WO2020166565A1 - 焼成治具 - Google Patents

焼成治具 Download PDF

Info

Publication number
WO2020166565A1
WO2020166565A1 PCT/JP2020/005150 JP2020005150W WO2020166565A1 WO 2020166565 A1 WO2020166565 A1 WO 2020166565A1 JP 2020005150 W JP2020005150 W JP 2020005150W WO 2020166565 A1 WO2020166565 A1 WO 2020166565A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
base material
firing jig
coating layer
firing
Prior art date
Application number
PCT/JP2020/005150
Other languages
English (en)
French (fr)
Inventor
常夫 古宮山
浩臣 松葉
Original Assignee
日本碍子株式会社
エヌジーケイ・アドレック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社, エヌジーケイ・アドレック株式会社 filed Critical 日本碍子株式会社
Priority to JP2020530713A priority Critical patent/JP6948466B2/ja
Priority to CN202080001614.5A priority patent/CN113383204B/zh
Priority to KR1020207023354A priority patent/KR102407421B1/ko
Publication of WO2020166565A1 publication Critical patent/WO2020166565A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/12Travelling or movable supports or containers for the charge
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • F27D5/0006Composite supporting structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This specification discloses the technique regarding a firing jig.
  • a technique relating to a firing jig used for firing an electronic component material or firing an active material used in a lithium battery is disclosed.
  • Patent Document 1 discloses a ceramic jig for electronic parts as a jig for firing an Al 2 O 3 —SiO 2 second layer on the surface of a SiC substrate (first layer).
  • a firing jig is disclosed in which a layer is formed and a third layer of 8Y-ZrO 2 (8 wt% Y 2 O 3 -ZrO 2 ) is formed on the surface of the second layer.
  • the third layer is provided to prevent the object to be fired (ceramics for electronic parts) from reacting with the firing jig.
  • the second layer is provided to prevent the third layer from peeling off from the SiC substrate (first layer).
  • the second layer prevents oxygen that has passed through the third layer from reaching the SiC substrate, and suppresses oxidation of the surface of the SiC substrate.
  • the third layer is peeled off from the firing jig.
  • materials that can be used in the second layer in addition to Al 2 O 3 —SiO 2 materials, Al 2 O 3 , Al 2 O 3 —SiO 2 —MgO materials, and MgO—Al 2 O are used. 3- ZrO 2 quality is mentioned.
  • Al 2 O 3 , mullite, ZrO 2 , and Y 2 O are listed in addition to the 8Y-ZrO 2 substance.
  • ZrO 2 is known as a material having low reactivity (hardly reactive material). Therefore, by forming ZrO 2 in the outermost layer (top coat layer) of the firing jig, it is possible to suppress the reaction of the electronic component (or the raw material of the electronic component) with the constituent material of the firing jig to a certain extent.
  • Patent Document 1 also presupposes that the reaction between the electronic component and the firing jig can be suppressed by using the material of the third layer (top coat layer) including ZrO 2 , and the third layer is treated by firing. Measures are taken against peeling from the tool.
  • the firing jig may include a SiC-based or Si-SiC-based base material and a coating layer coating the surface of the base material.
  • the coating layer is exposed on the surface of the coating layer and the first layer mainly composed of Al 2 O 3 —SiO 2 provided on the surface of the base material, and is exposed to Y 2 O 3 , HfO 2 ,
  • a second layer containing at least one selected from CeO 2 , NiO, WC, Ni, and Mo as a main component may be provided.
  • the firing jig may include a SiC-based or Si-SiC-based base material and a coating layer coating the surface of the base material.
  • the coating layer is exposed on the surface of the coating layer and the first layer mainly composed of Al 2 O 3 —SiO 2 provided on the surface of the base material, and is exposed to Y 2 O 3 , HfO 2 ,
  • a second layer containing at least one selected from CeO 2 and NiO as a main component may be provided.
  • the calculation result of the reaction product in the thermodynamic equilibrium state of the multi-component system with respect to BaTiO 3 is shown.
  • the result of an experimental example is shown.
  • the SEM photograph of a coating layer is shown.
  • firing jig a ceramic capacitor containing barium titanate (BaTiO 3 ) as a main component and a firing jig for firing an electronic component material such as a raw material of the ceramic capacitor are disclosed.
  • an active material of a lithium battery containing lithium cobalt oxide (LiCoO 2 ) as a main component, and a firing jig for firing an active material such as a raw material of the active material are also disclosed.
  • Both firing jigs may have a common feature that they include a SiC-based or Si-SiC-based base material and a coating layer that covers the surface of the base material.
  • the thickness of the base material may be 0.4 to 5 mm. Within this range, the heat capacity of the base material is controlled, and the electronic component material or the active material material of the lithium battery can be efficiently fired.
  • the coating layer has a first layer provided on the surface of the base material and containing Al 2 O 3 —SiO 2 as a main component, and a second layer exposed on the surface layer of the coating layer. It may have the common feature of having layers.
  • the second layer may contain at least one selected from Y 2 O 3 , HfO 2 , CeO 2 , NiO, WC, Ni, and Mo as a main component.
  • the second layer may contain at least one selected from Y 2 O 3 , HfO 2 , CeO 2 , and NiO as a main component.
  • the “electronic component material” includes not only a molded electronic component such as a ceramic capacitor but also a raw material (intermediate) for forming the molded body.
  • the “active material” includes not only the active material of the lithium battery itself but also the raw material (intermediate) for forming the active material.
  • the phrase “the first layer is mainly composed of Al 2 O 3 —SiO 2 substance” means that the Al 2 O 3 —SiO 2 substance occupies 50% by mass or more of the raw materials (compounds) constituting the first layer. Means that.
  • the first layer may contain Al 2 O 3 -SiO 2 material and less than 50% by mass of Al 2 O 3 material.
  • the first layer may contain Al 2 O 3 —SiO 2 substance in an amount of 70% by mass or more, 80% by mass or more, 90% by mass or more, and Al 2 O 3 —SiO 2 It may be composed of only quality (which may include unavoidable impurities).
  • the "main component" of the second layer means a raw material (component) that accounts for 50% by mass or more of the raw material (compound) forming the second layer.
  • the mass of Y 2 O 3 is 50% or more of the total mass of the second layer.
  • the total mass of Y 2 O 3 and HfO 2 is 50% or more of the total mass of the second layer.
  • the second layer alone or in combination, may contain 60% by mass or more, 70% by mass or more, 80% by mass or more, and 90% by mass or more. Alternatively, it may be substantially composed of only the above-mentioned raw materials (which may contain unavoidable impurities).
  • the above-mentioned firing jig is different from the conventionally used material for the second layer (top coat layer).
  • the material listed as the second layer for electronic component materials is the calculation of the thermodynamic equilibrium state of a multi-component system in a high temperature environment with respect to barium titanate (BaTiO 3 ) used in general electronic component materials (simulation). However, the material has a low reactivity. It should be noted that Al 2 O 3 , ZrO 2 and the like, which have been conventionally used as the top coat layer, are more likely to form reaction products in a high temperature environment in the calculation of the thermodynamic equilibrium state of a multi-component system than BaTiO 3. was gotten.
