WO2020179126A1 - 非水電解液、半固体電解質層、二次電池用シート及び二次電池 - Google Patents

非水電解液、半固体電解質層、二次電池用シート及び二次電池 Download PDF

Info

Publication number
WO2020179126A1
WO2020179126A1 PCT/JP2019/042237 JP2019042237W WO2020179126A1 WO 2020179126 A1 WO2020179126 A1 WO 2020179126A1 JP 2019042237 W JP2019042237 W JP 2019042237W WO 2020179126 A1 WO2020179126 A1 WO 2020179126A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
semi
solid electrolyte
negative electrode
organic solvent
Prior art date
Application number
PCT/JP2019/042237
Other languages
English (en)
French (fr)
Inventor
篤 宇根本
和英 上野
渡邉 正義
獨古 薫
Original Assignee
株式会社日立製作所
国立大学法人横浜国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所, 国立大学法人横浜国立大学 filed Critical 株式会社日立製作所
Priority to KR1020217017181A priority Critical patent/KR102610616B1/ko
Priority to CN201980081457.0A priority patent/CN113169379B/zh
Publication of WO2020179126A1 publication Critical patent/WO2020179126A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous electrolytic solution, a semi-solid electrolyte layer, a secondary battery sheet, and a secondary battery.
  • Patent Document 1 discloses an electrolyte and a non-aqueous solvent containing a predetermined compound having a carbon atom bonded to three oxygen atoms in its molecule.
  • a non-aqueous electrolyte solution for a secondary battery is disclosed.
  • the non-aqueous solvent may contain a sulfone-based compound such as sulfolane, and the blending amount of the sulfone-based compound is preferably 0.3 vol% or more, more preferably 1 vol% in 100 vol% of the non-aqueous solvent. % Or more, more preferably 5% by volume or more, preferably 40% by volume or less, more preferably 35% by volume or less, further preferably 30% by volume or less.
  • Patent Document 1 neither describes nor suggests the use of sulfolane as a component of a solvated ionic liquid, and in that case, the input/output characteristics of the secondary battery change depending on the content of sulfolane. Therefore, the technique of Patent Document 1 may not be able to obtain sufficient input/output characteristics of the secondary battery. In particular, when the non-aqueous electrolyte solution simply contains sulfolane, the life of the secondary battery at high temperature may be shortened or sufficient rate characteristics may not be obtained. However, Patent Document 1 discusses the above problem. Absent.
  • an object of the present invention is to provide a non-aqueous electrolytic solution capable of improving the input / output characteristics of a secondary battery, and in particular, improving the life and rate characteristics at high temperatures. Moreover, it aims at providing the semi-solid electrolyte layer, the sheet
  • the present inventors have formulated a solvated ionic liquid containing sulfolane and/or a derivative thereof and an electrolyte salt, an arbitrary low-viscosity organic solvent, and a non-aqueous electrolytic solution containing an optional negative electrode interface stabilizer, in which each component is blended.
  • the inventors have found that the above problems can be solved by adjusting the ratio within a predetermined range, and have completed the invention.
  • the non-aqueous electrolyte solution of the present invention contains the solvent-harmonious ionic liquid having sulfolane and / or a derivative thereof and an electrolyte salt, an arbitrary low-viscosity organic solvent, and any negative electrode interface stabilizer, and the low-viscosity organic solution.
  • the equilibrium vapor pressure of the solvent at room temperature is 1 Pa or more, and the ratio of the number of moles of the solvated ionic liquid to the total number of moles of the solvated ionic liquid and the low-viscosity organic solvent is X, and the solvated ionic liquid is defined as X.
  • the non-aqueous electrolyte solution of the present invention can improve the input/output characteristics of the secondary battery. Further, it is possible to prolong the life of the secondary battery at high temperature and improve the rate characteristics. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
  • a lithium-ion secondary battery will be described below as an example of an embodiment of the secondary battery according to the present invention.
  • a lithium-ion secondary battery is an electrochemical device that stores or uses electric energy by inserting and extracting lithium ions in and from an electrode in an electrolyte.
  • Lithium-ion secondary batteries are also called by other names such as lithium-ion batteries, non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary batteries, and any of these batteries is the subject of the present invention.
  • the technical idea of the present invention can also be applied to a sodium ion secondary battery, a magnesium ion secondary battery, a calcium ion secondary battery, a zinc secondary battery, an aluminum ion secondary battery and the like.
  • the material may be selected alone or in combination, as long as it does not contradict the contents disclosed in the present specification. Materials other than the material groups exemplified below may be selected as long as they do not conflict with the contents disclosed in this specification.
  • FIG. 1 is a sectional view of a lithium ion secondary battery according to an embodiment of the present invention.
  • FIG. 1 shows a stacked type lithium ion secondary battery, and a lithium ion secondary battery 1000 includes a positive electrode 100, a negative electrode 200, an outer casing 500, and an insulating layer 300.
  • the exterior body 500 houses the insulating layer 300, the positive electrode 100, and the negative electrode 200.
  • the outer casing 500 is selected from a material group having corrosion resistance to a non-aqueous electrolyte such as aluminum, stainless steel, and nickel-plated steel.
  • the lithium ion secondary battery may also have a winding type configuration.
  • the electrode assembly including the positive electrode 100, the insulating layer 300, and the negative electrode 200 is laminated to form an electrode group.
  • the positive electrode 100 or the negative electrode 200 may be referred to as an electrode.
  • a laminate of the positive electrode 100, the negative electrode 200, or both, and the insulating layer 300 may be referred to as a secondary battery sheet.
  • the electrode group can be produced only by stacking the secondary battery sheets.
  • the positive electrode 100 has a positive electrode current collector 120 and a positive electrode mixture layer 110. Positive electrode mixture layers 110 are formed on both surfaces of the positive electrode current collector 120.
  • the negative electrode 200 has a negative electrode current collector 220 and a negative electrode mixture layer 210. Negative electrode mixture layers 210 are formed on both sides of the negative electrode current collector 220.
  • the positive electrode mixture layer 110 or the negative electrode mixture layer 210 may be referred to as an electrode mixture layer, and the positive electrode current collector 120 or the negative electrode current collector 220 may be referred to as an electrode current collector.
  • the positive electrode current collector 120 has a positive electrode tab 130.
  • the negative electrode current collector 220 has a negative electrode tab 230.
  • the positive electrode tab 130 or the negative electrode tab 230 may be referred to as an electrode tab.
  • No electrode mixture layer is formed on the electrode tab.
  • the electrode mixture layer may be formed on the electrode tab within a range that does not adversely affect the performance of the lithium ion secondary battery 1000.
  • the positive electrode tab 130 and the negative electrode tab 230 are projected to the outside of the outer package 500, and the plurality of projected positive electrode tabs 130 and the plurality of negative electrode tabs 230 are bonded together by, for example, ultrasonic bonding, so that the lithium ion A parallel connection is formed in the secondary battery 1000.
  • the lithium-ion secondary battery according to the present invention may have a bipolar type structure in which electrical series connection is provided in the secondary battery.
  • the positive electrode mixture layer 110 includes a positive electrode active material, a positive electrode conductive material, and a positive electrode binder.
  • the negative electrode mixture layer 210 includes a negative electrode active material, a negative electrode conductive agent, and a negative electrode binder.
  • the positive electrode active material or the negative electrode active material may be referred to as an electrode active material
  • the positive electrode conductive agent or the negative electrode conductive agent may be referred to as an electrode conductive agent
  • the positive electrode binder or the negative electrode binder may be referred to as an electrode binder.
  • the electrode conductive agent improves the conductivity of the electrode mixture layer.
  • the electrode conductive agent it can be appropriately selected from a group of materials such as Ketjen black, acetylene black, and graphite.
  • the electrode binder binds the electrode active material, the electrode conductive agent, and the like in the electrode.
  • As the electrode binder a copolymer of styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), polyvinylidene fluoride (PVDF), vinylidene fluoride (VDF) and hexafluoropropylene (HFP) (P ( It can be appropriately selected and used from a material group such as VdF-HFP)).
  • Lithium ions are desorbed from the positive electrode active material showing a noble potential in the charging process, and lithium ions desorbed from the negative electrode active material are inserted in the discharging process.
  • a lithium composite oxide having a transition metal is desirable.
  • LiMO 2 Li[LiM]O 2 having an excessive Li composition
  • Cr, Zn, Ta, Al, Mg, Cu, Cd, Mo, Nb, W, Ru and the like Lithium ions are desorbed from the positive electrode active material showing a noble potential in the charging process, and lithium ions desorbed from the negative electrode active material are inserted in the discharging process.
  • a lithium composite oxide having a transition metal is desirable.
  • LiMO 2 Li[LiM]O 2 having an excessive Li composition
  • the positive electrode active material includes chalcogenides such as TiS 2 , MoS 2 , Mo 6 S 8 , and TiSe 2 , vanadium-based oxides such as V 2 O 5 , halides such as FeF 3 , and Fe(MoO 4) forming polyanions.
  • chalcogenides such as TiS 2 , MoS 2 , Mo 6 S 8 , and TiSe 2
  • vanadium-based oxides such as V 2 O 5
  • halides such as FeF 3 , and Fe(MoO 4) forming polyanions.
  • Fe 2 (SO 4 ) 3 Li 3 Fe 2 (PO 4 ) 3, etc.
  • quinone-based organic crystals, oxygen, etc. can contain at least one selected from the material group.
  • ⁇ Cathode current collector 120> As the positive electrode current collector 120, an aluminum foil having a thickness of 1 to 100 ⁇ m, an aluminum perforated foil having a thickness of 10 to 100 ⁇ m and a hole diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, stainless steel, It can be appropriately selected and used from a material group such as titanium.
  • ⁇ Negative electrode active material> In the negative electrode active material exhibiting a base potential, lithium ions are desorbed during the discharging process, and lithium ions desorbed from the positive electrode active material in the positive electrode mixture layer 110 during the charging process are inserted.
  • the negative electrode active material include carbon-based materials (graphite, easily graphitized carbon material, amorphous carbon material, organic crystals, activated carbon, etc.), conductive polymer materials (polyacene, polyparaphenylene, polyaniline, polyacetylene, etc.), and lithium.
  • Composite oxides lithium titanate: Li 4 Ti 5 O 12 , Li 2 TiO 4, etc.
  • metallic lithium metals alloying with lithium (having at least one kind of aluminum, silicon, tin, etc.), and oxides thereof. It can be selected from the material group such as.
