WO2020175555A1 - Lithium-sulfur battery, and lithium-sulfur battery production method - Google Patents

Lithium-sulfur battery, and lithium-sulfur battery production method Download PDF

Info

Publication number
WO2020175555A1
WO2020175555A1 PCT/JP2020/007760 JP2020007760W WO2020175555A1 WO 2020175555 A1 WO2020175555 A1 WO 2020175555A1 JP 2020007760 W JP2020007760 W JP 2020007760W WO 2020175555 A1 WO2020175555 A1 WO 2020175555A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
sulfur
battery
electrolyte
Prior art date
Application number
PCT/JP2020/007760
Other languages
French (fr)
Japanese (ja)
Inventor
渡邉 正義
彩 猿渡
亮多 玉手
和英 上野
獨古 薫
Original Assignee
国立大学法人 横浜国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 横浜国立大学 filed Critical 国立大学法人 横浜国立大学
Priority to JP2021502318A priority Critical patent/JPWO2020175555A1/en
Publication of WO2020175555A1 publication Critical patent/WO2020175555A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium-sulfur battery including a positive electrode containing a sulfur-based positive electrode active material, and a method for manufacturing a lithium-sulfur battery including a positive electrode including a sulfur-based positive electrode active material.
  • Lithium-ion secondary batteries are widely used as secondary batteries.
  • a lithium-sulfur battery is drawing attention as a secondary battery having a higher capacity than that of a lithium-ion battery.
  • the theoretical capacity of a lithium-sulfur battery having a sulfur-based positive electrode active material is 1672 mAh/g, and the theoretical capacity of a lithium-ion battery having LiC ⁇ 2 as a positive electrode active material. Very large with a capacity of 1 times 37 mA h/g. In addition, sulfur is low cost and rich in resources.
  • Japanese Patent Laid-Open No. 201 4-4 1 81 1 discloses that a solvated ionic liquid (S L: Solvate Ionic. Liquid) in which an ether compound and a lithium ion form a complex is a fluorine-based compound.
  • S L Solvate Ionic. Liquid
  • a lithium-sulfur secondary battery having an electrolyte solution to which a solvent is added is disclosed.
  • the solvated ionic liquid has a low solubility of lithium polysulfide and a small decrease in charge/discharge capacity and charge/discharge efficiency in the cycle test.
  • the ionic conductivity of the electrolytic solution is improved by adding a fluorine-based solvent that is an auxiliary solvent to the solvated ionic liquid.
  • US Pat. No. 96 1 4252 Japanese Unexamined Patent Publication No. 2016-1221657 discloses that a high-concentration electrolytic solution containing 3 mol or less of a non-aqueous solvent with respect to 1 mol of a lithium salt.
  • a lithium battery including is disclosed.
  • non-protonic organic solvents which are generally used for lithium secondary batteries, such as dimethyethane, acetonitrile, tetrahydrofuran, dimethylsulfoxide, ptyrolactone, and sulfolane, are listed.
  • Patent Document 1 Japanese Patent Laid-Open No. 20 1 4 _ 4 1 8 11
  • Patent Document 2 JP 2 0 1 6-1 2 2 6 5 7
  • Patent Document 3 International Publication No. 2 0 1 3/0 9 6 7 5 1 Summary of Invention
  • An embodiment of the present invention aims to provide a lithium-sulfur battery that is easy to manufacture and has a high capacity and energy density, and a method of easily manufacturing a lithium-sulfur battery that has a high capacity and energy density.
  • the lithium-sulfur secondary battery of the embodiment is a composite positive electrode having a sulfur-based positive electrode active material, carbon particles, a positive electrode electrolyte solution containing a lithium salt and a positive electrode solvent, and a negative electrode having a negative electrode active material. And a spacer provided between the composite positive electrode and the negative electrode, the spacer having a battery electrolyte solution containing a lithium salt and a battery solvent, and 3 mass of sulfur contained in the composite positive electrode. Included in the composite positive electrode ⁇ 2020/175 555 3 (:171? 2020 /007760
  • a method for manufacturing a lithium-sulfur secondary battery includes a positive electrode active material containing a sulfur-based positive electrode active material, carbon particles, a lithium salt and a positive electrode solvent, a dispersion solvent, and a polymer.
  • the embodiments of the present invention it is possible to provide a lithium-sulfur battery that is easy to manufacture and has a high capacity and energy density, and an easy manufacturing method of a lithium-sulfur battery that has a high capacity and energy density. ..
  • Fig. 1 is a cross-sectional view showing a configuration of a lithium-sulfur battery of a first embodiment.
  • FIG. 2 A diagram showing discharge characteristics of the lithium-sulfur battery of the first embodiment.
  • FIG. 3 Lithium-sulfur battery It is a figure which shows the relationship between and energy density.
  • FIG. 4 A diagram showing tensile properties of a sheet.
  • FIG. 5 is a diagram showing charge/discharge characteristics of a lithium-sulfur battery of Modification 1 of the first embodiment.
  • FIG. 6 is a diagram showing charge/discharge characteristics of a lithium-sulfur battery of Modification 2 of the first embodiment.
  • FIG. 7 is a diagram showing charge/discharge characteristics of a lithium-sulfur battery of Modification 3 of the first embodiment.
  • FIG. 8 is a diagram showing charge/discharge characteristics of the lithium-sulfur battery of the second embodiment.
  • FIG. 9 A diagram showing charge/discharge characteristics of a lithium-sulfur battery according to a modification of the second embodiment.
  • FIG. 10 is a diagram showing discharge characteristics of the lithium-sulfur battery of the third embodiment. ⁇ 2020/175 555 4 (:171? 2020/007760
  • FIG. 11 is a diagram showing charge/discharge characteristics of the lithium-sulfur battery of the fourth embodiment.
  • FIG. 12 is a diagram showing cycle characteristics of the lithium-sulfur battery of the fourth embodiment.
  • FIG. 13 is a diagram showing charge/discharge characteristics of the lithium-sulfur battery of the fifth embodiment.
  • the lithium-sulfur battery (hereinafter, also referred to as “battery”) 10 of the present embodiment is a spacer including a composite positive electrode 11, a negative electrode (anode) 12 and a battery electrolyte solution 14. 1 3 and are provided.
  • a composite positive electrode 11 and a negative electrode 12 are stacked in a coin cell case 15 with a spacer 13 interposed therebetween.
  • a spring 16 is arranged on the negative electrode 12, and a coin cell case 15 is sealed with a lid 17.
  • a gasket 18 is provided on the side wall of the coin cell case 15.
  • composite positive electrode 1 1 has a elemental sulfur is a sulfur-based positive electrode active material (3 8), a force over carbon nanotubes are carbon particles (Rei_1 ⁇ 1 chome), a polymer, a positive electrode electrolyte 1 9 , With.
  • the composite positive electrode 11 containing the polymer is a self-supporting positive electrode sheet. "Free-standing” means that it can be handled as a separate sheet without the aid of a substrate or carrier. That is, “independence” has the same meaning as “self-support”.
  • the positive electrode electrolytic solution 19 is [!_ ⁇ (3 !_) 2 ] [Die 38] containing a lithium salt and a positive electrode solvent. That is, the lithium salt is lithium bis(trifluoromethanesulfonyl)amide (!_ ⁇ [Ding 38]), and the positive electrode solvent is sulfolane (3 !_).
  • the polymer is ⁇ -1 to 1 which is a copolymer of vinylidene fluoride ( ⁇ ) and hexafluoropropylene (1 to 1?).
  • Composite positive electrode 1 Is. Also included in composite positive electrode 11 ⁇ 2020/175 555 5 (: 171-1? 2020 /007760
  • the ratio of the volumetric capacity of the positive electrode electrolyte 19 contained in the composite positive electrode 11 to the mass of sulfur 3 is 3/3. . 9 1 1-/ ⁇ 19, extremely small. This is because, as described later, the composite positive electrode 11 is produced by forming a sheet of the kneaded positive electrode slurry.
  • the negative electrode 12 is metallic lithium that is a negative electrode active material that absorbs and desorbs lithium.
  • the spacer 13 is a separator having a function of absorbing and retaining the battery electrolyte solution 14, and is a glass filter having a thickness of 200 (manufactured by Toyo Roshi Kaisha, Ltd.: 0881-55).
  • the battery electrolyte 14 contained in the spacer 13 is the same as the cathode electrolyte 19 [I-(3
  • 1 to 1 is 1 to 1 2 0 2 0 1 to 1 2 0 1 0 1 0 2 0 2 1 to 1 (1, 1,2, 2 -tetrafluoroethyl (2, 2, 3, 3-tetrafluoropropyl)ether) (manufactured by Daikin Industries Co., Ltd.).
  • the molar ratio of the composition of the battery electrolyte is ([!- ⁇ (31_) 2 ][ D3 8]
  • Figure 2 shows the discharge characteristics of battery 10 (30 ° ⁇ : 13 cycles).
  • the current density is ⁇ /100 rate.
  • ⁇ / 1 00 rate corresponds to the current density per unit area 40 eight / ⁇ second electrode.
  • the discharge capacity of the battery 10 was 1 500 8 (1/9-3 or more. Further, the energy density was 1 76 ⁇ //1 ⁇ 9.
  • FIG. 3 shows an example of the relationship between the value of the value of the value of the value of the value of the value of /3 (1-/ 9 ) and the energy density.
  • the value of Mami/3 is preferably 71-/ ⁇ 19 or less, and particularly preferably 5/9 or less. If the value of Mami/3 is equal to or less than the upper limit, the energy density can be increased.
  • the amount of sulfur in the composite positive electrode 11 is ⁇ 2020/175 555 6 ⁇ (:171? 2020 /007760
  • the upper limit of the amount of sulfur in the composite positive electrode 11 is set to, for example, 30% in order to ensure electron conductivity and ionic conductivity. Is 2 .
  • the sulfur content of the composite positive electrode 11 is at least the lower limit of the above range, the energy density can be increased.
  • the manufacturing method of the battery 10 is as follows: a positive electrode slurry manufacturing process (step 310), a positive electrode sheet manufacturing process (step 320), a laminated sheet manufacturing process (step 330), and an assembly process (step 3 40).
  • elemental sulfur 3 8 is a sulfur-based positive electrode active material, and force over carbon nanotube, a polymer one, the positive electrode electrolyte 1 9 containing a lithium salt and a positive electrode solvent, a dispersion solvent, a positive electrode slurry containing is produced.
  • the sulfur-based positive electrode active material is not limited to elemental sulfur, but a sulfur-based positive electrode containing at least one selected from the group consisting of metal sulfides, metal polysulfides, and organic sulfur compounds. It only needs to have an active material.
  • the metal sulfide include lithium sulfide and lithium polysulfide.
  • the organic sulfur compounds include organic disulphide compounds and carbon sulfide compounds. You may mix and use a different kind of positive electrode active material.
  • the sulfur-based positive electrode active material is at least one of elemental sulfur, lithium polysulfide, and lithium sulfide.
  • Force-bon nanotubes have a diameter of 1 Length ⁇ ⁇ ! ⁇ 600
  • multi-walled carbon nanotubes with diameters of 10 nm to 100 001 and lengths of 0.4 111 to 15
  • ⁇ 1 ⁇ 1 is a bundle structure in which many tubes are intertwined. However, as described below, the solvated ionic liquid cathode electrolyte 19
  • the force-bon nanotubes preferably have an aspect ratio of 500 or more.
  • a value of 0 0 0 or higher is particularly preferable. If it is at least the lower limit of the above range, the electron conductivity can be ensured even if the composite positive electrode becomes thick.
  • the upper limit of the aspect ratio is, for example, 2,000 because manufacturing is difficult.
  • the polymer is ⁇ -!? , Vinylidene fluoride (V 0 ), which is a homopolymer ⁇ , poly 1 ⁇ 1 _ isopropyl acrylate, poly (styrene-methyl methacrylate-styrene) triblock copolymer, poly (styrene-butyl acrylate) -Styrene) triblock copolymer, poly(styrene-ethylene oxide-styrene) triblock copolymer, and/or polyvinylpyrrolidone.
  • V 0 Vinylidene fluoride
  • the polymer content of the composite positive electrode is preferably 5% by mass or more and 30% by mass or less, and particularly preferably 8% by mass or more and 20% by mass or less. If it is at least the lower limit of the above range, sheeting is easy. If it is at most the upper limit of the above range, the energy density will not decrease.
  • lithium salt (1_ ⁇ 4 ), (1_ ⁇ [3 8]: lithium bis(fluorosulfonyl) amide), or (1- ⁇ ⁇ ⁇ ⁇ 4 ) may be used.
  • the positive electrode solvent it is preferable to use a sulfonyl group-containing compound in which the viscosity increases exponentially even if the concentration is increased, but the ion conductivity decreases only in a linear function (straight line). it can.
  • the positive electrode solvent is preferably at least one of sulfolane (3!_), 3-methylsulfolane, ethylmethylsulfone (Mimi 1 ⁇ /13), and ethylisopropyl sulfone.
  • the amount of the positive electrode solvent relative to 1 mol of the lithium salt is preferably 1.3 mol or more and 5 mol or less.
  • the dispersion solvent is methyl isoptyl ketone (IV!: 4-methyl-2-pentanone).
  • the 10% weight reduction temperature of [!_ ⁇ (3 !_) 2 ] [Ding 3 8], which is the positive electrode electrolyte 19 is about 220 ° ⁇ , while!
  • the 10% weight loss temperature of ⁇ /1 is ⁇ 2020/175 555 8 ⁇ (:171? 2020 /007760
  • the 10% weight loss temperature is the temperature at which the weight decreases by 10% when the temperature is raised from room temperature at a heating rate of 10 ° ⁇ /min in a nitrogen atmosphere and atmospheric pressure.
  • the dispersion solvent it is preferable to select an organic solvent having a 10% weight loss temperature lower than that of the positive electrode electrolyte 19 by 180 ° C or more because it can be easily removed by evaporation.
  • Acetone, methyl ethyl ketone, tetrahydrofuran, 1 ⁇ 1-methylpyrrolidone, or the like can also be used as the dispersion solvent.
  • the dispersion solvent contained in the positive electrode slurry is preferably 100% by mass or more and 100% by mass or less with respect to the composite positive electrode, and 200% by mass or more and 500% by mass or more. % Or less is particularly preferable. If it is at least the lower limit of the above range, the slurry will have good coating properties, and if it is at most the upper limit of the above range, non-uniformity after coating can be prevented.
  • the bundle structure is reduced by being kneaded with the positive electrode electrolyte solution 19 and then diluted with the dispersion solvent.
  • the positive electrode slurry is subjected to a mechanical dispersion step in a state where it contains the positive electrode electrolyte solution 19 and a dispersion solvent.
  • the positive electrode slurry preparation step 310 composite particles containing a sulfur-based positive electrode active material and carbon nanotubes are prepared, and the positive electrode electrolyte is added to the composite particles and kneaded. After that, the dispersion solvent is preferably added. ⁇ 2020/175 555 9 boxes (:171? 2020 /007760
