WO2020151818A1 - Verfahren zur energierückgewinnung bei verbrennungsmotoren durch eine abgas-dampf-turbine - Google Patents

Verfahren zur energierückgewinnung bei verbrennungsmotoren durch eine abgas-dampf-turbine Download PDF

Info

Publication number
WO2020151818A1
WO2020151818A1 PCT/EP2019/051644 EP2019051644W WO2020151818A1 WO 2020151818 A1 WO2020151818 A1 WO 2020151818A1 EP 2019051644 W EP2019051644 W EP 2019051644W WO 2020151818 A1 WO2020151818 A1 WO 2020151818A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
water
exhaust gas
exhaust
operating
Prior art date
Application number
PCT/EP2019/051644
Other languages
English (en)
French (fr)
Inventor
André Seedorf
Original Assignee
Seedorf Andre
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seedorf Andre filed Critical Seedorf Andre
Priority to PCT/EP2019/051644 priority Critical patent/WO2020151818A1/de
Publication of WO2020151818A1 publication Critical patent/WO2020151818A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/025Adding water
    • F02M25/03Adding water into the cylinder or the pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/04Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
    • F01K21/047Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas having at least one combustion gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/04Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/04Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using kinetic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/04Engines with prolonged expansion in main cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/10Engines with prolonged expansion in exhaust turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/02Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being water or steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/12Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with non-fuel substances or with anti-knock agents, e.g. with anti-knock fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1853Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines coming in direct contact with water in bulk or in sprays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B27/00Instantaneous or flash steam boilers
    • F22B27/16Instantaneous or flash steam boilers involving spray nozzles for sprinkling or injecting water particles on to or into hot heat-exchange elements, e.g. into tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • F01N2340/02Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses characterised by the distance of the apparatus to the engine, or the distance between two exhaust treating apparatuses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/22Water or humidity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to methods for optimizing the efficiency of energy recovery in all types of internal combustion engines, in particular in piston internal combustion engines, by generating a dense exhaust gas / steam mixture which drives an exhaust gas / steam turbine with a coupled generator for generating electricity in the exhaust tract.
  • Hybrid vehicles and combined heat and power plants in particular benefit from this.
  • JP H06-101 495 A it is known for gas combustion engines without a catalyst to improve the efficiency of exhaust gas turbochargers with an attached generator by injecting water only into the exhaust manifold. The heat in the cylinder remains unused.
  • a known problem with internal combustion engines is their poor mechanical efficiency. Most of the chemical energy used goes lost by heat, which is particularly disadvantageous when using internal combustion engines in motor vehicles. The fact that a large part of the primary energy used is converted into heat is even twice as disadvantageous. On the one hand, the proportion of usable mechanical work is relatively low, on the other hand, additional energy has to be used to cool the cylinders, which further reduces the real overall efficiency, for example due to increased driving resistance.
  • Cooling gasoline direct injections are being used more and more frequently, sometimes also in addition, with the aim of increasing the effective compression and thus increasing the efficiency. They serve to reduce the tendency to knock at full load, but this greatly increases consumption and leads to the formation of fine dust.
  • the basic idea of the present invention is to use the usual heat loss of the cylinders, via which approximately a third of the energy is lost, at an early stage and, at the same time, to reduce the energy expenditure required for their cooling.
  • the remaining heat loss that is lost through the exhaust gases should also be used.
  • the solution consists in injecting water into the work space by means of at least a first water supply after complete combustion during the work cycle, before opening the exhaust valves, in order to increase the total amount of exhaust gas / dry steam and to increase its purge mass.
  • the exhaust gas / steam mixture can act much more effectively on the blades of a turbine with a connected generator.
  • the electrical energy generated in this way can in principle be used in any way.
  • the total amount of electrically generate energy in the case of a motor vehicle the electrical energy thus obtained can be used to charge the batteries of hybrid vehicles and / or to supply the vehicle electrical system.
  • the pressure can be kept constant at a given volume.
  • the water injection leads to a pressure loss of the combustion gas due to the cooling, which is however compensated at the same time by the water vapor formation. This increases the density and thus the purge mass of the gas driving the turbine, which increases its performance / efficiency.
  • the exhaust gas temperature before this should not fall below its minimum working temperature in normal operation.
  • the amount, duration, pulsation and time of the water injection are adjusted to the load situation and heat of the catalytic converter via the engine management system, which means that cooling is performed depending on the situation.
  • the beginning of the exhaust tract is formed by an expanding muffler, which is designed in terms of its resonance behavior in such a way that the more inert exhaust gas-vapor mixture quickly escapes and provides the lowest possible resistance to the pistons when they are ejected in a particularly lever-effective area.
  • the latter In order to keep the pressure loss through cooling via the outer walls of the exhaust tract low, the latter should be insulated, which also helps to maintain the minimum working temperature that the catalytic converter requires.
  • the catalytic converter is arranged in front of the turbine. Its capillaries, twisted as a whole, blow the first turbine wheel with a turbulence-free swirl in order to increase the effect on it.
  • the relatively mild temperatures at the turbine simplify the development of effective designs and make them cheaper the material used in the production considerably and this with extended durability.
  • the disadvantages of direct petrol injection can be eliminated without major conversion measures by injecting water directly instead.
  • direct water injection the effective compression can be increased even further, which further improves efficiency.
  • the charge air can also be cooled in advance using the same water injection nozzle.
  • the main advantage of the invention lies in the generation of additional electrical energy, which is implemented in the case of full (or missing) batteries directly via electric drive motors (which directly reduces consumption) or stores energy that is used later in battery charging operation (which indirectly reduces consumption) ).
