遮光部材49が高エネルギーのレーザ光を吸収するため起こる温度変化を異常として検出する。 Alternatively, a temperature sensor such as a thermistor may be used as the sensor 51. When an abnormality occurs in the wavelength conversion layer 34, the temperature sensor detects, as an abnormality, a temperature change that occurs because the light shielding member 49 having a light shielding property absorbs high-energy laser light.
 あるいは、センサ51として、歪センサを用いてもよい。歪センサは、波長変換層34に異常が生じた場合、遮光部材49が高エネルギーのレーザ光を吸収するため起こる温度変化に起因する、レンズ支持部26の歪を異常として検出する。 Alternatively, a strain sensor may be used as the sensor 51. When an abnormality occurs in the wavelength conversion layer 34, the strain sensor detects the strain of the lens support portion 26 as an abnormality caused by a temperature change caused by the light shielding member 49 absorbing high-energy laser light.
 本実施の形態においては、波長変換層34に脱落、破損、劣化等の異常が生じた場合、高エネルギーの状態のレーザ光は、投影レンズ28に取り込まれない様に構成されている。また、レンズ支持部26の脚部50の内面に備えられた遮光部材49により、高エネルギーのレーザ光が、灯室18へ漏れ出るのを防止している。したがって、指向性の強いレーザ光が、灯具10外に照射されることは通常起こりえない。 In the present embodiment, the laser light in a high energy state is configured not to be taken into the projection lens 28 when the wavelength conversion layer 34 has an abnormality such as dropping, damage, deterioration or the like. Further, the light shielding member 49 provided on the inner surface of the leg portion 50 of the lens support portion 26 prevents the high energy laser light from leaking to the lamp chamber 18. Therefore, it is unlikely that the laser light having a strong directivity is emitted to the outside of the lamp 10.
 しかし、波長変換層34に異常がある状態で、点灯を続行すると、灯具10に対する近距離からの覗き込み等により、歩行者等に危険を及ぼす虞がある。また、このような波長変換層34の異常は、段階的に起こりうるので、早期に異常を検知することが好ましい。 However, if the lighting is continued in a state where the wavelength conversion layer 34 is abnormal, there is a risk that the pedestrian may be in danger due to a short distance looking into the lamp 10. Further, such an abnormality of the wavelength conversion layer 34 can occur stepwise, and therefore it is preferable to detect the abnormality early.
 上記のように、遮光部材49に、フォトセンサ、温度センサ、歪センサ等のセンサ51を設けると、灯具10、特に波長変換層34が正常に作動しているかどうかをモニタリングすることができるので有利である。また、センサ51が異常状態を検出した場合に、半導体レーザ素子32への通電を停止するように制御すれば、灯具10に対する近距離からの覗き込み等による危険を防止できるので、灯具10の安全性が向上する。 As described above, when the light shielding member 49 is provided with the sensor 51 such as the photo sensor, the temperature sensor, and the strain sensor, it is possible to monitor whether or not the lamp 10, particularly the wavelength conversion layer 34 is operating normally. Is. Further, when the sensor 51 detects an abnormal state, by controlling so that the power supply to the semiconductor laser element 32 is stopped, it is possible to prevent a danger such as looking into the lamp 10 from a short distance, so that the lamp 10 is safe. Improves sex.
(第2の実施の形態)
 図5および図6は、本開示の第2の実施の形態に係る車両用灯具110の鉛直断面図である。図5は、正常時、すなわち、波長変換層34に脱落、破損、または劣化等がない状態を示す。図6は、波長変換層34が、異常時、すなわち波長変換層34が脱落、破損、または劣化等により正常に動作しなくなった状態を示す。
(Second embodiment)
5 and 6 are vertical cross-sectional views of the vehicular lamp 110 according to the second embodiment of the present disclosure. FIG. 5 shows a normal state, that is, a state in which the wavelength conversion layer 34 is not dropped, damaged, deteriorated, or the like. FIG. 6 shows a state in which the wavelength conversion layer 34 is abnormal, that is, the wavelength conversion layer 34 does not operate normally due to dropout, damage, deterioration, or the like.
 車両用灯具110は、車両用灯具10と概略同様の構成を備えるが、以下の点で異なる。 The vehicular lamp 110 has a configuration similar to that of the vehicular lamp 10 except for the following points.
 レンズ支持部26が、例えば、透光性樹脂で構成されるのに対して、レンズ支持部126は、黒色樹脂または、鉄、ニッケル、アルミニウム、銅などの各種金属や、ステンレス等の合金で構成される。また、レンズ支持部126が金属の場合には、レンズ支持部126は黒色塗装されていてもよい。すなわち、レンズ支持部126は別体の遮光部材を有しないが、遮光材料または光吸収材料で構成されることにより遮光性を備える。 The lens support portion 26 is made of, for example, a translucent resin, whereas the lens support portion 126 is made of black resin, various metals such as iron, nickel, aluminum, and copper, and alloys such as stainless steel. Will be done. When the lens support 126 is made of metal, the lens support 126 may be painted black. That is, the lens support portion 126 does not have a separate light shielding member, but has a light shielding property by being made of a light shielding material or a light absorbing material.
 また、レンズ支持部126は、円筒体であり、投影レンズ28を保持する保持部148および脚部150を備え、投影レンズ28を保持部148で係合保持して、脚部150の後端において、支持部材122に連結している。 Further, the lens support portion 126 is a cylindrical body, and includes a holding portion 148 that holds the projection lens 28 and a leg portion 150. The projection lens 28 is engaged and held by the holding portion 148, and at the rear end of the leg portion 150. , Connected to the support member 122.
 レンズ支持部126の底面139の中央には、波長変換層34を固定するための固定孔138が開口しており、波長変換層34が固定されている。センサ51は、レンズ支持部126に直接設けられている。 A fixing hole 138 for fixing the wavelength conversion layer 34 is opened in the center of the bottom surface 139 of the lens support 126, and the wavelength conversion layer 34 is fixed. The sensor 51 is directly provided on the lens support portion 126.
 また、灯具110は、ユニット化された発光装置20に代えて、発光部120を備える。発光部120は、支持部材122の前面側の立壁とレンズ支持部126の底面により画成されている。 The lamp 110 includes a light emitting unit 120 instead of the unitized light emitting device 20. The light emitting section 120 is defined by a standing wall on the front side of the support member 122 and a bottom surface of the lens support section 126.
 発光部120は、レンズ支持部126底面の波長変換層34と、半導体レーザ素子32を備える。半導体レーザ素子32は、支持部材122の支持板146の前面に形成された傾斜面136上に配置されている。 The light emitting section 120 includes the wavelength conversion layer 34 on the bottom surface of the lens supporting section 126 and the semiconductor laser element 32. The semiconductor laser device 32 is arranged on an inclined surface 136 formed on the front surface of the support plate 146 of the support member 122.
 灯具110においても、灯具10と同様に、投影レンズ28,波長変換層34および半導体レーザ素子32は、波長変換層34が存在しないと仮定したときに、半導体レーザ素子32から出射されるレーザ光の光線(上光線UBおよび下光線LBを含む光線全体)が、投影レンズ28の取り込み角θの範囲外となるように配置されている。その具体的な位置関係は、式(1)を満たすものとなっている。 In the lamp 110 as well, similar to the lamp 10, the projection lens 28, the wavelength conversion layer 34, and the semiconductor laser element 32 are provided with a laser beam emitted from the semiconductor laser element 32 when it is assumed that the wavelength conversion layer 34 does not exist. The light ray (the entire light ray including the upper light ray UB and the lower light ray LB) is arranged so as to be outside the range of the capture angle θ of the projection lens 28. The specific positional relationship satisfies Expression (1).
 このように配置することにより、図5に示す正常時には、半導体レーザ素子32から出射されたレーザ光は、波長変換層34に入射して、波長変換され、ランバーシアン特性を有する白色の拡散光として、投影レンズ28に入射して照明光として前方に照射される。 By arranging in this way, in the normal state shown in FIG. 5, the laser light emitted from the semiconductor laser element 32 is incident on the wavelength conversion layer 34, is wavelength-converted, and becomes white diffused light having Lambersian characteristics. , It is incident on the projection lens 28 and is irradiated forward as illumination light.
 一方、図6に示す異常時には、半導体レーザ素子32から出射されたレーザ光は、指向性が高く、高エネルギーな状態で、レーザ光の延長光路を進行し、遮光部材として機能するレンズ支持部126の内壁へ入射して遮光される。また、少なくとも一部は、センサ51に入射して、異常として検出される。 On the other hand, at the abnormal time shown in FIG. 6, the laser beam emitted from the semiconductor laser element 32 travels in the extended optical path of the laser beam in a high directivity and high energy state, and functions as a light shielding member 126. It enters the inner wall of the light and is shielded from light. Further, at least a part of the light enters the sensor 51 and is detected as an abnormality.
 この結果、本実施形態でも、第1の実施形態と同様に、高エネルギーのレーザ光が投影レンズ28を透過して前方に照射されることを防止できる。 As a result, also in the present embodiment, as in the first embodiment, it is possible to prevent high energy laser light from passing through the projection lens 28 and being irradiated forward.
 さらに、本実施の形態によれば、レンズ支持部の底面139に波長変換層34を固定し、レンズ支持部126と支持部材122とで発光部120を画成するように構成したので、レンズ支持部126を組み付けると同時に発光部120の組み立てが完了する。結果として、灯具110の組付けが容易になる。 Further, according to the present embodiment, the wavelength conversion layer 34 is fixed to the bottom surface 139 of the lens supporting portion, and the light emitting portion 120 is defined by the lens supporting portion 126 and the supporting member 122. At the same time when the part 126 is assembled, the assembly of the light emitting part 120 is completed. As a result, the lamp 110 can be easily assembled.
 なお、図示の例では、半導体レーザ素子32は、投影レンズ28の光軸Oに対して上方に設けられているが、これに限らず、投影レンズ28、波長変換層34および半導体レーザ素子32が、上記の位置関係にあれば、所望の配光パターンに応じて、半導体レーザ素子32の配置を設計することができる。 In the illustrated example, the semiconductor laser element 32 is provided above the optical axis O of the projection lens 28, but the present invention is not limited to this, and the projection lens 28, the wavelength conversion layer 34, and the semiconductor laser element 32 are provided. With the above positional relationship, the arrangement of the semiconductor laser elements 32 can be designed according to the desired light distribution pattern.