  • the materials mentioned as the second layer for the electronic component material are , good to oxide (Y 2 O 3, HfO 2 , CeO 2, NiO) actually conducted experiments to create samples for common lithium cobalt acid used in the active material material (LiCoO 2) This is the material from which the results were obtained.
  • the material mentioned as the second layer has a low reactivity with respect to BaTiO 3 and LiCoO 2 as compared with the material conventionally used as the top coat layer.
  • the conventional baking jig if Al 2 O 3 , ZrO 2 or the like is used as the top coat layer, it is premised that the reaction between the object to be baked and the baking jig can be suppressed. We were working to improve durability. However, even if the durability of the coating layer is improved, if the object to be fired reacts with the coating layer (top coat layer), the production yield of the object to be fired is not improved.
  • the above-described firing jig is realized by a technical idea completely different from the conventional one, in that the top coat layer itself has low reactivity with respect to the article to be fired (electronic component material).
  • the second layer may contain at least one selected from Y 2 O 3 , HfO 2 , CeO 2 , and NiO as a main component. Since these materials are oxides, they are chemically stable and easy to handle. Further, as described above, it was confirmed in the experiment that these materials gave good results (low reactivity) to LiCoO 2 .
  • the firing jig for electronic component materials can be used as it is as a firing jig for electronic components.
  • the base material, the first base material, the thermal expansion coefficient of the first layer are equal to or higher than the thermal expansion coefficient of the base material
  • the thermal expansion coefficient of the second layer is equal to or higher than the thermal expansion coefficient of the first layer.
  • the material of the layer and the second layer may be selected.
  • the thermal expansion coefficient of the base material (SiC material, Si-SiC material) used in the firing jig is about 4 (ppm/k).
  • the materials listed as the second layer each have a coefficient of thermal expansion of 4 (ppm/k) or more.
  • the coefficient of thermal expansion of the first layer By setting the coefficient of thermal expansion of the first layer to be equal to or higher than the coefficient of thermal expansion of the base material and the coefficient of thermal expansion of the second layer to be equal to or higher than the coefficient of thermal expansion of the first layer, the coefficient of thermal expansion of the base material and the second layer due to heating. The difference can be relaxed and the coating layer can be prevented from peeling from the substrate.
  • a third layer containing Al 2 O 3 as a main component may be provided between the first layer and the second layer.
  • the third layer is mainly composed of Al 2 O 3 quality
  • the third layer contains an Al 2 O 3 quality more than 50 wt%.
  • the third layer may contain 60% by mass or more of Al 2 O 3 substance, 70% by mass or more, 80% by mass or more, 90% by mass or more, and substantially. Alternatively, it may be composed only of Al 2 O 3 .
  • a graded layer whose composition gradually changes is provided between the first layer and the second layer. It may be provided.
  • the third layer is provided between the first layer and the second layer, the gradient layer is provided between the first layer and the third layer and/or between the third layer and the second layer. You can stay. Further, a plurality of layers may be provided between the first layer and the second layer.
  • the flat grains may be particles in which the particles forming the second layer are melted and solidified when firing (sintering) the second layer.
  • the flat grains may be laminated in the direction in which the substrate, the first layer and the second layer are laminated. That is, the flat grains may be laminated in the thickness direction of the coating layer. There is no particular limitation as long as the number of laminated flat grains is two or more. Due to the presence of the flat grains in the second layer, the difference in thermal expansion between the base material and the second layer is relaxed, and peeling of the second layer can be suppressed.
  • the thermal expansion coefficient of the material forming the second layer may be equal to or higher than the thermal expansion coefficient of the base material (SiC material, Si-SiC material).
  • the base material when the firing jig is heated, the base material may apply a compressive force to the second layer, or the second layer may apply a tensile force to the base material. If the flat grains are laminated in the second layer, the force applied to the second layer (added by the second layer) during heating is relaxed, and the peeling of the coating layer due to the difference in thermal expansion coefficient is further suppressed.
  • the flatness of flat grains ((length in short side/length in long side) x 100) may be 95% or less. Further, if the flatness ratio of the flat grains is 95% or less, the strength of the flat grains themselves is secured, and as a result, the strength of the second layer is secured.
  • the flat grains may have a flat shape or a curved shape. In particular, when the flat grains have a curved shape, it is easy to obtain the effect of alleviating the difference in thermal expansion between the base material and the second layer.
  • the flat grains may be present on the entire surface of the second layer or may be present partially. Even if the flat grains are partially present in the second layer, the effect of alleviating the difference in thermal expansion can be obtained.
  • the flatness of the flat particles can be calculated by the above formula by measuring the length (longitudinal direction) and horizontal (short direction) of the particles from a SEM image (eg, 1000 times) of the cross section of the coating layer. it can.
  • the thickness of the coating layer may be 20 to 600 ⁇ m. Further, the thickness of the first layer may be larger than the thickness of the second layer. Specifically, the thickness of the first layer may be 50 to 500 ⁇ m, and the thickness of the second layer may be 5 to 500 ⁇ m.
  • the thickness of the first layer is 50 ⁇ m or more, the reaction with the material to be fired can be suppressed, the strength of the coating layer can be maintained, and peeling of the coating layer can be further suppressed.
  • the thickness of the first layer is 500 ⁇ m or less, the reaction with the material to be fired can be suppressed, the strength of the coating layer can be more stable, and the peeling of the coating layer can be further suppressed.
  • the second layer is surely formed on the entire surface of the substrate, and it is possible to sufficiently suppress the object to be fired from reacting with the firing jig.
  • the thickness of the second layer is 500 ⁇ m or less, delamination of the second layer itself is suppressed, and as a result, delamination of the second layer from the base material (first layer) can be suppressed.
  • the thickness of the second layer may be 10 ⁇ m or more, and may be 50 ⁇ m or more.
  • the thickness of the second layer may be 200 ⁇ m or less, 150 ⁇ m or less, and 100 ⁇ m or less.
  • the second layer is a layer exposed on the surface of the coating layer, and can also be referred to as a top coat layer.
  • the porosity (porosity) of the coating layers may be 10 to 60% by volume.
  • the porosity is 10% by volume or more, the reaction with the material to be fired can be suppressed, the strength of the coating layer can be more stable, and the peeling of the coating layer can be further suppressed.
  • the porosity is 60% by volume or less, the reaction with the material to be fired can be suppressed, the strength of the coating layer can be maintained, and peeling of the coating layer can be further suppressed.
  • the thermal conductivity of the coating layer may be 2 to 250 W/(m ⁇ k).
  • the thermal conductivity of the coating layer is 2 to 250 W/(m ⁇ k)
