WO2020168974A1 - 一种磷酸铁锂电池及其制备方法 - Google Patents

一种磷酸铁锂电池及其制备方法 Download PDF

Info

Publication number
WO2020168974A1
WO2020168974A1 PCT/CN2020/075052 CN2020075052W WO2020168974A1 WO 2020168974 A1 WO2020168974 A1 WO 2020168974A1 CN 2020075052 W CN2020075052 W CN 2020075052W WO 2020168974 A1 WO2020168974 A1 WO 2020168974A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron phosphate
lithium iron
parts
phosphate battery
negative electrode
Prior art date
Application number
PCT/CN2020/075052
Other languages
English (en)
French (fr)
Inventor
平松雄二
那须野豪三
Original Assignee
叶小剑
平松雄二
牛尾顺一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 叶小剑, 平松雄二, 牛尾顺一 filed Critical 叶小剑
Priority to KR1020217030181A priority Critical patent/KR20210148121A/ko
Priority to JP2021547314A priority patent/JP2022527237A/ja
Publication of WO2020168974A1 publication Critical patent/WO2020168974A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • C01B32/154Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents

Definitions

  • the invention relates to the field of batteries, in particular to a lithium iron phosphate battery and a preparation method thereof.
  • Lithium-ion secondary batteries are widely used in electric vehicles and consumer electronic products due to their advantages of high energy density, high output power, long cycle life and low environmental pollution.
  • Lithium iron phosphate is currently one of the most commonly used cathode materials for power batteries due to its high cycle life, good safety and low price.
  • the disadvantage of lithium iron phosphate batteries is their low energy density. In order to increase the energy density, on the one hand, it is to increase the gram capacity of the positive and negative materials, and on the other hand, it is to increase the compaction density of the positive and negative electrodes.
  • the purpose of the present invention is to provide a lithium iron phosphate battery, which can solve the problem of poor wettability of the high-density electrode sheet and the electrolyte, and improve the low-temperature performance, normal temperature and high temperature of the lithium iron phosphate battery. Cycle performance has been improved, effectively extending the service life of lithium iron phosphate batteries.
  • a lithium iron phosphate battery the positive electrode material of which contains the following components: lithium iron phosphate, conductive agent, binder, carbon nanotube slurry or graphene; the negative electrode material contains the following Components: graphite carbon black, conductive agent, binder, fullerene, nanowire, nano titanium; and electrolyte, which includes catechol diacetate.
  • the positive electrode material contains the following components by weight: 2-10 parts of lithium iron phosphate, 5-30 parts of conductive agent, 1-15 parts of binder, 2.5-30 parts of carbon nanotube slurry or graphene
  • the negative electrode material contains the following components by weight: 1-20 parts of graphite carbon black, 5-30 parts of conductive agent, 1-15 parts of binder, 0.8-25 parts of fullerene, 5-15 parts of nanowire Parts, 2-8 parts of nano titanium, the mass fraction of catechol diacetate is 5-12%.
  • the positive electrode is aluminum foil.
  • the negative electrode set is copper foil.
  • the conductive agent is acetylene black.
  • the binder is polyvinylidene fluoride (PVDF).
  • the present invention also provides a method for preparing the lithium iron phosphate battery as described above, including the following steps:
  • the fullerene needs to be extracted before the step (1), and the extraction method adopts the following steps: put the carbon powder into the redox kettle and energize and burn, then extract the carbon black particles attached to the inner wall of the kettle, and then pass the electrostatic The fullerene is obtained by processing.
  • the electrolyte solution needs to be prepared before the step (1), which is prepared by the following method: mixing the organic solvent ethyl methyl carbonate, dimethyl carbonate, and methyl propionate, and finally adding catechol diacetate The added amount is 2-10% of the total volume of the electrolyte to obtain the electrolyte.
  • the step (2) negative electrode material is prepared by the following method: graphite carbon black, conductive agent, binder, fullerene, nanowire, and nano titanium are mixed and ground into powder, and the powder is moved to a pressure In a 30-50mPa high-pressure reactor, the reactor is then placed in a microwave oven with a power of 1800-2200W, heated for 200-1200s, and cooled to room temperature to obtain the negative electrode material.
  • the present invention adds nanowires and nanometer titanium to the negative electrode material of the battery; adds catechol diacetate to the electrolyte, so that the lithium iron phosphate battery of the present invention can solve high pressure
  • the poor wettability of the density electrode sheet and the electrolyte improves the low temperature performance, normal temperature and high temperature cycle performance of the lithium iron phosphate battery, and effectively extends the service life of the lithium iron phosphate battery.
  • Fig. 1 is a picture of an electrostatic loader used in preparing fullerenes in an embodiment of the present invention.
  • the graphite carbon black described in the present invention is graphitized carbon black.
  • the electrolyte of the embodiment of the present invention is composed of a lithium salt and an organic solvent.