  • the negative electrode current collector 220 includes a copper foil having a thickness of 1 to 100 ⁇ m, a copper perforated foil having a thickness of 1 to 100 ⁇ m and a pore diameter of 0.1 to 10 mm, expanded metal, a foamed metal plate, stainless steel, titanium, nickel, and the like. Can be appropriately selected and used from the above-mentioned material group.
  • An electrode slurry is prepared by attaching an electrode slurry prepared by mixing an electrode active material, an electrode conductive agent, an electrode binder, and a solvent to an electrode current collector by a coating method such as a doctor blade method, a dipping method, or a spray method. It The solvent is selected from a group of materials such as N-methylpyrrolidone (NMP) and water. Then, the electrode mixture layer is dried to remove the solvent, and the electrode mixture layer is pressure-molded by a roll press to prepare an electrode.
  • NMP N-methylpyrrolidone
  • the content of the non-aqueous electrolyte solution in the electrode mixture layer is preferably 20 to 40% by volume.
  • the content of the non-aqueous electrolytic solution is small, the ion conduction path inside the electrode mixture layer may not be sufficiently formed and the rate characteristics may deteriorate.
  • the content of the non-aqueous electrolyte solution is high, the non-aqueous electrolyte solution may leak from the electrode mixture layer, and the relative amount of the electrode active material becomes insufficient to increase the energy density. It may cause a decrease.
  • the non-aqueous electrolyte solution is injected into the lithium-ion secondary battery 1000 from the open side of the exterior body 500 or the injection hole to reduce the thickness of the electrode mixture layer.
  • the holes can be filled with a non-aqueous electrolyte.
  • a slurry prepared by mixing a non-aqueous electrolytic solution, an electrode active material, an electrode conductive agent, and an electrode binder is prepared, and the adjusted slurry is applied together on an electrode current collector, so that the pores of the electrode mixture layer are not It may be filled with a water electrolyte.
  • the particles such as the electrode active material and the electrode conductive agent in the electrode mixture layer function as the supporting particles without the need for the supporting particles contained in the semi-solid electrolyte, and the non-aqueous electrolytic solution is generated by these particles. Can be retained.
  • the thickness of the electrode mixture layer be equal to or larger than the average particle size of the electrode active material.
  • the thickness of the electrode mixture layer is small, the electron conductivity between the adjacent electrode active materials may deteriorate. If there are coarse particles having an average particle size of the electrode mixture layer or more in the electrode active material powder, the coarse particles are removed in advance by sieving classification, airflow classification, etc. Is desirable.
  • the insulating layer 300 serves as a medium for transmitting ions between the positive electrode 100 and the negative electrode 200.
  • the insulating layer 300 also acts as an electronic insulator to prevent a short circuit between the positive electrode 100 and the negative electrode 200.
  • the insulating layer 300 has a semi-solid electrolyte layer. A separator and a semi-solid electrolyte layer may be used together as the insulating layer 300.
  • Porous sheets can be used as the separator.
  • Porous sheets include cellulose, modified cellulose (carboxymethyl cellulose (CMC), hydroxypropyl cellulose (HPC), etc.), polyolefin (polypropylene (PP), copolymer of propylene, etc.), polyester (polyethylene terephthalate (PET), etc.).
  • Polyethylene terephthalate (PEN), polybutylene terephthalate (PBT), etc.), polyacrylonitrile (PAN), polyaramid, polyamideimide, resins such as polyimide, and materials such as glass can be selected.
  • the separator may be formed by applying a mixture for forming a separator having separator particles, a separator binder and a solvent to the electrode mixture layer.
  • the separator-forming mixture may be applied to the above-mentioned porous sheet.
  • Separator particles are selected from a group of materials such as ⁇ -alumina (Al 2 O 3 ), silica (SiO 2 ), and zirconia (ZrO 2 ).
  • the average particle size of the separator particles is preferably 1/100 to 1/2 of the thickness of the separator.
  • the separator binder can be selected from a group of materials such as polyethylene (PE), PP, polytetrafluoroethylene (PTFE), PVDF, P (VdF-HFP), styrene butadiene rubber (SBR), polyargic acid, and polyacrylic acid. it can.
  • the non-aqueous electrolyte is filled in the separator by injecting the non-aqueous electrolyte into the lithium-ion secondary battery 1000 through the open side of the exterior body 500 or the injection hole.
  • the semi-solid electrolyte layer has a semi-solid electrolyte binder and a semi-solid electrolyte.
  • the semi-solid electrolyte has supported particles and a non-aqueous electrolyte solution.
  • the semi-solid electrolyte has pores formed by aggregates of supported particles, in which the non-aqueous electrolyte solution is held. By retaining the non-aqueous electrolyte solution in the semi-solid electrolyte, the semi-solid electrolyte allows lithium ions to permeate.
  • the non-aqueous electrolytic solution may be injected into the lithium ion secondary battery 1000 from an open side of the exterior body 500 or a liquid injection hole.
  • the semi-solid electrolyte layer may be a semi-transparent self-supporting membrane that can be handled like a solid while containing a liquid component such as a non-aqueous electrolyte.
  • a liquid component such as a non-aqueous electrolyte is responsible for lithium ion conduction, and thus exhibits high ionic conductivity. That is, the semi-solid electrolyte layer has both advantages of high safety of solid and high ionic conductivity of liquid.
  • a method for producing the semi-solid electrolyte layer As a method for producing the semi-solid electrolyte layer, a method of compression-molding the powder of the semi-solid electrolyte into a pellet shape with a molding die or the like, a method of adding and mixing the semi-solid electrolyte binder with the powder of the semi-solid electrolyte, and forming into a sheet, etc. is there.
  • a highly flexible sheet-like semi-solid electrolyte layer can be produced.
  • a solution of a binder in which a semi-solid electrolyte binder is dissolved in a dispersion solvent is added to and mixed with the semi-solid electrolyte, the mixture is applied on a substrate such as an electrode, and the dispersion solvent is distilled off by drying, You may produce a semi-solid electrolyte layer.
  • the supported particles are preferably insulating particles and insoluble in a non-aqueous electrolytic solution.
  • the supporting particles are selected from a group of materials such as SiO 2 particles, Al 2 O 3 particles, Ceria (CeO 2 ) particles, oxide inorganic particles such as ZrO 2 particles, and a solid electrolyte.
  • the oxide-inorganic particles as the supporting particles, the non-aqueous electrolyte solution can be held at a high concentration in the semi-solid electrolyte layer.
  • gas is not generated from the oxide inorganic particles, a semi-solid electrolyte layer can be produced by a roll-to-roll process in the atmosphere.
  • the solid electrolyte is appropriately selected from a material group such as an oxide-based solid electrolyte such as Li-La-Zr-O and a sulfide-based solid electrolyte such as Li 10 Ge 2 PS 12 .
  • the average particle size of the primary particles of the supported particles is preferably 1 nm to 10 ⁇ m. If the average particle size of the primary particles of the supported particles is large, the supported particles may not be able to properly hold a sufficient amount of the non-aqueous electrolyte solution, and it may be difficult to form a semi-solid electrolyte. Further, when the average particle size of the primary particles of the supported particles is small, the intersurface force between the supported particles becomes large and the supported particles tend to aggregate with each other, which may make it difficult to form a semi-solid electrolyte.
  • the average particle size of the primary particles of the carrier particles is more preferably in the range of 1 to 50 nm, further preferably in the range of 1 to 10 nm.
  • the average particle size of the primary particles of the carrier particles can be measured using TEM.
  • Non-aqueous electrolytic solution has a non-aqueous solvent.
  • Non-aqueous solvents include solvated ionic liquids, any low viscosity organic solvent, and any negative electrode interface stabilizer.
  • the solvated ionic liquid may be referred to as the main solvent.
  • the components contained in the non-aqueous electrolytic solution can be measured by NMR or the like.
  • Ionic liquid is a compound that dissociates into cations and anions at room temperature and retains the liquid state.
  • the ionic liquid may be referred to as an ionic liquid, a low melting point molten salt or a room temperature molten salt.
  • the non-aqueous solvent is low in volatility from the viewpoint of stability in the atmosphere and heat resistance in the secondary battery, and specifically, it is desirable that the vapor pressure at room temperature is 150 Pa or less. Not limited.
  • the non-aqueous electrolyte contains the hardly solvated ionic liquid, it is possible to suppress the volatilization of the non-aqueous electrolyte from the semi-solid electrolyte layer.
  • the content of the non-aqueous electrolyte solution in the semi-solid electrolyte layer is not particularly limited, but is preferably 40 to 90% by volume.
  • the content of the non-aqueous electrolyte solution is small, the interface resistance between the electrode and the semi-solid electrolyte layer may increase.
  • the content of the non-aqueous electrolyte is large, the non-aqueous electrolyte may leak from the semi-solid electrolyte layer.
  • the content of the non-aqueous electrolyte solution in the semi-solid electrolyte layer is preferably 50 to 80% by volume, more preferably 60 to 80% by volume.
  • the content of the non-aqueous electrolyte solution in the semi-solid electrolyte layer is It is preferably 40 to 60% by volume.
  • the weight ratio of the main solvent in the non-aqueous electrolyte is not particularly limited, from the viewpoint of the stability of the lithium ion secondary battery, and for enabling high-speed charge/discharge, the weight ratio of the main solvent in the non-aqueous electrolyte. Is preferably 30 to 70% by weight, particularly 40 to 60% by weight, and further preferably 45 to 55% by weight.
  • the solvated ionic liquid has a sulfolane and / or a derivative thereof and an electrolyte salt.
  • a solvated ionic liquid containing sulfolane and / or its derivative is used, the transport rate of lithium ion in the semi-solid electrolyte layer is high because the sulfolane and / or its derivative and lithium ion have a unique coordination structure. Become.
  • the solvated ionic liquid can be used even if the viscosity of the solvated ionic liquid is increased. It is possible to suppress deterioration of the input/output characteristics of the secondary battery included.
  • sulfolane derivatives include those in which a hydrogen atom bonded to a carbon atom forming a sulfolane ring is substituted with a fluorine atom, an alkyl group, or the like.
  • Specific examples include fluorosulfolane, difluorosulfolane, methylsulfolane and the like. Any one of these may be used alone, or a plurality of them may be used in combination.
  • lithium bis (fluorosulfonyl) imide LiFSI
  • lithium bis (trifluoromethanesulfonyl) imide LiTFSI
  • lithium bis (pentafluoroethanesulfonyl) imide LiBETI
  • lithium tetrafluoroborate LiBF 4
  • LiPF 6 lithium hexa Fluorophosphate
  • lithium trifurate any one of these may be used alone, or a plurality of types may be used in combination.