  • the in-plane temperature of the object to be fired can be made uniform when the object to be fired is fired. More preferably, the thermal conductivity of the coating layer is 3 to 30 W/(m ⁇ k).
  • the SEM image of the cross section of the coating layer (for example, 1000 times) is trimmed to create an image of each layer (first layer, second layer, etc.), and image processing software (ImageNos version 1.04: Free software) to distinguish the voids and other parts by binarization, and calculate the area ratio of the voids to the whole.
  • the second layer is mainly composed of at least one selected from Y 2 O 3 , HfO 2 , CeO 2 , NiO, WC, Ni and Mo. Good as an ingredient.
  • Y 2 O 3 , HfO 2 , CeO 2 , NiO, WC, Ni, and Mo are thermodynamics for BaTiO 3 by thermodynamic equilibrium calculation software (FactSage: GTT-Technologies, Thermfact Ltd.). In the calculation of the static equilibrium state, it was confirmed that it did not react with BaTiO 3 (no reaction product was formed).
  • SiC is an example of a substrate material
  • Al 2 O 3 ⁇ SiO 2 which is an example of the material of the first layer also shows the calculation results of the thermodynamic equilibrium for BaTiO 3. It was confirmed that SiC, Al 2 O 3 .SiO 2 reacts with BaTiO 3 to form a reaction product. Note that FIG. 1 also shows the thermal expansion coefficients of the above-mentioned materials for the second layer, SiC, and Al 2 O 3 .SiO 2 .
  • the coefficient of thermal expansion of each layer does not decrease as it goes from the substrate to the surface of the coating layer, that is, the coefficient of thermal expansion of the first layer is equal to or higher than the coefficient of thermal expansion of the substrate and the coefficient of thermal expansion of the second layer is By selecting the materials of the base material, the first layer, and the second layer so that the coefficient of thermal expansion of one layer or more is obtained, peeling of the coating layer can be further suppressed.
  • the electronic component material is The reaction with the second layer
  • the electronic component material is The reaction with the second layer
  • samples in which the second layer (top coat layer) was formed using Y 2 O 3 , HfO 2 , CeO 2 , and NiO were prepared, and the characteristics of each sample with respect to BaTiO 3 and LiCoO 2 were evaluated. (Samples 1 to 20). Further, for comparison, samples in which the second layer was formed using ZrO 2 were also prepared (Samples 21 to 24), and the characteristics were also evaluated. The evaluation result is shown in FIG.
  • a method for preparing a sample will be described.
  • a SiC sintered body plate was used as a substrate, and in other samples, a Si-SiC plate was used as a substrate.
  • the thickness of the first layer was 50 ⁇ m for Samples 2, 3, 10, 21, 22 and 100 ⁇ m for the other samples.
  • each sample was fired at 1350° C. for 2 hours in the air atmosphere.
  • the second layer was formed on the surface of the first layer with the material and the thickness shown in FIG. 2 by using the thermal spraying method.
  • a reaction test and a peeling test were performed on the obtained samples 1 to 24. Separate samples were used for the reaction test and the peeling test. Further, the coating layer of Sample 5 was observed with a SEM (scanning electron microscope: JSM-5600 manufactured by JEOL Ltd.) at 300 times.
  • FIG. 3 shows a SEM photograph.
  • the second layer was composed of a plurality of flat grains, and each flat grain was laminated in the thickness direction. It was also confirmed that each flat grain had an irregularly curved shape instead of a flat plate shape, and a gap was provided between the flat grains. It is presumed that the gap relaxes the thermal expansion of the second layer (flat grains forming the second layer).
  • reaction test A reaction test was conducted on each sample.
  • 10 g of the material to be fired (BaTiO 3 , LiCoO 2 ) was placed on the center part of the surface of the sample, and the sample on which BaTiO 3 was placed was fired at 1200° C. for 1 hour in the air atmosphere and then allowed to reach room temperature. Thirty-five cycles were conducted in which the cooling treatment was one cycle. Further, for the sample on which LiCoO 2 was placed, 35 cycles of a test in which one cycle was a treatment of firing at 1000° C. for 1 hour in the air atmosphere and then cooling to room temperature were performed. At the start of each cycle, the materials to be fired (BaTiO 3 , LiCoO 2 ) were replaced with new ones. Therefore, in the reaction test, a total of 350 g of the article to be fired was fired.
  • the permeation of the constituent elements (Ba, Ti, Li, Co) of the material to be fired into the sample and the adhesion of the coating layer were evaluated.
  • the constituent elements (Ba, Ti, Li, Co) of the material to be fired into the sample and the adhesion of the coating layer were evaluated.
  • Ba, Ti, Li, and Co elements were mapped using an EDS (energy dispersive X-ray spectrometer) attached to the SEM, and constituent elements of the object to be burned penetrated from the surface layer of the coating layer. The depth to be measured was measured and evaluated. The deeper the penetration depth from the surface layer, the more the object to be fired reacts with the sample (corresponding to the firing jig).
  • a sample having a penetration depth of the above constituent elements of 10 ⁇ m or less from the surface layer is “A”
  • a sample having a penetration depth of more than 10 ⁇ m and 20 ⁇ m or less from the surface layer is “B”
  • a sample having a penetration depth of more than 20 ⁇ m and 30 ⁇ m or less from the surface layer is “ C”
  • a sample having a penetration depth of more than 30 ⁇ m from the surface layer was designated as "D”.
  • Adhesion was evaluated by visually observing the presence or absence of peeling of the coating layer when exchanging the material to be fired (after completion of one cycle). "A” is the sample in which peeling was not confirmed after 30 cycles, "B” in which peeling was confirmed in 21 to 30 cycles, and "C” in which peeling was confirmed in 11 to 20 cycles. The sample in which peeling was confirmed during 1 to 10 cycles was designated as “D”. The evaluation result is shown in FIG.
  • peel test A peel test was performed on each sample. The peeling test was performed by preparing a sample different from the reaction test. In the peeling test, for each sample, 6 cycles of a test in which one cycle was a treatment of baking at 1350° C. for 2 hours in the air atmosphere and then cooling to room temperature were performed. After the completion of each cycle, 10 mm x 15 mm gum tape (Kikusui Tape Co., Ltd., cloth tape No, 212 50 mm 25M) was attached to the surface of each sample, and then the gum tape was peeled off to check whether the coating layer was peeled off. It was visually confirmed and evaluated. The gum tape was attached to the center of the sample.
  • samples 1-20 As shown in FIG. 2, Y 2 O 3, HfO 2, CeO 2, NiO, WC, Ni, samples (samples 1-20) forming the second layer with Mo, the second with ZrO 2 It was confirmed that the sample exhibited excellent characteristics as compared with the samples having layers (Samples 21 to 24) (for example, Samples 5, 12, 18, 19, 20, 23 were compared). It was also confirmed that the same effects were obtained in both the Si-SiC plate and the SiC sintered body plate (Samples 2, 3, Samples 5, 6, 12, 13 and 21, 22 and 23). , 24).
  • samples (Samples 1 to 15) in which the second layer was formed using Y 2 O 3 and HfO 2 as a result of changing the thickness of the second layer from 10 ⁇ m to 200 ⁇ m, good results were obtained. It was confirmed. Particularly, the samples (Samples 2 to 7 and Samples 10 to 14) having the thickness of 50 to 150 ⁇ m showed good results.
  • the sample (Sample 16-21) in which the second layer was formed using CeO 2 , NiO, WC, Ni, Mo was a sample in which the second layer was formed using Y 2 O 3 and HfO 2 (Sample 5). , 12), it has been confirmed that it exhibits excellent characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