  • Water injection into the work area can significantly reduce water cooling or even give way to simple air cooling for free-standing cylinders of a boxer engine, as part of the cooling takes place where it occurs. This reduces the weight and the energy required for cooling, which means that the flow resistance, which usually makes up approx. 20% of the air resistance, is reduced in vehicles.
  • the water supply which is present anyway, can be used without additional effort for the purpose of the charge air cooling known per se and / or minimizing the tendency to knock during compression
  • water injection into the exhaust tract can be provided. In this case, this can be done before and / or after the turbine.
  • a water injection in front of the turbine should be designed so that the steam in the exhaust gas-steam mixture remains dry, so there is no condensation of the water vapor. This further increases the density of the exhaust gas / steam mixture, which further increases the power / efficiency of the turbine.
  • a possible water injection after the exhaust gas turbine serves a different purpose, namely to evaporate the until then, dry the vapor of the exhaust gas / steam mixture to a temperature at which it begins to condense. The then wet steam can then condense further in a condenser (not shown here), settle and be recovered together with the water injected behind the turbine and fed to the water tank.
  • the electrical energy can be used for an electrically powered charger that responds faster than a turbocharger and is easier to control. It can also be used for electromagnetic valve control, what It saves weight and eliminates the chain case, which is unfavorable for air cooling (because it is insulating) and a closed cylinder head camshaft housing.
  • Figure 1 shows an embodiment of a heat engine according to the invention in a highly schematic representation.
  • the figure shows an embodiment of a heat engine according to the invention.
  • the basis of this heat engine is an internal combustion engine 10, which can be designed in particular as a four-stroke internal combustion engine.
  • This internal combustion engine 10 can have a piston-cylinder unit or any number of piston-cylinder units. Only a piston-cylinder unit is shown with a piston 12 and a cylinder 13.
  • the piston 12 is coupled in the usual manner to a crank mechanism 18, so that the piston 12 and cylinder 13 define a volume-variable working space 16.
  • this working space 16 is connected to an intake tract 20 via at least one inlet valve 14 and to an exhaust tract 22 via at least one exhaust valve 15.
  • the start of the exhaust tract 22 on the internal combustion engine side is preferably designed as an exhaust pipe pot 23.
  • a catalytic converter 24 is usually arranged downstream of the exhaust front pot 23 in the direction of flow.
  • a turbine 26 is arranged in the exhaust tract 22 and is connected to an electrical generator 28 by means of a shaft 27, directly or via a transmission.
  • This generator 28 feeds the electrical energy generated by it either into an electrical store, into an electrical consumer or (in the case of a stationary heat engine) into an electrical network (generally designated by the reference numeral 30).
  • the turbine 26 is preferably located downstream of the catalytic converter.
  • a first water supply is provided, which ends in a first injection nozzle 40a. This first injection nozzle 40a opens into the working space 16.
  • the injection nozzle 40a is preferably designed in such a way that it atomizes the liquid water injected under pressure into fine droplets. It is possible that the injection nozzle injects the water in a pulsed manner.
  • several first injection nozzles 40a could be provided, which open into the working space. These could be part of a common first water supply, or a plurality of mutually independent first water supplies could be provided for injecting water into the work space. The simplest case is shown: there is only a first water supply with only a first injection nozzle 40a.
  • the water injections into the work space take place via the first injection nozzle 40a, depending on the load situation, during the intake, the compression and the work cycle.
  • water is injected during the intake cycle to cool the charge air and once more in the compression cycle to avoid premature ignition (knocking) due to excessive temperatures. This makes district direct injection superfluous. With low loads, injections during the injection and compression cycle are not necessary.
  • a catalytic converter 24 is usually arranged downstream of the exhaust front pot 23 in the direction of flow.
  • a turbine 26 is arranged in the exhaust tract 22 and is connected to an electrical generator 28 by means of a shaft 27, directly or via a transmission.
  • This generator 28 feeds the electrical energy generated by it either into an electrical store, into an electrical consumer or (in the case of a stationary heat engine) into an electrical network (generally designated by the reference numeral 30).
  • a second water supply opens into the exhaust tract between the catalytic converter and the turbine.
  • the second injection nozzle 40b is shown.
  • the density of the exhaust gas-steam mixture is further increased by water injection by means of this second water supply, which further increases the power / efficiency of the turbine.
  • a plurality of water feeds or a plurality of second injection nozzles 40b could also be provided in this case (not shown).
  • a third water supply 40c is finally provided after the exhaust gas turbine.
  • This third water supply serves another purpose, namely to lower the previously dry steam of the exhaust gas-steam mixture to a temperature at which it begins to condense as a result of the evaporation.
  • the condensate can be drained off and stored in an intermediate tank, from where it can be fed to the first and / or the third water supply (not shown in the figure).
  • the invention was explained on the basis of a heat engine, the internal combustion engine of which is a four-stroke reciprocating piston engine. This is the preferred one, however not the only possible embodiment.
  • the internal combustion engine could also be a two-stroke reciprocating engine or a rotary engine (Wankel engine).
  • the invention can be used in all types of motor vehicles. It complements conventional piston internal combustion engines in the stationary and mobile area. If the water injector replaces a direct petrol injector, there is no need to even change the cylinder head. Hybrid vehicles are significantly lighter and more economical and do not have to be reloaded as often. Consumption, exhaust and fine dust emissions decrease. Turbochargers, which can affect the exhaust gas resonance discharge due to their arrangement near the engine, are replaced by a turbine generator with a high degree of efficiency. Since enough electricity is produced, an electrically driven turbine can instead generate the required boost pressure. The evaporative cooling during the induction and compression cycle allows significantly higher boost pressure, which in turn favors downsizing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Es wird ein Verfahren zur Optimierung des Wirkungsgrades von Wärmekraftmaschinen, die einen Verbrennungsmotor aufweisen, beschrieben. Nach vollständiger Verbrennung erfolgen eine oder mehrere Wassereinspritzung(en) in den Brennraum des Verbrennungsmotors, um ohne Druckverlust durch die Abkühlung, ein dichtes Abgas-Dampfgemisch zu erzeugen und gleichzeitig den Motor ohne zusätzlichen Energieaufwand von innen zu kühlen. Dank der erhöhten Spülmasse des Abgas-Dampfgemisches wird die Effizienz einer im Abgastrakt befindlichen Abgas-Dampf-Turbine mit angekoppeltem Generator zur Stromerzeugung deutlich erhöht.

