WO2020149388A1 - Crosslinkable block copolymer and hot-melt adhesive - Google Patents

Crosslinkable block copolymer and hot-melt adhesive Download PDF

Info

Publication number
WO2020149388A1
WO2020149388A1 PCT/JP2020/001389 JP2020001389W WO2020149388A1 WO 2020149388 A1 WO2020149388 A1 WO 2020149388A1 JP 2020001389 W JP2020001389 W JP 2020001389W WO 2020149388 A1 WO2020149388 A1 WO 2020149388A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
crosslinkable
meth
spin
polymer
Prior art date
Application number
PCT/JP2020/001389
Other languages
French (fr)
Japanese (ja)
Inventor
章滋 桑原
川端 和裕
Original Assignee
積水フーラー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水フーラー株式会社 filed Critical 積水フーラー株式会社
Priority to JP2020533043A priority Critical patent/JP7289148B2/en
Publication of WO2020149388A1 publication Critical patent/WO2020149388A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers

Definitions

  • the present invention relates to a crosslinkable block copolymer and a hot melt adhesive.
  • Acrylic adhesives are used in adhesive tapes and product labels. Further, since the acrylic pressure-sensitive adhesive is excellent in transparency, heat resistance and weather resistance, it is also used for optical displays of electronic devices such as personal computers, smartphones, televisions and digital cameras.
  • solvent-free adhesives are recommended from the viewpoint of improving the usage environment, and even acrylic adhesives are becoming hot-melt.
  • the hot-melt pressure-sensitive adhesive does not require a drying step for removing the solvent in the step of coating the support, and thus does not require equipment for the drying step and contributes greatly to energy saving.
  • Patent Document 1 At least two blocks of a non-elastomeric polymer block A and an elastomeric polymer block B composed of a (meth)acrylate-based polymer are bonded, and the non-elastomeric polymer block A determined by 1 H pulse NMR at 30° C.
  • the elastomer-polymer block A has a spin-spin relaxation time T 2 of 13 to 25 microseconds, its proton component ratio is 0.05 to 0.3, and the melting point or glass transition of the non-elastomeric polymer block A.
  • a reactive hot type which has a main component of a block copolymer having a number average molecular weight of 15,000 to 200,000, which has a proton component ratio of 0 at a temperature of not less than the above, and which is crosslinked or polymerized by heating or irradiation with active energy rays.
  • Melt adhesive compositions are disclosed.
  • the reactive hot-melt pressure-sensitive adhesive composition of Patent Document 1 has a markedly increased viscosity depending on the type and content of the monomers constituting the non-elastomeric polymer block A, which leads to a decrease in coatability and adhesiveness. It also has the problem that it also decreases.
  • the present invention provides a crosslinkable block copolymer having a low melt viscosity, excellent coatability, and excellent adhesive physical properties (particularly peeling resistance) by crosslinking, and a hot melt adhesive using the same. ..
  • the crosslinkable block copolymer is A polymer block A containing a monomer unit having crosslinkability, Having a polymer block B, After cross-linking, when the decay curve obtained by the Solid echo method in 1 H pulsed NMR (20 MHz) at 40° C. was fitted with a two-component relaxation curve using the nonlinear least squares method, the shorter spin-spin relaxation was obtained.
  • the time T 2 (1) is 40 to 90 ⁇ sec, and the component ratio A 1 of the relaxation curve having the spin-spin relaxation time T 2 is 10 to 35%.
  • the crosslinkable block copolymer is a crosslinkable block copolymer having a polymer block A and a polymer block B,
  • the polymer block A contains a monomer unit having crosslinkability
  • After cross-linking the above-mentioned cross-linkable block copolymer when the decay curve obtained by the Solid echo method in 1 H pulse NMR (20 MHz) at 40° C. is subjected to two-component relaxation curve fitting using the nonlinear least squares method
  • the shorter spin-spin relaxation time T 2 (1) is 40 to 90 ⁇ sec, and the component ratio A 1 of the relaxation curve having the above spin-spin relaxation time T 2 (1) is 10 to 35%. Is characterized by.
  • the crosslinkable block copolymer of the present invention has a polymer block A and a polymer block B.
  • the crosslinkable block copolymer is preferably an ABA type triblock copolymer in which the polymer block A is bound to each of both ends of the polymer block B.
  • the monomer constituting the polymer block A of the crosslinkable block copolymer is not particularly limited, and examples thereof include a monomer capable of undergoing a polymerization reaction such as radical polymerization, cationic polymerization, or anionic polymerization.
  • the monomers having are preferred.
  • monomers other than the monomer having crosslinkability described later that is, the monomer having no crosslinkability (hereinafter, referred to as “monomer having no crosslinkable group” or “non-crosslinkable monomer”). May be mentioned)) include, for example, vinyl-based monomers, (meth)acrylic-based monomers, (meth)acrylamide-based monomers, and the like, which have excellent radical polymerization reactivity, and therefore (meth)acrylic-based monomers and (Meth)acrylamide monomers are preferred.
  • (meth)acryl means acryl or methacryl.
  • vinyl monomers examples include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene and 2,4-dimethyl.
  • styrene-based monomers such as p-methoxystyrene, p-phenylstyrene, p-chlorostyrene, and 3,4-dichlorostyrene.
  • the vinyl monomers may be used alone or in combination of two or more kinds.
  • Examples of the (meth)acrylic monomer include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth).
  • (meth)acrylate is preferable, and saturated aliphatic A (meth)acrylate having a ring structure is more preferable, and isobornyl (meth)acrylate, cyclohexyl (meth)acrylate, t-butylcyclohexyl (meth)acrylate, 3,5,5-trimethylcyclohexyl (meth)acrylate, dicyclopentanyl (Meth)acrylate and adamantyl (meth)acrylate are more preferable, and isobornyl (meth)acrylate, cyclohexyl (meth)acrylate and 4-t-butylcyclohexyl (meth)acrylate are particularly preferable.
  • the (meth)acrylic monomers may be used alone or in combination of two or more.
  • (Meth)acrylate means methacrylate or acrylate.
  • Examples of the (meth)acrylamide-based monomer include N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N-isopropyl(meth)acrylamide, N-phenyl(meth)acrylamide, N-benzyl.
  • the (meth)acrylamide-based monomers may be used alone or in combination of two or more kinds.
  • the content of the monomer unit having no crosslinkability is preferably 60% by mass or more because the peel resistance after crosslinking of the crosslinkable block copolymer is improved. 90% by mass or more is more preferable, 95% by mass or more is more preferable, and 98% by mass or more is particularly preferable.
  • the content of the monomer unit having no crosslinkability is 99.9% by mass or less because the peel resistance after crosslinking of the crosslinkable block copolymer is improved. Is preferable, 99.8 mass% or less is more preferable, and 99.7 mass% or less is particularly preferable.
  • the polymer block A contains a monomer unit having crosslinkability. Since the polymer block A contains a monomer unit having a crosslinking property, the polymer block A and the polymer block B are made to have different polarities from each other so as to develop a layer separation structure, and at the same time, the polymer block A By positively introducing the crosslinked structure into the crosslinkable block copolymer, the crosslinkable block copolymer has excellent peeling resistance after crosslinking.
  • a monomer having a crosslinkability means irradiation with radiation such as ultraviolet rays and electron beams, heating, reaction with moisture (water), acid, base and/or a crosslinking agent.
  • radiation such as ultraviolet rays and electron beams
  • the crosslinkable monomer is preferably a monomer having a crosslinkable group capable of forming a chemical bond by irradiation with radiation to be crosslinked (hereinafter, may be referred to as “radiation-crosslinkable monomer”), and chemically bonded by irradiation with ultraviolet rays.
  • a monomer having a crosslinkable group capable of forming a group (hereinafter sometimes referred to as “UV crosslinkable monomer”) is more preferable.
  • Crosslinkability means that a chemical bond is formed by a crosslinking treatment such as irradiation with radiation such as ultraviolet rays and electron beams, heating, reaction with moisture (water), acid, base and/or a crosslinking agent to allow crosslinking.
  • the crosslinkable group is not particularly limited, and examples thereof include a hydroxyl group, a thiol group, a carboxyl group, a glycidyl group, an oxetanyl group, a trimethoxysilyl group, an isocyanate group, an amino group, a vinyl group, a (meth)acryloyl group, and a benzophenone group.
  • a benzoin group, a thioxanthone group and the like, a glycidyl group, a benzophenone group, a benzoin group and a thioxanthone group are preferable, and a glycidyl group and a benzophenone group are more preferable.
  • (meth)acryloyl means methacryloyl or acryloyl.
  • (Meth)acryloxy means methacryloxy or acryloxy.
  • the crosslinkable monomer is not particularly limited, and examples thereof include 4-hydroxybutyl acrylate glycidyl ether, 4-(meth)acryloyloxybenzophenone, 4-[2-((meth)acryloyloxy)ethoxy]benzophenone, 4- (Meth)acryloyloxy-4′-methoxybenzophenone, 4-(meth)acryloyloxyethoxy-4′-methoxybenzophenone, 4-(meth)acryloyloxy-4′-bromobenzophenone, 4-(meth)acryloyloxyethoxy- 4′-Bromobenzophenone and the like can be mentioned, and 4-hydroxybutyl acrylate glycidyl ether, 4-(meth)acryloyloxybenzophenone, and 4-[2-((meth)acryloyloxy)ethoxy]benzophenone are preferable.
  • the monomer having a crosslinkable group may be used alone or in combination of two or more kinds.
  • the content of the monomer unit having crosslinkability is preferably 40% by mass or less, because the peel resistance after crosslinking of the crosslinkable block copolymer is improved. 10 mass% or less is more preferable, 5 mass% or less is more preferable, and 2 mass% or less is particularly preferable.
  • the content of the monomer unit having crosslinkability is preferably 0.1% by mass or more because the peel resistance of the crosslinkable block copolymer after crosslinking is improved. 0.2 mass% or more is more preferable, and 0.3 mass% or more is particularly preferable.
  • the preferable content of the monomer unit having crosslinkability is preferably that at least one polymer block A satisfies all the polymer blocks A. It is more preferable that the united block A is filled.
  • the polymer block A is bonded to the polymer block B described later, and preferably is bonded to both ends of the polymer block B.