焼成治具は、SiC質又はSi-SiC質の基材と、基材の表面を被覆しているコーティング層を備えている。コーティング層は、基材表面に設けられているAl2O3-SiO2質を主成分とする第1層と、コーティング層の表層に露出している第2層を備えている。第2層は、電子部品材用においてはY2O3,HfO2,CeO2,NiO,WC,Ni,Moから選択される少なくとも1種を主成分とし、リチウム電池の活物質材用においてはY2O3,HfO2,CeO2,NiOから選択される少なくとも1種を主成分とする。

Description

焼成治具
 本明細書は、焼成治具に関する技術を開示する。特に、電子部品材の焼成、またはリチウム電池で用いられる活物質材の焼成で使用する焼成治具に関する技術を開示する。
 特開2003-306392号公報(以下、特許文献1と称する)に、電子部品用セラミックスの焼成治具として、SiC質基板(第1層)の表面にAl-SiO質の第2層を形成し、第2層の表面に8Y-ZrO(8wt%Y-ZrO)の第3層が形成された焼成治具が開示されている。第3層は、被焼成物(電子部品用セラミックス)が焼成治具と反応することを防止するために設けられている。また、第2層は、第3層がSiC質基板(第1層)から剥離することを防止するために設けられている。より具体的には、第2層は、第3層を通過した酸素がSiC質基板に達することを防止し、SiC質基板の表面が酸化することを抑制している。なお、SiC質基板の表面が酸化すると、第3層が焼成治具から剥離してしまう。また、特許文献1には、第2層で使用可能な材料として、Al-SiO質の他、Al、Al-SiO-MgO質、MgO-Al-ZrO質が挙げられている。また、第3層で使用可能な材料として、8Y-ZrO質の他、Al、ムライト、ZrO、YOが挙げられている。
 一般に、ZrOは、反応性が低い材料(難反応性材料)として知られている。そのため、ZrOを焼成治具の最表層(トップコート層)に形成すれば、電子部品(または電子部品の原料)が焼成治具の構成材料と反応することを一定程度抑制することができる。特許文献1も、ZrOをはじめ、上記した第3層(トップコート層)の材料を用いることによって電子部品と焼成治具の反応を抑制することができることを前提とし、第3層が焼成治具から剥離することに対策している。しかしながら、上記した材料をトップコート層として用いても、電子部品材(電子部品及びその原料)が焼成治具と反応することを完全に防止することはできない。そのため、電子部品材の製造歩留まりを上げるため、電子部品等との反応性をさらに低減させた焼成治具が求められている。本明細書は、電子部品等(電子部品材、リチウム電池の活物質材)との反応性がより低い新規な焼成治具を提供することを目的とする。
 本明細書で開示する焼成治具の一形態は、電子部品材の焼成に用いられる。この焼成治具は、SiC質又はSi-SiC質の基材と、基材の表面を被覆しているコーティング層を備えていてよい。また、コーティング層は、基材表面に設けられているAl-SiO質を主成分とする第1層と、コーティング層の表層に露出しており、Y,HfO,CeO,NiO,WC,Ni,Moから選択される少なくとも1種を主成分とする第2層を備えていてよい。
 本明細書で開示する焼成治具の他の一形態は、リチウム電池の活物質材の焼成に用いられる。この焼成治具は、SiC質又はSi-SiC質の基材と、基材の表面を被覆しているコーティング層を備えていてよい。また、コーティング層は、基材表面に設けられているAl-SiO質を主成分とする第1層と、コーティング層の表層に露出しており、Y,HfO,CeO,NiOから選択される少なくとも1種を主成分とする第2層を備えていてよい。
BaTiOに対する多元系の熱力学的平衡状態における反応生成物の計算結果を示す。 実験例の結果を示す。 コーティング層のSEM写真を示す。
 以下、本明細書で開示される技術の特徴を整理する。なお、以下に記す事項は、各々単独で技術的な有用性を有している。
(焼成治具)
 本明細書では、例えば、チタン酸バリウム(BaTiO)を主成分とするセラミックスコンデンサ、及び、そのセラミックスコンデンサの原料といった電子部品材を焼成するための焼成治具を開示する。また、本明細書では、例えば、コバルト酸リチウム(LiCoO)を主成分とするリチウム電池の活物質、及び、その活物質の原料といった活物質材を焼成するための焼成治具も開示する。双方の焼成治具は、SiC質又はSi-SiC質の基材と、基材の表面を被覆しているコーティング層を備えているという共通した特徴を有していてよい。基材の厚みとしては、0.4~5mmであってもよい。この範囲であると、基材の熱容量が制御され、効率よく電子部品材またはリチウム電池の活物質材を焼成することができる。また、双方の焼成治具において、コーティング層は、基材表面に設けられているAl-SiO質を主成分とする第1層と、コーティング層の表層に露出している第2層を備えているという共通した特徴を有していてよい。電子部品材においては、第2層は、Y,HfO,CeO,NiO,WC,Ni,Moから選択される少なくとも1種を主成分としてよい。また、活物質材においては、第2層は、Y,HfO,CeO,NiOから選択される少なくとも1種を主成分としてよい。
 なお、「電子部品材」とは、例えば、セラミックスコンデンサ等の電子部品成形体のみでなく、その成形体を形成するための原料(中間体)も含む。同様に、「活物質材」とは、リチウム電池の活物質自体のみでなく、活物質を形成するための原料(中間体)も含む。また、第1層が「Al-SiO質を主成分とする」とは、第1層を構成する原料(化合物)の50質量%以上をAl-SiO質が占めることを意味する。例えば、第1層は、Al-SiO質の他、Al質を50質量%未満含むことがある。なお、第1層は、Al-SiO質を70質量%以上含んでいてよく、80質量%以上含んでいてよく、90質量%以上含んでいてよく、Al-SiO質のみ(不可避不純物が含まれることはある)で構成されていてもよい。
 同様に、第2層の「主成分」とは、第2層を構成する原料(化合物)の50質量%以上を占める原料(成分)を意味する。例えば、第2層がYを主成分とする場合、Yの質量が、第2層の全質量の50%以上である。また、第2層がYとHfOを主成分とする場合、YとHfOの合計質量が、第2層の全質量の50%以上である。なお、好ましくは、第2層は、電子部品材においてはY,HfO,CeO,NiO,WC,Ni,Moのいずれかを主成分とし、活物質材においてはY,HfO,CeO,NiOのいずれかを主成分とすることである。第2層は、上記原料(化合物)を、単独または組合せで、60質量%以上含んでいてよく、70質量%以上含んでいてよく、80質量%以上含んでいてよく、90質量%以上含んでいてよく、実質的に上記原料のみ(不可避不純物が含まれることはある)で構成されていてもよい。
 上記した焼成治具は、第2層(トップコート層)の材料が従来用いられているものと異なる。電子部品材用の第2層として挙げた材料は、一般的な電子部品材で用いられるチタン酸バリウム(BaTiO)に対し、高温環境における多元系の熱力学的平衡状態を計算(シミュレート)し、反応性が低い結果が得られた材料である。なお、従来トップコート層として用いられているAl,ZrO等は、BaTiOに対し、多元系の熱力学的平衡状態の計算において、高温環境下で反応生成物が生成されやすい結果が得られた。また、活物質材用の第2層として挙げた材料は、電子部品材用の第2層として挙げた材料(Y,HfO,CeO,NiO,WC,Ni,Mo)のうち、酸化物(Y,HfO,CeO,NiO)について実際に試料を作成して実験を行い、一般的な活物質材で用いられるコバルト酸リチウム(LiCoO)に対して良好な結果が得られた材料である。