(第3の実施の形態)
 以下、本開示の第3の実施形態について図面を参照しながら説明する。尚、第1及び第2の実施形態の説明において既に説明された部材と同一の参照番号を有する部材については、説明の便宜上、その説明は省略する。図7は、本開示の第3の実施の形態に係る車両用灯具210の概略構造を模式的に示す鉛直断面図である。車両用灯具210は、車両前方の左右に配置される一対の前照灯ユニットを有する車両用前照灯装置の、左右いずれか一方の前照灯ユニットである。一対の前照灯ユニットは、実質的に同一の構成を有する。
(Third Embodiment)
Hereinafter, a third embodiment of the present disclosure will be described with reference to the drawings. It should be noted that members having the same reference numerals as those already described in the description of the first and second embodiments will be omitted for convenience of description. FIG. 7 is a vertical cross-sectional view schematically showing the schematic structure of the vehicular lamp 210 according to the third embodiment of the present disclosure. The vehicular lamp 210 is one of the left and right headlamp units of a vehicular headlamp apparatus having a pair of headlamp units arranged on the left and right in front of the vehicle. The pair of headlamp units have substantially the same configuration.
 灯室18内には、概略として、発光装置220、支持部材222,光軸調整機構224、レンズ支持部226、投影レンズ228、光検出器230およびエクステンション232が配置されている。 In the lamp chamber 18, a light emitting device 220, a support member 222, an optical axis adjusting mechanism 224, a lens support portion 226, a projection lens 228, a photodetector 230, and an extension 232 are generally arranged.
 発光装置220は、励起光を白色光または疑似白色光に変換して出射するように構成されている。 The light emitting device 220 is configured to convert the excitation light into white light or pseudo white light and emit it.
 ここで、擬似白色光は、青色レーザ光と、青色レーザ光の一部とを黄色波長変換部材により波長変換した黄色光とを混色して生成する、擬似的な白色光である。以下、本明細書において、用語「白色光」は、「疑似白色光」を含んでもよい。 Here, the pseudo white light is pseudo white light generated by mixing the blue laser light and the yellow light in which a part of the blue laser light is wavelength-converted by the yellow wavelength conversion member. Hereinafter, in this specification, the term “white light” may include “pseudo white light”.
 発光装置220は、例えば、いわゆるCANパッケージ型のレーザダイオード(LD)モジュールである。図8Aに示すように、発光装置220は、基板234と、円筒状の筐体236と、半導体レーザ素子238と、集光レンズ239と、波長変換部材240とを備え、筐体236と、基板234とで半導体レーザ素子238を格納するように構成されている。 The light emitting device 220 is, for example, a so-called CAN package type laser diode (LD) module. As shown in FIG. 8A, the light emitting device 220 includes a substrate 234, a cylindrical casing 236, a semiconductor laser element 238, a condenser lens 239, and a wavelength conversion member 240, and the casing 236 and the substrate. 234 and the semiconductor laser device 238.
 基板234は、半導体レーザ素子238を支持すると共に、通電コネクタおよび制御コネクタ(図示せず)を備え、図示しない通電装置および制御装置と接続する。また、ヒートシンクとして作用する支持部材222を介して放熱する作用を奏する。 The substrate 234 supports the semiconductor laser element 238, and also includes an energization connector and a control connector (not shown), and is connected to an energization device and a control device (not shown). In addition, it also has a function of radiating heat through the support member 222 that functions as a heat sink.
 筐体236の前面には、半導体レーザ素子238からの光を出射する正面視円形の出射口242が設けられている。該出射口242には、波長変換部材240が嵌めこまれ、シリコーンや低融点ガラス等の透光性の接着剤により接着固定されている。また、集光レンズ239は、波長変換部材240と半導体レーザ素子238との間に設けられて、半導体レーザ素子238から発せられた光を波長変換部材240へと集光する。 The front surface of the housing 236 is provided with a circular emission port 242 for emitting light from the semiconductor laser element 238 in a front view. A wavelength conversion member 240 is fitted into the emission port 242, and is fixedly adhered by a translucent adhesive such as silicone or low melting point glass. The condenser lens 239 is provided between the wavelength conversion member 240 and the semiconductor laser element 238 and condenses the light emitted from the semiconductor laser element 238 onto the wavelength conversion member 240.
 半導体レーザ素子238は、半導体レーザ素子32と同様の構成を採用できる。半導体レーザ素子238は、投影レンズ228の光軸O1上に配置されている。 The semiconductor laser element 238 can adopt the same configuration as the semiconductor laser element 32. The semiconductor laser element 238 is arranged on the optical axis O 1 of the projection lens 228.
 波長変換部材240は、波長変換層34と同様の構成を採用できる。 The wavelength conversion member 240 can adopt the same configuration as the wavelength conversion layer 34.
 波長変換部材240は、半導体レーザ素子238で発生するレーザ光の少なくとも一部を吸収して波長変換して透過し、半導体レーザ素子238からのレーザ光との混色により生成する白色光または疑似白色光を放出する。 The wavelength conversion member 240 absorbs at least a part of the laser light generated by the semiconductor laser element 238, converts the wavelength, transmits the wavelength, and transmits white light or pseudo white light by color mixing with the laser light from the semiconductor laser element 238. Is released.
 出射口242は、固定孔38と同様の構成を採用できる。 The emission port 242 can adopt the same structure as the fixed hole 38.
 図7の説明に戻る。支持部材222は、アルミニウム等の金属製で、正面視矩形の部材であり、発光装置220を支持すると共に、発光装置220を光軸調整機構224に連結する。 Return to the explanation in Fig. 7. The support member 222 is made of metal such as aluminum and is a rectangular member in a front view. The support member 222 supports the light emitting device 220 and also connects the light emitting device 220 to the optical axis adjusting mechanism 224.
 光軸調整機構224は、レベリングアクチュエータ244と、ピボット246とを備える。レベリングアクチュエータ244は、スクリュ248を介して支持部材222の下部に取り付けられ、ピボット246は、正面視(図示略)で、支持部材222の3隅に取り付けられている。 The optical axis adjusting mechanism 224 includes a leveling actuator 244 and a pivot 246. The leveling actuator 244 is attached to the lower portion of the support member 222 via the screw 248, and the pivots 246 are attached to the three corners of the support member 222 in a front view (not shown).
 光軸調整機構224は、レベリングアクチュエータ244の駆動により、支持部材222をランプボディ12に対して傾動させることができる。支持部材222の傾動に伴い、発光装置220および投影レンズ228が傾動し、照明光の光軸を調整することができる。光軸調整機構224の具体的構成は、これに限らず、公知の構成を適宜採用することができる。 The optical axis adjusting mechanism 224 can tilt the support member 222 with respect to the lamp body 12 by driving the leveling actuator 244. With the tilt of the support member 222, the light emitting device 220 and the projection lens 228 are tilted, and the optical axis of the illumination light can be adjusted. The specific configuration of the optical axis adjusting mechanism 224 is not limited to this, and a known configuration can be appropriately adopted.
 レンズ支持部226は、例えば、透光性樹脂で構成される円筒体である。レンズ支持部226は、レンズ保持部227および脚部229を備え、投影レンズ228を保持して、支持部材222に連結している。レンズ支持部226は、脚部229の後端において、フランジを備え、支持部材222に適宜の構成により固定されている。 The lens support portion 226 is, for example, a cylindrical body made of translucent resin. The lens support portion 226 includes a lens holding portion 227 and a leg portion 229, holds the projection lens 228, and is connected to the support member 222. The lens support portion 226 includes a flange at the rear end of the leg portion 229, and is fixed to the support member 222 with an appropriate configuration.
 なお、レンズ支持部226は、全体が透光性である必要はなく、レンズ保持部227を透光性樹脂、脚部229を不透光性樹脂とする2色成型で形成してもよい。 Note that the lens support portion 226 does not need to be entirely transparent, and may be formed by two-color molding in which the lens holding portion 227 is a transparent resin and the legs 229 are a transparent resin.
 光検出器230は、例えば、非特許文献1に記載されているような、グラフェンと、塩化鉄(III)FeCl3をインターカレートした数層グラフェンとで構成される透光性のフォトダイオードを用いた光検出器である。 The photodetector 230 is, for example, a translucent photodiode composed of graphene and several-layer graphene in which iron (III) chloride FeCl 3 is intercalated as described in Non-Patent Document 1. This is the photodetector used.
 この、透光性のフォトダイオードは以下のように作成される(非特許文献1参照)。
 まず、Siを高濃度にドープした二酸化ケイ素SiO2基板に、機械的剥離法により得られた数層グラフェン(Few・Layer・Graphen,FLG)を堆積する。
This translucent photodiode is produced as follows (see Non-Patent Document 1).
First, several layers of graphene (Few/Layer/Graphen, FLG) obtained by a mechanical exfoliation method are deposited on a silicon dioxide SiO 2 substrate heavily doped with Si.
 次に、上記数層グラフェンを堆積したSiO2基板に、公知の方法によって無水FeCl3粉末を360℃、2×10-4Torrの環境下で7.5時間接触させることにより、FeCl3のインターカレーションを行う。この過程で、FeCl3分子は、FLGのグラフェン層間に浸透し、FeCl3-FLCが形成される Then, the SiO 2 substrate on which the above-mentioned few layers of graphene are deposited is brought into contact with anhydrous FeCl 3 powder at a temperature of 360° C. and 2×10 −4 Torr by a known method for 7.5 hours to make FeCl 3 intercalation. Perform culling. In this process, FeCl 3 molecules permeate between the graphene layers of FLG to form FeCl 3 -FLC.
 次に、公知の手法により、純粋なFLGフレークを、FeCl3-FLC上に堆積する。 Pure FLG flakes are then deposited on FeCl 3- FLC by known techniques.
 次に、FeCl3-FLC層と、FLG層とのそれぞれに、クロム/金の接点を作製し、光検出器230として使用する。 Next, a chromium/gold contact is formed on each of the FeCl 3 -FLC layer and the FLG layer and used as a photodetector 230.
 図9に示すように、光検出器230は、レンズ支持部226の後面に、投影レンズ228の光軸O1と合致するように設けられている。光検出器230は、シリコーンや低融点ガラス等の透光性の接着剤等を用いて、レンズ支持部226の後面に固定されている。 As shown in FIG. 9, the photodetector 230 is provided on the rear surface of the lens support portion 226 so as to match the optical axis O 1 of the projection lens 228. The photodetector 230 is fixed to the rear surface of the lens support portion 226 using a translucent adhesive such as silicone or low melting point glass.