  • the solvated ionic liquid having a sulfolane and / or a derivative thereof and an electrolyte salt can be integrally described as an apparent composition.
  • the mixing ratio of sulfolane and/or its derivative to the electrolyte salt is not particularly limited, but the molar ratio of (sulfolane and/or its derivative)/electrolyte salt is within the range of 1.0 to 3.5. Preferably.
  • the low-viscosity organic solvent reduces the viscosity of the non-aqueous electrolyte solution and improves the ionic conductivity.
  • the internal resistance of the non-aqueous electrolyte solution is large, the internal resistance of the non-aqueous electrolyte solution can be lowered by adding a low-viscosity organic solvent to increase the ionic conductivity of the non-aqueous electrolyte solution.
  • the equilibrium vapor pressure of the low-viscosity organic solvent at room temperature (25°C) is preferably 1 Pa or higher. As a result, volatilization of the low-viscosity organic solvent is suppressed, safety is improved, and the life of the lithium ion secondary battery 1000 during high temperature operation is improved.
  • the equilibrium vapor pressure can be evaluated by a vapor pressure measuring device or the like.
  • the number of donors of the low-viscosity organic solvent is 12 or more. As a result, the interaction between the low-viscosity organic solvent and lithium ions becomes strong, and the low-viscosity organic solvent is less likely to volatilize.
  • the number of donors can be evaluated by NMR or the like.
  • a low-viscosity organic solvent having an equilibrium vapor pressure of 1 Pa or more at room temperature (25° C.) and a donor number of 12 or more, propylene carbonate (PC), butylene carbonate (BC), ethylene carbonate (EC), trimethyl phosphate (TMP) ), triethyl phosphate (TEP), tris(2,2,2-trifluoroethyl) phosphite (TFP), ⁇ -butyrolactone (GBL), dimethyl methylphosphonate (DMMP) and the like.
  • PC propylene carbonate
  • BC butylene carbonate
  • EC ethylene carbonate
  • TMP trimethyl phosphate
  • TEP triethyl phosphate
  • TFP tris(2,2,2-trifluoroethyl) phosphite
  • GBL ⁇ -butyrolactone
  • DMMP dimethyl methylphosphonate
  • the negative electrode interface stabilizer can be appropriately selected from a group of materials such as vinylene carbonate (VC) and fluoroethylene carbonate (FEC).
  • the ratio of the weight of the negative electrode interface stabilizer (C) to the total weight of the low-viscosity organic solvent (B) is Y (C / (A + B)) (%), Y ⁇ 142.86X-11.429 It is desirable to satisfy.
  • the values of X and Y can be measured by NMR.
  • the weight of the negative electrode interface stabilizer increases, the transport rate of lithium ions increases and the coordination structure of sulfolane and/or its derivative with lithium ions is disturbed, so that the input/output characteristics of the lithium ion secondary battery 1000 are improved. May be hindered. Therefore, in order to improve the input/output characteristics of the lithium-ion secondary battery 1000, it is desirable that the weight of the negative electrode interface stabilizer is small.
  • the ratio X of the number of moles of the solvated ionic liquid to the total number of moles of the solvated ionic liquid and the low-viscosity organic solvent it is desirable that 0.35 ⁇ X ⁇ 1 is satisfied. More preferably, it is 0.39 ⁇ X ⁇ 0.93, and even more preferably 0.45 ⁇ X ⁇ 0.87.
  • X By setting X to the lower limit of the above range or more, excessive input of a low-viscosity organic solvent is suppressed, reduction decomposition on the surface of the negative electrode active material contained in the negative electrode 200 is suppressed, and a decrease in the life of the lithium ion secondary battery 1000 is suppressed. can do.
  • the ion transport resistance is lowered, the reversible exchange of lithium ions between the positive and negative electrodes is promoted, and lithium is gradually increased by the repeated operation of the lithium ion secondary battery 1000. It is possible to suppress a decrease in the capacity of the ion secondary battery 1000 and suppress a decrease in the life of the lithium ion secondary battery 1000.
  • the non-aqueous electrolyte solution may contain a corrosion inhibitor, if necessary.
  • the corrosion inhibitor forms a film in which the metal does not easily elute even when the positive electrode current collector 120 is exposed to a high electrochemical potential.
  • a material containing anionic species such as PF 6 and BF 4 and containing a cation species having a strong chemical bond for forming a stable compound in a moist atmosphere is desirable.
  • the solubility in water and the presence or absence of hydrolysis can be mentioned.
  • the corrosion inhibitor is a solid, it is desirable that its solubility in water is less than 1%.
  • the presence or absence of hydrolysis can be evaluated by molecular structure analysis of the sample after mixing with water.
  • “not hydrolyzed” means that the corrosion inhibitor absorbs moisture or is mixed with water and then heated at 100° C. or higher to remove water, and 95% of the residue has the same molecular structure as the original corrosion inhibitor. Means to indicate.
  • M-R Corrosion inhibitor, (M-R) + An - denoted. (M-R) + An - cation is (M-R) +.
  • M is selected from nitrogen (N), boron (B), phosphorus (P) or sulfur (S).
  • R is composed of a hydrocarbon group.
  • An - of the anion An - is.
  • An - The, BF 4 - or PF 6 - it is preferably used.
  • the anions of corrosion inhibitor BF 4 - or PF 6 - is to be in, it can be efficiently suppressed the elution of the positive electrode current collector 120.
  • This, BF 4 - or PF 6 - F anions react with SUS and aluminum electrode current collector is believed to be due to the effect of forming a passive film.
  • Corrosion inhibitors include quaternary ammonium salts such as tetrabutylammonium hexafluorophosphate (TBAPF 6 ), tetrabutylammonium tetrafluoroborate (TBABF 4 ), 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF 4 ).
  • TAPF 6 tetrabutylammonium hexafluorophosphate
  • TABF 4 tetrabutylammonium tetrafluoroborate
  • EMI-BF 4 1-ethyl-3-methylimidazolium tetrafluoroborate
  • EMI-PF 6 1-Ethyl-3-methylimidazolium hexafluorophosphate
  • BMI-BF 4 1-butyl-3-methylimidazolium tetrafluoroborate
  • BMI-BF 4 1-butyl-3-methylimidazolium It is selected from the material group of imidazolium salts such as hexafluorophosphate (BMI-PF 6 ).
  • the anion is PF 6 ⁇
  • the elution of the positive electrode current collector 120 can be suitably suppressed.
  • the content of the corrosion inhibitor is preferably 0.5 to 20% by weight, and more preferably 1 to 10% by weight, based on the total weight of the non-aqueous electrolyte solution.
  • the content of the corrosion inhibitor is small, the effect of suppressing the elution of the electrode current collector is reduced, and the battery capacity may be reduced due to charge/discharge. Further, when the content of the corrosion inhibitor is large, the lithium ion conductivity is lowered, and further, a large amount of stored energy is consumed for decomposing the corrosion inhibitor, and as a result, the battery capacity may be lowered. is there.
  • a fluorine-based resin is preferably used as the semi-solid electrolyte binder.
  • the fluorine-based resin is selected from a group of materials such as PTFE, PVDF, and P (VdF-HFP). These materials may be used alone or in combination of two or more.
  • PVDF or P (VdF-HFP) the adhesion between the insulating layer 300 and the electrode current collector is improved, so that the battery performance is improved.
  • a semi-solid electrolyte is formed by supporting or holding the non-aqueous electrolyte solution on the supporting particles.
  • a method for producing a semi-solid electrolyte a non-aqueous electrolyte and supported particles are mixed at a specific volume ratio, and an organic solvent such as methanol is added and mixed to prepare a slurry of the semi-solid electrolyte, and then the slurry is prepared. Examples thereof include a method of spreading the mixture on a slurry or the like and distilling off an organic solvent to obtain a powder of a semi-solid electrolyte.
  • Example 1 Fabrication of lithium ion secondary battery ⁇ Preparation of semi-solid electrolyte layer> LiBF 4 and sulfolane (SL) as an electrolyte salt and TBAPF 6 as a corrosion inhibitor were weighed and mixed to prepare a non-aqueous electrolyte solution. This non-aqueous electrolyte solution and fumed silica nanoparticles having a particle diameter of 7 nm were weighed and mixed so as to have a volume ratio of 80:20 to obtain a powdery semi-solid electrolyte.
  • SL sulfolane
  • TBAPF 6 as a corrosion inhibitor
  • the semi-solid electrolyte powder and PTFE which is a semi-solid electrolyte binder, were weighed and placed in a mortar so that the weight ratio was 95: 5, and the mixture was uniformly mixed.
  • This mixture was set in a hydraulic press via a PTFE sheet and pressed to a thickness of 200 ⁇ m to obtain an insulating layer 300 (semi-solid electrolyte layer).
  • the mixing ratio of the liquid components contained in the semi-solid electrolyte layer was evaluated by NMR, the molar ratio of SL and LiBF 4 was 2: 1, and the solvated ionic liquid Li (SL) 2 BF 4 composed of the electrolyte salt and sulfolane was used.
  • the weight ratio of TBAPF 6 to 2.5% was 2.5%.
  • This semi-solid electrolyte layer was punched out with a diameter of 16 mm.
  • a positive electrode 100 was obtained by applying a slurry on an Al foil which is a positive electrode current collector 120 with a tabletop coater and drying at 120 ° C. The positive electrode 100 was pressed at a predetermined pressure and cut to a diameter of 13 mm.
  • ⁇ Negative electrode 200> Graphite as the negative electrode active material and SBR and CMC as the negative electrode binder were uniformly mixed in a predetermined ratio using a kneader. Water was added to this mixture to obtain a slurry.
  • a negative electrode 200 was obtained by applying a slurry on a Cu foil which is a negative electrode current collector 220 with a desktop coater and drying at 100 ° C. The negative electrode 200 was pressed at a predetermined pressure and cut to a diameter of 13 mm.
  • ⁇ Lithium-ion secondary battery 1000> The semi-solid electrolyte layer is sandwiched between the positive electrode 100 and the negative electrode 200, sealed in a CR2032 type coin cell, and then the composition of the non-aqueous electrolyte solution in the final semi-solid electrolyte layer, the positive electrode 100, and the negative electrode 200 is shown in Table 1.
  • a non-aqueous electrolytic solution was injected into a CR2032 type coin cell so as to have the contents, and a lithium ion secondary battery 1000 was prepared.
  • Examples 2 to 44 and Comparative Examples 1 to 6 A lithium ion secondary battery was produced in the same manner as in Example 1 except that the composition of the non-aqueous electrolytic solution was adjusted as shown in Table 1, and the capacity ratio was “Q_0.5 / Q_0.05” and the discharge capacity retention rate. (%) was measured. The measurement results are shown in Table 1.
  • FIG. 2 is a graph showing the relationship between the molar ratio X and the weight ratio Y (%) in Examples and Comparative Examples.
  • FIG. 3 is a graph showing changes in the 40 ° C. discharge capacity retention rate with respect to the molar ratio X in Examples and Comparative Examples.
  • the capacitance ratio “Q_0.5 / Q_0.05” indicating input / output characteristics is 40% in all the examples, that is, in the range satisfying Y ⁇ 142.86X-11.492. That was all.
  • Comparative Examples 1 to 6 all had a capacity ratio of less than 40%.
  • the discharge capacity retention rate showing the life characteristic was 75% or more. In particular, it was 85% or more in the example satisfying 0.39 ⁇ X ⁇ 0.93, and 90% or more in the example satisfying 0.45 ⁇ X ⁇ 0.87.
  • Electrode body 500 Exterior body 1000 Lithium ion secondary battery Cited in this specification. All published publications, patents and patent applications are incorporated herein by reference in their entirety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