Description

Verfahren zur Energierückgewinnung bei Verbrennungsmotoren
durch eine Abgas-Dampf-Turbine
Technisches Gebiet
Die vorliegende Erfindung betrifft Verfahren zur Optimierung des Wirkungsgrades der Energierückgewinnung bei allen Arten von Verbrennungsmotoren, insbesondere bei Kolbenverbrennungsmotoren, durch Erzeugung eines dichten Abgas-Dampfgemisches, welches im Auslasstrakt eine Abgas-Dampf-Turbine mit angekoppeltem Generator zur Stromerzeugung antreibt. Davon profitieren vor allem Hybridfahrzeuge und Blockheizkraftwerke.
Stand der Technik
Konventionelle Abgasturbinen wie bspw. Turbolader, denen noch ein Generator angehängt wird, sind bekannt. Sie nutzen jedoch keine gezielte Dampfdruckerzeugung im Arbeitsraum des Zylinders und damit auch nicht die dort herrschende Wärmeenergie.
Wassereinspritzungen in den Arbeitsraum zum Zwecke der Ladeluftkühlung und/oder Minimierung der Klopfneigung während der Verdichtung sind bekannt.
Aus der gattungsbildenden US 2003/0188700 A1 ist es bekannt, zur Optimierung des Verbrennungsprozesses während der Verbrennung Wasser in den Arbeitsraum des Verbrennungsmotors einzuspritzen. Vorliegende Erfindung verzichtet auf eine Einspritzung während der Verbrennung.
Aus der JP H06- 101 495 A ist es für Gasverbrennungsmotoren ohne Katalysator bekannt, die Effizienz von Abgasturboladern mit angehängtem Generator zu verbessern, indem Wasser nur in den Abgaskrümmer eingespritzt wird. Die Wärme im Zylinder bleibt dabei ungenutzt.
Zu lösende technische Aufgaben
Ein bekanntes Problem von Verbrennungsmotoren ist ihr schlechter mechanischer Wirkungsgrad. Der Großteil der eingesetzten chemischen Energie geht durch Wärme verloren, was insbesondere beim Einsatz von Verbrennungsmotoren in Kraftfahrzeugen sehr nachteilig ist. Die Tatsache, dass ein Großteil der eingesetzten Primärenergie in Wärme umgewandelt wird, ist sogar doppelt nachteilig. Zum einen ist der Anteil der nutzbaren mechanischen Arbeit relativ gering, zum anderen muss zusätzlich Energie für die Kühlung der Zylinder aufgewendet werden, was den realen Gesamtwirkungsgrad, beispielsweise durch erhöhten Fahrtwiderstand, weiter senkt.
Immer häufiger werden, teilweise auch zusätzlich, kühlende Benzindirekteinspritzungen genutzt, die dem Ziel dienen, die effektive Kompression zu erhöhen und so den Wirkungsgrad zu steigern. Sie dienen der Reduzierung der Klopfneigung bei Volllast, was jedoch den Verbrauch stark erhöht und zu Feinstaubbildung führt.
Bei Blockheizkraftwerken nach dem Prinzip der Wärmekopplung kann zwar ein Teil der Wärmeenergie genutzt werden, dennoch ist der Wirkungsgrad, insbesondere zu Jahreszeiten in denen die Heizung nicht gebracht wird, verbesserungswürdig.
Darstellung der Erfindung
Der Grundgedanke vorliegender Erfindung liegt darin, früh die übliche Verlustwärme der Zylinder, über die ca. ein Drittel der Energie verloren geht, zu nutzen und gleichzeitig den für ihre Kühlung nötigen Energieaufwand zu reduzieren. Zusätzlich sollt die restliche Verlustwärme die über die Abgase verloren geht mit genutzt werden.
Die Lösung besteht darin, nach vollständiger Verbrennung während des Arbeitstaktes, noch vor dem öffnen der Auslassventile, mittels wenigstens einer ersten Wasserzuführung Wasser in den Arbeitsraum einzuspritzen, um somit die Gesamtmenge an Abgas/Trockendampf zu erhöhen und deren Spülmasse zu erhöhen. So kann das Abgas-Dampfgemisch deutlich effektiver auf die Schaufeln einer Turbine mit angekoppeltem Generator wirken.
Die so erzeugte elektrische Energie kann im Prinzip beliebig genutzt werden. Im Falle eines Blockheizkraftwerks erhöht sich die Gesamtmenge der elektrisch er- zeugen Energie, im Falle eines Kraftfahrzeugs kann die so gewonnene elektrische Energie dem Laden der Akkus von Hybridfahrzeugen und/oder der Bordnetzversorgung dienen.
Die Wirkungsweise wird nun anhand eines einfachen Models erläutert. Es wird davon ausgegangen, dass die ideale Gasgleichung gilt:
pV = NKT
Durch das Verdampfen des Wassers erhöht sich die Zahl der Gasteilchen N während die Temperatur sinkt. Das heißt, es kann erreicht werden, dass der Druck bei gegebenem Volumen konstant bleibt. Oder mit anderen Worten: Die Wassereinspritzung führt durch die Abkühlung zu einem Druckverlust des Verbrennungsgases, der jedoch zeitgleich durch die Wasserdampfbildung kompensiert wird. Somit erhöht sich die Dichte und damit die Spülmasse des die Turbine antreibenden Gases, was deren Leistung/Wirkungsgrad erhöht.
