WO2020158394A1 - 窒化物半導体装置 - Google Patents

窒化物半導体装置 Download PDF

Info

Publication number
WO2020158394A1
WO2020158394A1 PCT/JP2020/001101 JP2020001101W WO2020158394A1 WO 2020158394 A1 WO2020158394 A1 WO 2020158394A1 JP 2020001101 W JP2020001101 W JP 2020001101W WO 2020158394 A1 WO2020158394 A1 WO 2020158394A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gate
nitride semiconductor
semiconductor
semiconductor device
Prior art date
Application number
PCT/JP2020/001101
Other languages
English (en)
French (fr)
Inventor
浩隆 大嶽
真也 ▲高▼堂
岳利 田中
範和 伊藤
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to US17/426,217 priority Critical patent/US20220102543A1/en
Priority to JP2020569492A priority patent/JP7369725B2/ja
Publication of WO2020158394A1 publication Critical patent/WO2020158394A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors

Definitions

  • the present invention relates to a nitride semiconductor device made of a group III nitride semiconductor (hereinafter sometimes simply referred to as “nitride semiconductor”).
  • a group III nitride semiconductor is a semiconductor that uses nitrogen as a group V element in a group III-V semiconductor.
  • Aluminum nitride (AlN), gallium nitride (GaN), and indium nitride (InN) are typical examples. In general, it can be expressed as Al x In y Ga 1-x ⁇ y N (0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1,0 ⁇ x+y ⁇ 1).
  • HEMTs High Electron Mobility Transistors
  • Such a HEMT includes, for example, an electron transit layer made of GaN and an electron supply layer made of AlGaN epitaxially grown on the electron transit layer.
  • a pair of source electrode and drain electrode are formed in contact with the electron supply layer, and a gate electrode is arranged between them.
  • a two-dimensional electron gas is formed in the electron transit layer at a position several ⁇ inward from the interface between the electron transit layer and the electron supply layer. ..
  • the two-dimensional electron gas is used as a channel to connect the source and drain.
  • the source-drain is cut off. In the state where the control voltage is not applied to the gate electrode, conduction is established between the source and drain, so that the device is a normally-on type device.
  • ⁇ Since devices using nitride semiconductors have the characteristics of high breakdown voltage, high temperature operation, large current density, high speed switching and low on resistance, application to power devices is under consideration.
  • Patent Document 1 A structure for realizing a normally-off type nitride semiconductor HEMT is proposed in Patent Document 1, for example.
  • Patent Document 1 discloses that a p-type GaN gate layer and an n-type AlGaN layer are sequentially stacked on an AlGaN electron supply layer, a gate electrode is disposed on the p-type GaN gate layer, and a depletion layer extending from the p-type GaN gate layer eliminates a channel. Discloses a configuration for achieving normally-off.
  • a gate electrode made of TiAl that makes ohmic contact with an n-type AlGaN layer is used as the gate electrode.
  • An object of the present invention is to provide a nitride semiconductor device capable of sufficiently reducing the gate leak current.
  • a nitride semiconductor device includes a first nitride semiconductor layer that forms an electron transit layer, and a band that is formed on the first nitride semiconductor layer and that has a higher band than the first nitride semiconductor layer.
  • the semiconductor device includes a second nitride semiconductor layer having a large gap and forming an electron supply layer, and a gate portion formed on the second nitride semiconductor layer, wherein the gate portion is formed on the second nitride semiconductor layer.
  • a ridge-shaped first semiconductor gate layer formed of a nitride semiconductor containing an acceptor-type impurity, and a nitride semiconductor formed on the first semiconductor gate layer and having a bandgap larger than that of the first semiconductor gate layer.
  • a gate electrode formed on the second semiconductor gate layer and forming a Schottky junction with the second semiconductor gate layer.
  • the source electrode and the drain electrode are disposed on the second nitride semiconductor layer, and the source electrode and the drain electrode are respectively ohmic-bonded to the second nitride semiconductor layer.
  • the metal material of the gate electrode is different from the metal material of the source electrode and the drain electrode.
  • the first semiconductor gate layer is a p-type GaN layer
  • the second semiconductor gate layer is an Al x Ga 1-x N (0 ⁇ x ⁇ 1) layer.
  • the Al composition of the second semiconductor gate layer is 15% or more.
  • the Al composition of the second semiconductor gate layer is low near the first semiconductor gate layer and high near the gate electrode.
  • the Al composition of the second semiconductor gate layer is high near the first semiconductor gate layer and low near the gate electrode.
  • the second semiconductor gate layer contains a donor-type impurity.
  • the film thickness of the first semiconductor gate layer is 50 nm or more.
  • the film thickness of the first semiconductor gate layer is 70 nm or more.
  • the film thickness of the second semiconductor gate layer is 3 nm or more and 15 nm or less.
  • the width of the second semiconductor gate layer is substantially equal to the width of the first semiconductor gate layer, the second semiconductor gate layer covers the entire surface of the first semiconductor gate layer, The gate electrode is formed on a width intermediate portion of the surface of the second semiconductor gate layer, and the gate electrode does not contact the widthwise end of the second semiconductor gate layer.
  • the gate electrode is made of TiN, TiW or Ti, or a combination thereof.
  • the gate electrode includes a combination of two or more TiN having different composition ratios.
  • the second nitride semiconductor layer is an AlGaN layer
  • the first semiconductor gate layer is a p-type GaN layer
  • the second semiconductor gate layer is an AlGaN layer
  • the second semiconductor gate layer is an AlGaN layer.
  • a third nitride semiconductor layer formed of an AlGaN layer having a higher Al composition than the second nitride semiconductor layer is formed on the nitride semiconductor layer, and the gate portion is formed on the third nitride semiconductor layer. Has been done.
  • a removed portion in which a part of the third nitride semiconductor layer is removed, is formed in a region between the gate portion and the drain electrode.
  • a method for manufacturing a nitride semiconductor device includes a first nitride semiconductor layer forming an electron transit layer, a second nitride semiconductor layer forming an electron supply layer, and an acceptor on a substrate.
  • a first semiconductor gate material film made of a nitride semiconductor containing a type impurity and a second semiconductor gate material film made of a nitride semiconductor having a band gap larger than that of the first semiconductor gate material film are formed in this order.
  • a second step of forming a gate electrode film on the second semiconductor gate material film so as to form a Schottky junction, the gate electrode film, the second semiconductor gate material film, and the first semiconductor gate material film Is selectively removed to form a ridge-shaped first semiconductor gate layer on the second nitride semiconductor layer, a second semiconductor gate layer formed on the first semiconductor gate layer, and the second semiconductor gate.
  • the first semiconductor gate material film is made of p-type GaN
  • the second semiconductor gate material film is made of AlGaN
  • the gate electrode film is made of TiN, TiW or Ti, or a combination thereof. Consists of.
  • the gate electrode includes a combination of two or more TiN having different composition ratios.
  • the gate electrode film and the second semiconductor gate material film are selectively removed by dry etching to remove the gate electrode and the second semiconductor gate layer.
  • the etching gas used is different from the etching gas used in the second etching process.
  • the etching gas used in the first etching step is a gas containing no oxygen
  • the etching gas used in the second etching step contains at least chlorine gas and oxygen. It is gas.
  • the first etching step includes a first-a etching step of etching the gate electrode film and a first-b etching step of etching the second semiconductor gate layer.
  • the etching gas used is a gas containing no oxygen
  • the etching gas used in the 1b etching step is a gas containing at least chlorine and containing no oxygen.
  • FIG. 1 is a sectional view for explaining the configuration of the nitride semiconductor device according to the first embodiment of the present invention.
  • FIG. 2A is a cross-sectional view showing an example of a manufacturing process of the nitride semiconductor device of FIG.
  • FIG. 2B is a sectional view showing a step subsequent to FIG. 2A.
  • FIG. 2C is a sectional view showing a step subsequent to FIG. 2B.
  • FIG. 2D is a sectional view showing a step subsequent to FIG. 2C.
  • FIG. 2E is a sectional view showing a step subsequent to FIG. 2D.
  • 2F is a sectional view showing a step subsequent to FIG. 2E.
  • FIG. 2A is a cross-sectional view showing an example of a manufacturing process of the nitride semiconductor device of FIG.
  • FIG. 2B is a sectional view showing a step subsequent to FIG. 2A.
  • FIG. 2C is a sectional view showing a step subsequent to
  • FIG. 3 is a graph showing the experimental results of the gate-source leak current [A/mm] with respect to the gate-source voltage [V].
  • FIG. 4 is an energy band diagram showing the energy distributions of the first embodiment and the first comparative example.
  • FIG. 5 is a sectional view for explaining the structure of the nitride semiconductor device according to the second embodiment of the present invention.
  • FIG. 6A is a schematic diagram showing an electric field intensity distribution near one side portion of the gate portion when an on-voltage is applied to the gate electrode of the second comparative example.
  • FIG. 6B is a schematic diagram showing an electric field strength distribution near one side portion of the gate portion when an ON voltage is applied to the gate electrode of the second embodiment.
  • FIG. 7 is a sectional view for explaining the structure of the nitride semiconductor device according to the third embodiment of the present invention.
  • FIG. 8 is a sectional view for explaining the structure of the nitride semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 9 is a sectional view for explaining the structure of the nitride semiconductor device according to the fifth embodiment of the present invention.
  • FIG. 1 is a sectional view for explaining the structure of the nitride semiconductor device according to the first embodiment of the present invention.
  • the nitride semiconductor device 1 includes a substrate 2, a buffer layer 3 formed on the surface of the substrate 2, a first nitride semiconductor layer 4 epitaxially grown on the buffer layer 3, and a first nitride semiconductor layer 4.
  • the second nitride semiconductor layer 5 epitaxially grown and the gate portion 20 formed on the second nitride semiconductor layer 5 are included.
  • the nitride semiconductor device 1 includes a passivation film 6 (dielectric film) that covers the second nitride semiconductor layer 5 and the gate portion 20. Further, in the nitride semiconductor device 1, the source electrode 9 and the drain electrode 10 which are in ohmic contact with the second nitride semiconductor layer 5 through the source contact hole 7 and the drain contact hole 8 formed in the passivation film 6. including. The source electrode 9 and the drain electrode 10 are arranged with an interval. The source electrode 9 is formed so as to cover the gate portion 20.
  • the substrate 2 may be, for example, a low resistance silicon substrate.
