WO2020161879A1 - ドライエッチング方法及びドライエッチング装置 - Google Patents

ドライエッチング方法及びドライエッチング装置 Download PDF

Info

Publication number
WO2020161879A1
WO2020161879A1 PCT/JP2019/004577 JP2019004577W WO2020161879A1 WO 2020161879 A1 WO2020161879 A1 WO 2020161879A1 JP 2019004577 W JP2019004577 W JP 2019004577W WO 2020161879 A1 WO2020161879 A1 WO 2020161879A1
Authority
WO
WIPO (PCT)
Prior art keywords
dry etching
etching method
sample
organic film
etching
Prior art date
Application number
PCT/JP2019/004577
Other languages
English (en)
French (fr)
Inventor
直行 小藤
謙一 桑原
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to US16/495,652 priority Critical patent/US20210335625A1/en
Priority to JP2019542638A priority patent/JPWO2020161879A1/ja
Priority to KR1020197022984A priority patent/KR20200098386A/ko
Priority to CN201980001243.8A priority patent/CN111801773A/zh
Priority to PCT/JP2019/004577 priority patent/WO2020161879A1/ja
Priority to TW108133769A priority patent/TW202030792A/zh
Publication of WO2020161879A1 publication Critical patent/WO2020161879A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Definitions

  • the present invention relates to a dry etching method and a dry etching apparatus.
  • lithography technique is used in a manufacturing process of a semiconductor device. This technique applies a device structure pattern on a resist layer and selectively etches away the substrate exposed by the resist layer pattern. In subsequent processing steps, other materials may be deposited in the etched areas to form integrated circuits.
  • Patent Document 1 As shown in FIG. 1, after forming a self-assembled block copolymer (DSA) of polystyrene (PS) 1 and polymethylmethacrylate (PMMA) 2, there is a technique of etching and removing only PMMA 2. It is shown. Patent Document 1 describes that a line and space pattern of PS1 (hereinafter referred to as an LS pattern) is formed by using this method as shown in FIG.
  • DSA self-assembled block copolymer
  • PS polystyrene
  • PMMA polymethylmethacrylate
  • Patent Document 2 discloses a dry etching apparatus that forms plasma by ECR resonance of a magnetic field and microwaves and has a structure in which a dielectric porous plate is arranged between a sample and a dielectric window.
  • the position of the magnetic field strength 875 Gauss called the ECR surface is located above the perforated plate.
  • the ECR surface As a result, of the ions and radicals generated in the plasma, charged ions can be shielded, and the sample can be irradiated with only electrically neutral particles such as radicals.
  • the ECR surface By positioning the ECR surface below the perforated plate, it is possible to irradiate the sample with both ions and radicals.
  • the LS pattern obtained by etching may collapse.
  • a typical dry etching method of the present invention is one in which neutral radicals are adsorbed on the surface of an organic film in a first atmosphere in which the concentration of rare gas or nitrogen ions is reduced from plasma. This is achieved by alternately repeating one step and the second step of supplying rare gas or nitrogen ions to the surface of the organic film in a second atmosphere having an ion concentration higher than that of the first atmosphere.
  • FIG. 1 is an enlarged sectional view of a DSA sample before the PMMA etching process.
  • FIG. 2 is an enlarged sectional view of a DSA sample after an ideal PMMA etching process.
  • FIG. 3 is a schematic configuration diagram of the dry etching apparatus of this embodiment.
  • FIG. 4 is an enlarged cross-sectional view of a sample of DSA after the PMMA etching process according to the comparative example.
  • FIG. 5 is an enlarged top view of the DSA sample after the PMMA etching process according to the comparative example.
  • FIG. 6 is a diagram for explaining the reason why the LS pattern collapses due to the etching process of PMMA according to the comparative example.
  • FIG. 7 is a figure which shows typically the surface state of the sample in the 1st process in the etching process of PMMA concerning a comparative example.
  • FIG. 8 is a diagram schematically showing the surface state of the sample during the PMMA etching process according to the example.
  • FIG. 9 is a diagram schematically showing the surface state of the sample during the PMMA etching process according to the example.
  • FIG. 10 is an enlarged cross-sectional view of the DSA sample after the PMMA etching process according to the example.
  • FIG. 11 is an enlarged top view of the DSA sample after the PMMA etching process according to the example.
  • FIG. 12 is a graph showing the relationship between the PMMA etching amount and the sample temperature in the first step according to the example.
  • FIG. 13 is an enlarged cross-sectional view of a sample of the three-layer resist before the etching process.
  • FIG. 14 is an enlarged cross-sectional view of a sample of the three-layer resist after the organic film etching process of the comparative example.
  • FIG. 15 is an enlarged cross-sectional view of a sample of the three-layer resist after the organic film etching process of the example.