  • the electrolyte of the present invention adopts an improved organic solvent, which can effectively provide battery performance.
  • the addition of fullerene to the negative electrode slurry can greatly improve the overall performance of the product.
  • the addition amount of fullerene can be more than four ten thousandths, and a small amount of fullerene is added.
  • the fullerene added to the negative electrode slurry is a combination of 70% positively charged fullerene and 30% negatively charged fullerene.
  • the fullerene combination with positive and negative charges is put into the battery negative electrode slurry at a mass ratio of 3 to 7%.
  • the Fuqin Dilute extracted by the invention can even be directly applied to the battery without refining by the toluene method.
  • the negative material section has a significant impact on the energy density, service life and safety of the battery.
  • the use of the fullerene prepared by the present invention in the negative electrode will help increase the charge conduction speed, the insulation between the electrodes, and can suppress the volume change of the electrode due to charging and discharging, so as to produce higher capacity and longer service life , A battery with higher safety (not easy to catch fire and explode).
  • this method can be mass-produced and obtain relatively inexpensive fullerenes.
  • the positive electrode material of the lithium iron phosphate battery of this embodiment includes the following components: 2 parts of lithium iron phosphate, 5 parts of conductive agent, 1 part of binder, and 2.5 parts of carbon nanotube slurry; the negative electrode material contains the following parts by weight Components: 1 part of graphite carbon black, 5 parts of conductive agent, 1 part of binder, 0.8 parts of fullerene, 5 parts of nanowires, 2 parts of nano-titanium, mass fraction of the catechol diacetate Is 5%.
  • the smoke obtained after burning in step 1) is input into the electrostatic generator (ie, electrostatic loader, as shown in Figure 1, the model is GC50S-N, the input voltage is AC100V50/60Hz, and the maximum output voltage is DC50kV (fixed) , The maximum output current is 20 ⁇ A, the power consumption is 10VA, the effective distance is 50-250mm, and the grounding is less than 100 ⁇ .)
  • the smoke is loaded in the electrostatic loading machine according to the positive and negative polarity to obtain positively charged fullerene and belt Negatively charged fullerenes, and then these charged fullerene mixtures are refined by the toluene method, and the refined fullerenes are 70% positively charged and 30% negatively charged.
  • the fullerene raw material in the negative electrode slurry is obtained.
  • organic solvent ethyl methyl carbonate, dimethyl carbonate, and methyl propionate are mixed, and finally catechol diacetate is added in an amount of 2% of the total volume of the electrolyte to obtain the electrolyte.
  • the negative electrode material is prepared by the following method: graphite carbon black, conductive agent, binder, fullerene, nanowire, and nano titanium are mixed and ground into powder, and the powder is moved to a high-pressure reactor with a pressure of 50 mPa , And then place the reaction kettle in a microwave oven with a power of 1800W, heat it for 1200s, and cool to room temperature to obtain the negative electrode material.
  • the positive electrode material contains the following components: 10 parts of lithium iron phosphate, 30 parts of conductive agent, 15 parts of binder, and 30 parts of carbon nanotube slurry;
  • the negative electrode material contains the following parts by weight Components: 20 parts of graphite carbon black, 30 parts of conductive agent, 15 parts of binder, 25 parts of fullerene, 15 parts of nanowires, 8 parts of nano-titanium, mass fraction of the catechol diacetate Is 12%.
  • the preparation method of the lithium iron phosphate battery in this embodiment adopts the same preparation method as in Example 1.
  • the method for extracting fullerenes in this embodiment adopts the same extraction method as in Example 1.
  • organic solvent ethyl methyl carbonate, dimethyl carbonate, and methyl propionate are mixed, and finally catechol diacetate is added in an amount of 10% of the total volume of the electrolyte to obtain the electrolyte.
  • the negative electrode material is prepared by the following method: graphite carbon black, conductive agent, binder, fullerene, nanowire, and nano titanium are mixed and ground into powder, and the powder is moved to a high pressure reactor with a pressure of 30 mPa , And then place the reaction kettle in a microwave oven with a power of 2200W, heat it for 200s, and cool to room temperature to obtain the negative electrode material.
  • the positive electrode material includes the following components: 7 parts of lithium iron phosphate, 15 parts of conductive agent, 7 parts of binder, and 15 parts of carbon nanotube slurry;
  • the negative electrode material contains the following parts by weight Components: 10 parts of graphite carbon black, 15 parts of conductive agent, 8 parts of binder, 12 parts of fullerene, 10 parts of nanowires, 5 parts of nano-titanium, mass fraction of the catechol diacetate Is 10%.
  • the preparation method of the lithium iron phosphate battery in this embodiment adopts the same preparation method as in Example 1.
  • the extraction method of fullerene in this embodiment adopts the same extraction method as that in embodiment 1.