 第2層として挙げた材料は、従来トップコート層として用いられていた材料と比較して、その材料自体がBaTiO及びLiCoOに対して反応性が低い。上記したように、従来の焼成治具は、トップコート層としてAl,ZrO等を用いれば、被焼成物と焼成治具の反応を抑制することができることを前提とし、コーティング層の耐久性の改善を進めていた。しかしながら、コーティング層の耐久性が改善されたとしても、被焼成物がコーティング層(トップコート層)と反応すると、被焼成物の製造歩留まりは向上しない。上記した焼成治具は、被焼成物(電子部品材)に対するトップコート層自体の反応性を低くすることに着目した点で、従来とは全く異なる技術思想にて実現されたものである。
 電子部品材用の焼成治具において、第2層が、Y,HfO,CeO,NiOから選択される少なくとも1種を主成分としていてよい。これらの材料は、酸化物であるために化学的に安定しており、取り扱いが容易である。また、上記したように、これらの材料は、実験において、LiCoOに対して良好な結果が得られる(反応性が低い)ことが確認された。電子部品材用の焼成治具を、そのまま電子部品用の焼成治具として兼用することができる。
 上記焼成治具において、第1層の熱膨張係数が基材の熱膨張係数以上であり、第2層の熱膨張係数が第1層の熱膨張係数以上となるように、基材、第1層及び第2層の材料が選択されていてよい。上記焼成治具で用いられる基材(SiC質,Si-SiC質)は、熱膨張係数がおよそ4(ppm/k)である。それに対して、上記第2層として挙げた材料は、いずれも熱膨張係数が4(ppm/k)以上である。第1層の熱膨張係数を基材の熱膨張係数以上とし、第2層の熱膨張係数を第1層の熱膨張係数以上とすることにより、加熱による基材と第2層の熱膨張係数差が緩和され、コーティング層が基材から剥離することを抑制することができる。
 上記焼成治具において、第1層と第2層の間に、Al質を主成分とする第3層が設けられていてよい。なお、「第3層がAl質を主成分とする」とは、第3層がAl質を50質量%以上含んでいることを意味する。第3層を設けることにより、第1層と第2層をより強固に接合することができ、第1層と第2層の剥離を抑制することができる。また、第1層(又は基材)の構成元素と第2層の構成元素が相互に拡散することを抑制することもできる。第3層の厚みは、10~200μmであってよく、コーティング層全体の厚みの50%以下であってよい。なお、第3層は、Al質を60質量%以上含んでいてよく、70質量%以上含んでいてよく、80質量%以上含んでいてよく、90質量%以上含んでいてよく、実質的にAl質のみで構成されていてもよい。また、第1層と第2層が直接接してる場合(すなわち、第3層が設けられていない場合)、第1層と第2層の間に、両者の組成が除々に変化する傾斜層が設けられていてよい。同様に、第1層と第2層の間に第3層が設けられている場合、第1層と第3層、及び/又は、第3層と第2層の間に傾斜層が設けられていてよい。また、第1層と第2層の間に、複数の層が設けられていてもよい。
 上記焼成治具において、第2層内に、第2層を構成する粒子が溶融凝固した偏平粒が複数存在していてよい。偏平粒は、第2層を構成する粒子が、第2層を焼成(焼結)する際に溶融凝固したものであってよい。偏平粒は、基材と第1層と第2層が積層している方向に積層していてよい。すなわち、偏平粒が、コーティング層の厚み方向に積層していてよい。なお、偏平粒の積層数は2以上であれば、特に制限はない。第2層内に偏平粒が存在することにより、基材と第2層の熱膨張差が緩和され、第2層の剥離を抑制することができる。上記したように、第2層を構成する材料の熱膨張係数は、基材(SiC質,Si-SiC質)の熱膨張係数以上であることがある。その場合、焼成治具を加熱すると、基材が第2層に圧縮力を加え、あるいは、第2層が基材に引張力を加えることがある。第2層内で偏平粒が積層していれば、加熱の際に第2層に加わる(第2層が加える)力が緩和され、熱膨張係数差に起因するコーティング層の剥離がさらに抑制される。
 なお、偏平粒の偏平率((短手方向長さ/長手方向長さ)×100)は95%以下であってよい。また、偏平粒の偏平率が95%以下であれば、偏平粒自体の強度が確保され、結果として第2層の強度が確保される。なお、偏平粒は、平坦な形状であってよく、湾曲した形状であってもよい。特に、偏平粒が湾曲した形状である場合、基材と第2層の熱膨張差を緩和する効果が得られやすい。偏平粒は、第2層の全面に存在していてよいし、部分的に存在してもよい。偏平粒が第2層内に部分的に存在している場合でも、上記した熱膨張差の緩和効果を得ることができる。なお、偏平粒の偏平率は、コーティング層の断面のSEM画像(例えば1000倍)より粒子の縦(長手方向)横(短手方向)の長さを測定し、上記計算式により算出することができる。
 上記焼成治具において、コーティング層の厚みは20~600μmであってよい。また、第1層の厚みは、第2層の厚みより厚くてよい。具体的には、第1層の厚みは50~500μmであってよく、第2層の厚みは5~500μmであってよい。第1層の厚みが50μm以上であれば、被焼成物との反応を抑制することができるとともに、コーティング層の強度が維持され、コーティング層の剥離をより抑制することができる。第1層の厚みが500μm以下であれば、被焼成物との反応を抑制することができるとともに、コーティング層の強度がより安定し、コーティング層の剥離をさらに抑制することができる。第2層の厚みが5μm以上であれば、基板の全面に確実に第2層が形成され、被焼成物が焼成治具と反応することを十分に抑制することができる。第2層の厚みが500μm以下であれば、第2層自体が層間剥離することが抑制され、結果として第2層が基材(第1層)から剥離することを抑制することができる。なお、第2層の厚みは、10μm以上であってよく、50μm以上であってもよい。また、第2層の厚みは、200μm以下であってよく、150μm以下であってよく、100μm以下であってもよい。なお、第2層は、コーティング層の表層に露出する層であり、トップコート層ということもできる。
 上記焼成治具において、コーティング層(第1層,第2層)の空隙率(気孔率)は、10~60体積%であってよい。空隙率が10体積%以上であれば、被焼成物との反応を抑制することができるとともに、コーティング層の強度がより安定し、コーティング層の剥離をさらに抑制することができる。空隙率が60体積%以下であれば、被焼成物との反応を抑制することができるとともに、コーティング層の強度が維持され、コーティング層の剥離をより抑制することができる。また、コーティング層の熱伝導率は、2~250W/(m・k)であってよい。コーティング層の熱伝導率が2~250W/(m・k)であれば、被焼成物を焼成する際に、被焼成物の面内温度を均一にすることができる。より好ましくは、コーティング層の熱伝導率は、3~30W/(m・k)である。なお、空隙率(気孔率)は、コーティング層の断面のSEM画像(例えば1000倍)をトリミングして各層(第1層、第2層等)のみの画像を作成し、画像処理ソフト(ImageNos version 1.04:フリーソフト)を用いて空隙とそれ以外の部分を二値化により区別し、全体に対する空隙の面積比を計算することによって算出することができる。
(電子部品材用の焼成治具)
 上記したように、電子部品材を焼成するための焼成治具において、第2層は、Y,HfO,CeO,NiO,WC,Ni,Moから選択される少なくとも1種を主成分としてよい。図1に示すように、Y,HfO,CeO,NiO,WC,Ni,Moは、熱力学平衡計算ソフト(FactSage:GTT-Technologies,Thermfact Ltd.製)によるBaTiOに対する熱力学的平衡状態の計算において、BaTiOと反応しない(反応生成物が形成されない)ことが確認された。それに対し、従来第2層(トップコート層)として有用であると認識されているZrO,Al,TiOは、BaTiOと反応し、反応生成物(Ba化合物)が生成されることが確認された。なお、図1に示すように、HfOはBaTiOと反応しないが、HfはBaTiOと反応して反応生成物(BaHfO)が生成されることが確認された。すなわち、単にY,Hf,Ce,Niといった元素を含む化合物(あるいは単体)がBaTiOと反応しないのではなく、上記した酸化物の形態(HfO,Y,CeO,NiO)であるからこそBaTiOと反応しないことが確認された。