Sofern die Wärmekraftmaschine einen Katalysator aufweist, sollte die Abgastemperatur vor diesem im Regelbetrieb nicht unter deren Mindestarbeitstemperatur fallen. Die Wassereinspritzmenge, -dauer, -pulsung und -zeit wird über das Motormanagement der Lastsituation und Wärme des Katalysators angepasst, wodurch situationsbedingt gekühlt wird.
Der Anfang des Abgastraktes wird durch einen sich erweiternden Auspuffvor- topf gebildet, der vom Resonanzverhalten derart ausgebildet ist, dass das trägere Abgas-Dampfgemisch schnell entweicht und den Kolben beim Ausstößen im besonders hebelwirksamen Bereich einen möglichst geringen Widerstand entgegensetzt. Um den Druckverlust durch Abkühlung über die Außenwände des Abgastraktes gering zu halten, sollte dieser isoliert sein, was gleichzeitig dabei hilft, die Mindestarbeitstemperatur die der Katalysator benötigt zu erhalten. Der Katalysator ist vor der Turbine angeordnet. Seine als ganzes verdrehten Kapilla- ren blasen das erste Turbinenrad mit einem turbulenzfreiem Drall an um die Wirkung auf dieses zu steigern. Die relativ milden Temperaturen an der Turbine vereinfachen die Entwicklung wirkungsstarker Konstruktionen und vergünstigen den Materialeinsatz in der Herstellung erheblich und dies bei verlängerter Haltbarkeit.
Die Nachteile einer Benzindirekteinspritzung können ohne große Umbaumaß- namen eliminiert werden, indem stattdessen Wasser direkt eingespritzt wird. Mit einer ersatzweisen Wasserdirekteinspritzung kann die effektive Verdichtung sogar weiter erhöht werden was den Wirkungsgrad nochmals verbessert. Über selbige Wassereinspritzdüse kann auch vorab schon die Ladeluft gekühlt werden. Der Hauptvorteil der Erfindung liegt in der Erzeugung zusätzlicher elektrischer Energie, die bei vollen (oder fehlenden) Akkus direkt über Elektroantriebsmotoren umgesetzt wird (was den Verbrauch direkt senkt) oder im Akku-Ladebetrieb Energie speichert, die später genutzt wird (was den Verbrauch indirekt senkt). Durch die Wassereinspritzung in den Arbeitsraum kann die Wasserkühlung deutlich reduziert werden oder beispielsweise bei freistehenden Zylindern eines Boxermotors sogar einer simplen Luftkühlung weichen, da ein Teil der Abkühlung dort erfolgt, wo sie entsteht. Dies reduziert das Gewicht und den Energieaufwand für die Kühlung, wodurch bei Fahrzeugen der Durchströmungswiderstand, der üblicherweise ca. 20% des Luftwiderstandes ausmacht, reduziert wird.
Die erfindungsgemäß ohnehin vorhandene Wasserzuführung kann ohne Mehraufwand zum Zwecke der an sich bekannten Ladeluftkühlung und/oder Minimierung der Klopfneigung während der Verdichtung genutzt werden
Weiterhin kann eine - als solche ebenfalls bekannte - Wassereinspritzung in den Abgastrakt vorgesehen sein. In diesem Fall, kann diese vor und/oder nach der Turbine erfolgen. Eine Wassereinspritzung vor der Turbine sollte so ausgelegt sein, dass der Dampf im Abgas-Dampf-Gemisch trocken bleibt, es also nicht zu einem Auskondensieren des Wasserdampfes kommt. Hierdurch wird die Dichte des Abgas-Dampf-Gemischs weiter erhöht, was die Leistung / den Wirkungsgrad der Turbine weiter erhöht. Eine eventuelle Wassereinspritzung nach der Abgasturbine dient einem anderen Zweck, nämlich dazu, durch die Verdampfung den bis dahin trocken Dampf des Abgas-Dampf-Gemisch auf eine Temperatur abzusenken, bei der er anfängt zu kondensieren. Der dann nasse Dampf kann in einem (hier nicht dargestelltem) Kondensator dann weiter auskondensieren, sich absetzen und gemeinsam mit dem hinter der Turbine eingespritzten Wasser zurückgewonnen und dem Wassertank zugeführt werden. Da übliches Abgas, beispielsweise einer Benzinverbrennung, bereits ca. 25% Wasserdampf enthält, ist ein Überschuss an Wasser vorhanden, so dass noch nicht einmal 100% des Wassers zurückgewonnen werden müssen, um die benötigte Wassermenge zu erhalten. Der Wassertank kann so sehr klein gehalten werden und muss im Idealfall nicht oder nur selten nachgefüllt werden. Wird der kühlende Kondensator flach, bspw. als beidseitig umströmter Diffusor oder als großflächiger Teil des Unterbodens ausgeführt, hat er keine negativen Auswirkungen auf den Luftwiderstand. Alle eben beschriebenen Arten der zusätzlichen Wassereinspritzung können einzeln oder in beliebiger Kombination miteinander eingesetzt werden.
