WO2020157828A1 - 樹脂組成物、半導体装置の製造方法及び半導体装置 - Google Patents

樹脂組成物、半導体装置の製造方法及び半導体装置 Download PDF

Info

Publication number
WO2020157828A1
WO2020157828A1 PCT/JP2019/002959 JP2019002959W WO2020157828A1 WO 2020157828 A1 WO2020157828 A1 WO 2020157828A1 JP 2019002959 W JP2019002959 W JP 2019002959W WO 2020157828 A1 WO2020157828 A1 WO 2020157828A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
semiconductor device
molecular weight
connection
Prior art date
Application number
PCT/JP2019/002959
Other languages
English (en)
French (fr)
Inventor
一尊 本田
恵子 上野
望 松原
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2019/002959 priority Critical patent/WO2020157828A1/ja
Publication of WO2020157828A1 publication Critical patent/WO2020157828A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition

Definitions

  • the present disclosure relates to a resin composition, a method for manufacturing a semiconductor device, and a semiconductor device.
  • Peripheral members such as wiring or bumps that are electrically connected are required to have a small dielectric loss tangent (Df) in order to reduce electric energy loss in the dielectric body.
  • Df dielectric loss tangent
  • connection method FC connection method
  • FC connection method a method of metal-bonding the connection part using solder, tin, gold, silver, copper, etc., a method of metal-bonding the connection part by applying ultrasonic vibration, mechanical contact by contraction force of resin It is known how to hold. From the viewpoint of reliability of the connection portion, a method of metal-bonding the connection portion with solder, tin, gold, silver, copper or the like is generally used.
  • the COB (Chip On Board) type connection method that is actively used in BGA (Ball Grid Array), CSP (Chip Size Package), etc. also corresponds to the FC connection method.
  • the FC connection method is a COC (Chip On Chip) type in which a connection portion (bump or wiring) is formed on a semiconductor chip to connect the semiconductor chips, and a connection portion (bump or wiring) is formed on the semiconductor wafer. Is also widely used for a COW (Chip On Wafer) type connection method for connecting between a semiconductor chip and a semiconductor wafer by forming a (see, for example, Patent Document 1).
  • chip stack type packages in which the above-mentioned connection methods are stacked and multi-staged, POP (Package On Package), TSV (Through-Silicon Via), etc. Is also becoming widespread. Since such a stacking/multi-stage technology arranges the semiconductor chips and the like in three dimensions, the package can be made smaller than the method of arranging in two dimensions. Further, since such a stacking/multi-stage technology is effective for improving the performance of semiconductors, reducing noise, reducing the mounting area, and saving power, it is attracting attention as a next-generation semiconductor wiring technology.
  • the functionality and the degree of integration are advanced.
  • the pitch between the wirings is narrowed along with the functionality and the degree of integration, and the pitch and the fine wiring are advanced. ..
  • An object of the present disclosure is to provide a resin composition capable of forming a cured product having a reduced dielectric loss tangent, a method for manufacturing a semiconductor device using the resin composition, and a semiconductor device.
  • the present disclosure provides (a) a high molecular weight component having a weight average molecular weight of 10,000 or more, (b) a thermosetting resin having a weight average molecular weight of less than 10,000, (c) a curing agent, and (d). And a filler, wherein the filler (d) contains strontium titanate.
  • strontium titanate as the (d) filler, it is possible to form a cured product having a reduced dielectric loss tangent.
  • the filler (d) is usually added to control, for example, the viscosity of the resin composition and the physical properties of the cured product, but strontium titanate not only has the above-mentioned function but also has the effect of reducing the dielectric loss tangent. Can be expressed. Further, strontium titanate does not hinder the conduction of the connecting portion even when the resin composition is used as an adhesive for a semiconductor that seals the periphery of the connecting portion (wiring or bump). Therefore, the resin composition is extremely useful as an adhesive for semiconductors that can achieve a low dielectric loss tangent while ensuring good connectivity of the connection part.
  • the strontium titanate may have an average particle size of 1.0 ⁇ m or less.
  • the average particle diameter is 1.0 ⁇ m or less, biting at the time of flip chip connection can be more sufficiently prevented, visibility (transparency) can be improved, and dielectric loss tangent of a cured product can be further reduced. it can.
  • the high molecular weight component (a) may include a high molecular weight component containing a maleimide skeleton.
  • the high molecular weight component (a) contains the high molecular weight component containing a maleimide skeleton, the curing shrinkage of the resin composition can be reduced and the heat resistance can be improved. Therefore, warpage of the package can be reduced, generation of voids can be suppressed, and insulation reliability can be improved.
  • the glass transition temperature of the high molecular weight component (a) may be 160° C. or lower.
  • the laminating property of the resin composition is improved and the generation of voids is easily suppressed.
  • the thermosetting resin (b) may include an acrylic resin.
  • the thermosetting resin contains an acrylic resin, the resin composition can exhibit good quick-curing properties, and can suppress the occurrence of voids when pressure bonding is performed in a short time. Moreover, when acrylic resin is used, the dielectric loss tangent of the obtained cured product can be more easily reduced.
  • the acrylic resin may be a solid acrylic resin at 25°C. Solid acrylic resins have better heat resistance than liquid ones, so that it is easier to suppress the occurrence of voids.
  • the curing agent (c) may include a heat radical generator. Further, the curing agent (c) may contain a peroxide. These curing agents are preferable from the viewpoint of handleability and storage stability of the resin composition. Moreover, when these curing agents are used, the dielectric loss tangent of the obtained cured product can be more easily reduced.
  • the above resin composition may be in the form of a film.
  • the handleability of the resin composition can be improved, and the workability and productivity at the time of manufacturing the package can be improved.
  • the resin composition is arranged to electrically connect the connecting portions of the first member having the connecting portion and the second member having the connecting portion to each other, at least a part of the connecting portion is sealed. It may be used as an adhesive for semiconductors that stops.
  • the resin composition of the present disclosure can form a cured product having a small dielectric loss tangent, and thus is suitable as an adhesive for semiconductors.
  • the present disclosure is also a method for manufacturing a semiconductor device, in which connecting portions of a first member having a connecting portion and a second member having a connecting portion are arranged to face each other to electrically connect, and at least the connecting portion is provided.
  • a method for manufacturing a semiconductor device including a step of sealing a part of the resin composition with the above resin composition. According to the above manufacturing method, a semiconductor device with low energy loss can be obtained.
  • the present disclosure further includes a connection structure in which the connecting portions of the first member having the connecting portion and the second member having the connecting portion are arranged facing each other and electrically connected, and at least a part of the connecting portion is sealed. And an adhesive material for forming a semiconductor device, wherein the adhesive material is a cured product of the resin composition.
  • the semiconductor device has a small energy loss.
  • the numerical range indicated by using “to” indicates the range including the numerical values before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value of the numerical range of a certain stage can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another stage.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • “A or B” may include either one of A and B, or may include both.
  • the materials exemplified in the present specification can be used alone or in combination of two or more kinds.
  • (meth)acryl means acryl or methacryl corresponding thereto.
  • the resin composition according to the present embodiment has (a) a high molecular weight component having a weight average molecular weight of 10,000 or more (hereinafter, referred to as “(a) component” in some cases), and (b) a thermosetting resin having a weight average molecular weight of less than 10,000.
  • Resin hereinafter sometimes referred to as “(b) component”
  • curing agent hereinafter sometimes referred to as “(c) component”
  • filler hereinafter sometimes referred to as “(d)”.
  • (d) filler contains strontium titanate.
  • the high molecular weight component having a weight average molecular weight of 10,000 or more is not particularly limited, but from the viewpoint of heat resistance and film forming property, for example, bismaleimide resin, epoxy resin, phenoxy resin, polyimide resin, polyamide resin, poly Examples thereof include carbodiimide resin, cyanate ester resin, acrylic resin, polyester resin, polyethylene resin, polyether sulfone resin, polyetherimide resin, polyvinyl acetal resin, urethane resin and acrylic rubber.
  • a bismaleimide resin, an epoxy resin, a phenoxy resin, a polyimide resin, an acrylic resin, and an acrylic rubber are more preferable because they are more excellent in heat resistance and film formability.
  • These high molecular weight components can be used alone or as a mixture or copolymer of two or more kinds.
  • the weight average molecular weight of the component (a) is 10,000 or more. When the weight average molecular weight is 10,000 or more, good film formability is easily obtained.
  • the weight average molecular weight of the component (a) is preferably 1,000,000 or less. When the weight average molecular weight is 1,000,000 or less, it is easy to laminate the resin composition on a semiconductor wafer, a semiconductor chip, a substrate or the like having protrusions such as bumps or pads, and it is easy to suppress the residual voids. Moreover, when the weight average molecular weight is 1,000,000 or less, the viscosity of the resin composition does not become too high at the time of mounting, and the occurrence of connection failure is easily suppressed.
  • the weight average molecular weight of the component (a) is preferably 10,000 to 800,000, and more preferably 10,000 to 600,000.
  • the weight average molecular weight (Mw) means the weight average molecular weight as measured by polystyrene conversion using high performance liquid chromatography (Shimadzu C-R4A).
  • the glass transition temperature (Tg) of the component (a) is preferably 160°C or lower.
  • Tg is 160° C. or less, it is easy to laminate the resin composition on a semiconductor wafer, a semiconductor chip, a substrate, or the like having protrusions such as bumps or pads, and it is easy to suppress the residual voids.
  • Tg is preferably 40° C. or higher from the viewpoint of film formability and film handleability (difficult to handle when film tack is high).
  • Tg means Tg measured using a DSC (DSC-7 manufactured by Perkin Elmer Co., Ltd.) under the conditions of a sample amount of 10 mg, a temperature rising rate of 10° C./min, and a measurement atmosphere of air.
  • the component (a) includes a high molecular weight component having a weight average molecular weight of 10,000 or more and containing a maleimide skeleton from the viewpoint of low shrinkage (warp suppression), high heat resistance (void suppression and high reliability), and low dielectric loss tangent. It is preferable that a high-molecular weight component having a weight average molecular weight of 10,000 or more and containing a bismaleimide skeleton is contained.
  • the bismaleimide skeleton-containing high molecular weight component reacts with the thermosetting resin (b) having a weight average molecular weight of less than 10,000 by the heat radical generator to be an adhesive having more excellent heat resistance.
  • the number of maleimide skeletons in one molecule is preferably 2 to 3 (bis or tri). If the number of maleimide skeletons is larger than this, the number of reaction points increases, curing in a short time does not proceed sufficiently, and the curing reaction rate of the resin composition may decrease. This is because formation of a network due to curing may proceed rapidly and unreacted groups may remain. In addition, when the number of maleimide skeletons is larger than the above, flexibility may be lowered, and a phenomenon such as easy peeling from an adherend or increased warpage may occur.
  • thermosetting resin (b) (b) Thermosetting resin having a weight average molecular weight of less than 10,000)
  • thermosetting resin (b) having a weight average molecular weight of less than 10,000, but it is necessary to react with the curing agent (c). Since a component having a small weight average molecular weight may decompose upon heating and cause voids, the component (b) preferably has heat resistance and further has rapid curing property.
  • the mass ratio of the component (a) and the component (b) is not particularly limited, but it is preferable that the content of the component (b) is 0.01 to 10 parts by mass with respect to 1 part by mass of the component (a).
  • the content of the component (b) with respect to 1 part by mass of the component (a) is more preferably 0.05 to 5 parts by mass, further preferably 0.1 to 5 parts by mass.
  • the component (b) examples include acrylic resin, epoxy resin, bismaleimide resin and the like.
  • an acrylic resin having a fast curing property is preferable from the viewpoint of suppressing voids when pressure bonding is performed in a short time.
  • the acrylic resin is not particularly limited as long as it has at least one acrylic group in the molecule, and examples thereof include bisphenol A type, bisphenol F type, naphthalene type, phenol novolac type, cresol novolac type, phenol aralkyl type, biphenyl. Type, triphenylmethane type, dicyclopentadiene type, fluorene type, adamantane type, various polyfunctional acrylic resins and the like can be used. These can be used alone or as a mixture of two or more kinds.
  • the number of functional groups of the acrylic group in the acrylic resin is preferably 3 functional groups or less. When it is tetrafunctional or more, since the number of functional groups is large, curing in a short time does not proceed sufficiently, and the curing reaction rate of the resin composition may decrease. This is because formation of a network due to curing may proceed rapidly and unreacted groups may remain.
  • the epoxy resin is not particularly limited as long as it has two or more epoxy groups in the molecule, and examples thereof include bisphenol A type, bisphenol F type, naphthalene type, phenol novolac type, cresol novolac type, phenol aralkyl type, and biphenyl.
  • Type, triphenylmethane type, dicyclopentadiene type, various polyfunctional epoxy resins and the like can be used. These can be used alone or as a mixture of two or more kinds.
  • the content of the component (b) is preferably 10 to 50% by mass, more preferably 15 to 40% by mass, based on the total solid content of the resin composition.
  • the content is 10% by mass or more, a sufficient amount of the curing component is present, so that the flow of the resin after curing is easily controlled, and when the content is 50% by mass or less, the cured product does not become too hard. , Easy to reduce the warpage of the package.