 図1には、基板材料の一例であるSiC、第1層の材料の一例であるAl・SiOについても、BaTiOに対する熱力学的平衡状態の計算結果を併せて示している。SiC,Al・SiOは、BaTiOと反応して反応生成物が形成されることが確認された。なお、図1には、上記した第2層の各材料、SiC、Al・SiOの熱膨張係数も併せて示している。基材からコーティング層の表面に向かうに従って各層の熱膨張係数が小さくならないように、すなわち、第1層の熱膨張係数が基材の熱膨張係数以上であり、第2層の熱膨張係数が第1層の熱膨張係数以上となるように、基材、第1層及び第2層の材料を選択することによって、コーティング層の剥離をさらに抑制することができる。
 上記したように、電子部品材用の焼成治具においては、第2層としてY,HfO,CeO,NiO,WC,Ni,Moを用いると、電子部品材が焼成治具(第2層)と反応することを抑制することができる。以下、上記材料のうち、Y,HfO,CeO,NiOを用いて第2層(トップコート層)を形成した試料を作成し、BaTiO及びLiCoOに対する各試料の特性を評価した(試料1~20)。また、比較のため、ZrOを用いて第2層を形成した試料も作成し(試料21~24)、併せて特性を評価した。評価結果を図2に示す。
 まず、試料の作成方法を説明する。縦横150×150mm,厚さ2mmのSi-SiC板及びSiC焼結体板(基板)を用意し、スプレー法を用いて基板表面にムライト(Al-SiO質)の第1層を形成した。試料3,6,13,22,24では基板としてSiC焼結体板を用い、他の試料は基板としてSi-SiC板を用いた。また、第1層の厚みは、試料2,3,10,21,22は50μmとし、他の試料は100μmとした。次に、各試料を大気雰囲気で1350℃,2時間焼成した。その後、溶射法を用いて、第1層の表面に、図2に示す材料及び厚みで第2層を形成した。得られた試料1~24について、反応試験と剥離試験を行った。なお、反応試験と剥離試験は、別の試料を用いた。また、試料5について、SEM(走査型電子顕微鏡:日本電子(株)製JSM-5600)を用いてコーティング層を300倍で観察した。図3にSEM写真を示す。
(SEM観察)
 図3に示すように、第2層は複数の偏平粒で構成されており、各偏平粒は厚み方向に積層している確認された。各偏平粒は、平板状ではなく、不規則に湾曲した形状であり、偏平粒間に隙間が設けられていることも確認された。この隙間が、第2層(第2層を構成する偏平粒)の熱膨張を緩和するものと推察される。
(反応試験)
 各試料について反応試験を行った。反応試験は、試料の表面の中央部分に被焼成物(BaTiO,LiCoO)10gを載置し、BaTiOを載置した試料については、大気雰囲気で1200℃,1時間焼成した後に室温まで冷却する処理を1サイクルとする試験を、35サイクル行った。また、LiCoOを載置した試料については、大気雰囲気で1000℃,1時間焼成した後に室温まで冷却する処理を1サイクルとする試験を、35サイクル行った。なお、各サイクルを開始するにあたり、被焼成物(BaTiO,LiCoO)は、新しいものと交換した。そのため、反応試験においては、合計350gの被焼成物を焼成した。
 反応試験後の各試料について、被焼成物の構成元素(Ba,Ti,Li,Co)の試料への浸透性、コーティング層の密着性について評価した。浸透性は、SEMに取り付けられているEDS(エネルギー分散型X線分光器)を用いてBa,Ti,Li,Co元素をマッピングし、被焼成物の構成元素がコーティング層の表層から浸透している深さを測定して評価した。表層からの浸透深さが深い程、被焼成物が試料(焼成治具に相当)と反応していることを示す。上記構成元素の浸透深さが表層から10μm以下の試料を「A」、浸透深さが表層から10μm超20μm以下の試料を「B」、浸透深さが表層から20μm超30μm以下の試料を「C」、浸透深さが表層から30μm超の試料を「D」とした。評価「A」及び「B」は被焼成物と試料との反応抑制効果が高いことを示し(特に「A」が良好)、評価「C」は反応抑制効果がやや劣ることを示し、評価「D」は反応抑制効果が低いことを示す。評価結果を図2に示す。
 密着性については、被焼成物の交換時(1サイクル終了後)に、コーティング層の剥離の有無を目視で確認して評価した。30サイクル終了後に剥離が確認されなかった試料を「A」、21~30サイクルの間に剥離が確認された試料を「B」、11~20サイクルの間に剥離が確認された試料を「C」、1~10サイクルの間に剥離が確認された試料を「D」とした。評価結果を図2に示す。
(剥離試験)
 各試料について剥離試験を行った。剥離試験は、反応試験とは別の試料を作成して行った。剥離試験は、各試料について、大気雰囲気で1350℃,2時間焼成した後に室温まで冷却する処理を1サイクルとする試験を、6サイクル行った。各サイクル終了後、各試料の表面に10mm×15mmのガムテープ(菊水テープ(株)製、布テープ No,212 50ミリ 25M)を貼り付けた後、そのガムテープを剥がし、コーティング層の剥離の有無を目視で確認して評価した。なお、ガムテープは、試料の中央部分に貼り付けた。また、ガムテープを試料(コーティング層)に密着させるため、ガムテープを試料に貼り付けた後、ガムテープ上に2kgの重りを10秒間載せた。6サイクル終了後に剥離が確認されなかった試料を「A」、4または5サイクル終了後に剥離が確認された試料を「B」、2または3サイクル終了後に剥離が確認された試料を「C」、1サイクル終了後に剥離が確認された試料を「D」とした。評価結果を図2に示す。
(有用性の判定)
 上記反応試験及び剥離試験の結果、評価「A」が3個以上の試料を判定「A」、評価「A」が1又は2個で評価「C」及び評価「D」がない試料を判定「B」、評価「A」が1個もない試料を判定「C」とした。判定「A」及び「B」の試料(焼成治具)は、電子部品材及びリチウム電池で用いられる活物質材との反応性が低く、焼成治具として有用であることを示している。特に、判定「A」の試料(焼成治具)は、電子部品材及びリチウム電池で用いられる活物質材用の焼成治具として優れた特性を有しているといえる。
 図2に示すように、Y,HfO,CeO,NiO,WC,Ni,Moを用いて第2層を形成した試料(試料1~20)は、ZrOを用いて第2層を形成した試料(試料21~24)と比較して、優れた特性を示していることが確認された(例えば、試料5,12,18,19,20,23を比較)。また、Si-SiC板とSiC焼結体板の双方において、同様の効果が得られることも確認された(試料2,3、試料5,6、試料12,13、試料21,22、試料23,24を比較)。また、Y,HfOを用いて第2層を形成した試料(試料1~15)において、第2層の厚みを10μm~200μmまで変化させた結果、いずれも良好な結果が得られることが確認された。特に、厚み50~150μmの試料(試料2~7、試料10~14)が良好な結果を示した。なお、CeO,NiO,WC,Ni,Moを用いて第2層を形成した試料(試料16―21)は、Y,HfOを用いて第2層を形成した試料(試料5,12)と同様に、優れた特性を示すことが確認された。
 以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。