  • the low-resistance silicon substrate may be, for example, a p-type substrate having an electrical resistivity of 0.001 ⁇ mm to 0.5 ⁇ mm (more specifically, about 0.01 ⁇ mm to 0.1 ⁇ mm).
  • the substrate 2 may be a low-resistance silicon substrate, a low-resistance SiC substrate, a low-resistance GaN substrate, or the like.
  • the thickness of the substrate 2 is, for example, about 650 ⁇ m during the semiconductor process, and is ground to about 300 ⁇ m or less before the chip formation.
  • the substrate 2 is electrically connected to the source electrode 9.
  • the buffer layer 3 is composed of a multilayer buffer layer in which a plurality of nitride semiconductor films are laminated.
  • the buffer layer 3 is laminated on the first buffer layer (not shown) made of an AlN film that is in contact with the surface of the substrate 2 and on the surface of the first buffer layer (the surface opposite to the substrate 2).
  • a second buffer layer (not shown) made of an AlN/AlGaN superlattice layer.
  • the film thickness of the first buffer layer is about 100 nm to 500 nm.
  • the thickness of the second buffer layer is about 500 nm to 2 ⁇ m.
  • the buffer layer 3 may be composed of, for example, an AlGaN single film or a composite film.
  • the first nitride semiconductor layer 4 constitutes an electron transit layer.
  • the first nitride semiconductor layer 4 is made of a GaN layer and has a thickness of about 0.5 ⁇ m to 2 ⁇ m.
  • an impurity for making it semi-insulating may be introduced in a region other than the surface region.
  • the concentration of impurities is preferably 4 ⁇ 10 16 cm ⁇ 3 or more.
  • the impurities are, for example, C or Fe.
  • the second nitride semiconductor layer 5 constitutes an electron supply layer.
  • the second nitride semiconductor layer 5 is made of a nitride semiconductor having a bandgap larger than that of the first nitride semiconductor layer 4.
  • the second nitride semiconductor layer 5 is made of a nitride semiconductor having a higher Al composition than the first nitride semiconductor layer 4. In a nitride semiconductor, the higher the Al composition, the larger the bad gap.
  • the second nitride semiconductor layer 5 is made of an Al x Ga 1-x N layer (0 ⁇ x ⁇ 1) and has a thickness of about 5 nm to 15 nm.
  • the first nitride semiconductor layer (electron transit layer) 4 and the second nitride semiconductor layer (electron supply layer) 5 are made of nitride semiconductors having different band gaps (Al composition), and Has a lattice mismatch. Then, by the spontaneous polarization of the first nitride semiconductor layer 4 and the second nitride semiconductor layer 5 and the piezoelectric polarization due to the lattice mismatch between them, the first nitride semiconductor layer 4 and the second nitride semiconductor layer The energy level of the conduction band of the first nitride semiconductor layer 4 at the interface with the layer 5 becomes lower than the Fermi level.
  • the two-dimensional electron is located in the first nitride semiconductor layer 4 at a position close to the interface between the first nitride semiconductor layer 4 and the second nitride semiconductor layer 5 (for example, at a distance of several ⁇ from the interface).
  • the gas (2DEG) 11 is spreading.
  • the gate portion 20 includes a ridge-shaped first semiconductor gate layer 21 epitaxially grown on the second nitride semiconductor layer 5, a second semiconductor gate layer 22 formed on the first semiconductor gate layer 21, and a second semiconductor. And a gate electrode 23 formed on the gate layer 22.
  • the gate portion 20 is arranged biased toward the source contact hole 7.
  • the cross-sectional shape of the first semiconductor gate layer 21 is substantially rectangular.
  • the first semiconductor gate layer 21 is made of a nitride semiconductor doped with acceptor type impurities.
  • the first semiconductor gate layer 21 is composed of a GaN layer (p-type GaN layer) doped with acceptor-type impurities and has a thickness of about 60 nm.
  • the film thickness of the first semiconductor gate layer 21 is preferably 50 nm or more and 100 nm or less, and more preferably 70 nm or more and 100 nm or less in order to set the threshold voltage to an appropriate level.
  • the concentration of the acceptor type impurity implanted in the first semiconductor gate layer 21 is preferably 1 ⁇ 10 19 cm ⁇ 3 or more.
  • the acceptor type impurity is Mg (magnesium).
  • the acceptor type impurities may be acceptor type impurities other than Mg such as Zn (zinc).
  • the first semiconductor gate layer 21 is two-dimensionally formed in the region immediately below the gate portion 20 near the interface between the first nitride semiconductor layer 4 (electron transit layer) and the second nitride semiconductor layer 5 (electron supply layer). It is provided to offset the electron gas 11.
  • the second semiconductor gate layer 22 is made of a nitride semiconductor having a band gap larger than that of the first semiconductor gate layer 21.
  • the second semiconductor gate layer 22 is made of an Al x Ga 1-x N (0 ⁇ x ⁇ 1) layer and has a thickness of about 10 nm.
  • Mg acceptor type impurity implanted into the first semiconductor gate layer 21
  • Mg is implanted into the second semiconductor gate layer 22 due to the memory effect.
  • the suitable Al composition and film thickness of the second semiconductor gate layer 22 will be described later.
  • the gate electrode 23 is in Schottky contact with the second semiconductor gate layer 22.
  • the gate electrode 23 is made of TiN.
  • the film thickness of the gate electrode 23 is about 50 nm to 150 nm.
  • the gate electrode 23 may be made of TiN, TiW, Ti, or a combination thereof. Further, the gate electrode 23 may include a combination of TiN having different composition ratios.
  • the passivation film 6 covers the surface of the second nitride semiconductor layer 5 (excluding the region facing the contact holes 7 and 8) and the side surface and the surface of the gate portion 20.
  • the passivation film 6 is made of a SiN film and has a thickness of about 50 nm to 200 nm.
  • the passivation film 6 may be composed of SiN, SiO 2 , SiON or a composite film thereof.
  • the source electrode 9 and the drain electrode 10 are, for example, a first metal layer (ohmic metal layer) in ohmic contact with the second nitride semiconductor layer 5 and a second metal layer (main electrode metal layer) stacked on the first metal layer. ), a third metal layer (adhesion layer) laminated on the second metal layer, and a fourth metal layer (barrier metal layer) laminated on the third metal layer.
  • the first metal layer is, for example, a Ti layer having a thickness of about 10 nm to 20 nm.
  • the second metal layer is, for example, an Al layer having a thickness of about 100 nm to 300 nm.
  • the third metal layer is, for example, a Ti layer having a thickness of about 10 nm to 20 nm.
  • the fourth metal layer is, for example, a TiN layer having a thickness of about 10 nm to 50 nm.
  • the second nitride semiconductor layer 5 (electron supply layer) having a different bandgap (Al composition) is formed on the first nitride semiconductor layer 4 (electron transit layer) to form a heterojunction.
  • the two-dimensional electron gas 11 is formed in the first nitride semiconductor layer 4 near the interface between the first nitride semiconductor layer 4 and the second nitride semiconductor layer 5, and the two-dimensional electron gas 11 is used as a channel.
  • the HEMT used is formed.
  • the gate electrode 23 faces the second nitride semiconductor layer 5 with the second semiconductor gate layer 22 and the first semiconductor gate layer 21 interposed therebetween.
  • the energy levels of the first nitride semiconductor layer 4 and the second nitride semiconductor layer 5 are raised by the ionization acceptor contained in the first semiconductor gate layer 21 made of a p-type GaN layer. Therefore, the energy level of the conduction band at the heterojunction interface between the first nitride semiconductor layer 4 and the second nitride semiconductor layer 5 becomes higher than the Fermi level. Therefore, immediately below the gate electrode 23 (gate portion 20), the two-dimensional electron gas 11 caused by the spontaneous polarization of the first nitride semiconductor layer 4 and the second nitride semiconductor layer 5 and the piezoelectric polarization due to their lattice mismatch is generated. Not formed.
  • a predetermined voltage for example, 10 V to 500 V
  • an off voltage (0 V) or an on voltage (5 V) is applied to the gate electrode 23 with the source electrode 9 as the reference potential (0 V).
  • FIGS. 2A to 2F are sectional views for explaining an example of the manufacturing process of the above-described nitride semiconductor device 1, and show sectional structures at a plurality of stages in the manufacturing process.
  • a buffer layer 3, a first nitride semiconductor layer (electron transit layer) 4 and a second nitride semiconductor layer (electron transit layer) are formed on a substrate 2 by MOCVD (Metal Organic Chemical Vapor Deposition) method.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • the supply layer 5 is epitaxially grown.
  • the first semiconductor gate material film 71 which is the material film of the first semiconductor gate layer 21 and the second semiconductor gate which is the material film of the second semiconductor gate layer 22 are formed on the second nitride semiconductor layer 5 by the MOCVD method.
  • the material film 72 is epitaxially grown.
  • a gate electrode film 73 which is a material film of the gate electrode 23 is formed by a sputtering method so as to cover the entire exposed surface.
  • the gate electrode film 73 and the second semiconductor gate material film 72 are patterned by photolithography and dry etching.
  • a gas containing no oxygen is used as an etching gas.
  • the etching gas is, for example, Cl 2 /BCl 3 , BCl 3 , or CF 4 , and a flow in which these are combined stepwise according to the etching target may be used.
  • the step of etching the gate electrode film 73 and the second semiconductor gate material film 72 includes a step of etching the gate electrode film 73 and a step of etching the second semiconductor gate material film 72.
  • the etching gas used in the step of etching the gate electrode film 73 is, for example, a gas containing no oxygen
  • the etching gas used in the step of etching the second semiconductor gate material film 72 is, for example, at least chlorine. It is a gas that does not contain oxygen.
  • the first semiconductor gate material film 71 is patterned by dry etching.
  • a gas containing at least chlorine gas and oxygen is used as an etching gas.
  • the etching gas is, for example, Cl 2 /O 2 /N 2 or Cl 2 /O 2 /Ar.
  • the ridge-shaped first semiconductor gate layer 21, the second semiconductor gate layer 22 formed on the first semiconductor gate layer 21, and the second semiconductor gate layer 22 are formed.
  • the gate portion 20 is formed of the gate electrode 23 formed in the above.
  • a passivation film 6 is formed so as to cover the entire exposed surface.
  • the passivation film 6 is made of SiN, for example.
  • the source contact hole 7 and the drain contact hole 8 reaching the second nitride semiconductor layer 5 are formed in the passivation film 6.
  • the source/drain electrode film 74 is formed so as to cover the entire exposed surface.
  • the source/drain electrode film 74 is patterned by photolithography and etching to form the source electrode 9 and the drain electrode 10 in ohmic contact with the second nitride semiconductor layer 5.
  • the nitride semiconductor device 1 having the structure shown in FIG. 1 is obtained.
  • a nitride semiconductor device in which both the first semiconductor gate layer 21 and the second semiconductor gate layer 22 in the first embodiment are composed of the first semiconductor gate layer (p-type GaN) 21 is referred to as a first comparative example. I will decide.