  • the component (b) is preferably solid at room temperature (25°C). From the viewpoint of heat resistance, voids are less likely to occur in the solid state than in the liquid state, and the resin composition before curing (B stage) has a low viscosity (tack) and is excellent in handling (easy to form into a film).
  • the curing agent (c) is not particularly limited as long as it functions as a curing agent for the thermosetting resin having a weight average molecular weight of less than 10,000 (b).
  • the curing agent (c) include a thermal radical generator (radical generator by heat) and a photo radical generator (radical generator by light). Of these, the heat radical generator is preferable from the viewpoint of handleability.
  • heat radical generators examples include azo compounds and organic peroxides.
  • Organic peroxides are preferred from the viewpoints of handleability and storage stability.
  • organic peroxides examples include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxydicarbonates and peroxyesters. From the viewpoint of storage stability, hydroperoxide, dialkyl peroxide and peroxy ester are preferable. Further, from the viewpoint of heat resistance, hydroperoxide and dialkyl peroxide are preferable.
  • azo compound examples include 2,2′-azobisisobutyronitrile, 2,2′-azobis(2-methylbutyronitrile), 1,1′-azobis(cyclohexane-1-carbonitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), 2,2'-azobis(2,4-dimethyl-4-methoxyvaleronitrile), dimethyl 2,2'-azobis(2-methylpropionate) ), 4,4′-azobis(4-cyanovaleric acid), 2,2′-azobis(2-hydroxymethylpropionitrile), 2,2′-azobis[2-(imidazolin-2-yl)propane ] Etc. are mentioned.
  • the content of the component (c) is preferably 0.5 to 10 parts by mass, preferably 1 to 5 parts by mass, relative to 100 parts by mass of the component (b). More preferable.
  • the content is 0.5 parts by mass or more, the curing is likely to proceed sufficiently, and when the content is 10 parts by weight or less, it is possible to prevent the curing from rapidly progressing and increase the number of reaction points, and to lengthen the molecular chain. At the same time, the remaining unreacted groups tend to be suppressed.
  • the above-mentioned (c) curing agent can be used alone or as a mixture of two or more kinds.
  • the component (b) is an epoxy resin
  • a phenol resin-based curing agent, an acid anhydride-based curing agent, an amine-based curing agent, an imidazole-based curing agent, a phosphine-based curing agent, or the like is used as the (c) curing agent.
  • a phenol resin-based curing agent an acid anhydride-based curing agent, an amine-based curing agent, an imidazole-based curing agent, a phosphine-based curing agent, or the like
  • the phenolic resin-based curing agent is not particularly limited as long as it has two or more phenolic hydroxyl groups in the molecule, and examples thereof include phenol novolac resin, cresol novolac resin, and phenol.
  • Aralkyl resin, cresol naphthol formaldehyde polycondensate, triphenylmethane type polyfunctional phenol resin and various polyfunctional phenol resins can be used. These can be used alone or as a mixture of two or more kinds.
  • the equivalent ratio (phenolic hydroxyl group/epoxy group, molar ratio) of the phenol resin type curing agent to the epoxy resin is preferably 0.3 to 1.5 from the viewpoint of obtaining good curability, adhesiveness and storage stability. , 0.4 to 1.0 are more preferable, and 0.5 to 1.0 are still more preferable.
  • the equivalent ratio is 0.3 or more, the curability and the adhesive strength tend to be improved, and when it is 1.5 or less, the unreacted phenolic hydroxyl group does not remain excessively and the water absorption rate is high. It tends to be kept low and the insulation reliability tends to be improved.
  • Acid Anhydride Curing Agent examples include methylcyclohexanetetracarboxylic dianhydride, trimellitic anhydride, pyromellitic dianhydride, benzophenonetetracarboxylic dianhydride and ethylene. Glycol bisanhydrotrimeritate can be used. These can be used alone or as a mixture of two or more kinds.
  • the equivalent ratio (acid anhydride group/epoxy group, molar ratio) of the acid anhydride type curing agent to the epoxy resin is 0.3 to 1.5 from the viewpoint of obtaining good curability, adhesiveness and storage stability. Is preferred, 0.4 to 1.0 is more preferred, and 0.5 to 1.0 is even more preferred.
  • the equivalent ratio is 0.3 or more, the curability and the adhesive strength tend to be improved, and when it is 1.5 or less, the unreacted acid anhydride does not remain excessively and the water absorption is It tends to be kept low and the insulation reliability tends to be improved.
  • (C-iii) Amine-based curing agent for example, dicyandiamide, various amine compounds and the like can be used. These may be used alone or in combination of two or more.
  • the equivalent ratio (amine/epoxy group, molar ratio) of the amine-based curing agent to the epoxy resin is preferably 0.3 to 1.5, from the viewpoint of obtaining good curability, adhesiveness and storage stability, and is preferably 0. 4-1.0 is more preferable, and 0.5-1.0 is still more preferable. If the equivalent ratio is 0.3 or more, the curability and the adhesive strength tend to be improved, and if it is 1.5 or less, unreacted amine does not remain excessively and the insulation reliability is improved. Tend to do.
  • imidazole-based curing agent examples include 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-Cyanoethyl-2-undecylimidazole, 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino -6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino-6-[2'-undecylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino-6-[2'-ethyl-4'
  • 1-cyanoethyl-2-undecylimidazole 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazoletriazole from the viewpoint of obtaining excellent curability, storage stability and connection reliability.
  • the content of the imidazole-based curing agent is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, based on 100 parts by mass of the epoxy resin.
  • the content of the imidazole-based curing agent is 0.1 part by mass or more, the curability tends to be improved, and when it is 20 parts by mass or less, the resin composition does not cure before the metal bond is formed. , Connection failure tends not to occur.
  • (Cv) Phosphine-Based Curing Agent examples include triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetra(4-methylphenyl)borate and tetraphenylphosphonium (4-fluorophenyl). Borate is an example. These may be used alone or in combination of two or more.
  • the content of the phosphine-based curing agent is preferably 0.1 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • the content of the phosphine-based curing agent is 0.1 part by mass or more, the curability tends to be improved, and when it is 10 parts by mass or less, the resin composition does not cure before the metal bond is formed. , Connection failure tends not to occur.
  • Each of the phenolic resin-based curing agent, the acid anhydride-based curing agent and the amine-based curing agent can be used alone or as a mixture of two or more kinds.
  • the imidazole-based curing agent and the phosphine-based curing agent may be used alone, or may be used together with a phenol resin-based curing agent, an acid anhydride-based curing agent or an amine-based curing agent.
  • the combination of an acrylic resin, a bismaleimide resin, an epoxy resin, and a curing agent is not particularly limited as long as curing proceeds, but as a curing agent to be combined with an epoxy resin, from the viewpoint of handleability, storage stability, and curability, phenol is used. It is preferable to use a resin-based curing agent and an imidazole-based curing agent in combination, an acid anhydride-based curing agent and an imidazole-based curing agent in combination, an amine-based curing agent and an imidazole-based curing agent in combination, and an imidazole-based curing agent alone.
  • the imidazole-based curing agent alone which is excellent in quick-curing property, is more preferable because the productivity is improved when the connection is made in a short time.
  • volatile components such as low-molecular components can be suppressed, so that void generation can be suppressed.
  • an organic peroxide is preferable from the viewpoint of handleability and storage stability.
  • an organic peroxide is preferable from the viewpoint of handleability and storage stability.
  • Radical polymerization (acrylic curing system) is preferable as the curing system.
  • the anion-polymerized epoxy resin or the like is contained, it is difficult for the curing reaction rate of the resin composition to be 50% or more. Therefore, the content of the epoxy resin is preferably 20 parts by mass or less relative to 80 parts by mass of the acrylic resin, More preferably, it is not added.
  • the filler contains strontium titanate.
  • the filler is used for controlling the viscosity and the physical properties of the cured product, and for suppressing the generation of voids and suppressing the moisture absorption rate when the semiconductor chip and the substrate are connected (compressed) at a high temperature.
  • Strontium titanate not only exhibits sufficient performance for the above-mentioned applications, but also has an effect of reducing the dielectric loss tangent (Df).
  • the shape of the strontium titanate filler is not particularly limited, but a spherical shape is preferable from the viewpoint of ease of viscosity control and improvement of handleability.
  • the average particle size of the strontium titanate filler is preferably 1.0 ⁇ m or less, and 0.5 ⁇ m or less from the viewpoint of preventing biting during flip chip connection and improving visibility (transparency). Is more preferable.
  • the lower limit of the average particle size is not particularly limited, but may be 0.01 ⁇ m or more, for example.
  • the average particle diameter of the filler is the median diameter (D50) and can be measured by a laser diffraction type particle size distribution measuring device.
  • the strontium titanate filler may be subjected to a glycidyl-based, phenylamino-based, acrylic-based, or methacrylic-based surface treatment from the viewpoint of dispersibility, fluidity, and adhesive strength. From the viewpoint of storage stability, phenyl-based, acrylic-based, and methacrylic-based surface treatments are more preferable.
  • the content of the strontium titanate filler is preferably 30 to 90% by mass, and more preferably 40 to 80% by mass, based on the total solid content of the resin composition.
  • the content is 30% by mass or more, heat dissipation is more excellent, the dielectric loss tangent (Df) can be further reduced, and the adhesive force tends to be improved.
  • the content is 90% by mass or less, it is possible to prevent the fluidity of the resin composition from decreasing due to an increase in viscosity, to prevent the filler from being trapped (trapping) in the connection portion, and improving the connection reliability. Tends to be able to.
  • the resin composition contains a strontium titanate filler other than the strontium titanate filler for controlling the viscosity and the physical properties of the cured product, and for suppressing the occurrence of voids and suppressing the moisture absorption rate when connecting the semiconductor chip and the substrate.
  • a strontium titanate filler other than the strontium titanate filler for controlling the viscosity and the physical properties of the cured product, and for suppressing the occurrence of voids and suppressing the moisture absorption rate when connecting the semiconductor chip and the substrate.
  • You may mix
  • other fillers include insulating inorganic fillers, whiskers, resin fillers and the like.
  • the material of the insulating inorganic filler include glass, silica, alumina, titanium oxide, carbon black, mica, boron nitride and the like.
  • silica, alumina, titanium oxide, boron nitride and the like are preferable, and silica, alumina and boron nitride are more preferable.
  • the material of the whiskers include aluminum borate, aluminum titanate, zinc oxide, calcium silicate, magnesium sulfate, boron nitride and the like.
  • the material of the resin filler include polyurethane and polyimide. These other fillers can be used alone or as a mixture of two or more kinds. The shape, particle size, and blending amount of other fillers are not particularly limited.
  • the shape, particle size, and amount of other fillers are not particularly limited. Further, the physical properties may be appropriately adjusted by surface treatment.
  • the average particle size is preferably 1.0 ⁇ m or less, and 0.5 ⁇ m or less from the viewpoint of preventing biting and improving visibility (transparency) during flip chip connection. Is more preferable.
  • fillers are preferably surface-treated fillers from the viewpoint of improving dispersibility and adhesive strength.
  • examples of the surface treatment include glycidyl (epoxy), amine, phenyl, phenylamino, acryl, vinyl and the like.
  • a silane treatment with a silane compound such as an epoxysilane type, an aminosilane type, an acrylsilane type is preferable because of the ease of surface treatment.
  • a glycidyl-based compound, a phenylamino-based compound, or a (meth)acrylic compound is preferable from the viewpoint of excellent dispersibility and fluidity and further improving the adhesive force.
  • resin fillers can impart flexibility at high temperatures such as 260°C, so they are suitable for improving reflow resistance. Further, since it imparts flexibility, it is also effective in improving the film forming property.
  • the (d) filler is insulative.
  • the resin composition preferably does not contain a conductive metal filler such as a silver filler or a solder filler.
  • the compounding amount of the (d) filler is preferably 30 to 90% by mass, and 40 to 80% by mass, based on the total solid content of the resin composition, including the strontium titanate filler and other additive fillers. More preferably. When the content is 30% by mass or more, the heat dissipation is more excellent and the adhesive strength tends to be improved. When the content is 90% by mass or less, it is possible to suppress a decrease in fluidity of the resin composition due to an increase in viscosity, it is possible to suppress the trapping (trapping) of the filler into the connection portion, and it is possible to improve the connection reliability. Tend.
  • the resin composition may contain, in addition to the above-mentioned components, a flux component, that is, a flux activator that is a compound exhibiting flux activity (activity for removing oxides and impurities).
  • a flux component that is, a flux activator that is a compound exhibiting flux activity (activity for removing oxides and impurities).
  • the flux activator include nitrogen-containing compounds having an unshared electron pair such as imidazoles and amines, carboxylic acids, phenols and alcohols. It should be noted that, compared with alcohols, carboxylic acids more strongly develop flux activity and are easier to improve connectivity.
  • the content of the flux activator is preferably 0.2 to 3% by mass, and is 0.4 to 1.8% by mass, based on the total solid content of the resin composition. Is more preferable.
  • the resin composition may further contain an ion trapper, an antioxidant, a silane coupling agent, a titanium coupling agent, a leveling agent and the like. These may be used alone or in combination of two or more. The blending amount of these may be appropriately adjusted so that the effect of each additive is exhibited.
  • the curing reaction rate of the resin composition when kept at 200° C. for 5 seconds is preferably 50% or more, more preferably 80% or more.
  • the curing reaction rate is 50% or more, it is possible to prevent the solder from scattering or flowing at the time of connection (above the solder melting temperature), and it is possible to suppress the occurrence of poor connection and poor insulation reliability.
  • the resin composition according to this embodiment can be pressure-bonded at a high temperature of 200° C. or higher.