Claims (6)

  1.  電子部品材の焼成に用いられる焼成治具であり、
     SiC質又はSi-SiC質の基材と、基材の表面を被覆しているコーティング層を備えており、
     コーティング層は、
     基材表面に設けられているAl-SiO質を主成分とする第1層と、
     コーティング層の表層に露出しており、Y,HfO,CeO,NiO,WC,Ni,Moから選択される少なくとも1種を主成分とする第2層と、
     を備える焼成治具。
  2.  リチウム電池の活物質材の焼成に用いられる焼成治具であり、
     SiC質又はSi-SiC質の基材と、基材の表面を被覆しているコーティング層を備えており、
     コーティング層は、
     基材表面に設けられているAl-SiO質を主成分とする第1層と、
     コーティング層の表層に露出しており、Y,HfO,CeO,NiOから選択される少なくとも1種を主成分とする第2層と、
     を備える焼成治具。
  3.  第2層が、Y,HfO,CeO,NiOから選択される少なくとも1種を主成分とする請求項1に記載の焼成治具。
  4.  第1層の熱膨張係数が基材の熱膨張係数以上であり、第2層の熱膨張係数が第1層の熱膨張係数以上となるように、基材、第1層及び第2層の材料が選択されている請求項1から3のいずれか一項に記載の焼成治具。
  5.  第1層と第2層の間に、Al質を主成分とする第3層が設けられている請求項1から4のいずれか一項に記載の焼成治具。
  6.  第2層内に、第2層を構成する粒子が溶融凝固した偏平粒が複数存在し、
     偏平粒が、基材と第1層と第2層が積層している方向に積層している請求項1から5のいずれか一項に記載の焼成治具。
PCT/JP2020/005150 2019-02-14 2020-02-10 焼成治具 WO2020166565A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020530713A JP6948466B2 (ja) 2019-02-14 2020-02-10 焼成治具
CN202080001614.5A CN113383204B (zh) 2019-02-14 2020-02-10 烧成用夹具
KR1020207023354A KR102407421B1 (ko) 2019-02-14 2020-02-10 소성 지그

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-024685 2019-02-14
JP2019024685 2019-02-14

Publications (1)

Publication Number Publication Date
WO2020166565A1 true WO2020166565A1 (ja) 2020-08-20

Family

ID=72044896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005150 WO2020166565A1 (ja) 2019-02-14 2020-02-10 焼成治具

Country Status (5)

