WO2020179008A1 - 電動機駆動装置及び空気調和機 - Google Patents

電動機駆動装置及び空気調和機 Download PDF

Info

Publication number
WO2020179008A1
WO2020179008A1 PCT/JP2019/008831 JP2019008831W WO2020179008A1 WO 2020179008 A1 WO2020179008 A1 WO 2020179008A1 JP 2019008831 W JP2019008831 W JP 2019008831W WO 2020179008 A1 WO2020179008 A1 WO 2020179008A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
connection
switching element
inverter
switching
Prior art date
Application number
PCT/JP2019/008831
Other languages
English (en)
French (fr)
Inventor
厚司 土谷
和徳 畠山
慎也 豊留
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021503331A priority Critical patent/JP7069400B2/ja
Priority to PCT/JP2019/008831 priority patent/WO2020179008A1/ja
Priority to CN201980092382.6A priority patent/CN113491065B/zh
Priority to US17/435,226 priority patent/US11632068B2/en
Publication of WO2020179008A1 publication Critical patent/WO2020179008A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • H02P25/184Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays wherein the motor speed is changed by switching from a delta to a star, e.g. wye, connection of its windings, or vice versa
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/028Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • the present invention relates to an electric motor drive device and an air conditioner.
  • Patent Document 1 executes a switching operation by a switch forming a connection switching device during a period in which an output voltage of the inverter is controlled so that a current flowing from the inverter to the motor becomes zero during a rotating operation of the electric motor. Then, a method of switching the connection state of the winding is proposed.
  • the present invention has been made in order to solve the above-mentioned conventional problems, and an electric motor drive device in which a failure does not occur in a connection switching device even when the connection state is switched during the rotating operation of the electric motor, and an air provided with the same.
  • the purpose is to provide a harmony machine.
  • An electric motor drive device includes an electromagnetic contactor connected to a winding of an electric motor, and a connection switching device that switches a connection state of the winding by switching a state of the electromagnetic contactor, An inverter that applies an output voltage that is an AC voltage to the winding through the connection switch, a short circuit that includes a rectifier circuit and a switch, and a control unit that controls the electromagnetic contactor, the inverter, and the switch.
  • a circulation circuit is formed by the short circuit and the winding, and the output voltage of the inverter is set to zero during the rotation operation of the electric motor.
  • the connection switching device switches the connection state of the winding while the current generated by the rotating operation is circulating in the circulation circuit.
  • An air conditioner according to another aspect of the present invention is characterized by including an electric motor and the electric motor drive device that drives the electric motor.
  • FIG. 3 is a flowchart showing an operation of the electric motor drive device according to the embodiment.
  • (A) and (B) are flowcharts showing the details of the processing of steps S20 and S30 of FIG. 3 is a timing chart showing the operation of the electric motor drive device according to the embodiment. It is a figure which shows the path
  • Air conditioner Fig. 1 is a schematic diagram showing a configuration example of an air conditioner 3 according to an embodiment of the present invention.
  • the air conditioner 3 includes a compressor 901 for compressing the refrigerant, a four-way valve 902, an indoor heat exchanger 903, an expansion valve 904 for depressurizing and expanding the refrigerant, and an outdoor heat exchanger 905.
  • An electric motor 2 that drives the compressor 901, and an electric motor drive device 1 that drives the electric motor 2.
  • the air conditioner 3 can perform heating operation or cooling operation by switching the four-way valve 902.
  • the refrigerant is pressurized and sent out by the compressor 901, passes through the four-way valve 902 in the direction indicated by the solid arrow, the indoor heat exchanger 903, the expansion valve 904, the outdoor heat exchanger 905, and the four-way valve. Return to compressor 901 through valve 902.
  • the indoor heat exchanger 903 acts as a condenser to release heat, and as a result, the indoor is heated, and the outdoor heat exchanger 905 acts as an evaporator to absorb heat.
  • the refrigerant is pressurized by the compressor 901 and sent out, passes through the four-way valve 902 in the direction indicated by the dashed arrow, the outdoor heat exchanger 905, the expansion valve 904, the indoor heat exchanger 903, and the four-way valve.
  • the outdoor heat exchanger 905 acts as a condenser to release heat
  • the indoor heat exchanger 903 acts as an evaporator to absorb heat, thereby cooling the room.
  • the electric motor drive device 1 controls gear shifting of the electric motor 2 based on information (also referred to as “indoor environment”) from the outside including the indoor temperature and the set temperature. Further, the electric motor drive device 1 switches the connection state of the electric motor 2 based on the indoor environment. In the present embodiment, the electric motor drive device 1 switches the connection state during the rotational operation of the electric motor 2. Further, in the present embodiment, an example will be described in which the connection state is switched between a star connection (that is, Y connection) and a delta connection (that is, ⁇ connection). However, the switching of the connection state is not limited to the switching between the Y connection and the ⁇ connection. For example, the switching of the connection state may be switching of the number of windings.
  • the electric motor drive device 1 is used to drive the electric motor 2 for the compressor, it may be used to drive an electric motor for other purposes such as an electric motor for a blower fan. Good.
  • FIG. 2 is a schematic wiring diagram showing the electric motor drive device 1 according to the embodiment of the present invention together with the electric motor 2 and the AC power supply 10.
  • the electric motor drive device 1 receives electric power from the AC power source 10 and drives the electric motor 2.
  • the electric motor drive device 1 includes a converter 20, an inverter 30, a connection switching unit 50, a control unit 60, and short-circuits 80 and 90.
  • the motor drive device 1 may include a reactor 21, a capacitor 22, a voltage detection unit 40, and a current detection unit 70.
  • the number of short-circuit circuits is not limited to two and may be three or more.
  • the converter 20 converts the AC voltage supplied from the AC power supply 10 into a DC voltage.
  • the converter 20 is a DC voltage supply unit.
  • Voltage detection unit 40 detects a bus voltage, which is a DC voltage output from converter 20.
  • the inverter 30 has an upper arm 31 and a lower arm 32.
  • the U-, V-, and W-phase switching elements that form the upper arm 31 and the U-, V-, and W-phase switching elements that form the lower arm 32 are PWM (Pulse) by control signals Sr1 to Sr6 provided from the control unit 60. Width Modulation) controlled.
  • the switching element forming the upper arm 31 and the switching element forming the lower arm 32 are semiconductor switching elements.
  • the control signals Sr1 to Sr6 are also referred to as control signals Sr.
  • the inverter 30 receives a DC voltage as a bus voltage from the converter 20 and outputs an AC voltage having a desired frequency.
  • the inverter 30 applies an output voltage, which is an alternating current (AC) voltage, to the stator windings (also simply referred to as “winding”) 2a, 2b, 2c of the electric motor 2 via the connection switch 50.
  • AC alternating current
  • Motor 2 is a 3-phase permanent magnet synchronous motor.
  • the ends of the U-, V-, and W-phase windings 2 a to 2 c of the electric motor 2 are drawn out of the electric motor 2 and are connected to the inverter 30 and the connection switching device 50.
  • the connection switch 50 has electromagnetic contactors 51, 52, and 53 which are changeover switches connected to the U, V, and W phase windings 2a to 2c of the electric motor 2.
  • the electromagnetic contactors 51 to 53 are devices that switch their states by electromagnetically opening and closing their contacts.
  • the electromagnetic contactors 51 to 53 are also called relays, contactors and the like.
  • the connection switching device 50 switches the connection state between the contacts of the electromagnetic contactors 51 to 53 to switch the connection state of the windings 2a to 2c of the electric motor 2. In the example of FIG. 2, the connection state of the windings 2a to 2c of the electric motor 2 is switched to the Y connection or the ⁇ connection by switching the state of the connection switching device 50.
  • the short-circuits 80 and 90 have rectifier circuits 81 and 91 that allow current to flow in one direction and switches 82 and 92, respectively.
  • the rectifier circuits 81 and 91 are diode rectifier circuits composed of diodes for U, V, and W phases.
  • the switches 82 and 92 are preferably semiconductor switching elements that operate at high speed. When the switches 82 and 92 are on, the current due to the counter electromotive force generated in the windings 2a to 2c during the rotating operation of the electric motor 2 may flow as a circulating current to the rectifier circuits 81 and 91 and the switches 82 and 92. it can.