  • the resin composition according to the present embodiment is suitable as an adhesive for semiconductors, and exerts an effect more when used in a flip chip package in which a metal such as solder is melted to form a connection.
  • the resin composition according to this embodiment is preferably in the form of a film (film adhesive) from the viewpoint of improving productivity.
  • the method for producing the film adhesive will be described below.
  • component, component, (b) component, (c) component, (d) component and, if necessary, other components are added to an organic solvent and then dissolved or dispersed by stirring and mixing, kneading and the like.
  • prepare resin varnish After that, on the base film that has been subjected to a mold release treatment, after applying a resin varnish using a knife coater, roll coater, applicator, die coater, comma coater, etc., the organic solvent is reduced by heating, and the base film Form a film adhesive on top. Further, before the organic solvent is reduced by heating, a resin adhesive varnish may be spin-coated on a wafer or the like to form a film, and then the film adhesive may be formed on the wafer by a solvent drying method.
  • organic solvent used for preparing the resin varnish those having a property capable of uniformly dissolving or dispersing each component are preferable, and examples thereof include dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, diethylene glycol dimethyl ether, Examples include toluene, benzene, xylene, methyl ethyl ketone, tetrahydrofuran, ethyl cellosolve, ethyl cellosolve acetate, butyl cellosolve, dioxane, cyclohexanone, and ethyl acetate. These organic solvents can be used alone or in combination of two or more kinds.
  • Stirring and mixing and kneading at the time of preparing the resin varnish can be performed using, for example, a stirrer, a raker, a three-roll, a ball mill, a bead mill or a homodisper.
  • the substrate film is not particularly limited as long as it has heat resistance to withstand the heating conditions when volatilizing the organic solvent, polyester film, polypropylene film, polyethylene terephthalate film, polyimide film, polyetherimide film, poly Examples thereof include ether naphthalate film and methylpentene film.
  • the base film is not limited to a single layer made of one of these films, and may be a multilayer film made of two or more types of films.
  • the conditions for volatilizing the organic solvent from the applied resin varnish specifically, heating at 50 to 200° C. for 0.1 to 90 minutes is preferable. It is preferable that the organic solvent be volatilized up to 1.5% by mass or less if it does not affect the voids and the viscosity adjustment after mounting.
  • the thickness of the film in the film adhesive according to the present embodiment is preferably 10 to 100 ⁇ m, more preferably 20 to 50 ⁇ m from the viewpoint of visibility, fluidity and filling property.
  • the resin composition according to the present embodiment is preferably used for a semiconductor device, and is a semiconductor in which the connecting portions of the first member having the connecting portion and the second member having the connecting portion are arranged to face each other and electrically connect to each other.
  • it is preferably used as an adhesive for semiconductors that seals at least a part of the connection portion.
  • the first member includes a semiconductor chip and a semiconductor wafer
  • the second member includes a printed circuit board, a semiconductor chip, and a semiconductor wafer.
  • the electrodes of the connection portion in the semiconductor device may be either metal-bonded between the bump and the wiring or metal-bonded between the bump and the bump.
  • flip-chip connection that obtains electrical connection via a semiconductor adhesive may be used.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment (a COB type connection mode of a semiconductor chip and a substrate) of a semiconductor device.
  • the first semiconductor device 100 is arranged on the semiconductor chip 10 and the substrate (wiring circuit board) 20 facing each other, and on the surfaces of the semiconductor chip 10 and the substrate 20 facing each other.
  • the wiring 15, the connection bumps 30 that connect the wirings 15 of the semiconductor chip 10 and the substrate 20 to each other, and the adhesive material 40 that fills the space between the semiconductor chip 10 and the substrate 20 without any gap.
  • the semiconductor chip 10 and the substrate 20 are flip-chip connected by the wiring 15 and the connection bumps 30.
  • the wiring 15 and the connection bumps 30 are sealed with an adhesive material 40 and are shielded from the external environment.
  • the adhesive material 40 is a cured product of the semiconductor adhesive of the present embodiment.
  • FIG. 2 is a schematic cross-sectional view showing another embodiment of a semiconductor device (COC type connection mode between semiconductor chips).
  • the third semiconductor device 300 is similar to the first semiconductor device 100 except that the two semiconductor chips 10 are flip-chip connected by the wiring 15 and the connection bumps 30. Is.
  • the fourth semiconductor device 400 is similar to the second semiconductor device 200, except that the two semiconductor chips 10 are flip-chip connected by the bumps 32.
  • the semiconductor chip 10 is not particularly limited, and various semiconductors such as elemental semiconductors composed of the same type of element such as silicon and germanium and compound semiconductors such as gallium/arsenic and indium/phosphorus can be used.
  • the substrate 20 is not particularly limited as long as it is a wired circuit board, and is formed on the surface of an insulating substrate containing glass epoxy resin, polyimide resin, polyester resin, ceramics, epoxy resin, bismaleimide triazine resin, etc. as main components.
  • a circuit board on which wiring (wiring pattern) is formed by etching away unnecessary portions of the metal layer, a circuit board on which wiring (wiring pattern) is formed on the surface of the insulating substrate by metal plating, etc., a surface of the insulating substrate It is possible to use a circuit board or the like on which wiring (wiring pattern) is formed by printing a conductive substance on.
  • connection parts such as the wiring 15 and the bumps 32 are mainly composed of gold, silver, copper, solder (main components are, for example, tin-silver, tin-lead, tin-bismuth, tin-copper), nickel, tin, lead, etc. And may contain a plurality of metals.
  • the surface of the wiring contains gold, silver, copper, solder (main components are, for example, tin-silver, tin-lead, tin-bismuth, tin-copper), tin, nickel, etc. as main components.
  • a metal layer may be formed. This metal layer may be composed of only a single component, or may be composed of a plurality of components. Further, it may have a structure in which a plurality of metal layers are laminated. Copper and solder are commonly used because they are inexpensive. Since copper and solder contain oxides, impurities, etc., it is preferable that the semiconductor adhesive has flux activity.
  • the main components are gold, silver, copper, solder (main components are, for example, tin-silver, tin-lead, tin-bismuth, tin-copper), tin, nickel, etc. Is used and may be composed of only a single component or may be composed of a plurality of components. Further, it may be formed to have a structure in which these metals are laminated.
  • the bump may be formed on the semiconductor chip or the substrate. Copper and solder are commonly used because they are inexpensive. Since copper and solder contain oxides, impurities, etc., it is preferable that the semiconductor adhesive has flux activity.
  • an adhesive may be flip-chip connected or laminated via semiconductor chips to form a hole penetrating the semiconductor chip and connected to an electrode on the pattern surface.
  • FIG. 3 is a schematic cross-sectional view showing another embodiment of the semiconductor device (semiconductor chip stacked type (TSV)).
  • TSV semiconductor chip stacked type
  • the wiring 15 formed on the interposer 50 is connected to the wiring 15 of the semiconductor chip 10 via the connection bumps 30, so that the semiconductor chip 10 and the interposer 50 are connected. And are flip-chip connected.
  • the gap between the semiconductor chip 10 and the interposer 50 is filled with the adhesive material 40 without any gap.
  • the semiconductor chip 10 is repeatedly laminated via the wiring 15, the connection bumps 30, and the adhesive material 40.
  • the wirings 15 on the pattern surfaces on the front and back of the semiconductor chip 10 are connected to each other by the through electrodes 34 filled in the holes penetrating the inside of the semiconductor chip 10.
  • the through electrode 34 copper, aluminum or the like can be used.
  • the through electrode 34 is vertically passed through the semiconductor chip 10, the distance between the semiconductor chips 10 facing each other or the distance between the semiconductor chip 10 and the interposer 50 can be shortened to enable flexible connection.
  • the semiconductor adhesive according to the present embodiment is suitably used as a sealing material between the semiconductor chips 10 facing each other or between the semiconductor chips 10 and the interposer 50 in such a TSV technique.
  • the semiconductor device manufacturing method uses the semiconductor adhesive according to the present embodiment to dispose the connecting portions of the first member having the connecting portion and the second member having the connecting portion so as to face each other. Connect electrically.
  • the method for manufacturing a semiconductor device according to the present embodiment is, for example, connecting the first member and the second member to each other via an adhesive for a semiconductor and connecting the respective connecting portions of the first member and the second member to each other. And a step of electrically connecting to each other to obtain a semiconductor device. Further, in this step, at least a part of the connecting portion is sealed with the semiconductor adhesive.
  • the respective connection portions of the first member and the second member can be connected to each other by metal bonding.
  • a substrate for example, a glass epoxy substrate
  • the wiring 15 of the semiconductor chip 10 and the wiring 15 of the substrate 60 are electrically connected by connection bumps (solder bumps) 30.
  • a solder resist 70 is arranged on the surface of the substrate 60 on which the wiring 15 is formed except for the positions where the connection bumps 30 are formed.
  • a semiconductor adhesive film adhesive or the like
  • the sticking can be performed by hot pressing, roll laminating, vacuum laminating, or the like.
  • the supply area and thickness of the semiconductor adhesive are appropriately set depending on the size of the semiconductor chip 10 or the substrate 60, the bump height, and the like.
  • the semiconductor adhesive may be attached to the semiconductor chip 10.
  • the semiconductor adhesive is attached to the semiconductor wafer 10 by applying the semiconductor adhesive to a semiconductor wafer and then dicing the semiconductor wafer into individual pieces. May be produced.
  • the adhesive for semiconductors has a high light transmittance, the visibility is ensured even when the alignment mark is covered, so that the range to be applied not only on the semiconductor wafer (semiconductor chip) but also on the substrate It is not limited and is easy to handle.
  • connection bumps 30 on the wirings 15 of the semiconductor chip 10 and the wirings 15 of the substrate 60 are aligned using a connection device such as a flip chip bonder. .. Then, the semiconductor chip 10 and the substrate 60 are pressed while being heated at a temperature equal to or higher than the melting point of the connection bump 30 (when solder is used for the connection portion, it is preferable that the solder portion has a temperature of 240° C. or higher), and the semiconductor chip 10 and the substrate. 60 is connected, the adhesive for semiconductor is cured, and the gap between the semiconductor chip 10 and the substrate 60 is sealed and filled with the adhesive material 40 made of a cured product of the adhesive for semiconductor.
  • connection load depends on the number of bumps, but is set in consideration of bump height variation absorption, control of bump deformation amount, and the like.
  • the connection time is preferably short from the viewpoint of improving productivity. It is preferable to melt the solder, remove the oxide film, surface impurities, and the like, and form a metal joint at the connection portion.
  • Short-time connection time means that the time required for the connection to be 240°C or higher during connection formation (main crimping) (for example, the time when solder is used) is 10 seconds or less.
  • the connection time is preferably 5 seconds or less, more preferably 3 seconds or less.
  • the semiconductor chip and the substrate are temporarily fixed (in a state where the semiconductor adhesive is used) and heat-treated in a reflow furnace to melt the solder bumps.
  • Temporary fixing does not require the need to form metal joints remarkably, so compared to the above-described main pressure bonding, a lower load, shorter time, and lower temperature may be used, and there are advantages such as improved productivity and prevention of deterioration of the connection part. ..
  • heat treatment may be performed in an oven or the like to further cure the semiconductor adhesive.
  • the heating temperature is a temperature at which the adhesive for semiconductors is cured, and is preferably almost completely cured. The heating temperature and the heating time may be set appropriately.
  • the present disclosure is not limited to the above embodiments.
  • the semiconductor chip and the semiconductor chip can be connected by the same method. After connecting the semiconductor chips, the voids may be eliminated by a pressure oven or pressure reflow.
  • thermosetting resin (b) having a weight average molecular weight of less than 10,000, the inorganic filler (d-1), and the resin filler (d-2) having the compounding amounts (units: parts by mass) shown in Table 1 were mixed with NV values ([ It was added to the organic solvent (cyclohexanone) so that the amount of the coating material after drying]/[the weight of coating material before drying] ⁇ 100) was 60% by mass.
  • the obtained coating varnish was coated on a base film (manufactured by Teijin DuPont Films Co., Ltd., product name: Purex A55) with a small precision coating device (manufactured by Renui Seiki Co., Ltd.), and a clean oven ( By drying (100° C./10 min) by ESPEC, a film adhesive having a film thickness of 20 ⁇ m was obtained.
  • a plurality of the obtained film adhesives are laminated at 80° C. with a roll laminator (manufactured by LAMI CORPORATION INC., product name: GK-13DX) to produce film adhesives with a predetermined thickness (40 ⁇ m and 200 ⁇ m). did.
  • the produced film adhesive was cut into a predetermined size (length 7.3 mm ⁇ width 7.3 mm ⁇ thickness 0.04 mm (40 ⁇ m)), and a semiconductor chip with solder bumps (chip size: length 7.3 mm ⁇ width 7. 3mm x thickness 0.05mm, bump height (total height of copper pillar + solder): about 45 ⁇ m, number of bumps: 1048 pins, pitch: 80 ⁇ m, product name: WALTS-TEG CC80, manufactured by WALTS) Lamination was performed under the conditions of 80° C./0.5 MPa/60 seconds. Lamination was performed using a vacuum laminator V130 (manufactured by Nikko Materials Co., Ltd.).
  • a semiconductor chip with a solder bump laminated with a film adhesive is used as a semiconductor chip (vertical 10 mm ⁇ horizontal 10 mm ⁇ thickness 0.1 mm, connection metal: Ni/Au, product name: WALTS-TEG IP80, manufactured by WALTS) )
  • a flip chip mounting device FCB3 manufactured by Panasonic Corporation.
  • the pressure bonding conditions were 80° C./0.5 seconds+260° C./3 seconds and 75N.
  • the stage temperature was 80°C. Thereafter, curing was performed at 175° C./2 hours to obtain a semiconductor device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Wire Bonding (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

