WO2020152900A1 - 電力変換装置及びその制御方法 - Google Patents

電力変換装置及びその制御方法 Download PDF

Info

Publication number
WO2020152900A1
WO2020152900A1 PCT/JP2019/033657 JP2019033657W WO2020152900A1 WO 2020152900 A1 WO2020152900 A1 WO 2020152900A1 JP 2019033657 W JP2019033657 W JP 2019033657W WO 2020152900 A1 WO2020152900 A1 WO 2020152900A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
period
current
voltage
circuit
Prior art date
Application number
PCT/JP2019/033657
Other languages
English (en)
French (fr)
Inventor
綾井 直樹
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2020567359A priority Critical patent/JP7192889B2/ja
Priority to US17/290,443 priority patent/US11404974B2/en
Priority to CN201980082917.1A priority patent/CN113228494B/zh
Publication of WO2020152900A1 publication Critical patent/WO2020152900A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Definitions

  • the present invention relates to a power conversion device and a control method thereof.
  • This application claims priority based on Japanese Patent Application No. 2019-008588 filed on January 22, 2019, and incorporates all the contents described in the Japanese application.
  • the present disclosure is a power conversion device that is provided between a DC electric path and an AC electric path and performs conversion from DC to AC or vice versa, and operates in synchronization with the first switch, the second switch, and the second switch.
  • a full-bridge circuit configured by a fourth switch that operates in synchronization with the first switch, and a full-bridge circuit that is provided in association with the full-bridge circuit and allows current to flow in its own forward direction.
  • a free wheel diode, an AC reactor existing between the full bridge circuit and the AC electric path, and an AC side two wire of the full bridge circuit are provided between the first wire and the second wire of the two wires.
  • Switch for opening and closing an energization path to the first line
  • a sixth switch for opening and closing an energization path from the second line to the first line, blocking a current from the first line to the second line
  • a short circuit comprising a diode in series with the switch and a diode in series with the fifth switch, blocking the current from the second line to the first line, the full bridge circuit and the short circuit
  • the control is performed in a total of four periods of a fourth period in which the voltage is negative and the alternating current is positive, and the control unit performs the switching operation on the first switch and the fourth switch, and the second switch, A first control mode in which the third switch is opened and the sixth switch is closed is executed in the first period, and the fifth switch is operated while the fifth switch is performing a switching operation.
  • a second control mode in which a current flows through the freewheeling diode when the circuit is open is executed in the second period to cause the second switch and the third switch to perform a switching operation, and the first switch and the fourth switch.
  • a third control mode in which the switch is opened and the fifth switch is closed is executed during the third period, and the sixth switch is opened while causing the sixth switch to perform a switching operation.
  • a fourth control mode of causing a current to flow through the freewheeling diode when the current is present is executed during the fourth period.
  • electric power provided between the DC electric path and the AC electric path including a full bridge circuit configured by a switch and a freewheeling diode, and a short circuit and an AC reactor connected to the AC side of the full bridge circuit.
  • a control method for a power conversion device which is executed by a control unit with a conversion device as a control target, wherein one cycle is provided when there is a phase difference between the AC voltage of the AC circuit and the AC current flowing in the AC reactor.
  • Period, and a control that alternately has a reflux period in which a current flows in the positive direction to the short circuit in a state where all the switches of the full bridge circuit are opened, is executed in the first period, and the short circuit is performed.
  • a control that alternately has a powering period in which a switching operation is performed to flow a current in a negative direction, and a return period in which a current is passed in a negative direction to the return diode of the full-bridge circuit in a state where all switches are opened, During the second period, the full-bridge circuit performs a switching operation to flow a current in the negative direction, and a current in the negative direction to the short-circuit circuit in a state where all the switches of the full-bridge circuit are opened.
  • control in which the recirculation period of flowing the current is alternately performed is executed in the third period, the power running period in which the short-circuit circuit is caused to perform the switching operation to flow the current in the positive direction, and the full circuit in the state where all the switches are opened.
  • control is performed which alternately has a return period in which a current flows through the return diode of the bridge circuit in the positive direction.
  • FIG. 1 is a circuit diagram showing an example of a HERIC power conversion device.
  • FIG. 2 is an example of a waveform diagram when there is a phase difference between the AC voltage V of the AC circuit and the AC current i L flowing in the AC reactor.
  • FIG. 3 is a diagram in which a current flow path is added to FIG. 1 by a thick line in the first period.
  • FIG. 4 is a diagram in which a current flow path is added to the thick line in FIG. 1 in the first period.
  • FIG. 5 is a diagram in which a current flow path is added to FIG. 1 by a thick line in the second period.
  • FIG. 6 is a diagram in which a current flow path is added to the thick line in FIG. 1 in the second period.
  • FIG. 1 is a circuit diagram showing an example of a HERIC power conversion device.
  • FIG. 2 is an example of a waveform diagram when there is a phase difference between the AC voltage V of the AC circuit and the AC current i L flowing in the AC
  • FIG. 7 is a diagram in which a current flow path is added to FIG. 1 by a thick line in the third period.
  • FIG. 8 is a diagram in which a current flow path is added to the thick line in FIG. 1 in the third period.
  • FIG. 9 is a diagram in which a path through which a current flows is additionally shown in FIG. 1 by a thick line in the fourth period.
  • FIG. 10 is a diagram in which a current flow path is added to the thick line in FIG. 1 in the fourth period.
  • FIG. 11 is a waveform diagram when the gate signal of the first example is used in the power conversion device to perform conversion from direct current to alternating current at an output of 5 kVA and a power factor of 0.85.
  • FIG. 12 is a diagram showing a circuit configuration example of a power conversion device in which a plurality of DC/DC converters are placed in front and connected to a full bridge circuit and a short circuit as shown in FIG. 1 via a DC bus.
  • the power conversion device of Patent Document 4 it is possible to avoid short-circuiting the output of the full bridge circuit with a short circuit.
  • the state in which the antiparallel diode of one switch is conducting that is, the voltage of the DC power supply is directly applied to the other switch It includes the control to close the other switch from the open state.
  • the voltage applied to one switch of the full bridge circuit is half the voltage of the DC power supply. Therefore, in the power conversion device of Patent Document 4, compared with the basic HERIC power conversion device, the power loss due to switching of each switch of the full bridge circuit is doubled.
  • the amplitude of the pulse voltage applied to both ends of the AC reactor is twice the DC power supply voltage. Therefore, the power loss (mainly iron loss) of the AC reactor is large. Further, dead time compensation is complicated, for example, a long dead time is required between the two types of gate drive signals for the full bridge circuit.
  • a power converter having a short circuit even if there is a phase difference between an AC voltage and an AC current, it can be used without problems, power loss is suppressed, and distortion of the output AC current is suppressed, and a power converter thereof.
  • the purpose is to provide a control method.
  • a power converter having a short circuit can be used without problems even if there is a phase difference between an AC voltage and an AC current, power loss is suppressed, and distortion of an output AC current is suppressed. To be done.
  • the gist of the embodiment of the present disclosure includes at least the following.
  • This is a power conversion device that is provided between a direct current path and an alternating current path and performs conversion from direct current to alternating current or vice versa, and is synchronized with the first switch, the second switch, and the second switch.
  • a full-bridge circuit composed of a third switch that operates as a whole and a fourth switch that operates in synchronization with the first switch, and a full-bridge circuit that is provided in association with the full-bridge circuit and flows a current in its own forward direction.
  • a fifth switch that opens and closes an energization path to the second line
  • a sixth switch that opens and closes an energization path from the second line to the first line, blocks a current from the first line to the second line
  • a short circuit comprising a diode in series with a sixth switch and a diode in series with the fifth switch, blocking the current from the second line to the first line, the full bridge circuit and the And a control unit that controls the short circuit.
  • the control unit When there is a phase difference between the AC voltage of the AC circuit and the AC current flowing in the AC reactor, the control unit sets one cycle to a first period in which the AC voltage and the AC current are both positive. A second period in which the alternating voltage is positive and the alternating current is negative, a third period in which the alternating voltage and the alternating current are both negative, and the alternating voltage is negative and the alternating current is positive.
  • the control is performed in a total of four periods including the following fourth period.
  • the control unit performs a first control mode in which the first switch and the fourth switch are switched, the second switch and the third switch are opened, and the sixth switch is closed,
  • the second control mode which is executed in the first period and causes the fifth switch to perform a switching operation, and causes a current to flow in the freewheeling diode when the fifth switch is open, is set in the second period.
  • the third control mode in which the second switch and the third switch are switched, the first switch and the fourth switch are opened, and the fifth switch is closed.
  • a fourth control mode in which a current flows through the freewheeling diode when the sixth switch is open while performing the switching operation of the sixth switch during the fourth period. ..
  • the power conversion device described above even when there is a phase difference between the AC voltage and the AC current, appropriate control can be performed according to the difference in the signs of the AC voltage and the AC current. Moreover, the distortion of the output alternating current is suppressed. Further, the voltage of the direct current circuit is not directly applied to each switch of each switch of the full bridge circuit performing the switching operation, but the voltage of half the voltage of the direct current circuit is always applied. Further, the amplitude of the pulse voltage generated across the AC reactor due to switching is the voltage of the DC circuit. Therefore, the power loss due to switching and the power loss due to the AC reactor are reduced. Thus, in the power conversion device having the short circuit, even if there is a phase difference between the AC voltage and the AC current, it can be used without problems, power loss is suppressed, and distortion of the output AC current is suppressed.
  • the control unit delays the stop of the switching operation of the full bridge circuit from the moment when the alternating current on which ripple is superimposed reaches a zero cross, and the short circuit.
  • the opening of the closed switch or the stop of the switching operation may be delayed. In this case, it is possible to transition the control mode after the sign is completely changed, considering that the sign fluctuates in the vicinity of the zero cross due to the amplitude of the ripple included in the AC current flowing through the AC reactor.
  • the control unit determines, for each of the free wheeling diode and the diode in the short circuit, a predetermined period at a beginning and an end of a period in which a current flows through the diode.
  • the dead time of the period may be provided to close the switch existing in parallel with the diode.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • a DC/DC converter is provided on the direct current side of the full bridge circuit, and the control unit controls the low voltage side of the DC/DC converter.
  • the DC voltage and the absolute value of the target voltage value on the AC side of the full bridge circuit are compared with each other, and when the DC voltage is smaller, the DC/DC converter is operated and the full bridge circuit is switched.
  • the switching operation of the DC/DC converter is stopped and the full-bridge circuit is switched, when the absolute value of the voltage target value is smaller. May be configured.
  • the DC/DC converter and the full-bridge circuit can alternately provide a switching quiescent period for each AC half cycle, so that the power loss can be reduced by reducing the total number of times of switching.
  • the control unit complementarily closes the first switch and the fifth switch when both switch operations are performed, and the same when both switch operations are performed.
  • the second switch and the sixth switch may be closed in a complementary manner. In this case, when the pair of the first switch and the fourth switch is closed, the fifth switch is open, and when the pair of the fifth switch is closed, the pair of the first switch and the fourth switch is open. .. When the pair of the second switch and the third switch is closed, the sixth switch is open, and when the pair of the sixth switch is closed, the pair of the second switch and the third switch is open. Therefore, it is possible to suppress a short circuit of the DC electric circuit.
  • this is a full bridge circuit which is provided between a DC electric path and an AC electric path, and which is composed of a switch and a free wheel diode, and a short circuit and an AC reactor which are connected to the AC side of the full bridge circuit.
  • One cycle includes a first period in which the AC voltage and the AC current are both positive, a second period in which the AC voltage is positive and the AC current is negative, and the AC voltage and the AC current are both negative.
  • a powering period in which the full bridge circuit is switched to cause a current to flow in a negative direction, and a negative voltage is applied to the short circuit in a state where all the switches of the full bridge circuit are opened.
  • the control having the recirculation period in which the current flows in the positive and negative directions is executed in the third period, the power running period in which the short-circuit circuit performs the switching operation to flow the current in the positive direction, and all the switches are opened.
  • the control method of the power converter described above even when there is a phase difference between the AC voltage and the AC current, it is possible to perform appropriate control according to the difference in the signs of the AC voltage and the AC current. Moreover, the distortion of the output alternating current is suppressed. Furthermore, when each switch of the full-bridge circuit is performing a switching operation, the voltage of the DC electric path is not applied to each switch as it is, and a voltage half the voltage of the DC electric path is always applied. Further, the amplitude of the pulse voltage generated across the AC reactor due to switching is the voltage of the DC circuit. Therefore, the power loss due to switching and the power loss due to the AC reactor are reduced. In this way, in a power converter having a short circuit, even if there is a phase difference between an AC voltage and an AC current, it can be used without problems, power loss is suppressed, and distortion of the output AC current is suppressed.
  • FIG. 1 is a circuit diagram showing an example of a HERIC power conversion device.
  • a power converter (inverter) 10 existing between a DC power source 1 and a commercial power system 2 includes a DC capacitor Cdc, a full bridge circuit 3, a short circuit 4, and AC reactors L1 and L2.
  • the AC side capacitor Ca is provided.
  • the power conversion device 10 as described above can perform conversion from AC to DC as well as conversion from DC to AC, but here, description will be made assuming conversion from DC to AC.
  • the DC side capacitor Cdc is connected to both ends of the DC power supply 1.
  • the full-bridge circuit 3 is configured by connecting the first switch S1, the second switch S2, the third switch S3, and the fourth switch S4, which are, for example, MOSFETs, in a full-bridge connection as illustrated.
  • Each of the switches S1, S2, S3 and S4 has free wheeling diodes (body diodes) d1, d2, d3 and d4 in antiparallel.
  • the full bridge circuit 3 converts a DC voltage input from the two wires of the DC electric path L dc into an AC voltage.
  • the short circuit 4 is connected to the two wires on the AC side of the full bridge circuit 3.
  • the short circuit 4 includes a series body of a fifth switch S5 and a sixth switch S6 provided between two lines on the AC side of the full bridge circuit 3.
  • the fifth switch S5 and the sixth switch S6 are connected in series so as to have opposite polarities.
  • the fifth switch S5 and the sixth switch S6 are, for example, MOSFETs, and have diodes (body diodes) d5 and d6 in antiparallel, respectively.
  • AC reactors L1 and L2 exist in series with respect to a current path that flows from full bridge circuit 3 to two lines of AC electric path L ac .
  • the AC side capacitor Ca is connected between two lines of the AC electric circuit L ac .
  • the short circuit 4 constitutes a return circuit together with the AC reactors L1 and L2.
  • the switches S5 and S6 may have a connection form in which the anodes of the diodes d5 and d6 are connected to each other, or a connection form in which the cathodes are connected to each other.
  • the lower element of the switch series body (S5, S6) is the switch S5 and the upper element is the switch S6.
  • the series body of the switch S5 and the diode d6 and the series body of the switch S6 and the diode d5 are parallel to each other and between the two wires on the AC side of the full bridge circuit 3. It may be a short circuit having a circuit configuration of being connected to.