二次電池の入出力特性を向上させることができ、特に、高温における寿命及びレート特性を向上させることが可能な非水電解液を提供することを目的とする。 本発明の非水電解液は、スルホラン及び/又はその誘導体と電解質塩とを有する溶媒和イオン液体、任意の低粘度有機溶媒、並びに任意の負極界面安定化材を含み、前記低粘度有機溶媒の室温での平衡蒸気圧が1Pa以上であり、前記溶媒和イオン液体と前記低粘度有機溶媒との総モル数に対する前記溶媒和イオン液体のモル数の比をXとし、前記溶媒和イオン液体と前記低粘度有機溶媒との総重量に対する前記負極界面安定化材の重量の比をY(%)としたとき、 Y≦142.86X-11.429 を満たすことを特徴とする。

Description

非水電解液、半固体電解質層、二次電池用シート及び二次電池
 本発明は、非水電解液、半固体電解質層、二次電池用シート及び二次電池に関する。
 各種二次電池に用いる非水電解液に関する従来技術として、特許文献1には、電解質及び非水溶媒と、3つの酸素原子に結合した炭素原子を分子内に有する所定の化合物とを含有する二次電池用の非水系電解液が開示されている。上記非水溶媒は、スルホラン類等のスルホン系化合物を含むことができ、そのスルホン系化合物の配合量は、非水溶媒100体積%中、好ましくは0.3体積%以上、より好ましくは1体積%以上、さらに好ましくは5体積%以上であり、また、好ましくは40体積%以下、より好ましくは35体積%以下、さらに好ましくは30体積%以下であるとされている。
特開2018-029034号公報
 上記特許文献1には、スルホランを溶媒和イオン液体の成分として用いることに関して、また、その場合にスルホランの含有量によって二次電池の入出力特性が変化することに関して記載も示唆もされていない。そのため、特許文献1の技術では、二次電池の十分な入出力特性が得られない可能性がある。特に、非水電解液に単にスルホランを含有させた場合、高温における二次電池の寿命が低下したり、十分なレート特性が得られない虞があるが、特許文献1では上記問題について検討されていない。
 そこで本発明は、二次電池の入出力特性を向上させることができ、特に、高温における寿命及びレート特性を向上させることが可能な非水電解液を提供することを目的とする。また、その非水電解液を用いた半固体電解質層、二次電池用シート及び二次電池を提供することを目的とする。
 本発明者らは、スルホラン及び/又はその誘導体と電解質塩とを有する溶媒和イオン液体、任意の低粘度有機溶媒、並びに任意の負極界面安定化材を含む非水電解液において、各成分の配合比を所定の範囲内に調整することにより、上記課題が解決されることを見い出し、発明を完成した。
 すなわち、本発明の非水電解液は、スルホラン及び/又はその誘導体と電解質塩とを有する溶媒和イオン液体、任意の低粘度有機溶媒、並びに任意の負極界面安定化材を含み、前記低粘度有機溶媒の室温での平衡蒸気圧が1Pa以上であり、前記溶媒和イオン液体と前記低粘度有機溶媒との総モル数に対する前記溶媒和イオン液体のモル数の比をXとし、前記溶媒和イオン液体と前記低粘度有機溶媒との総重量に対する前記負極界面安定化材の重量の比をY(%)としたとき、
 Y≦142.86X-11.429
を満たすことを特徴とする。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2019-039934号の開示内容を包含する。
 本発明の非水電解液により、二次電池の入出力特性を高めることができる。また、二次電池の高温における長寿命化、レート特性の向上を図ることができる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。
本実施形態に係るリチウムイオン二次電池の断面図である。 実施例及び比較例におけるモル比Xと重量比Y(%)との関係を示すグラフである。 実施例及び比較例におけるモル比Xに対する40℃放電容量維持率の変化を示すグラフである。
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更及び修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
 本明細書に記載される「~」は、その前後に記載される数値を下限値及び上限値として有する意味で使用する。本明細書に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的に記載されている上限値又は下限値に置き換えても良い。本明細書に記載される数値範囲の上限値又は下限値は、実施例中に示されている値に置き換えても良い。
 本発明に係る二次電池の一実施形態として、リチウムイオン二次電池を例にして以下説明する。リチウムイオン二次電池とは、電解質中における電極へのリチウムイオンの吸蔵・放出により、電気エネルギーを貯蔵又は利用可能とする電気化学デバイスである。リチウムイオン二次電池は、リチウムイオン電池、非水電解質二次電池、非水電解液二次電池等の別の名称でも呼ばれており、いずれの電池も本発明の対象である。本発明の技術的思想は、ナトリウムイオン二次電池、マグネシウムイオン二次電池、カルシウムイオン二次電池、亜鉛二次電池、アルミニウムイオン二次電池等に対しても適用できる。
 以下で例示している材料群から材料を選択する場合、本明細書で開示されている内容と矛盾しない範囲で、材料を単独で選択しても良く、複数組み合わせて選択しても良い、また、本明細書で開示されている内容と矛盾しない範囲で、以下で例示している材料群以外の材料を選択しても良い。
 図1は、本発明の一実施形態に係るリチウムイオン二次電池の断面図である。図1は積層型のリチウムイオン二次電池を示しており、リチウムイオン二次電池1000は、正極100、負極200、外装体500及び絶縁層300を有する。外装体500は、絶縁層300、正極100及び負極200を収容する。外装体500は、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等、非水電解液に対し耐食性のある材料群から選択される。リチウムイオン二次電池は、捲回型の構成にすることもできる。
 リチウムイオン二次電池1000内では、正極100、絶縁層300及び負極200で構成される電極体400が積層して電極群を構成する。以下では、正極100又は負極200を電極と称する場合がある。また、正極100又は負極200あるいはその両方と、絶縁層300とが積層したものを二次電池用シートと称する場合がある。絶縁層300及び電極を一体構造とした場合、二次電池用シートを積層するだけで電極群を作製できる。
 正極100は、正極集電体120及び正極合剤層110を有する。正極集電体120の両面に正極合剤層110が形成されている。負極200は、負極集電体220及び負極合剤層210を有する。負極集電体220の両面に負極合剤層210が形成されている。正極合剤層110又は負極合剤層210を電極合剤層、正極集電体120又は負極集電体220を電極集電体と称する場合がある。
 正極集電体120は正極タブ130を有する。負極集電体220は負極タブ230を有する。正極タブ130又は負極タブ230を電極タブと称する場合がある。電極タブ上には電極合剤層が形成されていない。ただし、リチウムイオン二次電池1000の性能に悪影響を与えない範囲で電極タブ上に電極合剤層を形成しても良い。正極タブ130及び負極タブ230は、外装体500の外部に突出しており、突出した複数の正極タブ130同士、複数の負極タブ230同士が、例えば超音波接合等で接合されることで、リチウムイオン二次電池1000内で並列接続が形成される。本発明に係るリチウムイオン二次電池は、二次電池内に電気的な直列接続を備えるバイポーラ型の構成にすることもできる。
 正極合剤層110は、正極活物質、正極導電剤及び正極バインダを含む。負極合剤層210は、負極活物質、負極導電剤及び負極バインダを含む。正極活物質又は負極活物質を電極活物質、正極導電剤又は負極導電剤を電極導電剤、正極バインダ又は負極バインダを電極バインダと称する場合がある。
<電極導電剤>
 電極導電剤は、電極合剤層の導電性を向上させる。電極導電剤としては、ケッチェンブラック、アセチレンブラック、黒鉛等の材料群から適宜選択して用いることができる。
<電極バインダ>
 電極バインダは、電極中の電極活物質や電極導電剤等を結着させる。電極バインダとしては、スチレン-ブタジエンゴム(SBR)、カルボキシメチルセルロ-ス(CMC)、ポリフッ化ビニリデン(PVDF)、ビニリデンフルオライド(VDF)とヘキサフルオロプロピレン(HFP)との共重合体(P(VdF-HFP))等の材料群から適宜選択して用いることができる。
<正極活物質>
 貴な電位を示す正極活物質は、充電過程においてリチウムイオンが脱離し、放電過程において負極活物質から脱離したリチウムイオンが挿入される。正極活物質としては、遷移金属を有するリチウム複合酸化物が望ましい。具体的には、LiMO、Li過剰組成のLi[LiM]O、LiM、LiMPO、LiMVO、LiMBO、LiMSiO(ただし、Mは、Co、Ni、Mn、Fe、Cr、Zn、Ta、Al、Mg、Cu、Cd、Mo、Nb、W、Ru等から選択される少なくとも1種である)が挙げられる。また、これら材料における酸素の一部を、フッ素等の他の元素に置換しても良い。さらに、正極活物質は、TiS、MoS、Mo、TiSe等のカルコゲナイドや、V等のバナジウム系酸化物、FeF等のハライド、ポリアニオンを構成するFe(MoO、Fe(SO、LiFe(PO等、キノン系有機結晶、酸素等の材料群から選択される少なくとも1種を含むことができる。
<正極集電体120>
 正極集電体120としては、厚さが1~100μmのアルミニウム箔、厚さが10~100μm、孔径0.1~10mmの孔を有するアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板、ステンレス鋼、チタン等の材料群から適宜選択して用いることができる。
<負極活物質>
 卑な電位を示す負極活物質は、放電過程においてリチウムイオンが脱離し、充電過程において正極合剤層110中の正極活物質から脱離したリチウムイオンが挿入される。負極活物質としては、炭素系材料(黒鉛、易黒鉛化炭素材料、非晶質炭素材料、有機結晶、活性炭等)、導電性高分子材料(ポリアセン、ポリパラフェニレン、ポリアニリン、ポリアセチレン等)、リチウム複合酸化物(チタン酸リチウム:LiTi12やLiTiO等)、金属リチウム、リチウムと合金化する金属(アルミニウム、シリコン、スズ等を少なくとも1種類以上有する)やこれらの酸化物等の材料群から選択することができる。
<負極集電体220>
 負極集電体220としては、厚さが1~100μmの銅箔、厚さが1~100μm、孔径0.1~10mmの銅製穿孔箔、エキスパンドメタル、発泡金属板、ステンレス鋼、チタン、ニッケル等の材料群から適宜選択して用いることができる。
<電極>
 電極活物質、電極導電剤、電極バインダ及び溶剤を混合した電極スラリーを、ドクターブレード法、ディッピング法、スプレー法等の塗工方法によって電極集電体へ付着させることで電極合剤層が作製される。溶剤は、Nメチルピロリドン(NMP)、水等の材料群から選択される。その後、溶剤を除去するために電極合剤層を乾燥し、ロールプレスによって電極合剤層を加圧成形することにより電極が作製される。