(a)重量平均分子量10000以上の高分子量成分と、(b)重量平均分子量10000未満の熱硬化性樹脂と、(c)硬化剤と、(d)フィラーと、を含有し、(d)フィラーがチタン酸ストロンチウムを含む、樹脂組成物。

Description

樹脂組成物、半導体装置の製造方法及び半導体装置
 本開示は、樹脂組成物、半導体装置の製造方法及び半導体装置に関する。
 電気的に接続している配線又はバンプ等の周辺部材には、誘電体内での電気エネルギー損失を小さくするために、誘電正接(Df)が小さいことが求められている。配線又はバンプのピッチが小さければ小さいほど、エネルギー損失は大きくなるため、配線又はバンプ間及びその周辺部材にはより低い誘電正接が求められる。
 従来、半導体チップと基板とを接続するには、金ワイヤ等の金属細線を用いるワイヤーボンディング方式が広く適用されている。一方、半導体装置に対する高機能化、高集積化、高速化等の要求に対応するため、半導体チップ又は基板にバンプと呼ばれる導電性突起を形成して、半導体チップと基板とを直接接続するフリップチップ接続方式(FC接続方式)が広まりつつある。
 FC接続方式としては、はんだ、スズ、金、銀、銅等を用いて接続部を金属接合させる方法、超音波振動を印加して接続部を金属接合させる方法、樹脂の収縮力によって機械的接触を保持する方法などが知られている。接続部の信頼性の観点から、はんだ、スズ、金、銀、銅等を用いて接続部を金属接合させる方法が一般的である。
 例えば、半導体チップ及び基板間の接続に関して、BGA(Ball Grid Array)、CSP(Chip Size Package)等に盛んに用いられているCOB(Chip On Board)型の接続方式もFC接続方式に該当する。また、FC接続方式は、半導体チップ上に接続部(バンプ又は配線)を形成して、半導体チップ間を接続するCOC(Chip On Chip)型、及び、半導体ウエハ上に接続部(バンプ又は配線)を形成して、半導体チップと半導体ウエハ間を接続するCOW(Chip On Wafer)型の接続方式にも広く用いられている(例えば、特許文献1参照)。
 また、さらなる小型化、薄型化、高機能化が強く要求されるパッケージでは、上述した接続方式を積層・多段化したチップスタック型パッケージ、POP(Package On Package)、TSV(Through-Silicon Via)等も広く普及し始めている。このような積層・多段化技術は、半導体チップ等を三次元的に配置することから、二次元的に配置する手法と比較してパッケージを小さくできる。また、このような積層・多段化技術は、半導体の性能向上、ノイズ低減、実装面積の削減、省電力化にも有効であることから、次世代の半導体配線技術として注目されている。
特開2008-294382号公報
 上述したようにフリップチップパッケージでは高機能化、高集積化が進んでいるが、高機能化、高集積化に伴い、配線間のピッチが狭くなり、狭ピッチ化、微細配線化が進んでいる。
 狭ピッチ化、微細配線化が進展しているパッケージでは、使用されている誘電体材料(微細配線の周辺材料)に起因して、より多くの電気エネルギーが熱になって損失する。また、周波数が高いほど、配線に高周波信号が通りにくくなり非効率となっている。電気エネルギーの一部が熱になって損失する程度を、先に示したように誘電正接(Df)で表現すると、その値が低いほどエネルギー損失が小さくなる。
 そのため、配線又はバンプの周辺材料として接続部封止材(アンダーフィル)等に使用でき、低誘電正接化を実現できる樹脂組成物が必要とされている。本開示は、誘電正接が低減された硬化物を形成可能な樹脂組成物、それを用いた半導体装置の製造方法及び半導体装置を提供することを目的とする。
 上記目的を達成するために、本開示は、(a)重量平均分子量10000以上の高分子量成分と、(b)重量平均分子量10000未満の熱硬化性樹脂と、(c)硬化剤と、(d)フィラーと、を含有し、上記(d)フィラーがチタン酸ストロンチウムを含む、樹脂組成物を提供する。
 上記樹脂組成物によれば、(d)フィラーとしてチタン酸ストロンチウムを用いることにより、誘電正接が低減された硬化物を形成することができる。(d)フィラーは通常、例えば樹脂組成物の粘度及び硬化物の物性等を制御するために添加されるが、チタン酸ストロンチウムは、上述した機能を有するだけでなく、誘電正接を低減する効果を発現することができる。また、チタン酸ストロンチウムは、上記樹脂組成物を接続部(配線又はバンプ)の周囲を封止する半導体用接着剤として使用した場合であっても、接続部の導通を阻害しない。そのため、上記樹脂組成物は、接続部の良好な接続性を確保しつつ低誘電正接化が可能な半導体用接着剤として極めて有用である。
 上記樹脂組成物において、上記チタン酸ストロンチウムの平均粒径は1.0μm以下であってもよい。平均粒径が1.0μm以下であると、フリップチップ接続時のかみ込みをより十分に防ぐことができ、視認性(透明性)を向上できると共に、硬化物の誘電正接をより低減することができる。
 上記樹脂組成物において、上記(a)高分子量成分はマレイミド骨格を含有する高分子量成分を含んでいてもよい。(a)高分子量成分がマレイミド骨格を含有する高分子量成分を含むことで、樹脂組成物の硬化収縮を低減できると共に、耐熱性を向上させることができる。そのため、パッケージの反りを低減できると共に、ボイドの発生を抑制でき、絶縁信頼性を向上させることができる。
 上記樹脂組成物において、上記(a)高分子量成分のガラス転移温度は160℃以下であってもよい。(a)高分子量成分のガラス転移温度が160℃以下であると、樹脂組成物のラミネート性が向上し、ボイドの発生を抑制しやすい。
 上記樹脂組成物において、上記(b)熱硬化性樹脂はアクリル樹脂を含んでいてもよい。(b)熱硬化性樹脂がアクリル樹脂を含むことで、樹脂組成物は良好な速硬化性を示すことができ、短時間で圧着を行った場合のボイドの発生を抑制することができる。また、アクリル樹脂を用いた場合、得られる硬化物の誘電正接をより低減しやすい。
 上記樹脂組成物において、上記アクリル樹脂は25℃で固形のアクリル樹脂であってもよい。固形のアクリル樹脂は液状のものに比べて耐熱性に優れるため、ボイドの発生をより抑制しやすい。
 上記樹脂組成物において、上記(c)硬化剤は熱ラジカル発生剤を含んでいてもよい。また、上記(c)硬化剤は過酸化物を含んでいてもよい。これらの硬化剤は、樹脂組成物の取り扱い性及び保存安定性の観点から好ましい。また、これらの硬化剤を用いた場合、得られる硬化物の誘電正接をより低減しやすい。
 上記樹脂組成物は、フィルム状であってもよい。この場合、樹脂組成物の取り扱い性を向上させることができ、パッケージ製造時の作業性及び生産性を向上させることができる。
 上記樹脂組成物は、接続部を有する第一の部材と接続部を有する第二の部材の接続部同士を対向配置して電気的に接続する半導体装置において、上記接続部の少なくとも一部を封止する半導体用接着剤として用いられるものであってもよい。本開示の樹脂組成物は、誘電正接が小さい硬化物を形成可能であるため、半導体用接着剤として好適である。
 本開示はまた、接続部を有する第一の部材と接続部を有する第二の部材の接続部同士を対向配置して電気的に接続する半導体装置の製造方法であって、上記接続部の少なくとも一部を、上記樹脂組成物を用いて封止する工程を備える、半導体装置の製造方法を提供する。上記製造方法によれば、エネルギー損失の小さい半導体装置が得られる。
 本開示は更に、接続部を有する第一の部材と接続部を有する第二の部材の接続部同士が対向配置され電気的に接続された接続構造と、上記接続部の少なくとも一部を封止する接着材料と、を備え、上記接着材料は、上記樹脂組成物の硬化物からなる、半導体装置を提供する。上記半導体装置は、エネルギー損失の小さいものとなる。
 本開示によれば、誘電正接が低減された硬化物を形成可能な樹脂組成物、それを用いた半導体装置の製造方法及び半導体装置を提供することができる。
本開示の半導体装置の一実施形態を示す模式断面図である。 本開示の半導体装置の他の一実施形態を示す模式断面図である。 本開示の半導体装置の他の一実施形態を示す模式断面図である。 本開示の半導体装置の他の一実施形態を示す模式断面図である。
 以下、場合により図面を参照しつつ本開示の好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。本明細書において、「(メタ)アクリル」とは、アクリル又はそれに対応するメタクリルを意味する。
<樹脂組成物>
 本実施形態に係る樹脂組成物は、(a)重量平均分子量10000以上の高分子量成分(以下、場合により「(a)成分」という。)と、(b)重量平均分子量10000未満の熱硬化性樹脂(以下、場合により「(b)成分」という。)と、(c)硬化剤(以下、場合により「(c)成分」という。)と、(d)フィラー(以下、場合により「(d)成分」という。)と、を含有し、上記(d)フィラーがチタン酸ストロンチウムを含む。
((a)成分:重量平均分子量10000以上の高分子量成分)
 (a)重量平均分子量10000以上の高分子量成分としては、特に制限されないが、耐熱性及びフィルム形成性等の観点から、例えば、ビスマレイミド樹脂、エポキシ樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリカルボジイミド樹脂、シアネートエステル樹脂、アクリル樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリビニルアセタール樹脂、ウレタン樹脂、アクリルゴム等が挙げられる。これらの中でも、耐熱性及びフィルム形成性に更に優れることから、ビスマレイミド樹脂、エポキシ樹脂、フェノキシ樹脂、ポリイミド樹脂、アクリル樹脂、アクリルゴムがより好ましい。これらの高分子量成分は単独又は2種以上の混合体もしくは共重合体として使用することもできる。
 (a)成分の重量平均分子量は10000以上である。重量平均分子量が10000以上であると、良好なフィルム形成性が得られやすい。(a)成分の重量平均分子量は1000000以下であることが好ましい。重量平均分子量が1000000以下であると、バンプ又はパッド等の突起物がある半導体ウエハ、半導体チップ及び基板等に樹脂組成物をラミネートしやすく、ボイドの残存を抑制しやすい。また、重量平均分子量が1000000以下であると、実装時に樹脂組成物の粘度が高くなり過ぎず、接続不良の発生を抑制しやすい。上記と同様の観点から、(a)成分の重量平均分子量は10000~800000であることが好ましく、10000~600000であることがより好ましい。なお、本明細書において、重量平均分子量(Mw)とは、高速液体クロマトグラフィー(島津製作所製C-R4A)を用いて、ポリスチレン換算で測定したときの重量平均分子量を意味する。
 (a)成分のガラス転移温度(Tg)は160℃以下であることが好ましい。Tgが160℃以下であると、バンプ又はパッド等の突起物がある半導体ウエハ、半導体チップ及び基板等に樹脂組成物をラミネートしやすく、ボイドの残存を抑制しやすい。また、フィルム状の樹脂組成物であれば、フィルム形成性、フィルムの取り扱い性(フィルムタックが高いと取り扱いし難い)の観点から、Tgは40℃以上であることが好ましい。なお、本明細書において、Tgとは、DSC(パーキンエルマー社製DSC-7型)を用いて、サンプル量10mg、昇温速度10℃/分、測定雰囲気:空気の条件で測定したときのTgを意味する。
 (a)成分は、低収縮(反り抑制)及び高耐熱(ボイド抑制及び高信頼性)、低誘電正接の観点から、重量平均分子量10000以上でありマレイミド骨格を含有している高分子量成分を含むことが好ましく、重量平均分子量10000以上でありビスマレイミド骨格を含有している高分子量成分を含むことがより好ましい。ビスマレイミド骨格含有高分子量成分は、熱ラジカル発生剤によって(b)重量平均分子量10000未満の熱硬化性樹脂と反応して、より耐熱性に優れた接着剤となる。
 マレイミド骨格を含有する高分子量成分において、1分子中のマレイミド骨格の数は2~3(ビスもしくはトリ)であることが好ましい。これよりもマレイミド骨格の数が多いと反応点が多くなり、短時間での硬化が十分に進行せず、樹脂組成物の硬化反応率が低下する場合がある。これは、硬化によるネットワークの形成が急速に進み、未反応基が残存する場合があるためである。また、マレイミド骨格の数が上記よりも多いと、柔軟性が低下し、被着体と剥離し易くなったり、反り量が大きくなる等の現象が生じる場合がある。