  • FIG. 3 is a graph showing the experimental results of the gate-source leak current [A/mm] with respect to the gate-source voltage [V].
  • the Al composition of the second semiconductor gate layer (AlGaN) 22 of the first embodiment is 20%, and the film thickness of the second semiconductor gate layer 22 is 10 nm.
  • FIG. 4 is an energy band diagram showing the energy distributions of the first embodiment and the first comparative example.
  • GaN represents the first nitride semiconductor layer 4
  • AlGaN adjacent to it represents the first nitride semiconductor layer 4
  • pGan adjacent to it represents the first semiconductor gate layer 21
  • AlGaN adjacent thereto represents The second semiconductor gate layer 22
  • Gate next to the second semiconductor gate layer 22 shows the gate electrode 23.
  • Ec is the energy level of the conduction band
  • Ev is the energy level of the valence band.
  • the first semiconductor gate layer (pGaN) 21 and the second semiconductor gate layer (AlGaN) 22 are formed in the first embodiment.
  • a barrier against holes is formed in the valence band.
  • injection of holes from the gate electrode (Gate) 23 to the first semiconductor gate layer (pGaN) 21 can be suppressed.
  • no hole barrier is formed between the gate electrode 23 and the first semiconductor gate layer (pGaN) 21. This is the reason why the leakage current is reduced in the first embodiment as compared with the first comparative example.
  • the Al composition of the second semiconductor gate layer 22 is 15% or more. It is preferable. Further, considering the in-plane variation within the wafer, a sufficiently small layer cannot form a sufficient barrier. Therefore, the thickness of the second semiconductor gate layer 22 is preferably 3 nm or more. Further, at this time, when the acceptor impurity introduced into the first semiconductor gate layer 21 is Mg, Mg is introduced into the second semiconductor gate layer 22 due to the memory effect, so that the effect can be mitigated. On the other hand, if the film thickness of the second semiconductor gate layer 22 is too large, cracks may occur due to lattice mismatch with the first semiconductor gate layer 21, so the film thickness of the second semiconductor gate layer 22 is It is preferably 15 nm or less.
  • the gate electrode 23 since the gate electrode 23 is in Schottky contact with the second semiconductor gate layer 22, leakage current is greater than that in the case where the gate electrode 23 is in ohmic contact with the second semiconductor gate layer 22. Can be reduced.
  • a diode is formed at the Schottky junction between the gate electrode 23 and the second semiconductor gate layer 22 in which the direction from the second semiconductor gate layer 22 to the gate electrode 23 is the forward direction. Therefore, when a positive voltage is applied to the gate electrode 23 side as viewed from the source electrode 9, it becomes difficult for current to flow from the gate electrode 23 to the first semiconductor gate layer 21.
  • FIG. 5 is a sectional view for explaining the structure of the nitride semiconductor device according to the second embodiment of the present invention. 5, parts corresponding to the respective parts in FIG. 1 described above are denoted by the same reference numerals as those in FIG.
  • the width of the first semiconductor gate layer 21 and the width of the second semiconductor gate layer 22 are substantially equal, but the width of the gate electrode 23 is shorter than the width of the second semiconductor gate layer 22. ..
  • the second semiconductor gate layer 22 covers the entire surface (upper surface) of the first semiconductor gate layer 21.
  • the gate electrode 23 is formed on the intermediate width portion of the surface of the second semiconductor gate layer 22, and does not contact both side edges (width direction ends) of the surface of the second semiconductor gate layer 22.
  • the second semiconductor gate layer 22 is not formed, and the gate electrode 23 is formed on the width intermediate portion of the upper surface of the first semiconductor gate layer 21. 2 This is a comparative example.
  • FIG. 6A is a schematic diagram showing an electric field intensity distribution near one side of the gate section 20 when an on-voltage (5 V) is applied to the gate electrode 23 of the second comparative example.
  • FIG. 6B is a schematic diagram showing the electric field intensity distribution near one side of the gate portion 20 when an on-voltage (5 V) is applied to the gate electrode 23 of the second embodiment.
  • the electric field is concentrated on the contact portion between the upper surface of the first semiconductor gate layer 21 and the side edge of the lower surface of the gate electrode 23.
  • the electric field does not concentrate on the side edge portion (width direction end) of the lower surface of the gate electrode 23.
  • this is due to the influence of the two-dimensional electron gas generated at the boundary between the first semiconductor gate layer (p-type GaN) 21 and the second semiconductor gate layer (AlGaN) 22, and the lateral direction of the boundary portion is affected. This is probably because the potential was made uniform. Therefore, in the second embodiment, the gate leak current from the widthwise end of the gate electrode 23 is reduced as compared with the second comparative example.
  • FIG. 7 is a sectional view for explaining the structure of the nitride semiconductor device according to the third embodiment of the present invention. 7, parts corresponding to the respective parts in FIG. 1 described above are denoted by the same reference numerals as those in FIG.
  • the nitride semiconductor device 1B of FIG. 7 is different from the nitride semiconductor device 1 of FIG. 1 in that the third nitride semiconductor layer 13 is formed on the second nitride semiconductor layer 5.
  • the gate portion 20 is formed on the third nitride semiconductor layer 13, and the passivation is performed so as to cover the exposed surface of the third nitride semiconductor layer 13 and the exposed surface of the gate portion 20.
  • the film 6 is formed.
  • the source electrode 9 and the drain electrode 10 penetrate the passivation film 6 and are in ohmic contact with the third nitride semiconductor layer 13.
  • the third nitride semiconductor layer 13 is made of AlGaN having a higher Al composition than the second nitride semiconductor layer (electron supply layer) 5 made of AlGaN.
  • the film thickness of the third nitride semiconductor layer 13 is about 3 nm to 10 nm.
  • the Al composition of the second nitride semiconductor layer 5 is about 15 to 25%, while the A composition of the third nitride semiconductor layer 13 is about 25 to 100%.
  • the third nitride semiconductor layer 13 is provided to prevent the second nitride semiconductor layer 5 as an electron supply layer from being etched when the gate portion 20 is patterned by etching. That is, the third nitride semiconductor layer 13 has a function as an etching stop layer.
  • the etching rate of the first semiconductor gate layer 21 is the etching rate of the second semiconductor gate layer 22. Higher than. Therefore, it is difficult to control etching so that the surface of the second nitride semiconductor layer 5 is not etched when the gate portion 20 is patterned by etching. Therefore, in the nitride semiconductor device 1B according to the third embodiment, the third nitride semiconductor layer 13 is formed on the surface of the second nitride semiconductor layer 5.
  • FIG. 8 is a sectional view for explaining the structure of the nitride semiconductor device according to the fourth embodiment of the present invention. 8, parts corresponding to the respective parts in FIG. 7 described above are denoted by the same reference numerals as those in FIG. 7.
  • the nitride semiconductor device 1C of FIG. 8 has almost the same configuration as the nitride semiconductor device 1B of FIG. In the nitride semiconductor device 1C of FIG. 8, the removal region 14 where the third nitride semiconductor layer 13 does not exist is formed on the second nitride semiconductor layer 5 between the gate portion 20 and the drain electrode 10. A part of the passivation film 6 is embedded in the removal region 14.
  • the second nitride semiconductor layer 13 is formed by the first semiconductor gate layer 21. Since the carrier concentration of the dimensional electron gas 11 increases, the breakdown voltage may decrease due to electric field concentration at the drain side end of the gate section 20. Therefore, in the nitride semiconductor device 1C of FIG. 8, a region having a low two-dimensional electron gas density is formed between the gate portion 20 and the drain electrode 10 by the removal region 14 to reduce the concentration of electrolysis and to improve the drain-source connection. The breakdown voltage of is improved.
  • FIG. 9 is a sectional view for explaining the structure of the nitride semiconductor device according to the fifth embodiment of the present invention. 9, parts corresponding to the respective parts in FIG. 1 described above are denoted by the same reference numerals as those in FIG.
  • the structure (shape) of the gate portion 20 of the nitride semiconductor device 1D shown in FIG. 9 is different from that of the nitride semiconductor device 1 shown in FIG.
  • the gate portion 20 is formed on the ridge-shaped first semiconductor gate layer 21 and the first semiconductor gate layer 21. It is composed of a second semiconductor gate layer 22 and a gate electrode 23 formed on the second semiconductor gate layer 22.
  • the first semiconductor gate layer 21 is composed of a gate layer main body 21A having a horizontally long rectangular cross section, and an upward projecting portion 21B formed on an intermediate width portion of the upper surface of the gate layer main body 21A.
  • the second semiconductor gate layer 22 is formed on the upper overhanging portion 21B.
  • the gate electrode 23 is formed on the second semiconductor gate layer 22.
  • the electric field can be concentrated at the location 31 where the upper surface of the gate layer body 21A of the first semiconductor gate layer 21 and the side surface of the upper overhang 21B intersect.
  • the position where the electric field is concentrated can be separated from the widthwise end of the lower surface of the gate electrode 23. This makes it possible to suppress the gate leak current from the widthwise end of the gate electrode 23.
  • the present invention can also be implemented in other embodiments.
  • the Al composition in the second semiconductor gate layer 22 may be adjusted so that the Al composition in the second semiconductor gate layer 22 is low near the first semiconductor gate layer 21 and high in the vicinity of the gate electrode 23. .. By doing so, the film forming property of the second semiconductor gate layer 22 with respect to the first semiconductor gate layer 21 is improved.
  • the Al composition in the second semiconductor gate layer 22 may be adjusted such that the Al composition in the second semiconductor gate layer 22 is high near the first semiconductor gate layer 21 and low in the vicinity of the gate electrode 23. ..
  • the Al composition in the second semiconductor gate layer 22 is high in the vicinity of the first semiconductor gate layer 21, holes at the interface between AlGaN of the second semiconductor gate layer 22 and p-type GaN of the first semiconductor gate layer 21. Since the barrier against is increased, the effect of suppressing the leak current due to holes can be enhanced.
  • the second semiconductor gate layer 22 may contain a donor-type impurity such as Si.
  • the Schottky barrier height between the second semiconductor gate layer 22 and the gate electrode 23 can be adjusted by adjusting the concentration of the donor type impurity.
  • silicon is illustrated as an example of the material of the substrate 2, but in addition, any substrate material such as a sapphire substrate or a GaN substrate can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