Da die Abkühlung über die Zylinderwände geringer ausfällt, bleibt der Druck während des Arbeitstaktes im besonders hebelwirksamen Bereich besser erhalten, was den Wirkungsgrad besonders bei niedrigeren Drehzahlen direkt erhöht. Zudem kondensiert während des Einlass- und Verdichtungstaktes weniger Treibstoff an den Wänden wodurch die Feinstaubbildung reduziert wird.
Da der Turbinen-Generator bei laufendem Motor ständig Strom liefert, können bei Hybridfahrzeugen die Kapazitäten der Akkus erheblich reduziert werden. Beides reduziert Kosten und Gewicht, was wiederum den Verbrauch senkt.
Lange Ladezeiten wie bei Plug-in-Hybriden oder reinen Elektrofahrzeugen verkürzen sich erheblich oder fallen bei genügend Überlandfahrten ganz weg. Dem Turbinen-Generator kann zusätzlich die Bordnetzspannung entnommen werden, was die übliche Lichtmaschine einspart.
Die elektrische Energie kann für einen elektrisch angetriebenen Lader genutzt werden, der schneller als ein Turbolader anspricht und sich besser regeln lässt. Sie kann auch für eine elektromagnetische Ventilsteuerung genutzt werden, was Gewicht spart und den für eine Luftkühlung ungünstigen (weil isolierenden) Kettenkasten und ein geschlossenes Zylinderkopf-Nockenwellen-Gehäuse erübrigt.
Beschreibung bevorzugter Ausführungsformen
Die Erfindung wird nun anhand eines bevorzugten Ausführungsbeispiels mit Bezug auf die Figur näher beschrieben. Die Figur zeigt:
Figur 1 ein Ausführungsbeispiel einer erfindungsgemäßen Wärmekraftmaschine in einer stark schematischen Darstellung.
Die Figur zeigt ein Ausführungsbeispiel einer erfindungsgemäßen Wärmekraftmaschine. Die Basis dieser Wärmekraftmaschine bildet ein Verbrennungsmotor 10, welcher insbesondere als Viertakt- Verbrennungsmotor ausgebildet sein kann. Dieser Verbrennungsmotor 10 kann eine Kolben-Zylinder-Einheit oder beliebig viele Kolben-Zylinder-Einheiten aufweisen. Dargestellt ist lediglich eine Kolben-Zylinder-Einheit mit einem Kolben 12 und einem Zylinder 13. Der Kolben 12 ist in üblicher Art und Weise mit einem Kurbelgetriebe 18 gekoppelt, so dass Kolben 12 und Zylinder 13 einen volumenveränderlichen Arbeitsraum 16 definieren. Dieser Arbeitsraum 16 ist beim Otto- oder Dieselmotor über wenigstens ein Einlassventil 14 mit einem Ansaugtrakt 20 und über wenigsten ein Auslassventil 15 mit einem Abgastrakt 22 verbunden. Der verbrennungsmotorseitige Anfang des Abgastraktes 22 ist vorzugsweise als Auspuffvortopf 23 ausgebildet. Im Falle, dass es sich bei dem Verbrennungsmotor 10 um einen mit Diesel oder Benzin betriebenen Motor 10 handelt, ist dem Auspuffvortopf 23 in der Regel in Strömungsrichtung ein Katalysator 24 nachgeordnet. Weiterhin ist im Abgastrakt 22 eine Turbine 26 angeordnet, welche mittels einer Welle 27, direkt oder über eine Übersetzung, mit einem elektrischen Generator 28 verbunden ist. Dieser Generator 28 speist die von ihm erzeugte elektrische Energie entweder in einen elektrischen Speicher, in einen elektrischen Verbraucher oder (im Falle einer stationären Wärmekraftmaschine) in ein Stromnetz (allgemein mit dem Bezugszeichen 30 bezeichnet). Ist ein Katalysator 24 vorgesehen, befindet sich die Turbine 26 vorzugsweise stromabwärts des Katalysators. Es ist eine erste Wasserzuführung vorgesehen, welche in einer ersten Einspritzdüse 40a endet. Diese erste Einspritzdüse 40a mündet in den Arbeitsraum 16. Vorzugsweise ist die Einspritzdüse 40a so ausgestaltet, dass sie das unter Druck eingespritzte flüssige Wasser zu feinen T röpfchen vernebeln. Es ist möglich, dass die Einspritzdüse das Wasser gepulst einspritzt. Es könnten grundsätzlich mehrere erste Einspritzdüsen 40a vorgesehen sein, welche in den Arbeitsraum münden. Diese könnten Teil einer gemeinsamen ersten Wasserzuführung sein, oder es könnten mehrere voneinander unabhängige erste Wasserzuführungen zum Einspritzen von Wasser in den Arbeitsraum vorgesehen sein. Dargestellt ist der einfachste Fall: Es ist nur eine erste Wasserzuführung mit nur einer ersten Einspritzdüse 40a vorhanden.
Es wird nun auf die Wassereinspritzung in den Arbeitsraum mittels der ersten Einspritzdüse 40a eingegangen:
Die Wassereinspritzungen in den Arbeitsraum erfolgen über die erste Einspritzdüse 40a je nach Lastsituation während des Einlass-, des Verdichtungs- und des Arbeitstaktes. Bei hoher Last wird bereits während des Ansaugtaktes Wasser eingespritzt, um die Ladeluft zu kühlen, und ein weiteres mal im Verdichtungstakt, um eine frühzeitige Entzündung (Klopfen) aufgrund zu hoher Temperaturen zu vermeiden. Dies macht eine Beziendirekteinspritzung überflüssig. Bei niederen Lasten sind Einspritzungen während des Ein- und Verdichtungstaktes nicht nötig.
Einspritzung während des Arbeitstaktes: Hat der Katalysator seine Arbeitstemperatur erreicht und liegt die Abgastemperatur, über dem, was der Katalysator benötigt, wird über die erste Einspritzdüse 40a im Arbeitstakt nach vollständiger Verbrennung gerade soviel Wasser eingespritzt, bis die Temperatur auf ein Katalysator gerechten Wert sinkt. Dabei verdampft das Wasser, was zu einer Kühlung der Verbrennungsgase führt, da die Verdampfungsenergie aufgewendet werden muss. Im Gegenzug wird die Gesamtgasmenge erhöht, wie dies oben beschrieben wurde. Die Dauer der Einspritzung(en) nach vollständiger Verbrennung kann auch vom Arbeitstakt bis in den Ausstoßtakt hineinreichen. Dieses dichtere, weil kühlere Gemisch aus Verbrennungsabgas und zusätzlichem Dampf (Abgas-Dampf-Gemisch) verlässt im Ausstoßtakt den Arbeitsraum und gelangt dann in den Abgastrakt 22, im gezeigten Ausführungsbeispiel zunächst über die Krümmer in den Auspuffvortopf 23.
Im Falle, dass es sich bei dem Verbrennungsmotor 10 um einen mit Diesel oder Benzin betriebenen Motor 10 handelt, ist dem Auspuffvortopf 23 in der Regel in Strömungsrichtung ein Katalysator 24 nachgeordnet. Weiterhin ist im Abgastrakt 22 eine Turbine 26 angeordnet, welche mittels einer Welle 27, direkt oder über eine Übersetzung, mit einem elektrischen Generator 28 verbunden ist. Dieser Generator 28 speist die von ihm erzeugte elektrische Energie entweder in einen elektrischen Speicher, in einen elektrischen Verbraucher oder (im Falle einer stationären Wärmekraftmaschine) in ein Stromnetz (allgemein mit dem Bezugszeichen 30 bezeichnet).
Im gezeigten Ausführungsbeispiel mündet in den Abgastrakt zwischen Katalysator und Turbine eine zweite Wasserzuführung. Gezeigt ist deren zweite Einspritzdüse 40b. Durch Wassereinspritzung mittels dieser zweiten Wasserzuführung wird die Dichte des Abgas-Dampf-Gemischs weiter erhöht, was die Leistung / den Wirkungsgrad der Turbine weiter erhöht. Natürlich könnten auch in diesem Fall mehrere Wasserzuführungen bzw. mehrere zweite Einspritzdüsen 40b vorgeshen sein (nicht dargestellt).
Im gezeigten Ausführungsbeispiel ist schließlich nach der Abgasturbine eine dritte Wasserzuführung 40c vorgesehen. Diese dritte Wasserzuführung dient einem anderen Zweck, nämlich dazu, durch die Verdampfung den bis dahin trocken Dampf des Abgas-Dampf-Gemisch auf eine Temperatur abzusenken, bei der er anfängt zu kondensieren. Das Kondensat kann abgeleitet und in einem Zwischentank gespeichert werden, von wo es der ersten und/oder der dritten Wasserzuführung zugeleitet werden kann (in der Figur nicht dargestellt).
Die Erfindung wurde anhand einer Wärmekraftmaschine erläutert, deren Verbrennungsmotor ein Viertakt-Hubkolbenmotor ist. Dies ist die bevorzugte, jedoch nicht die einzig mögliche Ausführungsform. Der Verbrennungsmotor könnte auch ein Zweitakt- Hubkolbenmotor oder ein Drehkolbenmotor (Wankelmotor) sein.
Gewerbliche Anwendbarkeit
Die Erfindung kann bei Kraftfahrzeugen aller Art eingesetzt werden. Sie ergänzt übliche Kolbenverbrennungsmotoren im stationären und mobilen Bereich. Wenn die Wassereinspritzdüse eine Benzindirekteinspritzdüse ersetzt, sind nicht mal Änderungen am Zylinderkopf nötig. Hybridfahrzeuge werden deutlich leichter und sparsamer und müssen seltener nachgeladen werden. Verbrauch, Abgas- und Feinstaubausstoß sinken. Turbolader, die durch ihre Anordnung nahe dem Motor die Abgasresonanzentladung beeinträchtigen können, durch ein Turbinengenerator mit hohem Wirkungsgard abgelöst werden. Da genügend Strom produziert wird, kann stattdessen eine elektrisch angetriebene Turbine den geforderten Ladedruck erzeugen. Die Verdunstungskühlung während des Ein- und Verdichtungstaktes erlaubt dabei deutlich höheren Ladedruck, was wiederum Downsizing begünstigt.
Bezugszeichenliste
10 Verbrennungsmotor
12 Kolben
13 Zylinder
14 Einlassventil
15 Auslassventil
16 Arbeitsraum
18 Kurbelgetriebe
20 Ansaugtrakt
22 Abgastrakt
23 Auspuffvortopf
24 Katalysator
26 Turbine
27 Welle
28 Generator
30 elektrischer Speicher oder Verbraucher
40a,b,c Einspritzdüsen (Bestandteile der Wasserzuführungen)