  • the short circuit 4 is provided between the two wires on the AC side of the full-bridge circuit 3, and a fifth switch S5 that opens and closes an energization path from the first wire to the second wire of the two wires and the second wire to the second wire
  • a sixth switch S6 that opens and closes an energization path to the 1st line, a diode d5 that blocks a current from the 1st line to the 2nd line and that is in series with the 6th switch, and a 2nd line to the 1st line It includes a diode d6 that blocks current and that is in series with the fifth switch.
  • the first switch S1, the second switch S2, the third switch S3, the fourth switch S4, the fifth switch S5, and the sixth switch S6 are all MOSFETs.
  • an IGBT Insulated Gate Bipolar Transistor
  • a freewheeling diode anti-parallel to each IGBT may be used.
  • four freewheeling diodes provided in association with the full-bridge circuit 3 simply do not exist in antiparallel for each of the first switch S1, the second switch S2, the third switch S3, and the fourth switch S4. There may be cases.
  • the diode is an element that is provided in association with the full-bridge circuit 3 and causes a current to flow in its own forward direction (the positive side of the DC electric path L dc ).
  • the voltage sensor 6 is connected in parallel with the DC power supply 1 and the DC side capacitor Cdc.
  • the voltage sensor 6 detects a voltage between two lines of the DC electric path L dc and sends a detection output to the control unit 5.
  • the current sensor 7 is connected in series with the AC reactor L2.
  • the current sensor 7 detects a current flowing through the AC reactors L1 and L2 and sends a detection output to the control unit 5.
  • the voltage sensor 8 is connected between two lines of the AC electric circuit L ac .
  • the voltage sensor 8 detects the voltage of the commercial power system 2 and sends the detection output to the control unit 5.
  • the control unit 5 includes, for example, a computer, and the computer executes software (computer program) to realize a necessary control function.
  • the software is stored in a storage device (not shown) of the control unit.
  • FIG. 2 is an example of a waveform diagram in the case where there is a phase difference between the AC voltage V of the AC electric path L ac and the AC current i L flowing in the AC reactors L1 and L2.
  • the amplitude is set to the same level for simplification.
  • the AC voltage V and the AC current i L have a period in which the signs (positive or negative) coincide with each other and a period in which they differ from each other.
  • the control unit 5 divides one cycle into a total of four periods of the first period T1, the second period T2, the third period T3, and the fourth period T4, and performs control.
  • FIGS. 3 to 10 are diagrams in which the current flow path in each case is shown in bold lines in FIG. Regarding the direction of the current, the current flowing through the AC reactor L1 toward the AC electric path Lac is a positive current, and the opposite direction is a negative current.
  • a circle mark is attached to the reference numeral of the element which is in a closed circuit (including a closed circuit during switching operation) or in a conductive state.
  • the state transitions alternately occur between the state shown in FIG. 3 and the state shown in FIG.
  • the fifth switch S5 performs a switching operation and is currently closed.
  • the first switch S1, the second switch S2, the third switch S3, the fourth switch S4, and the sixth switch S6 are open. In this state, a current path is formed from the AC reactor L1 through the closed switch S5, the diode d6, and the AC reactor L2.
  • the fifth switch S5 during the switching operation is open at the present moment.
  • the first switch S1, the second switch S2, the third switch S3, the fourth switch S4, and the sixth switch S6 are open.
  • a current path from the AC reactor L1 to the plus side of the DC electric path L dc through the return diode d1 of the full bridge circuit 3 is formed. Further, a current path is formed from the negative side of the DC electric path L dc to the AC reactor L2 through the return diode d4.
  • the pair of the second switch S2 and the third switch S3 performs a switching operation in synchronization with each other, and is currently closed.
  • the pair of the first switch S1 and the fourth switch S4 is open.
  • the fifth switch S5 is closed and the sixth switch S6 is open.
  • a current path is formed from the positive side of the DC electric circuit L dc to the other line (lower) of the AC electric circuit L ac via the third switch S3 and the AC reactor L2, and the one line of the AC electric circuit L ac ) To a negative side of the DC electric path L dc through the AC reactor L1 and the switch S2.
  • the sixth switch S6 performs a switching operation and is currently closed.
  • the first switch S1, the second switch S2, the third switch S3, the fourth switch S4, and the fifth switch S5 are open. In this state, a current path is formed from the AC reactor L2 through the closed switch S6, the diode d5, and the AC reactor L1.
  • the sixth switch S6, which is performing the switching operation is open at the present moment.
  • the first switch S1, the second switch S2, the third switch S3, the fourth switch S4, and the fifth switch S5 are open.
  • a current path from the AC reactor L2 to the plus side of the DC electric path L dc through the return diode d3 of the full bridge circuit 3 is formed. Further, a current path is formed from the negative side of the DC electric path L dc to the AC reactor L1 through the return diode d2.
  • the power conversion device 10 described above even when there is a phase difference between the AC voltage and the AC current in the HERIC circuit configuration, it is possible to appropriately perform control according to the difference in the signs of the AC voltage and the AC current. Moreover, the distortion of the output alternating current is suppressed. Further, the voltage of the DC electric path is not applied to the switches S1 to S4 of the full bridge circuit 3 as they are during the switching operation, and the voltage of half the voltage of the DC electric path L dc is always applied. Further, the amplitude of the pulse voltage generated between both ends of the AC reactors L1 and L2 is the voltage of the DC circuit. Therefore, the power loss due to switching and the power loss due to the AC reactors L1 and L2 are reduced. In this way, in the HERIC power conversion device 10, even if there is a phase difference between the AC voltage and the AC current, it can be used without problems, power loss is suppressed, and distortion of the output AC current is suppressed.
  • a gate signal G1 for operating a pair of a first switch S1 and a fourth switch S4 a gate signal G2 for operating a pair of a second switch S2 and a third switch S3, and a fifth switch
  • a gate signal G5 for operating S5 and a gate signal G6 for operating the sixth switch S6 are four types of gate signals: a gate signal G1 for operating a pair of a first switch S1 and a fourth switch S4, a gate signal G2 for operating a pair of a second switch S2 and a third switch S3, and a fifth switch A gate signal G5 for operating S5 and a gate signal G6 for operating the sixth switch S6.
  • the gate signal G1 is a signal obtained by comparing the voltage reference value V inv_ref and a carrier signal (high frequency triangular wave) with each other. It is obtained by adding processing so that the switches S1 and S4 are normally opened when the switch is negative. Further, the gate signal G2 is obtained by performing similar processing on a signal obtained by inverting the voltage reference value V inv_ref ( ⁇ V inv_ref ) and comparing the carrier signal with each other. Therefore, the gate signals G1 and G2 are PWM (Pulse Width Modulation) signals that appear alternately every AC half cycle.
  • PWM Pulse Width Modulation
  • the gate signal G5 is obtained by comparing the voltage reference value V inv_ref and the carrier wave signal with each other, but is calculated such that the logic is opposite to that of the gate signal G1. Further, when the sign of the current target value of the alternating current flowing through the alternating reactor becomes positive, the gate signal G5 is fixed so that the fifth switch S5 is always open.
  • the gate signal G6 is obtained by comparing the inverted voltage reference value (-V inv_ref ) and the carrier signal with each other, but is calculated such that the logic is opposite to that of the gate signal G2. Further, when the sign of the alternating current flowing through the alternating reactor becomes negative, the gate signal G6 is fixed so that the sixth switch S6 is always open.
  • the AC current flowing through the AC reactor actually contains ripples.
  • the switching operation period of the gate signals G1 and G2, which is performing the switching operation is extended to include the period in which the alternating current including the ripple passes through the zero cross.
  • one of the gate signals G5 and G6 that is on (switch closed) is extended. In this way, it is possible to suppress the occurrence of distortion due to the discontinuity of the current near the zero cross due to the amplitude of the ripple included in the alternating current.
  • the gate signal G1 is obtained by comparing the voltage reference value V inv_ref with the carrier signal. Further, the gate signal G2 is obtained by comparing the voltage reference value V inv_ref ( ⁇ V inv_ref ) and the carrier signal with each other. Therefore, the gate signals G1 and G2 are PWM signals that appear alternately every AC half cycle.
  • the carrier wave signal is used as is, but if the AC current target value and the AC voltage target value have different signs, the carrier wave signal has an offset value. Is added.
  • the beginning and end of one pulse width of the gate signals G1 and G2 are slightly cut off, and a dead time can be created.
  • the freewheeling diodes d1 and d4 are constantly conducting during one pulse, and the first switch S1 and the fourth switch S4 are in the period during one pulse excluding the initial dead time and the final dead time. Closes.
  • the free wheeling diodes d2 and d3 are always conducting during one pulse, and the second switch S2 and the third switch S3 are in the period during one pulse excluding the initial dead time and the final dead time. Closes.
  • the switches existing in parallel with the free wheeling diodes d1, d2, d3, d4 are MOSFETs, by closing the switches, the conduction resistance and the conduction loss are reduced as compared with the case where the current is passed only through the diodes. be able to.
  • the gate signal G5 is obtained by comparing the voltage reference value V inv_ref and the carrier wave signal with each other, but is calculated such that the logic is opposite to that of the gate signal G1.
  • the gate signal G5 has a complementary relationship with the gate signal G1 while the gate signal G5 is switching.
  • the gate signal G6 is obtained by comparing the inverted voltage reference value (-V inv_ref ) and the carrier signal with each other, but is calculated such that the logic is opposite to that of the gate signal G2.
  • the gate signal G6 has a complementary relationship with the gate signal G2 while the gate signal G6 is switching.
  • the condition is weighted on the voltage reference value V inv_ref .
  • the voltage reference value V inv_ref is used as it is, but if the signs of the AC current target value and the AC voltage target value are the same, the voltage reference value V inv_ref is used.
  • the offset value is added to the reference value V inv_ref .
  • the diode d5 is constantly conducting during one pulse, and the fifth switch S5 is closed during the period of one pulse excluding the initial dead time and the final dead time.
  • the diode d6 is always conducting during one pulse, and the sixth switch S6 is closed during the period of one pulse excluding the initial dead time and the final dead time.
  • the AC current flowing through the AC reactor actually contains ripples.
  • the switching operation period of the one of the gate signals G1 and G2 that is performing the switching operation is extended to include the period in which the alternating current including ripple passes through the zero cross.
  • the period of the switching operation of the one of the gate signals G5 and G6 which is performing the switching operation is extended. In this way, it is possible to suppress the occurrence of distortion due to the discontinuity of the current near the zero cross due to the amplitude of the ripple included in the alternating current.
  • FIG. 11 is a waveform diagram in the case where the gate signal of the first example is used in the power conversion device 10 to perform conversion from direct current to alternating current at an output of 5 kVA and a power factor of 0.85.
  • (a) is a waveform diagram showing the AC voltage of the AC electric path Lac and the AC currents flowing in the AC reactors L1 and L2. The thick line shows AC current, and the thin line shows AC voltage.
  • FIG. 11B shows a gate signal, which is the gate signals G1, G2, G5, and G6 in order from the top.
  • the gate signals G1 and G2 are alternately switched through a period in which both are OFF (switching operation stopped). The operation and off are repeated.
  • the gate signals G5 and G6 are alternately turned on (H level) and off (L level) alternately, but when turning on from off, the switching operation is first performed for a fixed time.
  • the switching operation of the gate signal G5 is performed complementary to the switching operation of the gate signal G1
  • the switching operation of the gate signal G6 is performed complementary to the switching operation of the gate signal G2.
  • the state where the gate signal G1 is in the switching operation and the gate signal G6 is on on the left end side of (b) is slightly delayed from the moment when the positive-to-negative zero crossing of the alternating current occurs, and the gate signal G1 is turned off (switching operation is stopped), and the gate signal G6 is turned off.
  • the gate signal G5 starts switching operation slightly earlier than the zero cross of the alternating current, and then turns on.
  • the state in which the gate signal G2 is in the switching operation and the gate signal G5 is in the on state is slightly delayed from the moment when the zero cross of the alternating current from negative to positive occurs, and the gate signal G2 is turned off (the switching operation is stopped). ), and the gate signal G5 is turned off.
  • the gate signal G6 starts switching operation slightly earlier than the zero cross of the alternating current, and then turns on.
  • (C) shows the drain-source voltage in the first switch S1.
  • the applied voltage is half the voltage of the DC electric path L dc , and therefore the power loss due to switching can be reduced.
  • (D) is the voltage across the AC reactor L1 (or L2).
  • the amplitude of the pulse voltage is the voltage of the DC electric path L dc . Therefore, power loss (mainly iron loss) can be reduced.
  • (e) when a similar shape is divided into four in the time axis (horizontal axis) direction, the leftmost and third from the left are the currents flowing in the first switch S1 or the freewheeling diode d1, and the second from the left.
  • the fourth and fourth represent the current flowing through the third switch S3 or the free wheeling diode d3.
  • (F) is a current flowing through the short circuit 4. The distortion is suppressed.
  • the control unit 5 sets a predetermined period at the beginning and the end of the period in which the current flows for each of the free wheeling diode and the diode in the short circuit 4.
  • the same waveforms as those in (a), (c) and (d) of FIG. 11 are obtained. Thereby, power loss can be reduced and current distortion can be suppressed.
  • FIG. 12 is a diagram showing an example of a circuit configuration of the power conversion device 100 in which a plurality of DC/DC converters are placed in front and connected to the full bridge circuit 3 and the short circuit 4 as shown in FIG. 1 via a DC bus.
  • the entire system including the power conversion device 100 is a combined power generation system for power generation and storage.
  • a DC/DC converter 20, a DC/DC converter 30, and a DC/DC converter 40 are connected in parallel to two lines of the DC bus 11.
  • the DC/DC converter 20 includes a switch 21, a switch 22, which is, for example, a MOS-MOSFET, and a DC reactor 23.
  • a solar power generation panel 51 for example, is connected to the DC/DC converter 20.
  • the current sensor 52 detects a current flowing through the DC/DC converter 20 and sends a detection output to the control unit 5.
  • the voltage sensor 53 detects the voltage applied from the photovoltaic power generation panel 51 and sends the detection output to the control unit 5.
  • the DC/DC converter 30 includes a switch 31, which is, for example, a MOS-MOSFET, a switch 32, and a DC reactor 33.
  • a storage battery 61 is connected to the DC/DC converter 30.
  • the current sensor 62 detects a current flowing through the DC/DC converter 30 and sends a detection output to the control unit 5.
  • the voltage sensor 63 detects the voltage of the storage battery 61 and sends the detection output to the control unit 5.
  • the DC/DC converter 40 includes a switch 41, which is a MOS-MOSFET, a switch 42, and a DC reactor 43, for example.
  • An electrolytic capacitor 71 is connected to the DC/DC converter 40.
  • the current sensor 72 detects a current flowing through the DC/DC converter 40 and sends a detection output to the control unit 5.
  • the voltage sensor 73 detects the voltage of the electrolytic capacitor 71 and sends a detection output to the control unit 5.
  • the three DC/DC converters 20, 30, and 40 respectively control the generated power of the photovoltaic power generation panel 51, the charge/discharge power of the storage battery 61, and the reactive power supplied from the electrolytic capacitor 71.
  • the storage battery 61 has a voltage of 50V
  • the photovoltaic power generation panel 51 has a voltage of 200V.
  • the full bridge circuit 3 is provided with a voltage sensor 12 that detects the voltage across the switch S2.
  • a voltage sensor 13 is provided between the two wires of the short circuit 4.
  • the other circuit elements are the same as those in FIG.
  • the minimum switching conversion method is a known method (for example, Japanese Patent No. 5618022, Japanese Patent No. 6187587, and many other known documents) that the present applicant has already proposed in many cases, and thus detailed description thereof will be omitted.
  • the main part can be expressed as follows, for example.
  • the control unit 5 compares the DC voltage on the low voltage side of the DC/DC converter 20 and the absolute value of the target voltage value on the AC side of the full bridge circuit 3 with each other for each AC half cycle, and the DC voltage is higher.
  • the DC/DC converters 20 and 40 are operated and the full bridge circuit 3 (and the short circuit 4) stops the switching operation to perform only the necessary polarity reversal, while the absolute value of the voltage target value is smaller than the absolute value.
  • the switching operation of the DC/DC converters 20 and 40 is stopped and the full bridge circuit 3 (and the short circuit 4) is switched.
  • the DC/DC converters 20 and 40 and the full bridge circuit 3 can alternately perform switching pause periods, so that switching loss can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