  • kneading does not simply mean “mixing”, but an operation (1 ⁇ 6301) of kneading the composite particles together with the positive electrode electrolyte.
  • the polymer may be added after kneading with the dispersion solvent, or may be added and kneaded with the positive electrode electrolyte solution.
  • a positive electrode sheet is produced by evaporating the dispersion solvent of the positive electrode slurry.
  • a vacuum drying method may be used to evaporate the dispersion solvent in a short time.
  • the dispersion solvent evaporates. can get.
  • the thickness of the positive electrode sheet is 50 to 100.
  • the dispersion solvent is ⁇ -1 to 1? 400 mass% was added to the composite positive electrode containing.
  • Fig. 4 shows, as a reference, the tensile properties of a positive electrode sheet containing an ionic liquid described below as a solvent and containing no sulfur.
  • sample width 500 1 01.
  • the mass ratio of the positive electrode sheet is ( ⁇ 1 ⁇ 1 pcs: [!_ ⁇ (0 4 )] [Ds 3 8]:
  • the sheet is easy to handle when the breaking elongation is 5% or more.
  • a sheet with a breaking elongation of 100% or more and 200% or less rarely breaks or stretches greatly even if wound, so for example, wind it in a roll shape. It is also possible and easy to handle.
  • the force-carbon nanotube is preferably 1% by mass or more and 30% by mass or less of the composite positive electrode, and particularly preferably 5% by mass or more and 20% by mass or less.
  • the electron conductivity is secured, and if it is at most the upper limit of the above range, the breaking elongation is large.
  • the tensile properties of the positive electrode sheet containing sulfur and the tensile properties of the positive electrode sheet prepared in step 320 were substantially the same as those of the positive electrode sheet containing no sulfur shown in FIG. ..
  • a laminated sheet is produced by laminating a positive electrode sheet, a spacer sheet containing a battery electrolyte solution, and a negative electrode sheet containing a negative electrode active material.
  • the spacer sheet is a glass filter that is a separator.
  • a battery electrolyte is added to the spacer sheet.
  • the battery electrolytic solution is substantially the same as the positive electrode electrolytic solution 19, but it is preferable that the diluent solvent 1 to 1 is added.
  • the separator may be a porous sheet or non-woven fabric made of glass fiber, ceramic or polymer that absorbs and holds the battery electrolyte.
  • the porous sheet is made of, for example, a microporous polymer or the like.
  • the polymer that constitutes such a porous sheet include polyolefins such as polyethylene (Mitsumi) and polypropylene (); laminates having a three-layer structure of 9/9o/9, polyimido, and aramid. ..
  • the polyolefin microporous separator and the glass fiber separator are preferable because they have the property of being chemically stable with respect to the organic solvent and can suppress the reactivity with the electrolytic solution to a low level.
  • the thickness of the separator is not limited, but in the secondary battery for automobile, it is preferable that the thickness of the separator is a single layer or a multilayer and the total thickness is 41 to 60. Further, the separator preferably has a pore diameter of 10 or less (for example, 1 O nm to 1 O O nm) and a porosity of 20% to 95%.
  • a fluorinated solvent is preferable.
  • Examples include rofluoroethers (1 to 1), perfluoropolyethers (M), or hydrofluoropolyethers (1 to 1?M), and preferred are hydrofluorocarbons (1 to 10) or high. Drofluoroether (1 to 1°), more preferably hydrofluoroether (1 to 1°).
  • the dilution solvent is preferably 0.3 mol or more and 10 mol or less, and particularly preferably 0.5 mol or more and 5 mol or less, relative to 1 mol of the lithium salt. If it is at least the lower limit of the above range, sufficient viscosity reduction occurs, and if it is at most the upper limit of the above range, a sufficient lithium ion concentration can be secured.
  • the negative electrode 12 is a lithium metal sheet having a thickness of 200.
  • the negative electrode 12 may include a negative electrode active material that absorbs and desorbs lithium ions.
  • the negative electrode active material a conventionally known negative electrode material such as a metal material or a carbon material can be used.
  • the metal material includes lithium titanate, lithium metal, sodium metal, lithium aluminum alloy, lithium tin alloy, lithium silicon alloy, sodium silicon alloy, lithium antimony alloy and the like.
  • Carbon materials include natural graphite, artificial graphite, carbon black, acetylene black, graphite, graphene, activated carbon, carbon fiber, coke, soft carbon, hard carbon, etc., which may be crystalline or amorphous.
  • a carbon material, lithium, or a lithium-transition metal composite oxide is preferable because it can form a battery having excellent capacity and input/output characteristics.
  • a laminated sheet is sealed in a coin cell case 15 (3 II 3304, thickness 3.2 ⁇ ⁇ ) of 2 032 type, and a spring is placed on the negative electrode 12 2. 16 was placed, and the coin cell case 15 was sealed from the top of the spring 16 with the lid 17.
  • the composite positive electrode 11 is an electrolyte-containing positive electrode that already contains the electrolyte solution (positive electrode electrolyte solution 19) before being laminated with the spacer containing the electrolyte solution.
  • the electrolyte solution positive electrode electrolyte solution 19
  • the composite positive electrode 11 contains 1 ⁇ 1, a positive electrode electrolyte solution 19, a positive electrode active material and a polymer.
  • the concentration of the lithium salt in the positive electrode electrolyte solution 19 is higher than the concentration of the lithium salt in the battery electrolyte solution containing the diluting solvent.
  • a laminated sheet can be produced by laminating a self-supporting positive electrode sheet, a spacer, and a negative electrode sheet, and therefore the production is easy.
  • the lithium-sulfur battery 108, etc. of the modified example of the first embodiment is similar to the lithium-sulfur battery 10 and has the same effect. Therefore, constituent elements having the same function are designated by the same reference numerals, and a description thereof will be omitted. Omit it.
  • Fig. 5 shows the discharge characteristics of the battery 108 (30° ⁇ .
  • the current density is ⁇ /50%.
  • the ⁇ /50 rate is 120 8/per unit area of the electrode.
  • the volumetric capacity of the positive electrode electrolyte solution 19 contained in 18 is 9/3, which is 7 1-/19.
  • Fig. 6 shows the discharge characteristics of the battery 108-1 (30° ⁇ .
  • the current density is 0/20 rate.
  • the discharge capacity (second cycle) of the battery 108-1 is 10000 ⁇ . It was 1/8 11/9_3.
  • the composite positive electrode 1 1 18 2 of the battery 10 8 2 of this modified example has not only carbon nanotubes as carbon particles but also Ketjen black ( ⁇ M) which is a porous graphite.
  • the sulfur content of the composite positive electrode 1 1 8 2 is 1 1 1 019/001 2 .
  • the volumetric capacity of the positive electrode electrolyte 19 contained in the composite positive electrode 1 18 2 with respect to the mass 3 of sulfur contained in the composite positive electrode 1 1 18 2 is £/3. Is.
  • ⁇ Mitsu has a better dispersibility than that of 0 1 ⁇ 1, so that a composite positive electrode 1 1 18 2 containing only a small amount of the positive electrode electrolyte 19 can be prepared.
  • the lower limit is, for example, 0. 1 1-/9 due to technical problems, and the upper limit is energy density guarantee. Is.
  • Fig. 7 shows the discharge characteristics (30° ⁇ ) of the battery 108. 2
  • the current density is 0/48 rate.
  • the discharge capacity of the battery 1082 is 10 I II cycle, It was 1 1 00 0 18 11/9-3.
  • the positive electrode sheet that does not include 1 ⁇ 1 unit is self-supporting because it contains a polymer, but has a low breaking strength. For this reason, it is preferable that 1% of the composite positive electrode 1 1 8 2 is contained in an amount of 1% by mass or more. However, even if the positive electrode sheet contains a small amount of 0,1%, or even if the positive electrode sheet does not contain 0,1%, for example, a positive electrode sheet is prepared using a holding sheet made of aluminum as a substrate. Prevents breakage of the positive electrode sheet by peeling the holding sheet after stacking with the spacer sheet ⁇ 2020/175 555 14 ⁇ (:171? 2020 /007760
  • the lithium-sulfur battery 10 according to the second embodiment is similar to the lithium-sulfur battery 10, the components having the same functions are designated by the same reference numerals and the description thereof will be omitted.
  • the battery 10m differs from the battery 108 only in the spacer 13m. Mass ratio of the composition of the composite positive electrode of the battery 1 0 1 0 1 battery ( ⁇ 1 ⁇ 1 pcs: [!_ ⁇ (3 !_) 2 ] [D 3 8
  • Spacer 13 of battery 10 is a sheet (electrolyte sheet) made of polymer gel electrolyte containing battery electrolyte.
  • a spacer slurry is prepared by mixing the positive electrode electrolyte solution 19 [!_ ⁇ (3 !_) 2 ] [Ding 38] and acetone, which is a dispersion solvent. Spacer 13 was made by coating the spacer slurry and then evaporating the acetone. A vacuum drying method may be used to evaporate the acetone in a short time. Tetrahydrofuran, 1 ⁇ 1-methylpyrrolidone, or the like can also be used as the dispersion solvent.
  • the mass ratio ([!_ ⁇ (31_) 2 ] [Ding 38]: ⁇ -1 to 1?) of the composition of spacers 13 and 13 of thickness 86 is (80: 20).
  • the battery electrolyte is not diluted with a fluorine solvent.
  • the positive electrode sheet and the electrolyte sheet may be produced by continuously coating the current collector with the positive electrode slurry and the spacer slurry.
  • Fig. 8 shows the discharge characteristics of battery 10 (30° ⁇ . Current density is ⁇ /20 layers. ⁇ /20 rate is 76 8/ ⁇ per unit area of electrode. Corresponding to the current density of.
  • the lithium-sulfur battery 10M 1 of the modified example of the second embodiment is similar to the lithium-sulfur battery 10M and has the same effect, so that the components having the same functions are designated by the same reference numerals. The description is omitted.
  • the composite positive electrode 1 1 _ 1 of the battery 10_ 1 of the present modification is the same as the composite positive electrode 1 1 8 2. Also, the spacer is the same as the spacer 13 of the battery 10.
  • Fig. 9 shows the discharge characteristics (30° ⁇ of Battery 10M 1).
  • the current density is 0/48 rate.
  • the discharge capacity of Battery 10M 1 is 41:11 cycles, Eight 1"!/9—3 or more.
  • the lithium-sulfur battery 100 according to the third embodiment is similar to the lithium-sulfur battery 10, the components having the same functions are designated by the same reference numerals and the description thereof will be omitted.
  • the composite positive electrode 1100 of the battery 100 does not contain a polymer.
  • the spacer 13 (3 is a separator made of a porous metal containing a battery electrolyte, a porous ceramic or a porous resin.
  • the composite positive electrode 11 (3 of the battery 10 (3 is manufactured by a method similar to that of the composite positive electrode 11 of the battery 10. However, the composite positive electrode 1 1 1 0 containing no polymer is self-supporting. Therefore, the positive electrode slurry was coated on a foamed aluminum foil, which was a current collector, and the mass ratio of the composition of the composite positive electrode 1 10 (0: :[!_ I (3! _) 2 ] [Ding 3 8] :3 8 ) is (15: 63: 22) The sulfur content of the composite positive electrode 1 10 is 9. 9 9/001 2 . Is ...! .8 1-/ ⁇ 19, and the energy density of battery 100 is
  • the battery electrolyte is diluted by the addition of 1 to 1 mil.
  • the composition of the battery electrolyte is (( [1_ ⁇ (31_) 2 ] [Ding 38]) +41 ⁇ 1 ⁇ ).
  • Fig. 10 shows the discharge characteristics of the battery 100 (30°).
  • the current density is 0/16.
  • ⁇ / 1 65 rate corresponds to 1 00 eight / ⁇ 01 2 of current density per unit area of the electrode.
  • ⁇ 02020/175555 16 ⁇ (: 17 2020/007760
  • the discharge capacity (13 cycles) of the battery 100 is 1 000 8 11/9 _3 or more. Also, the energy density of battery 100 is
  • the lithium-sulfur battery 100 of the fourth embodiment is similar to the lithium-sulfur battery 10 etc., components having the same functions are designated by the same reference numerals, and the description thereof will be omitted.
  • the positive electrode electrolytic solution 190 and the battery electrolytic solution are glyme solvated ionic liquids in which an ether compound and a lithium ion form a complex.
  • tetraglyme (04) which is an ether compound, is a solvated ionic liquid of the lime type that forms a complex with lithium salt 38. !_ ⁇ (04) ][ Ding 3 8] ).
  • the composite positive electrode 11 containing polymer has a total of 4.2/3-/19 for Mimi/3, which is a self-supporting positive electrode sheet.
  • Fig. 11 and Fig. 12 show discharge characteristics (30° ⁇ ) of 10 batteries. Current density is ⁇ /8 rate. ⁇ /8 rate is 1 per unit area of electrode. 70 corresponds to a current density of eight / ⁇ 01 2.
  • Battery 100 had a discharge capacity of 730.1818/11/ 9 and a coulombic efficiency of 98.4% even after 90 cycles.
  • ether compound constituting the glyme-based solvated ionic liquid monoglyme, diglyme, triglyme, tetraglyme, methyl monoglyme, ethyl monoglyme, ethyl diglyme or pentyl diglyme may be used. ⁇ 2020/175 555 17 ⁇ (:171? 2020/007760
  • Glyme solvated ionic liquids are particularly preferable as the positive electrode solvent and the battery solvent, because they are excellent in dispersibility of 0 1 ⁇ 1.
  • the lithium-sulfur battery 10M of the fifth embodiment is similar to the lithium-sulfur battery 10M, the components having the same functions are designated by the same reference numerals and description thereof will be omitted.
  • Battery 10M differs from battery 100 only in that spacer 13M is an electrolyte sheet.
  • spacer 13M is an electrolyte sheet.
  • the composite positive electrode 11 11 of battery 10 0 is the same as the composite positive electrode 11 10 of battery 100.
  • FIG. 3 the battery 1 0 Snake discharge characteristics (30 ° ⁇ shown. Cell 1 0 only discharge capacity is 600 eight / 9 or more even after 3 cycles.
  • the batteries 10 and 108 to 10 are not limited to the coin type, and may have various known structures such as a wound type and a laminated type. Further, the battery 10 or the like may have a plurality of unit cells (positive electrode/electrolyte/negative electrode), or may have a plurality of units composed of a plurality of unit cells.