  • the control unit 60 controls the inverter 30 based on the bus voltage detected by the voltage detection unit 40, the current measured by the current detection unit 70, or both of them.
  • the control unit 60 can, for example, check the current waveform flowing through the shunt resistor for current detection connected to the lower arm 32 of the inverter 30 and calculate the rotation phase of the electric motor 2.
  • the control unit 60 provides the control signal Sr to the inverter 30, the control signal Sw to the connection switching device 50, and the control signals C1 and C2 to the short-circuit circuits 80 and 90.
  • the control unit 60 may have a memory that is a storage unit for storing the program and a processor such as a CPU (Central Processing Unit) that executes the program.
  • a CPU Central Processing Unit
  • the switches 82 and 92 are turned on to wind the winding of the electric motor 2 that is rotating.
  • the current generated by the back electromotive force of 2a to 2c is passed as a circulating current to the circulation circuit formed by the short circuits 80 and 90 and the windings 2a to 2c.
  • the connection switch 50 switches the connection state of the windings 2a to 2c of the electric motor 2 during the period in which the circulating current is flowing.
  • the switches 82 and 92 are turned on, and the upper arm 31 and the lower arm 32 are turned off in all phases, so that the current flowing through the electric motor 2 includes the short-circuit circuits 80 and 90. Since it circulates in the circulation circuit that is the path, no current flows through the electromagnetic contactors 51 to 53 of the connection switching device 50. Therefore, no arc is generated between the contacts of the electromagnetic contactors 51 to 53 when switching the states of the electromagnetic contactors 51 to 53 of the connection switching device 50 for switching the connection state. Therefore, even if the states of the electromagnetic contactors 51 to 53 of the connection switch 50 are switched without stopping the rotational operation of the electric motor, the electromagnetic contactors 51 to 53 do not fail.
  • FIG. 3 is a flowchart showing the operation of the electric motor drive device 1 according to the present embodiment.
  • the connection states A and B are, for example, a Y connection and a ⁇ connection.
  • the connection states A and B are not limited to the Y connection and the ⁇ connection.
  • the control unit 60 first determines the connection state of the electric motor 2 to A (step S1), and sends the control signal Sw to the connection switching unit 50 to set the connection state to A.
  • the control unit 60 determines the target frequency of the electric motor 2 based on the indoor environment (step S2).
  • the control unit 60 executes the start control process of the electric motor 2 to drive the electric motor 2 (step S3).
  • the control unit 60 performs sensorless control of the electric motor 2 based on the current value obtained by the current detection unit 70.
  • the rotational position of the electric motor 2 may be detected by a sensor, and the control unit 60 may control the electric motor 2 based on this detected value.
  • step S5 determines whether or not the connection state is A. If the connection state is A, the control unit 60 advances the process from step S5 to step S6, and determines whether the connection state A is optimum (step S6). If the connection state A is optimal, the control unit 60 advances the process from step S6 to step S7, and controls the motor 2 sensorlessly in the connection state A (step S7). If the connection state A is not optimal, the control unit 60 advances the process from step S6 to step S20, switches the connection state from A to B during the rotating operation of the electric motor 2, and controls the electric motor 2 in the connection state B by sensorless control. Yes (step S20). Details of the process of step S20 will be described later with reference to FIGS.
  • step S5 the control unit 60 advances the process from step S5 to step S8, and determines whether the connection state B is optimum (step S8). If the connection state B is optimal, the control unit 60 advances the process from step S8 to step S9, and controls the motor 2 sensorlessly in the connection state B (step S9). If the connection state B is not optimal, the control unit 60 advances the process from step S8 to step S30, switches the connection state from B to A during the rotating operation of the electric motor 2, and controls the electric motor 2 in the connection state A by sensorless control. (Step S30). Details of the process of step S30 will be described later with reference to FIGS.
  • control unit 60 determines whether or not there is a drive stop signal (step S10), and if there is a drive stop signal, stops the operation of the electric motor 2. If there is no drive signal, the control unit 60 returns the process from step S10 to step S5. That is, the control unit 60 repeats the processes shown in steps S5 to S10, S20, and S30 until the drive stop signal is input.
  • connection states A and B are, for example, a Y connection and a ⁇ connection.
  • connection states A and B are not limited to the Y connection and the ⁇ connection.
  • step S20 the control unit 60 outputs a connection state switching command (time t1 in FIG. 5), and PWM-controls the inverter 30 to rotate the electric motor 2. Is increased (step S201, times t2 to t3 in FIG. 5).
  • step S202 determines whether or not the rotation speed of the electric motor 2 exceeds a predetermined switching rotation speed. That is, the control unit 60 accelerates the rotation speed of the electric motor 2 and determines whether the rotation speed is the switching rotation speed of the overmodulation region.
  • the control unit 60 advances the process from step S202 to step S203, turns off all phases of the upper arm 31 of the inverter 30 and turns on all phases of the lower arm 32.
  • Step S203 time t3 in FIG. 5
  • To turn off all phases of the upper arm 31 means to turn off all of the U, V, and W phase switching elements constituting the upper arm 31.
  • To turn on all phases of the lower arm 32 means to turn on all of the U, V, and W phase switching elements constituting the lower arm 32.
  • the value of the output voltage of the inverter 30 is zero, and the value of the voltage applied to the electric motor 2 and the connection switch 50 is also zero.
  • the control unit 60 returns the process from step S202 to step S201.
  • control unit 60 turns on the switches 82 and 92 of the short circuit circuits 80 and 90 (step S204, time t4 in FIG. 5).
  • the switches 82 and 92 of the short circuit circuits 80 and 90 are turned on, the value of the output voltage of the inverter 30 is zero.
  • control unit 60 turns off all phases of the upper arm 31 of the inverter 30 and turns off all phases of the lower arm 32 (step S205, time t5 in FIG. 5).
  • To turn off all phases of the lower arm 32 means to turn off all of the U, V, and W phase switching elements constituting the lower arm 32.
  • control unit 60 controls the connection switching device 50 to switch the connection state from A to B (step S206, time t6 to t7 in FIG. 5). That is, when switching the connection state by the connection switching device 50, the upper arm 31 of the inverter 30 is OFF in all phases, the lower arm 32 is OFF in all phases, and the switches 82 and 92 of the short-circuits 80 and 90 are ON. Sometimes it is executed.
  • control unit 60 turns off all phases of the upper arm 31 of the inverter 30 and turns on all phases of the lower arm 32 (step S207, time t8 in FIG. 5).
  • control unit 60 turns off the switches 82 and 92 of the short circuit circuits 80 and 90 (step S208, time t9 in FIG. 5).
  • the control unit 60 calculates the rotational position of the electric motor 2 (step S208, time t10 to t11 in FIG. 5). That is, after the switching operation is completed, the control unit 60 switches the states of the switches 82 and 92 of the short circuit circuits 80 and 90 from ON to OFF, and the phase of the electric motor 2 is based on the current supplied from the lower arm 32 of the inverter 30. To calculate. Based on the calculated phase information, the control unit 60 switches the electric motor 2 from the uncontrolled free rotation state to the sensorless control state without stopping the rotation operation of the electric motor 2. The control unit 60 performs sensorless control of the electric motor 2 in the connection state B (step S209, after time t11 in FIG. 5).
  • steps S301 to S310 shown in FIG. 4(B) is the same as the processing of steps S201 to S210 shown in FIG. 4(A).
  • FIG. 6 shows the current flowing through the windings 2a to 2c of the electric motor 2 and the connection switch 50 of the electric motor drive device 1 whose connection state is the Y connection during the sensorless control period (for example, before the time t3 in FIG. 5). It is a figure which shows a route.
  • FIG. 6 shows a current path in, for example, step S7 of FIG. 3 and step S201 of FIG.
  • the electric motor 2 whose connection state is Y connection is sensorless-controlled based on the rotational position of the electric motor 2 calculated based on the current value obtained by the current detection unit 70, it is downstream from the inverter 30.
  • the current path on the side is shown by a thick triple line.
  • FIG. 7 shows a current flowing through the windings 2a to 2c of the electric motor 2 and the connection switch 50 of the electric motor drive device 1 whose connection state is the Y connection during the connection state preparation period (for example, time t3 in FIG. 5). It is a figure which shows the route of.