  • FIG. 16 is a diagram showing a configuration of an etching processing apparatus according to another embodiment.
  • FIG. 3 is a schematic configuration diagram of a downflow type dry etching apparatus that executes the dry etching method of the present embodiment.
  • a microwave of 2.45 GHz supplied from the magnetron 13 to the decompression processing chamber 12 through the waveguide 11 and the dielectric window 17 and a magnetic field generated by the solenoid coil 14 are used.
  • Plasma can be generated in the reduced pressure processing chamber 12 by the ECR resonance.
  • a high frequency power supply 23 is connected to a sample table 20 holding a sample 21 via a matching device 22.
  • the magnetron 13 and the solenoid coil 14 constitute a plasma generator.
  • a plasma control device 26 for controlling the generation state of plasma in the decompression processing chamber 12, a solenoid coil 14, and a magnetic field control device 18 for controlling this are provided.
  • the energy of ion irradiation can be controlled from several tens eV to several KeV by adjusting the power supplied from the high frequency power supply 23.
  • the temperature of the sample table 20 on which the sample 21 is placed is adjusted, and the sample temperature is maintained at 20° C. during the etching.
  • Ar (argon) gas and O 2 (oxygen) gas are introduced into the decompression processing chamber 12 via the gas introduction port 15.
  • the inside of the decompression processing chamber 12 is decompressed by a negative pressure pump.
  • a dielectric porous plate 16 is installed inside the decompression processing chamber 12.
  • plasma is generated in the vicinity of a surface having a magnetic field strength of 875 Gauss called ECR surface.
  • the magnetic field control device 18 and the solenoid coil 14, which are the plasma control devices 26, are arranged so that the ECR surface is between the porous plate 16 and the dielectric window 17 (that is, the porous window 16 has a dielectric window side).
  • Plasma 25A can be generated (above).
  • the Ar ions can be shielded and only the oxygen neutral radicals can be applied to the sample 21. In such a state, the periphery of the sample 21 becomes the first atmosphere in which the Ar ion concentration is relatively low.
  • the magnetic field controller 18 controls the solenoid coil 14 to adjust the magnetic field so that the ECR surface is between the perforated plate 16 and the sample 21, the magnetic field control device 18 is closer to the sample side than the perforated plate 16 (that is, Plasma 25B can be generated (below). Therefore, the sample can be irradiated with both Ar ions and oxygen neutral radicals. In such a state, the periphery of the sample 21 becomes a second atmosphere having a higher Ar ion concentration than the first atmosphere.
  • the Ar ion concentration in the first atmosphere is preferably less than 10% of the ion concentration in the second atmosphere.
  • the dry etching apparatus that can perform the dry etching treatment of the present invention is not limited to the downflow type dry etching apparatus described above, and an RIE type dry etching apparatus may be used.
  • the present inventors performed the PMMA2 etching treatment on the DSA sample shown in FIG. 1 using the dry etching apparatus shown in FIG. First, in the etching process of the comparative example, the ECR surface was arranged on the sample side with respect to the porous plate 16, and the etching was performed in a state where the sample was irradiated with both ions and radicals. The result is shown in FIG. After the etching process, the LS pattern of PS1 formed as a plurality of walls fell sideways as shown in FIG. Therefore, as shown in the top view of FIG. 5, the line edge roughness (referred to as LER), which is the distortion of the pattern, increased. In addition, at a place where PS1 collapsed strongly, adjacent PS1s contacted each other, and the irradiation of ions was blocked, and PMMA2 below it was not reached, and etching did not proceed.
  • LER line edge roughness
  • Etching proceeds by irradiating PMMA2 with both oxygen radicals 4 and Ar ions 5, but due to variations in the space spacing between PS1 and PS1 in the LS pattern, oxygen reaching the surface of PMMA2 as shown in FIG. Differences occur in the amount of radicals 4. Since the etching amount of PMMA2 is proportional to the amount of oxygen radicals 4 reaching the surface of PMMA2, it was found that the etching amount increases when the space interval is wide and the etching amount decreases when the space interval is narrow.
  • the present inventors have derived an etching method in which the following two steps are repeated in order to suppress variations in the etching amount.
  • the ECR surface is arranged on the dielectric window 17 side of the porous plate 16 to generate oxygen plasma 25A (FIG. 3). This shields the Ar ions and irradiates the sample with oxygen radicals in the first atmosphere. At this time, since the Ar ions are shielded, the etching does not proceed even if the sample is irradiated with oxygen radicals.