HERICの電力変換装置(10)において、1周期を、交流電圧及び交流電流の符号が共に正の第1の期間、正及び負の第2の期間、共に負の第3の期間、負及び正の第4の期間に分けて制御を行い、第1,第4スイッチ(S1,S4)をスイッチング動作させ第2,第3スイッチ(S2,S3)を開路し第6スイッチ(S6)を閉路する第1の制御モードを第1の期間に実行し、第5スイッチ(S5)にスイッチング動作を行わせつつ第5スイッチが開路しているとき電流を還流ダイオード(d1,d4)に流す第2の制御モ ードを第2の期間に実行し、第2,第3スイッチをスイッチング動作させ第1,第4スイッチを開路し第5スイッチを閉路する第3の制御モードを第3の期間に実行し、第6スイッチにスイッチング動作を行わせつつ、第6スイッチが開路しているとき電流を還流ダイオード(d2,d3)に流す第4の制御モードを第4の期間に実行する。

Description

電力変換装置及びその制御方法
 本発明は、電力変換装置及びその制御方法に関する。
 本出願は、2019年1月22日出願の日本出願第2019-008588号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 インバータとしてのフルブリッジ回路と交流側の短絡回路(クランプ回路)とを組み合わせた回路構成として、HERIC(High Efficiency & Reliable Inverter Concept(hericは登録商標、以下同様。))の電力変換装置が知られている(例えば、特許文献1~5参照。)。
ドイツ特許出願公開第10221592号公報 特開2014-209841号公報 国際公開WO2014/157700 特開2015-77061号公報 特許第6394760号公報
 本開示の手段は例えば以下のように表現できる。但し、本発明は、請求の範囲によって定められるものである。
 本開示は、直流電路と交流電路との間に設けられ、直流から交流又はその逆の変換を行う電力変換装置であって、第1スイッチ、第2スイッチ、当該第2スイッチと同期して動作する第3スイッチ、及び、前記第1スイッチと同期して動作する第4スイッチによって構成されるフルブリッジ回路と、前記フルブリッジ回路に付随して設けられ、自己の順方向に電流を流すための還流ダイオードと、前記フルブリッジ回路と前記交流電路との間に存在する交流リアクトルと、前記フルブリッジ回路の交流側の2線間に設けられ、当該2線のうちの第1線から第2線への通電経路を開閉する第5スイッチ、前記第2線から前記第1線への通電経路を開閉する第6スイッチ、前記第1線から前記第2線への電流を阻止し、前記第6スイッチと直列に存在するダイオード、及び、前記第2線から前記第1線への電流を阻止し、前記第5スイッチと直列に存在するダイオードを含む短絡回路と、前記フルブリッジ回路及び前記短絡回路を制御する制御部と、を備え、前記交流電路の交流電圧と前記交流リアクトルに流れる交流電流との間に位相差がある場合に、前記制御部は、1周期を、前記交流電圧及び前記交流電流が共に正となる第1の期間、前記交流電圧が正及び前記交流電流が負となる第2の期間、前記交流電圧及び前記交流電流が共に負となる第3の期間、並びに、前記交流電圧が負及び前記交流電流が正となる第4の期間の合計4期間に分けて制御を行い、前記制御部は、前記第1スイッチ及び前記第4スイッチをスイッチング動作させ、前記第2スイッチ及び前記第3スイッチを開路し、かつ、前記第6スイッチを閉路する第1の制御モードを、前記第1の期間に実行し、前記第5スイッチにスイッチング動作を行わせつつ、前記第5スイッチが開路しているとき電流を前記還流ダイオードに流す第2の制御モードを、前記第2の期間に実行し、前記第2スイッチ及び前記第3スイッチをスイッチング動作させ、前記第1スイッチ及び前記第4スイッチを開路し、かつ、前記第5スイッチを閉路する第3の制御モードを、前記第3の期間に実行し、前記第6スイッチにスイッチング動作を行わせつつ、前記第6スイッチが開路しているとき電流を前記還流ダイオードに流す第4の制御モードを、前記第4の期間に実行する。
 制御方法としては、直流電路と交流電路との間に設けられ、スイッチ及び還流ダイオードによって構成されるフルブリッジ回路と、当該フルブリッジ回路の交流側に接続される短絡回路及び交流リアクトルとを備える電力変換装置を制御対象として、制御部により実行される電力変換装置の制御方法であって、前記交流電路の交流電圧と前記交流リアクトルに流れる交流電流との間に位相差がある場合に、1周期を、前記交流電圧及び前記交流電流が共に正となる第1の期間、前記交流電圧が正及び前記交流電流が負となる第2の期間、前記交流電圧及び前記交流電流が共に負となる第3の期間、並びに、前記交流電圧が負及び前記交流電流が正となる第4の期間の合計4期間に分けて制御を行い、前記フルブリッジ回路をスイッチング動作させ正の方向に電流を流す力行期間、及び、前記フルブリッジ回路の全てのスイッチを開路した状態で前記短絡回路に正の方向に電流を流す還流期間を交互に有する制御を、前記第1の期間に実行し、前記短絡回路にスイッチング動作をさせ負の方向に電流を流す力行期間、及び、全てのスイッチを開路した状態における前記フルブリッジ回路の前記還流ダイオードに負の方向に電流を流す還流期間を交互に有する制御を、前記第2の期間に実行し、前記フルブリッジ回路をスイッチング動作させ負の方向に電流を流す力行期間、及び、前記フルブリッジ回路の全てのスイッチを開路した状態で前記短絡回路に負の方向に電流を流す還流期間を交互に有する制御を、前記第3の期間に実行し、前記短絡回路にスイッチング動作をさせ正の方向に電流を流す力行期間、及び、全てのスイッチを開路した状態における前記フルブリッジ回路の前記還流ダイオードに正の方向に電流を流す還流期間を交互に有する制御を、前記第4の期間に実行する。
図1は、HERICの電力変換装置の一例を示す回路図である。 図2は、交流電路の交流電圧Vと、交流リアクトルに流れる交流電流iとの間に位相差がある場合の波形図の一例である。 図3は、第1の期間において、電流の流れる経路を太線で図1に付記した図である。 図4は、第1の期間において、電流の流れる経路を太線で図1に付記した図である。 図5は、第2の期間において、電流の流れる経路を太線で図1に付記した図である。 図6は、第2の期間において、電流の流れる経路を太線で図1に付記した図である。 図7は、第3の期間において、電流の流れる経路を太線で図1に付記した図である。 図8は、第3の期間において、電流の流れる経路を太線で図1に付記した図である。 図9は、第4の期間において、電流の流れる経路を太線で図1に付記した図である。 図10は、第4の期間において、電流の流れる経路を太線で図1に付記した図である。 図11は、電力変換装置に第1例のゲート信号を用いて、出力5kVA、力率0.85で直流から交流への変換を行った場合の波形図である。 図12は、複数のDC/DCコンバータを前置し、DCバスを経て、図1に示すようなフルブリッジ回路及び短絡回路に繋がる電力変換装置の回路構成例を示す図である。
 [本開示が解決しようとする課題]
 前述の特許文献1及び特許文献3の電力変換装置は、交流側の力率が1であれば問題なく動作するが、交流電圧と交流電流との間に位相差がある場合にはフルブリッジ回路の出力を短絡回路により短絡してしまうという問題がある。
 特許文献2の電力変換装置においては、フルブリッジ回路がスイッチング中で出力電圧が出ているときに、その出力電圧を短絡回路で短絡することのないよう、短絡回路のスイッチにデッドタイムを設けることが提案されている。しかし、シミュレーションによる検証によれば、当該電力変換装置では、負荷に出力する交流電流及び交流電圧のゼロクロス近傍で出力電流に歪が発生する。
 特許文献4の電力変換装置では、フルブリッジ回路の出力を短絡回路により短絡してしまうことは回避できる。しかし、例えばフルブリッジ回路の1レグを構成する第1スイッチ及び第2スイッチに着目すると、一方のスイッチの逆並列ダイオードが導通している状態すなわち他方のスイッチに直流電源の電圧がそのまま印加されている状態から他方のスイッチが閉路する制御を含んでいる。例えば特許文献1に開示されている基本的なHERICの電力変換装置では、フルブリッジ回路の1つのスイッチに印加される電圧は直流電源の電圧の半分である。従って、特許文献4の電力変換装置では、基本的なHERICの電力変換装置と比べて、フルブリッジ回路の各スイッチのスイッチングに伴う電力損失が2倍になる。
 特許文献5の電力変換装置は、交流リアクトルの両端に加わるパルス電圧の振幅が、直流電源電圧の2倍となる。そのため、交流リアクトルの電力損失(主に鉄損)が大きい。また、フルブリッジ回路に対する2種類のゲート駆動信号の間に長いデッドタイムが必要となる等、デッドタイム補償が複雑である。
 そこで、短絡回路を有する電力変換装置において、交流電圧と交流電流との位相差があっても問題なく使用でき、電力損失が抑制され、出力する交流電流の歪が抑制される電力変換装置及びその制御方法を提供することを目的とする。
 [本開示の効果]
 本開示によれば、短絡回路を有する電力変換装置において、交流電圧と交流電流との位相差があっても問題なく使用することができ、電力損失が抑制され、出力する交流電流の歪が抑制される。
 [本開示の実施形態の説明]
 本開示の実施形態の要旨としては、少なくとも以下のものが含まれる。
 (1)これは、直流電路と交流電路との間に設けられ、直流から交流又はその逆の変換を行う電力変換装置であって、第1スイッチ、第2スイッチ、当該第2スイッチと同期して動作する第3スイッチ、及び、前記第1スイッチと同期して動作する第4スイッチによって構成されるフルブリッジ回路と、前記フルブリッジ回路に付随して設けられ、自己の順方向に電流を流すための還流ダイオードと、前記フルブリッジ回路と前記交流電路との間に存在する交流リアクトルと、前記フルブリッジ回路の交流側の2線間に設けられ、当該2線のうちの第1線から第2線への通電経路を開閉する第5スイッチ、前記第2線から前記第1線への通電経路を開閉する第6スイッチ、前記第1線から前記第2線への電流を阻止し、前記第6スイッチと直列に存在するダイオード、及び、前記第2線から前記第1線への電流を阻止し、前記第5スイッチと直列に存在するダイオードを含む短絡回路と、前記フルブリッジ回路及び前記短絡回路を制御する制御部と、を備える。
 前記交流電路の交流電圧と前記交流リアクトルに流れる交流電流との間に位相差がある場合に、前記制御部は、1周期を、前記交流電圧及び前記交流電流が共に正となる第1の期間、前記交流電圧が正及び前記交流電流が負となる第2の期間、前記交流電圧及び前記交流電流が共に負となる第3の期間、並びに、前記交流電圧が負及び前記交流電流が正となる第4の期間の合計4期間に分けて制御を行う。