 本実施の形態において、光検出器230は、上下方向が投影レンズ228の全長に亘って延在し、左右方向の幅wの、正面視縦長の略矩形形状に形成されている。また、光検出器230は、実施の形態6~8で後述するように投影レンズ228の入射面あるいは出射面全体を覆うように形成されていてもよい。 In the present embodiment, the photodetector 230 extends in the vertical direction over the entire length of the projection lens 228, and is formed in a substantially rectangular shape having a width w in the horizontal direction and a vertically long length in a front view. Further, the photodetector 230 may be formed so as to cover the entire entrance surface or exit surface of the projection lens 228 as described later in the sixth to eighth embodiments.
 また、光検出器230は、後述する電流電圧変換回路252に接続されている。電流電圧変換回路252は投影レンズ228への光の取り込みを阻害しないように、公知の手法により、レンズ支持部226の外側に配設されている。また、電流電圧変換回路252は、金属配線等により、図示しない制御装置に接続されている。 Moreover, the photodetector 230 is connected to a current-voltage conversion circuit 252 described later. The current-voltage conversion circuit 252 is arranged outside the lens support portion 226 by a known method so as not to prevent the light from being taken into the projection lens 228. The current-voltage conversion circuit 252 is connected to a control device (not shown) by metal wiring or the like.
 光検出器230は、励起光であるレーザ光と同波長の光を検出し、その受光量に応じて電流を生成する。また、白色光とレーザ光とを誤って検出することを避けるため、光検出器230は、白色光の波長の光と、レーザ光の波長の光とを識別できるように構成されるか、または、白色光の波長の光を検出しない様に構成されている。光検出器230の感度の波長選択性は、例えば、フォトダイオード自体の波長反応特性や、ハイパス/ローパスフィルタの併用によって実現することができる。 The photodetector 230 detects light having the same wavelength as the laser light that is excitation light, and generates a current according to the amount of received light. Further, in order to avoid erroneous detection of white light and laser light, the photodetector 230 is configured to be able to distinguish between light of the wavelength of white light and light of the wavelength of laser light, or , The light of the wavelength of white light is not detected. The wavelength selectivity of the sensitivity of the photodetector 230 can be realized by, for example, the wavelength response characteristic of the photodiode itself or the combined use of a high pass/low pass filter.
 投影レンズ228は、前方側の凸表面及び後方側の平面を含む非球面レンズであり、例えば、アクリル等の透明樹脂、またはその他の透光性材料により形成されている。投影レンズ228は、レンズ保持部227に固定保持されて、車両前後方向に伸びる光軸O1上に配置されている。投影レンズ228は、発光装置220から入射する白色光WLを受け入れて、照明光ILとして灯具210前方に向けて出射する。 The projection lens 228 is an aspherical lens including a convex surface on the front side and a flat surface on the rear side, and is made of, for example, a transparent resin such as acrylic resin or another translucent material. The projection lens 228 is fixedly held by the lens holding portion 227 and arranged on the optical axis O 1 extending in the vehicle front-rear direction. The projection lens 228 receives the white light WL incident from the light emitting device 220 and emits it as the illumination light IL toward the front of the lamp 210.
 エクステンション232は、投影レンズ228の周囲を前方から目隠しする役割を果たす金属製または樹脂製の部材である。 The extension 232 is a member made of metal or resin that plays a role of covering the periphery of the projection lens 228 from the front.
 次に、図8A及び図8Bを参照しながら、発光装置220の内部構造および光線の光路について説明する。波長変換部材240は、上述の通り、出射口242からたやすく脱落しないように固定されている。しかし、車両の振動等によって受ける衝撃や、経年劣化によって、出射口242から脱落したり、本来の搭載位置からずれたり、全部または一部が融解したり、一部が欠けたり等して、波長変換部材240の全部または一部が本来あるべき位置から消失する可能性を完全に否定することはできない。 Next, the internal structure of the light emitting device 220 and the optical path of light rays will be described with reference to FIGS. 8A and 8B. As described above, the wavelength conversion member 240 is fixed so as not to easily fall off the emission port 242. However, due to the impact received by the vibration of the vehicle or the like, or the deterioration over time, the light may drop from the emission port 242, may be displaced from the original mounting position, may be wholly or partially melted, may be partially chipped, etc. The possibility that all or part of the conversion member 240 disappears from its original position cannot be completely denied.
 図8Aは、正常時、すなわち、波長変換部材240が出射口242に固定されている場合の平面図である。図8Bは、異常時、すなわち、波長変換部材240が存在しない場合の平面図である。 FIG. 8A is a plan view in a normal state, that is, when the wavelength conversion member 240 is fixed to the emission port 242. FIG. 8B is a plan view at the time of abnormality, that is, when the wavelength conversion member 240 does not exist.
 正常時において、半導体レーザ素子238から出射したレーザ光は、集光レンズ239により集光され、波長変換部材240に入射する。波長変換部材240に入射したレーザ光LB1は、波長変換されて、白色の拡散光WLとして、投影レンズ228に向けて第1の角度範囲θ1で出射される。 In a normal state, the laser light emitted from the semiconductor laser element 238 is condensed by the condenser lens 239 and enters the wavelength conversion member 240. The laser light LB 1 incident on the wavelength conversion member 240 is wavelength-converted and emitted as white diffused light WL toward the projection lens 228 in the first angular range θ1.
 波長変換部材240は、完全拡散面を有するので、白色光WLは、投影レンズ228の光軸O1と合致する中心部の強度が最も高く、当該中心部の周辺がコサイン特性で減衰するランバーシアン特性を示す。白色光WLは、投影レンズ228の取り込み角の範囲で投影レンズ228に取り込まれ、照明光IL(図7)として投影レンズ228前方へと出射される。 Since the wavelength converting member 240 has a perfect diffusing surface, the white light WL has the highest intensity in the central portion that coincides with the optical axis O 1 of the projection lens 228, and the Lambertian that attenuates the periphery of the central portion with the cosine characteristic. Shows the characteristics. The white light WL is captured by the projection lens 228 within the range of the capture angle of the projection lens 228, and is emitted to the front of the projection lens 228 as illumination light IL (FIG. 7).
 この時、白色光WL(疑似白色光)の中心部分の光は、光検出器230に入射するが、光検出器230は透光性を有するので、多少の減衰はあるものの、ほとんどの光が投影レンズ228へと入射する。また、疑似白色光WLに含まれるレーザ光は、光検出器230に検出される。 At this time, the light in the central portion of the white light WL (pseudo white light) is incident on the photodetector 230. However, since the photodetector 230 has a light-transmitting property, most of the light is attenuated though it is slightly attenuated. It is incident on the projection lens 228. The laser light included in the pseudo white light WL is detected by the photodetector 230.
 投影レンズ228の出射面を出た照明光ILは、前面カバー14へと向かい、前面カバー14を透過して、灯具210前方へ出射される。投影レンズ228の作用により、灯具210前方に所望の配光パターンが形成される。 The illumination light IL emitted from the emission surface of the projection lens 228 goes to the front cover 14, passes through the front cover 14, and is emitted to the front of the lamp 210. Due to the action of the projection lens 228, a desired light distribution pattern is formed in front of the lamp 210.
 一方、波長変換部材240が脱落等により存在しなくなった場合、半導体レーザ素子238から出射されたレーザ光は、波長変換部材240と作用することなく、投影レンズ228の光軸O1と合致する直進光路に沿って出射口242から出射して、強いコヒーレンスを有する状態で直進し、第2の角度範囲θ2で光検出器230に入射する。 On the other hand, when the wavelength conversion member 240 is no longer present due to dropping or the like, the laser light emitted from the semiconductor laser element 238 does not act on the wavelength conversion member 240 and goes straight along the optical axis O 1 of the projection lens 228. The light exits from the exit 242 along the optical path, travels straight in a state of having strong coherence, and enters the photodetector 230 in the second angular range θ2.
 このため、光検出器230の横方向の幅wは、半導体レーザ素子238からのレーザ光LB1のビーム径よりも大きくなる様に構成されている。しかし、光検出器230の横方向の幅wは、レーザ光LB1のビーム径よりも大きい範囲でできるだけ小さいほうが好ましい。光検出器230は、透光性を有するため、白色光WLを透過するが、僅かに減衰する虞があるので、それを最低限にするためである。 Therefore, the lateral width w of the photodetector 230 is configured to be larger than the beam diameter of the laser beam LB 1 from the semiconductor laser element 238. However, it is preferable that the lateral width w of the photodetector 230 is as small as possible within a range larger than the beam diameter of the laser light LB 1 . Since the photodetector 230 has a light-transmitting property, the white light WL is transmitted therethrough, but it may be slightly attenuated.
 車両用灯具210は、光検出器230にレーザ光LB1が入射すると、後述するように、その検出信号に応じて半導体レーザ素子238への通電が制御されるように構成されており、レーザ光が、コヒーレンスの高い状態で、灯具210前方へと照射されないようになっている。 When the laser light LB 1 is incident on the photodetector 230, the vehicle lamp 210 is configured so that the power supply to the semiconductor laser element 238 is controlled according to the detection signal thereof, as will be described later. However, in a state of high coherence, the light is not irradiated to the front of the lamp 210.
 以下、図10~図12を参照しながら、光検出器230の検出信号に基づく半導体レーザ素子238の制御を説明する。 Hereinafter, control of the semiconductor laser element 238 based on the detection signal of the photodetector 230 will be described with reference to FIGS. 10 to 12.
 図10は、灯具210に係る、光検出器230を用いた制御系を説明するブロック図である。 FIG. 10 is a block diagram illustrating a control system of the lamp 210, which uses the photodetector 230.
 電流電圧変換回路252は、電流I1の経路上に設けられた抵抗R1を含み、光検出器230の光起電力効果により生じる逆電流が該抵抗R1を流れることにより生じる電圧降下VD1に応じた検出信号Sを出力する。検出信号Sは、電流I1に対して、抵抗R1の抵抗値に応じた傾きで線形に変化する。 Current-voltage conversion circuit 252 includes a resistor R 1 provided on a path of the current I 1, the voltage drop VD 1 reverse current caused by the photovoltaic effect of the photodetector 230 caused by flowing through the resistor R 1 The detection signal S corresponding to the above is output. The detection signal S linearly changes with respect to the current I 1 with a slope according to the resistance value of the resistor R 1 .