  • oxygen radicals 4 are saturated and adsorbed on any surface of PMMA 2 as shown in FIG. “Saturated adsorption” means a state in which neutral radicals are not substantially adsorbed any more.
  • the ECR surface is arranged on the sample 21 side of the porous plate 16 to generate Ar plasma 25B (FIG. 3).
  • Ar plasma 25B FIG. 3
  • PMMA2 is irradiated with Ar ions 5 in the second atmosphere.
  • oxygen radicals 4 adsorbed on the surface of PMMA2 are activated as shown in FIG. 9, and etching of PMMA2 proceeds.
  • the amount of etching at this time is determined by the amount of oxygen radicals 4 adsorbed on the surface of PMMA2, so if oxygen radicals 4 are saturated and adsorbed on the surface of PMMA2, a certain amount of PMMA2 will be etched. Therefore, by alternately repeating the first step and the second step, the etching process proceeds while maintaining the etching amount of PMMA2 uniform regardless of the variation of the pattern, so that the collapse of the LS pattern is suppressed. It When the treatment time of the first step is longer than that of the second step, saturated adsorption becomes effective, which is preferable.
  • FIG. 10 shows the cross-sectional shape of the sample etched by the above etching method. No fall of PS1 is seen. A top view of the processed sample is shown in FIG. No LER caused by the collapse was observed in the formed PS1 LS pattern, indicating that a straight pattern was formed.
  • oxygen gas was used in the first step
  • any mixed gas containing oxygen such as a gas obtained by diluting oxygen with a rare gas
  • a gas containing no oxygen may be used as a gas capable of etching an organic material by a chemical reaction, for example, a mixed gas containing hydrogen, water and methanol.
  • Ar gas is used in the second step, another rare gas or nitrogen gas may be used as long as it is composed only of a gas that does not etch the organic film by a chemical reaction.
  • the organic film that can be etched is not limited to PMMA.
  • Example 2 In Example 1, PMMA was etched while maintaining the sample temperature at 20°C. The inventors investigated the effect of temperature on this sample.
  • FIG. 12 shows the relationship between the etching amount of PMMA and the sample temperature when oxygen radicals are irradiated in the first step. It was found that PMMA was not etched at 100°C or lower. On the other hand, it has been found that when the sample temperature exceeds 100° C., the etching amount of PMMA increases at an accelerated rate, which causes variations in the etching amount.
  • the inorganic film 7 of this sample was etched to form an inorganic film mask, and the organic film 6 was further etched using this inorganic film mask.
  • the organic film 6 was etched with oxygen or the like, the LS pattern of the formed organic film 6 collapsed during etching.
  • Example 3 Therefore, as in Example 1, the first step of irradiating the sample with oxygen plasma while shielding Ar ions and the second step of irradiating the sample with Ar plasma without shielding Ar ions were repeated. However, the etching proceeded while the thickness of the residual film of the organic film 6 was uniform. For this reason, as shown in FIG. 15, the phenomenon that the patterns collapse or the patterns contact each other did not occur.
  • FIG. 16 is a diagram showing a dry etching apparatus in which a downflow type etcher 101 and a reactive ion etching (RIE) type etcher 102 are connected by a vacuum transfer unit 103.
  • RIE reactive ion etching
  • the downflow type etcher 101 has a structure that can shield ions in plasma and irradiate only neutral radicals, so that only oxygen radicals are irradiated in the first atmosphere. Since PMMA is not etched by only oxygen radicals, oxygen radicals are saturated and adsorbed on the PMMA surface as shown in FIG.
  • the vacuum transfer unit (transfer device) 103 transfers the sample from the downflow type etcher 101 to the RIE type etcher (second device) 102, and Ar plasma is generated therein. .. Since the RIE etcher 102 is irradiated with both ions in plasma and neutral radicals, PMMA is irradiated with Ar ions on the sample in the second atmosphere. By this ion irradiation, oxygen radicals adsorbed on the PMMA surface are activated similarly to the example shown in FIG. 9, and the etching of PMMA proceeds.
  • the etching amount at this time is determined by the amount of oxygen radicals saturated and adsorbed on the PMMA surface, so a certain amount of PMMA is etched.
  • the cross-sectional shape of the sample etched by this method is the same as that shown in Fig. 10, and no collapse of the LS pattern is seen.
  • the top surface shape of the processed sample is the same as that shown in FIG. No LER was found in the formed PS LS pattern due to the collapse. It was found that a straight pattern was formed.
  • the present invention is not limited to the above-described embodiment, and various modifications are included.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