窒化物半導体装置1は、電子走行層を構成する第1窒化物半導体層4と、第1窒化物半導体層上に形成され、第1窒化物半導体層よりもバンドギャップが大きく、電子供給層を構成する第2窒化物半導体層5と、第2窒化物半導体層上に形成されたゲート部20とを含む。ゲート部20は、第2窒化物半導体層5上に配置され、アクセプタ型不純物を含む窒化物半導体からなるリッジ形状の第1半導体ゲート層21と、第1半導体ゲート層21上に形成され、第1半導体ゲート層21よりもバンドギャップが大きい窒化物半導体からなる第2半導体ゲート層22と、第2半導体ゲート層22上に形成され、第2半導体ゲート層22にショットキー接合するゲート電極23とを含む。

Description

窒化物半導体装置
 この発明は、III族窒化物半導体(以下単に「窒化物半導体」という場合がある。)からなる窒化物半導体装置に関する。
 III族窒化物半導体とは、III-V族半導体においてV族元素として窒素を用いた半導体である。窒化アルミニウム(AlN)、窒化ガリウム(GaN)、窒化インジウム(InN)が代表例である。一般には、AlInGa1-x-yN(0≦x≦1,0≦y≦1,0≦x+y≦1)と表わすことができる。
 このような窒化物半導体を用いたHEMT(High Electron Mobility Transistor;高電子移動度トランジスタ)が提案されている。このようなHEMTは、例えば、GaNからなる電子走行層と、この電子走行層上にエピタキシャル成長されたAlGaNからなる電子供給層とを含む。電子供給層に接するように一対のソース電極およびドレイン電極が形成され、それらの間にゲート電極が配置される。
 GaNとAlGaNとの格子不整合に起因する分極のために、電子走行層内において、電子走行層と電子供給層との界面から数Åだけ内方の位置に、二次元電子ガスが形成される。この二次元電子ガスをチャネルとして、ソース・ドレイン間が接続される。ゲート電極に制御電圧を印加することで、二次元電子ガスを遮断すると、ソース・ドレイン間が遮断される。ゲート電極に制御電圧を印加していない状態では、ソース・ドレイン間が導通するので、ノーマリーオン型のデバイスとなる。
 窒化物半導体を用いたデバイスは、高耐圧、高温動作、大電流密度、高速スイッチングおよび低オン抵抗といった特徴を有するため、パワーデバイスへの応用が検討されている。
 しかし、パワーデバイスとして用いるためには、ゼロバイアス時に電流を遮断するノーマリーオフ型のデバイスである必要があるため、前述のようなHEMTは、パワーデバイスには適用できない。
 ノーマリーオフ型の窒化物半導体HEMTを実現するための構造は、たとえば、特許文献1において提案されている。
特開2011-29507号公報
 特許文献1は、AlGaN電子供給層にp型GaNゲート層およびn型AlGaN層を順次積層し、その上にゲート電極を配置し、前記p型GaNゲート層から広がる空乏層によってチャネルを消失させることで、ノーマリーオフを達成する構成を開示している。特許文献1では、ゲート電極としてはn型AlGaN層とオーミック接合するTiAlからなるゲート電極が用いられている。
 このような構成では、ゲート電極とn型AlGaN層とがオーミック接合されているため、依然としてゲートリーク電流が大きいという問題がある。
 ゲートリーク電流が大きい場合、所望のオン抵抗を得るために必要なゲート電圧が確保できない、またはゲートドライブ回路での消費電力が増加するといった問題に繋がり、パワー回路および制御回路部での効率低下、発熱増加が懸念される。これは、高周波スイッチングを特長に掲げるHEMTにとって大きな課題となる。
 この発明の目的は、ゲートリーク電流を十分に低減できる窒化物半導体装置を提供することにある。
 本発明の一実施形態に係る窒化物半導体装置は、電子走行層を構成する第1窒化物半導体層と、前記第1窒化物半導体層上に形成され、前記第1窒化物半導体層よりもバンドギャップが大きく、電子供給層を構成する第2窒化物半導体層と、前記第2窒化物半導体層上に形成されたゲート部とを含み、前記ゲート部は、前記第2窒化物半導体層上に配置され、アクセプタ型不純物を含む窒化物半導体からなるリッジ形状の第1半導体ゲート層と、前記第1半導体ゲート層上に形成され、前記第1半導体ゲート層よりもバンドギャップが大きい窒化物半導体からなる第2半導体ゲート層と、前記第2半導体ゲート層上に形成され、第2半導体ゲート層にショットキー接合するゲート電極とを含む。
 この発明の一実施形態では、前記第2窒化物半導体層上に配置されたソース電極およびドレイン電極とを含み、前記ソース電極およびドレイン電極は、それぞれ前記第2窒化物半導体層にオーミック接合している。
 この発明の一実施形態では、前記ゲート電極の金属材料が、前記ソース電極およびドレイン電極の金属材料と異なる。
 この発明の一実施形態では、前記第1半導体ゲート層がp型GaN層からなり、前記第2半導体ゲート層がAlGa1-xN(0≦x<1)層からなる。
 この発明の一実施形態では、前記第2半導体ゲート層のAl組成が15%以上である。
 この発明の一実施形態では、前記第2半導体ゲート層のAl組成が、前記第1半導体ゲート層近傍で低く、前記ゲート電極近傍で高い。
 この発明の一実施形態では、前記第2半導体ゲート層のAl組成が、前記第1半導体ゲート層近傍で高く、前記ゲート電極近傍で低い。
 この発明の一実施形態では、前記第2半導体ゲート層が、ドナー型不純物を含む。
 この発明の一実施形態では、前記第1半導体ゲート層の膜厚が、50nm以上である。
 この発明の一実施形態では、前記第1半導体ゲート層の膜厚が、70nm以上である。
 この発明の一実施形態では、前記第2半導体ゲート層の膜厚が、3nm以上15nm以下である。
 この発明の一実施形態では、前記第2半導体ゲート層の幅が前記第1半導体ゲート層の幅とほぼ等しく、前記第2半導体ゲート層が前記第1半導体ゲート層の表面全体を覆っており、前記ゲート電極が、前記第2半導体ゲート層の表面の幅中間部上に形成されており、前記ゲート電極は、前記第2半導体ゲート層の幅方向端に接触していない。
 この発明の一実施形態では、前記ゲート電極が、TiN、TiWもしくはTi、またはそれらの組み合わせからなる。
 この発明の一実施形態では、前記ゲート電極が、組成比の異なる2つ以上のTiNの組み合わせを含む。
 この発明の一実施形態では、前記第2窒化物半導体層がAlGaN層からなり、前記第1半導体ゲート層がp型GaN層からなり、前記第2半導体ゲート層がAlGaN層からなり、前記第2窒化物半導体層上に、前記第2窒化物半導体層よりもAl組成の高いAlGaN層からなる第3窒化物半導体層が形成されており、前記第3窒化物半導体層上に前記ゲート部が形成されている。
 この発明の一実施形態では、前記ゲート部と前記ドレイン電極との間の領域おいて、前記第3窒化物半導体層の一部が除去されている除去部が形成されている。
 この発明の一実施形態に係る窒化物半導体装置の製造方法は、基板上に、電子走行層を構成する第1窒化物半導体層と、電子供給層を構成する第2窒化物半導体層と、アクセプタ型不純物を含む窒化物半導体からなる第1半導体ゲート材料膜と、前記第1半導体ゲート材料膜よりもバンドギャップが大きい窒化物半導体からなる第2半導体ゲート材料膜とを、その順に形成する第1工程と、前記第2半導体ゲート材料膜上に、ショットキー接合するようにゲート電極膜を形成する第2工程と、前記ゲート電極膜、前記第2半導体ゲート材料膜および前記第1半導体ゲート材料膜を選択的に除去することにより、前記第2窒化物半導体層上に、リッジ形状の第1半導体ゲート層と前記第1半導体ゲート層上に形成された第2半導体ゲート層と前記第2半導体ゲート層上に形成されたゲート電極とからなるゲート部を形成する第3工程と、前記第2窒化物半導体層および前記ゲート部の露出面を覆う誘電体膜を形成する第4工程と、前記誘電体膜を貫通して前記第2窒化物半導体層にオーミック接合するソース電極およびドレイン電極を形成する第5工程とを含む。
 この発明の一実施形態では、前記第1半導体ゲート材料膜がp型GaNからなり、前記第2半導体ゲート材料膜がAlGaNからなり、前記ゲート電極膜が、TiN、TiWもしくはTi、またはそれらの組み合わせからなる。
 この発明の一実施形態では、前記ゲート電極が、組成比の異なる2つ以上のTiNの組み合わせを含む。
 この発明の一実施形態では、前記第3工程は、ドライエッチングにより、前記ゲート電極膜と前記第2半導体ゲート材料膜とを選択的に除去して、前記ゲート電極および前記第2半導体ゲート層を形成する第1エッチング工程と、ドライエッチングにより、前記第1半導体ゲート材料膜を選択的に除去して、前記第1半導体ゲート層を形成する第2エッチング工程とを含み、前記第1エッチング工程で使用されるエッチングガスと、前記第2エッチング工程で使用されるエッチングガスとが異なる。
 この発明の一実施形態では、前記第1エッチング工程で使用されるエッチングガスは、酸素を含まないガスであり、前記第2エッチング工程で使用されるエッチングガスは、少なくとも塩素ガスと酸素とを含むガスである。
 この発明の一実施形態では、前記第1エッチング工程は、前記ゲート電極膜をエッチングする第1aエッチング工程と、前記第2半導体ゲート層をエッチングする第1bエッチング工程からなり、前記第1aエッチング工程で使用されるエッチングガスは、酸素を含まないガスであり、前記第1bエッチング工程で使用されるエッチングガスは、少なくとも塩素を含み酸素を含まないガスである。
 本発明における上述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
図1は、この発明の第1実施形態に係る窒化物半導体装置の構成を説明するための断面図である。 図2Aは、図1の窒化物半導体装置の製造工程の一例を示す断面図である。 図2Bは、図2Aの次の工程を示す断面図である。 図2Cは、図2Bの次の工程を示す断面図である。 図2Dは、図2Cの次の工程を示す断面図である。 図2Eは、図2Dの次の工程を示す断面図である。 図2Fは、図2Eの次の工程を示す断面図である。 図3は、ゲート-ソース間電圧[V]に対するゲート-ソース間リーク電流[A/mm]の実験結果を示すグラフである。 図4は、第1実施形態と第1比較例のエネルギー分布を示すエネルギーバンド図である。 図5は、この発明の第2実施形態に係る窒化物半導体装置の構成を説明するための断面図である。 図6Aは、第2比較例のゲート電極にオン電圧を印可した場合の、ゲート部の一側部付近の電界強度分布を示す模式図である。 図6Bは、第2実施形態のゲート電極にオン電圧を印可した場合の、ゲート部の一側部付近の電界強度分布を示す模式図である。 図7は、この発明の第3実施形態に係る窒化物半導体装置の構成を説明するための断面図である。 図8は、この発明の第4実施形態に係る窒化物半導体装置の構成を説明するための断面図である。 図9は、この発明の第5実施形態に係る窒化物半導体装置の構成を説明するための断面図である。
 図1は、この発明の第1実施形態に係る窒化物半導体装置の構成を説明するための断面図である。
 窒化物半導体装置1は、基板2と、基板2の表面に形成されたバッファ層3と、バッファ層3上にエピタキシャル成長された第1窒化物半導体層4と、第1窒化物半導体層4上にエピタキシャル成長された第2窒化物半導体層5と、第2窒化物半導体層5上に形成されたゲート部20とを含む。