Abstract

A lithium-sulfur battery 10 is provided with: a composite positive electrode 11 that contains sulfur, carbon particles, and a positive-electrode electrolyte 19 including a lithium salt and a positive-electrode solvent; a negative electrode 12 that contains a negative-electrode active material; and a spacer 13 that is disposed between the composite positive electrode 11 and the negative electrode 12, and contains a battery electrolyte 14 including a lithium salt and a battery solvent. The ratio E/S of the volume E of the positive-electrode electrolyte 19 contained in the composite positive electrode 11 to the mass S of sulfur contained in the composite positive electrode 11 is 7 μL/mg or less.

Description

明 細 書 Specification
発明の名称 : Title of invention:
リチウム硫黄電池、 および、 リチウム硫黄電池の製造方法 Lithium-sulfur battery and method for manufacturing lithium-sulfur battery
技術分野 Technical field
[0001] 本発明は、 硫黄系正極活物質を含有する正極を具備するリチウム硫黄電池 、 および、 硫黄系正極活物質を有する正極を具備するリチウム硫黄電池の製 造方法に関する。 The present invention relates to a lithium-sulfur battery including a positive electrode containing a sulfur-based positive electrode active material, and a method for manufacturing a lithium-sulfur battery including a positive electrode including a sulfur-based positive electrode active material.
背景技術 Background technology
[0002] 携帯電話および電気自動車の開発に伴い、 高容量の二次電池が要望されて いる。 二次電池としては、 リチウムイオンニ次電池が広く普及している。 [0002] With the development of mobile phones and electric vehicles, high capacity secondary batteries have been demanded. Lithium-ion secondary batteries are widely used as secondary batteries.
[0003] リチウムイオン電池よりさらに高容量の二次電池として、 リチウム硫黄電 池が着目されている。 [0003] A lithium-sulfur battery is drawing attention as a secondary battery having a higher capacity than that of a lithium-ion battery.
[0004] これに対して、 硫黄系正極活物質を有するリチウム硫黄電池の理論容量は 、 1 672 m A h/gであり、 正極活物質として L i C〇〇2を有するリチウ ムイオン電池の理論容量 1 37 mA h/gの 1 0倍と非常に大きい。 また硫 黄は、 低コストであり、 かつ、 資源が豊富である。 [0004] On the other hand, the theoretical capacity of a lithium-sulfur battery having a sulfur-based positive electrode active material is 1672 mAh/g, and the theoretical capacity of a lithium-ion battery having LiC○○ 2 as a positive electrode active material. Very large with a capacity of 1 times 37 mA h/g. In addition, sulfur is low cost and rich in resources.
[0005] 日本国特開 201 4-4 1 81 1号公報には、 エーテル化合物とリチウム イオンとが錯体を形成している溶媒和イオン液体 (S 丨 L : Solvate Ionic. Liquid) に、 フッ素系溶媒を添加した電解液を有するリチウム硫黄二次電池 が開示されている。 溶媒和イオン液体は、 多硫化リチウムの溶解度が小さく 、 サイクル試験における充放電容量の減少および充放電効率の低下が小さい 。 溶媒和イオン液体に補助溶媒であるフッ素系溶媒を添加することよって電 解液のイオン導電率が向上している。 [0005] Japanese Patent Laid-Open No. 201 4-4 1 81 1 discloses that a solvated ionic liquid (S L: Solvate Ionic. Liquid) in which an ether compound and a lithium ion form a complex is a fluorine-based compound. A lithium-sulfur secondary battery having an electrolyte solution to which a solvent is added is disclosed. The solvated ionic liquid has a low solubility of lithium polysulfide and a small decrease in charge/discharge capacity and charge/discharge efficiency in the cycle test. The ionic conductivity of the electrolytic solution is improved by adding a fluorine-based solvent that is an auxiliary solvent to the solvated ionic liquid.
[0006] 米国特許第 96 1 4252号明細書 (日本国特開 201 6 - 1 22657 号公報) には、 リチウム塩 1モルに対して非水溶媒の量が 3モル以下の高濃 度電解液を含むリチウム電池が開示されている。 高濃度電解液を用いること で、 正極活物質に酸素を用いても、 負極の炭素材料への可逆的なリチウムイ 〇 2020/175555 2 卩(:171? 2020 /007760 [0006] US Pat. No. 96 1 4252 (Japanese Unexamined Patent Publication No. 2016-1221657) discloses that a high-concentration electrolytic solution containing 3 mol or less of a non-aqueous solvent with respect to 1 mol of a lithium salt. A lithium battery including is disclosed. By using a high-concentration electrolyte, even if oxygen is used as the positive electrode active material, reversible lithium ion to the carbon material of the negative electrode can be obtained. 〇 2020/175 555 2 卩 (:171? 2020 /007760
オンの揷入/離脱を実現している。 電解液の溶媒としては、 ジメ トキシエタ ン、 アセトニトリル、 テトラヒドロフラン、 ジメチルスルホキシド、 プチロ ラクトン、 およびスルホラン等のリチウムニ次電池用として一般的な非プロ トン性有機溶媒が列挙されている。 It realizes the on/off insertion/exit. As the solvent of the electrolytic solution, non-protonic organic solvents which are generally used for lithium secondary batteries, such as dimethyethane, acetonitrile, tetrahydrofuran, dimethylsulfoxide, ptyrolactone, and sulfolane, are listed.
[0007] 国際公開第 2 0 1 3 / 0 9 6 7 5 1号には、 力ーボンナノチューブのシー 卜を正極として用いるリチウム硫黄電池が開示されている。 [0007] International Publication No. WO 201 3 /096 751 discloses a lithium-sulfur battery using a cathode-carbon nanotube as a positive electrode.
[0008] しかし、 力ーボンナノチューブの表面に硫黄を核形成する工程、 および、 力ーボンナノチューブをシート化する工程は、 繁雑である。 さらに、 力ーボ ンナノチューブシートの内部には、 電解液が充填される広い空間があるため 、 正極に含まれる硫黄の質量 3に対する正極に含まれる電解液の容量巳の比 である巳/ 3
Figure imgf000004_0001
が大きい。 先行技術文献
[0008] However, the step of nucleating sulfur on the surface of the carbon nanotube and the step of forming the carbon nanotube into a sheet are complicated. Furthermore, since there is a large space inside the force-bon nanotube sheet to be filled with the electrolyte solution, the ratio of the volumetric capacity of the electrolyte solution contained in the positive electrode to the mass of sulfur contained in the positive electrode is 3/3.
Figure imgf000004_0001
Is big. Prior art documents
特許文献 Patent literature
[0009] 特許文献 1 :特開 2 0 1 4 _ 4 1 8 1 1号公報 Patent Document 1: Japanese Patent Laid-Open No. 20 1 4 _ 4 1 8 11
特許文献 2 :特開 2 0 1 6 - 1 2 2 6 5 7号公報 Patent Document 2: JP 2 0 1 6-1 2 2 6 5 7
特許文献 3 :国際公開第 2 0 1 3 / 0 9 6 7 5 1号 発明の概要 Patent Document 3: International Publication No. 2 0 1 3/0 9 6 7 5 1 Summary of Invention
発明が解決しようとする課題 Problems to be Solved by the Invention
[0010] 本発明の実施形態は、 製造が容易であり、 かつ、 容量、 エネルギー密度の 高いリチウム硫黄電池、 および、 容量、 エネルギー密度の高いリチウム硫黄 電池の容易な製造方法を提供することを目的とする。 An embodiment of the present invention aims to provide a lithium-sulfur battery that is easy to manufacture and has a high capacity and energy density, and a method of easily manufacturing a lithium-sulfur battery that has a high capacity and energy density. And
課題を解決するための手段 Means for solving the problem
[001 1 ] 実施形態のリチウム硫黄二次電池は、 硫黄系正極活物質と、 炭素粒子と 、 リチウム塩および正極溶媒を含む正極電解液と、 を有する複合正極と、 負 極活物質を有する負極と、 前記複合正極と前記負極との間に配設されている 、 リチウム塩および電池溶媒を含む電池電解液を有するスぺーサと、 を具備 し、 前記複合正極に含まれる硫黄の質量 3に対する、 前記複合正極に含まれ 〇 2020/175555 3 卩(:171? 2020 /007760 [001 1] The lithium-sulfur secondary battery of the embodiment is a composite positive electrode having a sulfur-based positive electrode active material, carbon particles, a positive electrode electrolyte solution containing a lithium salt and a positive electrode solvent, and a negative electrode having a negative electrode active material. And a spacer provided between the composite positive electrode and the negative electrode, the spacer having a battery electrolyte solution containing a lithium salt and a battery solvent, and 3 mass of sulfur contained in the composite positive electrode. Included in the composite positive electrode 〇 2020/175 555 3 (:171? 2020 /007760
る前記正極電解液の容量巳の比である、 巳/ 3が、 7 1- /〇1 9以下である Which is the ratio of the volumetric capacity of the positive electrode electrolyte, that is, /3 is 7 1-/○ 19 or less.
[0012] 実施形態のリチウム硫黄二次電池の製造方法は、 硫黄系正極活物質と、 炭 素粒子と、 リチウム塩および正極溶媒とを含む正極電解液と、 分散溶媒と、 ポリマーと、 を含む正極スラリーを作製する工程と、 前記正極スラリーの前 記分散溶媒を蒸発することによって、 自立性のある正極シートを作製するエ 程と、 前記正極シートと、 電池電解液を含むスぺーサと、 負極活物質を含む 負極と、 を積層することによって、 積層シートを作製する工程と、 を具備す る。 [0012] A method for manufacturing a lithium-sulfur secondary battery according to an embodiment includes a positive electrode active material containing a sulfur-based positive electrode active material, carbon particles, a lithium salt and a positive electrode solvent, a dispersion solvent, and a polymer. A step of producing a positive electrode slurry, a step of producing a positive electrode sheet having self-sustainability by evaporating the above-mentioned dispersion solvent of the positive electrode slurry, the positive electrode sheet, and a spacer containing a battery electrolyte, And a step of producing a laminated sheet by laminating a negative electrode containing a negative electrode active material.
発明の効果 Effect of the invention
[0013] 本発明の実施形態によれば、 製造が容易であり、 かつ、 容量、 エネルギー 密度の高いリチウム硫黄電池、 および、 容量、 エネルギー密度の高いリチウ ム硫黄電池の容易な製造方法を提供できる。 [0013] According to the embodiments of the present invention, it is possible to provide a lithium-sulfur battery that is easy to manufacture and has a high capacity and energy density, and an easy manufacturing method of a lithium-sulfur battery that has a high capacity and energy density. ..
図面の簡単な説明 Brief description of the drawings
[0014] [図 1]第 1実施形態のリチウム硫黄電池の構成を示す断面図である。 [0014] [Fig. 1] Fig. 1 is a cross-sectional view showing a configuration of a lithium-sulfur battery of a first embodiment.
[図 2]第 1実施形態のリチウム硫黄電池の放電特性を示す図である。 [FIG. 2] A diagram showing discharge characteristics of the lithium-sulfur battery of the first embodiment.
[図 3]リチウム硫黄電池の巳
Figure imgf000005_0001
とエネルギー密度との関係を示す図である。 [図 4]シートの引張特性を示す図である。
[Figure 3] Lithium-sulfur battery
Figure imgf000005_0001
It is a figure which shows the relationship between and energy density. [Fig. 4] A diagram showing tensile properties of a sheet.
[図 5]第 1実施形態の変形例 1のリチウム硫黄電池の充放電特性を示す図であ る。 FIG. 5 is a diagram showing charge/discharge characteristics of a lithium-sulfur battery of Modification 1 of the first embodiment.
[図 6]第 1実施形態の変形例 2のリチウム硫黄電池の充放電特性を示す図であ る。 FIG. 6 is a diagram showing charge/discharge characteristics of a lithium-sulfur battery of Modification 2 of the first embodiment.
[図 7]第 1実施形態の変形例 3のリチウム硫黄電池の充放電特性を示す図であ る。 FIG. 7 is a diagram showing charge/discharge characteristics of a lithium-sulfur battery of Modification 3 of the first embodiment.
[図 8]第 2実施形態のリチウム硫黄電池の充放電特性を示す図である。 FIG. 8 is a diagram showing charge/discharge characteristics of the lithium-sulfur battery of the second embodiment.
[図 9]第 2実施形態の変形例のリチウム硫黄電池の充放電特性を示す図である [FIG. 9] A diagram showing charge/discharge characteristics of a lithium-sulfur battery according to a modification of the second embodiment.
[図 10]第 3実施形態のりチウム硫黄電池の放電特性を示す図である。 〇 2020/175555 4 卩(:171? 2020 /007760 FIG. 10 is a diagram showing discharge characteristics of the lithium-sulfur battery of the third embodiment. 〇 2020/175 555 4 (:171? 2020/007760
[図 1 1]第 4実施形態のリチウム硫黄電池の充放電特性を示す図である。 FIG. 11 is a diagram showing charge/discharge characteristics of the lithium-sulfur battery of the fourth embodiment.
[図 12]第 4実施形態のリチウム硫黄電池のサイクル特性を示す図である。 FIG. 12 is a diagram showing cycle characteristics of the lithium-sulfur battery of the fourth embodiment.
[図 13]第 5実施形態のリチウム硫黄電池の充放電特性を示す図である。 FIG. 13 is a diagram showing charge/discharge characteristics of the lithium-sulfur battery of the fifth embodiment.
発明を実施するための形態 MODE FOR CARRYING OUT THE INVENTION
[0015] <第 1実施形態> [0015] <First Embodiment>
図 1 に示すように本実施形態のリチウム硫黄電池 (以下 「電池」 ともいう 。 ) 1 0は、 複合正極 1 1 と、 負極 (アノード) 1 2と、 電池電解液 1 4を 含むスぺーサ 1 3と、 を具備する。 As shown in FIG. 1, the lithium-sulfur battery (hereinafter, also referred to as “battery”) 10 of the present embodiment is a spacer including a composite positive electrode 11, a negative electrode (anode) 12 and a battery electrolyte solution 14. 1 3 and are provided.