  • FIG. 7 shows a current path in step S203 of FIG. 4A, for example.
  • the current path on the downstream side of the inverter 30 when the upper arm 31 of the inverter 30 is off all phases and the lower arm 32 is on all phases is It is indicated by a thick line which is a triple line.
  • FIG. 8 is a diagram showing paths of currents flowing through the windings 2a to 2c of the electric motor 2 and the short-circuit circuits 80 and 90 of the electric motor drive device 1 in a connection preparation period switching preparation period (for example, time t5 in FIG. 5). is there.
  • FIG. 8 shows a current path in step S205 of FIG. 4A, for example.
  • the current paths that flow through the windings 2a to 2c of the electric motor 2 and the short-circuits 80 and 90 when the switches 82 and 92 of the short-circuits 80 and 90 are ON are indicated by thick triple lines. There is. As shown in FIG.
  • FIG. 9 is a diagram showing paths of currents flowing through the windings 2a to 2c of the electric motor 2 and the short-circuit circuits 80 and 90 of the electric motor drive device 1 in a switching period for switching the connection state (for example, time t7 in FIG. 5). is there.
  • FIG. 9 shows a current path in step S206 of FIG. 4A, for example.
  • the current paths flowing through the windings 2a to 2c of the electric motor 2 and the short-circuits 80, 90 when the switches 82, 92 of the short-circuits 80, 90 are ON are indicated by the thick triple line. There is. As shown in FIG.
  • FIG. 10 shows that during the period in which the upper arm 31 of the inverter 30 is off in all phases, the lower arm 32 is in all phases on, and the switches 82 and 92 of the short-circuits 80 and 90 are off (for example, time t9 in FIG. 5).
  • FIG. 10 shows the path of the electric current for the rotation position calculation of the electric motor 2 flowing through the winding 2a to 2c of 2 and the electric motor drive device 1.
  • the current path in step S209 of FIG. 4A is indicated by a thick triple line.
  • FIG. 10 shows that during the period in which the upper arm 31 of the inverter 30 is off in all phases, the lower arm 32 is in all phases on, and the switches 82 and 92 of the short-circuits 80 and 90 are off (for example, time t9 in FIG. 5).
  • FIG. 11 shows the current flowing through the windings 2a to 2c of the electric motor 2 and the connection switch 50 of the electric motor drive device 1 whose connection state is ⁇ connection during the sensorless control period (for example, after the time t11 in FIG. 5). It is a figure which shows a route.
  • FIG. 11 shows a current path in step S210 of FIG. 4A, for example.
  • the electric motor 2 whose connection state is ⁇ connection is sensorless-controlled based on the rotational position of the electric motor 2 calculated based on the current value obtained by the current detection unit 70, the downstream side of the inverter 30.
  • the current path on the side is shown by a thick triple line.
  • FIG. 12 is a graph showing the relationship between the motor rotation speed that is the rotation speed of the motor 2 and the motor current that is the current flowing through the motor 2 when the output voltage of the inverter 30 is zero. That is, the graph of FIG. 12 shows the characteristics of the current peak value with respect to the rotation speed of the electric motor 2 when the output voltage of the inverter 30 is zero. It is known that the voltage equation of a permanent magnet synchronous motor is represented by the following Equation 1.
  • V d and V q are the dq axis voltage
  • I d and I q are the dq axis current
  • is the electric angular frequency
  • R is the winding resistance
  • L d and L q are the dq axis inductance
  • ⁇ f is the induced voltage. Indicates a constant.
  • the dq axis currents I d and I q of the motor 2 are the rotation speeds of the motor 2 from the above equations (2) to (4). It can be seen that the electric motor torque ⁇ m changes according to ⁇ , and changes according to the dq axis currents I d and I q . Further, the peak value Ip of the motor current can be expressed by the following equation (5).
  • the horizontal axis indicates the motor rotation speed
  • the vertical axis indicates the brake torque T of the electric motor 2
  • the brake torque T of the electric motor 2 when the output voltage of the inverter 30 is zero decreases as the electric motor speed increases.
  • the change ⁇ of the motor rotation speed can be expressed by the following equation (6).
  • ⁇ m is the motor torque
  • ⁇ l is the load torque
  • J is the inertia
  • the output voltage of the inverter 30 is controlled to zero, so that the output voltage can be controlled to zero regardless of the voltage modulation rate of the inverter 30. Therefore, if the electric motor 2 is controlled so that the output voltage of the inverter 30 becomes zero in the overmodulation region in which the electric motor 2 can rotate at a higher speed, it is possible to suppress the reduction in the rotation speed of the electric motor 2, and as a result, the rotation operation of the electric motor 2 can be suppressed. It is possible to switch the connection state of the electric motor 2 without stopping (that is, non-stop).
  • the switches 82 and 92 are turned on, and the upper arm 31 and the lower arm 32 are turned off in all phases, so that the current flowing through the electric motor 2 includes the short-circuit circuits 80 and 90. Since it circulates in the circulation circuit that is the path, no current flows through the electromagnetic contactors 51 to 53 of the connection switching device 50. Therefore, no arc is generated between the contacts of the electromagnetic contactors 51 to 53 when switching the states of the electromagnetic contactors 51 to 53 of the connection switching device 50 for switching the connection state. Therefore, even if the states of the electromagnetic contactors 51 to 53 of the connection switch 50 are switched without stopping the rotational operation of the electric motor, the electromagnetic contactors 51 to 53 do not fail.
  • FIG. 14 is a graph showing a change in the rotation speed of the electric motor 2 when the connection state is switched from the Y connection to the ⁇ connection.
  • the output voltage of the inverter 30 is set to zero during the period after accelerating the rotation speed of the electric motor 2 to the high speed region (that is, the overmodulation region), that is, during the period when the brake torque ⁇ b is small.
  • the control it is possible to reduce the decrease in the rotation speed of the electric motor 2.
  • connection switching of the electric motor 2 in the overmodulation region can be executed with the output voltage of the inverter 30 set to zero. Therefore, the connection switching operation can be performed at a higher rotation speed than the conventional method. Therefore, the over-modulation area is applied to the electric motor set to a low speed, and the load torque is large, so even if the electric motor speed drops to near zero during the switching operation, the rotation of the electric motor is stopped. It is possible to switch the wiring state of the electric motor without doing so (that is, non-stop).
  • FIG. 15 is a timing chart showing an operation of the electric motor drive device according to a modification of the present embodiment.
  • FIG. 15 differs from the timing chart shown in FIG. 5 in that the temporary voltage protection operation is executed from time t3 to t3a.
  • FIG. 16 is a diagram showing an example of a temporary voltage protection operation in which the inverter 30 is provided between the steady operation state (before the time t3) and the all-phase ON state of the lower arm 32 (after the time t3a). That is, in the example shown in FIG. 16, the switching element of the lower arm 32 of the inverter 30 is controlled by the PWM signal when the lower arm 32 of the inverter 30 is turned on, that is, during the period from time 3 to t3a in FIG.
  • ⁇ 2-4 Effect
  • the switches 82 and 92 of the short circuit circuits 80 and 90 are turned on to form a circuit through which a circulating current flows, and both the upper arm 31 and the lower arm 32 are turned off in all phases.
  • the current flowing in the electric motor 2 circulates in the circulation circuit that is a path including the short-circuits 80 and 90, and no current flows in the electromagnetic contactors 51 to 53. Therefore, no arc is generated between the contacts of the electromagnetic contactors 51 to 53 when switching the states of the electromagnetic contactors 51 to 53 for switching the connection state. Therefore, even if the states of the electromagnetic contactors 51 to 53 of the connection switching device 50 are switched without stopping the rotation operation of the electric motor, the electromagnetic contactors 51 to 53 will not be damaged.
  • control is performed to set the output voltage of the inverter 30 to zero in the overmodulation region in which the electric motor 2 rotates at high speed. Therefore, the rotating operation of the electric motor 2 is not stopped and the electric motor 2 is not stopped. It is possible to switch the connection state of 2.
  • the control unit 60 turns on all the phases of the lower arm 32 while keeping all the phases of the upper arm 31 off, and turns off the switches 82 and 92 of the short-circuit circuits 80 and 90. Since the sensorless control is restarted during the period (for example, after the time t9 in FIG. 5), the sensorless control can be executed immediately when the PWM control by the inverter 30 is restarted (for example, the time t11 in FIG. 5). ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