  • the preparation method of the negative electrode material in this embodiment adopts the same preparation method as in Example 1.
  • the organic solvent ethyl methyl carbonate, dimethyl carbonate, and methyl propionate are mixed, and finally catechol diacetate is added, and the addition amount is 5% of the total volume of the electrolyte to obtain the electrolyte.
  • the positive electrode material includes the following components: 7 parts of lithium iron phosphate, 22 parts of conductive agent, 13 parts of binder, and 10 parts of graphene;
  • the negative electrode material includes the following components by weight: Graphite carbon black 12 parts, conductive agent 25 parts, binder 11 parts, fullerene 0.03 parts, nanowires 8 parts, nano titanium 3 parts.
  • the electrostatic loading machine means an Electrostatic Generator.
  • the electrostatic generator can process combustible items (such as logs into charcoal, logs are combustible items, including ore, cobblestone, etc.) ) Generate static electricity.
  • catechol diacetate and lithium salt The addition amount of catechol diacetate is the total volume of the electrolyte 2%, the electrolyte is obtained.
  • the negative electrode material is prepared by the following method: graphite carbon black, conductive agent, binder, fullerene, nanowire, and nano titanium are mixed and ground into powder, and the powder is moved to a high pressure reactor with a pressure of 40 mPa Then, the reaction kettle was placed in a microwave oven with a power of 1900w, heated for 1000s, and cooled to room temperature to obtain the negative electrode material.
  • the positive electrode material contains the following components: 6 parts of lithium iron phosphate, 15 parts of conductive agent, 8 parts of binder, and 10 parts of carbon nanotube slurry;
  • the negative electrode material contains the following parts by weight Components: 17 parts of graphite carbon black, 9 parts of conductive agent, 11 parts of binder, 2.5 parts of fullerene, 8 parts of nanowire, 3 parts of nano titanium.
  • catechol diacetate and lithium salt The addition amount of catechol diacetate is the total volume of the electrolyte 10%, the electrolyte is obtained.
  • the negative electrode material is prepared by the following method: graphite carbon black, conductive agent, binder, fullerene, nanowire, and nano titanium are mixed and ground into powder, and the powder is moved to a high-pressure reactor with a pressure of 45 mPa Then, the reaction kettle was placed in a microwave oven with a power of 2000w, heated for 700s, and cooled to room temperature to obtain the negative electrode material.
  • Comparative Example 2 The only difference between Comparative Example 2 and Example 1 is that the negative electrode material does not contain fullerenes, nanowires, and nanometer titanium.
  • Comparative Example 3 The difference between Comparative Example 3 and Example 1 is that fullerene is not included in the negative electrode material.
  • the lithium iron phosphate batteries prepared in the foregoing Examples 1-5 and Comparative Examples 1-3 were tested, and the test indicators and test results are as follows.
  • the ratio of discharge capacity to charge capacity is the discharge capacity retention rate.
  • Lithium iron phosphate battery discharge capacity retention rate (%) at -10°C CDT/CC ⁇ 100%.
  • the lithium iron phosphate battery was first discharged to 2.0V at 1C and then subjected to a cycle test. Charge to 3.6V with a constant current of 1C, then charge with a constant voltage to a current of 0.05C, and then discharge to 2.0V with a constant current of 1C. Then charge/discharge, calculate the capacity retention rate of the lithium iron phosphate battery at 25°C for 1000 cycles.
  • the capacity retention rate (%) of the lithium iron phosphate battery after 1000 cycles at 25°C the discharge capacity at the 1000th cycle/the discharge capacity at the first cycle ⁇ 100%.
  • the lithium iron phosphate battery was first discharged to 2.0V at 1C and then subjected to a cycle test.
  • the oven is heated to 60°C, charged with 1C constant current to 3.6V, then charged with constant voltage to a current of 0.05C, and then discharged with 1C constant current to 2.0V, so charge/discharge, calculate the lithium iron phosphate battery to cycle 500 at 60°C Capacity retention rate.
  • the capacity retention rate of the lithium iron phosphate battery after 500 cycles at 60°C (%) discharge capacity at the 500th cycle/discharge capacity at the first cycle ⁇ 100%.
  • Comparative Example 1 It can be seen from Comparative Example 1 that the compaction density of the positive and negative electrode membranes is increased, and the performance of the lithium iron phosphate battery drops rapidly without adding catechol diacetate. From Comparative Example 2, it can be seen that Since fullerenes, nanowires, and nano-titanium are not added to the negative electrode material, the compaction density of the negative electrode membrane of the lithium iron phosphate battery of Comparative Examples 2-3 is much lower than the embodiment of the present invention.
  • Vibration test Put it in a vibration tester and vibrate back and forth for 30 minutes, the appearance and performance remain unchanged;
  • Screwdriver penetration test After the screwdriver penetrates the battery, the voltage does not change (generally the battery will be short-circuited and the voltage is zero due to penetration), and there will be a 6-7° heating up after 6-7 minutes;