 さらに、この窒化物半導体装置1は、第2窒化物半導体層5およびゲート部20を覆うパッシベーション膜6(誘電体膜)を含む。さらに、この窒化物半導体装置1は、パッシベーション膜6に形成されたソースコンタクトホール7およびドレインコンタクトホール8を貫通して第2窒化物半導体層5にオーミック接触しているソース電極9およびドレイン電極10を含む。ソース電極9およびドレイン電極10は、間隔を開けて配置されている。ソース電極9は、ゲート部20を覆うように形成されている。
 基板2は、例えば、低抵抗のシリコン基板であってもよい。低抵抗のシリコン基板は、例えば、0.001Ωmm~0.5Ωmm(より具体的には0.01Ωmm~0.1Ωmm程度)の電気抵抗率を有したp型基板でもよい。また、基板2は、低抵抗のシリコン基板の他、低抵抗のSiC基板、低抵抗のGaN基板等であってもよい。基板2の厚さは、半導体プロセス中においては、例えば650μm程度であり、チップ化する前段階において、300μm以下程度に研削される。基板2は、ソース電極9に電気的に接続されている。
 バッファ層3は、この実施形態では、複数の窒化物半導体膜を積層した多層バッファ層から構成されている。この実施形態では、バッファ層3は、基板2の表面に接するAlN膜からなる第1バッファ層(図示略)と、この第1バッファ層の表面(基板2とは反対側の表面)に積層されたAlN/AlGaN超格子層からなる第2バッファ層(図示略)とから構成されている。第1バッファ層の膜厚は、100nm~500nm程度である。第2バッファ層の膜厚は、500nm~2μm程度である。バッファ層3は、例えば、AlGaNの単膜または複合膜から構成されていてもよい。
 第1窒化物半導体層4は、電子走行層を構成している。この実施形態では、第1窒化物半導体層4は、GaN層からなり、その厚さは0.5μm~2μm程度である。また、第1窒化物半導体層4を流れるリーク電流を抑制する目的で、表面領域以外には半絶縁性にするための不純物が導入されていてもよい。その場合、不純物の濃度は、4×1016cm-3以上であることが好ましい。また、不純物は、例えばCまたはFeである。
 第2窒化物半導体層5は、電子供給層を構成している。第2窒化物半導体層5は、第1窒化物半導体層4よりもバンドギャップの大きい窒化物半導体からなっている。具体的には、第2窒化物半導体層5は、第1窒化物半導体層4よりもAl組成の高い窒化物半導体からなっている。窒化物半導体においては、Al組成が高いほどバッドギャップは大きくなる。この実施形態では、第2窒化物半導体層5は、AlGa1-xN層(0<x<1)からなり、その厚さは5nm~15nm程度である。
 このように第1窒化物半導体層(電子走行層)4と第2窒化物半導体層(電子供給層)5とは、バンドギャップ(Al組成)の異なる窒化物半導体からなっており、それらの間には格子不整合が生じている。そして、第1窒化物半導体層4および第2窒化物半導体層5の自発分極と、それらの間の格子不整合に起因するピエゾ分極とによって、第1窒化物半導体層4と第2窒化物半導体層5との界面における第1窒化物半導体層4の伝導帯のエネルギーレベルはフェルミ準位よりも低くなる。これにより、第1窒化物半導体層4内には、第1窒化物半導体層4と第2窒化物半導体層5との界面に近い位置(例えば界面から数Å程度の距離)に、二次元電子ガス(2DEG)11が広がっている。
 ゲート部20は、第2窒化物半導体層5上にエピタキシャル成長されたリッジ形状の第1半導体ゲート層21と、第1半導体ゲート層21上に形成された第2半導体ゲート層22と、第2半導体ゲート層22上に形成されたゲート電極23とを含む。ゲート部20は、ソースコンタクトホール7寄りに偏って配置されている。
 この実施形態では、第1半導体ゲート層21の横断面形状は略矩形である。第1半導体ゲート層21は、アクセプタ型不純物がドーピングされた窒化物半導体からなる。この実施形態では、第1半導体ゲート層21は、アクセプタ型不純物がドーピングされたGaN層(p型GaN層)からなっており、その厚さは60nm程度である。第1半導体ゲート層21の膜厚は、閾値電圧を適切な大きさにするために、50nm以上100nm以下であることが好ましく、70nm以上100nm以下であることがより好ましい。
 第1半導体ゲート層21に注入されるアクセプタ型不純物の濃度は、1×1019cm-3以上であることが好ましい。この実施形態では、アクセプタ型不純物は、Mg(マグネシウム)である。アクセプタ型不純物は、Zn(亜鉛)等のMg以外のアクセプタ型不純物であってもよい。第1半導体ゲート層21は、ゲート部20の直下の領域において、第1窒化物半導体層4(電子走行層)と第2窒化物半導体層5(電子供給層)との界面付近に生じる二次元電子ガス11を相殺するために設けられている。
 第2半導体ゲート層22は、第1半導体ゲート層21よりもバンドギャップが大きい窒化物半導体からなる。この実施形態では、第2半導体ゲート層22は、AlGa1-xN(0≦x<1)層からなっており、その厚さは10nm程度である。第1半導体ゲート層21に注入されるアクセプタ型不純物がMgである場合、メモリ効果により、第2半導体ゲート層22にMgが注入される。第2半導体ゲート層22の好適なAl組成および膜厚については後述する。
 ゲート電極23は、第2半導体ゲート層22にショットキー接合している。ゲート電極23は、TiNからなる。ゲート電極23の膜厚は、50nm~150nm程度である。ゲート電極23は、TiN、TiWもしくはTiまたはそれらの組み合わせから構成されてもよい。また、ゲート電極23は、組成比の異なるTiNの組み合わせを含むものであってもよい。
 パッシベーション膜6は、第2窒化物半導体層5の表面(コンタクトホール7,8が臨んでいる領域を除く)およびゲート部20の側面および表面を覆っている。この実施形態では、パッシベーション膜6はSiN膜からなり、その厚さは50nm~200nm程度である。パッシベーション膜6は、SiN、SiO、SiONまたはそれらの複合膜から構成されてもよい。
 ソース電極9およびドレイン電極10は、例えば、第2窒化物半導体層5にオーミック接触する第1金属層(オーミックメタル層)と、第1金属層に積層された第2金属層(主電極メタル層)と、第2金属層に積層された第3金属層(密着層)と、第3金属層に積層された第4金属層(バリアメタル層)とからなる。第1金属層は、例えば、厚さが10nm~20nm程度のTi層である。第2金属層は、例えば、厚さが100nm~300nm程度のAl層である。第3金属層は、例えば、厚さが10nm~20nm程度のTi層である。第4金属層は、例えば、厚さが10nm~50nm程度のTiN層である。
 この窒化物半導体装置1では、第1窒化物半導体層4(電子走行層)上にバンドギャップ(Al組成)の異なる第2窒化物半導体層5(電子供給層)が形成されてヘテロ接合が形成されている。これにより、第1窒化物半導体層4と第2窒化物半導体層5との界面付近の第1窒化物半導体層4内に二次元電子ガス11が形成され、この二次元電子ガス11をチャネルとして利用したHEMTが形成されている。ゲート電極23は、第2半導体ゲート層22および第1半導体ゲート層21を挟んで、第2窒化物半導体層5に対向している。
 ゲート電極23の下方においては、p型GaN層からなる第1半導体ゲート層21に含まれるイオン化アクセプタによって、第1窒化物半導体層4および第2窒化物半導体層5のエネルギーレベルが引き上げられる。このため、第1窒化物半導体層4と第2窒化物半導体層5との間のヘテロ接合界面における伝導帯のエネルギーレベルはフェルミ準位よりも大きくなる。したがって、ゲート電極23(ゲート部20)の直下では、第1窒化物半導体層4および第2窒化物半導体層5の自発分極ならびにそれらの格子不整合によるピエゾ分極に起因する二次元電子ガス11が形成されない。
 よって、ゲート電極23にバイアスを印加していないとき(ゼロバイアス時)には、二次元電子ガス11によるチャネルはゲート電極23の直下で遮断されている。こうして、ノーマリーオフ型のHEMTが実現されている。ゲート電極23に適切なオン電圧(たとえば5V)を印加すると、ゲート電極23の直下の第1窒化物半導体層4内にチャネルが誘起され、ゲート電極23の両側の二次元電子ガス11が接続される。これにより、ソース-ドレイン間が導通する。
 使用に際しては、たとえば、ソース電極9とドレイン電極10との間に、ドレイン電極10側が正となる所定の電圧(たとえば10V~500V)が印加される。その状態で、ゲート電極23に対して、ソース電極9を基準電位(0V)として、オフ電圧(0V)またはオン電圧(5V)が印加される。
 図2A~図2Fは、前述の窒化物半導体装置1の製造工程の一例を説明するための断面図であり、製造工程における複数の段階における断面構造が示されている。
 まず、図2Aに示すように、MOCVD(Metal Organic Chemical Vapor Deposition)法によって、基板2上に、バッファ層3、第1窒化物半導体層(電子走行層)4および第2窒化物半導体層(電子供給層)5がエピタキシャル成長される。さらに、MOCVD法によって、第2窒化物半導体層5上に、第1半導体ゲート層21の材料膜である第1半導体ゲート材料膜71および第2半導体ゲート層22の材料膜である第2半導体ゲート材料膜72がエピタキシャル成長される。
 次に、図2Bに示すように、スパッタ法によって、露出した表面全体を覆うように、ゲート電極23の材料膜であるゲート電極膜73が形成される。
 次に、図2Cに示すように、フォトリソグラフィおよびドライエッチングにより、まず、ゲート電極膜73および第2半導体ゲート材料膜72がパターニングされる。このドライエッチング工程では、酸素を含まないガスがエッチングガスとして使用される。エッチングガスは、例えば、Cl/BCl、BCl、CFであり、これらをエッチング対象に合わせて段階的に組み合わせるフローでもよい。
 なお、ゲート電極膜73および第2半導体ゲート材料膜72をエッチングする工程は、ゲート電極膜73をエッチングする工程と、第2半導体ゲート材料膜72をエッチングする工程からなる。ゲート電極膜73をエッチングする工程で使用されるエッチングガスは、例えば、酸素を含まないガスであり、第2半導体ゲート材料膜72をエッチングする工程で使用されるエッチングガスは、例えば、少なくとも塩素を含み酸素を含まないガスである。
 この後、ドライエッチングにより、第1半導体ゲート材料膜71がパターニングされる。このドライエッチング工程では、少なくとも塩素ガスと酸素を含むガスがエッチングガスとして使用される。エッチングガスは、例えばCl/O/NやCl/O/Arである。
 これにより、第2窒化物半導体層5上に、リッジ形状の第1半導体ゲート層21と、第1半導体ゲート層21上に形成された第2半導体ゲート層22と、第2半導体ゲート層22上に形成されたゲート電極23とからなるゲート部20が形成される。
 次に、図2Dに示すように、露出した表面全体を覆うように、パッシベーション膜6が形成される。パッシベーション膜6は例えばSiNからなる。
 次に、図2Eに示すように、パッシベーション膜6に、第2窒化物半導体層5に達するソースコンタクトホール7およびドレインコンタクトホール8が形成される。
 次に、図2Fに示すように、露出した表面全体を覆うようにソース・ドレイン電極膜74が形成される。
 最後に、フォトリソグラフィおよびエッチングによってソース・ドレイン電極膜74がパターニングされることにより、第2窒化物半導体層5にオーミック接触するソース電極9およびドレイン電極10が形成される。こうして、図1に示すような構造の窒化物半導体装置1が得られる。