 そして、前記制御部は、前記第1スイッチ及び前記第4スイッチをスイッチング動作させ、前記第2スイッチ及び前記第3スイッチを開路し、かつ、前記第6スイッチを閉路する第1の制御モードを、前記第1の期間に実行し、前記第5スイッチにスイッチング動作を行わせつつ、前記第5スイッチが開路しているとき電流を前記還流ダイオードに流す第2の制御モードを、前記第2の期間に実行し、前記第2スイッチ及び前記第3スイッチをスイッチング動作させ、前記第1スイッチ及び前記第4スイッチを開路し、かつ、前記第5スイッチを閉路する第3の制御モードを、前記第3の期間に実行し、前記第6スイッチにスイッチング動作を行わせつつ、前記第6スイッチが開路しているとき電流を前記還流ダイオードに流す第4の制御モードを、前記第4の期間に実行する。
 上記の電力変換装置によれば、交流電圧と交流電流との位相差がある場合にも交流電圧及び交流電流の符号の異同に応じて適切に制御を行うことができる。また、出力される交流電流の歪が抑制される。さらに、フルブリッジ回路の各スイッチがスイッチング動作を行っているときの各スイッチには直流電路の電圧がそのまま印加されることはなく、常に直流電路の電圧の半分の電圧が印加される。また、スイッチングによって交流リアクトルの両端間に生じるパルス電圧の振幅は直流電路の電圧である。従って、スイッチングによる電力損失及び交流リアクトルによる電力損失が低減される。こうして、短絡回路を有する電力変換装置において、交流電圧と交流電流との位相差があっても問題なく使用することができ、電力損失が抑制され、出力する交流電流の歪が抑制される。
 (2)前記(1)の電力変換装置において、前記制御部は、リプルが重畳された前記交流電流がゼロクロスに達した瞬間よりも、前記フルブリッジ回路のスイッチング動作の停止を遅らせるとともに、前記短絡回路においては閉路しているスイッチの開路又はスイッチング動作の停止を遅らせるようにしてもよい。
 この場合、交流リアクトルを流れる交流電流に含まれるリプルの振幅によりゼロクロスの近傍で符号が揺れ動くことを考慮して、完全に符号が変わってから制御モードを遷移させることができる。
 (3)前記(1)又は(2)の電力変換装置において、前記制御部は、前記還流ダイオード及び前記短絡回路内の前記ダイオードの各々に関して、当該ダイオードに電流が流れる期間の初めと終わりに所定期間のデッドタイムを設けて、当該ダイオードと並列に存在するスイッチを閉路させるようにしてもよい。
 ダイオードと並列に存在するスイッチがMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である場合に、当該スイッチを閉路することで、ダイオードのみに電流を流す場合よりも導通抵抗及び導通損失を低減することができる。
 また、デッドタイムは還流ダイオードに電流が流れる期間内に設けるため、交流電流の歪が抑制される。よって、電流歪を抑制するためのデッドタイム補償を行う必要がない。
 (4)前記(1)から(3)のいずれかの電力変換装置において、前記フルブリッジ回路の直流側にDC/DCコンバータが設けられ、前記制御部は、前記DC/DCコンバータの低圧側の直流電圧と、前記フルブリッジ回路の交流側の電圧目標値の絶対値とを互いに比較して、前記直流電圧の方が小さいときは、前記DC/DCコンバータを動作させるとともに前記フルブリッジ回路はスイッチング動作を停止して必要な極性反転のみを行い、一方、前記電圧目標値の絶対値の方が小さいときは、前記DC/DCコンバータのスイッチング動作を停止し、前記フルブリッジ回路をスイッチング動作させる、と言う構成であってもよい。
 この場合、DC/DCコンバータとフルブリッジ回路とで、交流半サイクルごとに、交互にスイッチングの休止期間ができるので、総スイッチング回数の低減により電力損失を低減することができる。
 (5)前記(1)の電力変換装置において、前記制御部は、共にスイッチング動作を行う場合の前記第1スイッチと前記第5スイッチとを相補的に閉路させ、共にスイッチング動作を行う場合の前記第2スイッチと前記第6スイッチとを相補的に閉路させるようにしてもよい。
 この場合、第1スイッチ及び第4スイッチのペアが閉路のときは、第5スイッチは開路となり、また、第5スイッチが閉路となるときは、第1スイッチ及び第4スイッチのペアは開路である。第2スイッチ及び第3スイッチのペアが閉路のときは、第6スイッチは開路となり、また、第6スイッチが閉路となるときは、第2スイッチ及び第3スイッチのペアは開路である。従って、直流電路の短絡を抑制することができる。
 (6)一方、これは、直流電路と交流電路との間に設けられ、スイッチ及び還流ダイオードによって構成されるフルブリッジ回路と、当該フルブリッジ回路の交流側に接続される短絡回路及び交流リアクトルとを備える電力変換装置を制御対象として、制御部により実行される電力変換装置の制御方法であって、前記交流電路の交流電圧と前記交流リアクトルに流れる交流電流との間に位相差がある場合に、1周期を、前記交流電圧及び前記交流電流が共に正となる第1の期間、前記交流電圧が正及び前記交流電流が負となる第2の期間、前記交流電圧及び前記交流電流が共に負となる第3の期間、並びに、前記交流電圧が負及び前記交流電流が正となる第4の期間の合計4期間に分けて制御を行い、前記フルブリッジ回路をスイッチング動作させ正の方向に電流を流す力行期間、及び、前記フルブリッジ回路の全てのスイッチを開路した状態で前記短絡回路に正の方向に電流を流す還流期間を交互に有する制御を、前記第1の期間に実行し、前記短絡回路にスイッチング動作をさせ負の方向に電流を流す力行期間、及び、全てのスイッチを開路した状態における前記フルブリッジ回路の前記還流ダイオードに負の方向に電流を流す還流期間を交互に有する制御を、前記第2の期間に実行し、前記フルブリッジ回路をスイッチング動作させ負の方向に電流を流す力行期間、及び、前記フルブリッジ回路の全てのスイッチを開路した状態で前記短絡回路に負の方向に電流を流す還流期間を交互に有する制御を、前記第3の期間に実行し、前記短絡回路にスイッチング動作をさせ正の方向に電流を流す力行期間、及び、全てのスイッチを開路した状態における前記フルブリッジ回路の前記還流ダイオードに正の方向に電流を流す還流期間を交互に有する制御を、前記第4の期間に実行する、電力変換装置の制御方法である。
 上記の電力変換装置の制御方法によれば、交流電圧と交流電流との位相差がある場合にも交流電圧及び交流電流の符号の異同に応じて適切に制御を行うことができる。また、出力される交流電流の歪が抑制される。さらに、フルブリッジ回路の各スイッチがスイッチング動作を行っているとき各スイッチには直流電路の電圧がそのまま印加されることはなく、常に直流電路の電圧の半分の電圧が印加される。また、スイッチングによって交流リアクトルの両端間に生じるパルス電圧の振幅は直流電路の電圧である。従って、スイッチングによる電力損失及び交流リアクトルによる電力損失が低減される。こうして、短絡回路を有する電力変換装置において、交流電圧と交流電流との位相差があっても問題なく使用することができ、電力損失が抑制され、出力する交流電流の歪が抑制される。
 [本開示の実施形態の詳細]
 《回路構成》
 以下、本開示の一実施形態に係る電力変換装置について、図面を参照して説明する。
 図1は、HERICの電力変換装置の一例を示す回路図である。図において、直流電源1と商用電力系統2との間に存在する電力変換装置(インバータ)10は、直流側コンデンサCdcと、フルブリッジ回路3と、短絡回路4と、交流リアクトルL1,L2と、交流側コンデンサCaとを備えている。このような電力変換装置10は、直流から交流への変換のほか、交流から直流への変換も行うことができるが、ここでは、直流から交流への変換を想定して説明する。
 直流側コンデンサCdcは、直流電源1の両端に接続されている。フルブリッジ回路3は例えばMOSFETである第1スイッチS1,第2スイッチS2,第3スイッチS3及び第4スイッチS4を、図示のようにフルブリッジ接続して構成されている。各スイッチS1,S2,S3及びS4はそれぞれ、逆並列に、還流ダイオード(ボディダイオード)d1,d2,d3及びd4を有している。フルブリッジ回路3は、直流電路Ldcの2線から入力される直流電圧を交流電圧に変換する。
 短絡回路4は、フルブリッジ回路3の交流側の2線に接続されている。短絡回路4は、フルブリッジ回路3の交流側の2線間に設けられた第5スイッチS5及び第6スイッチS6の直列体を備えている。第5スイッチS5及び第6スイッチS6は、互いに逆極性になるように直列に接続されている。第5スイッチS5及び第6スイッチS6は、例えばMOSFETであり、それぞれ逆並列に、ダイオード(ボディダイオード)d5及びd6を有している。交流リアクトルL1,L2は、フルブリッジ回路3から交流電路Lacの2線に流れる電流路に対して、直列に存在している。交流側コンデンサCaは、交流電路Lacの2線間に接続されている。短絡回路4は、交流リアクトルL1,L2と共に、還流回路を構成する。
 なお、スイッチS5,S6は、ダイオードd5,d6のアノード同士が互いに接続されることになる図示の接続形態の他、カソード同士が互いに接続されることになる接続形態であってもよい。後者の場合は、スイッチ直列体(S5,S6)の下の素子がスイッチS5、上の素子がスイッチS6となる。また、スイッチ直列体(S5,S6)という形ではなく、スイッチS5及びダイオードd6の直列体と、スイッチS6及びダイオードd5の直列体とが互いに並列に、フルブリッジ回路3の交流側の2線間に接続されているという回路構成の短絡回路であってもよい。
 より普遍的に短絡回路4を表現すると、例えばこのようになる。短絡回路4は、フルブリッジ回路3の交流側の2線間に設けられ、当該2線のうちの第1線から第2線への通電経路を開閉する第5スイッチS5、第2線から第1線への通電経路を開閉する第6スイッチS6、第1線から第2線への電流を阻止し、第6スイッチと直列に存在するダイオードd5、及び、第2線から第1線への電流を阻止し、第5スイッチと直列に存在するダイオードd6を含むものである。
 また、上記の例では第1スイッチS1、第2スイッチS2、第3スイッチS3、第4スイッチS4、第5スイッチS5、及び、第6スイッチS6は、すべてMOSFETであるとしたが、これに代えて、IGBT(Insulated Gate Bipolar Transistor)、及び、各IGBTに逆並列の還流ダイオードであってもよい。また、フルブリッジ回路3に付随して設けられる還流ダイオードは、第1スイッチS1、第2スイッチS2、第3スイッチS3及び第4スイッチS4のそれぞれについて単純に、逆並列に4個存在していない場合もあり得る。例えば、「H6.5インバータ」という名称で既知の回路のフルブリッジ回路では、第1スイッチS1と第3スイッチS3とで、それぞれスイッチを介して共通のダイオードが逆並列的に存在する回路構成もある。還流という観点からは、ダイオードは、フルブリッジ回路3に付随して設けられ、自己の順方向(直流電路Ldcのプラス側)に電流を流すための素子である。