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本发明公开了一种磷酸铁锂电池,其正极材料包含以下组分:磷酸铁锂、导电剂、粘合剂、碳纳米管浆料或石墨烯;负极材料包含以下组分:石墨碳黑、导电剂、粘合剂、富勒烯、纳米线、纳米钛;以及电解液,电解液包括邻苯二酚二乙酸酯。本发明在电池的负极材料中加入纳米线、纳米钛,在电解液中加入邻苯二酚二乙酸酯,使得本发明的磷酸铁锂电池能够解决高压实密度电极片与电解液浸润性差的问题,使磷酸铁锂电池的低温性能、常温和高温循环性能都得到改善,有效延长磷酸铁锂电池的使用寿命。

Description

一种磷酸铁锂电池及其制备方法 技术领域
本发明涉及电池领域,尤其涉及一种磷酸铁锂电池及其制备方法。
背景技术
锂离子二次电池由于具备能量密度大、输出功率高、循环寿命长和环境污染小等优点而被广泛应用于电动汽车以及消费类电子产品中。磷酸铁锂由于循环寿命高、安全性好及价格低廉等特性,是目前动力电池最常用的正极材料之一。磷酸铁锂电池的缺点是其能量密度偏低。为提高能量密度,一方面是增加正负极材料的克容量,另一方面是增加正负极膜片的压实密度。但是压实密度提高后会导致锂离子的扩散困难,同时电极片与电解液的浸润性变差,使得磷酸铁锂电池的循环寿命减少。因此需要从电解液角度改善高压实密度电极片体系下磷酸铁锂电池的性能。
发明内容
鉴于背景技术中存在的问题,本发明的目的在于提供一种磷酸铁锂电池,其能够解决高压实密度电极片与电解液浸润性差的问题,使磷酸铁锂电池的低温性能、常温和高温循环性能都得到改善,有效延长磷酸铁锂电池的使用寿命。
本发明通过以下技术方案来实现上述目的:一种磷酸铁锂电池,其正极材料包含以下组分:磷酸铁锂、导电剂、粘合剂、碳纳米管浆料或石墨烯;负极材料包含以下组分:石墨碳黑、导电剂、粘合剂、富勒烯、纳米线、纳米钛;以及电解液,电解液包括邻苯二酚二乙酸酯。
优选地,所述正极材料包含以下重量份的组分:磷酸铁锂2‐10份、导电剂 5‐30份、粘合剂1‐15份、碳纳米管浆料或石墨烯2.5‐30份;所述负极材料包含以下重量份的组分:石墨碳黑1‐20份、导电剂5‐30份、粘合剂1‐15份、富勒烯0.8‐25份、纳米线份5‐15份、纳米钛2‐8份,所述邻苯二酚二乙酸酯的质量分数为5‐12%。
优选地,所述正极为铝箔。
优选地,所述负极集为铜箔。
优选地,所述导电剂为乙炔黑。
优选地,所述粘合剂为聚偏氟乙烯(PVDF)。
本发明还提供一种制备如上所述磷酸铁锂电池的制备方法,包括以下步骤:
(1)配料:将磷酸铁锂、导电剂、粘合剂、碳纳米管浆料进行混合得到混合正极浆料;将石墨碳黑、导电剂、粘合剂、富勒烯、纳米线、纳米钛进行混合得到混合负极浆料;
(2)涂布:将上述正极浆料通过涂布机涂于正极上;将负极浆料通过涂布机涂于负极上;
(3)然后经过辊压、分切、制片、卷绕、装配、顶侧封、烘干、注入电解液、化成,最后进行包装,获得本发明的电池。
优选地,所述步骤(1)之前还需提取富勒烯,其提取方法采用以下步骤:将碳粉放入氧化还原釜通电燃烧,然后提取附在釜内壁的碳气黑微粒,再通过静电加工即得所述富勒烯。
优选地,所述步骤(1)之前还需制备电解液,采用以下方法制备:将有机溶剂碳酸甲乙酯、碳酸二甲酯、丙酸甲酯混合,最后加入邻苯二酚二乙酸酯,添加量为电解液总体积的2~10%,即得所述电解液。
优选地,所述步骤(2)负极材料采用以下方法制备:将石墨碳黑、导电剂、粘合剂、富勒烯、纳米线、纳米钛混合后研磨成粉,将粉体移至压力为30~50mPa高压反应釜中,然后将反应釜放置在功率为1800~2200w的微波炉中,加热200~1200s,冷却至室温,得到所述负极材料。
本发明的有益效果:本发明在电池的负极材料中加入纳米线、纳米钛;在电解液中加入邻苯二酚二乙酸酯,使得本发明的磷酸铁锂电池本发明能够解决高压实密度电极片与电解液浸润性差的问题,使磷酸铁锂电池的低温性能、常温和高温循环性能都得到改善,有效延长磷酸铁锂电池的使用寿命。
附图说明
图1为本发明实施例制备富勒烯时使用的静电加载机的图片。
具体实施方式
下面结合实施例对本发明进行详细说明。
本发明中所记载的石墨碳黑,为石墨化碳黑。
本发明实施例的电解液由锂盐和有机溶剂组成,本发明电解液采用改进型有机溶剂,能够有效提供电池性能。
对于本发明实施例所提供的磷酸铁锂电池,负极浆料中添加富勒烯可大大提供产品的综合性能,富勒烯的添加量在万分之四以上即可,少量添加的富勒烯引起了意想不到的效果。对于以下记载的实施例,添加在负极浆料中的富勒烯由70%带正电荷的富勒烯和30%带负电荷的富勒烯组合而成。优选地,带正负电荷的富勒烯组合按3‐7%的质量比放入电池负极浆料中。本发明提取的富勤稀甚至可以不经过甲苯法精制就可直接应用在电池上。负极材科对电池的能 量密度,使用寿命及安全性有重大影响。在负极中使用本发明制备的富勒稀将有利于提高电荷的传导速度,极间的绝缘性,并能抑制电极因充放电导致的体积变化,从而可制造出更高容量,更长使用寿命,更高安全性(不易起火,***)的电池。相对于目前因不能工业化量产而显得昂贵的富勒稀,本方法可大量生产并取得较低廉的富勒稀。