電動機駆動装置(1)は、電動機(2)の巻線(2a~2c)に接続される電磁接触器(51~53)を有し、電磁接触器の状態を切替えることによって巻線の結線状態を切替える結線切替器(50)と、結線切替器(50)を介して巻線(2a~2c)に交流電圧である出力電圧を印加するインバータ(30)と、整流回路(81,91)及びスイッチ(82,92)を有する短絡回路(80,90)と、電磁接触器(51~53)、インバータ(30)、及びスイッチ(82,92)を制御する制御部(60)とを備え、スイッチ(82,92)をオンにしたときに、短絡回路(80,90)と巻線(2a~2c)とによって循環回路が形成され、電動機の回転動作中にインバータ(30)の出力電圧をゼロにしている期間であって、且つ電動機の回転動作によって発生する電流が循環回路を循環している期間に、結線切替器(50)が巻線(2a~2c)の結線状態を切替える。

Description

電動機駆動装置及び空気調和機
 本発明は、電動機駆動装置及び空気調和機に関する。
 室内環境に応じて、圧縮機を駆動する電動機の固定子巻線の結線状態を切替える空気調和機が普及している。また、電動機の結線状態の切替えを、電動機の回転動作中に行う技術が提案されている。例えば、特許文献1は、電動機の回転動作中にインバータから電動機に流れる電流がゼロになるようにインバータの出力電圧を制御している期間に、結線切替器を構成するスイッチによる切替え動作を実行して、巻線の結線状態を切替える方法を提案している。
特開2013-62888号公報
 しかしながら、特許文献1に記載の方法では、結線切替器による切替え動作時に、スイッチの接点間にインバータの線間電圧に相当する電位差が生じ、接点間にアークが発生する。このため、結線切替器に、接点摩耗又は接点溶着などを原因とする故障が発生しやすいという課題がある。
 本発明は、上記従来の課題を解決するためになされたものであり、電動機の回転動作中に結線状態の切替えを行っても結線切替器に故障が発生しない電動機駆動装置及びそれを備えた空気調和機を提供することを目的とする。
 本発明の一態様に係る電動機駆動装置は、電動機の巻線に接続される電磁接触器を有し、前記電磁接触器の状態を切替えることによって前記巻線の結線状態を切替える結線切替器と、前記結線切替器を介して前記巻線に交流電圧である出力電圧を印加するインバータと、整流回路及びスイッチを有する短絡回路と、前記電磁接触器、前記インバータ、及び前記スイッチを制御する制御部と、を備え、前記スイッチをオンにしたときに、前記短絡回路と前記巻線とによって循環回路が形成され、前記電動機の回転動作中に前記インバータの前記出力電圧をゼロにしている期間であって、且つ前記回転動作によって発生する電流が前記循環回路を循環している期間に、前記結線切替器が前記巻線の前記結線状態を切替えることを特徴としている。
 また、本発明の他の態様に係る空気調和機は、電動機と、前記電動機を駆動する上記電動機駆動装置とを備えたことを特徴としている。
 本発明によれば、電動機の回転動作中に結線状態の切替えを行っても結線切替器に故障が発生しないという効果が得られる。
本発明の実施の形態に係る空気調和機の構成例を示す概略図である。 本発明の実施の形態に係る電動機駆動装置を、電動機及び交流電源とともに示す概略配線図である。 実施の形態に係る電動機駆動装置の動作を示すフローチャートである。 (A)及び(B)は、図3のステップS20及びS30の処理の詳細を示すフローチャートである。 実施の形態に係る電動機駆動装置の動作を示すタイミングチャートである。 センサレス制御期間において、結線状態がY結線である電動機の巻線と電動機駆動装置の結線切替器とに流れる電流の経路を示す図である。 結線状態の切替え準備期間において、結線状態がY結線である電動機の巻線と電動機駆動装置の結線切替器とに流れる電流の経路を示す図である。 結線状態の切替え準備期間において、電動機の巻線と電動機駆動装置の短絡回路とに流れる電流の経路を示す図である。 結線状態の切替え動作完了時において、電動機の巻線と電動機駆動装置の短絡回路とに流れる電流の経路を示す図である。 インバータの上アームが全相OFF、下アームが全相ON、短絡回路のスイッチがOFFである期間において、電動機の巻線と電動機駆動装置とに流れる電動機の回転位置計算用の電流の経路を示す図である。 センサレス制御期間において、結線状態がΔ結線である電動機の巻線と電動機駆動装置の結線切替器とに流れる電流の経路を示す図である。 インバータの出力電圧がゼロであるときの、電動機回転数と電動機電流との関係をグラフで示す図である。 電動機回転数と電動機のブレーキトルクとの関係をグラフで示す図である。 結線状態をY結線からΔ結線に切替える切替え動作期間における電動機回転数をグラフで示す図である。 実施の形態の変形例に係る電動機駆動装置の動作を示すタイミングチャートである。 インバータを定常運転状態と下アームの全相ON状態との間に設けられる一時電圧保護動作の例を示す図である。
 以下に、本発明の実施の形態に係る電動機駆動装置及び空気調和機を、図面を参照しながら説明する。以下の実施の形態は、例にすぎず、本発明の範囲内で種々の変更が可能である。
《1》空気調和機
 図1は、本発明の実施の形態に係る空気調和機3の構成例を示す概略図である。図1に示されるように、空気調和機3は、冷媒を圧縮する圧縮機901、四方弁902、室内の熱交換器903、冷媒を減圧して膨張させる膨張弁904、室外の熱交換器905、圧縮機901を駆動する電動機2、及び電動機2を駆動する電動機駆動装置1を備えている。これらの構成要素は、冷凍サイクル装置900を構成する。空気調和機3は、四方弁902の切替えにより暖房運転又は冷房運転を行うことができる。
 暖房運転時には、冷媒は、圧縮機901で加圧されて送り出され、実線矢印で示される方向に四方弁902を通り、室内の熱交換器903、膨張弁904、室外の熱交換器905及び四方弁902を通って圧縮機901に戻る。暖房運転時には、室内の熱交換器903が凝縮器として作用して熱放出を行い、その結果、室内が暖房され、室外の熱交換器905が蒸発器として作用して熱吸収を行う。
 冷房運転時には、冷媒は、圧縮機901で加圧されて送り出され、破線矢印で示される方向に四方弁902を通り、室外の熱交換器905、膨張弁904、室内の熱交換器903及び四方弁902を通って圧縮機901に戻る。冷房運転時には、室外の熱交換器905が凝縮器として作用して熱放出を行い、室内の熱交換器903が蒸発器として作用し、熱吸収を行い、その結果、室内が冷房される。
 電動機駆動装置1は、室内温度及び設定温度などを含む外部からの情報(「室内環境」ともいう。)に基づいて電動機2を変速制御する。また、電動機駆動装置1は、室内環境に基づいて電動機2の結線状態を切替える。本実施の形態では、電動機駆動装置1は、電動機2の回転動作中に結線状態を切替える。また、本実施の形態においては、結線状態が、スター結線(すなわち、Y結線)とデルタ結線(すなわち、Δ結線)との間で切替えられる例を説明する。ただし、結線状態の切替えは、Y結線とΔ結線との間の切替えに限定されない。例えば、結線状態の切替えは、巻線の巻線数の切替えであってもよい。
 なお、本実施の形態に係る電動機駆動装置1は、圧縮機用の電動機2の駆動に使用されているが、送風ファン用の電動機などのような他の用途の電動機の駆動に使用されてもよい。
《2》電動機制御装置
《2-1》構成
 図2は、本発明の実施の形態に係る電動機駆動装置1を、電動機2及び交流電源10とともに示す概略配線図である。電動機駆動装置1は、交流電源10から電力を受け取り、電動機2を駆動する。図2に示されるように、電動機駆動装置1は、コンバータ20と、インバータ30と、結線切替器50と、制御部60と、短絡回路80,90とを備えている。また、電動機駆動装置1は、リアクトル21と、コンデンサ22と、電圧検出部40と、電流検出部70とを備えてもよい。なお、短絡回路の台数は、2台に限定されず、3台以上であってもよい。
 コンバータ20は、交流電源10から供給された交流電圧を直流電圧に変換する。コンバータ20は、直流電圧供給部である。電圧検出部40は、コンバータ20から出力される直流電圧である母線電圧を検出する。
 インバータ30は、上アーム31と下アーム32とを有している。上アーム31を構成するU,V,W相のスイッチング素子と下アーム32を構成するU,V,W相のスイッチング素子とは、制御部60から提供される制御信号Sr1~Sr6によってPWM(Pulse Width Modulation)制御される。上アーム31を構成するスイッチング素子と下アーム32を構成するスイッチング素子とは、半導体スイッチング素子である。制御信号Sr1~Sr6は、制御信号Srとも表記する。インバータ30は、コンバータ20から母線電圧としての直流電圧を受け取り、所望の周波数の交流電圧を出力する。インバータ30は、結線切替器50を介して電動機2の固定子巻線(単に「巻線」ともいう。)2a,2b,2cに交流(AC)電圧である出力電圧を印加する。
 電動機2は、3相永久磁石同期電動機である。電動機2のU,V,W相の巻線2a~2cの端部は、電動機2の外部に引き出されており、インバータ30と結線切替器50とに接続されている。
 結線切替器50は、電動機2のU,V,W相の巻線2a~2cに接続される切替スイッチである電磁接触器51,52,53を有している。電磁接触器51~53は、電磁的に接点が開閉して、状態を切替える装置である。電磁接触器51~53は、リレー、コンタクタなどとも呼ばれる。結線切替器50は、電磁接触器51~53の接点間の接続状態を切替えることによって、電動機2の巻線2a~2cの結線状態を切替える。図2の例では、結線切替器50の状態の切替えによって、電動機2の巻線2a~2cの結線状態は、Y結線又はΔ結線に切替えられる。
 短絡回路80,90は、電流を一方向に流す整流回路81,91と、スイッチ82,92と、をそれぞれ有している。整流回路81,91は、U,V,W相用のダイオードによって構成されたダイオード整流回路である。スイッチ82,92は、動作速度の速い半導体スイッチング素子であることが望ましい。スイッチ82,92がオンであるときに、電動機2の回転動作中において巻線2a~2cにおいて発生した逆起電力による電流が、循環電流として整流回路81,91とスイッチ82,92に流れることができる。