 電圧センサ6は、直流電源1及び直流側コンデンサCdcと並列に接続されている。電圧センサ6は、直流電路Ldcの2線間の電圧を検出し、検出出力を制御部5に送る。電流センサ7は、交流リアクトルL2と直列に接続されている。電流センサ7は、交流リアクトルL1,L2に流れる電流を検出し、検出出力を制御部5に送る。電圧センサ8は、交流電路Lacの2線間に接続されている。電圧センサ8は、商用電力系統2の電圧を検出し、検出出力を制御部5に送る。
 制御部5は、例えばコンピュータを含み、コンピュータがソフトウェア(コンピュータプログラム)を実行することで、必要な制御機能を実現する。ソフトウェアは、制御部の記憶装置(図示せず。)に格納される。
 《交流電圧及び交流電流の一例》
 図2は、交流電路Lacの交流電圧Vと、交流リアクトルL1,L2に流れる交流電流iとの間に位相差がある場合の波形図の一例である。なお、振幅は簡略化のため、同じレベルにしている。この場合、交流電圧Vと交流電流iとで、符号(正又は負)が互いに一致する期間と異なる期間とがある。
 すなわち、1周期内に、交流電圧及び交流電流が共に正となる第1の期間T1、交流電圧が正及び交流電流が負となる第2の期間T2、交流電圧及び交流電流が共に負となる第3の期間T3、並びに、交流電圧が負及び交流電流が正となる第4の期間T4の合計4期間がある。そこで、制御部5は、1周期を、第1の期間T1、第2の期間T2、第3の期間T3、及び、第4の期間T4の、合計4期間に分けて制御を行う。
 《回路の動作と電流の流れ方》
 以下、電力変換装置10の回路の動作と電流の流れ方について説明する。
 図3~図10は、図1に、それぞれの場合において電流の流れる経路を太線で付記した図である。なお、電流の向きに関しては、交流リアクトルL1を通って交流電路Lacの方へ流れる電流を正の電流、その逆向きを負の電流とする。閉路(スイッチング動作中の閉路を含む。)又は導通の状態となっている素子の符号に丸印を付している。
 (第1の期間T1における第1の制御モード)
 まず、図3(正電流の力行)において、第1スイッチS1及び第4スイッチS4のペアが互いに同期してスイッチング動作し、かつ、現時点では閉路している。第2スイッチS2及び第3スイッチS3のペアは開路している。第5スイッチS5は開路し、第6スイッチS6は閉路している。この状態では、直流電路Ldcのプラス側から第1スイッチS1及び交流リアクトルL1を介して交流電路Lacの一線(上)に至る電流経路ができ、また、交流電路Lacの他線(下)から交流リアクトルL2及びスイッチS4を介して直流電路Ldcのマイナス側に至る電流経路ができる。
 一方、図4(正電流の還流)において、スイッチング動作中の第1スイッチS1及び第4スイッチS4のペアは、現時点では開路している。第2スイッチS2及び第3スイッチS3のペアは開路している。従って、フルブリッジ回路3のすべてのスイッチS1~S4が開路の状態となる。第5スイッチS5は開路し、第6スイッチS6は閉路している。この状態では、交流リアクトルL2から、閉路しているスイッチS6、ダイオードd5、交流リアクトルL1を通る電流経路ができる。
 第1の期間T1中は、図3の状態と図4の状態とで、交互に状態の遷移が生じる。
 (第2の期間T2における第2の制御モード)
 次に、図5(負電流の力行)において、第5スイッチS5がスイッチング動作し、かつ、現時点では閉路している。第1スイッチS1,第2スイッチS2,第3スイッチS3,第4スイッチS4,及び、第6スイッチS6は開路している。この状態では、交流リアクトルL1から、閉路しているスイッチS5、ダイオードd6、交流リアクトルL2を通る電流経路ができる。
 一方、図6(負電流の還流)において、スイッチング動作中の第5スイッチS5が現時点では開路している。第1スイッチS1,第2スイッチS2,第3スイッチS3,第4スイッチS4,及び、第6スイッチS6は開路している。この状態では、交流リアクトルL1からフルブリッジ回路3の還流ダイオードd1を通り、直流電路Ldcのプラス側に至る電流経路ができる。また、直流電路Ldcのマイナス側から還流ダイオードd4を通り、交流リアクトルL2へ至る電流経路ができる。
 第2の期間T2中は、図5の状態と図6の状態とで、交互に状態の遷移が生じる。
 (第3の期間T3における第3の制御モード)
 次に、図7(負電流の力行)において、第2スイッチS2及び第3スイッチS3のペアが互いに同期してスイッチング動作し、かつ、現時点では閉路している。第1スイッチS1及び第4スイッチS4のペアは開路している。第5スイッチS5は閉路し、第6スイッチS6は開路している。この状態では、直流電路Ldcのプラス側から第3スイッチS3及び交流リアクトルL2を介して交流電路Lacの他線(下)に至る電流経路ができ、また、交流電路Lacの一線(上)から交流リアクトルL1及びスイッチS2を介して直流電路Ldcのマイナス側に至る電流経路ができる。
 一方、図8(負電流の還流)において、スイッチング動作中の第2スイッチS2及び第3スイッチS3のペアは、現時点では開路している。第1スイッチS1及び第4スイッチS4のペアは開路している。従って、フルブリッジ回路3のすべてのスイッチS1~S4が開路の状態となる。第5スイッチS5は閉路し、第6スイッチS6は開路している。この状態では、交流リアクトルL1から、閉路しているスイッチS5、ダイオードd6、交流リアクトルL2を通る電流経路ができる。
 第3の期間T3中は、図7の状態と図8の状態とで、交互に状態の遷移が生じる。
 (第4の期間T4における第4の制御モード)
 次に、図9(正電流の力行)において、第6スイッチS6がスイッチング動作し、かつ、現時点では閉路している。第1スイッチS1,第2スイッチS2,第3スイッチS3,第4スイッチS4,及び、第5スイッチS5は開路している。この状態では、交流リアクトルL2から、閉路しているスイッチS6、ダイオードd5、交流リアクトルL1を通る電流経路ができる。
 一方、図10(正電流の還流)において、スイッチング動作中の第6スイッチS6が現時点では開路している。第1スイッチS1,第2スイッチS2,第3スイッチS3,第4スイッチS4,及び、第5スイッチS5は開路している。この状態では、交流リアクトルL2からフルブリッジ回路3の還流ダイオードd3を通り、直流電路Ldcのプラス側に至る電流経路ができる。また、直流電路Ldcのマイナス側から還流ダイオードd2を通り、交流リアクトルL1へ至る電流経路ができる。
 第4の期間T4中は、図9の状態と図10の状態とで、交互に状態の遷移が生じる。
 上記の電力変換装置10によれば、HERICの回路構成において交流電圧と交流電流との位相差がある場合にも交流電圧及び交流電流の符号の異同に応じて適切に制御を行うことができる。また、出力される交流電流の歪が抑制される。さらに、フルブリッジ回路3の各スイッチS1~S4にはスイッチング動作中に直流電路の電圧がそのまま印加されることはなく、常に直流電路Ldcの電圧の半分の電圧が印加される。また、交流リアクトルL1,L2の両端間に生じるパルス電圧の振幅は直流電路の電圧である。従って、スイッチングによる電力損失及び交流リアクトルL1,L2による電力損失が低減される。こうして、HERICの電力変換装置10において、交流電圧と交流電流との位相差があっても問題なく使用することができ、電力損失が抑制され、出力する交流電流の歪が抑制される。
 《ゲート信号の生成:第1例》
 次に、ゲート信号の生成の第1例について説明する。ゲート信号は4種類あり、第1スイッチS1及び第4スイッチS4のペアを動作させるためのゲート信号G1、第2スイッチS2及び第3スイッチS3のペアを動作させるためのゲート信号G2、第5スイッチS5を動作させるためのゲート信号G5、及び、第6スイッチS6を動作させるためのゲート信号G6である。
 交流電圧の電圧参照値をVinv_refとすると、ゲート信号G1は、電圧参照値Vinv_refと搬送波信号(高周波の三角波)とを互いに比較して得た信号に対して、さらに交流リアクトルを流れる電流が負の時にスイッチS1とスイッチS4とが常時開路となるように処理を加えることにより得られる。また、ゲート信号G2は、電圧参照値Vinv_refを反転させた(-Vinv_ref)と搬送波信号とを互いに比較して得た信号に対して同様の処理を加えることにより得られる。従って、ゲート信号G1とG2とは、交流半サイクルごとに交代で出現するPWM(Pulse Width Modulation)信号となる。
 一方、ゲート信号G5は、電圧参照値Vinv_refと搬送波信号とを互いに比較して得られるが、ゲート信号G1とは論理が逆になるように演算される。さらに、交流リアクトルを流れる交流電流の電流目標値の符号が正になると、ゲート信号G5は、第5スイッチS5が常時開路になるよう固定される。
 また、ゲート信号G6は、反転した電圧参照値(-Vinv_ref)と搬送波信号とを互いに比較して得られるが、ゲート信号G2とは論理が逆になるように演算される。さらに、交流リアクトルを流れる交流電流の符号が負になると、ゲート信号G6は、第6スイッチS6が常時開路になるよう固定される。
 交流リアクトルを流れる交流電流には実際にはリプルが含まれている。リプルを含む交流電流がゼロクロスを通過するとき、リプルの振幅の影響により交流電流の符合は正と負との間を行き来する。そこで、リプルを含む交流電流がゼロクロスを通過する期間を含めてゲート信号G1,G2のうちスイッチング動作している方の、スイッチング動作の期間を延長する。また、ゲート信号G5,G6のうちオン(スイッチ閉路)している方のオンの期間を延長する。
 このようにして、交流電流に含まれるリプルの振幅によりゼロクロス近傍で電流が不連続になり歪が発生することを抑制できる。
 《ゲート信号の生成:第2例》
 次に、ゲート信号の生成の第2例について説明する。ゲート信号は第1例と同様に4種類ある。
 交流電圧の電圧参照値をVinv_refとすると、ゲート信号G1は、電圧参照値Vinv_refと搬送波信号とを互いに比較して得られる。また、ゲート信号G2は、電圧参照値Vinv_refを反転させた(-Vinv_ref)と搬送波信号とを互いに比較して得られる。従って、ゲート信号G1とG2とは、交流半サイクルごとに交代で出現するPWM信号となる。
 但し、ゲート信号G1,G2の生成には、条件が加重される。交流電流目標値と交流電圧目標値との符号が互いに同じであれば、搬送波信号がそのまま使用されるが、交流電流目標値と交流電圧目標値とで符号が異なるときは、搬送波信号にオフセット値が加算される。これにより、ゲート信号G1,G2の1パルス幅の初期と終期が少し削られ、デッドタイムを作ることができる。例えば、図6において、1パルス中で、還流ダイオードd1,d4は終始導通しており、初期のデッドタイム及び終期のデッドタイムを除く1パルス中の期間は、第1スイッチS1,第4スイッチS4が閉路する。また、図10において、1パルス中で、還流ダイオードd2,d3は終始導通しており、初期のデッドタイム及び終期のデッドタイムを除く1パルス中の期間は、第2スイッチS2,第3スイッチS3が閉路する。