  • the crosslinkable block copolymer may have a polymer block A and a polymer block B, and preferably has an ABA type triblock structure.
  • the crosslinkable block copolymer has an ABA type triblock structure, the two polymer blocks A bonded to both ends of the polymer block B do not have to be the same and different. May be. That is, in the two polymer blocks A bonded to both ends of the polymer block B, the type and content of the monomer units constituting the two polymer blocks A may be the same or different, The molecular weights may be the same or different.
  • the molecular weight of the polymer constituting the polymer block A is preferably 1000 or more, more preferably 3000 or more, more preferably 5000 or more, and more preferably 5500 or more.
  • the polymer constituting the polymer block A has a molecular weight of preferably 50,000 or less, more preferably 30,000 or less, more preferably 25,000 or less, and further preferably 22,000 or less.
  • the molecular weight of the polymer constituting the polymer block A is 1,000 or more, the peel resistance of the crosslinkable block copolymer after crosslinking is improved.
  • the molecular weight of the polymer constituting the polymer block A is 50,000 or less, the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability.
  • the ratio of the molecular weights of the two polymer blocks A bonded to both ends of the polymer block B is 2.4 or less. Is preferable, 2.2 or less is more preferable, and 2.0 or less is particularly preferable.
  • the molecular weight ratio is within the above range, a layer separation structure can be satisfactorily formed between the polymer block A and the polymer block B after the crosslinking of the crosslinkable block copolymer, and thus the crosslinkable block.
  • the peel resistance of the copolymer after crosslinking is improved.
  • the ratio of the molecular weights is the value obtained by dividing the large molecular weight by the small molecular weight of the two polymer blocks A and A.
  • the molecular weight of the polymer constituting the polymer block A is determined from the peak top molecular weight of the partial polymer of the polymer block A and the peak top molecular weight of the crosslinkable block copolymer. The value obtained by subtracting the peak top molecular weight of the polymer block B partial polymer.
  • the monomer forming the polymer block B of the crosslinkable block copolymer preferably has no crosslinkability (noncrosslinkability). That is, the monomer forming the polymer block B of the polymer block B is preferably a monomer having no crosslinkable group (non-crosslinkable monomer). When the monomer constituting the polymer block B has no crosslinkability, the peeling resistance of the crosslinkable block copolymer after crosslinking is improved.
  • the monomer constituting the polymer block B of the crosslinkable block copolymer is not particularly limited, and examples thereof include a monomer capable of undergoing a polymerization reaction such as radical polymerization, cationic polymerization or anionic polymerization, and an ethylenically unsaturated bond.
  • the monomers having are preferred.
  • Examples of the monomer constituting the polymer block B include a vinyl-based monomer, a (meth)acrylic-based monomer, a (meth)acrylamide-based monomer, and the like. Since they have excellent radical polymerization reactivity, (meth) Acrylic monomers and (meth)acrylamide monomers are preferred. In addition, (meth)acryl means acryl or methacryl.
  • vinyl monomers examples include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene and 2,4-dimethyl.
  • styrene-based monomers such as p-methoxystyrene, p-phenylstyrene, p-chlorostyrene, and 3,4-dichlorostyrene.
  • the vinyl monomers may be used alone or in combination of two or more kinds.
  • Examples of the (meth)acrylic monomer include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth).
  • the (meth)acrylic monomers may be used alone or in combination of two or more. 2 or more are preferable and, as for carbon number of the alkyl group of alkyl (meth)acrylate, 4 or more are more preferable. 12 or less is preferable, as for carbon number of the alkyl group of alkyl (meth)acrylate, 10 or less is more preferable, and 8 or less is more preferable.
  • the crosslinkable block copolymer has an appropriate melt viscosity, excellent coatability, and excellent thermal stability. Excellent adhesive properties such as peel resistance.
  • the crosslinkable block copolymer has an appropriate melt viscosity, excellent coatability, and excellent thermal stability. Excellent adhesive properties such as peel resistance.
  • Examples of the (meth)acrylamide-based monomer include N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N-isopropyl(meth)acrylamide, N-phenyl(meth)acrylamide, N-benzyl.
  • the (meth)acrylamide-based monomers may be used alone or in combination of two or more kinds.
  • the monomer constituting the polymer block B and the non-crosslinking monomer among the monomers constituting the polymer block A may be the same or different.
  • the total content of the polymer block A is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 15% by mass or more.
  • the crosslinkable block copolymer has appropriate melt viscosity and excellent coatability, and at the same time, the crosslinkable block copolymer is obtained. Has excellent peeling resistance after crosslinking.
  • the total content of the polymer block A is preferably 39% by mass or less, more preferably 30% by mass or less, and further preferably 25% by mass or less.
  • the crosslinkable block copolymer has appropriate melt viscosity and excellent coatability, and at the same time, the crosslinkable block copolymer. Has excellent peeling resistance after crosslinking.
  • the content of the polymer block B is preferably 61% by mass or more, more preferably 70% by mass or more, and further preferably 75% by mass or more.
  • the crosslinkable block copolymer has appropriate melt viscosity and excellent coatability, and at the same time, the crosslinkable block copolymer is obtained. Has excellent peeling resistance after crosslinking.
  • the content of the polymer block B is preferably 95% by mass or less, more preferably 90% by mass or less, and further preferably 85% by mass or less.
  • the crosslinkable block copolymer has appropriate melt viscosity and excellent coatability, and at the same time, the crosslinkable block copolymer is obtained. Has excellent peeling resistance after crosslinking.
  • the molecular weight of the polymer constituting the polymer block B is preferably 5,000 or more, more preferably 40,000 or more, and even more preferably 50,000 or more.
  • the molecular weight of the polymer constituting the polymer block B is preferably 400000 or less, more preferably 240000 or less, and particularly preferably 150,000 or less.
  • the weight average molecular weight of the polymer constituting the polymer block B is 5,000 or more, the peel resistance of the crosslinkable block copolymer after crosslinking is improved.
  • the molecular weight of the polymer constituting the polymer block B is 400000 or less, the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability.
  • the molecular weight of the polymer constituting the polymer block B means the value calculated according to the following procedure.
  • the polymer constituting the polymer block B From the peak top molecular weight of the crosslinkable block copolymer, which is a polymer block A-polymer block B partial polymer or AB type diblock copolymer, to the peak of the polymer block A partial polymer. The value obtained by subtracting the top molecular weight.
  • the polymer constituting the polymer block B Is the value obtained by subtracting the peak top molecular weight of the polymer block A partial polymer from the peak top molecular weight of the crosslinkable block copolymer.
  • the ratio of the molecular weight of the polymer block A and the molecular weight of the polymer block B is preferably 0.03 or more, 05 or more is more preferable, and 0.08 or more is more preferable.
  • the ratio of the molecular weight of the polymer block A and the molecular weight of the polymer block B is preferably 0.32 or less, 22 or less is more preferable, and 0.17 or less is particularly preferable.
  • the ratio of the molecular weight of the polymer block A and the molecular weight of the polymer block B is 0.03 or more, the peel resistance of the crosslinkable block copolymer after crosslinking is improved.
  • the ratio of the molecular weight of the polymer block A to the molecular weight of the polymer block B is 0.32 or less, the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability.
  • the crosslinkable block copolymer contains a plurality of polymer blocks A
  • the molecular weight of the polymer block A means an arithmetic average value of the molecular weights of the plurality of polymer blocks A.
  • the molecular weight of the polymer blocks B means an arithmetic average value of the molecular weights of the plurality of polymer blocks B.
  • the weight average molecular weight (Mw) of the crosslinkable block copolymer is preferably 10,000 or more, more preferably 50,000 or more, more preferably 70,000 or more, particularly preferably 80,000 or more.
  • the weight average molecular weight (Mw) of the crosslinkable block copolymer is preferably 500,000 or less, more preferably 300,000 or less, more preferably 250,000 or less, and particularly preferably 200,000 or less.
  • the weight average molecular weight (Mw) is 10,000 or more, the peeling resistance of the crosslinkable block copolymer after crosslinking is improved.
  • the weight average molecular weight (Mw) is 500000 or less, the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability.
  • the dispersity (weight average molecular weight Mw/number average molecular weight Mn) of the crosslinkable block copolymer is preferably 3.0 or less, more preferably 2.5 or less, and particularly preferably 2.0 or less. When the dispersity is 3.0 or less, the peeling resistance of the crosslinkable block copolymer after crosslinking is improved.
  • the molecular weight of the polymer constituting the polymer block of the crosslinkable block copolymer, and the weight average molecular weight and number average molecular weight are polystyrene-converted values measured by the GPC (gel permeation chromatography) method. .. Specifically, 0.01 g of the crosslinkable block copolymer was collected, the collected crosslinkable block copolymer was supplied to a test tube, and THF (tetrahydrofuran) was added to the test tube to add the crosslinkable block copolymer. The combined sample is diluted 500 times and filtered to prepare a measurement sample.
  • GPC gel permeation chromatography
  • the molecular weight of the polymer constituting the polymer block of the crosslinkable block copolymer, and the weight average molecular weight Mw and the number average molecular weight Mn of the crosslinkable block copolymer were measured by the GPC method. can do.
  • the molecular weight of the polymer constituting the polymer block of the crosslinkable block copolymer, and the weight average molecular weight Mw and the number average molecular weight Mn of the crosslinkable block copolymer are, for example, in the following measurement device and measurement conditions. Can be measured. Measuring apparatus Waters ACQUITY APC system Measurement conditions Column: Waters HSPgel(TM) HR MB-M Mobile phase: using tetrahydrofuran 0.5 mL/min Detector: RI detector Standard substance: polystyrene SEC temperature: 40°C
  • the shorter one (The spin-spin relaxation time T 2 (1) (hereinafter sometimes referred to simply as “relaxation time T 2 (1)”) of one component) is preferably 35 ⁇ sec or more, more preferably 40 ⁇ sec or more, and 42 ⁇ sec or more. Is more preferable, and 60 ⁇ s or more is more preferable.
  • the spin-spin relaxation time T 2 (1) (hereinafter sometimes referred to simply as “relaxation time T 2 (1)”) of one component is preferably 85 ⁇ sec or less, more preferably 83 ⁇ sec or less, and 81 ⁇ sec or less. Is more preferable, and 75 ⁇ sec or less is more preferable.