 制御部60は、電圧検出部40によって検出される母線電圧、電流検出部70によって計測される電流、又はこれらの両方に基づいて、インバータ30を制御する。制御部60は、例えば、インバータ30の下アーム32に接続された電流検出用のシャント抵抗に流れる電流波形を確認し、電動機2の回転位相を計算することが可能である。制御部60は、インバータ30に制御信号Sr、結線切替器50に制御信号Sw、短絡回路80,90に制御信号C1,C2を与える。なお、制御部60は、プログラムを記憶する記憶部であるメモリと、このプログラムを実行するCPU(Central Processing Unit)などのプロセッサとを有してもよい。
 インバータ30による交流の出力電圧の出力を停止している期間、すなわち、インバータ30の出力電圧がゼロである期間に、スイッチ82,92をオンにすることによって、回転動作中の電動機2の巻線2a~2cの逆起電力によって発生する電流を、短絡回路80,90と巻線2a~2cとによって形成される循環回路に循環電流として流す。結線切替器50は、循環電流が流れている期間に、電動機2の巻線2a~2cの結線状態を切替える。
 このように、スイッチ82,92をON(オン)とし、上アーム31及び下アーム32を全相OFF(オフ)とすることで、電動機2に流れている電流は、短絡回路80,90を含む経路である循環回路を循環するため、結線切替器50の電磁接触器51~53に電流が流れない。したがって、結線状態の切替えのための結線切替器50の電磁接触器51~53の状態の切替え時に、電磁接触器51~53の接点間にアークは発生しない。したがって、電動機の回転動作を停止させずに、結線切替器50の電磁接触器51~53の状態を切替えたとしても、電磁接触器51~53に故障は生じない。
《2-2》動作
 図3は、本実施の形態に係る電動機駆動装置1の動作を示すフローチャートである。図3において、結線状態AとBは、例えば、Y結線とΔ結線である。ただし、結線状態AとBは、Y結線とΔ結線に限定されない。
 図3に示されるように、まず、制御部60は、電動機2の結線状態をAに決定し(ステップS1)、結線切替器50に制御信号Swを送ることで、結線状態をAにする。次に、制御部60は、室内環境に基づいて電動機2の目標周波数を決定する(ステップS2)。次に、制御部60は、電動機2の起動制御処理を実行して、電動機2を駆動する(ステップS3)。その後、制御部60は、電流検出部70で求められた電流値に基づいて、電動機2をセンサレス制御する。ただし、電動機2の回転位置をセンサによって検出し、制御部60は、この検出値に基づいて電動機2を制御してもよい。
 次に、制御部60は、結線状態がAであるか否かを判定する(ステップS5)。結線状態がAであれば、制御部60は、処理をステップS5からステップS6に進め、結線状態Aは最適であるか否かを判定する(ステップS6)。結線状態Aが最適であれば、制御部60は、処理をステップS6からステップS7に進め、結線状態Aで電動機2をセンサレス制御する(ステップS7)。結線状態Aが最適でなければ、制御部60は、処理をステップS6からステップS20に進め、電動機2の回転動作中に結線状態をAからBに切替えて、結線状態Bで電動機2をセンサレス制御する(ステップS20)。ステップS20の処理の詳細は、図4(A)及び図5を用いて後述される。
 ステップS5において、結線状態がAでなければ、制御部60は、処理をステップS5からステップS8に進め、結線状態Bは最適であるか否かを判定する(ステップS8)。結線状態Bが最適であれば、制御部60は、処理をステップS8からステップS9に進め、結線状態Bで電動機2をセンサレス制御する(ステップS9)。結線状態Bが最適でなければ、制御部60は、処理をステップS8からステップS30に進め、電動機2の回転動作中に結線状態をBからAに切替えて、結線状態Aで電動機2をセンサレス制御する(ステップS30)。ステップS30の処理の詳細は、図4(B)及び図5を用いて後述される。
 その後、制御部60は、駆動停止信号の有無を判定し(ステップS10)、駆動停止信号が有れば、電動機2の動作を停止させる。また、駆動信号が無ければ、制御部60は、処理をステップS10からステップS5に戻す。つまり、制御部60は、駆動停止信号が入力されるまでの間、ステップS5~S10,S20,S30に示される処理を繰り返す。
 図4(A)及び(b)は、図3のステップS20及びS30の処理の詳細を示すフローチャートである。また、図5は、本実施の形態に係る電動機駆動装置1の動作を示すタイミングチャートである。なお、図4(A)及び(b)並びに図5において、結線状態AとBは、例えば、Y結線とΔ結線である。ただし、結線状態AとBは、Y結線とΔ結線に限定されない。
 図4(A)に示されるように、ステップS20では、制御部60は、結線状態の切替え指令を出力して(図5における時刻t1)、インバータ30をPWM制御することによって電動機2の回転数を上昇させる(ステップS201、図5における時刻t2~t3)。
 次に、制御部60は、電動機2の回転数が予め決められた切替え回転数を超えたか否かを判定する(ステップS202)。つまり、制御部60は、電動機2の回転数を増速して、回転数が過変調領域の切替え回転数になっているか否かを判定する。電動機2の回転数が切替え回転数を超えた場合には、制御部60は、処理をステップS202からステップS203に進め、インバータ30の上アーム31を全相OFFにし、下アーム32を全相ONにする(ステップS203、図5における時刻t3)。上アーム31を全相OFFにするとは、上アーム31を構成するU,V,W相のスイッチング素子の全てをOFFにすることである。下アーム32を全相ONにするとは、下アーム32を構成するU,V,W相のスイッチング素子の全てをONにすることである。このとき、インバータ30の出力電圧の値はゼロであり、電動機2及び結線切替器50に印加される電圧の値もゼロである。回転数が切替え回転数以下の場合には、制御部60は、処理をステップS202からステップS201に戻す。
 次に、制御部60は、短絡回路80,90のスイッチ82,92をONにする(ステップS204、図5における時刻t4)。短絡回路80,90のスイッチ82,92をONにするときには、インバータ30の出力電圧の値はゼロである。
 次に、制御部60は、インバータ30の上アーム31を全相OFFにし下アーム32を全相OFFにする(ステップS205、図5における時刻t5)。下アーム32を全相OFFにするとは、下アーム32を構成するU,V,W相のスイッチング素子の全てをOFFにすることである。
 次に、制御部60は、結線切替器50を制御して、結線状態をAからBに切替える(ステップS206、図5における時刻t6~t7)。つまり、結線切替器50による結線状態の切替えは、インバータ30の上アーム31が全相OFFであり、下アーム32が全相OFFであり、短絡回路80,90のスイッチ82,92がONであるときに、実行される。
 次に、制御部60は、インバータ30の上アーム31を全相OFFにし、下アーム32を全相ONにする(ステップS207、図5における時刻t8)。
 次に、制御部60は、短絡回路80,90のスイッチ82,92をOFFにする(ステップS208、図5における時刻t9)。
 次に、制御部60は、電動機2の回転位置を計算する(ステップS208、図5における時刻t10~t11)。つまり、制御部60は、切替え動作の完了後に、短絡回路80,90のスイッチ82,92の状態をONからOFFに切替え、インバータ30の下アーム32から供給される電流に基づいて電動機2の位相を計算する。制御部60は、計算した位相情報を元に、電動機2を、無制御状態であるフリー回転状態から、電動機2の回転動作を停止させずに、センサレス制御状態に切替える。制御部60は、結線状態Bで電動機2をセンサレス制御する(ステップS209、図5における時刻t11以降)。
 図4(B)に示されるステップS301~S310の処理は、図4(A)に示されるステップS201~S210の処理と同様である。
 図6は、センサレス制御期間(例えば、図5における時刻t3より前)において、結線状態がY結線である電動機2の巻線2a~2cと電動機駆動装置1の結線切替器50とに流れる電流の経路を示す図である。図6は、例えば、図3のステップS7と図4(A)のステップS201における、電流の経路を示している。図6では、結線状態がY結線である電動機2が、電流検出部70で得られる電流値に基づいて計算された電動機2の回転位置に基づいてセンサレス制御されているときにおける、インバータ30より下流側における電流の経路を、3重線である太線で示している。
 図7は、結線状態の切替え準備期間(例えば、図5における時刻t3)において、結線状態がY結線である電動機2の巻線2a~2cと電動機駆動装置1の結線切替器50とに流れる電流の経路を示す図である。図7は、例えば、図4(A)のステップS203における、電流の経路を示している。図7では、結線状態がY結線である電動機2が、インバータ30の上アーム31が全相OFFで、下アーム32が全相ONであるときにおける、インバータ30より下流側における電流の経路を、3重線である太線で示している。
 図8は、結線状態の切替え準備期間(例えば、図5における時刻t5)において、電動機2の巻線2a~2cと電動機駆動装置1の短絡回路80,90とに流れる電流の経路を示す図である。図8は、例えば、図4(A)のステップS205における、電流の経路を示している。図8では、短絡回路80,90のスイッチ82,92がONであるときにおける、電動機2の巻線2a~2cと短絡回路80,90を流れる電流経路を、3重線である太線で示している。図8に示されるように、スイッチ82,92をONとし、上アーム31及び下アーム32を全相OFFとすることで、電動機2に流れている電流は、短絡回路80,90を含む経路によって循環するため、結線切替器50の電磁接触器51~53に電流が流れない。