 これにより、還流ダイオードd1,d2,d3,d4と並列に存在するスイッチがMOSFETである場合に、当該スイッチを閉路することで、ダイオードのみに電流を流す場合よりも導通抵抗及び導通損失を低減することができる。
 一方、ゲート信号G5は、電圧参照値Vinv_refと搬送波信号とを互いに比較して得られるが、ゲート信号G1とは論理が逆になるように演算される。この結果、ゲート信号G5がスイッチングしている間は、ゲート信号G5は、ゲート信号G1とは相補の関係となる。
 また、ゲート信号G6は、反転した電圧参照値(-Vinv_ref)と搬送波信号とを互いに比較して得られるが、ゲート信号G2とは論理が逆になるように演算される。この結果、ゲート信号G6がスイッチングしている間は、ゲート信号G6は、ゲート信号G2とは相補の関係となる。
 但し、ゲート信号G5,G6の生成には、電圧参照値Vinv_refに条件が加重される。交流電流目標値と交流電圧目標値との符号が互いに異なるときは、電圧参照値Vinv_refがそのまま使用されるが、交流電流目標値と交流電圧目標値との符号が互いに同じであれば、電圧参照値Vinv_refにオフセット値が加算される。これにより、ゲート信号G5,G6の1パルス幅の初期と終期が少し削られ、デッドタイムを作ることができる。
 例えば、図4,図9において、1パルス中で、ダイオードd5は終始導通しており、初期のデッドタイム及び終期のデッドタイムを除く1パルス中の期間は、第5スイッチS5が閉路する。図5,図8において、1パルス中で、ダイオードd6は終始導通しており、初期のデッドタイム及び終期のデッドタイムを除く1パルス中の期間は、第6スイッチS6が閉路する。
 これにより、ダイオードd5,d6と並列に存在するスイッチがMOSFETである場合に、当該スイッチを閉路することで、ダイオードのみに電流を流す場合よりも導通抵抗及び導通損失を低減することができる。
 また、第1例と同様に、交流リアクトルを流れる交流電流には実際にはリプルが含まれている。リプルを含む交流電流がゼロクロスを通過するとき、リプルの振幅の影響により交流電流の符合は正と負との間を行き来する。そこで、リプルを含む交流電流がゼロクロスを通過する期間を含めてゲート信号G1,G2のうちスイッチング動作している方の、スイッチング動作の期間を延長する。また、ゲート信号G5,G6のうちスイッチング動作している方の、スイッチング動作の期間を延長する。
 このようにして、交流電流に含まれるリプルの振幅によりゼロクロス近傍で電流が不連続になり歪が発生することを抑制できる。
 《検証》
 図11は、電力変換装置10に上記第1例のゲート信号を用いて、出力5kVA、力率0.85で直流から交流への変換を行った場合の波形図である。図の上から順に、(a)は交流電路Lacの交流電圧、及び、交流リアクトルL1,L2に流れる交流電流を示す波形図である。太く見える線が交流電流、細く見える線が交流電圧である。
 図11の(b)はゲート信号であり、上から順に、ゲート信号G1,G2,G5,G6である。
 信号の動作を、オン(スイッチ閉路)、オフ(スイッチ開路)、スイッチング動作の3種類で説明すると、ゲート信号G1,G2は、共にオフ(スイッチング動作停止)となる期間を介して、交互にスイッチング動作とオフとを繰り返している。ゲート信号G5,G6は、オン(Hレベル)とオフ(Lレベル)とを交互に繰り返すが、オフからオンするときは初めに一定時間スイッチング動作する。但し、ゲート信号G5のスイッチング動作はゲート信号G1のスイッチング動作と相補的に行われ、ゲート信号G6のスイッチング動作はゲート信号G2のスイッチング動作と相補的に行われる。
 例えば、(b)の左端側の、ゲート信号G1がスイッチング動作、及び、ゲート信号G6がオンという状態は、交流電流の正から負へのゼロクロスがある瞬間より僅かに遅れて、それぞれ、ゲート信号G1がオフ(スイッチング動作停止)、及び、ゲート信号G6がオフ、となる。一方、ゲート信号G5は、交流電流のゼロクロスより僅かに早くスイッチング動作し初め、その後オンとなる。同様に、ゲート信号G2がスイッチング動作、及び、ゲート信号G5がオンという状態は、交流電流の負から正へのゼロクロスがある瞬間より僅かに遅れて、それぞれ、ゲート信号G2がオフ(スイッチング動作停止)、及び、ゲート信号G5がオフ、となる。一方、ゲート信号G6は、交流電流のゼロクロスより僅かに早くスイッチング動作し初め、その後オンとなる。
 (c)は、第1スイッチS1におけるドレイン-ソース間の電圧を示している。印加される電圧は直流電路Ldcの電圧の半分であり、従って、スイッチングによる電力損失を低減することができる。
 (d)は、交流リアクトルL1(又はL2)の両端電圧である。パルス電圧の振幅は直流電路Ldcの電圧である。従って電力損失(主に鉄損)を低減することができる。
 (e)は、時間軸(横軸)方向に同じような形を4分割して見ると、一番左及び左から3番目が、第1スイッチS1又は還流ダイオードd1に流れる電流、左から2番目、4番目が第3スイッチS3又は還流ダイオードd3に流れる電流を表している。
 (f)は短絡回路4に流れる電流である。歪は抑制されている。
 一方、前述の「ゲート信号の生成:第2例」に記載したように、制御部5が、還流ダイオード及び短絡回路4内のダイオードの各々に関して、電流が流れる期間の初めと終わりに所定期間のデッドタイムを設け、当該ダイオードと並列に存在するスイッチを閉路させる場合も、図11の(a),(c)及び(d)と同じ波形が得られる。これにより、電力損失を低減し、電流の歪を抑制することができる。
 《最小スイッチング変換方式への適用》
 ここまでは、直流電源1が直接、フルブリッジ回路3に接続されている回路構成について説明したが、直流電源1の電圧が交流電圧のピーク値よりも低い場合には、直流電源1とフルブリッジ回路3の間にDC/DCコンバータ(昇圧チョッパ)を置いて、当該DC/DCコンバータにより直流電圧を交流電圧のピーク値以上に昇圧する。このとき、DC/DCコンバータとフルブリッジ回路3とで、スイッチング動作を交互に休止する期間を設ける最小スイッチング変換方式を適用することができる。
 図12は、複数のDC/DCコンバータを前置し、DCバスを経て、図1に示すようなフルブリッジ回路3及び短絡回路4に繋がる電力変換装置100の回路構成例を示す図である。この電力変換装置100を含むシステム全体は、発電及び蓄電の複合電源システムである。
 図12において、DCバス11の2線には、DC/DCコンバータ20、DC/DCコンバータ30、DC/DCコンバータ40が並列に接続されている。DC/DCコンバータ20は、例えばMOS-MOSFETであるスイッチ21、スイッチ22、及び、直流リアクトル23を備えている。DC/DCコンバータ20には、例えば太陽光発電パネル51が接続されている。電流センサ52は、DC/DCコンバータ20に流れる電流を検出し、検出出力を制御部5に送る。電圧センサ53は太陽光発電パネル51から与えられる電圧を検出し、検出出力を制御部5に送る。
 また、DC/DCコンバータ30は、例えばMOS-MOSFETであるスイッチ31、スイッチ32、及び、直流リアクトル33を備えている。DC/DCコンバータ30には、蓄電池61が接続されている。電流センサ62は、DC/DCコンバータ30に流れる電流を検出し、検出出力を制御部5に送る。電圧センサ63は蓄電池61の電圧を検出し、検出出力を制御部5に送る。
 さらに、DC/DCコンバータ40は、例えばMOS-MOSFETであるスイッチ41、スイッチ42、及び、直流リアクトル43を備えている。DC/DCコンバータ40には、電解コンデンサ71が接続されている。電流センサ72は、DC/DCコンバータ40に流れる電流を検出し、検出出力を制御部5に送る。電圧センサ73は電解コンデンサ71の電圧を検出し、検出出力を制御部5に送る。
 3台のDC/DCコンバータ20,30,40は、それぞれ、太陽光発電パネル51の発電電力の制御、蓄電池61の充放電電力の制御、電解コンデンサ71から供給する無効電力の制御を行う。例えば、蓄電池61の電圧は50V、太陽光発電パネル51の電圧は200Vである。
 フルブリッジ回路3には、スイッチS2の両端の電圧を検出する電圧センサ12が設けられている。短絡回路4の2線間には電圧センサ13が設けられている。その他の回路要素は図1と同様であるので説明を省略する。
 最小スイッチング変換方式については、本出願人が既に多く提案し、既知の方式(例えば特許第5618022号、特許第6187587号、他多数の公知文献あり。)であるので詳細な説明は省略するが、要部としては、例えば以下のように表現できる。
 制御部5は、交流半サイクルごとに、DC/DCコンバータ20の低圧側の直流電圧と、フルブリッジ回路3の交流側の電圧目標値の絶対値とを互いに比較して、直流電圧の方が小さいときは、DC/DCコンバータ20,40を動作させるとともにフルブリッジ回路3(及び短絡回路4)はスイッチング動作を停止して必要な極性反転のみを行い、一方、電圧目標値の絶対値の方が小さいときは、DC/DCコンバータ20,40のスイッチング動作を停止し、フルブリッジ回路3(及び短絡回路4)をスイッチング動作させる。これにより、DC/DCコンバータ20,40とフルブリッジ回路3とで、交互にスイッチングの休止期間ができるので、スイッチング損失を抑制することができる。
 《補記》
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 1 直流電源
 2 商用電力系統
 3 フルブリッジ回路
 4 還流回路
 5 制御部
 6 電圧センサ
 7 電流センサ
 8 電圧センサ
 10 電力変換装置
 11 DCバス
 12 電圧センサ
 13 電圧センサ
 20 DC/DCコンバータ
 21,22 スイッチ
 23 直流リアクトル
 30 DC/DCコンバータ
 31,32 スイッチ
 33 直流リアクトル
 40 DC/DCコンバータ
 41,42 スイッチ
 43 直流リアクトル
 51 太陽光発電パネル
 52 電流センサ
 53 電圧センサ
 61 蓄電池
 62 電流センサ
 63 電圧センサ
 71 電解コンデンサ
 72 電流センサ
 73 電圧センサ
 100 電力変換装置
 101 直流電源
 102 商用電力系統
 103 フルブリッジ回路
 104 還流回路
 Ca 交流側コンデンサ
 Cdc 直流側コンデンサ
 d1,d2,d3,d4,d5,d6 ダイオード
 L1,L2 交流リアクトル
 Lac 交流電路
 Ldc 直流電路
 S1 第1スイッチ
 S2 第2スイッチ
 S3 第3スイッチ
 S4 第4スイッチ
 S5 第5スイッチ
 S6 第6スイッチ