 判定部254は、検出信号Sと、予め設定されているしきい値とを比較して、波長変換部材240の異常の有無を判定する回路である。判定部254は、後述する制御部256、警告部258と共に灯具210の制御装置を構成している。 The determination unit 254 is a circuit that compares the detection signal S with a preset threshold value to determine the presence or absence of an abnormality in the wavelength conversion member 240. The determination unit 254 constitutes a control device of the lamp 210 together with a control unit 256 and a warning unit 258 described later.
 波長変換部材240の異常としては、波長変換部材240の割れ、外れ、溶解、経年劣化などが例示される。波長変換部材240が正常に機能している場合には、光検出器230に入射する光に含まれるレーザ光の割合は一定であるが、異常が発生するとレーザ光と波長変換部材240との接触が不十分となり、レーザ光の割合が増大する。また、波長変換部材240が完全に脱落または破損すると、光検出器230に入射する光がレーザ光のみとなる。このような異常は、突然に発生する場合もあるが、経時的に発生する場合もある。 Examples of the abnormality of the wavelength conversion member 240 include cracks, detachment, melting, and deterioration over time of the wavelength conversion member 240. When the wavelength conversion member 240 is functioning normally, the ratio of the laser light included in the light incident on the photodetector 230 is constant, but when an abnormality occurs, the laser light and the wavelength conversion member 240 come into contact with each other. Becomes insufficient and the ratio of laser light increases. When the wavelength conversion member 240 is completely dropped or damaged, the light incident on the photodetector 230 is only the laser light. Such an abnormality may occur suddenly or may occur over time.
 このため、判定部254には、例えば、波長変換部材240が正常に機能している正常状態と、波長変換部材240が完全に脱落した異常状態と、波長変換部材240に何らかの異常が生じていると推定される注意レベル1および注意レベル2という4段階の状態の境界のしきい値として、3つのしきい値Th1,Th2,Th3が予め設定されている。 Therefore, the determination unit 254 has, for example, a normal state in which the wavelength conversion member 240 is functioning normally, an abnormal state in which the wavelength conversion member 240 is completely removed, and some abnormality in the wavelength conversion member 240. Three thresholds Th 1 , Th 2 and Th 3 are preset as thresholds at the boundaries of the four stages of the presumed attention level 1 and attention level 2.
 正常時の検出信号をSN,異常時の検出信号をSDと表したときの、各検出信号SN,SDとしきい値Th1,Th2,Th3の関係は図11に示す通りである。第3のしきい値Th3は、Th3を超えてレーザ光が灯具210外に照射された場合に、対向車等に危険を及ぼす虞がある限度の値に設定されている。 As shown the detection signal of the normal to S N, the detection signal of the abnormal state when expressed as S D, the detection signals S N, S D and the threshold value Th 1, Th 2, the relationship of Th 3 Figure 11 Is. The third threshold value Th 3 is set to a limit value that may cause a danger to an oncoming vehicle or the like when the laser light is emitted to the outside of the lamp 210 in excess of Th 3 .
 判定部254は、光検出器230から出力される検出信号Sの値が表1の検出信号範囲にある時に、灯具210(すなわち、波長変換部材240)の状態が対応する状態であると判定する。
Figure JPOXMLDOC01-appb-T000001
The determination unit 254 determines that the state of the lamp 210 (that is, the wavelength conversion member 240) is the corresponding state when the value of the detection signal S output from the photodetector 230 is in the detection signal range of Table 1. ..
Figure JPOXMLDOC01-appb-T000001
 制御部256は、半導体レーザ素子238への通電を制御することにより半導体レーザ素子238の発光を制御する回路である。その構成は、特に限定されず公知の回路を用いることができる。制御部256は、判定部254の判定結果に従って、半導体レーザ素子238への発光および光量を制御するように構成されている。 The control unit 256 is a circuit that controls the light emission of the semiconductor laser element 238 by controlling the energization of the semiconductor laser element 238. The configuration is not particularly limited, and a known circuit can be used. The control unit 256 is configured to control the light emission and the amount of light emitted to the semiconductor laser element 238 according to the determination result of the determination unit 254.
 警告部258は、判定部254の判定結果に基づいて、上位の各種ECU(Electronic・Contorol・Unit)に通知して、運転者に対する警告を行う回路である。運転者への警告は、例えば、計器盤への注意喚起を促すための表示、音声・信号音による警告、独立の警告灯による警告等であってよい。 The warning unit 258 is a circuit that warns the driver by notifying various higher-level ECUs (Electronic, Control, Unit) based on the judgment result of the judgment unit 254. The warning to the driver may be, for example, a display for calling attention to the instrument panel, a warning by voice/signal sound, a warning by an independent warning light, or the like.
 図12は、灯具210における、波長変換部材240の異常の検出処理のフローチャートである。灯具210が点灯すると、処理が開始する。 FIG. 12 is a flowchart of a process of detecting an abnormality of the wavelength conversion member 240 in the lamp 210. When the lamp 210 is turned on, the process starts.
 点灯中、ステップS101において、光検出器230が、常時または所定の間隔で、光検出器230に入射するレーザ光の監視を行い、電流電圧変換回路252は検出信号Sを出力する。 During lighting, in step S101, the photodetector 230 constantly or at predetermined intervals monitors the laser light incident on the photodetector 230, and the current-voltage conversion circuit 252 outputs the detection signal S.
 次に、ステップS102では、判定部254が、検出信号Sが第1のしきい値Th1以下であるかどうかを判定する。 Next, in step S102, the determination unit 254 determines whether or not the detection signal S is less than or equal to the first threshold value Th 1 .
 検出信号Sが第1のしきい値Th1以下である場合(Yesの場合)、ステップS103において、制御部256が、半導体レーザ素子238への通電を続行し、ついでステップS101に戻って検出信号Sの出力(レーザ光の監視)を続行する。 When the detection signal S is less than or equal to the first threshold Th 1 (Yes), the control unit 256 continues energizing the semiconductor laser device 238 in step S103, and then returns to step S101 to detect the detection signal. The output of S (monitoring of laser light) is continued.
 ステップS102において、検出信号Sが第1のしきい値Th1を超えている場合(Noの場合)、ステップS104において、判定部254が、検出信号Sが第2のしきい値Th2以下であるかどうかを判定する。 When the detection signal S exceeds the first threshold Th 1 in step S102 (No), the determination unit 254 determines that the detection signal S is the second threshold Th 2 or less in step S104. Determine if it exists.
 検出信号Sが第2のしきい値Th2以下である場合(Yesの場合)、ステップS105において、制御部256が、半導体レーザ素子238への通電を、光量が減少するように制御する。 When the detection signal S is less than or equal to the second threshold value Th 2 (Yes), the control unit 256 controls the energization of the semiconductor laser element 238 so that the light amount decreases in step S105.
 次に、ステップS106において、警告部258が、灯具210が注意を要する状態であることを運転者に報知する警告を行う。その後、S101に戻って検出信号Sの出力(レーザ光の監視)を続行するが、繰り返されるステップS102においてYesとなるまで、警告は続行して行うものとする。なお、ステップS105およびステップS106の処理は、この順に限らず、同時に行ってもよく、逆の順序で行ってもよい。 Next, in step S106, the warning unit 258 gives a warning to notify the driver that the lamp 210 is in a state requiring attention. After that, the process returns to S101 and the output of the detection signal S (monitoring of the laser beam) is continued. However, the warning is continuously given until Yes in the repeated step S102. The processes of steps S105 and S106 are not limited to this order, and may be performed at the same time or in the reverse order.
 ステップS106での警告により、運転者は、灯具210に異常が生じていることを認識し、灯具210の交換等、車両の修理を行うことができる。また、修理が行われず、波長変換部材240の異常が解消されない場合は、警告状態が解除されないので、運転者に対してより確実に修理を促すことができる。 The warning in step S106 allows the driver to recognize that the lamp 210 is abnormal and to repair the vehicle, such as replacing the lamp 210. Further, when the repair is not performed and the abnormality of the wavelength conversion member 240 is not eliminated, the warning state is not released, so that the driver can be urged to perform the repair more reliably.
 一方、ステップS104において、検出信号Sが第2のしきい値Th2を超えている場合(Noの場合)、ステップS107において、判定部254が、検出信号Sが第3のしきい値Th3以下であるかどうかを判定する。 On the other hand, when the detection signal S exceeds the second threshold value Th 2 in step S104 (No), the determination unit 254 determines that the detection signal S is the third threshold value Th 3 in step S107. Determine if it is:
 検出信号Sが第3のしきい値Th3以下である場合(Yesの場合)、ステップS108において、制御部256が、半導体レーザ素子238への通電を、さらに光量が減少するように制御する。 When the detection signal S is equal to or smaller than the third threshold value Th 3 (Yes), the control unit 256 controls the energization of the semiconductor laser element 238 so that the light amount further decreases in step S108.
 次に、ステップS109において、ステップS106と同様に、警告部258が、灯具210が注意を要する状態であることを報知する警告を行う。この時、ステップS106での警告に比べて、より、異常の程度が高いことを認識できるような警告を行うことが好ましい。 Next, in step S109, as in step S106, the warning unit 258 issues a warning that the lamp 210 is in a state requiring attention. At this time, it is preferable to give a warning so that it can be recognized that the degree of abnormality is higher than the warning in step S106.
 例えば、ステップS106における警告は、黄色の点灯表示であるのに対して、ステップS109における警告は、黄色の点滅表示とする等して、より、注意レベルが高まっていることを感知できるように構成するとよい。このようにすることで、運転者へ緊急性を認識させることが可能となり、早急な修理等の対応が可能となる。なお、ステップS108およびステップS109の処理は、この順に限らず、同時に行ってもよく、逆の順序で行ってもよい。 For example, the warning in step S106 is displayed in yellow light, while the warning in step S109 is displayed in blinking yellow, etc., so that it can be detected that the attention level is higher. Good to do. By doing so, it becomes possible to make the driver aware of the urgency, and it becomes possible to take prompt repairs. Note that the processes of steps S108 and S109 are not limited to this order, and may be performed simultaneously or in the reverse order.
 その後、S101に戻って検出信号Sの出力(レーザ光の監視)を続行するが、繰り返されるステップS102においてYesとなるまで、警告は続行して行うものとする。その効果はステップS106の場合と同様である。 After that, the process returns to S101 and the output of the detection signal S (monitoring of the laser beam) is continued, but the warning is continuously issued until Yes in the repeated step S102. The effect is similar to that of step S106.