((b)成分:(b)重量平均分子量10000未満の熱硬化性樹脂)
 (b)重量平均分子量10000未満の熱硬化性樹脂としては特に制限はないが、(c)硬化剤と反応する必要がある。重量平均分子量が小さい成分は加熱時に分解等してボイドの原因となる場合があるため、(b)成分は耐熱性を有し、更に速硬化性を有するものが好ましい。
 (a)成分と(b)成分との質量比は、特に制限されないが、(a)成分1質量部に対して、(b)成分は0.01~10質量部であることが望ましい。(a)成分1質量部に対する(b)成分の含有量は、より好ましくは0.05~5質量部であり、更に好ましくは0.1~5質量部である。(a)成分1質量部に対する(b)成分の含有量が0.01質量部以上であると硬化性がより向上し、接着力がより向上する傾向があり、10質量部以下であるとフィルム形成性がより向上する傾向がある。
 (b)成分としては、例えば、アクリル樹脂、エポキシ樹脂、ビスマレイミド樹脂等が挙げられる。これらの中でも、短時間で圧着を行った場合のボイド抑制という観点から、速硬化性を有する(硬化反応率が高い)アクリル樹脂が好ましい。
 アクリル樹脂は、分子内に1個以上のアクリル基を有するものであれば特に制限はなく、例えば、ビスフェノールA型、ビスフェノールF型、ナフタレン型、フェノールノボラック型、クレゾールノボラック型、フェノールアラルキル型、ビフェニル型、トリフェニルメタン型、ジシクロペンタジエン型、フルオレン型、アダマンタン型、各種多官能アクリル樹脂等を使用することができる。これらは単独又は2種以上の混合体として使用することができる。
 アクリル樹脂におけるアクリル基の官能基数は3官能基以下が好ましい。4官能以上であると、官能基数が多いため、短時間での硬化が十分に進行せず、樹脂組成物の硬化反応率が低下する場合がある。これは、硬化によるネットワークの形成が急速に進み、未反応基が残存する場合があるためである。
 エポキシ樹脂は、分子内に2個以上のエポキシ基を有するものであれば特に制限はなく、例えば、ビスフェノールA型、ビスフェノールF型、ナフタレン型、フェノールノボラック型、クレゾールノボラック型、フェノールアラルキル型、ビフェニル型、トリフェニルメタン型、ジシクロペンタジエン型、各種多官能エポキシ樹脂等を使用することができる。これらは単独又は2種以上の混合体として使用することができる。
 (b)成分の含有量は、樹脂組成物の固形分全量を基準として、10~50質量%が好ましく、15~40質量%がより好ましい。含有量が10質量%以上であると、十分な量の硬化成分が存在するため、硬化後の樹脂の流動を十分に制御しやすく、50質量%以下であると、硬化物が硬くなりすぎず、パッケージの反りを低減しやすい。
 (b)成分は室温(25℃)で固形であることが好ましい。液状に比べて固形の方が、耐熱性の観点からボイドが発生しにくく、また、硬化前(Bステージ)の樹脂組成物の粘性(タック)が小さく取り扱いに優れる(フィルム状にし易い)。
((c)成分:硬化剤)
 (c)硬化剤としては、(b)重量平均分子量10000未満の熱硬化性樹脂の硬化剤として機能するものであれば特に制限はない。(c)硬化剤としては、例えば、熱ラジカル発生剤(熱によるラジカル発生剤)、光ラジカル発生剤(光によるラジカル発生剤)が挙げられる。これらのうち熱ラジカル発生剤の方が、取り扱い性の観点から好ましい。
 熱ラジカル発生剤としては、例えば、アゾ系化合物、有機過酸化物等が挙げられる。取り扱い性、保存安定性の観点から、有機過酸化物が好ましい。
 有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシジカーボネイト、パーオキシエステル等が挙げられる。保存安定性の観点から、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステルが好ましい。更に、耐熱性の観点から、ハイドロパーオキサイド、ジアルキルパーオキサイドが好ましい。
 アゾ系化合物としては、例えば、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチル-4-メトキシバレロニトリル)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、4,4’-アゾビス(4-シアノバレリック酸)、2,2’-アゾビス(2-ヒドロキシメチルプロピオニトリル)、2,2’-アゾビス[2-(イミダゾリン-2-イル)プロパン]等が挙げられる。
 (b)成分がアクリル樹脂又はビスマレイミド樹脂である場合、(c)成分の含有量は、(b)成分100質量部に対して0.5~10質量部が好ましく、1~5質量部がより好ましい。この含有量が0.5質量部以上の場合、十分に硬化が進行しやすく、10質量部以下の場合、硬化が急激に進行して反応点が多くなることを抑制でき、分子鎖を長くできると共に、未反応基の残存を抑制できる傾向がある。
 上記(c)硬化剤は単独又は2種以上の混合体として使用することができる。
 (b)成分がエポキシ樹脂である場合、(c)硬化剤としては、フェノール樹脂系硬化剤、酸無水物系硬化剤、アミン系硬化剤、イミダゾール系硬化剤及びホスフィン系硬化剤等を用いることが好ましい。以下、各硬化剤について説明する。
(c-i)フェノール樹脂系硬化剤
 フェノール樹脂系硬化剤としては、分子内に2個以上のフェノール性水酸基を有するものであれば特に制限はなく、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、クレゾールナフトールホルムアルデヒド重縮合物、トリフェニルメタン型多官能フェノール樹脂及び各種多官能フェノール樹脂を使用することができる。これらは単独で又は2種以上の混合物として使用することができる。
 上記エポキシ樹脂に対するフェノール樹脂系硬化剤の当量比(フェノール性水酸基/エポキシ基、モル比)は、良好な硬化性、接着性及び保存安定性を得る観点から、0.3~1.5が好ましく、0.4~1.0がより好ましく、0.5~1.0が更に好ましい。当量比が0.3以上であると、硬化性が向上し接着力が向上する傾向があり、1.5以下であると未反応のフェノール性水酸基が過剰に残存することがなく、吸水率が低く抑えられ、絶縁信頼性が向上する傾向がある。
(c-ii)酸無水物系硬化剤
 酸無水物系硬化剤としては、例えば、メチルシクロヘキサンテトラカルボン酸二無水物、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物及びエチレングリコールビスアンヒドロトリメリテートを使用することができる。これらは単独で又は2種以上の混合物として使用することができる。
 上記エポキシ樹脂に対する酸無水物系硬化剤の当量比(酸無水物基/エポキシ基、モル比)は、良好な硬化性、接着性及び保存安定性を得る観点から、0.3~1.5が好ましく、0.4~1.0がより好ましく、0.5~1.0が更に好ましい。当量比が0.3以上であると、硬化性が向上し接着力が向上する傾向があり、1.5以下であると未反応の酸無水物が過剰に残存することがなく、吸水率が低く抑えられ、絶縁信頼性が向上する傾向がある。
(c-iii)アミン系硬化剤
 アミン系硬化剤としては、例えばジシアンジアミド、各種アミン化合物等を使用することができる。これらは単独で又は2種以上を組み合わせて用いることができる。
 上記エポキシ樹脂に対するアミン系硬化剤の当量比(アミン/エポキシ基、モル比)は、良好な硬化性、接着性及び保存安定性を得る観点から、0.3~1.5が好ましく、0.4~1.0がより好ましく、0.5~1.0が更に好ましい。当量比が0.3以上であると、硬化性が向上し接着力が向上する傾向があり、1.5以下であると未反応のアミンが過剰に残存することがなく、絶縁信頼性が向上する傾向がある。
(c-iv)イミダゾール系硬化剤
 イミダゾール系硬化剤としては、例えば、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノ-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾールトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加体、2-フェニルイミダゾールイソシアヌル酸付加体、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、及び、エポキシ樹脂とイミダゾール類の付加体が挙げられる。これらの中でも、優れた硬化性、保存安定性及び接続信頼性を得る観点から、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノ-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾールトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加体、2-フェニルイミダゾールイソシアヌル酸付加体、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールが好ましい。これらは単独で又は2種以上を組み合わせて用いることができる。また、これらをマイクロカプセル化した潜在性硬化剤としてもよい。
 イミダゾール系硬化剤の含有量は、エポキシ樹脂100質量部に対して、0.1~20質量部が好ましく、0.1~10質量部がより好ましい。イミダゾール系硬化剤の含有量が0.1質量部以上であると硬化性が向上する傾向があり、20質量部以下であると金属接合が形成される前に樹脂組成物が硬化することがなく、接続不良が発生しにくい傾向がある。
(c-v)ホスフィン系硬化剤
 ホスフィン系硬化剤としては、例えば、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラ(4-メチルフェニル)ボレート及びテトラフェニルホスホニウム(4-フルオロフェニル)ボレートが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。
 ホスフィン系硬化剤の含有量は、エポキシ樹脂100質量部に対して、0.1~10質量部が好ましく、0.1~5質量部がより好ましい。ホスフィン系硬化剤の含有量が0.1質量部以上であると硬化性が向上する傾向があり、10質量部以下であると金属接合が形成される前に樹脂組成物が硬化することがなく、接続不良が発生しにくい傾向がある。
 フェノール樹脂系硬化剤、酸無水物系硬化剤及びアミン系硬化剤は、それぞれ1種を単独で又は2種以上の混合物として使用することができる。イミダゾール系硬化剤及びホスフィン系硬化剤はそれぞれ単独で用いてもよいが、フェノール樹脂系硬化剤、酸無水物系硬化剤又はアミン系硬化剤と共に用いてもよい。
 アクリル樹脂、ビスマレイミド樹脂、エポキシ樹脂、硬化剤の組み合わせは、硬化が進行すれば特に制限はないが、エポキシ樹脂と組み合わせる硬化剤としては、取り扱い性、保存安定性、硬化性の観点から、フェノール樹脂系硬化剤とイミダゾール系硬化剤の併用、酸無水物系硬化剤とイミダゾール系硬化剤の併用、アミン系硬化剤とイミダゾール系硬化剤の併用、イミダゾール系硬化剤単独が好ましい。これらの中でも、短時間で接続すると生産性が向上することから、速硬化性に優れたイミダゾール系硬化剤単独がより好ましい。短時間で硬化すると低分子成分等の揮発分が抑制できることから、ボイド発生抑制も可能である。アクリル樹脂と組み合わせる硬化剤としては、取り扱い性、保存安定性の観点から、有機過酸化物が好ましい。マレイミド樹脂と組み合わせる硬化剤としては、取り扱い性、保存安定性の観点から、有機過酸化物が好ましい。
 硬化系としてはラジカル重合(アクリル硬化系)が好ましい。アニオン重合のエポキシ樹脂等を含有すると、樹脂組成物の硬化反応率が50%以上になることが難しいため、エポキシ樹脂の含有量は、アクリル樹脂80質量部に対して20質量部以下が好ましく、未添加がより好ましい。
((d)成分:フィラー)
 (d)フィラーは、チタン酸ストロンチウムを含む。(d)フィラーは粘度及び硬化物の物性を制御するため、並びに、半導体チップと基板とを高温で接続(圧着)した際のボイドの発生の抑制及び吸湿率の抑制のために使用される。チタン酸ストロンチウムは上述の用途としても十分な性能を発揮するだけでなく、誘電正接(Df)を小さくする効果がある。