 電極合剤層に非水電解液が含まれている場合、電極合剤層中の非水電解液の含有量は20~40体積%であることが望ましい。非水電解液の含有量が少ない場合、電極合剤層内部でのイオン伝導経路が十分に形成されずレート特性が低下する可能性がある。また、非水電解液の含有量が多い場合には、電極合剤層から非水電解液が漏れ出す可能性があることに加え、電極活物質の相対的な量が不十分となりエネルギー密度の低下を招く可能性がある。
 電極合剤層に非水電解液を含有させるためには、外装体500の開いている一辺や注液孔からリチウムイオン二次電池1000に非水電解液を注入し、電極合剤層の細孔に非水電解液を充填させることができる。また、非水電解液、電極活物質、電極導電剤及び電極バインダを混合したスラリーを調製し、調整したスラリーを電極集電体上に一緒に塗布して、電極合剤層の細孔に非水電解液を充填させても良い。これにより、半固体電解質に含まれるような担持粒子を要せず、電極合剤層中の電極活物質や電極導電剤等の粒子が担持粒子として機能し、それらの粒子により非水電解液を保持することができる。
 電極合剤層の厚さは、電極活物質の平均粒径以上とすることが望ましい。電極合剤層の厚さが小さいと、隣接する電極活物質間の電子伝導性が悪化する可能性がある。電極活物質粉末中に電極合剤層の厚さ以上の平均粒径を有する粗粒がある場合、ふるい分級、風流分級等により粗粒を予め除去し、電極合剤層の厚さ以下の粒子とすることが望ましい。
<絶縁層300>
 絶縁層300は、正極100と負極200の間にイオンを伝達させる媒体となる。絶縁層300は電子の絶縁体としても働き、正極100と負極200の短絡を防止する。絶縁層300は、半固体電解質層を有する。絶縁層300として、セパレータ及び半固体電解質層を併用しても良い。
<セパレータ>
 セパレータとして、多孔質シートを用いることができる。多孔質シートは、セルロース、セルロースの変成体(カルボキシメチルセルロース(CMC)、ヒドロキシプロピルセルロース(HPC)等)、ポリオレフィン(ポリプロピレン(PP)、プロピレンの共重合体等)、ポリエステル(ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)等)、ポリアクリロニトリル(PAN)、ポリアラミド、ポリアミドイミド、ポリイミド等の樹脂、ガラス等の材料群から選択することができる。セパレータを正極100又は負極200よりも大面積にすることで、正極100と負極200の短絡を防止できる。
 セパレータ粒子、セパレータバインダ及び溶剤を有するセパレータ形成用混合物を電極合剤層に塗布することにより、セパレータを形成しても良い。あるいは、セパレータ形成用混合物を上記の多孔質シートに塗布しても良い。
 セパレータ粒子は、γ-アルミナ(Al)、シリカ(SiO)、ジルコニア(ZrO)等の材料群から選択される。セパレータ粒子の平均粒子径は、セパレータの厚さの1/100~1/2とすることが望ましい。セパレータバインダは、ポリエチレン(PE)、PP、ポリテトラフルオロエチレン(PTFE)、PVDF、P(VdF-HFP)、スチレンブタジエンゴム(SBR)、ポリアルギン酸、ポリアクリル酸等の材料群から選択することができる。
 絶縁層300がセパレータを含む場合、外装体500の開いている一辺や注液孔からリチウムイオン二次電池1000に非水電解液を注入することで、セパレータ中に非水電解液を充填することができる。
<半固体電解質層>
 半固体電解質層は、半固体電解質バインダ及び半固体電解質を有する。半固体電解質は、担持粒子及び非水電解液を有する。半固体電解質は、担持粒子の集合体によって形成される細孔を有し、その中に非水電解液が保持されている。半固体電解質中に非水電解液が保持されることによって、半固体電解質はリチウムイオンを透過させる。絶縁層300として半固体電解質層を用い、電極合剤層に非水電解液が充填される場合、リチウムイオン二次電池1000への非水電解液の注入は不要になる。絶縁層300がセパレータを有する場合等、外装体500の開いている一辺や注液孔からリチウムイオン二次電池1000内へ非水電解液を注入しても良い。
 半固体電解質層は、非水電解液等の液体成分を含んでいながら、固体のような取扱いができ、半透明な自立膜であり得る。局所的には、非水電解液等の液体成分がリチウムイオン伝導を担うために高イオン伝導性を示す。すなわち、半固体電解質層は、固体が持つ高い安全性と液体が持つ高いイオン伝導特性の、両者の長所を併せ持つ。
 半固体電解質層の作製方法として、半固体電解質の粉末を成型ダイス等でペレット状に圧縮成型する方法や、半固体電解質バインダを半固体電解質の粉末に添加・混合し、シート化する方法等がある。半固体電解質バインダを半固体電解質の粉末を添加・混合することにより、柔軟性の高いシート状の半固体電解質層を作製することができる。分散溶媒に半固体電解質バインダを溶解させた結着剤の溶液を、半固体電解質に添加・混合し、電極等の基材上に混合物を塗布し、乾燥により分散溶媒を留去することで、半固体電解質層を作製しても良い。
<担持粒子>
 担持粒子としては、電気化学的安定性の観点から、絶縁性粒子であり非水電解液に不溶であることが好ましい。担持粒子は、SiO粒子、Al粒子、セリア(CeO)粒子、ZrO粒子等の酸化物無機粒子、固体電解質等の材料群から選択される。担持粒子として酸化物無機粒子を用いることにより、半固体電解質層内で非水電解液を高濃度で保持することができる。また、酸化物無機粒子からガスが発生することがないため、大気中でのロールtoロールプロセスにより半固体電解質層を作製することができる。固体電解質は、Li-La-Zr-O等の酸化物系固体電解質や、Li10GePS12等の硫化物系固体電解質等の材料群から適宜選択される。
 非水電解液の保持量は担持粒子の比表面積に比例すると考えられるため、担持粒子の一次粒子の平均粒径は、1nm~10μmであることが好ましい。担持粒子の一次粒子の平均粒径が大きいと、担持粒子が十分な量の非水電解液を適切に保持できず半固体電解質の形成が困難になる可能性がある。また、担持粒子の一次粒子の平均粒径が小さいと、担持粒子間の表面間力が大きくなって担持粒子同士が凝集し易くなり、半固体電解質の形成が困難になる可能性がある。担持粒子の一次粒子の平均粒径は、1~50nmの範囲がより好ましく、1~10nmの範囲がさらに好ましい。担持粒子の一次粒子の平均粒径は、TEMを用いて測定することができる。
<非水電解液>
 非水電解液は、非水溶媒を有する。非水溶媒は、溶媒和イオン液体、任意の低粘度有機溶媒、及び任意の負極界面安定化材を含む。以下の説明では、溶媒和イオン液体を主溶媒と称する場合がある。非水電解液に含まれる成分はNMR等で測定することができる。
 イオン液体とは、常温でカチオンとアニオンに解離する化合物であって、液体の状態を保持するものである。イオン液体は、イオン性液体、低融点溶融塩あるいは常温溶融塩と称されることがある。非水溶媒は、大気中での安定性や二次電池内での耐熱性の観点から、低揮発性であり、具体的には室温における蒸気圧が150Pa以下であるものが望ましいが、これに限られない。非水電解液が難揮発性の溶媒和イオン液体を含むことにより、半固体電解質層からの非水電解液の揮発を抑制することができる。
 半固体電解質層中の非水電解液の含有量は特には限定されないが、40~90体積%であることが望ましい。非水電解液の含有量が小さい場合、電極と半固体電解質層との界面抵抗が増加する可能性がある。また、非水電解液の含有量が大きい場合、半固体電解質層から非水電解液が漏れ出してしまう虞がある。半固体電解質層がシート状である場合、半固体電解質層中の非水電解液の含有量は50~80体積%、さらには60~80体積%であることが望ましい。半固体電解質と分散溶媒に半固体電解質バインダを溶解させた溶液との混合物を電極上に塗布することによって半固体電解質層を形成する場合、半固体電解質層中の非水電解液の含有量は40~60体積%であることが望ましい。
 非水電解液における主溶媒の重量比率は、特には限定されないが、リチウムイオン二次電池の安定性の観点から、また高速充放電を可能にするため、非水電解液における主溶媒の重量比率は30~70重量%、特に40~60重量%、さらには45~55重量%であることが望ましい。
<溶媒和イオン液体>
 溶媒和イオン液体は、スルホラン及び/又はその誘導体と、電解質塩とを有する。スルホラン及び/又はその誘導体を含む溶媒和イオン液体を用いると、スルホラン及び/又はその誘導体とリチウムイオンとで固有の配位構造をとるため、半固体電解質層中でのリチウムイオンの輸送速度が速くなる。したがって、粘度を高くするにつれて二次電池の入出力特性が低下するエーテル系溶媒及び電解質塩を有する溶媒和イオン液体とは異なり、溶媒和イオン液体の粘度を高くしても、溶媒和イオン液体を有する二次電池の入出力特性の低下を抑制することができる。
 スルホランの誘導体としては、スルホラン環を構成する炭素原子に結合する水素原子がフッ素原子やアルキル基等により置換されたものが挙げられる。具体例として、フルオロスルホラン、ジフルオロスルホラン、メチルスルホラン等が挙げられる。これらはいずれか一種を単独で用いても良いし、複数を組み合わせて用いても良い。
 電解質塩としては、低粘度有機溶媒に均一に分散できるものが望ましく、カチオンがリチウムである各種のリチウム塩を用いることができる。例として、リチウムビス(フルオロスルホニル)イミド(LiFSI)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)、リチウムビス(ペンタフルオロエタンスルホニル)イミド(LiBETI)、リチウムテトラフルオロボレート(LiBF)、リチウムヘキサフルオロホスファート(LiPF)、リチウムトリフラート等を挙げることができる。これらはいずれか一種を単独で用いても良いし、複数種を併用しても良い。
 スルホラン及び/又はその誘導体と電解質塩とを有する溶媒和イオン液体は、見かけ上の組成として一体的に表記することができる。例えば、スルホランとLiTFSIからなる溶媒和イオン液体は、見かけ上の組成としてLi(SL)TFSI(x=2~3)と表記し、この組成を有する単一の物質としてモル数を算出する。
 電解質塩に対するスルホラン及び/又はその誘導体の混合比は、特に限定されるものではないが、(スルホラン及び/又はその誘導体)/電解質塩のモル比が、1.0~3.5の範囲内であることが好ましい。
<低粘度有機溶媒>
 低粘度有機溶媒は、非水電解液の粘度を下げ、イオン伝導率を向上させる。非水電解液の内部抵抗が大きい場合、低粘度有機溶媒を添加して非水電解液のイオン伝導率を高めることにより、非水電解液の内部抵抗を下げることができる。
 低粘度有機溶媒の室温(25℃)での平衡蒸気圧は1Pa以上であることが望ましい。これにより、低粘度有機溶媒の揮発が抑制され、安全性が向上し、リチウムイオン二次電池1000の高温動作時の寿命が向上する。平衡蒸気圧は、蒸気圧測定装置等により評価することができる。
 低粘度有機溶媒のドナー数は12以上であることが望ましい。これにより、低粘度有機溶媒とリチウムイオンとの相互作用が強くなり、低粘度有機溶媒が揮発しにくくなる。ドナー数はNMR等により評価できる。