 前述の第1実施形態における第1半導体ゲート層21および第2半導体ゲート層22の両方が、第1半導体ゲート層(p型GaN)21で構成されている窒化物半導体装置を第1比較例ということにする。
 図3は、ゲート-ソース間電圧[V]に対するゲート-ソース間リーク電流[A/mm]の実験結果を示すグラフである。ただし、第1実施形態の第2半導体ゲート層(AlGaN)22のAlの組成は20%であり、第2半導体ゲート層22の膜厚は10nmである。
 図3から、ゲート-ソース間電圧が約2.8[V]以上の範囲において、第1比較例に比べて第1実施形態では、ゲート-ソース間のリーク電流が低減されていることがわかる。
 実施形態では、第1比較例に比べてゲート-ソース間のリーク電流が低減される理由について説明する。
 図4は、第1実施形態と第1比較例のエネルギー分布を示すエネルギーバンド図である。
 図4において、GaNは第1窒化物半導体層4を示し、その隣のAlGaNは第1窒化物半導体層4を示し、その隣のpGanは第1半導体ゲート層21を示し、その隣のAlGaNは第2半導体ゲート層22を示し、その隣のGateはゲート電極23を示している。また、図4において。Ecは伝導帯のエネルギーレベルであり、Evは価電子帯のエネルギーレベルである。
 図4に示すように、第1実施形態における価電子帯のエネルギーレベルEvからわかるように、第1実施形態では第1半導体ゲート層(pGaN)21と第2半導体ゲート層(AlGaN)22との境界において、価電子帯中にホールに対する障壁が形成されている。これにより、ゲート電極(Gate)23から第1半導体ゲート層(pGaN)21へのホールの注入を抑制することができる。これに対して、第1比較例では、ゲート電23と第1半導体ゲート層(pGaN)21との間にホールの障壁は形成されない。これが、第1実施形態では、第1比較例に比べてリーク電流が低減される理由である。
 第1半導体ゲート層21と第2半導体ゲート層22との境界において、価電子帯中にホールに対する障壁を適切に形成するためには、第2半導体ゲート層22のAl組成は15%以上であることが好ましい。また、ウェハ内の面内ばらつきを考慮すると小さすぎる層では十分なバリアが形成できないため、第2半導体ゲート層22の膜厚は、3nm以上であることが好ましい。またこのとき、第1半導体ゲート層21に導入されるアクセプタ不純物がMgである場合は、第2半導体ゲート層22にはメモリ効果によってMgが導入されるので、その影響も緩和できる。一方、第2半導体ゲート層22の膜厚が大きすぎると、第1半導体ゲート層21との格子不整合に起因してクラックが発生するおそれがあるので、第2半導体ゲート層22の膜厚は15nm以下であることが好ましい。
 前述の第1実施形態では、ゲート電極23が第2半導体ゲート層22にショットキー接合しているので、ゲート電極23が第2半導体ゲート層22に対してオーミック接合する場合に比べて、リーク電流を低減することができる。これは、第1実施形態では、ゲート電極23と第2半導体ゲート層22とのショットキー接合部に、第2半導体ゲート層22からゲート電極23に向かう方向が順方向となるダイオードが形成されるので、ソース電極9から見てゲート電極23側に正電圧が印加された場合に、ゲート電極23から第1半導体ゲート層21に電流が流れにくくなるためである。
 図5は、この発明の第2実施形態に係る窒化物半導体装置の構成を説明するための断面図である。図5において、前述の図1の各部に対応する部分には、図1と同じ符号を付して示す。
 図5の窒化物半導体装置1Aでは、第1半導体ゲート層21の幅と第2半導体ゲート層22の幅はほぼ等しいが、ゲート電極23の幅は、第2半導体ゲート層22の幅よりも短い。第2半導体ゲート層22は、第1半導体ゲート層21の表面(上面)の全面を覆っている。ゲート電極23は、第2半導体ゲート層22の表面の幅中間部上に形成されており、第2半導体ゲート層22の表面の両側縁(幅方向端)に接していない。
 図5の窒化物半導体装置1Aに対して、第2半導体ゲート層22が形成されておらず、第1半導体ゲート層21の上面の幅中間部上にゲート電極23が形成されている構成を第2比較例ということにする。
 図6Aは、第2比較例のゲート電極23にオン電圧(5V)を印可した場合の、ゲート部20の一側部付近の電界強度分布を示す模式図である。図6Bは、第2実施形態のゲート電極23にオン電圧(5V)を印可した場合の、ゲート部20の一側部付近の電界強度分布を示す模式図である。
 図6Aに示すように、第2比較例では、第1半導体ゲート層21の上面とゲート電極23の下面の側縁との接触部に電界が集中している。これに対して、図6Bに示すように、第2実施形態では、ゲート電極23の下面の側縁部(幅方向端)に電界が集中しなくなる。これは、第2実施形態では、第1半導体ゲート層(p型GaN)21と第2半導体ゲート層(AlGaN)22との境界に発生する2次元電子ガスの影響で、境界部分の横方向の電位が均一化されたためと考えられる。したがって、第2実施形態では、第2比較例に比べて、ゲート電極23の幅方向端からのゲートリーク電流が低減される。
 図7は、この発明の第3施形態に係る窒化物半導体装置の構成を説明するための断面図である。図7おいて、前述の図1の各部に対応する部分には、図1と同じ符号を付して示す。
 図7の窒化物半導体装置1Bは、第2窒化物半導体層5上に、第3窒化物半導体層13が形成されている点で、図1の窒化物半導体装置1と異なっている。図7の窒化物半導体装置1Bでは、第3窒化物半導体層13上にゲート部20が形成されており、第3窒化物半導体層13の露出面およびゲート部20の露出面を覆うようにパッシベーション膜6が形成されている。ソース電極9およびドレイン電極10は、パッシベーション膜6を貫通して、第3窒化物半導体層13にオーミック接触している。
 第3窒化物半導体層13は、AlGaNからなる第2窒化物半導体層(電子供給層)5よりもAl組成の高いAlGaNからなる。第3窒化物半導体層13の膜厚は、3nm~10nm程度である。第2窒化物半導体層5のAl組成は15~25%程度であるのに対し、第3窒化物半導体層13のA組成は25~100%程度である。
 第3窒化物半導体層13は、エッチングによってゲート部20をパターニングする際に、電子供給層としての第2窒化物半導体層5がエッチングされるのを防止するために設けられている。つまり、第3窒化物半導体層13は、エッチングストップ層としての機能を有する。
 ゲート部20内の第1半導体ゲート層21がp型GaNであり、第2半導体ゲート層22がAlGaNである場合、第1半導体ゲート層21のエッチングレートは、第2半導体ゲート層22のエッチングレートよりも高い。このため、エッチングによってゲート部20をパターニングする際に、第2窒化物半導体層5の表面がエッチングされないように、エッチング制御を行うことは難しい。そこで、第3実施形態に係る窒化物半導体装置1Bでは、第2窒化物半導体層5の表面に、第3窒化物半導体層13が形成されている。
 図8は、この発明の第4実施形態に係る窒化物半導体装置の構成を説明するための断面図である。図8において、前述の図7の各部に対応する部分には、図7と同じ符号を付して示す。
 図8の窒化物半導体装置1Cは、図7の窒化物半導体装置1Bとほぼ同様の構成を有している。図8の窒化物半導体装置1Cでは、ゲート部20とドレイン電極10との間において、第2窒化物半導体層5上に第3窒化物半導体層13が存在しない除去領域14が形成されている。除去領域14には、パッシベーション膜6の一部が埋め込まれている。
 第2窒化物半導体層5上にAlGaNからなる第3窒化物半導体層13が形成されると、第3窒化物半導体層13が形成されていない場合に比べて、第1半導体ゲート層21による二次元電子ガス11のキャリア濃度が増加するため、ゲート部20のドレイン側端部における電界集中によって耐圧が低下するおそれがある。そこで、図8の窒化物半導体装置1Cでは、除去領域14によって、ゲート部20とドレイン電極10との間に2次元電子ガス密度の低い領域を形成し、電解集中を緩和してドレイン-ソース間の耐圧を向上させている。
 図9は、この発明の第5実施形態に係る窒化物半導体装置の構成を説明するための断面図である。図9において、前述の図1の各部に対応する部分には、図1と同じ符号を付して示す。
 図9の窒化物半導体装置1Dは、ゲート部20の構造(形状)が、図1の窒化物半導体装置1と異なっている。図9の窒化物半導体装置1Dにおいても、図1の窒化物半導体装置1と同様に、ゲート部20は、リッジ形状の第1半導体ゲート層21と、第1半導体ゲート層21上に形成された第2半導体ゲート層22と、第2半導体ゲート層22上に形成されたゲート電極23とから構成されている。
 第1半導体ゲート層21は、断面形状が横長矩形のゲート層本体21Aと、ゲート層本体21Aの上面の幅中間部上に形成された上方張出部21Bとから構成されている。第2半導体ゲート層22は、上方張出部21B上に形成されている。ゲート電極23は、第2半導体ゲート層22上に形成されている。
 図9の窒化物半導体装置1Dでは、第1半導体ゲート層21のゲート層本体21Aの上面と上方張出部21Bの側面とが交わる箇所31に電界を集中させることができる。これにより、電界が集中する位置を、ゲート電極23の下面の幅方向端から離すことができる。これにより、ゲート電極23の幅方向端からのゲートリーク電流を抑制することが可能となる。
 以上、この発明の第1~第5実施形態について説明したが、この発明は、さらに他の実施形態で実施することもできる。例えば、第2半導体ゲート層22内のAl組成が、第1半導体ゲート層21近傍で低く、ゲート電極23近傍で高くなるように、第2半導体ゲート層22内のAl組成を調整してもよい。このようにすると、第1半導体ゲート層21に対する第2半導体ゲート層22の成膜性が良くなる。
 また、第2半導体ゲート層22内のAl組成が、第1半導体ゲート層21近傍で高く、ゲート電極23近傍で低くなるように、第2半導体ゲート層22内のAl組成を調整してもよい。このように、第2半導体ゲート層22内のAl組成が第1半導体ゲート層21近傍で高いと、第2半導体ゲート層22のAlGaNと第1半導体ゲート層21のp型GaNとの界面のホールに対するバリアが高くなるので、ホールに基づくリーク電流を抑制する効果を高めることができる。
 また、第2半導体ゲート層22が、Si等のドナー型不純物を含んでいてもよい。この場合には、ドナー型不純物の濃度を調整することにより、第2半導体ゲート層22とゲート電極23との間のショットキー障壁高さを調整することができる。
 また、前述の実施形態では、基板2の材料例としてシリコンを例示したが、ほかにも、サファイア基板やGaN基板などの任意の基板材料を適用できる。
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。
 この出願は、2019年2月1日に日本国特許庁に提出された特願2019-17335号に対応しており、その出願の全開示はここに引用により組み込まれるものとする。
  1,1A,1B,1C,1D 窒化物半導体装置
  2 基板
  3 バッファ層
  4 第1窒化物半導体層
  5 第2窒化物半導体層
  6 パッシベーション膜
  7 ソースコンタクトホール
  8 ドレインコンタクトホール
  9 ソース電極
 10 ドレイン電極
 11 二次元電子ガス(2DEG)
 13 第3窒化物半導体層
 20 ゲート部
 21 第1半導体ゲート層
 21A ゲート層本体
 21B 上方張出部
 22 第2半導体ゲート層
 23 ゲート電極