[0016] コイン型の電池 1 0では、 複合正極 1 1 と負極 1 2とがスぺーサ 1 3を間 に挾んで積層された状態で、 コインセルケース 1 5に封入されている。 負極 1 2の上にスプリング 1 6が配設され、 蓋 1 7でコインセルケース 1 5は封 止されている。 コインセルケース 1 5の側壁にはガスケッ ト 1 8が介装され ている。 [0016] In a coin-type battery 10, a composite positive electrode 11 and a negative electrode 12 are stacked in a coin cell case 15 with a spacer 13 interposed therebetween. A spring 16 is arranged on the negative electrode 12, and a coin cell case 15 is sealed with a lid 17. A gasket 18 is provided on the side wall of the coin cell case 15.
[0017] 複合正極 1 1は、 硫黄系正極活物質である単体硫黄 (3 8) と、 炭素粒子で ある力ーボンナノチューブ (〇1\1丁) と、 ポリマーと、 正極電解液 1 9と、 を有する。 ポリマーを含む複合正極 1 1は、 自立性のある正極シートである 。 「自立性」 は、 基板または担体の補助なしで独立したシートとして取り扱 うことができることを意味する。 すなわち、 「自立性」 は、 「自己支持性」 と同じ意味を持つ。 [0017] composite positive electrode 1 1 has a elemental sulfur is a sulfur-based positive electrode active material (3 8), a force over carbon nanotubes are carbon particles (Rei_1 \ 1 chome), a polymer, a positive electrode electrolyte 1 9 , With. The composite positive electrode 11 containing the polymer is a self-supporting positive electrode sheet. "Free-standing" means that it can be handled as a separate sheet without the aid of a substrate or carrier. That is, “independence” has the same meaning as “self-support”.
[0018] 正極電解液 1 9は、 リチウム塩および正極溶媒を含む [!_ 丨 (3 !_) 2] [ 丁 3八] である。 すなわち、 リチウム塩は、 リチウムビス(トリフルオロメ タンスルホニル)アミ ド (!_ 丨 [丁 3八] ) であり、 正極溶媒は、 スルホ ラン (3 !_) である。 [0018] The positive electrode electrolytic solution 19 is [!_丨 (3 !_) 2 ] [Die 38] containing a lithium salt and a positive electrode solvent. That is, the lithium salt is lithium bis(trifluoromethanesulfonyl)amide (!_丨 [Ding 38]), and the positive electrode solvent is sulfolane (3 !_).
[0019] ポリマーは、 ビニリデンフルオライ ド ( 〇 ) とヘキサフルオロプロピ レン (1~1 ?) との共重合体である 〇 ー1~1 である。 [0019] The polymer is ◯-1 to 1 which is a copolymer of vinylidene fluoride (◯) and hexafluoropropylene (1 to 1?).
[0020] 複合正極 1 1の組成物の質量比 (0 1\1丁 : [!_ 丨 (3 !_) 2] [丁 3八][0020] Mass ratio of the composition of the composite positive electrode 11 (0 1\1 pcs: [!_ 丨 (3 !_) 2 ] [Ds 3 8]
2 : 6 : 1 . 5 : 2) である。 複合正極 1
Figure imgf000006_0001
である。 また、 複合正極 1 1 に含まれる 〇 2020/175555 5 卩(:171? 2020 /007760
2 :6 :1.5 .5 :2). Composite positive electrode 1
Figure imgf000006_0001
Is. Also included in composite positive electrode 11 〇 2020/175 555 5 (: 171-1? 2020 /007760
硫黄の質量 3に対する、 複合正極 1 1 に含まれる正極電解液 1 9の容量巳の 比である、 巳/3は、 ·! . 9 1 1-/〇19と、 極めて小さい。 これは、 後述 するように、 複合正極 1 1が、 混練された正極スラリーのシート化によって 作製されているためである。 The ratio of the volumetric capacity of the positive electrode electrolyte 19 contained in the composite positive electrode 11 to the mass of sulfur 3 is 3/3. . 9 1 1-/○ 19, extremely small. This is because, as described later, the composite positive electrode 11 is produced by forming a sheet of the kneaded positive electrode slurry.
[0021] 負極 1 2は、 リチウムを吸蔵脱離する負極活物質である金属リチウムであ る。 [0021] The negative electrode 12 is metallic lithium that is a negative electrode active material that absorbs and desorbs lithium.
[0022] スぺーサ 1 3は、 電池電解液 1 4を吸収保持する機能を有するセパレータ であり、 厚さ 200 のガラスフィルタ (東洋濾紙社製: 〇八一 55) である。 [0022] The spacer 13 is a separator having a function of absorbing and retaining the battery electrolyte solution 14, and is a glass filter having a thickness of 200 (manufactured by Toyo Roshi Kaisha, Ltd.: 0881-55).
[0023] スぺーサ 1 3が含む電池電解液 1 4は、 正極電解液 1 9と同じ [I - 丨 (3 [0023] The battery electrolyte 14 contained in the spacer 13 is the same as the cathode electrolyte 19 [I-(3
1-) 2] [丁 3八] に、 フッ素系溶媒であるハイ ドロフルオロエーテル (1~1 巳) が加えられることによって、 希釈されている。 1-) 2 ] [Ding 38] is diluted by adding a fluoro-solvent, hydrofluoroether (1 to 1).
[0024] 1~1 巳は、 1~1 22〇1~12〇一〇一〇 221~1 (1, 1,2, 2 -テトラフルオロ エチル(2, 2, 3, 3 -テトラフルオロプロピル)エーテル) (ダイキンエ業社製) である。 電池電解液の組成物のモル比は、 ( [!- 丨 (31_) 2] [丁 3八][0024] 1 to 1 is 1 to 1 2 0 2 0 1 to 1 2 0 1 0 1 0 2 0 2 1 to 1 (1, 1,2, 2 -tetrafluoroethyl (2, 2, 3, 3-tetrafluoropropyl)ether) (manufactured by Daikin Industries Co., Ltd.). The molar ratio of the composition of the battery electrolyte is ([!-丨(31_) 2 ][ D3 8]
: 1~1 巳 = 1 : 2) である。 : 1 ~ 1 Min = 1 :2).
[0025] <電池特性 > [0025] <Battery characteristics>
電池 1 〇の放電特性 (30°〇: 1 3 サイクル) を図 2に示す。 電流密度 は、 〇/1 00レートである。 なお、 〇/1 00レートは、 電極の単位面積 当たり 40 八/〇 2の電流密度に相当する。 Figure 2 shows the discharge characteristics of battery 10 (30 ° ◯: 13 cycles). The current density is 〇/100 rate. Incidentally, 〇 / 1 00 rate corresponds to the current density per unit area 40 eight / 〇 second electrode.
[0026] 電池 1 0の放電容量は、 1 500 八(1/ 9—3以上であった。 また、 エ ネルギー密度は、 1 76\^/ /1< 9である。 [0026] The discharge capacity of the battery 10 was 1 500 8 (1/9-3 or more. Further, the energy density was 1 76\^//1< 9.
[0027] 図 3に、 巳/3 ( 1-/ 9) とエネルギー密度との関係の一例を示す。 [0027] FIG. 3 shows an example of the relationship between the value of the value of the value of the value of the value of /3 (1-/ 9 ) and the energy density.
巳/3が小さい電池は、 硫黄担持量を増加することによって、 エネルギー密 度を大幅に増やすことができる。 このため、 巳/3は、 7 1-/〇19以下が 好ましく、 5 し/ 9以下が特に好ましい。 巳/3が、 前記上限以下であ れば、 エネルギー密度を高くできる。 Batteries with a low M/3 can significantly increase the energy density by increasing the sulfur loading. For this reason, the value of Mami/3 is preferably 71-/○19 or less, and particularly preferably 5/9 or less. If the value of Mami/3 is equal to or less than the upper limit, the energy density can be increased.
[0028] なお、 エネルギー密度をより高くするためには、 複合正極 1 1の硫黄量は 〇 2020/175555 6 卩(:171? 2020 /007760 [0028] In order to further increase the energy density, the amount of sulfur in the composite positive electrode 11 is 〇 2020/175 555 6 卩 (:171? 2020 /007760
、 2 01 9 /〇 01 2以上であることが好ましく、 4 01 9 /〇 01 2以上であること が特に好ましい。 複合正極 1 1の硫黄量の上限は、 電子伝導性とイオン伝導 性とを担保するために、 例えば 3 0
Figure imgf000008_0001
2である。 複合正極 1 1の硫黄 量が前記範囲下限以上であれば、 エネルギー密度を高くできる。
Is preferably 2 01 9 / 〇 01 2 or more, and particularly preferably 4 01 9 / 〇 01 2 or more. The upper limit of the amount of sulfur in the composite positive electrode 11 is set to, for example, 30% in order to ensure electron conductivity and ionic conductivity.
Figure imgf000008_0001
Is 2 . When the sulfur content of the composite positive electrode 11 is at least the lower limit of the above range, the energy density can be increased.
[0029] <電池の製造方法> <Battery manufacturing method>
次に、 実施形態の電池 1 0の製造方法について説明する。 電池 1 0の製造 方法は、 正極スラリー作製工程 (ステップ 3 1 0) と、 正極シート作製工程 (ステップ 3 2 0) と、 積層シート作製工程 (ステップ 3 3 0) と、 組立エ 程 (ステップ 3 4 0) を具備する。 Next, a method for manufacturing the battery 10 of the embodiment will be described. The manufacturing method of the battery 10 is as follows: a positive electrode slurry manufacturing process (step 310), a positive electrode sheet manufacturing process (step 320), a laminated sheet manufacturing process (step 330), and an assembly process (step 3 40).
[0030] <ステップ 3 1 0>正極スラリー作製工程 <Step 310> Positive electrode slurry preparation process
硫黄系正極活物質である単体硫黄 3 8と、 力ーボンナノチューブと、 ポリマ 一と、 リチウム塩と正極溶媒とを含む正極電解液 1 9と、 分散溶媒と、 含む 正極スラリーが作製される。 And elemental sulfur 3 8 is a sulfur-based positive electrode active material, and force over carbon nanotube, a polymer one, the positive electrode electrolyte 1 9 containing a lithium salt and a positive electrode solvent, a dispersion solvent, a positive electrode slurry containing is produced.
[0031 ] 硫黄系正極活物質としては、 単体硫黄 に限られるものではなく、 金属硫 化物、 金属多硫化物、 および有機硫黄化合物からなる群から選択される少な くとも一つを含む硫黄系正極活物質を有していればよい。 金属硫化物として は、 硫化リチウム、 多硫化リチウムが挙げられる。 金属多硫化物としては、 丁
Figure imgf000008_0002
丁_ 1 £ n £4) が挙げられる。 また、 有機硫黄 化合物としては、 有機ジスルフイ ド化合物、 力ーボンスルフイ ド化合物が挙 げられる。 異なる種類の正極活物質を混合して用いてもよい。
[0031] The sulfur-based positive electrode active material is not limited to elemental sulfur, but a sulfur-based positive electrode containing at least one selected from the group consisting of metal sulfides, metal polysulfides, and organic sulfur compounds. It only needs to have an active material. Examples of the metal sulfide include lithium sulfide and lithium polysulfide. As a metal polysulfide,
Figure imgf000008_0002
Ding _ 1 £ n £ 4). The organic sulfur compounds include organic disulphide compounds and carbon sulfide compounds. You may mix and use a different kind of positive electrode active material.
[0032] 硫黄系正極活物質は、 単体硫黄、 多硫化リチウムまたは硫化リチウムの少 なくともいずれであることが、 特に好ましい。 [0032] It is particularly preferable that the sulfur-based positive electrode active material is at least one of elemental sulfur, lithium polysulfide, and lithium sulfide.
[0033] 力ーボンナノチューブは、 直径 1
Figure imgf000008_0003
長さ〇. 4 〇!〜 6 0 0
Figure imgf000008_0004
または、 直径 1 0 n m ~ 1 0 0 〇1、 長さ〇. 4 111 ~ 1 5 |JL rr\ s の多層力ーボンナノチューブ
Figure imgf000008_0005
[0033] Force-bon nanotubes have a diameter of 1
Figure imgf000008_0003
Length 〇 〇!~ 600
Figure imgf000008_0004
Alternatively, multi-walled carbon nanotubes with diameters of 10 nm to 100 001 and lengths of 0.4 111 to 15 |JL rr\ s
Figure imgf000008_0005
〇1\1丁) である。 〇1\1丁は、 多数のチューブが絡み合ったバンドル構造であ る。 しかし、 後述するように、 溶媒和イオン液体である正極電解液 1 9は、○ 1 \ 1). 〇 1\1 is a bundle structure in which many tubes are intertwined. However, as described below, the solvated ionic liquid cathode electrolyte 19
〇 !\1丁の分散性に優れているため、 正極電解液 1 9と混合することによって 〇 2020/175555 7 卩(:171? 2020 /007760 〇!\1 is excellent in dispersibility, so by mixing with positive electrode electrolyte 19 〇 2020/175 555 7 (:171? 2020/007760
、 バンドル構造は低減する。 , The bundle structure is reduced.
[0034] 力ーボンナノチューブは、 アスペクト比が、 5 0 0以上が好ましく、 1 0 [0034] The force-bon nanotubes preferably have an aspect ratio of 500 or more.
0 0 0以上が特に好ましい。 前記範囲下限以上であれば、 複合正極の厚さが 厚くなっても、 電子伝導性が担保できる。 なお、 アスペクト比の上限は、 製 造が困難であることから、 例えば、 2 0 0 0 0 0である。 A value of 0 0 0 or higher is particularly preferable. If it is at least the lower limit of the above range, the electron conductivity can be ensured even if the composite positive electrode becomes thick. The upper limit of the aspect ratio is, for example, 2,000 because manufacturing is difficult.
[0035] ポリマーは、 〇 ー ! ! ?、 ビニリデンフルオライ ド (V 0 ) ホモ ポリマーである 〇 、 ポリ 1\1 _イソプロピルアクリルアミ ド、 ポリ (ス チレン -メタクリル酸メチル-スチレン) トリブロック共重合体、 ポリ (ス チレン -アクリル酸プチル-スチレン) トリブロック共重合体、 ポリ (スチ レン -エチレンオキシド -スチレン) トリブロック共重合体、 または、 ポリ ビニルピロリ ドンの少なくともいずれかである。 [0035] The polymer is 〇-!? , Vinylidene fluoride (V 0 ), which is a homopolymer 〇, poly 1\1 _ isopropyl acrylate, poly (styrene-methyl methacrylate-styrene) triblock copolymer, poly (styrene-butyl acrylate) -Styrene) triblock copolymer, poly(styrene-ethylene oxide-styrene) triblock copolymer, and/or polyvinylpyrrolidone.
[0036] なお、 複合正極のポリマー含有量は、 5質量%以上 3 0質量%以下が好ま しく、 8質量%以上 2 0質量%以下が特に好ましい。 前記範囲下限以上であ れば、 シート化が容易である。 前記範囲上限以下であれば、 エネルギー密度 が低下することがない。 [0036] The polymer content of the composite positive electrode is preferably 5% by mass or more and 30% by mass or less, and particularly preferably 8% by mass or more and 20% by mass or less. If it is at least the lower limit of the above range, sheeting is easy. If it is at most the upper limit of the above range, the energy density will not decrease.
[0037] リチウム塩として、 (1_ 丨 巳 4)、 (1_ 丨 [ 3八] : リチウムビス (フル オロスルホニル) アミ ド) 、 または、 (1 - 丨 〇 丨 〇 4) を用いてもよい。[0037] As the lithium salt, (1_ 丳4 ), (1_ 丨 [3 8]: lithium bis(fluorosulfonyl) amide), or (1-丨 〇 丨 〇 4 ) may be used.
[0038] 正極溶媒には、 高濃度化しても、 粘度は指数関数的に増加するものの、 イ オン導電率が、 1次関数 (直線) 的にしか減少しないスルホニル基含有化合 物を用いることができる。 正極溶媒としては、 スルホラン (3 !_) 、 3—メ チルスルホラン、 エチルメチルスルホン (巳1\/1 3) 、 および、 エチルイソプ ロピルスルホンの少なくともいずれかであることが好ましい。 また、 スルホ ニル基含有化合物系濃厚電解液である正極電解液 1 9は、 リチウム塩 1モル に対する正極溶媒の量が、 1 . 3モル以上 5モル以下であることが好ましい [0038] As the positive electrode solvent, it is preferable to use a sulfonyl group-containing compound in which the viscosity increases exponentially even if the concentration is increased, but the ion conductivity decreases only in a linear function (straight line). it can. The positive electrode solvent is preferably at least one of sulfolane (3!_), 3-methylsulfolane, ethylmethylsulfone (Mimi 1\/13), and ethylisopropyl sulfone. Further, in the positive electrode electrolyte solution 19 which is a sulfonyl group-containing compound-based concentrated electrolyte solution, the amount of the positive electrode solvent relative to 1 mol of the lithium salt is preferably 1.3 mol or more and 5 mol or less.