  • the spin-spin relaxation time T 2 (1) is 35 ⁇ sec or more, the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability.
  • the spin-spin relaxation time T 2 (1) is 85 ⁇ sec or less, the peeling resistance of the crosslinkable block copolymer after crosslinking is improved.
  • the relaxation time T 2 (2) of the longer one (second component) of the relaxation times of the two relaxation curves Is preferably 500 ⁇ sec or more, and more preferably 600 ⁇ sec or more.
  • the relaxation time T 2 (2) of the longer one (the second component) of the relaxation times of the above two relaxation curves is preferably 1000 ⁇ sec or less, more preferably 800 ⁇ sec or less.
  • the spin-spin relaxation time T 2 (2) is 500 ⁇ sec or more, the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability.
  • the spin-spin relaxation time T 2 (2) is 1000 ⁇ sec or less, the peeling resistance of the crosslinkable block copolymer after crosslinking is improved.
  • the decay curve obtained by the Solid echo method at 1 H pulse NMR (20 MHz) at 40° C. is subjected to two-component relaxation using the nonlinear least squares method.
  • the shorter spin-spin relaxation time T 2 (1) is 40 ⁇ sec or longer, preferably 60 ⁇ sec or longer.
  • the decay curve obtained by the Solid echo method at 1 H pulse NMR (20 MHz) at 40° C. is subjected to two-component relaxation using the nonlinear least squares method.
  • the shorter spin-spin relaxation time T 2 (1) is 90 ⁇ sec or less, preferably 75 ⁇ sec or less.
  • the spin-spin relaxation time T 2 (1) is 40 ⁇ sec or more, the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability.
  • the spin-spin relaxation time T 2 (1) is 90 ⁇ sec or less, the peeling resistance of the crosslinkable block copolymer after crosslinking is improved.
  • the longer spin-spin relaxation time T 2 (2) of the spin-spin relaxation times of the two relaxation curves described above. Is preferably 500 ⁇ sec or more, more preferably 600 ⁇ sec or more.
  • the longer spin-spin relaxation time T 2 (2) of the spin-spin relaxation times of the two relaxation curves described above. ) Is preferably 1000 ⁇ sec or less, more preferably 800 ⁇ sec or less.
  • the relaxation time T 2 (2) is 500 ⁇ sec or more, the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability.
  • the relaxation time T 2 (2) is 1000 ⁇ sec or less, the peeling resistance of the crosslinkable block copolymer after crosslinking is improved.
  • the rate of change of the relaxation time T 2 (2) is preferably 10% or less, more preferably 6.5% or less, and particularly preferably 5% or less.
  • the rate of change of the relaxation time T 2 (2) is 10% or less, the polymer block A of the crosslinkable block copolymer is more selectively crosslinked, and the peeling resistance of the crosslinkable block copolymer after crosslinking is increased. Is improved.
  • the decay curve obtained by the Solid echo method in 1 H pulsed NMR (20 MHz) at 40° C. was fitted to the two-component relaxation curve spin-spin obtained by fitting as described below.
  • the component ratio A 1 of the relaxation curve having the shorter spin-spin relaxation time T 2 (1) is preferably 6% or more, more preferably 10% or more, and 13% or more. Is more preferable.
  • the component ratio A 1 of the relaxation curve having the shorter spin-spin relaxation time T 2 (1) is preferably 30% or less, preferably 29% or less, and more preferably 28% or less. ..
  • the component ratio A 1 is 6% or more, the peeling resistance of the crosslinkable block copolymer after crosslinking is improved.
  • the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability.
  • the spin-spin relaxation time of the two-component relaxation curve obtained by fitting the decay curve obtained by the Solid echo method in 1 H pulsed NMR (20 MHz) at 40° C. as described below.
  • the component ratio A 2 of the relaxation curve having the longer spin-spin relaxation time T 2 (2) is preferably 70% or more, more preferably 71% or more, and particularly preferably 72% or more. preferable.
  • the component ratio A 2 of the relaxation curve having the longer spin-spin relaxation time T 2 (2) is preferably 94% or less, more preferably 90% or less, and particularly preferably 87% or less. preferable.
  • the component ratio A 2 is 70% or more, the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability.
  • the component ratio A 2 is 94% or less, the peeling resistance of the crosslinkable block copolymer after crosslinking is improved.
  • a block copolymer obtained by crosslinking a crosslinkable block copolymer it was obtained by fitting the decay curve obtained by the Solid echo method in 1 H pulse NMR (20 MHz) at 40° C. according to the procedure described below.
  • the component ratio A 1 of the relaxation curve having the shorter spin-spin relaxation time T 2 (1) is 10% or more, 12% or more is preferable and 15% or more is more preferable.
  • the decay curve obtained by the Solid echo method in 1 H pulse NMR (20 MHz) at 40° C. was obtained by fitting 2 as described below.
  • the component ratio A 1 of the relaxation curve having the shorter spin-spin relaxation time T 2 (1) is 35% or less, 33% The following is preferable, and 30% or less is more preferable.
  • the component ratio A 1 is 10% or more, the peeling resistance of the crosslinkable block copolymer after crosslinking is improved.
  • the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability.
  • the decay curve obtained by the Solid echo method in 1 H pulse NMR (20 MHz) at 40° C. was obtained by fitting 2 as described below.
  • the component ratio A 2 of the relaxation curve having the longer spin-spin relaxation time T 2 (2) is preferably 65% or more, and 67%. The above is more preferable, and 70% or more is particularly preferable.
  • the decay curve obtained by the Solid echo method in 1 H pulse NMR (20 MHz) at 40° C. was obtained by fitting 2 as described below.
  • the component ratio A 2 of the relaxation curve having the longer spin-spin relaxation time T 2 (2) is preferably 90% or less, and 88%. The following is more preferable, and 85% or less is particularly preferable.
  • the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability.
  • the peeling resistance of the crosslinkable block copolymer after crosslinking is improved.
  • the relaxation time T 2 (1) and the component ratio A 1 of the relaxation curve having the relaxation time T 2 (1) satisfy the above range.
  • the hard component and the soft component are present in a predetermined ratio, the block copolymer obtained by crosslinking the crosslinkable block copolymer, while expressing a good layer separation structure, the hard component Has a suitable hardness, the block copolymer obtained by cross-linking the cross-linkable block copolymer, exhibits excellent peel resistance, and further, the cross-linkable block copolymer is excellent. It has good coatability.
  • the crosslinkable block copolymer contains a polymer block A and a polymer B, and is preferably an ABA type triblock copolymer, and the hard component is a glass of the polymer blocks A and B. While the soft component is mainly composed of the polymer block having a high transition temperature, the soft component is mainly composed of the polymer block having a low glass transition temperature among the polymer blocks A and B.
  • a crosslinkable block copolymer is obtained. It is possible to favorably form a layer separation structure due to the polarity difference between the polymer blocks A and B of the block copolymer obtained by crosslinking the crosslinkable block copolymer while imparting appropriate hardness.
  • the block copolymer obtained by crosslinking the crosslinkable block copolymer can impart excellent peeling resistance, which is preferable.
  • the monomer having no crosslinkability which constitutes the polymer block A a monomer having a saturated aliphatic ring structure (preferably isobornyl (meth)acrylate, cyclohexyl (meth)acrylate, t-butylcyclohexyl (meth)acrylate, 3, 5,5-trimethylcyclohexyl (meth)acrylate, dicyclopentanyl (meth)acrylate and adamantyl (meth)acrylate, more preferably isobornyl (meth)acrylate, cyclohexyl (meth)acrylate and 4-t-butylcyclohexyl (meth) ) Acrylate), the hard component can be composed of the polymer block A in a high ratio, and the block copolymer obtained by crosslinking the crosslinkable block copolymer has more excellent peeling resistance.
  • the hard component can be composed of the polymer block A in a high ratio, and the block copolymer obtained by crosslinking the cross
  • a 1 H pulse NMR measuring device is used.
  • the 1 H pulse NMR measurement apparatus irradiates all protons existing in a measurement sample with pulsed radio waves at a low frequency (tens of MHz) by a permanent magnet to cause nuclear magnetic resonance, and its response (spin-spin relaxation time). ) Is a measuring device for observing.
  • each of the cross-linkable block copolymer before cross-linking or the block copolymer after cross-linking is measured at the bottom of the NMR tube, set in a 1 H pulse NMR measuring device, and measured under the following conditions. To obtain the decay curve.
  • a 1 H pulse NMR measuring device a measuring device commercially available from Bruker under the trade name “minispec mq20” can be used.
  • the block copolymer after cross-linking is prepared as follows. A cross-linkable block copolymer before cross-linking is applied onto a release-treated polyethylene terephthalate sheet so as to have a thickness of 20 ⁇ m. Next, the crosslinkable block copolymer is crosslinked so that the gel fraction is 50 to 90% by mass to prepare a crosslinked block copolymer.
  • the crosslinkable block copolymer is irradiated with ultraviolet rays under the conditions of UV-C irradiation intensity of about 48 mW/cm 2 and UV-C integrated light amount of 100 mJ/cm 2 using an ultraviolet irradiation device.
  • the united body is crosslinked to produce a crosslinked block copolymer.
  • an ultraviolet irradiation device for example, an ultraviolet irradiation device commercially available from Heraeus (former Fusion UV Systems) under the trade name "Light Hammer 6" (using H bulb) can be used.
  • the illuminance meter for example, an illuminance meter commercially available from EIT Instrument Markets under the trade name "UV Power Puck II" can be used.
  • the decay curve of the crosslinkable block copolymer before crosslinking or the block copolymer after crosslinking measured in the above manner is decomposed into a two-component relaxation curve.
  • the Weibull coefficient is set to 1 (exponential function), and fitting is performed using the nonlinear least squares method. That is, the spin-spin relaxation time T 2 and the component ratio A in the following formula are calculated.
  • T 2 the spin-spin relaxation time
  • the [err] of [SSR/err] is 0 or 1 and that the data after the two-component fitting is sufficiently close to the measured attenuation curve.
  • " ⁇ " means exponentiation.