 一方、ステップS107において、検出信号Sが第3のしきい値Th3を超えている場合(Noの場合)、ステップS110において、制御部256が、直ちに半導体レーザ素子238への通電を停止して、灯具210を消灯する。 On the other hand, in step S107, when the detection signal S exceeds the third threshold value Th 3 (in the case of No), the control unit 256 immediately stops energizing the semiconductor laser element 238 in step S110. , Turn off the lamp 210.
 これにより、第3のしきい値Th3を超えるレーザ光を検出した場合には、直ちに通電を停止し、灯具210を消灯できる。そのため、対向車等に危険を及ぼす可能性がある高エネルギーなレーザ光が、灯具210外に照射されることを確実に防止できる。 As a result, when the laser light exceeding the third threshold value Th 3 is detected, the energization is immediately stopped and the lamp 210 can be turned off. Therefore, it is possible to reliably prevent the high-energy laser light that may be dangerous to an oncoming vehicle or the like from being emitted to the outside of the lamp 210.
 次に、ステップS111において、警告部258は、灯具210が異常により消灯したことを運転者に報知する警告を行う。例えば、ステップS109における警告が黄色の点滅表示であった場合に、ステップS111では赤の点灯表示をして、灯具210が異常により消灯したことを確実に認識できるようにすることが好ましい。その後、処理を終了する。 Next, in step S111, the warning unit 258 gives a warning to notify the driver that the lamp 210 has been turned off due to an abnormality. For example, when the warning in step S109 is a blinking yellow display, it is preferable to display a red lighting display in step S111 so that it can be reliably recognized that the lamp 210 has been turned off due to an abnormality. Then, the process ends.
 上記警告により、運転者は、灯具210の消灯を確認して、速やかに車両を停止することができる。 The above warning allows the driver to stop the vehicle promptly after confirming that the lamp 210 has been turned off.
 なお、本実施の形態においては、判定部254における1つの判定結果に対して、制御部256による制御と、警告部258による警告とを、それぞれ行っているが、制御部256による制御のみでもフェイルセーフという目的を達成することは可能である。しかし、制御と警告を両方行うと、運転者に異常状態を認識させることが容易にできるのでより有利である。 In the present embodiment, the control unit 256 and the warning unit 258 perform the control for one determination result by the determination unit 254, respectively, but the control unit 256 only fails. It is possible to achieve the goal of being safe. However, performing both the control and the warning is more advantageous because the driver can easily recognize the abnormal state.
 このように、本実施の形態に係る車両用灯具210によれば、灯具210が正常に動作している場合には、レーザ光は、少なくとも一部が波長変換部材240で波長変換された白色光または疑似白色光としてレンズに入射する。波長変換部材240と照明光の出射面である投影レンズ228の出射面との間の、レーザ光の延長光路上に光検出器230が配置されているが、光検出器230は透光性である。このため、白色光または疑似白色光の最も光度の高い部分は、光検出器230を透過して、投影レンズ228に入射することができる。したがって、白色光の光束を有効に利用することが可能となる。 As described above, according to the vehicle lamp 210 according to the present embodiment, when the lamp 210 is operating normally, the laser light is white light whose wavelength is at least partially converted by the wavelength conversion member 240. Alternatively, it enters the lens as pseudo-white light. The photodetector 230 is arranged on the extended optical path of the laser light between the wavelength conversion member 240 and the exit surface of the projection lens 228 which is the exit surface of the illumination light, but the photodetector 230 is transparent. is there. Therefore, a portion of white light or pseudo white light having the highest luminous intensity can pass through the photodetector 230 and enter the projection lens 228. Therefore, the luminous flux of white light can be effectively used.
 レーザ光の延長光路上に配置された光検出器230は、レーザ光を検出する。そのため、特に、波長変換部材240の破損、脱落等の異常が生じた場合の、レーザ光の強度の変化を感知することができ、波長変換部材240の異常時のレーザ光の漏れを適切に監視することができる。 The photodetector 230 arranged on the extended optical path of the laser light detects the laser light. Therefore, in particular, when an abnormality such as damage or dropout of the wavelength conversion member 240 occurs, it is possible to detect a change in the intensity of the laser light, and appropriately monitor the leakage of the laser light when the wavelength conversion member 240 is abnormal. can do.
 また、車両用灯具210では、光検出器230が、レーザ光の受光量に応じで電流を生成し、その電流に応じた検出信号に基づいて波長変換部材240の異常を判定する判定部254と、判定部254の判定結果に基づいて半導体レーザ素子238への通電を制御する制御部256とを備える。これにより、波長変換部材240の異常に応じて、半導体レーザ素子238の発光を低減または停止することができ、波長変換部材240の異常時に、高エネルギーなレーザ光が灯具210外に照射されることを防止できる。 Further, in the vehicular lamp 210, the photodetector 230 generates a current according to the amount of received laser light, and a determination unit 254 that determines an abnormality of the wavelength conversion member 240 based on a detection signal corresponding to the current. A control unit 256 that controls energization of the semiconductor laser element 238 based on the determination result of the determination unit 254 is provided. Thereby, the light emission of the semiconductor laser element 238 can be reduced or stopped according to the abnormality of the wavelength conversion member 240, and when the wavelength conversion member 240 is abnormal, high-energy laser light is emitted to the outside of the lamp 210. Can be prevented.
 また、判定部254の判定結果に基づいて、運転者への警告を行う警告部258を更に備えることにより、運転者が、波長変換部材240の異常(例えば、段階的な異常)を認識することが容易になり、適切な対応を取ることが可能になる。 Further, by further providing a warning unit 258 that warns the driver based on the determination result of the determination unit 254, the driver recognizes an abnormality (for example, a stepwise abnormality) of the wavelength conversion member 240. It becomes easy and it becomes possible to take appropriate measures.
 また、判定部254に、異常の状態を判定するためのしきい値を複数設定し、異常の状態を段階的に検知可能に構成すれば、波長変換部材240が完全に脱落等する前に、灯具210の修理、交換等の対応が可能となり、対向車に危険を及ぼすような状況の発生を未然に防止することができる。 If a plurality of thresholds for determining an abnormal state are set in the determination unit 254 and the abnormal state can be detected stepwise, before the wavelength conversion member 240 is completely removed, It is possible to repair or replace the lamp 210, and it is possible to prevent the occurrence of a situation that poses a danger to an oncoming vehicle.
(変形例1)
 第3の実施の形態の変形例の車両用灯具210aとして、図13に示すように、光検出器230aの形状を、左右方向が幅w、上下方向が高さhの矩形状に形成し、幅wおよび高さhを、レーザ光LB1のビーム径よりも大きく、かつ最も小さくなるように形成してもよい。光検出器230aは、透光性を有するため、白色光WLを透過するが、僅かに減衰する虞があるが、このようにすれば、白色光WLの減衰を最低限にすることができ、有利である。
(Modification 1)
As a vehicular lamp 210a of a modified example of the third embodiment, as shown in FIG. 13, a photodetector 230a is formed in a rectangular shape having a width w in the left-right direction and a height h in the up-down direction. The width w and the height h may be formed so as to be larger and smaller than the beam diameter of the laser beam LB 1 . Since the photodetector 230a has a light-transmitting property, the white light WL is transmitted therethrough, but may be slightly attenuated. By doing so, the attenuation of the white light WL can be minimized. It is advantageous.
 なお、この場合、透光性の光検出器230aのうち接点や配線部材などの不透明な部分が投影レンズの光取り込み面に配置されることがあるが、このような部材は、光検出器230aの入射面に対して小さいため、その影響は無視できる程度である。 In this case, an opaque portion such as a contact or a wiring member of the light-transmissive photodetector 230a may be arranged on the light receiving surface of the projection lens. Since it is small with respect to the incident surface of, its influence is negligible.
(第4の実施の形態)
 図14は、本開示の第4の実施の形態に係る車両用灯具310の鉛直断面図である。灯具310は、車両用灯具210と概略同様の構成を備えるが、以下の点で異なる。
(Fourth Embodiment)
FIG. 14 is a vertical cross-sectional view of the vehicle lamp 310 according to the fourth embodiment of the present disclosure. The lamp 310 has substantially the same configuration as the vehicle lamp 210, but differs in the following points.
 レンズ支持部226が、例えば、透光性樹脂で構成されるのに対して、レンズ支持部326は、黒色樹脂または、鉄、ニッケル、アルミニウム、銅などの各種金属や、ステンレス等の合金で構成される。レンズ支持部326は、レンズ保持部327および脚部329を備え、レンズ保持部327は、投影レンズ228の後面全体を保持しておらず、周縁部で保持している。光検出器330は、光検出器230と概略同一の形状および構造を有するが、レンズ保持部227の後面に設けられているのではなく、投影レンズ228の後面に直接透明の接着剤等で固定されている。 The lens support portion 226 is made of, for example, a translucent resin, whereas the lens support portion 326 is made of black resin, various metals such as iron, nickel, aluminum, and copper, or alloys such as stainless steel. To be done. The lens support portion 326 includes a lens holding portion 327 and a leg portion 329, and the lens holding portion 327 does not hold the entire rear surface of the projection lens 228, but holds it at the peripheral edge portion. The photodetector 330 has substantially the same shape and structure as the photodetector 230, but is not provided on the rear surface of the lens holding portion 227 but is directly fixed to the rear surface of the projection lens 228 with a transparent adhesive or the like. Has been done.
 なお、図14中、実線矢印は、波長変換部材240の正常時の白色光WLを示し、破線矢印は、異常時、すなわち波長変換部材240が存在しない状態のレーザ光LB1を示す。 In FIG. 14, the solid line arrow indicates the white light WL when the wavelength conversion member 240 is normal, and the broken line arrow indicates the laser light LB 1 when the wavelength conversion member 240 is abnormal, that is, when the wavelength conversion member 240 is not present.
 このように、光検出器330が、投影レンズ228に直接設けられていると、光検出器330を支持するための特別な構造を必要としないので有利である。 As described above, when the photodetector 330 is provided directly on the projection lens 228, it is advantageous because no special structure for supporting the photodetector 330 is required.
(第5の実施の形態)
 図15は、本開示の第5の実施の形態に係る車両用灯具410の鉛直断面図である。灯具410は、車両用灯具310と概略同様の構成を備えるが、以下の点で異なる。
(Fifth Embodiment)
FIG. 15 is a vertical cross-sectional view of the vehicle lamp 410 according to the fifth embodiment of the present disclosure. The lamp 410 has substantially the same configuration as the vehicle lamp 310, but differs in the following points.