[0039] 分散溶媒は、 メチルイソプチルケトン (IV! : 4 -メチル- 2 -ペンタノン) である。 正極電解液 1 9である [!_ 丨 (3 !_) 2] [丁 3八] の 1 0 %重量 減少温度は、 約 2 2 0 °〇であるのに対して、 !\/1 の 1 0 %重量減少温度は、 〇 2020/175555 8 卩(:171? 2020 /007760 [0039] The dispersion solvent is methyl isoptyl ketone (IV!: 4-methyl-2-pentanone). The 10% weight reduction temperature of [!_ 丨 (3 !_) 2 ] [Ding 3 8], which is the positive electrode electrolyte 19 is about 220 ° 〇, while! The 10% weight loss temperature of \/1 is 〇 2020/175 555 8 卩 (:171? 2020 /007760
4 0 °〇である。 1 0 %重量減少温度は、 窒素雰囲気、 大気圧において、 室温 から昇温速度 1 〇°〇/分にて温度を上げていった場合に、 重量が 1 0 %減少 する温度である。 It is 40 degrees . The 10% weight loss temperature is the temperature at which the weight decreases by 10% when the temperature is raised from room temperature at a heating rate of 10 ° 〇/min in a nitrogen atmosphere and atmospheric pressure.
[0040] 分散溶媒としては、 蒸発による除去が容易であるために、 1 0 %重量減少 温度が正極電解液 1 9よりも 1 8 0 °〇以上低い有機溶剤から選択することが 好ましい。 分散溶媒には、 アセトン、 メチルエチルケトン、 テトラヒドロフ ラン、 または、 1\1—メチルピロリ ドン等を用いることもできる。 [0040] As the dispersion solvent, it is preferable to select an organic solvent having a 10% weight loss temperature lower than that of the positive electrode electrolyte 19 by 180 ° C or more because it can be easily removed by evaporation. Acetone, methyl ethyl ketone, tetrahydrofuran, 1\1-methylpyrrolidone, or the like can also be used as the dispersion solvent.
[0041 ] なお、 正極スラリーに含まれる分散溶媒は、 複合正極に対して 1 0 0質量 %以上 1 0 0 0 0質量%以下であることが好ましく、 2 0 0質量%以上 5 0 0 0質量%以下であることが特に好ましい。 前記範囲下限以上であれば、 良 好なコーティング特性のスラリーとなり、 前記範囲上限以下であればコーテ ィング後の不均一化を防ぐことができる。 [0041] The dispersion solvent contained in the positive electrode slurry is preferably 100% by mass or more and 100% by mass or less with respect to the composite positive electrode, and 200% by mass or more and 500% by mass or more. % Or less is particularly preferable. If it is at least the lower limit of the above range, the slurry will have good coating properties, and if it is at most the upper limit of the above range, non-uniformity after coating can be prevented.
[0042] 例えば、 〇1\1丁と硫黄とが、 3 0分間、 乳鉢を用いて混練される。 次に、 アルゴン雰囲気下において 1 5 5 °〇 6時間、 加熱することによって、 〇1\1丁 を含む複合粒子が作製される。 次に、 室温に冷却後、 〇1\1丁を含む硫黄に正 極電解液 1 9 [ !_ 丨 (3 !_) 2 ] [丁 3八] を加えて、 3 0分間、 乳鉢を用 いて混練される。 [0042] For example, 1\1 and sulfur are kneaded in a mortar for 30 minutes. Next, by heating in an argon atmosphere at 155° for 6 hours, composite particles containing 0 1 \1 are produced. Next, after cooling to room temperature, add positive electrode electrolyte 19 [!_丨 (3 !_) 2 ] [Ding 38] to the sulfur containing 〇 1 \ 1, and use the mortar for 30 minutes. Be kneaded.
[0043] 0 !\1丁は難分散性であるが、 正極電解液 1 9と混練してから、 分散溶媒に よって希釈されることによって、 バンドル構造が低減する。 正極スラリーは 、 正極電解液 1 9と分散溶媒とを含む状態において、 機械的分散工程が行わ れる。 [0043] Although 0!\1 is difficult to disperse, the bundle structure is reduced by being kneaded with the positive electrode electrolyte solution 19 and then diluted with the dispersion solvent. The positive electrode slurry is subjected to a mechanical dispersion step in a state where it contains the positive electrode electrolyte solution 19 and a dispersion solvent.
[0044] さらに、 ポリマーとして 〇 ー1~1 を添加してから、 室温で 1時間 、 撹拌される。 次に、 室温で 1時間の超音波分散処理が行われ、 さらに、 1 時間、 撹拌することによって、 正極スラリーが作製される。 [0044] Furthermore, after adding O-1 to 1 as a polymer, the mixture is stirred at room temperature for 1 hour. Next, ultrasonic dispersion treatment is performed at room temperature for 1 hour, and the mixture is further stirred for 1 hour to prepare a positive electrode slurry.
[0045] 以上の説明のように、 正極スラリー作製工程 3 1 0においては、 硫黄系正 極活物質と力ーボンナノチューブとを含む複合粒子が作製され、 複合粒子に 正極電解液を加えて混練されてから、 分散溶媒が加えられることが好ましい 〇 2020/175555 9 卩(:171? 2020 /007760 [0045] As described above, in the positive electrode slurry preparation step 310, composite particles containing a sulfur-based positive electrode active material and carbon nanotubes are prepared, and the positive electrode electrolyte is added to the composite particles and kneaded. After that, the dispersion solvent is preferably added. 〇 2020/175 555 9 boxes (:171? 2020 /007760
[0046] ここで、 「混練」 とは、 単に 「混ぜる」 ことを意味するのではなく、 複合 粒子を正極電解液とともに、 練る (1^6301) 作業である。 なお、 ポリマーは、 分散溶媒とともに混練後に添加されてもよいし、 正極電解液とともに添加さ れ混練されてもよい。 [0046] Here, "kneading" does not simply mean "mixing", but an operation (1^6301) of kneading the composite particles together with the positive electrode electrolyte. The polymer may be added after kneading with the dispersion solvent, or may be added and kneaded with the positive electrode electrolyte solution.
[0047] <ステップ 3 2 0>正極シート作製工程 <Step 320> Positive electrode sheet manufacturing process
正極スラリーの分散溶媒を蒸発することによって、 正極シートが作製され る。 分散溶媒を短時間で蒸発するために、 真空乾燥法を用いてもよい。 A positive electrode sheet is produced by evaporating the dispersion solvent of the positive electrode slurry. A vacuum drying method may be used to evaporate the dispersion solvent in a short time.
[0048] 例えば、 正極スラリーを、 基体にコーティングしてから、 室温にて 2 4時 間放置したり真空乾燥したりすることによって、 分散溶媒が蒸発するため、 正極シートが配設された基体が得られる。 正極シートの厚さは、 5 0 〜 1 0 0 0 である。 なお、 分散溶媒は、 〇 ー 1~1 ?を含む複合正極 に対して 4 0 0質量%加えられていた。 [0048] For example, by coating the substrate with the positive electrode slurry and then leaving it at room temperature for 24 hours or vacuum drying, the dispersion solvent evaporates. can get. The thickness of the positive electrode sheet is 50 to 100. In addition, the dispersion solvent is 〇-1 to 1? 400 mass% was added to the composite positive electrode containing.
[0049] 図 4に、 参考として、 後述するイオン液体を溶媒とし硫黄を含まない正極 シートの引張特性を示す。 [0049] Fig. 4 shows, as a reference, the tensile properties of a positive electrode sheet containing an ionic liquid described below as a solvent and containing no sulfur.
[0050] 測定には、 引張試験機を用い、 2 5 °〇において、 引張速度 1 0 /分、 試料幅
Figure imgf000011_0001
試料長 5 0 01 01である。
[0050] For the measurement, using a tensile tester, at 25 ° 〇, pulling speed 10 / min, sample width
Figure imgf000011_0001
The sample length is 500 1 01.
[0051 ] 正極シートの質量比は、 (〇1\1丁 : [ !_ 丨 ( 0 4 ) ] [丁 3八] : [0051] The mass ratio of the positive electrode sheet is (○ 1\1 pcs: [!_ 丨 (0 4 )] [Ds 3 8]:
0 ー1~1 ) は、 (X : 1 2 : 3 ) である。 ポリマーを含まない正極スラ リーは、 分散溶媒を蒸発しても、 シート化できなかった。 0-1 ~ 1) is (X :1 2 :3 ). The positive electrode slurry containing no polymer could not be made into a sheet even if the dispersion solvent was evaporated.
[0052] 〇1\1丁の含有量が多いと、 シートは硬く、 破断伸度が小さいが破断強度は 大きい。 これに対して、 0 1\1丁の含有量が少ないと、 シートは軟らかく、 破 断伸度が大きいが破断強度は小さい。 [0052] When the content of 1\1 is large, the sheet is hard and the breaking elongation is small, but the breaking strength is large. On the other hand, when the content of 0 1 \1 is small, the sheet is soft and has a high breaking elongation but a low breaking strength.
[0053] シートは、 破断伸度が 5 %以上であると、 取り扱いが容易である。 特に、 破断伸度が 1 〇〇 %以上 2 0 0 %以下であるシートは、 巻回しても破断した り、 大きく伸びたりすることが殆どないため、 例えば、 口ール状に巻回する ことも可能であり、 取り扱いが容易である。 [0053] The sheet is easy to handle when the breaking elongation is 5% or more. In particular, a sheet with a breaking elongation of 100% or more and 200% or less rarely breaks or stretches greatly even if wound, so for example, wind it in a roll shape. It is also possible and easy to handle.
[0054] 力ーボンナノチューブは、 複合正極の 1質量%以上 3 0質量%以下である ことが好ましく、 特に好ましくは、 5質量%以上 2 0質量%以下である。 前 〇 2020/175555 10 卩(:171? 2020 /007760 [0054] The force-carbon nanotube is preferably 1% by mass or more and 30% by mass or less of the composite positive electrode, and particularly preferably 5% by mass or more and 20% by mass or less. Previous 〇 2020/175 555 10 boxes (:171? 2020 /007760
記範囲下限以上であれば電子伝導性が担保され、 前記範囲上限以下であれば 、 破断伸度が大きい。 If it is at least the lower limit of the above range, the electron conductivity is secured, and if it is at most the upper limit of the above range, the breaking elongation is large.
[0055] なお、 硫黄を含む正極シートの引張特性およびステップ 3 2 0において作 製された正極シートの引張特性は、 図 4に示した硫黄を含まない正極シート の引張特性と略同じであった。 The tensile properties of the positive electrode sheet containing sulfur and the tensile properties of the positive electrode sheet prepared in step 320 were substantially the same as those of the positive electrode sheet containing no sulfur shown in FIG. ..
[0056] <ステップ 3 3 0>積層シート作製工程 <Step 330> Laminated sheet manufacturing process
正極シートと、 電池電解液を含むスぺーサシートと、 負極活物質を含む負 極シートと、 を積層することによって、 積層シートが作製される。 A laminated sheet is produced by laminating a positive electrode sheet, a spacer sheet containing a battery electrolyte solution, and a negative electrode sheet containing a negative electrode active material.
[0057] すでに説明したように、 スぺーサシートは、 セパレータであるガラスフィ ルタである。 スぺーサシートには、 電池電解液が添加されている。 電池電解 液は、 正極電解液 1 9と略同じであるが、 希釈溶媒 1~1 巳が添加されている ことが好ましい。 [0057] As described above, the spacer sheet is a glass filter that is a separator. A battery electrolyte is added to the spacer sheet. The battery electrolytic solution is substantially the same as the positive electrode electrolytic solution 19, but it is preferable that the diluent solvent 1 to 1 is added.
[0058] セパレータには、 電池電解液を吸収保持するガラス繊維、 セラミックもし くはポリマーからなる多孔性シートまたは不織布を用いてもよい。 [0058] The separator may be a porous sheet or non-woven fabric made of glass fiber, ceramic or polymer that absorbs and holds the battery electrolyte.
[0059] 多孔性シートは、 例えば、 微多孔質のポリマー等で構成される。 このよう な多孔性シートを構成するポリマーとしては、 例えば、 ポリエチレン ( 巳 ) 、 ポリプロピレン ( ) などのポリオレフィン; 9 / 9 º / 9 の 3 層構造をした積層体、 ポリイミ ド、 アラミ ドが挙げられる。 特にポリオレフ ィン系微多孔質セパレータおよびガラス繊維製セパレータは、 有機溶媒に対 して化学的に安定であるという性質があり、 電解液との反応性を低く抑える ことができることから好ましい。 [0059] The porous sheet is made of, for example, a microporous polymer or the like. Examples of the polymer that constitutes such a porous sheet include polyolefins such as polyethylene (Mitsumi) and polypropylene (); laminates having a three-layer structure of 9/9º/9, polyimido, and aramid. .. In particular, the polyolefin microporous separator and the glass fiber separator are preferable because they have the property of being chemically stable with respect to the organic solvent and can suppress the reactivity with the electrolytic solution to a low level.
[0060] セパレータの厚みは限定されないが、 自動車用二次電池においては、 単層 または多層で全体の厚みが 4 〇1〜6 0 であることが好ましい。 また、 セパレータは、 孔径が 1 〇 以下 (例えば、 1 O n m ~ 1 O O n m) であ り、 空孔率は 2 0 %〜 9 5 %であることが好ましい。 [0060] The thickness of the separator is not limited, but in the secondary battery for automobile, it is preferable that the thickness of the separator is a single layer or a multilayer and the total thickness is 41 to 60. Further, the separator preferably has a pore diameter of 10 or less (for example, 1 O nm to 1 O O nm) and a porosity of 20% to 95%.
[0061 ] 希釈溶媒としては、 フッ素系溶媒が好ましい。 例えば、 クロロフルオロカ —ボン (〇 〇) 、 パーフルオロカーボン ( 〇) 、 ハイ ドロクロロフル オロカーボン (!~1〇 〇) 、 ハイ ドロフルオロカーボン (!~1 〇) 、 ハイ ド 〇 2020/175555 1 1 卩(:171? 2020 /007760 [0061] As the diluting solvent, a fluorinated solvent is preferable. For example, chlorofluorocarbons (○○), perfluorocarbons (○), hydrochlorofluorocarbons (! ~ 100○), hydrofluorocarbons (! ~ 10○), hides 〇 2020/175 555 1 1 卩(:171? 2020/007760