Claims (22)

  1.  電子走行層を構成する第1窒化物半導体層と、
     前記第1窒化物半導体層上に形成され、前記第1窒化物半導体層よりもバンドギャップが大きく、電子供給層を構成する第2窒化物半導体層と、
     前記第2窒化物半導体層上に形成されたゲート部とを含み、
     前記ゲート部は、
     前記第2窒化物半導体層上に配置され、アクセプタ型不純物を含む窒化物半導体からなるリッジ形状の第1半導体ゲート層と、
     前記第1半導体ゲート層上に形成され、前記第1半導体ゲート層よりもバンドギャップが大きい窒化物半導体からなる第2半導体ゲート層と、
     前記第2半導体ゲート層上に形成され、第2半導体ゲート層にショットキー接合するゲート電極とを含む、窒化物半導体装置。
  2.  前記第2窒化物半導体層上に配置されたソース電極およびドレイン電極とを含み、
     前記ソース電極およびドレイン電極は、それぞれ前記第2窒化物半導体層にオーミック接合している、請求項1に記載の窒化物半導体装置。
  3.  前記ゲート電極の金属材料が、前記ソース電極およびドレイン電極の金属材料と異なる、請求項2に記載の窒化物半導体装置。
  4.  前記第1半導体ゲート層がp型GaN層からなり、前記第2半導体ゲート層がAlGa1-xN(0≦x<1)層からなる、請求項1~3のいずれか一項に記載の窒化物半導体装置。
  5.  前記第2半導体ゲート層のAl組成が15%以上である、請求項4に記載の窒化物半導体装置。
  6.  前記第2半導体ゲート層のAl組成が、前記前記第1半導体ゲート層近傍で低く、前記ゲート電極近傍で高い、請求項5に記載の窒化物半導体装置。
  7.  前記第2半導体ゲート層のAl組成が、前記前記第1半導体ゲート層近傍で高く、前記ゲート電極近傍で低い、請求項5に記載の窒化物半導体装置。
  8.  前記第2半導体ゲート層が、ドナー型不純物を含む、請求項1~7のいずれか一項に記載の窒化物半導体装置。
  9.  前記第1半導体ゲート層の膜厚が、50nm以上である、請求項1~8のいずれか一項に記載の窒化物半導体装置。
  10.  前記第1半導体ゲート層の膜厚が、70nm以上である、請求項1~8のいずれか一項に記載の窒化物半導体装置。
  11. 前記第2半導体ゲート層の膜厚が、3nm以上15nm以下である、請求項1~10のいずれか一項に記載の窒化物半導体装置。
  12.  前記第2半導体ゲート層の幅が前記第1半導体ゲート層の幅とほぼ等しく、前記第2半導体ゲート層が前記第1半導体ゲート層の表面全体を覆っており、
     前記ゲート電極が、前記第2半導体ゲート層の表面の幅中間部上に形成されており、前記ゲート電極は、前記第2半導体ゲート層の幅方向端に接触していない、請求項1~11のいずれか一項に記載の窒化物半導体装置。
  13.  前記ゲート電極が、TiN、TiWもしくはTi、またはそれらの組み合わせからなる、請求項1~12のいずれか一項に記載の窒化物半導体装置。
  14.  前記ゲート電極が、組成比の異なる2以上のTiNの組み合わせを含む、請求項1~13のいずれか一項に記載の窒化物半導体装置。
  15.  前記第2窒化物半導体層がAlGaN層からなり、前記第1半導体ゲート層がp型GaN層からなり、前記第2半導体ゲート層がAlGaN層からなり、
     前記第2窒化物半導体層上に、前記第2窒化物半導体層よりもAl組成の高いAlGaN層からなる第3窒化物半導体層が形成されており、
     前記第3窒化物半導体層上に前記ゲート部が形成されている、請求項1~14のいずれか一項に記載の窒化物半導体装置。
  16.  前記ゲート部と前記ドレイン電極との間の領域おいて、前記第3窒化物半導体層の一部が除去されている除去部が形成されている、請求項15に記載の窒化物半導体装置。
  17.  基板上に、電子走行層を構成する第1窒化物半導体層と、電子供給層を構成する第2窒化物半導体層と、アクセプタ型不純物を含む窒化物半導体からなる第1半導体ゲート材料膜と、前記第1半導体ゲート材料膜よりもバンドギャップが大きい窒化物半導体からなる第2半導体ゲート材料膜とを、その順に形成する第1工程と、
     前記第2半導体ゲート材料膜上に、ショットキー接合するようにゲート電極膜を形成する第2工程と、
     前記ゲート電極膜、前記第2半導体ゲート材料膜および前記第1半導体ゲート材料膜を選択的に除去することにより、前記第2窒化物半導体層上に、リッジ形状の第1半導体ゲート層と前記第1半導体ゲート層上に形成された第2半導体ゲート層と前記第2半導体ゲート層上に形成されたゲート電極とからなるゲート部を形成する第3工程と、
     前記第2窒化物半導体層および前記ゲート部の露出面を覆う誘電体膜を形成する第4工程と、
     前記誘電体膜を貫通して前記第2窒化物半導体層にオーミック接合するソース電極およびドレイン電極を形成する第5工程とを含む、窒化物半導体装置の製造方法。
  18.  前記第1半導体ゲート材料膜がp型GaNからなり、
     前記第2半導体ゲート材料膜がAlGaNからなり、
     前記ゲート電極膜が、TiN、TiWもしくはTi、またはそれらの組み合わせからなる、請求項17に記載の窒化物半導体装置の製造方法。
  19.  前記ゲート電極膜が、組成比の異なる2つ以上のTiNの組み合わせを含む、請求項17に記載の窒化物半導体装置の製造方法。
  20.  前記第3工程は、
     ドライエッチングにより、前記ゲート電極膜と前記第2半導体ゲート材料膜とを選択的に除去して、前記ゲート電極および前記第2半導体ゲート層を形成する第1エッチング工程と、
     ドライエッチングにより、前記第1半導体ゲート材料膜を選択的に除去して、前記第1半導体ゲート層を形成する第2エッチング工程とを含み、
     前記第1エッチング工程で使用されるエッチングガスと、前記第2エッチング工程で使用されるエッチングガスとが異なる、請求項17~19のいずれか一項に記載の窒化物半導体装置の製造方法。
  21.  前記第1エッチング工程で使用されるエッチングガスは、酸素を含まないガスであり、
     前記第2エッチング工程で使用されるエッチングガスは、少なくとも塩素ガスと酸素とを含むガスである、請求項20に記載の窒化物半導体装置の製造方法。
  22.  前記第1エッチング工程は、前記ゲート電極膜をエッチングする第1aエッチング工程と、前記第2半導体ゲート層をエッチングする第1bエッチング工程からなり、前記第1aエッチング工程で使用されるエッチングガスは、酸素を含まないガスであり、前記第1bエッチング工程で使用されるエッチングガスは、少なくとも塩素を含み酸素を含まないガスである、請求項21に記載の窒化物半導体装置の製造方法。
PCT/JP2020/001101 2019-02-01 2020-01-15 窒化物半導体装置 WO2020158394A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/426,217 US20220102543A1 (en) 2019-02-01 2020-01-15 Nitride semiconductor device
JP2020569492A JP7369725B2 (ja) 2019-02-01 2020-01-15 窒化物半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-017335 2019-02-01
JP2019017335 2019-02-01