 光検出器430は、投影レンズ228の後面に設けられているのではなく、波長変換部材240と同一の構成を有する波長変換部材440の前面に、透明の接着剤等で固定されている。あるいは、光検出器430は、波長変換部材440の前面に、フォトダイオードを積層することにより一体的に形成してもよい。 The photodetector 430 is not provided on the rear surface of the projection lens 228, but is fixed to the front surface of the wavelength conversion member 440 having the same configuration as the wavelength conversion member 240 with a transparent adhesive or the like. Alternatively, the photodetector 430 may be integrally formed by stacking a photodiode on the front surface of the wavelength conversion member 440.
 上記構成でも、光検出器430を支持するための特別な構造を必要としないので有利である。また、光検出器430が波長変換部材440の補強部材として機能するため、波長変換部材440の寿命が長くなる。 The above configuration is also advantageous because it does not require a special structure for supporting the photodetector 430. Moreover, since the photodetector 430 functions as a reinforcing member for the wavelength conversion member 440, the life of the wavelength conversion member 440 is extended.
 (第6の実施の形態)
 図16Aは、本開示の第6の実施の形態に係る車両用灯具510の水平断面図である。灯具510は、空間光変調器として、揺動ミラーにより光源光を走査することで、所望の配光パターンを変更可能に制御する、いわゆる配向可変型前照灯である。
(Sixth Embodiment)
FIG. 16A is a horizontal cross-sectional view of the vehicle lamp 510 according to the sixth embodiment of the present disclosure. The lamp 510 is a so-called variable orientation headlamp, which functions as a spatial light modulator to control the desired light distribution pattern to be changeable by scanning the light source light with an oscillating mirror.
 灯具510は、ランプボディ12と前面カバー14で画成された灯室18の内側に配置される灯具ユニットU1を備える。灯具ユニットU1は、半導体レーザ素子538、集光レンズ539、揺動ミラー560、波長変換部材540、光検出器530および投影レンズ228を備え、支持部材522を介してランプボディ12に固定されている。 The lamp 510 includes a lamp unit U1 arranged inside a lamp chamber 18 defined by the lamp body 12 and the front cover 14. The lamp unit U1 includes a semiconductor laser element 538, a condenser lens 539, a swing mirror 560, a wavelength conversion member 540, a photodetector 530, and a projection lens 228, and is fixed to the lamp body 12 via a support member 522. ..
 半導体レーザ素子538は、半導体レーザ素子238と同様の構成を有し、支持部材522の前面に形成されたヒートシンク522aに取付けられている。集光レンズ539は、入射面が平面で、出射面が凸型の、透過性の平凸レンズであり、適宜の手段で支持部材522に固定されている。 The semiconductor laser element 538 has the same configuration as the semiconductor laser element 238, and is attached to a heat sink 522a formed on the front surface of the support member 522. The condenser lens 539 is a transmissive plano-convex lens having a flat incident surface and a convex exit surface, and is fixed to a support member 522 by appropriate means.
 揺動ミラー560は、MEMS(Micro・Electro・Mechanical・System)ミラーであり、円筒体または直方体の筐体536に格納されて、図示しない固定手段により支持部材522上に取付けられている。 The oscillating mirror 560 is a MEMS (Micro/Electro/Mechanical/System) mirror, is housed in a cylindrical or rectangular parallelepiped housing 536, and is mounted on the support member 522 by a fixing means (not shown).
 筐体536の前面には、正面視円形の出射口542が設けられている。筐体536の光源側の側面には、半導体レーザ素子538からの光を通過させるための開口543が設けられている。 The front surface of the housing 536 is provided with a circular exit port 542. An opening 543 for passing light from the semiconductor laser element 538 is provided on the side surface of the housing 536 on the light source side.
 波長変換部材540は、波長変換部材240と同様の材質の蛍光体であるが、後面が平面で、前面が凸面のレンズ形状を有する。波長変換部材540は、波長変換部材と同様の手段により、出射口542に固定されている。 The wavelength conversion member 540 is a phosphor made of the same material as the wavelength conversion member 240, but has a lens shape with a flat rear surface and a convex front surface. The wavelength conversion member 540 is fixed to the emission port 542 by the same means as the wavelength conversion member.
 光検出器530は、光検出器330と概略同様の構造を有し、投影レンズ228の入射面である後面全体を覆うように、直接透明の接着材等で固定されている。 The photodetector 530 has a structure similar to that of the photodetector 330, and is directly fixed with a transparent adhesive or the like so as to cover the entire rear surface which is the incident surface of the projection lens 228.
 投影レンズ228は、図示しないレンズ支持部で指示されており、該レンズ支持部は支持部材522に固定されている。 The projection lens 228 is designated by a lens support portion (not shown), and the lens support portion is fixed to the support member 522.
 また、半導体レーザ素子538、揺動ミラー560、および光検出器530はそれぞれ制御部556に接続されている。制御部556は、第3の実施の形態の制御部256と同様に、光検出器の検出結果に基づく半導体レーザ素子の通電制御を行い、また、走査機構の通電制御を行う。 Further, the semiconductor laser device 538, the swing mirror 560, and the photodetector 530 are connected to the control unit 556, respectively. The control unit 556 controls the energization of the semiconductor laser element based on the detection result of the photodetector, and also controls the energization of the scanning mechanism, similarly to the control unit 256 of the third embodiment.
 揺動ミラー360の詳細を、図16Bを参照しながら説明する。揺動ミラー560は、ベース561、第1の回動体562、第2の回動体563、第1のトーションバー564、第2のトーションバー565、一対の第1の永久磁石566、一対の第2の永久磁石567、および端子部569を有する。第2の回動体563は、板状に形成された反射鏡である。第2の回動体563の前面には、銀蒸着やスパッタリング処理などによって反射面568が形成されている。 Details of the swing mirror 360 will be described with reference to FIG. 16B. The swing mirror 560 includes a base 561, a first rotating body 562, a second rotating body 563, a first torsion bar 564, a second torsion bar 565, a pair of first permanent magnets 566, and a pair of second. It has a permanent magnet 567 and a terminal portion 569. The second rotating body 563 is a plate-shaped reflecting mirror. A reflective surface 568 is formed on the front surface of the second rotating body 563 by silver deposition or sputtering.
 第1の回動体562は、板状であり、第1のトーションバー564によって、ベース561に対して左右(Y軸周り)に回動可能に支持されている。第2の回動体563は、板状であり、一対の第2のトーションバー565によって、第1の回動体562に対して、上下(X軸周り)に回動可能な状態に支持されている。一対の第1の永久磁石566および一対の第2の永久磁石567は、ベース561において一対の第1のおよび第2のトーションバー(564、565)の延びる方向にそれぞれ設けられている。一対の第1のおよび第2の回動体(562、563)は、端子部569を介して、図示しない第1のコイルおよび第2のコイルに接続され、制御部556によって、それぞれ独立に通電制御される。 The first rotating body 562 has a plate shape, and is supported by the first torsion bar 564 so as to be rotatable left and right (around the Y axis) with respect to the base 561. The second rotating body 563 is plate-shaped, and is supported by the pair of second torsion bars 565 so as to be vertically rotatable (around the X axis) with respect to the first rotating body 562. .. A pair of first permanent magnets 566 and a pair of second permanent magnets 567 are provided in the base 561 in the extending directions of the pair of first and second torsion bars (564, 565), respectively. The pair of first and second rotating bodies (562, 563) are connected to a first coil and a second coil (not shown) via a terminal portion 569, and are independently energized and controlled by a control unit 556. To be done.
 第1の回動体562は、第1のコイルの通電のオンオフに基づいて第1のトーションバー564のY軸周りに傾動する。第2の回動体563は、第2のコイルの通電のオンオフに基づいて第2のトーションバー565をX軸周りに傾動する。これらの結果、反射面568が上下左右に傾動することにより、反射面568に入射する光を上下左右に走査させる。 The first rotating body 562 tilts around the Y axis of the first torsion bar 564 based on the turning on/off of electricity to the first coil. The second rotating body 563 tilts the second torsion bar 565 around the X-axis based on the on / off of the energization of the second coil. As a result, the reflecting surface 568 tilts vertically and horizontally, so that the light incident on the reflecting surface 568 is scanned vertically and horizontally.
 この結果、正常時には、半導体レーザ素子538から出射されたレーザ光は、集光レンズ539により集光され、開口543を通過して、揺動ミラー560に入射する。揺動ミラー560に入射したレーザ光は、反射面568により、上下左右に走査される。波長変換部材540に入射した光は、各入射位置において、波長変換されて、白色の拡散光WLとして、前方へ出射される。 As a result, in a normal state, the laser light emitted from the semiconductor laser element 538 is condensed by the condenser lens 539, passes through the opening 543, and enters the swing mirror 560. The laser light incident on the oscillating mirror 560 is scanned vertically and horizontally by the reflecting surface 568. The light incident on the wavelength conversion member 540 is wavelength-converted at each incident position and emitted forward as white diffused light WL.
 例えば、図16Aのレーザ光LB1の位置で波長変換部材540に入射した光は、波長変換されて白色の拡散光WLとして、投影レンズ228に入射する。また、左方向に走査されて、LB2の位置で波長変換部材540に入射した光も同様に、波長変換されて白色の拡散光WLとなる。そして、白色の拡散光は光検出器530に入射するが、光検出器530は透光性を有するため、白色の拡散光WLは、光検出器530を通過して、投影レンズ228に取り込まれ、照明光ILとして、前方へと出射される。このように、走査機構により走査され、波長変換部材540の各位置で入射した光が重なり合って、所定の配光パターンを形成する。 For example, the light that has entered the wavelength conversion member 540 at the position of the laser light LB 1 in FIG. 16A is wavelength-converted and enters the projection lens 228 as white diffused light WL. Further, the light that is scanned leftward and enters the wavelength conversion member 540 at the position of LB 2 is also wavelength-converted into white diffused light WL. Then, the white diffused light enters the photodetector 530. Since the photodetector 530 has a light-transmitting property, the white diffused light WL passes through the photodetector 530 and is captured by the projection lens 228. The illumination light IL is emitted forward. In this way, the light beams scanned by the scanning mechanism and incident on the respective positions of the wavelength conversion member 540 are overlapped with each other to form a predetermined light distribution pattern.