Claims (6)

  1.  直流電路と交流電路との間に設けられ、直流から交流又はその逆の変換を行う電力変換装置であって、
     第1スイッチ、第2スイッチ、当該第2スイッチと同期して動作する第3スイッチ、及び、前記第1スイッチと同期して動作する第4スイッチによって構成されるフルブリッジ回路と、
     前記フルブリッジ回路に付随して設けられ、自己の順方向に電流を流すための還流ダイオードと、
     前記フルブリッジ回路と前記交流電路との間に存在する交流リアクトルと、
     前記フルブリッジ回路の交流側の2線間に設けられ、当該2線のうちの第1線から第2線への通電経路を開閉する第5スイッチ、前記第2線から前記第1線への通電経路を開閉する第6スイッチ、前記第1線から前記第2線への電流を阻止し、前記第6スイッチと直列に存在するダイオード、及び、前記第2線から前記第1線への電流を阻止し、前記第5スイッチと直列に存在するダイオードを含む短絡回路と、
     前記フルブリッジ回路及び前記短絡回路を制御する制御部と、を備え、
     前記交流電路の交流電圧と前記交流リアクトルに流れる交流電流との間に位相差がある場合に、前記制御部は、1周期を、前記交流電圧及び前記交流電流が共に正となる第1の期間、前記交流電圧が正及び前記交流電流が負となる第2の期間、前記交流電圧及び前記交流電流が共に負となる第3の期間、並びに、前記交流電圧が負及び前記交流電流が正となる第4の期間の合計4期間に分けて制御を行い、
     前記制御部は、
     前記第1スイッチ及び前記第4スイッチをスイッチング動作させ、前記第2スイッチ及び前記第3スイッチを開路し、かつ、前記第6スイッチを閉路する第1の制御モードを、前記第1の期間に実行し、
     前記第5スイッチにスイッチング動作を行わせつつ、前記第5スイッチが開路しているとき電流を前記還流ダイオードに流す第2の制御モードを、前記第2の期間に実行し、
     前記第2スイッチ及び前記第3スイッチをスイッチング動作させ、前記第1スイッチ及び前記第4スイッチを開路し、かつ、前記第5スイッチを閉路する第3の制御モードを、前記第3の期間に実行し、
     前記第6スイッチにスイッチング動作を行わせつつ、前記第6スイッチが開路しているとき電流を前記還流ダイオードに流す第4の制御モードを、前記第4の期間に実行する、電力変換装置。
  2.  前記制御部は、リプルが重畳された前記交流電流がゼロクロスに達した瞬間よりも、前記フルブリッジ回路のスイッチング動作の停止を遅らせるとともに、前記短絡回路においては閉路しているスイッチの開路又はスイッチング動作の停止を遅らせる請求項1に記載の電力変換装置。
  3.  前記制御部は、前記還流ダイオード及び前記短絡回路内の前記ダイオードの各々に関して、電流が流れる期間の初めと終わりに所定期間のデッドタイムを設けて、当該ダイオードと並列に存在するスイッチを閉路させる請求項1又は請求項2に記載の電力変換装置。
  4.  前記フルブリッジ回路の直流側にDC/DCコンバータが設けられ、
     前記制御部は、前記DC/DCコンバータの低圧側の直流電圧と、前記フルブリッジ回路の交流側の電圧目標値の絶対値とを互いに比較して、前記直流電圧の方が小さいときは、前記DC/DCコンバータを動作させるとともに前記フルブリッジ回路はスイッチング動作を停止して必要な極性反転のみを行い、一方、前記電圧目標値の絶対値の方が小さいときは、前記DC/DCコンバータのスイッチング動作を停止し、前記フルブリッジ回路をスイッチング動作させる、請求項1から請求項3のいずれか1項に記載の電力変換装置。
  5.  前記制御部は、
     共にスイッチング動作を行う場合の前記第1スイッチと前記第5スイッチとを相補的に閉路させ、
     共にスイッチング動作を行う場合の前記第2スイッチと前記第6スイッチとを相補的に閉路させる、
     請求項1に記載の電力変換装置。
  6.  直流電路と交流電路との間に設けられ、スイッチ及び還流ダイオードによって構成されるフルブリッジ回路と、当該フルブリッジ回路の交流側に接続される短絡回路及び交流リアクトルとを備える電力変換装置を制御対象として、制御部により実行される電力変換装置の制御方法であって、
     前記交流電路の交流電圧と前記交流リアクトルに流れる交流電流との間に位相差がある場合に、1周期を、前記交流電圧及び前記交流電流が共に正となる第1の期間、前記交流電圧が正及び前記交流電流が負となる第2の期間、前記交流電圧及び前記交流電流が共に負となる第3の期間、並びに、前記交流電圧が負及び前記交流電流が正となる第4の期間の合計4期間に分けて制御を行い、
     前記フルブリッジ回路をスイッチング動作させ正の方向に電流を流す力行期間、及び、前記フルブリッジ回路の全てのスイッチを開路した状態で前記短絡回路に正の方向に電流を流す還流期間を交互に有する制御を、前記第1の期間に実行し、
     前記短絡回路にスイッチング動作をさせ負の方向に電流を流す力行期間、及び、全てのスイッチを開路した状態における前記フルブリッジ回路の前記還流ダイオードに負の方向に電流を流す還流期間を交互に有する制御を、前記第2の期間に実行し、
     前記フルブリッジ回路をスイッチング動作させ負の方向に電流を流す力行期間、及び、前記フルブリッジ回路の全てのスイッチを開路した状態で前記短絡回路に負の方向に電流を流す還流期間を交互に有する制御を、前記第3の期間に実行し、
     前記短絡回路にスイッチング動作をさせ正の方向に電流を流す力行期間、及び、全てのスイッチを開路した状態における前記フルブリッジ回路の前記還流ダイオードに正の方向に電流を流す還流期間を交互に有する制御を、前記第4の期間に実行する、
     電力変換装置の制御方法。
PCT/JP2019/033657 2019-01-22 2019-08-28 電力変換装置及びその制御方法 WO2020152900A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020567359A JP7192889B2 (ja) 2019-01-22 2019-08-28 電力変換装置及びその制御方法
US17/290,443 US11404974B2 (en) 2019-01-22 2019-08-28 Power converter for performing conversion from DC to AC or vice versa, and method for controlling the power converter
CN201980082917.1A CN113228494B (zh) 2019-01-22 2019-08-28 电力转换装置及其控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019008588 2019-01-22
JP2019-008588 2019-01-22