实施例1
本实施例磷酸铁锂电池,其正极材料包含以下组分:磷酸铁锂2份、导电剂5份、粘合剂1份、碳纳米管浆料2.5份;所述负极材料包含以下重量份的组分:石墨碳黑1份、导电剂5份、粘合剂1份、富勒烯0.8份、纳米线份5份、纳米钛2份,所述邻苯二酚二乙酸酯的质量分数为5%。
本实施例磷酸铁锂电池的制备方法,包括以下步骤:
(1)配料:将磷酸铁锂、导电剂、粘合剂、碳纳米管浆料进行混合得到混合正极浆料;将石墨碳黑、导电剂、粘合剂、富勒烯、纳米线、纳米钛进行混合得到混合负极浆料;
(2)涂布:将上述正极浆料通过涂布机涂于铝箔上;将负极浆料通过涂布机涂于铜箔上;
(3)然后经过辊压、分切、制片、卷绕、装配、顶侧封、烘干、注液、化成、化成,最后进行包装,获得本发明的电池。
本实施例提取富勒烯采用以下步骤:
(1)在烧制陶瓷的氧化还原窑中放入一吨左右的木柴(没受污染的松木、杉木、桧木等)燃烧,24小时后在氧化还原窑的内壁中可提取附在上面的烟烬1100g;
(2)将这1100g的烟烬放入静电加载机进行静电加工可得110g的导电性富勒烯。
具体地,将步骤1)燃烧后获取的烟烬输入静电发生装置(即静电加载机,如图1所示,型号是GC50S‐N,入力电压为AC100V50/60Hz,最大出力电压为DC50kV(固定),最大出力电流为20μA,消费电力为10VA,有效距离为50~250mm,接地100Ω以下。)烟烬在静电加载机内分别按照正负极性进行加载,得到带正电荷的富勒烯和带负电荷的富勒烯,然后将这些带电荷的富勒稀混合烟烬用甲苯法来精制,将精制后富勒稀烟烬按带正电荷的70%,带负电荷的30%的此例混合,即得到负极浆料中的富勒烯原料。
本实施例中电解液的制备方法为:
将有机溶剂碳酸甲乙酯、碳酸二甲酯、丙酸甲酯混合,最后加入邻苯二酚二乙酸酯,添加量为电解液总体积的2%,即得所述电解液。
本实施例中负极材料采用以下方法制备:将石墨碳黑、导电剂、粘合剂、富勒烯、纳米线、纳米钛混合后研磨成粉,将粉体移至压力为50mPa高压反应釜中,然后将反应釜放置在功率为1800w的微波炉中,加热1200s,冷却至室温,得到所述负极材料。
实施例2
本实施例磷酸铁锂电池,其正极材料包含以下组分:磷酸铁锂10份、导电剂30份、粘合剂15份、碳纳米管浆料30份;所述负极材料包含以下重量份的组分:石墨碳黑20份、导电剂30份、粘合剂15份、富勒烯25份、纳米线份15份、纳米钛8份,所述邻苯二酚二乙酸酯的质量分数为12%。
本实施例磷酸铁锂电池的制备方法采用与实施例1相同的制备方法。
本实施例提取富勒烯的方法采用与实施例1相同的提取方法。
本实施例中电解液的制备方法为:
将有机溶剂碳酸甲乙酯、碳酸二甲酯、丙酸甲酯混合,最后加入邻苯二酚二乙酸酯,添加量为电解液总体积的10%,即得所述电解液。
本实施例中负极材料采用以下方法制备:将石墨碳黑、导电剂、粘合剂、富勒烯、纳米线、纳米钛混合后研磨成粉,将粉体移至压力为30mPa高压反应釜中,然后将反应釜放置在功率为2200w的微波炉中,加热200s,冷却至室温,得到所述负极材料。
实施例3
本实施例磷酸铁锂电池,其正极材料包含以下组分:磷酸铁锂7份、导电剂15份、粘合剂7份、碳纳米管浆料15份;所述负极材料包含以下重量份的组分:石墨碳黑10份、导电剂15份、粘合剂8份、富勒烯12份、纳米线份10份、纳米钛5份,所述邻苯二酚二乙酸酯的质量分数为10%。
本实施例磷酸铁锂电池的制备方法采用与实施例1相同的制备方法。
本实施例富勒烯的提取方法采用与实施例1相同的提取方法。
本实施例中负极材料的制备方法采用与实施例1相同的制备方法。
本实施例中电解液的制备方法为:
将有机溶剂碳酸甲乙酯、碳酸二甲酯、丙酸甲酯混合,最后加入邻苯二酚二乙酸酯,添加量为电解液总体积的5%,即得所述电解液。
实施例4
本实施例磷酸铁锂电池,其正极材料包含以下组分:磷酸铁锂7份、导电 剂22份、粘合剂13份、石墨烯10份;所述负极材料包含以下重量份的组分:石墨碳黑12份、导电剂25份、粘合剂11份、富勒烯0.03份、纳米线8份、纳米钛3份。
本实施例磷酸铁锂电池的制备方法,包括以下步骤:
(1)配料:将磷酸铁锂、导电剂、粘合剂、碳纳米管浆料进行混合得到混合正极浆料;将石墨碳黑、导电剂、粘合剂、富勒烯、纳米线、纳米钛进行混合得到混合负极浆料;
(2)涂布:将上述正极浆料通过涂布机涂于铝箔上;将负极浆料通过涂布机涂于铜箔上;
(3)然后经过辊压、分切、制片、卷绕、装配、顶侧封、烘干、注液、化成、化成,最后进行包装,获得本发明的电池。