Claims

Patentansprüche
1. Verfahren zum Betrieb einer Wärmekraftmaschine mit einem Verbrennungsmotor (10) mit wenigstens einem volumenveränderlichen Arbeitsraum (16), welcher mit einem Ansaugtrakt (20) und einem Abgastrakt (22) verbindbar ist,
dadurch gekennzeichnet, dass zur Erzeugung eines dichten Abgas- Dampfgemisches über wenigstens eine erste Wasserzuführung (40a) während des Arbeitstaktes des Verbrennungsmotors (10), nach vollständiger Verbrennung, eine oder mehrere Wassereinspritzungen in den Arbeitsraum (16) erfolgen, um in Folge eine im Abgastrakt (22) mit einem elektrischen Generator (28) gekoppelten Ab- gas-Dampf-Turbine (26) effizient anzutreiben.
2. Verfahren zum Betrieb einer Wärmekraftmaschine nach Anspruch 1 , dadurch gekennzeichnet,
dass während des Ausstoßtaktes des Verbrennungsmotores (10) zusätzlich eine oder mehrere Wassereinspritzungen in den Arbeitsraum (16) erfolgen.
3. Verfahren zum Betrieb einer Wärmekraftmaschine nach einem der Ansprüche 1 oder 2,
dadurch gekennzeichnet, dass bei Verbrennungsmotoren mit Katalysator zusätzlich zwischen dem Katalysator (24) und der Turbine (26) ein oder mehrere Wassereinspritzungen über wenigstens eine zweite Wasserzuführung (40b) erfolgen.
4. Verfahren zum Betrieb einer Wärmekraftmaschine nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass zur Vorbereitung einer Wasserrückgewinnung über einen Kondensator am Ende des Abgastraktes (22) das Abgasdampfgemisch über wenigstens eine dritte Wasserzuführung (40c) weiter abgekühlt wird.
5. Verfahren zum Betrieb einer Wärmekraftmaschine nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zusätzlich ab Beginn des Einlastaktes des Ver- brennungsmotores (10) über die wenigstens eine erste Wasserzuführung (40a) eine oder mehrere Wassereinspritzungen zur Ladeluftkühlung erfolgen um die effektive Füllmenge der Ladeluft zu erhöhen.
6. Verfahren zum Betrieb einer Wärmekraftmaschine nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass während des Verdichtungstaktes des Verbren- nungsmotores (10) über die wenigstens eine erste Wasserzuführung (40a) eine oder mehrere Wassereinspritzungen zur Kühlung erfolgen um Selbstentzündungen des Treibstoff-Luft-Gemisches zu vermeiden.
PCT/EP2019/051644 2019-01-23 2019-01-23 Verfahren zur energierückgewinnung bei verbrennungsmotoren durch eine abgas-dampf-turbine WO2020151818A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2019/051644 WO2020151818A1 (de) 2019-01-23 2019-01-23 Verfahren zur energierückgewinnung bei verbrennungsmotoren durch eine abgas-dampf-turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2019/051644 WO2020151818A1 (de) 2019-01-23 2019-01-23 Verfahren zur energierückgewinnung bei verbrennungsmotoren durch eine abgas-dampf-turbine

Publications (1)

Publication Number Publication Date
WO2020151818A1 true WO2020151818A1 (de) 2020-07-30

Family

ID=65279518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/051644 WO2020151818A1 (de) 2019-01-23 2019-01-23 Verfahren zur energierückgewinnung bei verbrennungsmotoren durch eine abgas-dampf-turbine