 チタン酸ストロンチウムフィラーの形状は特に限定されないが、粘度制御のし易さ及び取り扱い性向上の観点から球状であることが好ましい。
 チタン酸ストロンチウムフィラーの粒径に関しては、フリップチップ接続時のかみ込み防止及び視認性(透明性)向上の観点から、平均粒径が1.0μm以下であることが好ましく、0.5μm以下であることがより好ましい。一方、平均粒径の下限値は特に限定されないが、例えば0.01μm以上であってもよい。なお、本明細書において、フィラーの平均粒径はメジアン径(D50)であり、レーザー回折式粒度分布測定機により測定することができる。
 チタン酸ストロンチウムフィラーは、分散性、流動性、接着力の観点から、グリシジル系、フェニルアミノ系、アクリル系、メタクリル系の表面処理が施されていてもよい。保存安定性の観点から、フェニル系、アクリル系、メタクリル系の表面処理がより好ましい。
 チタン酸ストロンチウムフィラーの含有量は、樹脂組成物の固形分全量を基準として、30~90質量%であることが好ましく、40~80質量%であることがより好ましい。この含有量が30質量%以上であると、放熱性がより優れ、誘電正接(Df)をより低減できると共に、接着力を向上できる傾向がある。含有量が90質量%以下であると、粘度が高くなって樹脂組成物の流動性が低下することを抑制でき、接続部へのフィラーの噛み込み(トラッピング)を抑制でき、接続信頼性を向上できる傾向がある。
 樹脂組成物には、粘度及び硬化物の物性を制御するため、並びに、半導体チップと基板とを接続した際のボイドの発生の抑制及び吸湿率の抑制のために、チタン酸ストロンチウムフィラー以外の他のフィラーを更に配合してもよい。他のフィラーとしては、絶縁性無機フィラー、ウィスカー、樹脂フィラー等が挙げられる。絶縁性無機フィラーの材質としては、例えば、ガラス、シリカ、アルミナ、酸化チタン、カーボンブラック、マイカ、窒化ホウ素等が挙げられる。これらの中でも、シリカ、アルミナ、酸化チタン、窒化ホウ素等が好ましく、シリカ、アルミナ、窒化ホウ素がより好ましい。ウィスカーの材質としては、例えば、ホウ酸アルミニウム、チタン酸アルミニウム、酸化亜鉛、珪酸カルシウム、硫酸マグネシウム、窒化ホウ素等が挙げられる。樹脂フィラーの材質としては、ポリウレタン、ポリイミド等が挙げられる。これらの他のフィラーは、単独又は2種以上の混合体として使用することもできる。他のフィラーの形状、粒径、及び配合量については、特に制限されない。
 他のフィラーの形状、粒径、及び配合量については、特に制限されない。また、表面処理によって物性を適宜調整してもよい。
 他のフィラーの粒径に関しては、フリップチップ接続時のかみ込み防止及び視認性(透明性)向上の観点から、平均粒径が1.0μm以下であることが好ましく、0.5μm以下であることがより好ましい。
 他のフィラーは、分散性及び接着力向上の観点から、表面処理フィラーであることが好ましい。表面処理としては、グリシジル系(エポキシ系)、アミン系、フェニル系、フェニルアミノ系、アクリル系、ビニル系等が挙げられる。
 表面処理としては、表面処理のしやすさから、エポキシシラン系、アミノシラン系、アクリルシラン系等のシラン化合物によるシラン処理が好ましい。表面処理剤としては、分散性及び流動性に優れ、接着力を更に向上させる観点から、グリシジル系、フェニルアミノ系、(メタ)アクリル系の化合物が好ましい。
 樹脂フィラーは無機フィラーに比べて、260℃等の高温で柔軟性を付与することができるため、耐リフロー性向上に適している。また、柔軟性付与のため、フィルム形成性向上にも効果がある。
 絶縁信頼性の観点から、(d)フィラーは絶縁性であることが好ましい。樹脂組成物は、銀フィラー、はんだフィラー等の導電性の金属フィラーは含有していないことが好ましい。
 (d)フィラーの配合量は、チタン酸ストロンチウムフィラー及びその他の添加フィラーを合わせて、樹脂組成物の固形分全量を基準として、30~90質量%であることが好ましく、40~80質量%であることがより好ましい。この含有量が30質量%以上であると、放熱性がより優れると共に、接着力を向上できる傾向がある。含有量が90質量%以下である、粘度が高くなって樹脂組成物の流動性が低下することを抑制でき、接続部へのフィラーの噛み込み(トラッピング)を抑制でき、接続信頼性を向上できる傾向がある。
 樹脂組成物は、上述した成分以外に、フラックス成分、すなわち、フラックス活性(酸化物及び不純物を除去する活性)を示す化合物であるフラックス活性剤を含有することができる。フラックス活性剤としては、イミダゾール類及びアミン類のように非共有電子対を有する含窒素化合物、カルボン酸類、フェノール類及びアルコール類等が挙げられる。なお、アルコール類に比べてカルボン酸類の方がフラックス活性を強く発現し、接続性を向上しやすい。
 フラックス活性剤の含有量は、はんだ濡れ性の観点から、樹脂組成物の固形分全量を基準として、0.2~3質量%であることが好ましく、0.4~1.8質量%であることがより好ましい。
 樹脂組成物には、更に、イオントラッパー、酸化防止剤、シランカップリング剤、チタンカップリング剤、レベリング剤等を配合してもよい。これらは1種を単独で用いてもよいし、2種以上組み合わせて用いてもよい。これらの配合量については、各添加剤の効果が発現するように適宜調整すればよい。
 樹脂組成物は、200℃で5秒保持したときの硬化反応率が50%以上であることが好ましく、80%以上であることがより好ましい。硬化反応率が50%以上であると、接続時(はんだ溶融温度以上)にはんだが飛散したり、流動したりすることを抑制でき、接続不良及び絶縁信頼性不良の発生を抑制できる。
 硬化反応率は、以下の条件で測定される。すなわち、DSC(パーキンエルマー社製DSC-7型)を用いて、サンプル量10mgをアルミパンに入れ、昇温速度20℃/minで、30~300℃までを測定する。初期(未処理)のサンプルを測定した場合のΔHをΔH1、ホットプレート上で200℃で5秒間の熱処理を施した後のサンプルを測定した場合のΔHをΔH2とし、以下の式で硬化反応率を算出する。
 硬化反応率(%)={(ΔH1-ΔH2)/ΔH1}×100
 本実施形態に係る樹脂組成物は、200℃以上の高温での圧着が可能である。本実施形態に係る樹脂組成物は、半導体用接着剤として好適であり、はんだ等の金属を溶融させて接続を形成するフリップチップパッケージに用いられた場合により効果を発現する。
<フィルム状接着剤の製造方法>
 本実施形態に係る樹脂組成物は、生産性が向上する観点から、フィルム状(フィルム状接着剤)であることが好ましい。フィルム状接着剤の作製方法を以下に説明する。
 まず、(a)成分、(b)成分、(c)成分、(d)成分、及び必要に応じてその他の成分を有機溶媒中に加えた後に攪拌混合、混錬等により溶解又は分散させて樹脂ワニスを調製する。その後、離型処理を施した基材フィルム上に、ナイフコーター、ロールコーター、アプリケーター、ダイコーター、コンマコーター等を用いて樹脂ワニスを塗布した後、加熱により有機溶媒を減少させて、基材フィルム上にフィルム状接着剤を形成する。また、加熱により有機溶媒を減少させる前に、樹脂ワニスをウエハ等にスピンコートして膜を形成した後、溶媒乾燥を行う方法によりウエハ上にフィルム状接着剤を形成してもよい。
 樹脂ワニスの調製に用いる有機溶媒としては、各成分を均一に溶解又は分散し得る特性を有するものが好ましく、例えば、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、トルエン、ベンゼン、キシレン、メチルエチルケトン、テトラヒドロフラン、エチルセロソルブ、エチルセロソルブアセテート、ブチルセロソルブ、ジオキサン、シクロヘキサノン、及び酢酸エチルが挙げられる。これらの有機溶媒は、単独で又は2種類以上を組み合わせて使用することができる。樹脂ワニス調製の際の攪拌混合及び混錬は、例えば、攪拌機、らいかい機、3本ロール、ボールミル、ビーズミル又はホモディスパーを用いて行うことができる。
 基材フィルムとしては、有機溶媒を揮発させる際の加熱条件に耐え得る耐熱性を有するものであれば特に制限はなく、ポリエステルフィルム、ポリプロピレンフィルム、ポリエチレンテレフタレートフィルム、ポリイミドフィルム、ポリエーテルイミドフィルム、ポリエーテルナフタレートフィルム、メチルペンテンフィルム等が挙げられる。基材フィルムとしては、これらのフィルムのうちの1種からなる単層のものに限られず、2種以上のフィルムからなる多層フィルムであってもよい。
 塗布後の樹脂ワニスから有機溶媒を揮発させる際の条件としては、具体的には、50~200℃、0.1~90分間の加熱を行うことが好ましい。実装後のボイド、粘度調整等に影響がなければ、有機溶媒が1.5質量%以下まで揮発する条件とすることが好ましい。
 本実施形態に係るフィルム状接着剤におけるフィルムの厚さは、視認性、流動性、充填性の観点から、10~100μmが好ましく、20~50μmがより好ましい。
<半導体装置>
 本実施形態に係る樹脂組成物は、半導体装置に好適に用いられ、接続部を有する第一の部材と接続部を有する第二の部材の接続部同士を対向配置して電気的に接続する半導体装置において、接続部の少なくとも一部を封止する半導体用接着剤として好適に用いられる。ここで、第一の部材としては、半導体チップ、半導体ウエハが挙げられ、第二の部材としては、配線回路基板、半導体チップ、半導体ウエハが挙げられる。
 以下、本実施形態に係る樹脂組成物(半導体用接着剤)を用いた半導体装置について説明する。半導体装置における接続部の電極同士は、バンプと配線との金属接合、及び、バンプとバンプとの金属接合のいずれでもよい。半導体装置では、例えば、半導体用接着剤を介して電気的な接続を得るフリップチップ接続が用いられてよい。
 図1は、半導体装置の一実施形態(半導体チップ及び基板のCOB型の接続態様)を示す模式断面図である。図1の(a)に示すように、第1の半導体装置100は、互いに対向する半導体チップ10及び基板(配線回路基板)20と、半導体チップ10及び基板20の互いに対向する面にそれぞれ配置された配線15と、半導体チップ10及び基板20の配線15を互いに接続する接続バンプ30と、半導体チップ10及び基板20間の空隙に隙間なく充填された接着材料40とを有している。半導体チップ10及び基板20は、配線15及び接続バンプ30によりフリップチップ接続されている。配線15及び接続バンプ30は、接着材料40により封止されており外部環境から遮断されている。接着材料40は、本実施形態の半導体用接着剤の硬化物である。
 図2は、半導体装置の他の実施形態(半導体チップ同士のCOC型の接続態様)を示す模式断面図である。図2の(a)に示すように、第3の半導体装置300は、2つの半導体チップ10が配線15及び接続バンプ30によりフリップチップ接続されている点を除き、第1の半導体装置100と同様である。図2の(b)に示すように、第4の半導体装置400は、2つの半導体チップ10がバンプ32によりフリップチップ接続されている点を除き、第2の半導体装置200と同様である。
 半導体チップ10としては、特に制限はなく、シリコン、ゲルマニウム等の同一種類の元素から構成される元素半導体、ガリウム・ヒ素、インジウム・リン等の化合物半導体などの各種半導体を用いることができる。
 基板20としては、配線回路基板であれば特に制限はなく、ガラスエポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂、セラミック、エポキシ樹脂、ビスマレイミドトリアジン樹脂等を主な成分とする絶縁基板の表面に形成された金属層の不要な個所をエッチング除去して配線(配線パターン)が形成された回路基板、上記絶縁基板の表面に金属めっき等によって配線(配線パターン)が形成された回路基板、上記絶縁基板の表面に導電性物質を印刷して配線(配線パターン)が形成された回路基板などを用いることができる。
 配線15、バンプ32等の接続部は、主成分として金、銀、銅、はんだ(主成分は、例えばスズ-銀、スズ-鉛、スズ-ビスマス、スズ-銅)、ニッケル、スズ、鉛等を含有しており、複数の金属を含有していてもよい。
 配線(配線パターン)の表面には、金、銀、銅、はんだ(主成分は、例えばスズ-銀、スズ-鉛、スズ-ビスマス、スズ-銅)、スズ、ニッケル等を主な成分とする金属層が形成されていてもよい。この金属層は単一の成分のみで構成されていてもよく、複数の成分から構成されていてもよい。また、複数の金属層が積層された構造をしていてもよい。銅、はんだは安価であることから一般的に使用されている。なお、銅、はんだには酸化物、不純物等が含まれるため、半導体用接着剤はフラックス活性を有することが好ましい。