プラズマを用いたドライエッチング方法によれば、有機膜をエッチングする際に、Arイオンを遮蔽して酸素ラジカルのみを試料の有機膜に照射する第1の工程と、希ガスのイオンを有機膜に照射する第2の工程とを交互に繰り返すことにより、有機膜のエッチングのばらつきを抑えて精度良いエッチング処理を行うことができる。これによりシリコン基板などに形成されるLSパターンの倒れを抑制することができる。

Description

ドライエッチング方法及びドライエッチング装置
 本発明は、ドライエッチング方法及びドライエッチング装置に関する。
 半導体デバイスの製造工程においては、半導体装置に含まれるコンポーネントの微細化や集積化に対応することが求められている。例えば、近年では、集積回路やナノ電気機械システムにおいてナノスケールのような小さい構造が求められている。
 通常、半導体デバイスの製造工程においては、リソグラフィ技術が用いられている。この技術は、レジスト層の上にデバイス構造のパターンを適用し、レジスト層のパターンによって露出した基板を選択的にエッチング除去するものである。その後の処理工程において、エッチング領域内に他の材料を堆積させれば、集積回路を形成できる。
 しかしながら、こうした技術を用いてもナノスケールの構造体をスループット良く製造することは難しく、様々な技術の改良がなされている。これらの先行技術には、例えば特許文献1に開示されるものがある。特許文献1には、図1に示すように、ポリスチレン(PS)1とポリメチルメタクリレート(PMMA)2の自己組織化ブロック共重合体(DSA)を形成した後、PMMA2のみをエッチング除去する技術が示されている。そして、この方法を用いることで、図2のように、PS1のラインアンドスペースパターン(以降、LSパターンという)が形成されることが、同特許文献1に記載されている。
 また、その他の公知例としては、特許文献2に示す技術がある。特許文献2では、磁場とマイクロ波のECR共鳴でプラズマを形成するドライエッチング装置において、試料と誘電体窓の間に誘電体製の多孔板を配置した構造の装置が開示されている。
 この装置においては、ECR面と呼ばれる磁場強度875ガウス(Gauss)の面の位置を多孔板より上にする。これにより、プラズマ中で生成されるイオンとラジカルのうち、電荷を帯びているイオンを遮蔽して、ラジカルなどの電気的に中性な粒子のみを試料に照射することができる。
 一方、ECR面の位置を、多孔板より下にすることで、イオンとラジカルの両方を試料に照射することもできる。
特開2014-75578号公報 国際特許公開第2016/190036号
 しかしながら、試料に有機膜を形成した後、プラズマを用いてエッチング処理を行ってLSパターンを形成した場合には、エッチングによって得られたLSパターンに倒れが発生する場合がある。
 そこで、本発明は、有機膜をエッチングする際に、LSパターンの倒れを抑制して、精度良くエッチング処理を行えるドライエッチング方法及びドライエッチング装置を提供することを目的とする。
 上記課題を解決するために、代表的な本発明のドライエッチング方法は、プラズマから希ガスもしくは窒素のイオンの濃度を減少させた第1の雰囲気で中性ラジカルを有機膜の表面に吸着させる第1工程と、前記第1の雰囲気よりもイオン濃度が高い第2の雰囲気で希ガスもしくは窒素のイオンを前記有機膜の表面に供給する第2の工程とを交互に繰り返すことにより達成される。
 本発明によれば、特に、有機膜をエッチングする際に、LSパターンの倒れを抑制して、精度良くエッチング処理を行うことができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
図1は、PMMAのエッチング処理前におけるDSAの試料の拡大断面図である。 図2は、理想的なPMMAエッチング処理後におけるDSAの試料の拡大断面図である。 図3は、本実施形態のドライエッチング装置の概略構成図である。 図4は、比較例にかかるPMMAのエッチング処理後におけるDSAの試料の拡大断面図である。 図5は、比較例にかかるPMMAのエッチング処理後におけるDSAの試料の拡大上面図である。 図6は、比較例にかかるPMMAのエッチング処理によりLSパターンが倒れる原因を説明するための図である。 図7は、比較例にかかるPMMAのエッチング処理における第一の工程中の試料の表面状態を模式的に示す図である。 図8は、実施例にかかるPMMAエッチング処理中の試料の表面状態を模式的に示す図である。 図9は、実施例にかかるPMMAエッチング処理中の試料の表面状態を模式的に示す図である。 図10は、実施例にかかるPMMAのエッチング処理後におけるDSAの試料の拡大断面図である。 図11は、実施例にかかるPMMAのエッチング処理後におけるDSAの試料の拡大上面図である。 図12は、実施例にかかる第1の工程におけるPMMAのエッチング量と試料温度との関係を示すグラフである。 図13は、エッチング処理前の三層レジストの試料の拡大断面図である。 図14は、比較例の有機膜エッチング処理後における三層レジストの試料の拡大断面図である。 図15は、実施例の有機膜エッチング処理後における三層レジストの試料の拡大断面図である。 図16は、別の実施形態にかかるエッチング処理装置の構成を示す図である。
 以下、図面を参照して、本発明の実施形態について説明する。
[実施形態1]
 図3は、本実施形態のドライエッチング方法を実行するダウンフロー型のドライエッチング装置の概略構成図である。図3のドライエッチング装置では、マグネトロン13から導波管11を通り誘電体窓17を介して減圧処理室12に供給される2.45GHzのマイクロ波と、ソレノイドコイル14の作る磁場によって形成されるECR共鳴によって、減圧処理室12内にプラズマを生成できる。また、試料21を保持する試料台20に、整合器22を介して高周波電源23が接続されている。