 図9は、結線状態を切替える切替え期間(例えば、図5における時刻t7)において、電動機2の巻線2a~2cと電動機駆動装置1の短絡回路80,90とに流れる電流の経路を示す図である。図9は、例えば、図4(A)のステップS206における、電流の経路を示している。図9では、短絡回路80,90のスイッチ82,92がONであるときにおける、電動機2の巻線2a~2cと短絡回路80,90を流れる電流経路を、3重線である太線で示している。図9に示されるように、スイッチ82,92をONとし、上アーム31及び下アーム32を全相OFFとすることで、電動機2に流れている電流は、短絡回路80,90を含む経路によって循環するため、結線切替器50の電磁接触器51~53に電流が流れない。したがって、結線状態の切替えのための結線切替器50の電磁接触器51~53の状態の切替え時に、電磁接触器51~53の接点間にアークは発生しない。したがって、結線切替器50の電磁接触器51~53に、故障が生じない。
 図10は、インバータ30の上アーム31が全相OFF、下アーム32が全相ON、短絡回路80,90のスイッチ82,92がOFFである期間(例えば、図5における時刻t9)において、電動機2の巻線2a~2cと電動機駆動装置1とに流れる電動機2の回転位置計算用の電流の経路を示す図である。図10は、例えば、図4(A)のステップS209における、電流の経路を、3重線である太線で示している。図10では、インバータ30の下アーム32が全相ONであり、インバータ30の上アーム31が全相OFFであるから、下アーム32と電動機2の間で電流経路が形成される。そのため、インバータ30の下アーム32に接続された電流検出用のシャント抵抗に流れる電流波形を確認し、電動機2の回転位相を計算することが可能となる。
 図11は、センサレス制御期間(例えば、図5における時刻t11より後)において、結線状態がΔ結線である電動機2の巻線2a~2cと電動機駆動装置1の結線切替器50とに流れる電流の経路を示す図である。図11は、例えば、図4(A)のステップS210における、電流の経路を示している。図11では、結線状態がΔ結線である電動機2が、電流検出部70で得られる電流値に基づいて計算された電動機2の回転位置に基づいてセンサレス制御されているときにおける、インバータ30より下流側における電流の経路を、3重線である太線で示している。
 図12は、インバータ30の出力電圧がゼロであるときの、電動機2の回転数である電動機回転数と電動機2に流れる電流である電動機電流との関係をグラフで示す図である。つまり、図12のグラフは、インバータ30の出力電圧をゼロにしたときの、電動機2の回転数に対する電流ピーク値の特性を示している。永久磁石同期電動機の電圧方程式は、以下の式1で表されることが知られている。
Figure JPOXMLDOC01-appb-M000001
 ここで、V,Vはdq軸電圧、I,Iはdq軸電流、ωは電気角周波数、Rは巻線抵抗、L,Lはdq軸インダクタンス、φは誘起電圧定数を示す。
 本実施の形態において、インバータ30の出力電圧がゼロであるときに結線切替器50による結線状態の切替えを実行するので、V=V=0である。したがって、d軸電流Iとq軸電流Iは、以下の式(2)及び(3)で表される。
Figure JPOXMLDOC01-appb-M000002
 また、電動機トルクτは、以下の式(4)で表される。
Figure JPOXMLDOC01-appb-M000003
 電動機定数(R,L,L,φ)は固定値であるから、上記式(2)から(4)より、電動機2のdq軸電流I,Iは、電動機2の回転数ωによって変化し、電動機トルクτは、dq軸電流I,Iによって変化することが分かる。また、電動機電流のピーク値Iは、以下の式(5)で表すことができる。
Figure JPOXMLDOC01-appb-M000004
 式(5)より、横軸が電動機回転数を示す座標軸であり、縦軸が電動機電流の電流ピーク値Iを示す座標軸である座標系において、図12に示される電動機回転数-電動機電流の特性グラフが得られる。図12から分かるように、インバータ30の出力電圧をゼロとした場合には、電動機2の回転数が高くなると、電動機電流がある値に収束する。
 図13は、電動機回転数と電動機2のブレーキトルクT(=τ)との関係をグラフで示す図である。図13は、横軸が電動機回転数を示し、縦軸が電動機2のブレーキトルクTを示す座標系において、電動機回転数に対する電動機2のブレーキトルクTの特性を示す。図13から、電動機回転数が大きくなるにつれて、インバータ30の出力電圧がゼロであるときの電動機2のブレーキトルクTが小さくなることが分かる。電動機回転数の変化Δωは、以下の式(6)で表すことができる。
Figure JPOXMLDOC01-appb-M000005
 ここで、τは電動機トルク、τは負荷トルク、Jはイナーシャを示す。
 インバータ30の出力電圧をゼロにしているときには、電動機トルクτは、ブレーキトルクτとなる。つまり、インバータ30の出力電圧をゼロに制御しているときには、τ=-τが成立する。したがって、式(6)から、電動機回転数が増加するほど、ブレーキトルクτが小さくなり、電動機回転数の変動Δωは小さくなることが分かる。
 本実施の形態に係る電動機駆動装置1では、インバータ30の出力電圧をゼロにする制御を行うので、インバータ30の電圧変調率にかかわらず、出力電圧をゼロにする制御が可能である。よって、電動機2が、より高速で回転可能な過変調領域でインバータ30の出力電圧をゼロにする制御を実施すれば、電動機2の回転数の低減を抑制でき、その結果、電動機2の回転動作を停止させずに(すなわち、ノンストップで)、電動機2の結線状態を切替えることが可能である。
 このように、スイッチ82,92をON(オン)とし、上アーム31及び下アーム32を全相OFF(オフ)とすることで、電動機2に流れている電流は、短絡回路80,90を含む経路である循環回路を循環するため、結線切替器50の電磁接触器51~53に電流が流れない。したがって、結線状態の切替えのための結線切替器50の電磁接触器51~53の状態の切替え時に、電磁接触器51~53の接点間にアークは発生しない。したがって、電動機の回転動作を停止させずに、結線切替器50の電磁接触器51~53の状態を切替えたとしても、電磁接触器51~53に故障は生じない。
 図14は、結線状態をY結線からΔ結線に切替える場合における電動機2の回転数の変化をグラフで示す図である。図14に示されるように、電動機2の回転数を高速領域(すなわち、過変調領域)まで加速した後の期間、すなわち、ブレーキトルクτが小さい期間に、インバータ30の出力電圧をゼロにする制御を行うことで、電動機2の回転数の低下を少なくすることができる。言い換えれば、図14の時刻t5~t8に示される電動機回転数の低下を示す線分の下り勾配を緩やかにすることができる。
 さらに、本実施の形態では、過変調領域での電動機2の結線切替えを、インバータ30の出力電圧をゼロにして実行することができる。このため、従来方式よりも高回転での結線切替え動作が可能である。したがって、過変調領域が、低い回転数に設定している電動機への適用、負荷トルクが大きいので切替え動作中に電動機回転数がゼロ付近まで落ち込むような電動機であっても、電動機の回転を停止させずに(すなわち、ノンストップで)、電動機の結線状態を切替えることができる。
《2-3》変形例
 図15は、本実施の形態の変形例に係る電動機駆動装置の動作を示すタイミングチャートである。図15は、時刻t3~t3aに一時電圧保護動作が実行される点において、図5に示されるタイミングチャートと異なる。図16は、インバータ30を定常運転状態(時刻t3より前)と下アーム32の全相ON状態(時刻t3aの後)との間に設けられる一時電圧保護動作の例を示す図である。つまり、図16に示される例では、インバータ30の下アーム32のON出力時、すなわち、図15における時刻3~t3aの期間において、インバータ30の下アーム32のスイッチング素子をPWM信号で制御する。このように制御することで、PWM全相OFF時の一次電圧側すなわちコンデンサ22側に、急激な回生電流が流れることを抑制することができる。これにより、一次電圧側の構成であるコンデンサ22などの故障の発生を抑制することができる。
《2-4》効果
 本実施の形態によれば、短絡回路80,90のスイッチ82,92をONにして循環電流が流れる回路を形成し、上アーム31及び下アーム32の両方を全相OFFとすることで、電動機2に流れている電流は、短絡回路80,90を含む経路である循環回路を循環し、電磁接触器51~53に電流が流れない。したがって、結線状態の切替えのための電磁接触器51~53の状態の切替え時に、電磁接触器51~53の接点間にアークは発生しない。したがって、電動機の回転動作を停止させずに、結線切替器50の電磁接触器51~53の状態を切替えたとしても、電磁接触器51~53に故障は生じない。
 また、本実施の形態によれば、電動機2が高速で回転する過変調領域でインバータ30の出力電圧をゼロにする制御を実施しているので、電動機2の回転動作を停止させずに、電動機2の結線状態を切替えることができる。
 また、本実施の形態によれば、制御部60は、上アーム31を全相OFFにしたまま、下アーム32の全相をオンにし、且つ短絡回路80,90のスイッチ82,92をOFFにした期間(例えば、図5における時刻t9より後)に、センサレス制御を再開するので、インバータ30によるPWM制御の再開時(例えば、図5における時刻t11)に、直ぐにセンサレス制御を実行することができる。
 1 電動機駆動装置、 2 電動機、 2a,2b,2c 巻線、 3 空気調和機、 10 交流電源、 20 コンバータ、 21 リアクトル、 22 コンデンサ、 30 インバータ、 31 上アーム、 32 下アーム、 40 電圧検出部、 50 結線切替器、 51,52,53 電磁接触器、 60 制御部、 70 電流検出部、 80,90 短絡回路、 81,91 整流回路、 82,92 スイッチ。