  • f(t) A 1 ⁇ exp ⁇ -1/W(1)(t/T 2 (1)) ⁇ W(1) ⁇ + A 2 ⁇ exp ⁇ -1/W(2)(t/T 2 ( 2)) ⁇ W(2) ⁇
  • the shorter spin-spin relaxation time is defined as spin-spin relaxation time T 2 (1)
  • the longer spin-spin relaxation time is defined as spin-spin relaxation time T 2 (2).
  • the relaxation curve component ratio having the spin-spin relaxation time T 2 (1) is A 1
  • the relaxation curve component ratio having the spin-spin relaxation time T 2 (2) is A 2 .
  • W(1) and W(2) be Weibull coefficients (both are 1) of each relaxation curve.
  • analysis software analysis software commercially available from Bruker under the trade name "TD-NMR Analyzer" can be used.
  • the gel fraction of the block copolymer after crosslinking is the value measured according to the following procedure. 0.2 g of the block copolymer after crosslinking is supplied to a glass bottle. 30 g of tetrahydrofuran was supplied to a glass bottle and left at room temperature for 24 hours to swell the cross-linked block copolymer.
  • the higher the glass transition temperature of the monomer constituting the polymer block mainly forming the hard component the shorter the spin-spin relaxation time T 2 becomes. can do.
  • the lower the glass transition temperature of the monomer forming the polymer block mainly forming the hard component the longer the spin-spin relaxation time T 2 can be made.
  • the spin-spin relaxation time T 2 can be shortened as the glass transition temperature of the monomer constituting the polymer block mainly forming the soft component is increased.
  • the lower the glass transition temperature of the monomer forming the polymer block mainly forming the soft component the longer the spin-spin relaxation time T 2 can be made.
  • the component ratio A 1 can be increased as the content of the polymer block mainly forming the hard component is increased.
  • the component ratio A 1 can be lowered as the content of the polymer block mainly forming the soft component is increased.
  • the content of the non-crosslinkable monomer in the polymer block mainly forming the hard component is preferably 10.0% by mass or more, more preferably 14.0% by mass or more, and 16. 0 mass% or more is more preferable.
  • the content of the non-crosslinkable monomer in the polymer block mainly forming the hard component is preferably 29.6% by mass or less, more preferably 25.6% by mass or less, and 23. It is more preferably 6% by mass or less.
  • the crosslinkable block copolymer has improved peeling resistance after crosslinking.
  • the content of the non-crosslinkable monomer in the polymer block that mainly forms the hard component is 29.6% by mass or less, the crosslinkable block copolymer has an appropriate melt viscosity and is excellent in coating. Have sex.
  • the content of the non-crosslinkable monomer in the polymer block mainly forming the soft component is preferably 70.1% by mass or more, more preferably 75.0% by mass or more, and 76. 0 mass% or more is more preferable.
  • the content of the non-crosslinkable monomer in the polymer block mainly forming the soft component is preferably 89.9% by mass or less, more preferably 85.0% by mass or less, and 84. It is more preferably 0% by mass or less.
  • the crosslinkable block copolymer When the content of the non-crosslinkable monomer in the polymer block mainly forming the soft component is 70.1% by mass or more, the crosslinkable block copolymer has an appropriate melt viscosity and is excellent in coating. Have sex. When the content of the non-crosslinkable monomer in the polymer block mainly forming the soft component is 89.9% by mass or less, the crosslinkable block copolymer has improved peeling resistance after crosslinking.
  • the crosslinkable block copolymer can be produced using a general-purpose polymerization method, but it is preferable to produce it using living polymerization.
  • living polymerization examples include living radical polymerization, living cationic polymerization, and living anionic polymerization, but living radical polymerization is preferable from the viewpoint of high versatility and safety of polymerization reaction.
  • Examples of the living radical polymerization method include iniferter polymerization, nitroxide-mediated polymerization (NMP), transition metal-catalyzed atom transfer radical addition polymerization (ATRP), dithioester compound reversible chain transfer polymerization (RAFT), and organic tellurium compound.
  • NMP nitroxide-mediated polymerization
  • ATRP transition metal-catalyzed atom transfer radical addition polymerization
  • RAFT dithioester compound reversible chain transfer polymerization
  • organic tellurium compound organic tellurium compound.
  • Polymerization TERP
  • RTCP reversible transfer catalytic polymerization
  • RCMP reversible coordination-mediated polymerization
  • RAFT reversible chain transfer polymerization
  • monomers (2) does not cause an extreme decrease in reactivity to oxygen and light, and (3) at extremely low or high temperatures. Since the reaction proceeds even without it, it can be carried out in a simple polymerization reaction environment and has high productivity, (4) no poisons such as metals and halogens are used, and (5) a crosslinkable block having a sufficient molecular weight. It is preferable because a copolymer can be produced.
  • the dithioester compound used for carrying out the reversible chain transfer polymerization (RAFT) is not particularly limited as long as it is a dithioester compound having exchange chain reactivity, and examples thereof include a dithiobenzoate compound, a trithiocarbonate compound, Examples thereof include dithiocarbamate compounds and xanthate compounds, with trithiocarbonate compounds being preferred.
  • the trithiocarbonate compound is not particularly limited, and examples thereof include 2-[(dodecylsulfanylthiocarbonyl)sulfanyl]propanoic acid, 4- ⁇ [(2-carboxyethyl)sulfanylthiocarbonyl]sulfanyl ⁇ propanoic acid, 4-cyano.
  • a trithiocarbonate compound having only one exchange chain reaction site such as -4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid and 4-[(2-carboxyethylsulfanylthiocarbonyl)sulfanyl]-4-cyanopentanoic acid , S,S-dibenzyltrithiocarbonate, bis ⁇ 4-[ethyl-(2-hydroxyethyl)carbamoyl]benzyl ⁇ trithiocarbonate, etc., such as trithiocarbonate compounds having two exchange chain reaction sites.
  • a trithiocarbonate compound having only one chain reaction site is preferable, and 2-[(dodecylsulfanylthiocarbonyl)sulfanyl]propanoic acid is more preferable.
  • the introduction position of the trithiocarbonate compound residue in the crosslinkable block copolymer differs due to the chemical structure of the trithiocarbonate compound.
  • the trithiocarbonate compound residue is introduced at the end of the polymer block constituting the crosslinkable block copolymer.
  • the trithiocarbonate compound residue is introduced inside the polymer block constituting the crosslinkable block copolymer.
  • a crosslinkable block copolymer produced by reversible chain transfer polymerization (RAFT) using a trithiocarbonate compound having only one exchange chain reaction site decomposes the trithiocarbonate compound residue by heat or light.
  • RAFT reversible chain transfer polymerization
  • the crosslinkable block copolymer structure itself is not decomposed, it is more excellent in thermal stability and UV crosslinking reactivity.
  • the crosslinkable block copolymer is preferably produced by reversible chain transfer polymerization (RAFT) with a dithioester compound.
  • RAFT reversible chain transfer polymerization
  • examples of the reversible chain transfer polymerization (RAFT) polymerization mode include bulk polymerization, solution polymerization, suspension polymerization and emulsion polymerization, and solution polymerization is preferable.
  • Multistep polymerization is performed to produce a crosslinkable block copolymer.
  • RAFT reversible chain transfer polymerization
  • a monomer constituting the polymer block A is converted into a dithioester compound (dithioester compound). It polymerizes sufficiently (in the presence of a compound) to obtain a polymer block A partial polymer (first stage polymerization).
  • a monomer that constitutes the polymer block B is supplied into the polymerization reaction system and sufficiently polymerized to obtain a polymer block A-polymer block B partial polymer (second-stage polymerization).
  • an ABA type triblock obtained by supplying the monomer constituting the polymer block A into the polymerization reaction system and sufficiently polymerizing it to bond the polymer block A to both ends of the polymer block B.
  • a crosslinkable block copolymer which is a copolymer can be obtained.
  • the above-mentioned first stage polymerization and second stage polymerization may be carried out.
  • RAFT reversible chain transfer polymerization
  • the dithioester compound is used as the monomer constituting the polymer block A.
  • (Below) polymerize sufficiently to obtain polymer block A partial polymer (first stage polymerization).
  • a monomer constituting the polymer block B is supplied into the polymerization reaction system and polymerized (second-stage polymerization) to form a polymer block B in the intermediate part of the polymer block A partial polymer, and A A crosslinkable block copolymer which is a —BA type triblock copolymer can be obtained.
  • the content of the monomer having no crosslinkability is 60% by mass or more because the peel resistance after crosslinking of the crosslinkable block copolymer is improved. 90 mass% or more is more preferable, 95 mass% or more is more preferable, and 98 mass% or more is especially preferable.
  • the content of the monomer having no crosslinkability is 99.9% by mass because the peeling resistance of the crosslinkable block copolymer after crosslinking is improved. The following is preferable, 99.8 mass% or less is more preferable, and 99.7 mass% or less is particularly preferable.
  • the content of the crosslinkable monomer is preferably 40% by mass or less because the peeling resistance of the crosslinkable block copolymer after crosslinking is improved. 10 mass% or less is more preferable, 5 mass% or less is more preferable, and 2 mass% or less is particularly preferable.
  • the content of the crosslinkable monomer is 0.1% by mass or more because the peeling resistance after crosslinking of the crosslinkable block copolymer is improved. Is preferable, 0.2 mass% or more is more preferable, and 0.3 mass% or more is particularly preferable.
  • a crosslinkable block copolymer produced using a dithioester compound may have a coloring derived from its chemical structure or a unique odor derived from a sulfur atom.
  • a treatment for reducing or removing a dithioester compound residue in the crosslinkable block copolymer, and a residual dithioester mixed in the crosslinkable block copolymer It is preferable to perform a compound reduction or removal treatment.
  • the treatment method for reducing or removing the dithioester compound residue or the residual dithioester compound include treatment with heat, treatment with ultraviolet light, treatment with excess radical initiator, treatment with nucleophile or reducing agent, treatment with oxidizing agent.
  • the crosslinkable block copolymer can be suitably used as a hot-melt pressure-sensitive adhesive by adding additives such as a tackifier and a photo-acid generator, if necessary.
  • the hot-melt pressure-sensitive adhesive containing the crosslinkable block copolymer has an appropriate melt viscosity and therefore has excellent coatability.