本实施例提取富勒烯采用以下步骤:
①在烧制陶瓷的氧化还原窑中放入一吨没受污染的桧木柴,燃烧,燃烧充分24小时后在氧化还原窑的内壁中提取附在上面的烟烬780g;
②将提取的烟烬放入静电加载机进行静电加工,获得导电性富勒烯。
需要说明的是,静电加载机意为静电产生机(Electrostatic Generator),静电产生机可以通过处理可被燃烧物品(比如原木烧成木炭,原木是可被燃烧物品,包括矿石、圆石之类的)产生静电。
本实施例中电解液的制备方法为:
将有机溶剂碳酸甲乙酯、碳酸二甲酯、丙酸甲酯混合,最后加入邻苯二酚二乙酸酯和锂盐,邻苯二酚二乙酸酯的添加量为电解液总体积的2%,即得所述电解液。
本实施例中负极材料采用以下方法制备:将石墨碳黑、导电剂、粘合剂、 富勒烯、纳米线、纳米钛混合后研磨成粉,将粉体移至压力为40mPa高压反应釜中,然后将反应釜放置在功率为1900w的微波炉中,加热1000s,冷却至室温,得到所述负极材料。
实施例5
本实施例磷酸铁锂电池,其正极材料包含以下组分:磷酸铁锂6份、导电剂15份、粘合剂8份、碳纳米管浆料10份;所述负极材料包含以下重量份的组分:石墨碳黑17份、导电剂9份、粘合剂11份、富勒烯2.5份、纳米线8份、纳米钛3份。
本实施例磷酸铁锂电池的制备方法,包括以下步骤:
(1)配料:将磷酸铁锂、导电剂、粘合剂、碳纳米管浆料进行混合得到混合正极浆料;将石墨碳黑、导电剂、粘合剂、富勒烯、纳米线、纳米钛进行混合得到混合负极浆料;
(2)涂布:将上述正极浆料通过涂布机涂于铝箔上;将负极浆料通过涂布机涂于铜箔上;
(3)然后经过辊压、分切、制片、卷绕、装配、顶侧封、烘干、注液、化成、化成,最后进行包装,获得本发明的电池。
本实施例提取富勒烯采用以下步骤:
①在烧制陶瓷的氧化还原窑中放入一吨没受污染的松木木柴,燃烧,燃烧充分24小时后在氧化还原窑的内壁中提取附在上面的烟烬1100g;
②将提取的烟烬放入静电加载机进行静电加工,获得导电性富勒烯。
本实施例中电解液的制备方法为:
将有机溶剂碳酸甲乙酯、碳酸二甲酯、丙酸甲酯混合,最后加入邻苯二酚 二乙酸酯和锂盐,邻苯二酚二乙酸酯的添加量为电解液总体积的10%,即得所述电解液。
本实施例中负极材料采用以下方法制备:将石墨碳黑、导电剂、粘合剂、富勒烯、纳米线、纳米钛混合后研磨成粉,将粉体移至压力为45mPa高压反应釜中,然后将反应釜放置在功率为2000w的微波炉中,加热700s,冷却至室温,得到所述负极材料。
对比例1
对比例1与实施例1的唯一区别是电解液中未添加邻苯二酚二乙酸酯。
对比例2
对比例2与实施例1的唯一区别是负极材料中不含有富勒烯、纳米线、纳米钛。
对比例3
对比例3与实施例1的不同之处在于:负极材料中不包括富勒烯。
将上述实施例1‐5和对比例1‐3制备的磷酸铁锂电池,进行测试,测试指标和测试结果如下所述。
1、性能测试
(1)低温放电容量测试
25℃下,将磷酸铁锂电池先以1C放电至2.0V;再在以1C恒流充电至3.6V,然后恒压充电至电流为0.05C,记充电容量为CC;然后将炉温调节至‐10℃,用 1C恒流放电至2.0V,记放电容量为CDT。放电容量与充电容量比即为放电容量保持率。
磷酸铁锂电池‐10℃下的放电容量保持率(%)=CDT/CC×100%。
(2)常温循环测试
25℃下,将磷酸铁锂电池先以1C放电至2.0V后进行循环测试。以1C恒流充电至3.6V,然后恒压充电至电流为0.05C,然后用1C恒流放电至2.0V,如此充电/放电,计算磷酸铁锂电池25℃下循环1000次的容量保持率。
磷酸铁锂电池25℃下循环1000次后的容量保持率(%)=第1000次循环的放电容量/首次循环的放电容量×100%。
(3)高温循环测试
25℃下,将磷酸铁锂电池先以1C放电至2.0V后进行循环测试。烘箱升温至60℃,以1C恒流充电至3.6V,然后恒压充电至电流为0.05C,然后用1C恒流放电至2.0V,如此充电/放电,计算磷酸铁锂电池60℃下循环500次的容量保持率。
磷酸铁锂电池60℃下循环500次后的容量保持率(%)=第500次循环的放电容量/首次循环的放电容量×100%。
表1:实施例1‐3与对比例1、2的性能测试结果
Figure PCTCN2020075052-appb-000001
Figure PCTCN2020075052-appb-000002
从对比例1可看出,正负极膜片压实密度提高,在不加入邻苯二酚二乙酸酯的情况下,磷酸铁锂电池的性能迅速下降,从对比例2可看出,由于负极材料中没有添加富勒烯、纳米线、纳米钛,使得对比例2‐3的磷酸铁锂电池负极膜片压实密度远低于本发的实施例。但是在实施例1‐5中,正负极膜片压实密度提高,且在电解液中加入邻苯二酚二乙酸酯后可以明显延缓磷酸铁锂电池的性能下降趋势,使磷酸铁锂电池的低温性能、常温和高温循环性能都得到改善。这说明加入的邻苯二酚二乙酸酯可以延长磷酸铁锂电池的循环使用寿命。