 バンプと呼ばれる導電性突起の材質としては、主な成分として、金、銀、銅、はんだ(主成分は例えば、スズ-銀、スズ-鉛、スズ-ビスマス、スズ-銅)、スズ、ニッケル等が用いられ、単一の成分のみで構成されていてもよく、複数の成分から構成されていてもよい。また、これらの金属が積層された構造をなすように形成されていてもよい。バンプは半導体チップ又は基板に形成されていてもよい。銅、はんだは安価であることから一般的に使用されている。なお、銅、はんだには酸化物、不純物等が含まれるため、半導体用接着剤はフラックス活性を有することが好ましい。
 また、図1又は図2に示すような半導体装置(パッケージ)を積層して金、銀、銅、はんだ(主成分は、例えばスズ-銀、スズ-鉛、スズ-ビスマス、スズ-銅)、スズ、ニッケル等で電気的に接続してもよい。例えば、TSV技術で見られるような、接着剤を半導体チップ間に介して、フリップチップ接続又は積層し、半導体チップを貫通する孔を形成し、パターン面の電極とつなげてもよい。
 図3は、半導体装置の他の実施形態(半導体チップ積層型の態様(TSV))を示す模式断面図である。図3に示すように、第5の半導体装置500では、インターポーザ50上に形成された配線15が半導体チップ10の配線15と接続バンプ30を介して接続されることにより、半導体チップ10とインターポーザ50とはフリップチップ接続されている。半導体チップ10とインターポーザ50との間の空隙には接着材料40が隙間なく充填されている。上記半導体チップ10におけるインターポーザ50と反対側の表面上には、配線15、接続バンプ30及び接着材料40を介して半導体チップ10が繰り返し積層されている。半導体チップ10の表裏におけるパターン面の配線15は、半導体チップ10の内部を貫通する孔内に充填された貫通電極34により互いに接続されている。なお、貫通電極34の材質としては、銅、アルミニウム等を用いることができる。
 このようなTSV技術により、通常は使用されない半導体チップの裏面からも信号を取得することができる。更には、半導体チップ10内に貫通電極34を垂直に通すため、対向する半導体チップ10間、又は半導体チップ10及びインターポーザ50間の距離を短くし、柔軟な接続が可能である。本実施形態に係る半導体用接着剤は、このようなTSV技術において、対向する半導体チップ10間、又は半導体チップ10及びインターポーザ50間の封止材料として好適に用いられる。
<半導体装置の製造方法>
 本実施形態に係る半導体装置の製造方法は、本実施形態に係る半導体用接着剤を用いて、接続部を有する第一の部材と接続部を有する第二の部材の接続部同士を対向配置して電気的に接続する。本実施形態に係る半導体装置の製造方法は、例えば、半導体用接着剤を介して第一の部材及び第二の部材を互いに接続すると共に第一の部材及び第二の部材のそれぞれの接続部を互いに電気的に接続して半導体装置を得る工程を備える。また、この工程において、上記接続部の少なくとも一部を、上記半導体用接着剤を用いて封止する。本実施形態に係る半導体装置の製造方法では、第一の部材及び第二の部材のそれぞれの接続部を互いに金属接合によって接続することができる。
 本実施形態に係る半導体装置の製造方法の一例として、図4に示す第6の半導体装置600の製造方法について説明する。第6の半導体装置600は、配線(銅配線)15を有する基板(例えばガラスエポキシ基板)60と、配線(例えば銅ピラー、銅ポスト)15を有する半導体チップ10とが接着材料40を介して互いに接続されている。半導体チップ10の配線15と基板60の配線15とは、接続バンプ(はんだバンプ)30により電気的に接続されている。基板60における配線15が形成された表面には、接続バンプ30の形成位置を除いてソルダーレジスト70が配置されている。
 第6の半導体装置600の製造方法では、まず、ソルダーレジスト70が形成された基板60上に半導体用接着剤(フィルム状接着剤等)を貼付する。貼付は、加熱プレス、ロールラミネート、真空ラミネート等によって行うことができる。半導体用接着剤の供給面積及び厚さは、半導体チップ10又は基板60のサイズ、バンプ高さ等によって適宜設定される。半導体用接着剤を半導体チップ10に貼付してもよく、半導体ウエハに半導体用接着剤を貼付した後にダイシングして半導体チップ10に個片化することによって、半導体用接着剤を貼付した半導体チップ10を作製してもよい。この場合、高い光透過率を有する半導体用接着剤であれば、アライメントマークを覆っても視認性が確保されることから、半導体ウエハ(半導体チップ)のみならず、基板上においても貼付する範囲が制限されず、取り扱い性に優れる。
 半導体用接着剤を基板60又は半導体チップ10に貼り付けた後、半導体チップ10の配線15上の接続バンプ30と、基板60の配線15とをフリップチップボンダー等の接続装置を用いて位置合わせする。そして、半導体チップ10と基板60を接続バンプ30の融点以上の温度で加熱しながら押し付けて(接続部にはんだを用いる場合は、はんだ部分に240℃以上かかることが好ましい)、半導体チップ10と基板60を接続すると共に、半導体用接着剤を硬化させ、半導体用接着剤の硬化物からなる接着材料40によって半導体チップ10と基板60の間の空隙を封止充てんする。接続荷重は、バンプ数に依存するが、バンプの高さばらつき吸収、バンプ変形量の制御等を考慮して設定される。接続時間は、生産性向上の観点から、短時間が好ましい。はんだを溶融させ、酸化膜、表面の不純物等を除去し、金属接合を接続部に形成することが好ましい。
 短時間の接続時間(圧着時間)とは、接続形成(本圧着)中に接続部に240℃以上かかる時間(例えば、はんだ使用時の時間)が10秒以下であることをいう。接続時間は、5秒以下が好ましく、3秒以下がより好ましい。
 本実施形態の半導体装置の製造方法では、位置合わせをした後に仮固定し(半導体用接着剤を介している状態)、リフロー炉で加熱処理することによってはんだバンプを溶融させて半導体チップと基板を接続することによって半導体装置を製造してもよい。仮固定は、金属接合を形成する必要性が顕著に要求されないため、上述の本圧着に比べて低荷重、短時間、低温度でもよく、生産性向上、接続部の劣化防止等のメリットが生じる。半導体チップと基板を接続した後、オーブン等で加熱処理を行って、半導体用接着剤を更に硬化させてもよい。加熱温度は、半導体用接着剤の硬化が進行し、好ましくはほぼ完全に硬化する温度である。加熱温度及び加熱時間は適宜設定すればよい。
 以上、本開示の好適な実施形態について説明したが、本開示は上記実施形態に限定されるものではない。例えば、上記半導体装置の製造方法について、半導体チップと基板とを接続する場合を説明したが、同様の方法で、半導体チップと半導体チップとの接続等を行うことができる。半導体チップ間を接続した後、加圧オーブン又は加圧リフロー等でボイドを消失させてもよい。
 以下、実施例及び比較例に基づいて本開示をより具体的に説明するが、本開示は以下の実施例に限定されるものではない。
 実施例及び比較例で使用した化合物を以下に示す。
(a)重量平均分子量10000以上の高分子量成分
 ビスマレイミド樹脂(日立化成株式会社製、製品名:SFR2300、Tg:75~80℃、Mw:約17000)
(b)重量平均分子量10000未満の熱硬化性樹脂
 アクリル樹脂(フルオレン骨格を含有する2官能アクリレート、大阪ガスケミカル株式会社製、製品名:EA0200)
(c)硬化剤
 ジクミル過酸化物(新中村化学工業株式会社製、製品名:パークミルD)
(d)フィラー
(d-1)無機フィラー
 チタン酸ストロンチウム(SrTiO)フィラー(日本化学工業株式会社製、製品名:パルセラムSrTiO、平均粒径D50:0.4μm、以下「STフィラー」ともいう)
 ジルコン酸バリウム(BaZrO)フィラー(日本化学工業株式会社製、製品名:パルセラムBZG、平均粒径D50:0.9μm、以下「BZフィラー」ともいう)
 チタン酸バリウム(BaTiO)フィラー(日本化学工業株式会社製、製品名:パルセラムAKBT-S、平均粒径D50:0.35μm、以下「BTフィラー」ともいう)
 メタクリル表面処理ナノシリカフィラー(株式会社アドマテックス製、製品名:YA050C-SM、平均粒径D50:約50nm以下、以下「SMナノシリカ」ともいう)
(d-2)樹脂フィラー
 有機フィラー(ロームアンドハースジャパン株式会社製、製品名:EXL-2655、コアシェルタイプ有機微粒子)
(実施例1~2及び比較例1~3)
<フィルム状接着剤の作製>
 表1に示す配合量(単位:質量部)の(b)重量平均分子量10000未満の熱硬化性樹脂、(d-1)無機フィラー、及び、(d-2)樹脂フィラーを、NV値([乾燥後の塗料分質量]/[乾燥前の塗料分質量]×100)が60質量%になるように有機溶媒(シクロヘキサノン)に添加した。その後、上記(b)熱硬化性樹脂及び(d)フィラーの全配合量と同質量のφ1.0mmのビーズを加え、ビーズミル(フリッチュ・ジャパン株式会社製、製品名:遊星型微粉砕機P-7)で30分撹拌した。その後、表1に示す配合量(単位:質量部)の(a)重量平均分子量10000以上の高分子量成分を加え、再度、ビーズミルで30分撹拌した。撹拌後、表1に示す配合量(単位:質量部)の(c)硬化剤を添加して更に30分攪拌し、その後に用いたビーズをろ過によって除去し、塗工ワニスを作製した。
 得られた塗工ワニスを、基材フィルム(帝人デュポンフィルム株式会社製、製品名:ピューレックスA55)上に、小型精密塗工装置(株式会社廉井精機製)で塗工し、クリーンオーブン(ESPEC社製)で乾燥(100℃/10min)することで、膜厚20μmのフィルム状接着剤を得た。得られたフィルム状接着剤を、ロールラミネータ(LAMI CORPORATION INC.製、製品名:GK-13DX)により80℃で複数枚ラミネートし、所定の厚さ(40μm及び200μm)のフィルム状接着剤を作製した。
<半導体装置の作製>
 作製したフィルム状接着剤を所定のサイズ(縦7.3mm×横7.3mm×厚さ0.04mm(40μm))に切り抜き、はんだバンプ付き半導体チップ(チップサイズ:縦7.3mm×横7.3mm×厚さ0.05mm、バンプ高さ(銅ピラー+はんだの合計の高さ):約45μm、バンプ数:1048ピン、ピッチ:80μm、製品名:WALTS-TEG CC80、WALTS社製)上に、80℃/0.5MPa/60秒の条件でラミネートした。ラミネートは、真空ラミネータV130(ニッコー・マテリアルズ株式会社製)を用いて行った。その後、フィルム状接着剤をラミネートしたはんだバンプ付き半導体チップを、半導体チップ(縦10mm×横10mm×厚さ0.1mm、接続部金属:Ni/Au、製品名:WALTS-TEG IP80、WALTS社製)にフリップチップ実装装置FCB3(パナソニック社製)で圧着した。圧着条件は80℃/0.5秒+260℃/3秒、75Nで行った。また、ステージ温度は80℃で行った。その後、175℃/2時間でキュアを行い、半導体装置を得た。
<接続評価>
 得られた半導体装置について、マルチメータ(ADVANTEST社製、製品名:R6871E)を用いて初期導通性を評価した。ペリフェラル部分の初期接続抵抗値が30~35Ωである場合を「A」(接続良好)、それよりも高い又は低い抵抗値、或いは未接続の場合を「B」(接続不良)として評価した。結果を表1に示す。
<誘電正接(Df)の測定>
 フィルム状接着剤をオーブン中で175℃/2時間加熱硬化して、縦100mm×横100mm×厚さ0.2mm(200μm)のサイズの硬化物を作製した。得られた硬化物の誘電正接(Df)を、SPDR誘電体共振器(アジレントテクノロジー株式会社製)を使用して測定した。周波数は10GHzで測定した。Df値が0.008以下である場合を「A」(良好)、0.008より大きい場合を「B」(不良)として評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果から明らかなように、チタン酸ストロンチウムフィラーを用いた実施例1及び2の樹脂組成物は、半導体装置の接続確保が可能であり、誘電正接(Df)を低減できることが確認された。
 10…半導体チップ、15…配線、20,60…基板、30…接続バンプ、32…バンプ、34…貫通電極、40…接着材料、50…インターポーザ、70…ソルダーレジスト、100,200,300,400,500,600…半導体装置。