 一方、異常時、即ち波長変換部材540が脱落等により存在しなくなった場合には、図17に示す様に、半導体レーザ素子538から出射され、反射面568で反射されたレーザ光LB(LB1,LB2)は、高ネルギーなまま、出射口542を直進して、光検出器530に入射する。レーザ光LBはLB1,LB2間を走査された状態で光検出器530および投影レンズ228に入射するので、投影レンズ228の入射面における、レーザ光の入射する範囲は広い。しかし、光検出器530は、投影レンズ228の入射面の全体を覆うように設けられているため、レーザ光の漏れを確実に監視することができる。 On the other hand, when there is an abnormality, that is, when the wavelength conversion member 540 is no longer present due to dropping or the like, as shown in FIG. 17, the laser light LB (LB 1 is emitted from the semiconductor laser element 538 and reflected by the reflection surface 568. , LB 2 ) goes straight through the emission port 542 and enters the photodetector 530 while maintaining high energy. Since the laser beam LB is incident on the photodetector 530 and the projection lens 228 while being scanned between LB 1 and LB 2 , the incident range of the laser beam on the incident surface of the projection lens 228 is wide. However, since the photodetector 530 is provided so as to cover the entire incident surface of the projection lens 228, it is possible to reliably monitor leakage of laser light.
 なお、光検出器530は、必ずしも投影レンズ228の入射面全体を覆うように設けられる必要はなく、少なくとも、波長変換部材540が存在しないと仮定した場合に、レーザ光が走査により入射する範囲を覆うように設けられていればよい。しかし、全体を覆うように設けられていると、上記の通り、確実にレーザ光の漏れを監視できるので有利である。 The photodetector 530 does not necessarily have to be provided so as to cover the entire incident surface of the projection lens 228, and at least, assuming that the wavelength conversion member 540 does not exist, the range in which the laser light is incident by scanning is defined. It may be provided so as to cover it. However, if it is provided so as to cover the whole, as described above, the leakage of the laser light can be reliably monitored, which is advantageous.
 このように、透光性の光検出器530を用い、該光検出器530を、波長変換部材540が存在しないと仮定した場合にレーザ光が走査により入射する範囲、即ちレーザ光の光路上、かつ波長変換部材540と投影レンズ228との間に配置することにより、揺動ミラー560により所定の配光パターンを形成する車両用灯具510においても、光束を有効に利用しつつ、波長変換部材540に異常が生じた場合のレーザ光の漏れを監視することができる。 As described above, when the translucent light detector 530 is used and the light detector 530 is assumed that the wavelength conversion member 540 does not exist, the range in which the laser light is incident by scanning, that is, on the optical path of the laser light. In addition, the wavelength conversion member 540 also effectively utilizes the light beam in the vehicle lighting fixture 510 that forms a predetermined light distribution pattern by the swing mirror 560 by arranging it between the wavelength conversion member 540 and the projection lens 228. It is possible to monitor laser light leakage when an abnormality occurs in the laser.
(第7の実施の形態)
 図18Aは、本開示の第7の実施の形態に係る車両用灯具610の水平断面図である。灯具610は、灯具ユニットU2が、空間光変調器として、揺動ミラー560に代えて、回転リフレクタ660を備える点を除き、灯具510と概略同様の構成を有する。図18Bは、回転リフレクタ660の拡大図である。
(7th Embodiment)
FIG. 18A is a horizontal sectional view of the vehicle lamp 610 according to the seventh embodiment of the present disclosure. The lamp unit 610 has substantially the same configuration as the lamp unit 510 except that the lamp unit U2 includes a rotary reflector 660 as a spatial light modulator instead of the swing mirror 560. FIG. 18B is an enlarged view of the rotary reflector 660.
 回転リフレクタ660は、筐体536に格納されて、図示しない固定手段により支持部材522上に取付けられている。回転リフレクタ660は、制御部656に制御されて、図示しない駆動源により回転軸Rを中心に一方向に回転する。回転リフレクタ660は、半導体レーザ素子538から出射した光を回転しながら反射し、所望の配光パターンを形成するように構成された反射面668を備える。該反射面668は、形状の同じ3枚のブレード660aが筒状の回転部660bの周囲に設けられることにより構成される。回転軸Rは、半導体レーザ素子538の光軸Mに対して斜めになっており、光軸Mと半導体レーザ素子538とを含む平面に設けられている。 The rotary reflector 660 is housed in the housing 536 and mounted on the support member 522 by a fixing means (not shown). The rotation reflector 660 is controlled by the control unit 656 and rotates in one direction about the rotation axis R by a drive source (not shown). The rotary reflector 660 includes a reflecting surface 668 configured to reflect the light emitted from the semiconductor laser element 538 while rotating and form a desired light distribution pattern. The reflecting surface 668 is configured by providing three blades 660a having the same shape around a tubular rotating portion 660b. The rotation axis R is oblique to the optical axis M of the semiconductor laser element 538, and is provided on a plane including the optical axis M and the semiconductor laser element 538.
 回転リフレクタ660のブレード660aの形状は、光源(半導体レーザ素子538)の反射による二次光源が、投影レンズ228の後方焦点付近に形成されるように構成されている。更に、ブレード660aは、回転軸Rを中心とする周方向に向かうにつれ、光軸Mと反射面668がなす角が変化するようにねじられた形状を有する。回転リフレクタ660は、回転軸R周りに回転しながら、反射面668により反射された光の方向が変化するように反射することで、光源からのレーザ光を左右方向に走査させる。 The shape of the blade 660a of the rotary reflector 660 is configured such that a secondary light source by reflection of the light source (semiconductor laser element 538) is formed near the rear focal point of the projection lens 228. Further, the blade 660a has a twisted shape so that the angle formed by the optical axis M and the reflecting surface 668 changes as it goes in the circumferential direction about the rotation axis R. The rotating reflector 660, while rotating around the rotation axis R, reflects the light reflected by the reflecting surface 668 so that the direction of the light changes, thereby scanning the laser light from the light source in the left-right direction.
 この結果、正常時には、半導体レーザ素子538から出射されたレーザ光は、集光レンズ539により集光され、開口543を通過して、回転リフレクタ660に入射する。回転リフレクタ660に入射したレーザ光は、反射面668により左右に走査される。灯具510の場合と同様に、波長変換部材540に入射した光は、各入射位置において、波長変換されて、白色の拡散光WLとして、前方へ出射される。そして、白色の拡散光は光検出器530に入射するが、光検出器530は透光性を有するため、白色の拡散光は、光検出器530を通過して、投影レンズ228に取り込まれ、照明光ILとして前方へと出射される。このように、走査機構により走査され、波長変換部材540の各位置で入射した光が重なり合って、所定の配光パターンを形成する。これは、図16Aに示す、灯具510における挙動と同様である。 As a result, under normal conditions, the laser light emitted from the semiconductor laser element 538 is focused by the condenser lens 539, passes through the aperture 543, and is incident on the rotary reflector 660. The laser light incident on the rotary reflector 660 is scanned left and right by the reflecting surface 668. As in the case of the lamp 510, the light incident on the wavelength conversion member 540 is wavelength-converted at each incident position and emitted forward as white diffused light WL. Then, the white diffused light enters the photodetector 530, but since the photodetector 530 has a light-transmitting property, the white diffused light passes through the photodetector 530 and is captured by the projection lens 228. It is emitted forward as illumination light IL. In this way, the light beams scanned by the scanning mechanism and incident on the respective positions of the wavelength conversion member 540 are overlapped with each other to form a predetermined light distribution pattern. This is similar to the behavior of the lamp 510 shown in FIG. 16A.
 異常時、即ち波長変換部材540が脱落等により存在しなくなった場合にも、レーザ光LBは、図17に示す、灯具510における場合と同様の挙動を示す。光検出器530は、投影レンズ228の入射面の全体を覆うように設けられているため、レーザ光の漏れを確実に監視することができる。 Even when an abnormality occurs, that is, when the wavelength conversion member 540 disappears due to dropping or the like, the laser beam LB behaves in the same manner as in the lamp 510 shown in FIG. Since the photodetector 530 is provided so as to cover the entire incident surface of the projection lens 228, it is possible to reliably monitor leakage of laser light.
 このように、透光性の光検出器530を用い、該光検出器530を、波長変換部材540が存在しないと仮定した場合にレーザ光が走査により入射する範囲、即ちレーザ光の光路上、かつ波長変換部材540と投影レンズ228との間に配置することにより、回転リフレクタ660により所定の配光パターンを形成する車両用灯具610においても、光束を有効に利用しつつ、波長変換部材540に異常が生じた場合のレーザ光の漏れを監視することができる。 As described above, when the translucent light detector 530 is used and the light detector 530 is assumed that the wavelength conversion member 540 does not exist, the range in which the laser light is incident by scanning, that is, on the optical path of the laser light. In addition, even in the vehicle lighting equipment 610 that forms a predetermined light distribution pattern by the rotary reflector 660 by arranging it between the wavelength conversion member 540 and the projection lens 228, the wavelength conversion member 540 can effectively utilize the light beam. It is possible to monitor the leakage of laser light when an abnormality occurs.
(第8の実施の形態)
 図19は、本開示の第8の実施の形態に係る車両用灯具710の水平断面図である。灯具710は、光検出器730が、投影レンズ228の入射面228aではなく、投影レンズ228の出射面228bに取付けられている点で灯具610と異なる。
(8th Embodiment)
FIG. 19 is a horizontal cross-sectional view of the vehicle lamp 710 according to the eighth embodiment of the present disclosure. The lamp 710 differs from the lamp 610 in that the photodetector 730 is attached to the exit surface 228b of the projection lens 228 instead of the entrance surface 228a of the projection lens 228.
 光検出器730は、光検出器230と概略同様の構造を有し、投影レンズ228の出射面228bに、出射面228b全体を覆うように、透明の接着剤で取付けられている。この結果、光検出器730の出射面が、照明光ILの出射面770となる。 The photodetector 730 has substantially the same structure as the photodetector 230, and is attached to the exit surface 228b of the projection lens 228 with a transparent adhesive so as to cover the entire exit surface 228b. As a result, the emission surface of the photodetector 730 becomes the emission surface 770 of the illumination light IL.
 このように、光検出器730を、投影レンズ228の出射面228bに設けても、第7の実施形態と同様の作用により、同様の効果を奏することができる。 In this way, even if the photodetector 730 is provided on the emission surface 228b of the projection lens 228, the same effect as the seventh embodiment can be obtained by the same operation.