 ここで、マグネトロン13とソレノイドコイル14とで、プラズマ発生装置を構成する。また、減圧処理室12におけるプラズマの発生状態を制御するプラズマ制御装置26と、ソレノイドコイル14と、これを制御する磁場制御装置18が設けられている。
 このドライエッチング装置では、高周波電源23から供給する電力を調整すれば、イオン照射のエネルギーを数10eVから数KeVまで制御できる。また、試料21を載置する試料台20は温度調整されており、エッチング中も試料温度が20℃に維持されている。さらに、Ar(アルゴン)ガスとO(酸素)ガスが、ガス導入口15を介して減圧処理室12内に導入される。減圧処理室12内は負圧ポンプにより減圧されている。
 また、このドライエッチング装置では、誘電体製の多孔板16が減圧処理室12の内部に設置されている。このドライエッチング装置では、ECR面と呼ばれる磁場強度875ガウス(Gauss)の面付近でプラズマが生成される。このため、ECR面が多孔板16と誘電体窓17の間になるよう、プラズマ制御装置26である磁場制御装置18及びソレノイドコイル14が、多孔板16の誘電体窓側(つまり、多孔板16の上方で)プラズマ25Aを生成できる。これにより、Arイオンを遮蔽して、酸素の中性ラジカルのみを試料21に照射することができる。かかる状態では、試料21の周囲はArイオン濃度が比較的低い状態の第1の雰囲気となる。
 一方で、ECR面が多孔板16と試料21の間になるよう、磁場制御装置18がソレノイドコイル14を制御して磁場を調整すれば、多孔板16より試料側で(つまり、多孔板16の下方で)プラズマ25Bを生成できる。このため、Arイオンと酸素の中性ラジカルの両方を試料に照射できる。かかる状態では、試料21の周囲はArイオン濃度が第1の雰囲気よりも高い第2の雰囲気となる。第1の雰囲気におけるArのイオン濃度は、第2の雰囲気のイオン濃度に対し10%未満であると好ましい。
 なお、本発明のドライエッチング処理を行えるドライエッチング装置は、以上のダウンフロー型のドライエッチング装置に限られず、RIE型のドライエッチング装置を用いてもよい。
(比較例1)
 本発明者らは、図3のドライエッチング装置を用いて、図1に示すDSAの試料においてPMMA2のエッチング処理を行った。まず比較例のエッチング処理では、ECR面を多孔板16より試料側に配置して、イオンとラジカルの両方が試料に照射される状態でエッチングを行った。その結果を図4に示す。エッチング処理後において複数の壁として形成されるPS1のLSパターンは、図4のように左右に倒れてしまった。
 そのため、図5の上面図のように、パターンの歪みであるラインエッジラフネス(LERという)が増加した。また、PS1の倒れが強い箇所では、隣接するPS1同士が接してしまい、イオンの照射が遮られてその下方にあるPMMA2に到達せず、エッチングが進まなくなった。
 本発明者らは、エッチング途中におけるパターン形状評価や応力解析などを用いて、LSパターンの倒れの原因を調べた。その結果、このPMMA2が本来的に収縮(Tensile)応力を持っているため、PMMA2の残膜にばらつきがあると、図6においてPMMA2の残膜の厚い部位の収縮力が高まることを見出した。それによりLSパターンが引っ張られて倒れることとなる。
 次に、PMMA2の残膜のばらつき、すなわちPMMA2のエッチング量のばらつきが生じる原因を調べた。PMMA2に酸素ラジカル4とArイオン5の両方が照射されることによりエッチングが進むが、LSパターンにおけるPS1とPS1の間のスペース間隔のばらつきによって、図7に示すようにPMMA2の表面に到達する酸素ラジカル4の量に違いが生じる。PMMA2のエッチング量は、PMMA2の表面に到達する酸素ラジカル4の量に比例するため、上記スペース間隔が広いとエッチング量が増大し、狭いとエッチング量が減少することがわかった。
 そこで、本発明者らは、エッチング量のばらつきを抑制するため、次のような二つの工程を繰り返すエッチング手法を導出した。まず、第1の工程では、ECR面を多孔板16の誘電体窓17側に配置して酸素のプラズマ25Aを生成させる(図3)。これにより、Arイオンを遮蔽して、第1の雰囲気中で酸素ラジカルを試料に照射する。
 このとき、Arイオンが遮蔽されているため、酸素ラジカルが試料に照射されてもエッチングは進まない。第1の工程時間が長いと、図8に示すようにPMMA2のいずれの表面にも酸素ラジカル4が飽和吸着した状態になる。「飽和吸着」とは、それ以上中性ラジカルが実質的に吸着しない状態をいう。
 次に、第2の工程では、ECR面を多孔板16の試料21側に配置して、Arのプラズマ25Bを生成させる(図3)。これにより、第2の雰囲気中でPMMA2にArイオン5が照射される。このイオン照射によって、図9のようにPMMA2の表面に吸着した酸素ラジカル4が活性化され、PMMA2のエッチングが進む。
 この際のエッチング量は、PMMA2の表面に吸着した酸素ラジカル4の量で決まるため、酸素ラジカル4がPMMA2の表面に飽和吸着していれば、一定量のPMMA2がエッチングされることとなる。したがって、第1の工程と第2の工程とを交互に繰り返すことにより、パターンのばらつきに関わらず、PMMA2のエッチング量を均一に維持しつつエッチング処理が進行するため、LSパターンの倒れが抑制される。第1の工程は、第2の工程よりも処理時間が長いと飽和吸着が有効になるので好ましい。
(実施例1)
 以上のエッチング方法でエッチングされた試料の断面形状を図10に示す。PS1の倒れは見られない。また、加工後のサンプルの上面図を図11に示す。形成されたPS1のLSパターンには倒れに起因したLERは見られず、真っ直ぐなパターンが形成されていることがわかった。