Country Status (1)

Country Link
WO (1) WO2020151818A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112727575A (zh) * 2021-01-22 2021-04-30 李贵臣 一种节能高效低污染组合发动机
CN113389624A (zh) * 2021-06-11 2021-09-14 重庆大学 一种基于汪克尔发动机及高温喷水的尾气废热回收高效发动机结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101495A (ja) 1992-09-24 1994-04-12 Isuzu Ceramics Kenkyusho:Kk ターボコンパウンド式多気筒ガスエンジン
EP1099846A1 (de) * 1999-11-10 2001-05-16 Wärtsilä NSD Schweiz AG Verfahren zum Betreiben eines Viertakt-Dieselmotors
US20030188700A1 (en) 2001-04-06 2003-10-09 Masato Mitsuhashi Method of operating reciprocating internal combustion engines, and system therefor
US20150308296A1 (en) * 2013-01-03 2015-10-29 Eaton Corporation Volumetric fluid expander with water injection
DE102016212903A1 (de) * 2016-07-14 2018-01-18 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101495A (ja) 1992-09-24 1994-04-12 Isuzu Ceramics Kenkyusho:Kk ターボコンパウンド式多気筒ガスエンジン
EP1099846A1 (de) * 1999-11-10 2001-05-16 Wärtsilä NSD Schweiz AG Verfahren zum Betreiben eines Viertakt-Dieselmotors
US20030188700A1 (en) 2001-04-06 2003-10-09 Masato Mitsuhashi Method of operating reciprocating internal combustion engines, and system therefor
US20150308296A1 (en) * 2013-01-03 2015-10-29 Eaton Corporation Volumetric fluid expander with water injection
DE102016212903A1 (de) * 2016-07-14 2018-01-18 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112727575A (zh) * 2021-01-22 2021-04-30 李贵臣 一种节能高效低污染组合发动机
CN113389624A (zh) * 2021-06-11 2021-09-14 重庆大学 一种基于汪克尔发动机及高温喷水的尾气废热回收高效发动机结构

Similar Documents

Publication Publication Date Title
EP1397588B1 (de) Verfahren zum betrieb einer kraftmaschine
WO2019020647A1 (de) Verbrennungskraftmaschine, insbesondere für ein kraftfahrzeug, sowie verfahren zum betreiben einer solchen verbrennungskraftmaschine
EP3430254A1 (de) Brennkraftmaschine und verfahren zum betreiben einer brennkraftmaschine
DE102009043721A1 (de) Hubkolbenmaschine im Hochdruckteil einer Gasturbinen-Kombinationsbrennkraftmaschine
AT522176B1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE202006021157U1 (de) Vorrichtung zur Verbesserung des Wirkungsgrads von Verbrennungsmotoren
AT506592A4 (de) Verbrennungsturbine mit diskontinuierlicher verbrennung
DE102009044913A1 (de) Brennkraftmaschine
DE102017116799B4 (de) Verfahren zum Betrieb einer Wärmekraftmaschine
WO2020151818A1 (de) Verfahren zur energierückgewinnung bei verbrennungsmotoren durch eine abgas-dampf-turbine
DE102013019364A1 (de) Abwärmenutzungseinrichtung für eine Verbrennungskraftmaschine
WO2020249277A1 (de) Verfahren zum betreiben einer brennkraftmaschine mit wasserstoff, wasserstoff-brennkraftmaschine und kraftfahrzeug
DE102010029972A1 (de) Verbrennungsmotor für Wasserstoff mit hohem Wirkungsgrad
DE102012002566A1 (de) Wärmekraftmaschine mit Verbrennungslufteinblasung
DE102012103875A1 (de) Hybridfahrzeug und Verfahren zum Betrieb eines Verbrennungsmotors desselben
DE2235004A1 (de) Verfahren zur verbesserung von leistung und verbrauch bei freisaugenden, gemischverdichtenden, fremdgezuendeten brennkraftmaschinen mit besonders intensiver abgasentgiftung durch verwendung von in einem ausserhalb der brennkraftmaschine angeordneten vergasungsreaktor mittels partieller verbrennung fluessiger brennstoffe erzeugtem brenngas
DE102018123871A1 (de) Mehrstufig aufgeladene Brennkraftmaschine mit Flüssigkeitseinspritzung in den Frischgasstrang zwischen zwei Verdichtern
DE102008008859A1 (de) Das aktive modulare Brennkraftmaschinensystem-AMICES
DE19625449A1 (de) Kombi-Verbundverfahren für Dieselmotoren
AT526345B1 (de) Verfahren zum Betreiben einer gasbetriebenen Brennkraftmaschine
AT526346B1 (de) Verfahren zum Betreiben einer wasserstoffbetriebenen Brennkraftmaschine
AT525804B1 (de) Verfahren zum Betreiben einer gasbetriebenen Brennkraftmaschine
DE102011010742A1 (de) Verbrennungskraftmaschine sowie Verfahren zum Betreiben einer solchen Verbrennungskraftmaschine
DE902101C (de) Arbeitsverfahren fuer Verbund-Brennkraftmaschinen
DE332227C (de) Vereinigte Viertaktexplosionskraft- und Dampfmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19703252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19703252

Country of ref document: EP

Kind code of ref document: A1