  • the crosslinkable block copolymer is coated on the adherend and then subjected to a crosslinking treatment to the crosslinkable block copolymer, whereby the crosslinkable monomer units contained in the polymer block A are
  • the crosslinkable group forms a crosslinked structure, and the crosslinked structure is introduced into the polymer block A.
  • the block copolymer having the crosslinked structure introduced exhibits excellent tackiness such as peel resistance.
  • the hot-melt pressure-sensitive adhesive may contain additives such as a tackifier, a UV polymerization initiator, a plasticizer, an antioxidant, a colorant, a flame retardant and an antistatic agent as long as the physical properties of the hot-melt adhesive are not impaired. Good.
  • the crosslinkable block copolymer of the present invention has low viscosity and excellent coatability.
  • the block copolymer obtained by cross-linking the cross-linkable block copolymer of the present invention is excellent in adhesive property, particularly peeling resistance.
  • Example 3 is a graph showing an attenuation curve of the crosslinkable block copolymer obtained in Example 1 and a relaxation curve obtained by fitting the attenuation curve to a two-component relaxation curve.
  • reaction solution After purging the inside of the separable flask with nitrogen gas, the reaction solution was kept at 60° C. using a water bath. Then, 2,2′-azobis(isobutyronitrile) as a polymerization initiator was supplied to the reaction solution in the separable flask in the compounding amounts shown in Tables 1 and 2 to start reversible chain transfer polymerization (RAFT). did.
  • the reaction liquid was kept at 60° C. for 6 hours to obtain a polymer block A partial polymer.
  • the peak top molecular weight and the weight average molecular weight of the polymer block A partial polymer are shown in Tables 1 and 2.
  • a reaction liquid containing the polymer block A partial polymer n-butyl acrylate and 2-ethylhexyl acrylate as non-crosslinkable monomers, 4-acryloyloxybenzophenone as a crosslinkable monomer, and ethyl acetate as a solvent were respectively used in Table 1 and The compounding amounts shown in 2 were supplied.
  • the reaction solution was kept at 60° C. for 6 hours for reversible chain transfer polymerization (RAFT) to obtain a polymer block A-polymer block B partial polymer.
  • RAFT reversible chain transfer polymerization
  • the peak top molecular weight and the weight average molecular weight of the polymer block A-polymer block B partial polymer are shown in Tables 1 and 2.
  • reaction solution containing a polymer block A-polymer block B partial polymer, isobornyl acrylate, cyclohexyl acrylate, 4-t-butylcyclohexyl acrylate and n-butyl acrylate as non-crosslinking monomers and 4 as crosslinkable monomers -Acryloyloxybenzophenone, 4-[2-(acryloyloxy)ethoxy]benzophenone and 4-hydroxybutyl acrylate glycidyl ether, and ethyl acetate as a solvent were supplied in the amounts shown in Tables 1 and 2, respectively.
  • the reaction solution was kept at 60° C.
  • the crosslinkable block copolymer was an ABA type triblock copolymer in which the polymer block A was bound to both ends of the polymer block B.
  • the peak top molecular weight, the weight average molecular weight and the dispersity of the crosslinkable block copolymer are shown in Tables 1 and 2.
  • the contents of polymer blocks A and B in the crosslinkable block copolymer are shown in Tables 1 and 2.
  • the total content of the polymer block A and the content of the polymer block B in the crosslinkable block copolymer are shown in Tables 1 and 2.
  • RAFT reversible chain transfer polymerization
  • Table 3 shows the peak top molecular weight, weight average molecular weight and dispersity of the crosslinkable random copolymer.
  • Example 3 To 100 parts by mass of the crosslinkable block copolymer of Example 3, 2 parts by mass of a triarylsulfonium salt-based photoacid generator (trade name "CPI-200K” manufactured by San-Apro Co.) as a photoacid generator (UV cation generator) was added. The mixture was added and uniformly mixed at 130° C. to obtain a hot melt adhesive.
  • a triarylsulfonium salt-based photoacid generator trade name "CPI-200K” manufactured by San-Apro Co.
  • UV cation generator UV cation generator
  • crosslinkable block copolymers obtained in Examples and Comparative Examples block copolymers obtained by crosslinking this crosslinkable block copolymer, crosslinkable random copolymers and this crosslinkable random copolymer were crosslinked.
  • the decay curve of the random copolymer was measured as described above, and the spin-spin relaxation times T 2 (1) and T 2 (2) and the component ratios A 1 and A 2 were obtained based on the decay curve. ..
  • the rate of change (%) of the relaxation time T 2 (2) was also calculated.
  • the gel fractions of the block copolymer and the random copolymer after crosslinking are shown in Tables 3 to 5.
  • a graph showing an attenuation curve of the crosslinkable block copolymer obtained in Example 1 and a relaxation curve obtained by fitting the attenuation curve to a two-component relaxation curve is shown in FIG.
  • the vertical axis represents the "signal intensity ratio when the maximum intensity of the attenuation curve is 1."
  • the component ratio A 1 of the relaxation curve can be read from the value of the intercept on the Y axis of the relaxation curve having the spin-spin relaxation time T 2 (1).
  • the relaxation curve component ratio A 2 can be read from the value of the intercept on the Y axis of the relaxation curve having the spin-spin relaxation time T 2 (2).
  • the measuring device shown below was prepared. 13 g of the hot melt adhesive was collected and put into an aluminum cylinder mounted in Thermosel. The temperature was set to 130° C. to melt the hot melt adhesive. Melt viscosity measurements were taken over 30 minutes using spindle 4-29. The numerical value after the measurement for 30 minutes was read to obtain the melt viscosity at 130°C. Measuring device: DV-E Viscometer (manufactured by Brookfield) Thermosel (manufactured by Brookfield)
  • melt viscosity was less than 70 Pa ⁇ s.
  • B Melt viscosity was 70 Pa ⁇ s or more and less than 150 Pa ⁇ s.
  • C Melt viscosity was 150 Pa ⁇ s or more.
  • the hot melt adhesive was applied onto a polyethylene terephthalate (PET) film so as to have a thickness of 20 ⁇ m.
  • UV-C irradiation intensity about 48 mW/cm 2
  • UV-C integrated light amount using an ultraviolet irradiation device (Hereus (former Fusion UV Systems), trade name “Light Hammer 6” (H bulb used))
  • UV-C ultraviolet rays
  • a 20 ⁇ m-thick adhesive layer was laminated and integrated on a polyethylene terephthalate film to prepare a test piece.
  • a test film was prepared by cutting the test film into a width of 15 mm and a length of 150 mm.
  • a SUS plate was prepared, the surface of the SUS plate was polished with a #240 water resistant sandpaper, and then wiped with a mixed solvent of hexane and acetone to degrease.
  • test piece bonding surface was installed so as to face downward.
  • the weight of 150 g was hung on the end portion of the test piece not attached to the SUS plate, and the measurement was started in a state where the load was applied so that the test piece was peeled off at an angle of 90 degrees with respect to the SUS surface. The measurement was terminated when the bonded 75 mm was entirely peeled off and the test piece dropped, or when 1 hour passed from the start of the measurement.
  • the peeling distance at which the test piece peeled from the SUS plate was measured.
  • the peeling distance at the time when 1 hour passed from the start of the test was proportionally calculated based on the time required for the test piece to fall from the start of the test. The shorter the peeling distance, the better the peeling resistance.
  • A-PET amorphous polyethylene terephthalate
  • crosslinkable block copolymer having a low melt viscosity, excellent coatability, and excellent adhesive physical properties, particularly peeling resistance, and a hot melt adhesive using the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Graft Or Block Polymers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention provides: a crosslinkable block copolymer that has low viscosity and excellent coating properties, as well as excellent adhesive properties and peeling resistance; and a hot-melt adhesive using the same. A crosslinkable block copolymer according to the present invention comprises a polymer block A, which has a crosslinkable monomer unit, and a polymer block B, and is characterized in that after crosslinking, when the attenuation curve obtained by the solid echo technique during 1H pulse NMR (20 MHz) at 40°C is subjected to two-component relaxation curve fitting using a non-linear least squares analysis, the short spin-spin relaxation time T2(1) is 40-90 microseconds, and the component ratio A1 of the relaxation curve having the spin-spin relaxation time T2(1) is 10-35%.

Description

架橋性ブロック共重合体及びホットメルト粘着剤Crosslinkable block copolymer and hot melt adhesive
 本発明は、架橋性ブロック共重合体及びホットメルト粘着剤に関する。 The present invention relates to a crosslinkable block copolymer and a hot melt adhesive.
 アクリル系粘着剤は、粘着テープや商品ラベルなどに用いられている。更に、アクリル系粘着剤は、透明性、耐熱性及び耐候性に優れていることから、パソコン、スマートフォン、テレビ及びデジタルカメラなどの電子機器の光学ディスプレイなどにも用いられている。 Acrylic adhesives are used in adhesive tapes and product labels. Further, since the acrylic pressure-sensitive adhesive is excellent in transparency, heat resistance and weather resistance, it is also used for optical displays of electronic devices such as personal computers, smartphones, televisions and digital cameras.
 又、使用環境の改善の観点から粘着剤の無溶剤化が推奨されており、アクリル系粘着剤においてもホットメルト化が進んでいる。ホットメルト粘着剤は、支持体への塗工工程において溶剤を除去するための乾燥工程が必要ないことから、乾燥工程用の設備を必要とせず、省エネルギー化にも大きく貢献する。 Also, solvent-free adhesives are recommended from the viewpoint of improving the usage environment, and even acrylic adhesives are becoming hot-melt. The hot-melt pressure-sensitive adhesive does not require a drying step for removing the solvent in the step of coating the support, and thus does not require equipment for the drying step and contributes greatly to energy saving.
アクリル系ホットメルト粘着剤においてホットメルト塗工性を発現させるために、アクリル系重合体の分子量を小さく設計する必要がある。しかし、分子量を小さくすることで粘着特性が得られなくなるため、ホットメルト塗工後に、架橋反応や鎖延長反応などを行なって架橋化(硬化)、高分子量化することが必要である。 In order to exhibit hot melt coatability in the acrylic hot melt adhesive, it is necessary to design the molecular weight of the acrylic polymer to be small. However, since adhesive properties cannot be obtained by reducing the molecular weight, it is necessary to carry out cross-linking reaction, chain extension reaction or the like to cross-link (cur) and increase the molecular weight after hot-melt coating.