 ここでは、第1の工程で酸素ガスを用いたが、例えば、酸素を希ガスで希釈したガスのように酸素を含む混合ガスであれば、いずれも用いることができる。さらに、酸素を含まないガスであっても有機材料を化学反応でエッチングできるガス、例えば、水素や水、メタノールを含む混合ガスを用いても良い。また、第2の工程ではArガスを使用したが、有機膜を化学反応でエッチングしないガスのみで構成されていれば、他の希ガスや窒素ガスを用いてもよい。エッチングできる有機膜はPMMAに限られない。
(実施例2)
 実施例1では試料の温度を20℃に維持してPMMAのエッチングを行った。本発明者らは、この試料の温度の影響について調べた。第1の工程で酸素ラジカルを照射した際のPMMAのエッチング量と試料温度の関係を図12に示す。100℃以下ではPMMAは全くエッチングされないことがわかった。一方、試料温度が100℃を超えるとPMMAのエッチング量が加速的に増加するため、エッチング量のばらつきを招くことがわかった。
 また、100℃以下ではLSパターンの倒れやそれに起因したLERの増加は見られなかったが、100℃を超えるとLSパターンの倒れやそれに起因したLERが急激に増加することがわかった。ここで100℃を特異点とする。以上より、実施例1で述べたPMMAエッチング処理の効果を実現するには、第1の工程中の試料温度を100℃以下に維持することが好ましいことがわかる。
 また、第1の工程のプラズマに水素ラジカルを含む場合には、この温度の特異点が50℃に低下することがわかっている。その場合、試料温度を50℃以下に維持することが望ましい。
(比較例2)
 次に、本実施形態のエッチング方法を三層レジストの加工に応用した例を示す。この加工では、図13のように、シリコン基板3上に有機膜6と無機膜7を積層させた上に、30nmピッチのLSパターンのレジストマスク8を形成した試料を用いた。各層の膜厚は有機膜6の膜厚が200nm、無機膜7の膜厚が20nm、レジストマスク8の膜厚が20nmである。
 比較例1と同様なドライエッチング処理によって、この試料の無機膜7をエッチングして、無機膜のマスクを形成し、更にこの無機膜のマスクを用いて、有機膜6をエッチングした。しかし、比較例1と同様な処理では、酸素などで有機膜6をエッチングした場合に、形成された有機膜6のLSパターンがエッチング中に倒れてしまうという現象が生じた。
 実際、イオンと中性ラジカルの両方が試料に照射される状態において、図14のように隣同士の有機膜6のLSパターンが接してエッチングが停止してしまうという現象が見られた。解析の結果、この場合も、有機膜6の残膜にばらつきがあり、有機膜6の残膜の収縮応力によって、残膜の厚い側に有機膜6のLSパターンが引っ張られて倒れることが判明した。
(実施例3)
 そこで、実施例1と同様に、Arイオンを遮蔽した状態で酸素プラズマを試料に照射する第1の工程と、Arイオンを遮蔽しない状態でArプラズマを試料に照射する第2の工程を繰り返したところ、有機膜6の残膜の厚さが均一なままエッチングが進行した。このため、図15に示すように、パターン倒れやパターン同士が接するという現象は発生しなかった。
[実施形態2]
 図16は、ダウンフロー型エッチャ101と反応性イオンエッチング(RIE)型エッチャ102を、真空搬送ユニット103で連結したドライエッチング装置を示す図である。本実施形態では、第1の工程において、試料をダウンフロー型エッチャ(第1の装置)101に搬送して、酸素のプラズマを照射する。
 ダウンフロー型エッチャ101では、プラズマ中のイオンを遮蔽して中性ラジカルのみを照射できる構造になっているため、第1の雰囲気中で酸素ラジカルのみが照射される。酸素ラジカルのみでは、PMMAはエッチングされないため、図8に示すようにPMMA表面に酸素ラジカルが飽和吸着した状態になる。
 続いて、第2の工程では、真空搬送ユニット(搬送装置)103で試料をダウンフロー型エッチャ101からRIE型エッチャ(第2の装置)102に搬送して、その内部でArのプラズマを生成させる。RIE型エッチャ102ではプラズマ中のイオンも中性ラジカルも照射されるため、第2の雰囲気中でPMMAにArイオンが試料に照射される。このイオン照射によって、図9に示す例と同様にPMMA表面に吸着した酸素ラジカルが活性化されPMMAのエッチングが進む。
 この際のエッチング量は、PMMA表面に飽和吸着した酸素ラジカルの量で決まるため、一定量のPMMAがエッチングされる。ダウンフロー型エッチャ101とRIE型エッチャ102との間で真空搬送ユニット103を介して試料を繰り返し搬送することで、第1の工程と第2の工程を交互に繰り返すことができる。これにより、PMMA残膜が均一なままエッチングが進むため、LSパターンの倒れが抑制される。
 この方法でエッチングされた試料の断面形状は図10に示すものと同様であり、LSパターンの倒れは見られない。また、加工後の試料の上面形状は、図11に示すものと同様になる。形成されたPSのLSパターンには倒れに起因したLERは見られず。真っ直ぐなパターンが形成されていることがわかった。
 なお、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施の形態における構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態における構成の一部について、他の構成の追加・削除・置換をすることも可能である。
1…ポリスチレン(PS)、2…ポリメチルメタクリレート(PMMA)、3…シリコン基板、4…酸素ラジカル、5…Arイオン、6…有機膜、7…無機膜、8…レジストマスク、11…導波管、12…減圧処理室、13…マグネトロン、14…ソレノイドコイル、16…多孔板、17…誘電体窓、20…試料台、21…試料、22…整合器、23…高周波電源、101…ダウンフロー型エッチャ、102…RIE型エッチャ、103…真空搬送ユニット、200…シリコン、202…シリコン酸化膜