Publications (1)

Publication Number Publication Date
WO2020152900A1 true WO2020152900A1 (ja) 2020-07-30

Family

ID=71736300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033657 WO2020152900A1 (ja) 2019-01-22 2019-08-28 電力変換装置及びその制御方法

Country Status (4)

Country Link
US (1) US11404974B2 (ja)
JP (1) JP7192889B2 (ja)
CN (1) CN113228494B (ja)
WO (1) WO2020152900A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422535A (zh) * 2021-08-25 2021-09-21 杭州禾迈电力电子股份有限公司 一种逆变拓扑电路及逆变器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115296556A (zh) * 2022-07-15 2022-11-04 华为数字能源技术有限公司 逆变器及其控制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108448922A (zh) * 2018-05-23 2018-08-24 中南大学 一种无变压器的单相逆变器的调制方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10221592A1 (de) 2002-05-15 2003-12-04 Fraunhofer Ges Forschung Wechselrichter sowie Verfahren zum Umwandeln einer elektrischen Gleichspannung in einen Wechselstrom
JP2011024394A (ja) * 2009-07-21 2011-02-03 Tokyo Electric Power Co Inc:The 電力変換装置
JP5803945B2 (ja) * 2012-05-10 2015-11-04 株式会社日本自動車部品総合研究所 電力変換装置
AU2014245740B2 (en) 2013-03-28 2016-09-15 Panasonic Intellectual Property Management Co., Ltd. Inverter device
JP6201613B2 (ja) 2013-10-11 2017-09-27 オムロン株式会社 インバータ装置、パワーコンディショナ、発電システム及び、インバータ装置の制御方法
AU2015205308B2 (en) * 2014-01-09 2018-07-05 Sumitomo Electric Industries, Ltd. Power conversion device and three-phase alternating current power supply device
CN106208769B (zh) * 2014-10-09 2020-02-07 松下知识产权经营株式会社 电力转换装置
JP6043774B2 (ja) * 2014-10-30 2016-12-14 日立アプライアンス株式会社 系統連系インバータ装置、および、それを備えた分散型電源システム
JP6507879B2 (ja) * 2015-06-22 2019-05-08 住友電気工業株式会社 電力変換装置及びその制御方法
JP6536346B2 (ja) * 2015-10-19 2019-07-03 住友電気工業株式会社 電力変換装置及びその制御方法
JP6524883B2 (ja) * 2015-10-19 2019-06-05 住友電気工業株式会社 電力変換装置及びその制御方法
JP6671017B2 (ja) * 2016-01-13 2020-03-25 パナソニックIpマネジメント株式会社 電力変換システム及び電力変換装置
JP6558254B2 (ja) * 2016-01-18 2019-08-14 住友電気工業株式会社 電力変換システム及びその制御方法
WO2018073874A1 (ja) * 2016-10-17 2018-04-26 三菱電機株式会社 直流電源装置、モータ駆動装置、送風機、圧縮機および空気調和機
JP6394760B1 (ja) 2017-07-27 2018-09-26 オムロン株式会社 電力変換装置及び電力変換装置の制御方法
JP7157640B2 (ja) * 2018-11-28 2022-10-20 株式会社Soken 電力変換装置の制御装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108448922A (zh) * 2018-05-23 2018-08-24 中南大学 一种无变压器的单相逆变器的调制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422535A (zh) * 2021-08-25 2021-09-21 杭州禾迈电力电子股份有限公司 一种逆变拓扑电路及逆变器
CN113422535B (zh) * 2021-08-25 2021-11-05 杭州禾迈电力电子股份有限公司 一种逆变拓扑电路及逆变器

Also Published As

Publication number Publication date
JP7192889B2 (ja) 2022-12-20
CN113228494A (zh) 2021-08-06
US11404974B2 (en) 2022-08-02
US20210384845A1 (en) 2021-12-09
JPWO2020152900A1 (ja) 2021-12-02
CN113228494B (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
CN107888100B (zh) 一种逆变器、控制逆变器的方法及控制装置
Lin et al. Dead-time elimination of PWM-controlled inverter/converter without separate power sources for current polarity detection circuit
JP5260957B2 (ja) 電力変換装置
CN108880311B (zh) 一种多电平逆变器的箝位调制方法、装置及逆变器
KR101813691B1 (ko) 멀티레벨 인버터용 데드타임을 제어하는 전류벡터
JP6416411B2 (ja) 電力変換装置
US20120020137A1 (en) Power conversion device
WO2012167691A1 (zh) 逆变装置及应用其的太阳能光伏并网***
US20100079192A1 (en) Drive for a half-bridge circuit
US20170110965A1 (en) Power conversion apparatus
US9531298B2 (en) Inverter device
CN110034700B (zh) 逆变器输出电流的波形控制方法、装置和***
CN102013828B (zh) 一种消除九开关变换器死区的控制***及方法
JP2013183565A (ja) 電流形電力変換装置
WO2020152900A1 (ja) 電力変換装置及びその制御方法
JP2015233406A (ja) バイパス運転機能を有する直列型h−ブリッジインバータ
US8947897B2 (en) Current-source power converting apparatus
JP6021438B2 (ja) インバータ装置
JP5362657B2 (ja) 電力変換装置
JP2013085347A (ja) 交流直流変換器
JP5043585B2 (ja) 電力変換装置
JP6163768B2 (ja) マルチレベル電力変換装置のゲート駆動信号生成装置
JP2013176173A (ja) 電源装置
WO2018203422A1 (ja) 半導体素子の駆動装置および電力変換装置
CN113302831A (zh) 电力变换装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020567359

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911624

Country of ref document: EP

Kind code of ref document: A1