Claims (11)

  1.  電動機の巻線に接続される電磁接触器を有し、前記電磁接触器の状態を切替えることによって前記巻線の結線状態を切替える結線切替器と、
     前記結線切替器を介して前記巻線に交流電圧である出力電圧を印加するインバータと、
     整流回路及びスイッチを有する短絡回路と、
     前記電磁接触器、前記インバータ、及び前記スイッチを制御する制御部と、
     を備え、
     前記スイッチをオンにしたときに、前記短絡回路と前記巻線とによって循環回路が形成され、
     前記電動機の回転動作中に前記インバータの前記出力電圧をゼロにしている期間であって、且つ前記回転動作によって発生する電流が前記循環回路を循環している期間に、前記結線切替器が前記巻線の前記結線状態を切替える
     電動機駆動装置。
  2.  前記インバータが前記出力電圧をゼロにする動作及び前記スイッチをオンにする切替えは、前記電動機の回転数を前記インバータの過変調領域まで増速した後に実行される請求項1に記載の電動機駆動装置。
  3.  前記インバータは、上アームのスイッチング素子と下アームのスイッチング素子とを有し、
     前記短絡回路の前記スイッチのオフからオンへの切替えは、前記上アームのスイッチング素子をオフにし、前記下アームのスイッチング素子をオンにした切替え準備期間に実行される
     請求項1又は2に記載の電動機駆動装置。
  4.  前記インバータは、上アームのスイッチング素子と下アームのスイッチング素子とを有し、
     前記短絡回路の前記スイッチのオフからオンへの切替えは、前記上アームのスイッチング素子をオフにし、前記下アームのスイッチング素子をPWM制御する保護動作期間の後に、前記上アームのスイッチング素子をオフにしたまま、前記下アームのスイッチング素子をオンにした切替え準備期間に実行される
     請求項1又は2に記載の電動機駆動装置。
  5.  前記インバータが前記出力電圧をゼロにする動作は、前記上アームのスイッチング素子をオフにし、前記下アームのスイッチング素子をオンにした期間の後に、前記上アームのスイッチング素子をオフにしたまま、前記下アームのスイッチング素子をオフにすることによって実行される請求項3又は4に記載の電動機駆動装置。
  6.  前記短絡回路の前記スイッチのオンからオフへの切替えは、前記上アームのスイッチング素子をオフにしたまま、前記下アームのスイッチング素子をオフにした期間の後に、前記上アームのスイッチング素子をオフにしたまま、前記下アームのスイッチング素子をオンにした期間に実行される請求項5に記載の電動機駆動装置。
  7.  前記インバータから前記電動機に供給される電流を検出する電流検出部をさらに備え、
     前記制御部は、前記電流検出部によって検出された電流に基づいて、前記インバータを制御するセンサレス制御を実行する
     請求項1から6のいずれか1項に記載の電動機駆動装置。
  8.  前記インバータから前記電動機に供給される電流を検出する電流検出部をさらに備え、
     前記制御部は、前記上アームのスイッチング素子をオフにしたまま、前記下アームのスイッチング素子をオンにし、且つ前記短絡回路の前記スイッチをオフにした期間に、センサレス制御を再開する
     請求項6に記載の電動機駆動装置。
  9.  前記結線切替器は、前記結線状態を、Y結線からΔ結線に又はΔ結線からY結線に切替える請求項1から8のいずれか1項に記載の電動機駆動装置。
  10.  前記短絡回路の前記スイッチは、半導体スイッチング素子である請求項1から9のいずれか1項に記載の電動機駆動装置。
  11.  電動機と、
     前記電動機を駆動する、請求項1から10のいずれか1項に記載の電動機駆動装置と
     を備えた空気調和機。
PCT/JP2019/008831 2019-03-06 2019-03-06 電動機駆動装置及び空気調和機 WO2020179008A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021503331A JP7069400B2 (ja) 2019-03-06 2019-03-06 電動機駆動装置及び空気調和機
PCT/JP2019/008831 WO2020179008A1 (ja) 2019-03-06 2019-03-06 電動機駆動装置及び空気調和機
CN201980092382.6A CN113491065B (zh) 2019-03-06 2019-03-06 电动机驱动装置以及空调机
US17/435,226 US11632068B2 (en) 2019-03-06 2019-03-06 Motor driving device and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/008831 WO2020179008A1 (ja) 2019-03-06 2019-03-06 電動機駆動装置及び空気調和機