Publications (1)

Publication Number Publication Date
WO2020158394A1 true WO2020158394A1 (ja) 2020-08-06

Family

ID=71842118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001101 WO2020158394A1 (ja) 2019-02-01 2020-01-15 窒化物半導体装置

Country Status (3)

Country Link
US (1) US20220102543A1 (ja)
JP (1) JP7369725B2 (ja)
WO (1) WO2020158394A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022068835A1 (zh) * 2020-09-30 2022-04-07 华为技术有限公司 高电子迁移率晶体管hemt器件、晶圆、封装器件和电子设备
WO2022113536A1 (ja) * 2020-11-26 2022-06-02 ローム株式会社 窒化物半導体装置およびその製造方法
WO2022172588A1 (ja) * 2021-02-10 2022-08-18 ローム株式会社 窒化物半導体装置および窒化物半導体装置の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113812006A (zh) * 2019-05-10 2021-12-17 罗姆股份有限公司 氮化物半导体装置及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135641A (ja) * 2008-12-05 2010-06-17 Panasonic Corp 電界効果トランジスタ及びその製造方法
JP2011029507A (ja) * 2009-07-28 2011-02-10 Panasonic Corp 半導体装置
JP2013038180A (ja) * 2011-08-05 2013-02-21 Sharp Corp GaN系化合物半導体装置
JP2013080894A (ja) * 2011-09-30 2013-05-02 Samsung Electro-Mechanics Co Ltd 窒化物半導体素子及びその製造方法
JP2014140024A (ja) * 2012-12-21 2014-07-31 Nichia Chem Ind Ltd 電界効果トランジスタとその製造方法
JP2015204304A (ja) * 2014-04-10 2015-11-16 トヨタ自動車株式会社 スイッチング素子
JP2016046413A (ja) * 2014-08-25 2016-04-04 ルネサスエレクトロニクス株式会社 半導体装置
JP2017183482A (ja) * 2016-03-30 2017-10-05 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法
JP2018157177A (ja) * 2016-08-24 2018-10-04 ローム株式会社 窒化物半導体デバイスおよび窒化物半導体パッケージ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5089215B2 (ja) * 2007-03-28 2012-12-05 古河電気工業株式会社 窒化物化合物半導体層のエッチング方法及びその方法を用いて製造された半導体デバイス
US20180061975A1 (en) * 2016-08-24 2018-03-01 Rohm Co., Ltd. Nitride semiconductor device and nitride semiconductor package

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135641A (ja) * 2008-12-05 2010-06-17 Panasonic Corp 電界効果トランジスタ及びその製造方法
JP2011029507A (ja) * 2009-07-28 2011-02-10 Panasonic Corp 半導体装置
JP2013038180A (ja) * 2011-08-05 2013-02-21 Sharp Corp GaN系化合物半導体装置
JP2013080894A (ja) * 2011-09-30 2013-05-02 Samsung Electro-Mechanics Co Ltd 窒化物半導体素子及びその製造方法
JP2014140024A (ja) * 2012-12-21 2014-07-31 Nichia Chem Ind Ltd 電界効果トランジスタとその製造方法
JP2015204304A (ja) * 2014-04-10 2015-11-16 トヨタ自動車株式会社 スイッチング素子
JP2016046413A (ja) * 2014-08-25 2016-04-04 ルネサスエレクトロニクス株式会社 半導体装置
JP2017183482A (ja) * 2016-03-30 2017-10-05 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法
JP2018157177A (ja) * 2016-08-24 2018-10-04 ローム株式会社 窒化物半導体デバイスおよび窒化物半導体パッケージ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022068835A1 (zh) * 2020-09-30 2022-04-07 华为技术有限公司 高电子迁移率晶体管hemt器件、晶圆、封装器件和电子设备
CN114335166A (zh) * 2020-09-30 2022-04-12 华为技术有限公司 高电子迁移率晶体管hemt器件、晶圆、封装器件和电子设备
CN114335166B (zh) * 2020-09-30 2023-05-05 华为技术有限公司 高电子迁移率晶体管hemt器件、晶圆、封装器件和电子设备
EP4210111A4 (en) * 2020-09-30 2024-05-01 Huawei Tech Co Ltd HIGH ELECTRON MOBILITY HEMT TRANSISTOR DEVICE, WAFER, PACKAGING DEVICE AND ELECTRONIC DEVICE
WO2022113536A1 (ja) * 2020-11-26 2022-06-02 ローム株式会社 窒化物半導体装置およびその製造方法
JPWO2022113536A1 (ja) * 2020-11-26 2022-06-02
JP7336606B2 (ja) 2020-11-26 2023-08-31 ローム株式会社 窒化物半導体装置
WO2022172588A1 (ja) * 2021-02-10 2022-08-18 ローム株式会社 窒化物半導体装置および窒化物半導体装置の製造方法

Also Published As

Publication number Publication date
US20220102543A1 (en) 2022-03-31
JP7369725B2 (ja) 2023-10-26
JPWO2020158394A1 (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
JP5469098B2 (ja) 電界効果トランジスタ及びその製造方法
US7816707B2 (en) Field-effect transistor with nitride semiconductor and method for fabricating the same
JP4755961B2 (ja) 窒化物半導体装置及びその製造方法
US8390029B2 (en) Semiconductor device for reducing and/or preventing current collapse
US9190506B2 (en) Field-effect transistor
WO2020158394A1 (ja) 窒化物半導体装置
WO2020213291A1 (ja) 窒化物半導体装置およびその製造方法
US20090121775A1 (en) Transistor and method for operating the same
US11462635B2 (en) Nitride semiconductor device and method of manufacturing the same
JPWO2020174956A1 (ja) 窒化物半導体装置
US20150263155A1 (en) Semiconductor device
JP4815020B2 (ja) 窒化物半導体装置
TW202211473A (zh) 氮化物半導體裝置及其製造方法
JP2011142358A (ja) 窒化物半導体装置
JP2020080362A (ja) 窒化物半導体装置
JP5721782B2 (ja) 半導体装置
JP2011066464A (ja) 電界効果トランジスタ
WO2021149599A1 (ja) 窒化物半導体装置の製造方法および窒化物半導体装置
TWI815160B (zh) 氮化物半導體裝置
JP2015056413A (ja) 窒化物半導体装置
JP2022084364A (ja) 窒化物半導体装置およびその製造方法
US9627489B2 (en) Semiconductor device
US11600721B2 (en) Nitride semiconductor apparatus and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749215

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569492

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20749215

Country of ref document: EP

Kind code of ref document: A1