 室温(25℃)での平衡蒸気圧が1Pa以上、ドナー数が12以上である低粘度有機溶媒として、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチレンカーボネート(EC)、リン酸トリメチル(TMP)、リン酸トリエチル(TEP)、亜リン酸トリス(2,2,2-トリフルオロエチル)(TFP)、γ-ブチロラクトン(GBL)、メチルホスホン酸ジメチル(DMMP)等を挙げることができる。
<負極界面安定化材>
 非水電解液が負極界面安定化材を含むことにより、二次電池のレート特性の向上や電池寿命の向上を図ることができる。負極界面安定化材は、ビニレンカーボネート(VC)、フルオロエチレンカーボネート(FEC)等の材料群から適宜選択して用いることができる。
<入出力特性>
 溶媒和イオン液体(A)と低粘度有機溶媒(B)との総モル数に対する溶媒和イオン液体(A)のモル数の比をX(A/(A+B))、溶媒和イオン液体(A)と低粘度有機溶媒(B)との総重量に対する負極界面安定化材(C)の重量の比をY(C/(A+B))(%)としたとき、
 Y≦142.86X-11.429
を満たすことが望ましい。X及びYの値は、NMRにより計測することができる。
 負極界面安定化材の重量が高くなるにしたがって、リチウムイオンの輸送速度が速くなり、スルホラン及び/又はその誘導体とリチウムイオンの配位構造が乱れるため、リチウムイオン二次電池1000の入出力特性が阻害される可能性がある。したがって、リチウムイオン二次電池1000の入出力特性を向上させるには、負極界面安定化材の重量は小さい方が望ましい。
<寿命特性>
 溶媒和イオン液体と低粘度有機溶媒との総モル数に対する溶媒和イオン液体のモル数の比Xに関しては、0.35≦X<1を満たすことが望ましい。より好ましくは、0.39≦X≦0.93であり、さらに好ましくは、0.45≦X≦0.87である。Xを上記範囲の下限値以上とすることにより、低粘度有機溶媒の過剰投入を抑え、負極200に含まれる負極活物質表面での還元分解を抑え、リチウムイオン二次電池1000の寿命低下を抑制することができる。また、Xを上記範囲の上限値以下とすることで、イオン輸送抵抗を下げて、正負極間での可逆なリチウムイオンのやり取りを促進し、リチウムイオン二次電池1000の繰り返し動作によって徐々にリチウムイオン二次電池1000の容量が低下することを抑制し、リチウムイオン二次電池1000の寿命低下を抑制することができる。
<腐食防止剤>
 非水電解液は、必要に応じて腐食防止剤を含んでいても良い。腐食防止剤により、正極集電体120が高い電気化学電位に晒されても金属が溶出しにくい皮膜が形成される。腐食防止剤としては、PFやBFといったアニオン種を含み、且つ、水分を含んだ大気で安定な化合物を形成するための強い化学結合を有するカチオン種を含む材料が望ましい。
 大気で安定な化合物であることを示す一指標としては、水に対する溶解度や加水分解の有無を挙げることができる。腐食防止剤が固体である場合、水に対する溶解度が1%未満であることが望ましい。また、加水分解の有無は、水と混合後の試料の分子構造解析で評価することができる。ここで、加水分解しない、とは、腐食防止剤が吸湿あるいは水と混和した後、100℃以上で加熱して水分を除去し、残留物の95%が当初の腐食防止剤と同じ分子構造を示していることを意味する。
 腐食防止剤は、(M-R)Anと表される。(M-R)Anのカチオンは(M-R)である。Mは、窒素(N)、ホウ素(B)、リン(P)又は硫黄(S)から選択される。Rは炭化水素基から構成される。
 (M-R)AnのアニオンはAnである。Anとしては、BF やPF が好適に用いられる。腐食防止剤のアニオンをBF やPF にすることで、正極集電体120の溶出を効率的に抑制できる。これは、BF やPF のFアニオンが電極集電体のSUSやアルミニウムと反応し、不動態皮膜を形成することが影響するためと考えられる。
 腐食防止剤は、テトラブチルアンモニウムヘキサフルオロホスフェート(TBAPF)、テトラブチルアンモニウムテトラフルオロボレート(TBABF)等の4級アンモニウム塩、1-エチル-3-メチルイミダゾリウムテトラフルオロボレート(EMI-BF)、1-エチル-3-メチルイミダゾリウムヘキサフルオロフォスフェート(EMI-PF)、1-ブチル-3-メチルイミダゾリウムテトラフルオロボレート(BMI-BF)、1-ブチル-3-メチルイミダゾリウムヘキサフルオロフォスフェート(BMI-PF)等のイミダゾリウム塩の材料群から選択される。特に、アニオンがPF であれば、正極集電体120の溶出を好適に抑制できる。
 腐食防止剤の含有量は、非水電解液の総重量に対して、0.5~20重量%であることが望ましく、より好ましくは1~10重量%である。腐食防止剤の含有量が少ないと、電極集電体の溶出を抑制する効果が低下し、充放電に伴い電池容量が低下する可能性がある。また、腐食防止剤の含有量が多いと、リチウムイオン伝導度が低下し、さらに、腐食防止剤を分解させるために多くの蓄電エネルギーが消費されてしまい、結果として電池容量が低下する可能性がある。
<半固体電解質バインダ>
 半固体電解質バインダとしては、フッ素系の樹脂が好適に用いられる。フッ素系の樹脂は、PTFE、PVDF、P(VdF-HFP)等の材料群から選択される。これらの材料を単独又は複数組み合わせて使用しても良い。PVDFやP(VdF-HFP)を用いることで、絶縁層300と電極集電体の密着性が向上するため、電池性能が向上する。
<半固体電解質>
 非水電解液が担持粒子に担持又は保持されることにより半固体電解質が構成される。半固体電解質の作製方法として、非水電解液と担持粒子とを特定の体積比率で混合し、メタノール等の有機溶媒を添加し・混合して、半固体電解質のスラリーを調合した後、スラリーをシャーレ等に広げ、有機溶媒を留去して半固体電解質の粉末を得る方法等が挙げられる。
 以下、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
(1)リチウムイオン二次電池の作製
<半固体電解質層の作製>
 電解質塩としてLiBF、スルホラン(SL)、及び腐食防止剤としてTBAPFをそれぞれ秤量して混合し、非水電解液とした。この非水電解液と、粒子径7nmのヒュームドシリカナノ粒子とを体積比80:20になるよう秤量して混合し、粉末状の半固体電解質を得た。
 半固体電解質の粉末と半固体電解質バインダであるPTFEが、重量比95:5となるよう、それぞれ秤量して乳鉢に投入し、均一混合した。この混合物を、PTFEシートを介して油圧プレス機にセットし、厚みが200μmとなるようプレスし、絶縁層300(半固体電解質層)を得た。半固体電解質層に含まれる液体成分の混合比をNMRで評価したところ、SLとLiBFのモル比が2:1であり、電解質塩及びスルホランからなる溶媒和イオン液体Li(SL)BFに対するTBAPFの重量比が2.5%であった。この半固体電解質層を直径16mmで打ち抜いた。
<正極100>
 正極活物質としてのLi(Ni,Co,Mn)O系酸化物、正極導電剤としてのアセチレンブラック、及び、N-メチルピロリドンへ溶解させた正極バインダとしてのPVDFを所定の割合で混練機を用いて均一混合した。この混合物にNMPを投入してスラリーを得た。卓上コーターにて、正極集電体120であるAl箔上にスラリーを塗布し、120℃で乾燥することで正極100を得た。この正極100を所定の圧力でプレスし、直径13mmで切り取った。
<負極200>
 負極活物質としての黒鉛と、負極バインダとしてのSBR及びCMCとを所定の割合で混練機を用いて均一混合した。この混合物に水を投入してスラリーを得た。卓上コーターにて、負極集電体220であるCu箔上にスラリーを塗布し、100℃で乾燥することで負極200を得た。この負極200を所定の圧力でプレスし、直径13mmで切り取った。
<リチウムイオン二次電池1000>
 半固体電解質層を、正極100及び負極200でサンドウィッチし、CR2032型コインセル内に封入した後、最終的な半固体電解質層、正極100、及び負極200中の非水電解液の組成が表1の内容になるよう、非水電解液をCR2032型コインセルに注液し、リチウムイオン二次電池1000を作製した。
(2)リチウムイオン二次電池の特性評価
<出力特性の評価方法>
 1サイクル目の充電では、リチウムイオン二次電池1000を0.05Cにて定電流モードで4.2Vまで充電し、電圧が4.2Vに到達した後、電流値が0.005Cとなるまで定電位で保持した。1サイクル目の放電では、0.05Cにて定電流モードで電圧が2.7Vとなるまで行い、リチウムイオン二次電池1000の放電容量を計測した。この後、2サイクル目の充電では、1サイクル目の充電と同様にした。2サイクル目の放電では、0.5Cにて定電流モードで電圧が2.7Vとなるまで行い、リチウムイオン二次電池1000の放電容量を計測した。1サイクル目の0.05Cでの放電容量に対する2サイクル目の0.5Cでの容量の比を「Q_0.5/Q_0.05」として表1に示す。上記の測定は全て25℃で行った。
<寿命特性の評価方法>
 1サイクル目の充放電は、出力特性の評価方法における1サイクル目の充放電と同様に行った。2サイクル目の充電では、40℃で定電流充電を0.3Cにて4.2Vまで行った後、電流値が0.03Cとなるまで定電位で保持した。2サイクル目の放電では、2.7Vとなるまで0.3Cで定電流放電を行った。これを20回繰り返し、2サイクル目の放電容量に対する20サイクル目の放電容量の比を放電容量維持率(%)とした。測定結果を表1に示す。
(実施例2~44、及び比較例1~6)
 非水電解液の組成を表1に示すように調整した以外は、実施例1と同様にしてリチウムイオン二次電池を作製し、容量比「Q_0.5/Q_0.05」及び放電容量維持率(%)を測定した。測定結果を表1に示す。
(3)結果と考察
 図2は、実施例及び比較例におけるモル比Xと重量比Y(%)との関係を示すグラフである。また、図3は、実施例及び比較例におけるモル比Xに対する40℃放電容量維持率の変化を示すグラフである。
 表1及び図2に示すように、全ての実施例、すなわち、Y≦142.86X-11.429を満たす範囲において、入出力特性を示す容量比「Q_0.5/Q_0.05」が40%以上であった。一方、比較例1~6は、いずれも容量比が40%を下回っていた。また、放電容量維持率を測定した全ての実施例、すなわち、0.35≦X<1を満たす範囲においては、寿命特性を示す放電容量維持率は75%以上であった。特に、0.39≦X≦0.93を満たす実施例では85%以上、0.45≦X≦0.87を満たす実施例では90%以上であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
100 正極
110 正極合剤層
120 正極集電体
130 正極タブ
200 負極
210 負極合剤層
220 負極集電体
230 負極タブ
300 絶縁層
400 電極体
500 外装体
1000 リチウムイオン二次電池
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (8)