ロフルオロエーテル (1~1 巳) 、 パーフルオロポリエーテル ( 巳) ま たはハイ ドロフルオロボリエーテル (1~1 ?巳) が挙げられ、 好ましくはハ イ ドロフルオロカーボン (1~1 〇) またはハイ ドロフルオロエーテル (1~1 º) であり、 より好ましくはハイ ドロフルオロエーテル (1~1 巳) である。 Examples include rofluoroethers (1 to 1), perfluoropolyethers (M), or hydrofluoropolyethers (1 to 1?M), and preferred are hydrofluorocarbons (1 to 10) or high. Drofluoroether (1 to 1°), more preferably hydrofluoroether (1 to 1°).
[0062] 希釈溶媒は、 リチウム塩 1モルに対し、 〇. 3モル以上 1 0モル以下であ ることが好ましく、 〇. 5モル以上 5モル以下であることが特に好ましい。 前記範囲下限以上であれば十分な粘度低下が起こり、 前記範囲上限以下であ れば十分なリチウムイオン濃度を担保できる。 [0062] The dilution solvent is preferably 0.3 mol or more and 10 mol or less, and particularly preferably 0.5 mol or more and 5 mol or less, relative to 1 mol of the lithium salt. If it is at least the lower limit of the above range, sufficient viscosity reduction occurs, and if it is at most the upper limit of the above range, a sufficient lithium ion concentration can be secured.
[0063] 負極 1 2は、 厚さ 2 0 0 のリチウム金属シートである。 [0063] The negative electrode 12 is a lithium metal sheet having a thickness of 200.
[0064] なお、 負極 1 2は、 リチウムイオンを吸蔵脱離する負極活物質を含んでい ればよい。 [0064] Note that the negative electrode 12 may include a negative electrode active material that absorbs and desorbs lithium ions.
[0065] 負極活物質としては、 金属材料または炭素材料等の従来公知の負極材料を 用いることができる。 金属材料は、 チタン酸リチウム、 リチウム金属、 ナト リウム金属、 リチウムアルミ合金、 リチウムスズ合金、 リチウムケイ素合金 、 ナトリウムケイ素合金、 リチウムアンチモン合金等である。 炭素材料は、 天然黒鉛、 人造黒鉛、 力ーボンブラック、 アセチレンブラック、 グラファイ 卜、 グラフエン、 活性炭、 力ーボンファイバー、 コークス、 ソフトカーボン 、 ハードカーボン等であり、 結晶性でも非結晶性でもよい。 [0065] As the negative electrode active material, a conventionally known negative electrode material such as a metal material or a carbon material can be used. The metal material includes lithium titanate, lithium metal, sodium metal, lithium aluminum alloy, lithium tin alloy, lithium silicon alloy, sodium silicon alloy, lithium antimony alloy and the like. Carbon materials include natural graphite, artificial graphite, carbon black, acetylene black, graphite, graphene, activated carbon, carbon fiber, coke, soft carbon, hard carbon, etc., which may be crystalline or amorphous.
[0066] 負極活物質としては、 炭素材料、 リチウム、 または、 リチウム遷移金属複 合酸化物が、 容量および入出力特性に優れた電池を構成できることから好ま しい。 [0066] As the negative electrode active material, a carbon material, lithium, or a lithium-transition metal composite oxide is preferable because it can form a battery having excellent capacity and input/output characteristics.
[0067] <ステップ 4 0>組立工程 [0067] <Step 40> Assembly process
アルゴン雰囲気下のグローブボックス内で、 2 0 3 2型のコインセルケー ス 1 5 (3 II 3 3 0 4製の厚さ 3 . 2 〇〇 に積層シートを封入し、 負極 1 2の上にスプリング 1 6を配置した。 スプリング 1 6の上から蓋 1 7でコイ ンセルケース 1 5を封止した。 In a glove box under an argon atmosphere, a laminated sheet is sealed in a coin cell case 15 (3 II 3304, thickness 3.2 〇 〇) of 2 032 type, and a spring is placed on the negative electrode 12 2. 16 was placed, and the coin cell case 15 was sealed from the top of the spring 16 with the lid 17.
[0068] 以上の説明のように、 複合正極 1 1は、 電解液を含むスぺーサと積層され る前に、 すでに、 電解液 (正極電解液 1 9) を含んでいる電解液含有正極で 〇 2020/175555 12 卩(:171? 2020 /007760 [0068] As described above, the composite positive electrode 11 is an electrolyte-containing positive electrode that already contains the electrolyte solution (positive electrode electrolyte solution 19) before being laminated with the spacer containing the electrolyte solution. 〇 2020/175 555 12 (:171? 2020/007760
ある。 複合正極 1 1は、 〇1\1丁、 正極電解液 1 9、 正極活物質およびポリマ —を含有する。 is there. The composite positive electrode 11 contains 1\1, a positive electrode electrolyte solution 19, a positive electrode active material and a polymer.
[0069] 正極電解液 1 9のリチウム塩の濃度は、 希釈溶媒を含む電池電解液のリチ ウム塩の濃度よりも高い。 [0069] The concentration of the lithium salt in the positive electrode electrolyte solution 19 is higher than the concentration of the lithium salt in the battery electrolyte solution containing the diluting solvent.
[0070] 本実施形態の製造法によれば、 自立性のある正極シートとスぺーサと負極 シートとを積層することによって、 積層シートが作製できるため、 製造が容 易である。 [0070] According to the production method of the present embodiment, a laminated sheet can be produced by laminating a self-supporting positive electrode sheet, a spacer, and a negative electrode sheet, and therefore the production is easy.
[0071] <第 1実施形態の変形例> <Modification of First Embodiment>
第 1実施形態の変形例のリチウム硫黄電池 1 〇八等は、 リチウム硫黄電池 1 0と類似し、 同じ効果を有しているので、 同じ機能の構成要素には、 同じ 符号を付し説明は省略する。 The lithium-sulfur battery 108, etc. of the modified example of the first embodiment is similar to the lithium-sulfur battery 10 and has the same effect. Therefore, constituent elements having the same function are designated by the same reference numerals, and a description thereof will be omitted. Omit it.
[0072] <変形例 1> [Modification 1]
本変形例の電池 1 0八の複合正極 1 1 八の組成物の質量比 (〇1\1丁 : [!_ The mass ratio of the composition of the composite positive electrode 1 18 of the battery 108 of this modified example (○ 1 \ 1 pcs: [!_
I (31-) 2] [丁 3八] : 〇 -1~1 : 38) は、 (2 : 1 2 : 3 : 2) である。 複合正極 1 1 八の硫黄量は、 3.
Figure imgf000014_0001
である。 ま た、 複合正極 1 1 八に含まれる硫黄の質量 3に対する、 複合正極 1 1 八に含 まれる正極電解液 1 9の容量巳である、 巳/3は、 3. 8 !_/〇19であり 、 電池 1 0八のエネルギー密度は、
Figure imgf000014_0002
である。
I (31-) 2 ] [Ding 38]: 〇 -1 to 1: 3 8 ) is (2: 1 2 :3 :2). The amount of sulfur in the composite positive electrode 1 18 is 3.
Figure imgf000014_0001
Is. In addition, the volumetric capacity of the positive electrode electrolyte solution 19 contained in the composite positive electrode 1 18 with respect to the mass 3 of sulfur contained in the composite positive electrode 1 1 18 is ∙/3 = 3.8 !_/ 〇 1 9 and the energy density of battery 108 is
Figure imgf000014_0002
Is.
[0073] 図 5に、 電池 1 0八の放電特性 (30°〇 示す。 電流密度は、 〇/50レ —卜である。 なお、 〇/50レートは、 電極の単位面積当たり 1 20 八/ [0073] Fig. 5 shows the discharge characteristics of the battery 108 (30° ◯. The current density is ◯/50%. Note that the ◯/50 rate is 120 8/per unit area of the electrode.
〇 012の電流密度に相当する。 Corresponding to 〇 01 2 of current density.
[0074] 電池 1 0八の放電容量は、 3 「 サイクルでも、 700〇1八 /9 _3以 上であった。 [0074] discharge capacity of the battery 1 0 eight, even 3 "cycles were 700_Rei_1 eight / 9 _3 on more than.
[0075] <変形例 2> [0075] <Modification 2>
本変形例の電池 1 0八 1の複合正極 1 1 八 1の組成物の質量比 (〇 1\1丁 : :
Figure imgf000014_0003
The mass ratio of the composition of the composite positive electrode 1 1 8 1 of the battery 10 8 1 of this modified example (〇1\1:1::
Figure imgf000014_0003
ある。 また、 複合正極 1 1 八に含まれる硫黄の質量 3に対する、 複合正極 1 〇 2020/175555 13 卩(:171? 2020 /007760 is there. In addition, with respect to the mass 3 of sulfur contained in the composite positive electrode 1 118, the composite positive electrode 1 〇 2020/175 555 13 卩 (:171? 2020 /007760
1 八に含まれる正極電解液 1 9の容量巳である、 巳/3は、 7 1-/〇19で ある。 The volumetric capacity of the positive electrode electrolyte solution 19 contained in 18 is 9/3, which is 7 1-/19.
[0076] 図 6に、 電池 1 0八 1の放電特性 (30°〇 示す。 電流密度は、 0/20 レートである。 電池 1 〇八 1の放電容量 (2サイクル目) は、 1 000〇1八 11 / 9 _ 3であった。 [0076] Fig. 6 shows the discharge characteristics of the battery 108-1 (30°○. The current density is 0/20 rate. The discharge capacity (second cycle) of the battery 108-1 is 10000○. It was 1/8 11/9_3.
[0077] <変形例 3> [0077] <Modification 3>
本変形例の電池 1 0八 2の複合正極 1 1 八 2は、 炭素粒子として力ーボン ナノチューブだけでなく、 多孔質グラフアイ トであるケッチエンブラック ( <巳) を有する。 The composite positive electrode 1 1 18 2 of the battery 10 8 2 of this modified example has not only carbon nanotubes as carbon particles but also Ketjen black (<M) which is a porous graphite.
[0078] 本変形例の電池 1 0八 2の複合正極 1 1 八 2の組成物の質量比 ( <巳 : 〇 [0078] The mass ratio of the composition of the composite positive electrode 1 1 8 2 of the battery 10 8 2 of this modified example (< <: 〇
1\!丁 : [ (31_) 2] [丁 3八] : 〇 -1~1 : 38) は、 (11\! Ding: [(31_) 2 ] [Ding 38]: 〇 -1 to 1: 3 8 ) is (1
8 : 1 = 1 3 : 1 2 : 56) である。 複合正極 1 1 八 2の硫黄量は、 1. 1 1 019/0012である。 また、 複合正極 1 1 八 2に含まれる硫黄の質量 3に対 する、 複合正極 1 1 八 2に含まれる正極電解液 1 9の容量巳である、 £/3 は、 0.
Figure imgf000015_0001
である。
8: 1 = 1 3 :1 2 :56). The sulfur content of the composite positive electrode 1 1 8 2 is 1 1 1 019/001 2 . In addition, the volumetric capacity of the positive electrode electrolyte 19 contained in the composite positive electrode 1 18 2 with respect to the mass 3 of sulfur contained in the composite positive electrode 1 1 18 2 is £/3.
Figure imgf000015_0001
Is.
[0079] <巳は、 〇 1\1丁よりも分散性が良いため、 少量の正極電解液 1 9しか含ん でいない複合正極 1 1 八 2が作製できる。 なお、 巳/3は、 下限が技術的な 問題から、 例えば、 〇. 1 1-/ 9であり、 上限がエネルギー密度担保の ため、 例えば、
Figure imgf000015_0002
である。
[0079] <Mitsu has a better dispersibility than that of 0 1 \ 1, so that a composite positive electrode 1 1 18 2 containing only a small amount of the positive electrode electrolyte 19 can be prepared. In the case of Mimi/3, the lower limit is, for example, 0. 1 1-/9 due to technical problems, and the upper limit is energy density guarantee.
Figure imgf000015_0002
Is.
[0080] 図 7に、 電池 1 0八 2の放電特性 (30°〇 示す。 電流密度は、 0/48 レートである。 電池 1 0八 2の放電容量は、 1 0 I IIサイクル後でも、 1 1 00〇1八 11/ 9— 3であった。 [0080] Fig. 7 shows the discharge characteristics (30° ◯) of the battery 108. 2 The current density is 0/48 rate. The discharge capacity of the battery 1082 is 10 I II cycle, It was 1 1 00 0 18 11/9-3.
[0081] 〇 1\1丁を含まない正極シートは、 ポリマーを含んでいるため、 自立性はあ るが、 破断強度が小さい。 このため、 〇1\1丁が複合正極1 1 八 2の 1質量% 以上含まれていることが好ましい。 ただし、 〇 1\1丁の含有量が少ない正極シ —卜、 または、 〇 1\1丁を含まない正極シートであっても、 例えば、 アルミニ ウムからなる保持シートを基板として正極シートを作製し、 スぺーサシート と積層後に、 保持シートを剥離することによって、 正極シートの破断を防止 〇 2020/175555 14 卩(:171? 2020 /007760 [0081] The positive electrode sheet that does not include 1 \1 unit is self-supporting because it contains a polymer, but has a low breaking strength. For this reason, it is preferable that 1% of the composite positive electrode 1 1 8 2 is contained in an amount of 1% by mass or more. However, even if the positive electrode sheet contains a small amount of 0,1%, or even if the positive electrode sheet does not contain 0,1%, for example, a positive electrode sheet is prepared using a holding sheet made of aluminum as a substrate. Prevents breakage of the positive electrode sheet by peeling the holding sheet after stacking with the spacer sheet 〇 2020/175 555 14 卩 (:171? 2020 /007760
できる。 it can.
[0082] 例えば、 <巳だけで〇 1\1丁を含まない正極を具備する電池では、 巳/3 = [0082] For example, in the case of a battery having a positive electrode that does not include 0 1 \ 1 chome,
3. 1の場合でも、 º/3 = 0. 5の場合でも、 初期サイクルの放電容量は 、 1 300〇1八 11/ 9—3以上であった。 In both cases of 3.1 and º/3 = 0.5, the discharge capacity in the initial cycle was more than 1300 018 11/9—3.
[0083] <第 2実施形態> [Second Embodiment]
第 2実施形態のリチウム硫黄電池 1 0巳は、 リチウム硫黄電池 1 0と類似 しているので、 同じ機能の構成要素には、 同じ符号を付し説明は省略する。 Since the lithium-sulfur battery 10 according to the second embodiment is similar to the lithium-sulfur battery 10, the components having the same functions are designated by the same reference numerals and the description thereof will be omitted.
[0084] 電池 1 0巳では、 スぺーサ 1 3巳だけが電池 1 0八と異なる。 電池 1 0巳 の複合正極 1 1 巳の組成物の質量比 (〇 1\1丁 : [!_ 丨 (3 !_) 2] [丁 3八[0084] The battery 10m differs from the battery 108 only in the spacer 13m. Mass ratio of the composition of the composite positive electrode of the battery 1 0 1 0 1 battery (○ 1 \ 1 pcs: [!_ 丨 (3 !_) 2 ] [D 3 8
] : V 0 _ 1~1 : 38) は、 ( 2 : 1 2 : 3 : 2) であり、 電池 1 0八 と同じである。 ] :V 0 _ 1 ~ 1: 38) is (2: 1 2 :3 :2), which is the same as the battery 108.
[0085] 電池 1 0巳のスぺーサ 1 3巳は、 電池電解液を含む高分子ゲル電解質から なるシート (電解質シート) である。
Figure imgf000016_0001
と、 正極電解液 1 9 [!_ 丨 (3 !_) 2] [丁 3八] と、 分散溶媒であるアセトンと、 を混合する ことによって、 スぺーサスラリーが作製される。 スぺーサスラリーをコーテ ィングしてから、 アセトンを蒸発することによってスぺーサ 1 3巳が作製さ れた。 アセトンを短時間で蒸発するために、 真空乾燥法を用いてもよい。 分 散溶媒には、 テトラヒドロフランまたは、 1\1 -メチルピロリ ドン等を用いる こともできる。 厚さ 86 のスぺーサ 1 3巳の組成物の質量比 ( [!_ 丨 ( 31_) 2] [丁 3八] : 〇 ー 1~1 ?) は、 (80 : 20) である。 な お、 電池電解液は、 フッ素溶媒によって希釈されていない。 正極シートと電 解質シートとは、 集電体の上に正極スラリーとスぺーサスラリーとを連続し てコーティングして作製してもよい。