2、破坏性测试结果
取实施例1‐5获取的磷酸铁锂电池(规格均为25×37×76mm)进行破坏性测试。
(1)锤击测试:10kg重的钢锤在1米高度自然落下:不起火、不***;
(2)过充测试:不会发热、不***;
(3)钉刺测试:用3×8.0mm的铁钉直接钉穿电池,不起火、不***;
(4)浸水测试:24小时浸水,性能不变;
(5)耐热冲击测试:放入温度测试箱中,将温度从5℃升到150℃,不起火、不***;
(6)振动测试:放于振动测试机中,往復振动30分钟,外观、性能不变;
(7)挤压测试:放于挤压机中,施加最大17MPa的压力,不起火、不***;
(8)螺丝刀贯穿测试:螺丝刀贯穿电池后,电压不变化(一般电池会因贯穿造成短路、电压为零),6‐7分钟后有6‐7°的升温;
(9)落下测试:将电池放于6米高度自然落下在铁板上,电压不变。
通过以上实验证实,本发明实施例1‐5的磷酸铁锂电池质量完全符合PSE、GB、UC等安全认证要求。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种磷酸铁锂电池,其特征在于,所述磷酸铁锂电池的正极材料包含以下组分:磷酸铁锂、导电剂、粘合剂、碳纳米管浆料或石墨烯;负极材料包含以下组分:石墨碳黑、导电剂、粘合剂、富勒烯、纳米线、纳米钛;以及电解液,电解液包括邻苯二酚二乙酸酯。
  2. 如权利要求1所述的磷酸铁锂电池,其特征在于,所述正极材料包含以下重量份的组分:磷酸铁锂2-10份、导电剂5-30份、粘合剂1-15份、碳纳米管浆料或石墨烯2.5-30份;所述负极材料包含以下重量份的组分:石墨碳黑1-20份、导电剂5-30份、粘合剂1-15份、富勒烯0.8-25份、纳米线5-15份、纳米钛2-8份,所述邻苯二酚二乙酸酯的质量分数为5-12%。
  3. 如权利要求1或2所述的磷酸铁锂电池,其特征在于,所述正极为铝箔;所述负极为铜箔。
  4. 如权利要求1或2所述的磷酸铁锂电池,其特征在于,所述富勒烯由70%带正电荷的富勒烯和30%带负电荷的富勒烯制备而成。
  5. 如权利要求1或2所述的磷酸铁锂电池,其特征在于,所述导电剂为乙炔黑。
  6. 如权利要求1或2所述的磷酸铁锂电池,其特征在于,所述粘合剂为聚偏氟乙烯。
  7. 一种制备如权利要求1-6所述的磷酸铁锂电池的制备方法,其特征在于,包括以下步骤:
    (1)配料:将磷酸铁锂、导电剂、粘合剂、碳纳米管浆料进行混合得到混合正极浆料;将石墨碳黑、导电剂、粘合剂、富勒烯、纳米线、纳米钛进行混合得到混合负极浆料;
    (2)涂布:将上述正极浆料通过涂布机涂于正极上;将负极浆料通过涂 布机涂于负极上;
    (3)然后经过辊压、分切、制片、卷绕、装配、顶侧封、烘干、注入电解液、化成,最后进行包装,获得本发明的电池。
  8. 如权利要求7所述的磷酸铁锂电池的制备方法,其特征在于,所述步骤(1)之前还需提取富勒烯,其提取方法采用以下步骤:将碳粉放入氧化还原釜通电燃烧,然后提取附在釜内壁的碳气黑微粒,再通过静电加工即得所述富勒烯。
  9. 如权利要求7所述的磷酸铁锂电池的制备方法,其特征在于,所述步骤(1)之前还需制备电解液,采用以下方法制备:将有机溶剂碳酸甲乙酯、碳酸二甲酯、丙酸甲酯混合,最后加入邻苯二酚二乙酸酯,添加量为电解液总体积的2~10%,即得所述电解液。
  10. 如权利要求7所述的磷酸铁锂电池的制备方法,其特征在于,所述步骤(2)负极材料采用以下方法制备:将石墨碳黑、导电剂、粘合剂、富勒烯、纳米线、纳米钛混合后研磨成粉,将粉体移至压力为30~50mPa高压反应釜中,然后将反应釜放置在功率为1800~2200w的微波炉中,加热200~1200s,冷却至室温,得到所述负极材料。
PCT/CN2020/075052 2019-02-22 2020-02-13 一种磷酸铁锂电池及其制备方法 WO2020168974A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217030181A KR20210148121A (ko) 2019-02-22 2020-02-13 인산철 리튬 전지 및 그 제조방법
JP2021547314A JP2022527237A (ja) 2019-02-22 2020-02-13 リン酸鉄リチウム電池およびその調製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910134277.6A CN111584925B (zh) 2019-02-22 2019-02-22 一种磷酸铁锂电池及其制备方法
CN201910134277.6 2019-02-22