Country Link
JP (1) JP6948466B2 (ja)
KR (1) KR102407421B1 (ja)
CN (1) CN113383204B (ja)
TW (1) TWI816975B (ja)
WO (1) WO2020166565A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7203296B1 (ja) * 2022-03-28 2023-01-12 日本碍子株式会社 焼成用セッター
WO2023188454A1 (ja) * 2022-03-28 2023-10-05 日本碍子株式会社 焼成用セッター
JP7422104B2 (ja) 2021-03-23 2024-01-25 東京窯業株式会社 積層構造体の製造方法及び積層構造体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11314984A (ja) * 1998-05-06 1999-11-16 Toshiba Ceramics Co Ltd 焼成用道具材
JP2007076935A (ja) * 2005-09-13 2007-03-29 Toshiba Ceramics Co Ltd 電子部品焼成用治具およびその製造方法
WO2009116596A1 (ja) * 2008-03-21 2009-09-24 株式会社Ihi コーティング構造及び表面処理方法
JP2014172767A (ja) * 2013-03-07 2014-09-22 Tokai Konetsu Kogyo Co Ltd 炭化珪素複合材およびその製造方法
JP2015054812A (ja) * 2013-09-13 2015-03-23 三井金属鉱業株式会社 焼成治具および焼成治具の製造方法
JP2019163877A (ja) * 2018-03-19 2019-09-26 日本碍子株式会社 焼成用セッター

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159671A (ja) * 1994-12-07 1996-06-21 Toshiba Ceramics Co Ltd 電子部品焼成用治具
JP4693196B2 (ja) * 1998-12-22 2011-06-01 菊水化学工業株式会社 焼成治具
JP3812715B2 (ja) * 2000-11-01 2006-08-23 東芝セラミックス株式会社 焼成用容器の再生方法
JP2002154884A (ja) * 2000-11-10 2002-05-28 Ngk Insulators Ltd 電子部品用焼成治具
JP2002270476A (ja) * 2001-03-13 2002-09-20 Murata Mfg Co Ltd 匣およびその製造方法ならびにセラミック電子部品の製造方法
JP2003306392A (ja) * 2002-04-12 2003-10-28 Toshiba Ceramics Co Ltd 電子部品用セラミックスの熱処理用治具およびその製造方法
JP4276558B2 (ja) * 2003-02-25 2009-06-10 株式会社アライドマテリアル 酸化物皮膜層を備えた高融点金属材料とその製造方法とそれを用いた焼結用板
JP2006183972A (ja) * 2004-12-28 2006-07-13 Ngk Insulators Ltd 電子部品用焼成治具
JP5324029B2 (ja) * 2006-03-20 2013-10-23 東京エレクトロン株式会社 半導体加工装置用セラミック被覆部材
AU2006345567B2 (en) * 2006-05-30 2013-06-06 Essity Hygiene And Health Aktiebolag Garment for use with an absorbent structure and its method of manufacture
JP5953947B2 (ja) * 2012-06-04 2016-07-20 株式会社Ihi 耐環境被覆されたセラミックス基複合材料部品及びその製造方法
JP3187621U (ja) * 2013-09-26 2013-12-05 株式会社丸栄産業合作社 リチウムイオン電池における正極材用焼成治具
CN104451518B (zh) * 2014-11-20 2017-02-01 西安交通大学 一种低导热抗烧结热障涂层及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11314984A (ja) * 1998-05-06 1999-11-16 Toshiba Ceramics Co Ltd 焼成用道具材
JP2007076935A (ja) * 2005-09-13 2007-03-29 Toshiba Ceramics Co Ltd 電子部品焼成用治具およびその製造方法
WO2009116596A1 (ja) * 2008-03-21 2009-09-24 株式会社Ihi コーティング構造及び表面処理方法
JP2014172767A (ja) * 2013-03-07 2014-09-22 Tokai Konetsu Kogyo Co Ltd 炭化珪素複合材およびその製造方法
JP2015054812A (ja) * 2013-09-13 2015-03-23 三井金属鉱業株式会社 焼成治具および焼成治具の製造方法
JP2019163877A (ja) * 2018-03-19 2019-09-26 日本碍子株式会社 焼成用セッター

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7422104B2 (ja) 2021-03-23 2024-01-25 東京窯業株式会社 積層構造体の製造方法及び積層構造体
JP7203296B1 (ja) * 2022-03-28 2023-01-12 日本碍子株式会社 焼成用セッター
WO2023188454A1 (ja) * 2022-03-28 2023-10-05 日本碍子株式会社 焼成用セッター

Also Published As

Publication number Publication date
JPWO2020166565A1 (ja) 2021-03-11
TW202043176A (zh) 2020-12-01
KR102407421B1 (ko) 2022-06-10
KR20200105930A (ko) 2020-09-09
TWI816975B (zh) 2023-10-01
CN113383204A (zh) 2021-09-10
JP6948466B2 (ja) 2021-10-13
CN113383204B (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
WO2020166565A1 (ja) 焼成治具
US6783875B2 (en) Halogen gas plasma-resistive members and method for producing the same, laminates, and corrosion-resistant members
JP5953947B2 (ja) 耐環境被覆されたセラミックス基複合材料部品及びその製造方法
Xu et al. Novel thermal barrier coatings based on La2 (Zr0. 7Ce0. 3) 2O7/8YSZ double-ceramic-layer systems deposited by electron beam physical vapor deposition
TWI564266B (zh) A laminated structure, a member for a semiconductor manufacturing apparatus, and a method for manufacturing the laminated structure
KR100756619B1 (ko) 질화알루미늄 소결체, 반도체 제조용 부재 및 질화알루미늄소결체의 제조 방법
JP2007084421A (ja) バリヤ層を備えた物品およびコーティングの生成方法
JP2016074981A (ja) 耐熱性部材及びその製造方法
JP7220527B2 (ja) 焼成用道具材
JP4091275B2 (ja) 金属セラミックス積層構造部材およびその製造方法
JP7225376B2 (ja) 耐火物
JP2004307239A (ja) 層状構造を有する酸化アルミニウム耐摩耗性部材及びその製造方法
JP2007176734A (ja) 表面被覆セラミック焼結体
US11554992B2 (en) Bonded ceramic assembly
JP2004115332A (ja) 電子部品焼成用治具
Ramaswamy et al. A simple method for the preparation of plasma-sprayable powders based on ZrO 2
JP3819352B2 (ja) 電子部品焼成用治具
RU2280095C2 (ru) Способ нанесения покрытия
JP3643022B2 (ja) 電子部品焼成用治具
JP4277950B2 (ja) 電子部品焼成用治具
JP2004115331A (ja) 電子部品焼成用治具
JP2004107125A (ja) 電子部品焼成用治具
Ravichandran et al. Assessment of Thermal Barrier Coatings by Plasma Deposition
JPH08259332A (ja) セラミックス繊維強化タービン翼及びその製造方法
JP2002362986A (ja) 電子セラミックス焼成用道具材の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020530713

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207023354

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20756285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20756285

Country of ref document: EP

Kind code of ref document: A1