Spacer 13 of battery 10 is a sheet (electrolyte sheet) made of polymer gel electrolyte containing battery electrolyte.
Figure imgf000016_0001
A spacer slurry is prepared by mixing the positive electrode electrolyte solution 19 [!_ 丨 (3 !_) 2 ] [Ding 38] and acetone, which is a dispersion solvent. Spacer 13 was made by coating the spacer slurry and then evaporating the acetone. A vacuum drying method may be used to evaporate the acetone in a short time. Tetrahydrofuran, 1\1-methylpyrrolidone, or the like can also be used as the dispersion solvent. The mass ratio ([!_丨 (31_) 2 ] [Ding 38]: 〇 -1 to 1?) of the composition of spacers 13 and 13 of thickness 86 is (80: 20). The battery electrolyte is not diluted with a fluorine solvent. The positive electrode sheet and the electrolyte sheet may be produced by continuously coating the current collector with the positive electrode slurry and the spacer slurry.
[0086] 図 8に、 電池 1 0巳の放電特性 (30°〇 示す。 電流密度は、 〇/20レ —卜である。 なお、 〇/20レートは、 電極の単位面積当たり 76 八/〇 の電流密度に相当する。 [0086] Fig. 8 shows the discharge characteristics of battery 10 (30° 〇. Current density is 〇/20 layers. 〇/20 rate is 76 8/〇 per unit area of electrode. Corresponding to the current density of.
[0087] 電池 1 0巳の放電容量は、 41: 11サイクル後でも、 1 000〇1八 11/9 _ [0087] The discharge capacity of the battery 10 Tom was 1 000 〇 1 8 11/ 9 _ even after 41: 11 cycles.
3以上であった。 〇 2020/175555 15 卩(:171? 2020 /007760 It was 3 or more. 〇 2020/175 555 15 卩(:171? 2020/007760
[0088] <第 2実施形態の変形例> <Modification of Second Embodiment>
第 2実施形態の変形例のリチウム硫黄電池 1 0巳 1は、 リチウム硫黄電池 1 0巳と類似し、 同じ効果を有しているので、 同じ機能の構成要素には、 同 じ符号を付し説明は省略する。 The lithium-sulfur battery 10M 1 of the modified example of the second embodiment is similar to the lithium-sulfur battery 10M and has the same effect, so that the components having the same functions are designated by the same reference numerals. The description is omitted.
[0089] 本変形例の電池 1 0巳 1の複合正極 1 1 巳 1は、 複合正極 1 1 八 2と同じ である。 また、 スぺーサは、 電池 1 0巳のスぺーサ 1 3と同じである。 [0089] The composite positive electrode 1 1 _ 1 of the battery 10_ 1 of the present modification is the same as the composite positive electrode 1 1 8 2. Also, the spacer is the same as the spacer 13 of the battery 10.
[0090] 図 9に、 電池 1 0巳 1の放電特性 (30°〇 示す。 電流密度は、 0/48 レートである。 電池 1 0巳 1の放電容量は、 41: 11サイクルでも、
Figure imgf000017_0001
八 1"! / 9—3以上であった。
[0090] Fig. 9 shows the discharge characteristics (30° 〇 of Battery 10M 1). The current density is 0/48 rate. The discharge capacity of Battery 10M 1 is 41:11 cycles,
Figure imgf000017_0001
Eight 1"!/9—3 or more.
[0091] <第 3実施形態> <Third Embodiment>
第 3実施形態のリチウム硫黄電池 1 0〇は、 リチウム硫黄電池 1 0と類似 しているので、 同じ機能の構成要素には、 同じ符号を付し説明は省略する。 Since the lithium-sulfur battery 100 according to the third embodiment is similar to the lithium-sulfur battery 10, the components having the same functions are designated by the same reference numerals and the description thereof will be omitted.
[0092] 電池 1 〇〇の複合正極 1 1 〇は、 ポリマーを含んでいない。 また、 スぺ一 サ 1 3(3は電池電解液を含んだ多孔質金属、 多孔質セラミックまたは多孔質 樹脂からなるセパレータである。 [0092] The composite positive electrode 1100 of the battery 100 does not contain a polymer. Further, the spacer 13 (3 is a separator made of a porous metal containing a battery electrolyte, a porous ceramic or a porous resin.
[0093] 電池 1 0(3の複合正極 1 1 (3は、 電池 1 0の複合正極 1 1 と類似の方法に よって作製される。 しかし、 ポリマーを含んでいない複合正極 1 1 〇は自立 性が無いゲルであった。 このため、 正極スラリーは、 集電体である発泡アル ミニウム箔にコーティングされた。 複合正極 1 1 〇の組成物の質量比 (〇 丁 : [!_ I (3 !_) 2] [丁 3八] : 38) は、 (1 5 : 63 : 22) であ る。 複合正極 1 1 〇の硫黄量は、 9. 9 9/0012である。 巳/3は、 ·! . 8 1-/〇19であり、 電池 1 0〇のエネルギー密度は、
Figure imgf000017_0002
[0093] The composite positive electrode 11 (3 of the battery 10 (3 is manufactured by a method similar to that of the composite positive electrode 11 of the battery 10. However, the composite positive electrode 1 1 1 0 containing no polymer is self-supporting. Therefore, the positive electrode slurry was coated on a foamed aluminum foil, which was a current collector, and the mass ratio of the composition of the composite positive electrode 1 10 (0: :[!_ I (3! _) 2 ] [Ding 3 8] :3 8 ) is (15: 63: 22) The sulfur content of the composite positive electrode 1 10 is 9. 9 9/001 2 . Is ...! .8 1-/〇19, and the energy density of battery 100 is
Figure imgf000017_0002
ある。 is there.
[0094] 電池電解液は、 1~1 巳の添加によって希釈されている。 電池電解液の組成 は、 ( ( [1_ 丨 (31_) 2] [丁 3八] ) +41~1 巳) である。 [0094] The battery electrolyte is diluted by the addition of 1 to 1 mil. The composition of the battery electrolyte is (( [1_ 丨 (31_) 2 ] [Ding 38]) +41 ~ 1 巳).
[0095] 図 1 0に、 電池 1 〇〇の放電特性 (30°〇 示す。 電流密度は、 0/1 6 [0095] Fig. 10 shows the discharge characteristics of the battery 100 (30°). The current density is 0/16.
5レートである。 なお、 〇/1 65レートは、 電極の単位面積当たり 1 00 八/〇 012の電流密度に相当する。 \¥02020/175555 16 卩(:17 2020 /007760 5 rates. Incidentally, 〇 / 1 65 rate corresponds to 1 00 eight / 〇 01 2 of current density per unit area of the electrode. \¥02020/175555 16 卩(: 17 2020/007760
[0096] 電池 1 00の放電容量 (1 3 サイクル) は、 1 000 八 11/9 _3 以上である。 また、 電池 1 00のエネルギー密度は、
Figure imgf000018_0001
[0096] The discharge capacity (13 cycles) of the battery 100 is 1 000 8 11/9 _3 or more. Also, the energy density of battery 100 is
Figure imgf000018_0001
る。 It
[0097] <第 4実施形態> <Fourth Embodiment>
第 4実施形態のリチウム硫黄電池 1 00は、 リチウム硫黄電池 1 0等と類 似しているので、 同じ機能の構成要素には、 同じ符号を付し説明は省略する Since the lithium-sulfur battery 100 of the fourth embodiment is similar to the lithium-sulfur battery 10 etc., components having the same functions are designated by the same reference numerals, and the description thereof will be omitted.
[0098] 電池 1 00では、 正極電解液 1 90および電池電解液が、 エーテル化合物 とリチウムイオンとが錯体を形成しているグライム系溶媒和イオン液体であ る。 In the battery 100, the positive electrode electrolytic solution 190 and the battery electrolytic solution are glyme solvated ionic liquids in which an ether compound and a lithium ion form a complex.
[0099] 具体的には、 正極電解液 1 90および電池電解液は、 エーテル化合物であ るテトラグライム (〇4) が、 リチウム塩丁 3八と錯体を形成したグライ ム系溶媒和イオン液体 [!_ 丨 (04) ] [丁 3八] ) である。 [0099] Specifically, in the positive electrode electrolytic solution 190 and the battery electrolytic solution, tetraglyme (04), which is an ether compound, is a solvated ionic liquid of the lime type that forms a complex with lithium salt 38. !_ 丨 (04) ][ Ding 3 8] ).
[0100] 電池 1 00の複合正極 1 1 口の組成物の質量比 (〇1\!丁 : [!_ 丨 (04) [0100] Mass ratio of composition of composite positive electrode 11 of battery 100 (〇1\! Ding: [!_ 丨 (04)
] [丁 3八] : 〇 ー 1~1 : 38) は、 (2 : 1 2 : 3 : 2) である 。 ポリマーを含む複合正極 1 1 口は、 巳/3が 4. 2 1-/〇19であり、 自 立性のある正極シートである。 ] [Ding 3 eight]: 〇 - 1 to 1: 3 8), (2: 1 2: 3: 2). The composite positive electrode 11 containing polymer has a total of 4.2/3-/19 for Mimi/3, which is a self-supporting positive electrode sheet.
[0101] 図 1 1、 図 1 2に、 電池 1 0口の放電特性 (30°〇 示す。 電流密度は、 〇/8レートである。 なお、 〇/8レートは、 電極の単位面積当たり 1 70 八/〇 012の電流密度に相当する。 [0101] Fig. 11 and Fig. 12 show discharge characteristics (30° ◯) of 10 batteries. Current density is ∘/8 rate. ∘/8 rate is 1 per unit area of electrode. 70 corresponds to a current density of eight / 〇 01 2.
[0102] 電池 1 00は、 90サイクル後でも、 放電容量 730〇1八 11/9、 クーロ ン効率 98. 4%であった。 [0102] Battery 100 had a discharge capacity of 730.1818/11/ 9 and a coulombic efficiency of 98.4% even after 90 cycles.
[0103] なお、 グライム系溶媒和イオン液体を構成するリチウム塩として、 (1- 1 [0103] As a lithium salt constituting the glyme solvated ionic liquid, (1-1
B F4). (1_ 丨 [ 3八] ) 、 または、 (1_ 丨 〇 丨 〇 4) を用いてもよい。 グ ライム系溶媒和イオン液体を構成するエーテル化合物として、 モノグライム 、 ジグライム、 トリグライム、 テトラグライム、 メチルモノグライム、 エチ ルモノグライム、 エチルジグライム、 または、 プチルジグライムを用いても よい。 〇 2020/175555 17 卩(:171? 2020 /007760 BF 4 ). (1_ 丨 [38]) or (1 _ 丨 丨 〇 4 ) may be used. As the ether compound constituting the glyme-based solvated ionic liquid, monoglyme, diglyme, triglyme, tetraglyme, methyl monoglyme, ethyl monoglyme, ethyl diglyme or pentyl diglyme may be used. 〇 2020/175 555 17 卩(:171? 2020/007760
[0104] グライム系溶媒和イオン液体は、 特に〇 1\1丁の分散性に優れているため、 正極溶媒および電池溶媒として特に好ましい。 [0104] Glyme solvated ionic liquids are particularly preferable as the positive electrode solvent and the battery solvent, because they are excellent in dispersibility of 0 1 \1.
[0105] <第 5実施形態> <Fifth Embodiment>
第 5実施形態のリチウム硫黄電池 1 〇巳は、 リチウム硫黄電池 1 〇口と類 似しているので、 同じ機能の構成要素には、 同じ符号を付し説明は省略する Since the lithium-sulfur battery 10M of the fifth embodiment is similar to the lithium-sulfur battery 10M, the components having the same functions are designated by the same reference numerals and description thereof will be omitted.
[0106] 電池 1 〇巳は、 電池 1 00とは、 スぺーサ 1 3巳が、 電解質シートである 点だけが異なる。 例えば、 電池 1 0巳の複合正極 1 1 巳は、 電池 1 00の複 合正極 1 1 0と同じである。 [0106] Battery 10M differs from battery 100 only in that spacer 13M is an electrolyte sheet. For example, the composite positive electrode 11 11 of battery 10 0 is the same as the composite positive electrode 11 10 of battery 100.
[0107] 電解質シートであるスぺーサ 1 3巳の組成物の質量比 ( [!_ 丨 (04) ] [0107] Mass ratio of the composition of spacer 13 which is the electrolyte sheet ([!_ 丨 (04)]
[丁 3八] : 〇 ー 1~1 ?) は、 (80 : 20) である。 [Ding 3-8]: 〇-1 to 1? ) Is (80:20).
[0108] 図 1 3に、 電池 1 0巳の放電特性 (30°〇 示す。 電池 1 0巳の放電容量 は、 3サイクル後でも 600 八 /9以上である。 [0108] Figure 1 3, the battery 1 0 Snake discharge characteristics (30 ° 〇 shown. Cell 1 0 only discharge capacity is 600 eight / 9 or more even after 3 cycles.
[0109] なお、 電池 1 0、 1 0八~ 1 0巳は、 コイン型に限られるものではなく、 公知の各種の構造、 例えば、 巻回型、 またはラミネート型等でもよい。 また 電池 1 0等は複数の単位セル (正極/電解液/負極) を有していてもよいし 、 複数の単位セルからなるユニッ トを複数個有していてもよい。 [0109] The batteries 10 and 108 to 10 are not limited to the coin type, and may have various known structures such as a wound type and a laminated type. Further, the battery 10 or the like may have a plurality of unit cells (positive electrode/electrolyte/negative electrode), or may have a plurality of units composed of a plurality of unit cells.
[0110] 本発明は、 上述した各実施形態に限定されるものではなく、 発明の趣旨を 逸脱しない範囲内において種々の変更、 組み合わせ、 および、 応用が可能で ある。 The present invention is not limited to the above-described embodiments, and various modifications, combinations, and applications are possible without departing from the spirit of the invention.
[0111] 本出願は、 201 9年2月 27日に日本国に出願された特願 201 9-3 4605号を優先権主張の基礎として出願するものであり、 上記の内容は、 本願明細書、 請求の範囲、 図面に引用されたものである。 また、 平成 29年 、 国立研究開発法人科学技術振興機構、 戦略的創造研究推進事業、 先端的低 炭素化技術開発、 産業技術力強化法第 1 9条の適用を受ける特許出願である [0111] The present application is based on Japanese Patent Application No. 201 9-3 4605 filed in Japan on February 27, 2010 as a basis for claiming priority, and the contents of the above description are as follows. , Claims, and are cited in the drawings. In addition, in 2017, it is a patent application subject to the National Research and Development Agency, Japan Science and Technology Agency, Strategic Creative Research Promotion Project, advanced low carbonization technology development, and Industrial Technology Enhancement Act Article 19
符号の説明 Explanation of symbols
[0112] 1 0、 1 0八~ 1 0巳 · · · リチウム硫黄電池 \¥02020/175555 18 卩(:17 2020 /007760 [0112] 1 0, 10 8~10 Mi···· Lithium sulfur battery \¥02020/175555 18 卩 (: 17 2020 /007760
1 1、 1 1 〜 1 1 巳 · · ·複合正極 1 1, 1 1 to 11 1Min.
1 2 · · ·負極 1 2 ··· Negative electrode
1 3、 1 3巳、 1 30、 1 3巳 · · ·スぺーサ 1 3 1 3 1 3 1 3 1 3 1 3
1 4 · · ·電池電解液 1 4 ··· Battery electrolyte
1 9、 1 90 · · ·正極電解液 1 9, 1 90 ··· Positive electrode electrolyte