  1.  スルホラン及び/又はその誘導体と電解質塩とを有する溶媒和イオン液体、任意の低粘度有機溶媒、並びに任意の負極界面安定化材を含み、
     前記低粘度有機溶媒の室温での平衡蒸気圧が1Pa以上であり、
     前記溶媒和イオン液体と前記低粘度有機溶媒との総モル数に対する前記溶媒和イオン液体のモル数の比をXとし、
     前記溶媒和イオン液体と前記低粘度有機溶媒との総重量に対する前記負極界面安定化材の重量の比をY(%)としたとき、
     Y≦142.86X-11.429
    を満たす非水電解液。
  2.  0.35≦X<1
    である請求項1に記載の非水電解液。
  3.  0.39≦X≦0.93
    である請求項1に記載の非水電解液。
  4.  0.45≦X≦0.87
    である請求項1に記載の非水電解液。
  5.  前記低粘度有機溶媒のドナー数が12以上である請求項1に記載の非水電解液。
  6.  請求項1~6のいずれか1項に記載の非水電解液、担持粒子及び半固体電解質バインダを含む半固体電解質層。
  7.  正極及び/又は負極と、請求項6に記載の半固体電解質層とが積層されてなる二次電池用シート。
  8.  正極と、
     負極と、
     前記正極及び前記負極の間に配置される請求項6に記載の半固体電解質層と、
    を備える二次電池。
PCT/JP2019/042237 2019-03-05 2019-10-29 非水電解液、半固体電解質層、二次電池用シート及び二次電池 WO2020179126A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217017181A KR102610616B1 (ko) 2019-03-05 2019-10-29 비수 전해액, 반고체 전해질층, 이차 전지용 시트 및 이차 전지
CN201980081457.0A CN113169379B (zh) 2019-03-05 2019-10-29 非水电解液、半固体电解质层、二次电池用片材和二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019039934A JP7270210B2 (ja) 2019-03-05 2019-03-05 非水電解液、半固体電解質層、二次電池用シート及び二次電池
JP2019-039934 2019-03-05