 特許文献1には、非エラストマー性重合体ブロックAと(メタ)アクリレート系重合体からなるエラストマー性重合体ブロックBとが少なくとも2ブロック結合してなり、30℃における1HパルスNMRで求めた非エラストマー性重合体ブロックAのスピン-スピン緩和時間T2が13~25マイクロ秒で、そのプロトン成分比が0.05~0.3であり、かつ非エラストマー性重合体ブロックAの融点またはガラス転移温度以上では上記のプロトン成分比が0となる、数平均分子量15,000~200,000のブロック共重合体を主剤成分とし、加熱または活性エネルギー線の照射により架橋ないし高分子量化する反応型ホットメルト粘着剤組成物が開示されている。 In Patent Document 1, at least two blocks of a non-elastomeric polymer block A and an elastomeric polymer block B composed of a (meth)acrylate-based polymer are bonded, and the non-elastomeric polymer block A determined by 1 H pulse NMR at 30° C. The elastomer-polymer block A has a spin-spin relaxation time T 2 of 13 to 25 microseconds, its proton component ratio is 0.05 to 0.3, and the melting point or glass transition of the non-elastomeric polymer block A. A reactive hot type which has a main component of a block copolymer having a number average molecular weight of 15,000 to 200,000, which has a proton component ratio of 0 at a temperature of not less than the above, and which is crosslinked or polymerized by heating or irradiation with active energy rays. Melt adhesive compositions are disclosed.
特開2002-69412号公報JP-A-2002-69412
 特許文献1の反応型ホットメルト粘着剤組成物は、非エラストマー性重合体ブロックAを構成しているモノマーの種類及び含有量などによっては著しく粘度が上昇し、塗工性が低下すると共に粘着性も低下するという問題点を有する。 The reactive hot-melt pressure-sensitive adhesive composition of Patent Document 1 has a markedly increased viscosity depending on the type and content of the monomers constituting the non-elastomeric polymer block A, which leads to a decrease in coatability and adhesiveness. It also has the problem that it also decreases.
 本発明は、溶融粘度が低くて塗工性に優れ、且つ、架橋によって優れた粘着物性(特に耐剥がれ性)を発現する架橋性ブロック共重合体及びこれを用いたホットメルト粘着剤を提供する。 The present invention provides a crosslinkable block copolymer having a low melt viscosity, excellent coatability, and excellent adhesive physical properties (particularly peeling resistance) by crosslinking, and a hot melt adhesive using the same. ..
 架橋性ブロック共重合体は、
 架橋性を有するモノマー単位を含む重合体ブロックAと、
 重合体ブロックBとを有し、
 架橋させた後において、40℃での1HパルスNMR(20MHz)においてSolid echo法により得られる減衰曲線を非線形最小二乗法を用いて2成分緩和曲線フィッティングさせたとき、短い方のスピン-スピン緩和時間T2(1)が40~90μ秒であり、上記スピン-スピン緩和時間T2を有する緩和曲線の成分比A1が10~35%であることを特徴とする。
The crosslinkable block copolymer is
A polymer block A containing a monomer unit having crosslinkability,
Having a polymer block B,
After cross-linking, when the decay curve obtained by the Solid echo method in 1 H pulsed NMR (20 MHz) at 40° C. was fitted with a two-component relaxation curve using the nonlinear least squares method, the shorter spin-spin relaxation was obtained. The time T 2 (1) is 40 to 90 μsec, and the component ratio A 1 of the relaxation curve having the spin-spin relaxation time T 2 is 10 to 35%.
 架橋性ブロック共重合体は、重合体ブロックA及び重合体ブロックBを有する架橋性ブロック共重合体であって、
 上記重合体ブロックAは、架橋性を有するモノマー単位を含み、
 上記架橋性ブロック共重合体を架橋させた後において、40℃での1HパルスNMR(20MHz)においてSolid echo法により得られる減衰曲線を非線形最小二乗法を用いて2成分緩和曲線フィッティングさせたとき、短い方のスピン-スピン緩和時間T2(1)が40~90μ秒であり、上記スピン-スピン緩和時間T2(1)を有する緩和曲線の成分比A1が10~35%であることを特徴とする。
The crosslinkable block copolymer is a crosslinkable block copolymer having a polymer block A and a polymer block B,
The polymer block A contains a monomer unit having crosslinkability,
After cross-linking the above-mentioned cross-linkable block copolymer, when the decay curve obtained by the Solid echo method in 1 H pulse NMR (20 MHz) at 40° C. is subjected to two-component relaxation curve fitting using the nonlinear least squares method The shorter spin-spin relaxation time T 2 (1) is 40 to 90 μsec, and the component ratio A 1 of the relaxation curve having the above spin-spin relaxation time T 2 (1) is 10 to 35%. Is characterized by.
[架橋性ブロック共重合体]
 本発明の架橋性ブロック共重合体は、重合体ブロックA及び重合体ブロックBを有する。架橋性ブロック共重合体は、重合体ブロックBの両末端のそれぞれに重合体ブロックAが結合してなるA-B-A型トリブロック共重合体であることが好ましい。
[Crosslinkable block copolymer]
The crosslinkable block copolymer of the present invention has a polymer block A and a polymer block B. The crosslinkable block copolymer is preferably an ABA type triblock copolymer in which the polymer block A is bound to each of both ends of the polymer block B.
 架橋性ブロック共重合体の重合体ブロックAを構成しているモノマーとしては、特に限定されず、ラジカル重合、カチオン重合又はアニオン重合などの重合反応し得るモノマーが挙げられ、エチレン性不飽和結合を有するモノマーが好ましい。 The monomer constituting the polymer block A of the crosslinkable block copolymer is not particularly limited, and examples thereof include a monomer capable of undergoing a polymerization reaction such as radical polymerization, cationic polymerization, or anionic polymerization. The monomers having are preferred.
 重合体ブロックAを構成しているモノマーのうち、後述する架橋性を有するモノマー以外のモノマー、即ち、架橋性を有しないモノマー(以下、「架橋性基を含有しないモノマー」又は「非架橋性モノマー」ということがある)としては、例えば、ビニル系モノマー、(メタ)アクリル系モノマー、(メタ)アクリルアミド系モノマーなどが挙げられ、ラジカル重合反応性に優れているので、(メタ)アクリル系モノマー及び(メタ)アクリルアミド系モノマーが好ましい。なお、(メタ)アクリルとは、アクリル又はメタクリルを意味する。 Among the monomers constituting the polymer block A, monomers other than the monomer having crosslinkability described later, that is, the monomer having no crosslinkability (hereinafter, referred to as “monomer having no crosslinkable group” or “non-crosslinkable monomer”). May be mentioned)) include, for example, vinyl-based monomers, (meth)acrylic-based monomers, (meth)acrylamide-based monomers, and the like, which have excellent radical polymerization reactivity, and therefore (meth)acrylic-based monomers and (Meth)acrylamide monomers are preferred. In addition, (meth)acryl means acryl or methacryl.
 ビニル系モノマーとしては、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン、2,4-ジメチルスチレン、p-n-ブチルスチレン、p-t-ブチルスチレン、p-n-ヘキシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デシルスチレン、p-n-ドデシルスチレン、p-メトキシスチレン、p-フェニルスチレン、p-クロロスチレン、3,4-ジクロロスチレンなどのスチレン系モノマーなどが挙げられる。なお、ビニル系モノマーは、単独で用いられても二種以上が併用されてもよい。 Examples of vinyl monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene and 2,4-dimethyl. Styrene, pn-butylstyrene, pt-butylstyrene, pn-hexylstyrene, pn-octylstyrene, pn-nonylstyrene, pn-decylstyrene, pn-dodecylstyrene And styrene-based monomers such as p-methoxystyrene, p-phenylstyrene, p-chlorostyrene, and 3,4-dichlorostyrene. The vinyl monomers may be used alone or in combination of two or more kinds.
 (メタ)アクリル系モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、n-ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-デシル(メタ)アクリレート、ラウリル(メタ)メタクリレート、ステアリル(メタ)アクリレートなどのアルキルアクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、3,5,5-トリメチルシクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、アダマンチル(メタ)アクリレートなどの飽和脂肪族環構造を有する(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレートなどの(メタ)アクリレートなどが挙げられる。架橋性ブロック共重合体が適度な溶融粘度を有して優れた塗工性を有し且つ架橋後において耐剥がれ性などの粘着物性に優れているので、(メタ)アクリレートが好ましく、飽和脂肪族環構造を有する(メタ)アクリレートがより好ましく、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、3,5,5-トリメチルシクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート及びアダマンチル(メタ)アクリレートがより好ましく、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート及び4-t-ブチルシクロヘキシル(メタ)アクリレートが特に好ましい。なお、(メタ)アクリル系モノマーは、単独で用いられても二種以上が併用されてもよい。(メタ)アクリレートは、メタクリレート又はアクリレートを意味する。 Examples of the (meth)acrylic monomer include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth). ) Acrylate, n-hexyl(meth)acrylate, 2-ethylhexyl(meth)acrylate, n-octyl(meth)acrylate, isooctyl(meth)acrylate, n-nonyl(meth)acrylate, isononyl(meth)acrylate, n-decyl Alkyl acrylates such as (meth)acrylate, lauryl (meth)methacrylate and stearyl (meth)acrylate, isobornyl (meth)acrylate, cyclohexyl (meth)acrylate, t-butylcyclohexyl (meth)acrylate, 3,5,5-trimethylcyclohexyl (Meth)acrylate having a saturated aliphatic ring structure such as (meth)acrylate, dicyclopentanyl (meth)acrylate, adamantyl (meth)acrylate, benzyl (meth)acrylate, phenyl (meth)acrylate, dicyclopentenyl (meth) ) Examples include (meth)acrylates such as acrylates. Since the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability and has excellent adhesive properties such as peel resistance after crosslinking, (meth)acrylate is preferable, and saturated aliphatic A (meth)acrylate having a ring structure is more preferable, and isobornyl (meth)acrylate, cyclohexyl (meth)acrylate, t-butylcyclohexyl (meth)acrylate, 3,5,5-trimethylcyclohexyl (meth)acrylate, dicyclopentanyl (Meth)acrylate and adamantyl (meth)acrylate are more preferable, and isobornyl (meth)acrylate, cyclohexyl (meth)acrylate and 4-t-butylcyclohexyl (meth)acrylate are particularly preferable. The (meth)acrylic monomers may be used alone or in combination of two or more. (Meth)acrylate means methacrylate or acrylate.