Claims

\¥0 2020/175555 19 卩(:17 2020 /007760 請求の範囲 \\0 2020/175 555 19 ((17 2020/007760 Claims
[請求項 1 ] 硫黄系正極活物質と、 炭素粒子と、 リチウム塩および正極溶媒を含 む正極電解液と、 を有する複合正極と、 [Claim 1] A composite positive electrode including a sulfur-based positive electrode active material, carbon particles, and a positive electrode electrolytic solution containing a lithium salt and a positive electrode solvent,
負極活物質を有する負極と、 A negative electrode having a negative electrode active material,
前記複合正極と前記負極との間に配設されている、 リチウム塩およ び電池溶媒を含む電池電解液を有するスぺーサと、 を具備し、 前記複合正極に含まれる硫黄の質量 3に対する、 前記複合正極に含 まれる前記正極電解液の容量巳の比である、 巳/ 3が、 7
Figure imgf000021_0001
以下であることを特徴とするリチウム硫黄電池。
A spacer provided between the composite positive electrode and the negative electrode, the spacer having a battery electrolyte solution containing a lithium salt and a battery solvent, and 3 mass of sulfur contained in the composite positive electrode. The ratio of the volumetric capacity of the positive electrode electrolyte contained in the composite positive electrode is:
Figure imgf000021_0001
A lithium-sulfur battery characterized by being:
[請求項 2] 前記正極電解液および前記電池電解液が、 グライム系溶媒和イオン 液体、 または、 スルホニル基含有化合物系濃厚電解液であり、 前記スルホニル基含有化合物系濃厚電解液は、 リチウム塩 1モルに 対する正極溶媒の量が、 1 . 3モル以上 5モル以下であることを特徴 とする請求項 1 に記載のリチウム硫黄電池。 [Claim 2] The positive electrode electrolytic solution and the battery electrolytic solution are a glyme solvated ionic liquid or a sulfonyl group-containing compound-based concentrated electrolytic solution, and the sulfonyl group-containing compound-based concentrated electrolytic solution is a lithium salt 1 The lithium-sulfur battery according to claim 1, wherein the amount of the positive electrode solvent with respect to the mol is 1.3 mol or more and 5 mol or less.
[請求項 3] 前記複合正極が、 ポリマーを更に有する自立性のある正極シートで あり、 [Claim 3] The composite positive electrode is a self-supporting positive electrode sheet further containing a polymer,
前記正極シートの破断伸度が 5 %以上であることを特徴とする請求 項 1 または請求項 2に記載のリチウム硫黄電池。 The lithium-sulfur battery according to claim 1 or 2, wherein the breaking elongation of the positive electrode sheet is 5% or more.
[請求項 4] 前記スぺーサが、 高分子ゲル電解質からなる自立性のあるスぺーサ シートであることを特徴とする請求項 1から請求項 3のいずれか 1項 に記載のリチウム硫黄電池。 [Claim 4] The lithium-sulfur battery according to any one of claims 1 to 3, wherein the spacer is a self-supporting spacer sheet made of a polymer gel electrolyte. ..
[請求項 5] 前記硫黄系正極活物質が、 単体硫黄、 多硫化リチウムまたは硫化リ チウムの少なくともいずれであり、 [Claim 5] The sulfur-based positive electrode active material is at least one of elemental sulfur, lithium polysulfide, and lithium sulfide,
前記炭素粒子が、 多孔質グラファイ トまたはアスペクト比 5 0 0以 上の力ーボンナノチューブの少なくともいずれかであり、 The carbon particles are at least one of porous graphite and force-bon nanotubes having an aspect ratio of 500 or more,
前記ポリマーが、 ビニリデンフルオライ ドとヘキサフルオロプロピ レンとの共重合体であり、 The polymer is a copolymer of vinylidene fluoride and hexafluoropropylene,
前記正極シートが、 前記炭素粒子を、 1質量%以上 2 0質量%以下 〇 2020/175555 20 卩(:171? 2020 /007760 The positive electrode sheet contains the carbon particles in an amount of 1% by mass or more and 20% by mass or less. 〇 2020/175 555 20 (:171? 2020/007760
含み、 前記ポリマーを、 5質量%以上 3 0質量%以下含むことを特徴 とする請求項 3に記載のリチウム硫黄電池。 4. The lithium-sulfur battery according to claim 3, wherein the content of the polymer is 5% by mass or more and 30% by mass or less.
[請求項 6] 前記炭素粒子が、 前記力ーボンナノチューブであることを特徴とす る請求項 5に記載のリチウム硫黄電池。 6. The lithium-sulfur battery according to claim 5, wherein the carbon particles are the carbon nanotubes.
[請求項 7] 前記炭素粒子が、 前記多孔質グラファイ トおよび前記力ーボンナノ チューブであり、 [Claim 7] The carbon particles are the porous graphite and the carbon nanotube,
前記正極シートが、 前記力ーボンナノチューブを、 1質量%以上含 むことを特徴とする請求項 5に記載のリチウム硫黄電池。 6. The lithium-sulfur battery according to claim 5, wherein the positive electrode sheet contains the carbon nanotube in an amount of 1% by mass or more.
[請求項 8] 前記正極電解液のリチウム塩の濃度が、 前記電池電解液のリチウム 塩の濃度よりも高いことを特徴とする請求項 1から請求項 7のいずれ か 1項に記載のリチウム硫黄電池。 8. The lithium sulfur according to any one of claims 1 to 7, wherein the lithium salt concentration of the positive electrode electrolyte is higher than the lithium salt concentration of the battery electrolyte. battery.
[請求項 9] 前記巳/ 3が、 〇. 1 し/ 9以上 5 !_ /〇1 9以下であること を特徴とする請求項 1から請求項 8のいずれか 1項に記載のリチウム 硫黄電池。 [Claim 9] The lithium/sulfur according to any one of claims 1 to 8, characterized in that the value of /3 is not less than 0.1 /9 and not more than 5 !_ /○ 19 battery.
[請求項 10] 硫黄系正極活物質と、 炭素粒子と、 リチウム塩および正極溶媒とを 含む正極電解液と、 分散溶媒と、 ポリマーと、 を含む正極スラリーを 作製する工程と、 [Claim 10] A step of producing a positive electrode slurry containing a sulfur-based positive electrode active material, carbon particles, a positive electrode electrolytic solution containing a lithium salt and a positive electrode solvent, a dispersion solvent, and a polymer,
前記正極スラリーの前記分散溶媒を蒸発することによって、 自立性 のある正極シートを作製する工程と、 A step of producing a self-standing positive electrode sheet by evaporating the dispersion solvent of the positive electrode slurry;
前記正極シートと、 電池電解液を含むスぺーサと、 負極活物質を含 む負極と、 を積層することによって、 積層シートを作製する工程と、 を具備することを特徴とするリチウム硫黄電池の製造方法。 A step of producing a laminated sheet by laminating the positive electrode sheet, a spacer containing a battery electrolyte solution, and a negative electrode containing a negative electrode active material; Production method.
[請求項 1 1 ] 前記正極電解液および前記電池電解液が、 グライム系溶媒和イオン 液体、 または、 スルホニル基含有化合物系濃厚電解液であり、 前記スルホニル基含有化合物系濃厚電解液は、 リチウム塩 1モルに 対する正極溶媒の量が、 1 . 3モル以上 5モル以下であり、 [Claim 11] The positive electrode electrolytic solution and the battery electrolytic solution are glyme-based solvated ionic liquids or sulfonyl group-containing compound-based concentrated electrolytic solutions, and the sulfonyl group-containing compound-based concentrated electrolytic solution is a lithium salt. The amount of the positive electrode solvent for 1 mol is 1.3 mol or more and 5 mol or less,
前記分散溶媒が、 メチルイソプチルケトン、 アセトン、 メチルエチ ルケトン、 テトラヒドロフランまたは、 1\1 _メチルピロリ ドンである 〇 2020/175555 21 卩(:171? 2020 /007760 The dispersion solvent is methyl isoptyl ketone, acetone, methyl ethyl ketone, tetrahydrofuran, or 1\1_methylpyrrolidone. 〇 2020/175 555 21 卩 (:171? 2020 /007760
ことを特徴とする請求項 1 〇に記載のリチウム硫黄電池の製造方法。 The method for producing a lithium-sulfur battery according to claim 10, characterized in that
[請求項 12] 前記正極スラリーを作製する工程において、 [Claim 12] In the step of producing the positive electrode slurry,
前記硫黄系正極活物質と、 前記炭素粒子と、 を含む複合粒子が作製 され、 Composite particles containing the sulfur-based positive electrode active material and the carbon particles are prepared,
前記複合粒子に前記正極電解液を加えられ、 混練されることを特徴 とする請求項 1 〇または請求項 1 1 に記載のリチウム硫黄電池の製造 方法。 The method for producing a lithium-sulfur battery according to claim 10 or 11, wherein the positive electrode electrolyte is added to the composite particles and kneaded.
[請求項 13] 前記炭素粒子が、 アスぺクト比 5 0 0以上の力ーボンナノチューブ を含み、 [Claim 13] The carbon particles include carbon nanotubes having an aspect ratio of 500 or more,
前記複合粒子と前記正極電解液との混練物に、 さらに、 前記ポリマ _が加えられ、 Further, to the kneaded product of the composite particles and the positive electrode electrolyte, the polymer _ is added,
前記正極シートは、 破断伸度が 5 %以上であることを特徴とする請 求項 1 0から請求項 1 2のいずれか 1項に記載のリチウム硫黄電池の 製造方法。 The method for manufacturing a lithium-sulfur battery according to any one of claims 10 to 12, wherein the positive electrode sheet has a breaking elongation of 5% or more.
[請求項 14] 前記炭素粒子が、 多孔質グラファイ トおよびアスペクト比 5 0 0以 上の力ーボンナノチューブであり、 [Claim 14] The carbon particles are porous graphite and force carbon nanotubes having an aspect ratio of 500 or more,
前記正極シートは、 前記力ーボンナノチューブを、 1質量%以上含 んでいることを特徴とする請求項 1 〇から請求項 1 3のいずれか 1項 に記載のリチウム硫黄電池の製造方法。 The method for manufacturing a lithium-sulfur battery according to any one of claims 10 to 13, wherein the positive electrode sheet contains the carbon nanotubes in an amount of 1% by mass or more.
PCT/JP2020/007760 2019-02-27 2020-02-26 Lithium-sulfur battery, and lithium-sulfur battery production method WO2020175555A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021502318A JPWO2020175555A1 (en) 2019-02-27 2020-02-26 Lithium-sulfur battery and method for manufacturing lithium-sulfur battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019034605 2019-02-27
JP2019-034605 2019-02-27

Publications (1)

Publication Number Publication Date
WO2020175555A1 true WO2020175555A1 (en) 2020-09-03

Family

ID=72238950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007760 WO2020175555A1 (en) 2019-02-27 2020-02-26 Lithium-sulfur battery, and lithium-sulfur battery production method

Country Status (2)

Country Link
JP (1) JPWO2020175555A1 (en)
WO (1) WO2020175555A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113131001A (en) * 2021-04-21 2021-07-16 郑州航空工业管理学院 Solvating ionic liquid electrolyte with adjustable structure, preparation method thereof and lithium-sulfur battery
WO2023074213A1 (en) * 2021-10-29 2023-05-04 株式会社Abri Positive electrode for lithium sulfur batteries, and lithium sulfur battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109223A (en) * 2010-10-29 2012-06-07 Yokohama National Univ Alkali metal-sulfur secondary battery
JP2014041811A (en) * 2012-03-19 2014-03-06 Yokohama National Univ Alkali metal-sulfur-based secondary battery
JP2015506899A (en) * 2011-12-22 2015-03-05 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Binder-free sulfur-carbon nanotube composite cathode for rechargeable lithium-sulfur batteries and method of making the same
JP2016122657A (en) * 2012-03-26 2016-07-07 国立大学法人 東京大学 Lithium secondary battery electrolyte, and secondary battery including the same
JP2017168435A (en) * 2016-03-11 2017-09-21 東京電力ホールディングス株式会社 Positive electrode material for solid battery, manufacturing method thereof, all-solid lithium sulfur battery arranged by use of positive electrode material for solid battery, and manufacturing method thereof
WO2019049826A1 (en) * 2017-09-07 2019-03-14 国立大学法人 横浜国立大学 Lithium-sulfur battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109223A (en) * 2010-10-29 2012-06-07 Yokohama National Univ Alkali metal-sulfur secondary battery
JP2015506899A (en) * 2011-12-22 2015-03-05 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Binder-free sulfur-carbon nanotube composite cathode for rechargeable lithium-sulfur batteries and method of making the same
JP2014041811A (en) * 2012-03-19 2014-03-06 Yokohama National Univ Alkali metal-sulfur-based secondary battery
JP2016122657A (en) * 2012-03-26 2016-07-07 国立大学法人 東京大学 Lithium secondary battery electrolyte, and secondary battery including the same
JP2017168435A (en) * 2016-03-11 2017-09-21 東京電力ホールディングス株式会社 Positive electrode material for solid battery, manufacturing method thereof, all-solid lithium sulfur battery arranged by use of positive electrode material for solid battery, and manufacturing method thereof
WO2019049826A1 (en) * 2017-09-07 2019-03-14 国立大学法人 横浜国立大学 Lithium-sulfur battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113131001A (en) * 2021-04-21 2021-07-16 郑州航空工业管理学院 Solvating ionic liquid electrolyte with adjustable structure, preparation method thereof and lithium-sulfur battery
WO2023074213A1 (en) * 2021-10-29 2023-05-04 株式会社Abri Positive electrode for lithium sulfur batteries, and lithium sulfur battery

Also Published As

Publication number Publication date
JPWO2020175555A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
Mahmud et al. Recent advances in lithium-ion battery materials for improved electrochemical performance: A review
JP6209968B2 (en) Lithium ion battery and manufacturing method thereof
KR101825918B1 (en) Negative electrode, and lithium battery comprising the same
JP7062153B2 (en) Tertiary structure electrodes and electrochemical devices containing them
Zhang et al. High sulfur loading lithium–sulfur batteries based on a upper current collector electrode with lithium-ion conductive polymers
JP2014137996A (en) Lithium battery
JP2004071566A (en) Positive electrode for lithium-sulfur battery, its manufacturing method, and lithium-sulfur battery including the same
JP7084493B2 (en) Sulfur-carbon composite, this manufacturing method, positive electrode and lithium secondary battery containing it
Kong et al. Ultrathin HfO2-modified carbon nanotube films as efficient polysulfide barriers for Li-S batteries
KR101488244B1 (en) Method for manufacturing positive electrode for lithium-sulfur battery and lithium-sulfur battery
JPWO2019049826A1 (en) Lithium sulfur battery
JP2012181975A (en) Nonaqueous secondary battery
WO2014181778A1 (en) Positive-electrode material and manufacturing method therefor
US9112213B2 (en) Active material for a secondary battery, secondary battery including the active material, and method of preparing an active material
US9105925B2 (en) Anode active material comprising a porous transition metal oxide, anode comprising the anode active material, lithium battery comprising the anode, and method of preparing the anode active material
JP6937908B2 (en) Sulfur-carbon complex, its manufacturing method, and lithium secondary battery containing it
WO2020175555A1 (en) Lithium-sulfur battery, and lithium-sulfur battery production method
US20180309156A1 (en) Metal-ion rechargeable cell or battery
CN113422112A (en) High-energy and high-safety all-solid-state secondary battery based on lithium sulfide anode and preparation method thereof
JP2023520194A (en) Negative electrode and secondary battery containing the same
Kang et al. Highly stable lithium metal anode enabled by constructing lithiophilic 3D interphase on robust framework
WO2023042262A1 (en) Lithium secondary battery
WO2021182320A1 (en) Electrode for lithium ion secondary batteries, and lithium ion secondary battery
KR20200060063A (en) Electrolyte additives for lithium secondary battery, non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR102144326B1 (en) Active material for secondary battery, Method for preparing the same, and Secondary battery comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762829

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502318

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762829

Country of ref document: EP

Kind code of ref document: A1