Claims (12)

  1.  (a)重量平均分子量10000以上の高分子量成分と、(b)重量平均分子量10000未満の熱硬化性樹脂と、(c)硬化剤と、(d)フィラーと、を含有し、
     前記(d)フィラーがチタン酸ストロンチウムを含む、樹脂組成物。
  2.  前記チタン酸ストロンチウムの平均粒径が1.0μm以下である、請求項1に記載の樹脂組成物。
  3.  前記(a)高分子量成分がマレイミド骨格を含有する高分子量成分を含む、請求項1又は2に記載の樹脂組成物。
  4.  前記(a)高分子量成分のガラス転移温度が160℃以下である、請求項1~3のいずれか一項に記載の樹脂組成物。
  5.  前記(b)熱硬化性樹脂がアクリル樹脂を含む、請求項1~4のいずれか一項に記載の樹脂組成物。
  6.  前記アクリル樹脂が25℃で固形のアクリル樹脂である、請求項5に記載の樹脂組成物。
  7.  前記(c)硬化剤が熱ラジカル発生剤を含む、請求項1~6のいずれか一項に記載の樹脂組成物。
  8.  前記(c)硬化剤が過酸化物を含む、請求項1~7のいずれか一項に記載の樹脂組成物。
  9.  フィルム状である、請求項1~8のいずれか一項に記載の樹脂組成物。
  10.  接続部を有する第一の部材と接続部を有する第二の部材の接続部同士を対向配置して電気的に接続する半導体装置において、前記接続部の少なくとも一部を封止する半導体用接着剤として用いられる、請求項1~9のいずれか一項に記載の樹脂組成物。
  11.  接続部を有する第一の部材と接続部を有する第二の部材の接続部同士を対向配置して電気的に接続する半導体装置の製造方法であって、
     前記接続部の少なくとも一部を、請求項1~10のいずれか一項に記載の樹脂組成物を用いて封止する工程を備える、半導体装置の製造方法。
  12.  接続部を有する第一の部材と接続部を有する第二の部材の接続部同士が対向配置され電気的に接続された接続構造と、
     前記接続部の少なくとも一部を封止する接着材料と、を備え、
     前記接着材料は、請求項1~10のいずれか一項に記載の樹脂組成物の硬化物からなる、半導体装置。
PCT/JP2019/002959 2019-01-29 2019-01-29 樹脂組成物、半導体装置の製造方法及び半導体装置 WO2020157828A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/002959 WO2020157828A1 (ja) 2019-01-29 2019-01-29 樹脂組成物、半導体装置の製造方法及び半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/002959 WO2020157828A1 (ja) 2019-01-29 2019-01-29 樹脂組成物、半導体装置の製造方法及び半導体装置

Publications (1)

Publication Number Publication Date
WO2020157828A1 true WO2020157828A1 (ja) 2020-08-06

Family

ID=71842404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002959 WO2020157828A1 (ja) 2019-01-29 2019-01-29 樹脂組成物、半導体装置の製造方法及び半導体装置

Country Status (1)

Country Link
WO (1) WO2020157828A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022172752A1 (ja) * 2021-02-10 2022-08-18

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0940933A (ja) * 1995-07-26 1997-02-10 Toshiba Chem Corp 銅箔用接着剤
JPH1060138A (ja) * 1996-08-27 1998-03-03 Matsushita Electric Works Ltd 配線基板材料
JP2008094993A (ja) * 2006-10-13 2008-04-24 Toray Ind Inc 半導体用接着組成物、それを用いた半導体装置および半導体装置の製造方法。
WO2016175325A1 (ja) * 2015-04-30 2016-11-03 日立化成株式会社 熱硬化性樹脂組成物、プリプレグ、積層板及び多層プリント配線板
CN106366477A (zh) * 2016-08-29 2017-02-01 陕西生益科技有限公司 一种高频树脂组合物
JP2017082201A (ja) * 2015-10-28 2017-05-18 味の素株式会社 接着フィルム
JP2018065908A (ja) * 2016-10-18 2018-04-26 日立化成株式会社 封止用樹脂組成物、並びに、それを用いた再配置ウエハ、半導体パッケージ及び半導体パッケージの製造方法
US20180263115A1 (en) * 2017-03-10 2018-09-13 Shengyi Technology Co., Ltd. Composite, high-frequency circuit substrate prepared therefrom and process for preparing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0940933A (ja) * 1995-07-26 1997-02-10 Toshiba Chem Corp 銅箔用接着剤
JPH1060138A (ja) * 1996-08-27 1998-03-03 Matsushita Electric Works Ltd 配線基板材料
JP2008094993A (ja) * 2006-10-13 2008-04-24 Toray Ind Inc 半導体用接着組成物、それを用いた半導体装置および半導体装置の製造方法。
WO2016175325A1 (ja) * 2015-04-30 2016-11-03 日立化成株式会社 熱硬化性樹脂組成物、プリプレグ、積層板及び多層プリント配線板
JP2017082201A (ja) * 2015-10-28 2017-05-18 味の素株式会社 接着フィルム
CN106366477A (zh) * 2016-08-29 2017-02-01 陕西生益科技有限公司 一种高频树脂组合物
JP2018065908A (ja) * 2016-10-18 2018-04-26 日立化成株式会社 封止用樹脂組成物、並びに、それを用いた再配置ウエハ、半導体パッケージ及び半導体パッケージの製造方法
US20180263115A1 (en) * 2017-03-10 2018-09-13 Shengyi Technology Co., Ltd. Composite, high-frequency circuit substrate prepared therefrom and process for preparing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022172752A1 (ja) * 2021-02-10 2022-08-18
WO2022172752A1 (ja) * 2021-02-10 2022-08-18 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板
KR20220151024A (ko) * 2021-02-10 2022-11-11 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 수지 시트, 적층판, 금속박 피복 적층판, 및 프린트 배선판
JP7223357B2 (ja) 2021-02-10 2023-02-16 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板
KR102506720B1 (ko) 2021-02-10 2023-03-07 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 수지 시트, 적층판, 금속박 피복 적층판, 및 프린트 배선판
CN116457417A (zh) * 2021-02-10 2023-07-18 三菱瓦斯化学株式会社 树脂组合物、预浸料、树脂片、层叠板、覆金属箔层叠板和印刷电路板

Similar Documents

Publication Publication Date Title
WO2013125086A1 (ja) 半導体用接着剤、フラックス剤、半導体装置の製造方法及び半導体装置
JP5958529B2 (ja) 半導体装置及びその製造方法
WO2013125685A1 (ja) 半導体装置及びその製造方法
JP7380926B2 (ja) 半導体用フィルム状接着剤、半導体装置の製造方法及び半導体装置
WO2018235854A1 (ja) 半導体用接着剤、半導体装置の製造方法及び半導体装置
WO2013125087A1 (ja) 半導体用接着剤、フラックス剤、半導体装置の製造方法及び半導体装置
WO2020157828A1 (ja) 樹脂組成物、半導体装置の製造方法及び半導体装置
JP7363798B2 (ja) 半導体用接着剤、半導体装置の製造方法及び半導体装置
WO2020196430A1 (ja) 半導体用接着剤、半導体装置の製造方法及び半導体装置
JP2017171817A (ja) 半導体用接着剤、半導体装置、及び半導体装置の製造方法
JP7183702B2 (ja) 半導体用フィルム状接着剤、半導体用フィルム状接着剤の製造方法、半導体装置の製造方法及び半導体装置
JP2021024963A (ja) 半導体用接着剤、それを用いた半導体用接着剤フィルムの製造方法及び半導体装置の製造方法
JP2017098463A (ja) 半導体用接着剤、半導体装置の製造方法及び半導体装置
JP7248007B2 (ja) 半導体用接着剤及びそれを用いた半導体装置の製造方法
WO2024009498A1 (ja) 半導体装置の製造方法、基板及び半導体素子
WO2020110785A1 (ja) 半導体用フィルム状接着剤、半導体装置及びその製造方法
JP2021061276A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.10.2021)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 19912349

Country of ref document: EP

Kind code of ref document: A1