 (メタ)アクリルアミド系モノマーとしては、例えば、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-フェニル(メタ)アクリルアミド、N-ベンジル(メタ)アクリルアミド、N-イソボルニル(メタ)アクリルアミド、N-シクロヘキシル(メタ)アクリルアミド、N-3,5,5-トリメチルシクロヘキシル(メタ)アクリルアミド、N-ジシクロペンタニル(メタ)アクリルアミド、N-ジシクロペンテニル(メタ)アクリルアミド、N-アダマンチル(メタ)アクリルアミド、N,N-ジフェニル(メタ)アクリルアミドなどが挙げられる。なお、(メタ)アクリルアミド系モノマーは、単独で用いられても二種以上が併用されてもよい。 Examples of the (meth)acrylamide-based monomer include N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N-isopropyl(meth)acrylamide, N-phenyl(meth)acrylamide, N-benzyl. (Meth)acrylamide, N-isobornyl(meth)acrylamide, N-cyclohexyl(meth)acrylamide, N-3,5,5-trimethylcyclohexyl(meth)acrylamide, N-dicyclopentanyl(meth)acrylamide, N-di Examples thereof include cyclopentenyl (meth)acrylamide, N-adamantyl (meth)acrylamide, N,N-diphenyl (meth)acrylamide and the like. The (meth)acrylamide-based monomers may be used alone or in combination of two or more kinds.
 重合体ブロックAを構成しているモノマー単位中において、架橋性を有しないモノマー単位の含有量は、架橋性ブロック共重合体の架橋後における耐剥がれ性が向上するので、60質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がより好ましく、98質量%以上が特に好ましい。重合体ブロックAを構成しているモノマー単位中において、架橋性を有しないモノマー単位の含有量は、架橋性ブロック共重合体の架橋後における耐剥がれ性が向上するので、99.9質量%以下が好ましく、99.8質量%以下がより好ましく、99.7質量%以下が特に好ましい。 In the monomer unit constituting the polymer block A, the content of the monomer unit having no crosslinkability is preferably 60% by mass or more because the peel resistance after crosslinking of the crosslinkable block copolymer is improved. 90% by mass or more is more preferable, 95% by mass or more is more preferable, and 98% by mass or more is particularly preferable. In the monomer unit constituting the polymer block A, the content of the monomer unit having no crosslinkability is 99.9% by mass or less because the peel resistance after crosslinking of the crosslinkable block copolymer is improved. Is preferable, 99.8 mass% or less is more preferable, and 99.7 mass% or less is particularly preferable.
 重合体ブロックAは、架橋性を有するモノマー単位を含有している。重合体ブロックAが架橋性を有するモノマー単位を含有していることによって、重合体ブロックA及び重合体ブロックBの極性を互いに相違させることによって層分離構造を発現させていると共に、重合体ブロックAに積極的に架橋構造を導入させることによって、架橋性ブロック共重合体は架橋後において優れた耐剥がれ性を有する。 The polymer block A contains a monomer unit having crosslinkability. Since the polymer block A contains a monomer unit having a crosslinking property, the polymer block A and the polymer block B are made to have different polarities from each other so as to develop a layer separation structure, and at the same time, the polymer block A By positively introducing the crosslinked structure into the crosslinkable block copolymer, the crosslinkable block copolymer has excellent peeling resistance after crosslinking.
 架橋性を有するモノマー(以下、「架橋性モノマー」ということがある)とは、紫外線、電子線などの放射線の照射、加熱、湿気(水)、酸、塩基及び/又は架橋剤との反応などの架橋処理によって化学結合を形成して架橋可能な架橋性基を有するモノマーをいう。架橋性を有するモノマーとしては、放射線の照射によって化学結合を形成して架橋可能な架橋性基を有するモノマー(以下、「放射線架橋性モノマー」ということがある)が好ましく、紫外線の照射によって化学結合を形成して架橋可能な架橋性基を有するモノマー(以下、「紫外線架橋性モノマー」ということがある)がより好ましい。「架橋性」とは、紫外線、電子線などの放射線の照射、加熱、湿気(水)、酸、塩基及び/又は架橋剤との反応などの架橋処理によって化学結合を形成して架橋可能であることをいう。 A monomer having a crosslinkability (hereinafter sometimes referred to as "crosslinkable monomer") means irradiation with radiation such as ultraviolet rays and electron beams, heating, reaction with moisture (water), acid, base and/or a crosslinking agent. Means a monomer having a crosslinkable group capable of forming a chemical bond and being crosslinked by the crosslinking treatment. The crosslinkable monomer is preferably a monomer having a crosslinkable group capable of forming a chemical bond by irradiation with radiation to be crosslinked (hereinafter, may be referred to as “radiation-crosslinkable monomer”), and chemically bonded by irradiation with ultraviolet rays. A monomer having a crosslinkable group capable of forming a group (hereinafter sometimes referred to as “UV crosslinkable monomer”) is more preferable. "Crosslinkability" means that a chemical bond is formed by a crosslinking treatment such as irradiation with radiation such as ultraviolet rays and electron beams, heating, reaction with moisture (water), acid, base and/or a crosslinking agent to allow crosslinking. Say that.
 架橋性基としては、特に限定されず、例えば、ヒドロキシル基、チオール基、カルボキシル基、グリシジル基、オキセタニル基、トリメトキシシリル基、イソシアネート基、アミノ基、ビニル基、(メタ)アクリロイル基、ベンゾフェノン基、ベンゾイン基、チオキサントン基などが挙げられ、グリシジル基、ベンゾフェノン基、ベンゾイン基及びチオキサントン基が好ましく、グリシジル基、ベンゾフェノン基がより好ましい。なお、(メタ)アクリロイルは、メタクリロイル又はアクリロイルを意味する。(メタ)アクリロキシは、メタクリロキシ又はアクリロキシを意味する。 The crosslinkable group is not particularly limited, and examples thereof include a hydroxyl group, a thiol group, a carboxyl group, a glycidyl group, an oxetanyl group, a trimethoxysilyl group, an isocyanate group, an amino group, a vinyl group, a (meth)acryloyl group, and a benzophenone group. , A benzoin group, a thioxanthone group and the like, a glycidyl group, a benzophenone group, a benzoin group and a thioxanthone group are preferable, and a glycidyl group and a benzophenone group are more preferable. In addition, (meth)acryloyl means methacryloyl or acryloyl. (Meth)acryloxy means methacryloxy or acryloxy.
 架橋性を有するモノマーとしては、特に限定されず、例えば、4-ヒドロキシブチルアクリレートグリシジルエーテル、4-(メタ)アクリロイルオキシベンゾフェノン、4-[2-((メタ)アクリロイルオキシ)エトキシ]ベンゾフェノン、4-(メタ)アクリロイルオキシ-4’-メトキシベンゾフェノン、4-(メタ)アクリロイルオキシエトキシ-4’-メトキシベンゾフェノン、4-(メタ)アクリロイルオキシ-4’-ブロモベンゾフェノン、4-(メタ)アクリロイルオキシエトキシ-4’-ブロモベンゾフェノンなどが挙げられ、4-ヒドロキシブチルアクリレートグリシジルエーテル、4-(メタ)アクリロイルオキシベンゾフェノン、4-[2-((メタ)アクリロイルオキシ)エトキシ]ベンゾフェノンが好ましい。架橋性基を有するモノマーは、単独で用いられても二種以上が併用されてもよい。なお、(メタ)アクリロイルオキシは、メタクリロイルオキシ又はアクリロイルオキシを意味する。 The crosslinkable monomer is not particularly limited, and examples thereof include 4-hydroxybutyl acrylate glycidyl ether, 4-(meth)acryloyloxybenzophenone, 4-[2-((meth)acryloyloxy)ethoxy]benzophenone, 4- (Meth)acryloyloxy-4′-methoxybenzophenone, 4-(meth)acryloyloxyethoxy-4′-methoxybenzophenone, 4-(meth)acryloyloxy-4′-bromobenzophenone, 4-(meth)acryloyloxyethoxy- 4′-Bromobenzophenone and the like can be mentioned, and 4-hydroxybutyl acrylate glycidyl ether, 4-(meth)acryloyloxybenzophenone, and 4-[2-((meth)acryloyloxy)ethoxy]benzophenone are preferable. The monomer having a crosslinkable group may be used alone or in combination of two or more kinds. In addition, (meth)acryloyloxy means methacryloyloxy or acryloyloxy.
 重合体ブロックAを構成しているモノマー単位中において、架橋性を有するモノマー単位の含有量は、架橋性ブロック共重合体の架橋後における耐剥がれ性が向上するので、40質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下がより好ましく、2質量%以下が特に好ましい。重合体ブロックAを構成しているモノマー中において、架橋性を有するモノマー単位の含有量は、架橋性ブロック共重合体の架橋後における耐剥がれ性が向上するので、0.1質量%以上が好ましく、0.2質量%以上がより好ましく、0.3質量%以上が特に好ましい。架橋性ブロック共重合体が重合体ブロックAを複数個有している場合、架橋性を有するモノマー単位の好ましい含有量は、少なくとも一つの重合体ブロックAが満たしていることが好ましく、全ての重合体ブロックAが満たしていることがより好ましい。 In the monomer unit constituting the polymer block A, the content of the monomer unit having crosslinkability is preferably 40% by mass or less, because the peel resistance after crosslinking of the crosslinkable block copolymer is improved. 10 mass% or less is more preferable, 5 mass% or less is more preferable, and 2 mass% or less is particularly preferable. In the monomer constituting the polymer block A, the content of the monomer unit having crosslinkability is preferably 0.1% by mass or more because the peel resistance of the crosslinkable block copolymer after crosslinking is improved. 0.2 mass% or more is more preferable, and 0.3 mass% or more is particularly preferable. When the crosslinkable block copolymer has a plurality of polymer blocks A, the preferable content of the monomer unit having crosslinkability is preferably that at least one polymer block A satisfies all the polymer blocks A. It is more preferable that the united block A is filled.