Publications (1)

Publication Number Publication Date
WO2020168974A1 true WO2020168974A1 (zh) 2020-08-27

Family

ID=72124347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075052 WO2020168974A1 (zh) 2019-02-22 2020-02-13 一种磷酸铁锂电池及其制备方法

Country Status (4)

Country Link
JP (1) JP2022527237A (zh)
KR (1) KR20210148121A (zh)
CN (1) CN111584925B (zh)
WO (1) WO2020168974A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809387A (zh) * 2021-08-16 2021-12-17 福建巨电新能源股份有限公司 一种磷酸铁锂锂电池
CN114373933A (zh) * 2022-01-07 2022-04-19 北京胜能能源科技有限公司 一种固态电池正极片及其制备方法与固态电池
CN115072687A (zh) * 2022-07-28 2022-09-20 四川龙蟒磷化工有限公司 一种利用硫酸烧渣制备电池级磷酸铁的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103403928A (zh) * 2011-03-08 2013-11-20 日产自动车株式会社 电气设备用负极活性物质
CN104471761A (zh) * 2012-05-07 2015-03-25 古河电气工业株式会社 非水电解质二次电池用负极及使用该负极的非水电解质二次电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784812A (zh) * 2016-11-21 2017-05-31 深圳市沃特玛电池有限公司 一种磷酸铁锂电池的制备方法
CN109119686B (zh) * 2017-06-23 2020-11-20 宁德时代新能源科技股份有限公司 磷酸铁锂电池
CN107978728A (zh) * 2017-10-31 2018-05-01 旭成(福建)科技股份有限公司 一种锂离子电池用涂布材料及涂布方法
CN108615955B (zh) * 2018-05-07 2020-08-28 深圳市壹绿通环保资源有限公司 一种磷酸铁锂电池的化成方法
CN108847478A (zh) * 2018-06-04 2018-11-20 安徽潜川动力锂电科技有限公司 一种锂电池硅碳纳米复合负极材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103403928A (zh) * 2011-03-08 2013-11-20 日产自动车株式会社 电气设备用负极活性物质
CN104471761A (zh) * 2012-05-07 2015-03-25 古河电气工业株式会社 非水电解质二次电池用负极及使用该负极的非水电解质二次电池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809387A (zh) * 2021-08-16 2021-12-17 福建巨电新能源股份有限公司 一种磷酸铁锂锂电池
CN113809387B (zh) * 2021-08-16 2023-03-24 福建巨电新能源股份有限公司 一种磷酸铁锂锂电池
CN114373933A (zh) * 2022-01-07 2022-04-19 北京胜能能源科技有限公司 一种固态电池正极片及其制备方法与固态电池
CN114373933B (zh) * 2022-01-07 2023-11-21 北京胜能能源科技有限公司 一种固态电池正极片及其制备方法与固态电池
CN115072687A (zh) * 2022-07-28 2022-09-20 四川龙蟒磷化工有限公司 一种利用硫酸烧渣制备电池级磷酸铁的方法
CN115072687B (zh) * 2022-07-28 2023-09-01 四川龙蟒磷化工有限公司 一种利用硫酸烧渣制备电池级磷酸铁的方法

Also Published As

Publication number Publication date
JP2022527237A (ja) 2022-06-01
CN111584925A (zh) 2020-08-25
CN111584925B (zh) 2021-11-05
KR20210148121A (ko) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2020168974A1 (zh) 一种磷酸铁锂电池及其制备方法
CN104143635B (zh) 一种人造石墨负极材料及其制备方法
CN103887502B (zh) 一种人造石墨锂离子电池负极材料及其制备方法
CN101533900B (zh) 一种用于电化学可逆储锂的磷复合材料及其制备方法
CN102593434B (zh) 锂二次电池用复合石墨颗粒及其制备方法
WO2016201940A1 (zh) 一种炭/石墨复合负极材料的制备方法
CN105810899A (zh) 一种锂离子电池
CN104779372A (zh) 一种石墨细粉作为锂离子电池负极材料的循环利用方法
CN104143641B (zh) 一种中间相负极材料及其制备方法
CN111370654B (zh) 复合石墨负极材料、锂离子电池及其制备方法和应用
CN102485648A (zh) 改性石墨、复合石墨材料及其制备方法和用途
CN104409698B (zh) 一种复合锂离子电池负极材料及其制备方法
CN106505199B (zh) 一种锂离子电池复合负极材料及其制备方法、锂离子电池
CN112467107A (zh) 高安全正极片及其锂离子电池
CN102593444A (zh) 一种碳包覆钛酸锂的制备方法及其产物
CN104300148B (zh) 一种锂离子电池石墨负极材料及其制备方法
CN114613974A (zh) 一种长寿命快充型锂离子电池负极材料及其制备方法
CN104916844A (zh) 人造石墨细粉掺杂处理用作负极材料的方法
WO2020168973A1 (zh) 一种碳纳米管富勒烯电池及其制备方法
WO2020168975A1 (zh) 一种锂聚合物电池及其制备方法
CN104766964A (zh) 天然石墨细粉掺杂处理用作负极材料的方法
CN102255071A (zh) 改性石墨材料、制备方法及应用
CN110429272A (zh) 一种类火龙果结构的硅碳复合负极材料及其制备方法
CN109920982A (zh) 一种锂离子电池硅碳负极材料及制备方法
CN104953116B (zh) 一种制备LiYO2电池材料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021547314

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20759304

Country of ref document: EP

Kind code of ref document: A1