Publications (1)

Publication Number Publication Date
WO2020179008A1 true WO2020179008A1 (ja) 2020-09-10

Family

ID=72338443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008831 WO2020179008A1 (ja) 2019-03-06 2019-03-06 電動機駆動装置及び空気調和機

Country Status (4)

Country Link
US (1) US11632068B2 (ja)
JP (1) JP7069400B2 (ja)
CN (1) CN113491065B (ja)
WO (1) WO2020179008A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261317A1 (ja) * 2019-06-24 2020-12-30 三菱電機株式会社 空気調和装置および空気調和システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182783A (ja) * 2007-01-23 2008-08-07 Yaskawa Electric Corp 3相交流電動機の巻線切替装置及び切替方法
JP2011199974A (ja) * 2010-03-18 2011-10-06 Toyota Central R&D Labs Inc 動力伝達装置
WO2014002251A1 (ja) * 2012-06-29 2014-01-03 三菱電機株式会社 ヒートポンプ装置、ヒートポンプシステム、空気調和機および冷凍機
JP2014007823A (ja) * 2012-06-22 2014-01-16 Toshiba Industrial Products Manufacturing Corp 駆動装置及び電動機の巻線切り換え方法
JP2017093099A (ja) * 2015-11-06 2017-05-25 株式会社デンソー 回転電機駆動システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006033954A (ja) 2004-07-14 2006-02-02 Fujita Corp 電動機の始動装置
JP4722069B2 (ja) 2007-03-15 2011-07-13 三菱電機株式会社 電動機駆動装置および電動機駆動方法並びに冷凍空調装置
JP4906836B2 (ja) * 2008-04-07 2012-03-28 三菱電機株式会社 電動機駆動装置および冷凍空気調和装置ならびに電動機駆動方法
JP2013062888A (ja) 2010-01-18 2013-04-04 Yamaha Motor Co Ltd 鞍乗型車両
DE102010060380B3 (de) * 2010-11-05 2012-02-02 Lti Drives Gmbh Notbetriebsfähige Pitchmotor-Antriebsschaltung
JP6636207B2 (ja) * 2017-03-09 2020-01-29 三菱電機株式会社 電動機の駆動装置および冷凍サイクル適用機器
JP6714166B2 (ja) * 2017-08-04 2020-06-24 三菱電機株式会社 電動機駆動装置および空気調和機
EP3667897A4 (en) * 2017-08-08 2020-10-07 Mitsubishi Electric Corporation ELECTRIC MOTOR AND AIR CONDITIONER DRIVE DEVICE
WO2019030842A1 (ja) * 2017-08-09 2019-02-14 三菱電機株式会社 電動機の駆動装置及び冷凍サイクル装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182783A (ja) * 2007-01-23 2008-08-07 Yaskawa Electric Corp 3相交流電動機の巻線切替装置及び切替方法
JP2011199974A (ja) * 2010-03-18 2011-10-06 Toyota Central R&D Labs Inc 動力伝達装置
JP2014007823A (ja) * 2012-06-22 2014-01-16 Toshiba Industrial Products Manufacturing Corp 駆動装置及び電動機の巻線切り換え方法
WO2014002251A1 (ja) * 2012-06-29 2014-01-03 三菱電機株式会社 ヒートポンプ装置、ヒートポンプシステム、空気調和機および冷凍機
JP2017093099A (ja) * 2015-11-06 2017-05-25 株式会社デンソー 回転電機駆動システム

Also Published As

Publication number Publication date
US11632068B2 (en) 2023-04-18
CN113491065B (zh) 2023-10-20
JP7069400B2 (ja) 2022-05-17
CN113491065A (zh) 2021-10-08
US20220060133A1 (en) 2022-02-24
JPWO2020179008A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
US8174219B2 (en) Motor control unit and air conditioner having the same
US11201576B2 (en) Motor driving apparatus and refrigeration cycle equipment
JP6241453B2 (ja) モータ駆動装置
JPWO2018025331A1 (ja) モータ駆動装置、冷蔵庫及び空気調和機
WO2017216959A1 (ja) モータシステム、モータ駆動装置、冷凍サイクル装置および空気調和機
JP5157267B2 (ja) ブラシレスdcモータの制御方法およびその制御装置
JP7023387B2 (ja) モータ制御装置および空気調和装置
WO2019167169A1 (ja) モータ駆動装置及び冷凍サイクル適用機器
JP7069400B2 (ja) 電動機駆動装置及び空気調和機
JP2014138526A (ja) インバータ制御装置およびインバータ制御装置を備える圧縮機
CN110915122B (zh) 电动机驱动装置
JP6991364B2 (ja) モータ駆動装置、冷凍サイクル装置、空気調和機、給湯機及び冷蔵庫
JP7270841B2 (ja) 電動機駆動装置及び空気調和機
WO2021038817A1 (ja) 電動機駆動装置、電動機駆動システム及び冷凍サイクル装置
CN112219350B (zh) 马达驱动装置、马达驱动装置的控制装置、马达驱动装置的控制方法以及空气调节机
JP7486656B2 (ja) 電動機駆動装置、冷凍サイクル装置、空気調和機、給湯器および冷蔵庫
JP7387056B2 (ja) 電動機駆動装置及び冷凍サイクル適用機器
JP2007189862A (ja) ブラシレスdcモータの制御方法およびブラシレスdcモータの制御装置
JP2017070049A (ja) ブラシレスdcモータの制御方法、及びインバータ装置
JP2003333886A (ja) 永久磁石型同期モータの駆動方法、駆動制御装置および空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503331

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918353

Country of ref document: EP

Kind code of ref document: A1