Claims (8)

  1.  有機膜のドライエッチング方法であって、
     プラズマから、希ガスもしくは窒素のイオンの濃度を減少させた第1の雰囲気で中性ラジカルを有機膜の表面に吸着させる第1の工程と、前記第1の雰囲気よりもイオン濃度が高い第2の雰囲気で希ガスもしくは窒素のイオンを前記有機膜の表面に供給する第2の工程とを交互に繰り返す、
    ことを特徴とするドライエッチング方法。
  2.  請求項1のドライエッチング方法において、
     前記中性ラジカルが酸素もしくは水素である、
    ことを特徴とするドライエッチング方法。
  3.  請求項1のドライエッチング方法において、
     前記希ガスがアルゴンガスである、
    ことを特徴とするドライエッチング方法。
  4.  請求項1のドライエッチング方法において、
     前記有機膜がPMMA製である、
    ことを特徴とするドライエッチング方法。
  5.  請求項1のドライエッチング方法において、
     前記第1の工程において、前記中性ラジカルが前記有機膜に飽和吸着する、
    ことを特徴とするドライエッチング方法。
  6.  請求項1のドライエッチング方法において、
     前記第1の工程は、前記第2の工程よりも処理時間が長い、
    ことを特徴とするドライエッチング方法。
  7.  請求項1~6のいずれか1項に記載のドライエッチング方法を実行するドライエッチング装置であって、
     減圧処理室内にプラズマを発生させるプラズマ発生装置と、
     前記減圧処理室内に配置された多孔板と、
     前記プラズマの発生位置を、前記多孔板の上方もしくは下方に変更可能とするプラズマ制御装置と、を有する、
    ことを特徴とするドライエッチング装置。
  8.  請求項1~6のいずれか1項に記載のドライエッチング方法を実行するドライエッチング装置であって、
     試料の有機膜に前記第1の雰囲気で中性ラジカルを照射する第1の装置と、
     試料の有機膜に前記第2の雰囲気で希ガスもしくは窒素のイオンを照射する第2の装置と、
     前記第1の装置から前記第2の装置へ、また前記第2の装置から前記第1の装置へと、前記試料を搬送する搬送装置と、を有する、
    ことを特徴とするドライエッチング装置。
PCT/JP2019/004577 2019-02-08 2019-02-08 ドライエッチング方法及びドライエッチング装置 WO2020161879A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/495,652 US20210335625A1 (en) 2019-02-08 2019-02-08 Dry etching apparatus and dry etching method
JP2019542638A JPWO2020161879A1 (ja) 2019-02-08 2019-02-08 ドライエッチング方法及びドライエッチング装置
KR1020197022984A KR20200098386A (ko) 2019-02-08 2019-02-08 드라이 에칭 방법 및 드라이 에칭 장치
CN201980001243.8A CN111801773A (zh) 2019-02-08 2019-02-08 干蚀刻方法及干蚀刻装置
PCT/JP2019/004577 WO2020161879A1 (ja) 2019-02-08 2019-02-08 ドライエッチング方法及びドライエッチング装置
TW108133769A TW202030792A (zh) 2019-02-08 2019-09-19 乾式蝕刻方法及乾式蝕刻裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/004577 WO2020161879A1 (ja) 2019-02-08 2019-02-08 ドライエッチング方法及びドライエッチング装置

Publications (1)

Publication Number Publication Date
WO2020161879A1 true WO2020161879A1 (ja) 2020-08-13

Family

ID=71947787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004577 WO2020161879A1 (ja) 2019-02-08 2019-02-08 ドライエッチング方法及びドライエッチング装置

Country Status (6)

Country Link
US (1) US20210335625A1 (ja)
JP (1) JPWO2020161879A1 (ja)
KR (1) KR20200098386A (ja)
CN (1) CN111801773A (ja)
TW (1) TW202030792A (ja)
WO (1) WO2020161879A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023275938A1 (ja) * 2021-06-28 2023-01-05
JP2023521251A (ja) * 2020-05-12 2023-05-23 ラム リサーチ コーポレーション 刺激応答性ポリマー膜の制御された分解