Publications (1)

Publication Number Publication Date
WO2020179126A1 true WO2020179126A1 (ja) 2020-09-10

Family

ID=72337872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042237 WO2020179126A1 (ja) 2019-03-05 2019-10-29 非水電解液、半固体電解質層、二次電池用シート及び二次電池

Country Status (4)

Country Link
JP (1) JP7270210B2 (ja)
KR (1) KR102610616B1 (ja)
CN (1) CN113169379B (ja)
WO (1) WO2020179126A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2975134T3 (es) * 2019-12-20 2024-07-03 Umicore Nv Electrolito para baterías secundarias de Li
WO2024111197A1 (ja) * 2022-11-22 2024-05-30 日本特殊陶業株式会社 混合物、シート、電気化学素子および蓄電デバイス

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069757A1 (ja) * 2007-11-30 2009-06-04 Fujikura Ltd. 電解質組成物およびこれを用いた光電変換素子
JP2014071373A (ja) * 2012-09-28 2014-04-21 Asahi Kasei E-Materials Corp 感光性樹脂組成物
WO2016204278A1 (ja) * 2015-06-19 2016-12-22 株式会社日本触媒 非水電解液およびそれを用いた非水電解液二次電池
JP2017208215A (ja) * 2016-05-18 2017-11-24 株式会社Gsユアサ 蓄電素子用非水電解質、非水電解質蓄電素子及びその製造方法
JP2019008893A (ja) * 2017-06-21 2019-01-17 株式会社日立製作所 二次電池用シート、半固体電解質層付き二次電池用電極、二次電池
WO2019049826A1 (ja) * 2017-09-07 2019-03-14 国立大学法人 横浜国立大学 リチウム硫黄電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058118A (ja) * 1998-07-31 2000-02-25 Toyota Central Res & Dev Lab Inc 非水電解液二次電池
CN102318109A (zh) * 2009-02-06 2012-01-11 松下电器产业株式会社 锂离子二次电池及锂离子二次电池的制造方法
CN103891028B (zh) * 2011-10-28 2016-04-13 旭化成株式会社 非水系二次电池
WO2014080871A1 (ja) * 2012-11-20 2014-05-30 日本電気株式会社 リチウムイオン二次電池
EP3113274B1 (en) * 2014-02-25 2020-09-30 Mitsubishi Chemical Corporation Non-aqueous electrolytic solution and non-aqueous electrolyte secondary battery using same
JP6729167B2 (ja) 2016-08-19 2020-07-22 三菱ケミカル株式会社 非水系電解液及びそれを用いた非水系電解液電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069757A1 (ja) * 2007-11-30 2009-06-04 Fujikura Ltd. 電解質組成物およびこれを用いた光電変換素子
JP2014071373A (ja) * 2012-09-28 2014-04-21 Asahi Kasei E-Materials Corp 感光性樹脂組成物
WO2016204278A1 (ja) * 2015-06-19 2016-12-22 株式会社日本触媒 非水電解液およびそれを用いた非水電解液二次電池
JP2017208215A (ja) * 2016-05-18 2017-11-24 株式会社Gsユアサ 蓄電素子用非水電解質、非水電解質蓄電素子及びその製造方法
JP2019008893A (ja) * 2017-06-21 2019-01-17 株式会社日立製作所 二次電池用シート、半固体電解質層付き二次電池用電極、二次電池
WO2019049826A1 (ja) * 2017-09-07 2019-03-14 国立大学法人 横浜国立大学 リチウム硫黄電池

Also Published As

Publication number Publication date
JP2020145054A (ja) 2020-09-10
KR20210087515A (ko) 2021-07-12
CN113169379A (zh) 2021-07-23
JP7270210B2 (ja) 2023-05-10
KR102610616B1 (ko) 2023-12-07
CN113169379B (zh) 2024-06-14

Similar Documents

Publication Publication Date Title
Guerfi et al. Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance
TWI686977B (zh) 半固體電解質層、電池單元薄片及二次電池
WO2019234977A1 (ja) 半固体電解質層及び二次電池
WO2020179126A1 (ja) 非水電解液、半固体電解質層、二次電池用シート及び二次電池
WO2019021522A1 (ja) 半固体電解液、半固体電解質、半固体電解質層および二次電池
WO2021111847A1 (ja) 非水電解液、半固体電解質層、二次電池用シート及び二次電池
CN110521049B (zh) 半固体电解质、电极、带有半固体电解质层的电极和二次电池
JP3587982B2 (ja) 高分子固体電解質およびこれを用いたリチウム二次電池と電気二重層キャパシタ
WO2021225065A1 (ja) 非水電解液、半固体電解質層、二次電池用シート及び二次電池
WO2020066058A1 (ja) 非水電解液、不揮発性電解質、二次電池
JP2020004598A (ja) 電池
JP2020202158A (ja) 絶縁層、電池セル用シート及び電池セル
WO2020213268A1 (ja) 非水電解液、不揮発性電解質、二次電池
WO2019198329A1 (ja) 絶縁層、電池セルシート、電池
WO2019142502A1 (ja) 負極、半二次電池、二次電池
WO2019087815A1 (ja) 正極合剤層、正極、半二次電池、二次電池
WO2020003864A1 (ja) 負極、電池セルシートおよび二次電池
JP2020087640A (ja) 電池セルの診断方法
JP2009218160A (ja) 二次電池、及びその製造方法
JP2019061812A (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918482

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217017181

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918482

Country of ref document: EP

Kind code of ref document: A1