 なお、上記の実施の形態は本発明の一例であり、本発明はこれらの形態に限らず、レーザ発光素子と、波長変換部材とを組み合わせて光源とした種々の車両用灯具に適用することができる。また、これらを当業者の知識に基づいて組み合わせることが可能であり、そのような形態も本発明の範囲に含まれる。 The above embodiment is an example of the present invention, and the present invention is not limited to these embodiments, and may be applied to various vehicle lamps that use a laser light emitting element and a wavelength conversion member as a light source. it can. It is also possible to combine these based on the knowledge of those skilled in the art, and such a form is also included in the scope of the present invention.
 本出願は、2019年3月5日出願の日本国特許出願第2019-39158号、及び2019年4月3日出願の日本国特許出願第2019-71175号に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2019-39158 filed on March 5, 2019 and Japanese Patent Application No. 2019-71175 filed on April 3, 2019, the contents of which are here. Incorporated by reference into.

Claims (10)

  1.  レーザ光を出射する半導体レーザ素子と、
     前記レーザ光の少なくとも一部を吸収して、波長変換光を出射する波長変換層と、
     前記波長変換光を取り込んで、前方へと出射する投影レンズと、を備え、
     前記波長変換層は、その出射面が前記投影レンズと正対するように配置され、
     前記半導体レーザ素子は、前記波長変換層が存在しないと仮定したときに、前記レーザ光の光線が前記投影レンズの取り込み角の範囲外となるように配置されている、車両用灯具。
    A semiconductor laser device that emits laser light and
    A wavelength conversion layer that absorbs at least a part of the laser light and emits wavelength conversion light.
    A projection lens that takes in the wavelength conversion light and emits it forward is provided.
    The wavelength conversion layer is arranged so that its emission surface faces the projection lens.
    The vehicular lamp, wherein the semiconductor laser device is arranged such that the light beam of the laser light is outside the range of the acceptance angle of the projection lens when it is assumed that the wavelength conversion layer does not exist.
  2.  前記半導体レーザ素子と、前記投影レンズと、前記波長変換層とが、
     前記波長変換層を、その後面が、前記投影レンズの焦点と一致するように配置したときに、関係式:
     (L+f)×tan(φ-α)-L×tanφ>D/2  (式1)
    (ここで、Lは前記半導体レーザ素子から前記波長変換層の後面までの距離であり、
         fは前記投影レンズの焦点距離であり、
         Dは前記投影レンズの瞳径であり、
         φは前記波長変換層へ入射する前記レーザ光の主光線の前記投影レンズの光軸に対する角度であり、
         αは前記レーザ光の発散角である。)
    を満たすように配置されている、請求項1に記載の車両用灯具。
    The semiconductor laser device, the projection lens, and the wavelength conversion layer,
    When the wavelength conversion layer is arranged so that its rear surface coincides with the focal point of the projection lens, the relational expression:
    (L+f)×tan(φ−α)−L×tanφ>D/2 (Equation 1)
    (Where L is the distance from the semiconductor laser element to the rear surface of the wavelength conversion layer,
    f is the focal length of the projection lens.
    D is the pupil diameter of the projection lens.
    φ is the angle with respect to the optical axis of the projection lens of the chief ray of the laser light incident on the wavelength conversion layer,
    α is the divergence angle of the laser beam. )
    The vehicular lamp according to claim 1, wherein the vehicular lamp is arranged so as to satisfy the above condition.
  3.  前記波長変換層は、前記半導体レーザ素子からのレーザ光を透過して、前記波長変換光を前記投影レンズに向けて出射する、請求項1または2に記載の車両用灯具。 The vehicle lamp according to claim 1 or 2, wherein the wavelength conversion layer transmits the laser light from the semiconductor laser element and emits the wavelength converted light toward the projection lens.
  4.  前記投影レンズを支持するレンズ支持部を備え、
     前記レンズ支持部は、前記レーザ光を吸収または反射する遮光部材を備える、請求項1~3のいずれか一項に記載の車両用灯具。
    A lens support portion for supporting the projection lens,
    The vehicle lamp according to any one of claims 1 to 3, wherein the lens support portion includes a light blocking member that absorbs or reflects the laser light.
  5.  前記遮光部材は、前記レーザ光および前記波長変換光の照射状態を検出するセンサを備える、請求項4に記載の車両用灯具。 The vehicle lamp according to claim 4, wherein the light-shielding member includes a sensor that detects an irradiation state of the laser light and the wavelength conversion light.
  6.  レーザ光を出射する半導体レーザ素子と、
     前記レーザ光の少なくとも一部を波長変換して、白色光または疑似白色光を生成する波長変換部材と、
     前記白色光または前記疑似白色光を取り込んで、照明光として前方へと出射するレンズと、
     前記レーザ光を検出する透光性の光検出器と、を備え、
     前記光検出器は、前記波長変換部材が存在しないと仮定した場合の前記レーザ光の光路上に配置され、かつ前記波長変換部材と前記照明光の出射面との間に配置されている、車両用灯具。
    A semiconductor laser device that emits laser light;
    A wavelength conversion member that generates white light or pseudo-white light by wavelength-converting at least a part of the laser light.
    A lens that captures the white light or the pseudo-white light and emits it forward as illumination light.
    A translucent photodetector for detecting the laser beam,
    The photodetector is arranged on the optical path of the laser light in the case where the wavelength conversion member is not present, and is arranged between the wavelength conversion member and the emission surface of the illumination light. Lighting equipment.
  7.  前記光検出器が、前記レンズに設けられている、請求項6に記載の車両用灯具。 The vehicle lamp according to claim 6, wherein the photodetector is provided on the lens.
  8.  前記光検出器が、前記波長変換部材に設けられている、請求項6に記載の車両用灯具。 The vehicular lamp according to claim 6, wherein the photodetector is provided on the wavelength conversion member.
  9.  前記光検出器が、前記レーザ光の受光量に応じて電流を生成し、
     前記車両用灯具が、
      前記電流に応じた検出信号を出力する電流電圧変換回路と、
      前記検出信号に基づいて、前記波長変換部材の異常を判定する判定部と、
      前記判定部の判定結果に基づいて、前記半導体レーザ素子への通電を制御する制御部と、をさらに備える、請求項6~9のいずれか一項に記載の車両用灯具。
    The photodetector generates a current according to the amount of light received by the laser beam.
    The vehicle lamp
    A current-voltage conversion circuit that outputs a detection signal according to the current,
    A determination unit that determines an abnormality of the wavelength conversion member based on the detection signal,
    The vehicle lamp according to any one of claims 6 to 9, further comprising: a control unit that controls energization to the semiconductor laser element based on a determination result of the determination unit.
  10.  前記判定部の判定結果に基づいて、運転者への警告を行う警告部をさらに備える、請求項9に記載の車両用灯具。 The vehicle lamp according to claim 9, further comprising a warning unit that warns the driver based on the determination result of the determination unit.
PCT/JP2020/004836 2019-03-05 2020-02-07 Vehicle lighting fixture WO2020179352A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019039158A JP2020145012A (en) 2019-03-05 2019-03-05 Vehicular lighting fixture
JP2019-039158 2019-03-05
JP2019-071175 2019-04-03
JP2019071175A JP2020170783A (en) 2019-04-03 2019-04-03 Vehicular lamp

Publications (1)

Publication Number Publication Date
WO2020179352A1 true WO2020179352A1 (en) 2020-09-10

Family

ID=72336974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004836 WO2020179352A1 (en) 2019-03-05 2020-02-07 Vehicle lighting fixture

Country Status (1)

Country Link
WO (1) WO2020179352A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045014A (en) * 2008-07-17 2010-02-25 Fujifilm Corp Molded product with curved surface shape and method for manufacturing the same, and front cover for vehicle lighting device and method for manufacturing the same
JP2013168585A (en) * 2012-02-16 2013-08-29 Sharp Corp Light emitting device, semiconductor laser element, vehicle headlamp and lighting device
US20160033112A1 (en) * 2014-08-01 2016-02-04 Osram Gmbh Lighting device with a phosphor body spaced apart from a light source
JP2017191760A (en) * 2016-04-15 2017-10-19 シャープ株式会社 Luminaire and vehicular headlight
JP2018106825A (en) * 2016-12-22 2018-07-05 株式会社小糸製作所 Vehicular lighting fixture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045014A (en) * 2008-07-17 2010-02-25 Fujifilm Corp Molded product with curved surface shape and method for manufacturing the same, and front cover for vehicle lighting device and method for manufacturing the same
JP2013168585A (en) * 2012-02-16 2013-08-29 Sharp Corp Light emitting device, semiconductor laser element, vehicle headlamp and lighting device
US20160033112A1 (en) * 2014-08-01 2016-02-04 Osram Gmbh Lighting device with a phosphor body spaced apart from a light source
JP2017191760A (en) * 2016-04-15 2017-10-19 シャープ株式会社 Luminaire and vehicular headlight
JP2018106825A (en) * 2016-12-22 2018-07-05 株式会社小糸製作所 Vehicular lighting fixture

Similar Documents

Publication Publication Date Title
JP6509617B2 (en) Vehicle lamp
US9261259B2 (en) Laser-beam utilization device and vehicle headlight
JP5122542B2 (en) Light emitting device, lighting device, and light detector
JP6164518B2 (en) Vehicle headlamp
US9803832B2 (en) Lighting device with a phosphor body spaced apart from a light source
KR101781036B1 (en) Lighting device for vehicle
CN108307646B (en) Vehicle lamp and light emitting device
WO2017138412A1 (en) Light source device and projection device
JPWO2015141044A1 (en) Light source device and image projection apparatus having the light source device
JP6039947B2 (en) Vehicle lighting
JP2013168586A (en) Light emitting device, semiconductor laser element, vehicle headlamp and lighting device
JP2018106825A (en) Vehicular lighting fixture
KR20160012467A (en) Controlling apparatus for automotive lamp
CN107990156B (en) Lighting device
JP2015146396A (en) Light emitting device, vehicle lamp fitting and vehicle illuminating device
JP2020170783A (en) Vehicular lamp
WO2020179352A1 (en) Vehicle lighting fixture
JPWO2017203977A1 (en) Light emitting device and lighting device
JP2010262768A (en) Vehicle lamp
JPWO2018180658A1 (en) Wavelength conversion element and light emitting device
JP2018101534A (en) Vehicular lighting fixture
JP2020145012A (en) Vehicular lighting fixture
JP2019145361A (en) Light source device, lighting appliance for vehicle and projector
WO2020103713A1 (en) Lighting device, and lamp
JP2019149297A (en) Light source device and light projection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766838

Country of ref document: EP

Kind code of ref document: A1