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677184A (ja) * 1992-08-27 1994-03-18 Nippon Telegr & Teleph Corp <Ntt> 半導体原子層のエッチング方法
JP2014075578A (ja) * 2012-10-02 2014-04-24 Imec ブロック共重合体のエッチング
JP2015188025A (ja) * 2014-03-27 2015-10-29 株式会社日立ハイテクノロジーズ プラズマ処理方法
JP2016051846A (ja) * 2014-09-01 2016-04-11 株式会社日立ハイテクノロジーズ プラズマ処理方法
WO2016190036A1 (ja) * 2015-05-22 2016-12-01 株式会社 日立ハイテクノロジーズ プラズマ処理装置およびそれを用いたプラズマ処理方法
JP2016207771A (ja) * 2015-04-20 2016-12-08 東京エレクトロン株式会社 被エッチング層をエッチングする方法
US20170229314A1 (en) * 2016-02-04 2017-08-10 Lam Research Corporation Atomic layer etching 3d structures: si and sige and ge smoothness on horizontal and vertical surfaces
JP2017183688A (ja) * 2016-03-29 2017-10-05 東京エレクトロン株式会社 被処理体を処理する方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2269785A (en) * 1992-08-14 1994-02-23 Sharp Kk Etching a surface of a semiconductor
JP3234812B2 (ja) * 1999-03-26 2001-12-04 株式会社日立製作所 半導体装置の製造方法
US7416989B1 (en) * 2006-06-30 2008-08-26 Novellus Systems, Inc. Adsorption based material removal process
JP2010283095A (ja) * 2009-06-04 2010-12-16 Hitachi Ltd 半導体装置の製造方法
US8617411B2 (en) * 2011-07-20 2013-12-31 Lam Research Corporation Methods and apparatus for atomic layer etching
KR102245179B1 (ko) * 2013-04-03 2021-04-28 브레우어 사이언스, 인코포레이션 지향성 자가 조립용 블록 공중합체에 사용하기 위한 고도로 내에칭성인 중합체 블록
US10504742B2 (en) * 2017-05-31 2019-12-10 Asm Ip Holding B.V. Method of atomic layer etching using hydrogen plasma

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677184A (ja) * 1992-08-27 1994-03-18 Nippon Telegr & Teleph Corp <Ntt> 半導体原子層のエッチング方法
JP2014075578A (ja) * 2012-10-02 2014-04-24 Imec ブロック共重合体のエッチング
JP2015188025A (ja) * 2014-03-27 2015-10-29 株式会社日立ハイテクノロジーズ プラズマ処理方法
JP2016051846A (ja) * 2014-09-01 2016-04-11 株式会社日立ハイテクノロジーズ プラズマ処理方法
JP2016207771A (ja) * 2015-04-20 2016-12-08 東京エレクトロン株式会社 被エッチング層をエッチングする方法
WO2016190036A1 (ja) * 2015-05-22 2016-12-01 株式会社 日立ハイテクノロジーズ プラズマ処理装置およびそれを用いたプラズマ処理方法
US20170229314A1 (en) * 2016-02-04 2017-08-10 Lam Research Corporation Atomic layer etching 3d structures: si and sige and ge smoothness on horizontal and vertical surfaces
JP2017183688A (ja) * 2016-03-29 2017-10-05 東京エレクトロン株式会社 被処理体を処理する方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023521251A (ja) * 2020-05-12 2023-05-23 ラム リサーチ コーポレーション 刺激応答性ポリマー膜の制御された分解
JP7395773B2 (ja) 2020-05-12 2023-12-11 ラム リサーチ コーポレーション 刺激応答性ポリマー膜の制御された分解
JPWO2023275938A1 (ja) * 2021-06-28 2023-01-05
JP7330391B2 (ja) 2021-06-28 2023-08-21 株式会社日立ハイテク プラズマ処理装置及びプラズマ処理方法

Also Published As

Publication number Publication date
CN111801773A (zh) 2020-10-20
KR20200098386A (ko) 2020-08-20
US20210335625A1 (en) 2021-10-28
JPWO2020161879A1 (ja) 2021-02-18
TW202030792A (zh) 2020-08-16

Similar Documents

Publication Publication Date Title
TWI657499B (zh) 蝕刻方法
US9859126B2 (en) Method for processing target object
US8337713B2 (en) Methods for RF pulsing of a narrow gap capacitively coupled reactor
KR102311575B1 (ko) 피처리체를 처리하는 방법
US9911607B2 (en) Method of processing target object
TW201820391A (zh) 準原子層蝕刻方法
US10763123B2 (en) Method for processing workpiece
US20220051904A1 (en) Etching method
JP5271267B2 (ja) エッチング処理を実行する前のマスク層処理方法
JP6017928B2 (ja) プラズマエッチング方法及びプラズマエッチング装置
KR20160030822A (ko) 플라즈마 처리 방법
US20220181162A1 (en) Etching apparatus
KR101540816B1 (ko) 플라즈마 에칭 방법, 컴퓨터 기억 매체 및 플라즈마 에칭 장치
WO2020161879A1 (ja) ドライエッチング方法及びドライエッチング装置
KR20180018824A (ko) 조정 가능한 원격 해리
US10529589B2 (en) Method of plasma etching of silicon-containing organic film using sulfur-based chemistry
JP6763750B2 (ja) 被処理体を処理する方法
KR102580124B1 (ko) 플라스마 처리 방법
JP4391127B2 (ja) プラズマ処理方法
WO2023067786A1 (ja) プラズマ処理方法
JPH06252097A (ja) プラズマエッチング装置
JP2728483B2 (ja) 試料後処理方法と装置
JP2011100760A (ja) エッチング方法
JPH11354494A (ja) エッチング方法
JPH04247614A (ja) X線マスク吸収体の製造方法及びその製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: KR1020197022984

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2019542638

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914413

Country of ref document: EP

Kind code of ref document: A1