 重合体ブロックAは、後述する重合体ブロックBに結合しており、好ましくは、重合体ブロックBの両末端に結合している。架橋性ブロック共重合体は、重合体ブロックA及び重合体ブロックBを有しておればよく、A-B-A型のトリブロック構造が好ましい。架橋性ブロック共重合体がA-B-A型のトリブロック構造である場合、重合体ブロックBの両末端に結合している2個の重合体ブロックAは、同一である必要はなく相違していてもよい。即ち、重合体ブロックBの両末端に結合している2個の重合体ブロックAは、これを構成しているモノマー単位の種類及び含有量は同一であっても相違していてもよいし、分子量が同一であっても相違していてもよい。 The polymer block A is bonded to the polymer block B described later, and preferably is bonded to both ends of the polymer block B. The crosslinkable block copolymer may have a polymer block A and a polymer block B, and preferably has an ABA type triblock structure. When the crosslinkable block copolymer has an ABA type triblock structure, the two polymer blocks A bonded to both ends of the polymer block B do not have to be the same and different. May be. That is, in the two polymer blocks A bonded to both ends of the polymer block B, the type and content of the monomer units constituting the two polymer blocks A may be the same or different, The molecular weights may be the same or different.
 重合体ブロックAを構成している重合体の分子量は、1000以上が好ましく、3000以上がより好ましく、5000以上がより好ましく、5500以上がより好ましい。重合体ブロックAを構成している重合体の分子量は、50000以下が好ましく、30000以下がより好ましく、25000以下がより好ましく、22000以下がより好ましい。重合体ブロックAを構成している重合体の分子量が1000以上であると、架橋性ブロック共重合体の架橋後の耐剥がれ性が向上する。重合体ブロックAを構成している重合体の分子量が50000以下であると、架橋性ブロック共重合体は適度な溶融粘度を有し、優れた塗工性を有する。 The molecular weight of the polymer constituting the polymer block A is preferably 1000 or more, more preferably 3000 or more, more preferably 5000 or more, and more preferably 5500 or more. The polymer constituting the polymer block A has a molecular weight of preferably 50,000 or less, more preferably 30,000 or less, more preferably 25,000 or less, and further preferably 22,000 or less. When the molecular weight of the polymer constituting the polymer block A is 1,000 or more, the peel resistance of the crosslinkable block copolymer after crosslinking is improved. When the molecular weight of the polymer constituting the polymer block A is 50,000 or less, the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability.
 架橋性ブロック共重合体がA-B-A型のトリブロック構造である場合、重合体ブロックBの両末端に結合している2個の重合体ブロックAの分子量の比は、2.4以下が好ましく、2.2以下がより好ましく、2.0以下が特に好ましい。分子量の比が上記範囲内であると、架橋性ブロック共重合体の架橋後において、重合体ブロックAと重合体ブロックBとの間で層分離構造を良好に形成することができ、架橋性ブロック共重合体の架橋後の耐剥がれ性が向上する。なお、分子量の比は、2個の重合体ブロックA、Aの分子量のうち、大きい分子量を小さい分子量で除した値をいう。 When the crosslinkable block copolymer has an ABA type triblock structure, the ratio of the molecular weights of the two polymer blocks A bonded to both ends of the polymer block B is 2.4 or less. Is preferable, 2.2 or less is more preferable, and 2.0 or less is particularly preferable. When the molecular weight ratio is within the above range, a layer separation structure can be satisfactorily formed between the polymer block A and the polymer block B after the crosslinking of the crosslinkable block copolymer, and thus the crosslinkable block. The peel resistance of the copolymer after crosslinking is improved. The ratio of the molecular weights is the value obtained by dividing the large molecular weight by the small molecular weight of the two polymer blocks A and A.
 なお、本発明において、重合体ブロックAを構成している重合体の分子量は、重合体ブロックA部分重合物のピークトップ分子量と、架橋性ブロック共重合体のピークトップ分子量から重合体ブロックA-重合体ブロックB部分重合物のピークトップ分子量を引いた値とをいう。 In the present invention, the molecular weight of the polymer constituting the polymer block A is determined from the peak top molecular weight of the partial polymer of the polymer block A and the peak top molecular weight of the crosslinkable block copolymer. The value obtained by subtracting the peak top molecular weight of the polymer block B partial polymer.
 架橋性ブロック共重合体の重合体ブロックBを構成しているモノマーは、架橋性を有しないこと(非架橋性であること)が好ましい。即ち、重合体ブロックBの重合体ブロックBを構成しているモノマーは、架橋性基を有しないモノマー(非架橋性モノマー)であることが好ましい。重合体ブロックBを構成しているモノマーが架橋性を有していないと、架橋性ブロック共重合体の架橋後における耐剥がれ性が向上する。 The monomer forming the polymer block B of the crosslinkable block copolymer preferably has no crosslinkability (noncrosslinkability). That is, the monomer forming the polymer block B of the polymer block B is preferably a monomer having no crosslinkable group (non-crosslinkable monomer). When the monomer constituting the polymer block B has no crosslinkability, the peeling resistance of the crosslinkable block copolymer after crosslinking is improved.
 架橋性ブロック共重合体の重合体ブロックBを構成しているモノマーとしては、特に限定されず、ラジカル重合、カチオン重合又はアニオン重合などの重合反応し得るモノマーが挙げられ、エチレン性不飽和結合を有するモノマーが好ましい。 The monomer constituting the polymer block B of the crosslinkable block copolymer is not particularly limited, and examples thereof include a monomer capable of undergoing a polymerization reaction such as radical polymerization, cationic polymerization or anionic polymerization, and an ethylenically unsaturated bond. The monomers having are preferred.
 重合体ブロックBを構成しているモノマーとしては、例えば、ビニル系モノマー、(メタ)アクリル系モノマー、(メタ)アクリルアミド系モノマーなどが挙げられ、ラジカル重合反応性に優れているので、(メタ)アクリル系モノマー及び(メタ)アクリルアミド系モノマーが好ましい。なお、(メタ)アクリルとは、アクリル又はメタクリルを意味する。 Examples of the monomer constituting the polymer block B include a vinyl-based monomer, a (meth)acrylic-based monomer, a (meth)acrylamide-based monomer, and the like. Since they have excellent radical polymerization reactivity, (meth) Acrylic monomers and (meth)acrylamide monomers are preferred. In addition, (meth)acryl means acryl or methacryl.
 ビニル系モノマーとしては、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン、2,4-ジメチルスチレン、p-n-ブチルスチレン、p-t-ブチルスチレン、p-n-ヘキシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デシルスチレン、p-n-ドデシルスチレン、p-メトキシスチレン、p-フェニルスチレン、p-クロロスチレン、3,4-ジクロロスチレンなどのスチレン系モノマーなどが挙げられる。なお、ビニル系モノマーは、単独で用いられても二種以上が併用されてもよい。 Examples of vinyl monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene and 2,4-dimethyl. Styrene, pn-butylstyrene, pt-butylstyrene, pn-hexylstyrene, pn-octylstyrene, pn-nonylstyrene, pn-decylstyrene, pn-dodecylstyrene And styrene-based monomers such as p-methoxystyrene, p-phenylstyrene, p-chlorostyrene, and 3,4-dichlorostyrene. The vinyl monomers may be used alone or in combination of two or more kinds.
 (メタ)アクリル系モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、n-ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-デシル(メタ)アクリレート、ラウリル(メタ)メタクリレート、ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、3,5,5-トリメチルシクロヘキシル(メタ)アクリレート、フェニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、アダマンチル(メタ)アクリレートなどの(メタ)アクリレート、(メタ)アクリル酸などが挙げられ、(メタ)アクリレートが好ましく、アルキル(メタ)アクリレートがより好ましい。なお、(メタ)アクリル系モノマーは、単独で用いられても二種以上が併用されてもよい。アルキル(メタ)アクリレートのアルキル基の炭素数は、2以上が好ましく、4以上がより好ましい。アルキル(メタ)アクリレートのアルキル基の炭素数は、12以下が好ましく、10以下がより好ましく、8以下がより好ましい。アルキル基の炭素数が2以上であると、架橋性ブロック共重合体は適度な溶融粘度を有して優れた塗工性を有し且つ優れた熱安定性を有し、更に、架橋後において耐剥がれ性などの粘着物性に優れている。アルキル基の炭素数が12以下であると、架橋性ブロック共重合体は適度な溶融粘度を有して優れた塗工性を有し且つ優れた熱安定性を有し、更に、架橋後において耐剥がれ性などの粘着物性に優れている。 Examples of the (meth)acrylic monomer include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth). ) Acrylate, n-hexyl(meth)acrylate, 2-ethylhexyl(meth)acrylate, n-octyl(meth)acrylate, isooctyl(meth)acrylate, n-nonyl(meth)acrylate, isononyl(meth)acrylate, n-decyl (Meth)acrylate, lauryl (meth)methacrylate, stearyl (meth)acrylate, benzyl (meth)acrylate, isobornyl (meth)acrylate, cyclohexyl (meth)acrylate, 3,5,5-trimethylcyclohexyl (meth)acrylate, phenyl ( (Meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate, (meth)acrylate such as adamantyl (meth)acrylate, (meth)acrylic acid and the like, and (meth)acrylate is preferable, Alkyl (meth)acrylate is more preferred. The (meth)acrylic monomers may be used alone or in combination of two or more. 2 or more are preferable and, as for carbon number of the alkyl group of alkyl (meth)acrylate, 4 or more are more preferable. 12 or less is preferable, as for carbon number of the alkyl group of alkyl (meth)acrylate, 10 or less is more preferable, and 8 or less is more preferable. When the number of carbon atoms in the alkyl group is 2 or more, the crosslinkable block copolymer has an appropriate melt viscosity, excellent coatability, and excellent thermal stability. Excellent adhesive properties such as peel resistance. When the number of carbon atoms in the alkyl group is 12 or less, the crosslinkable block copolymer has an appropriate melt viscosity, excellent coatability, and excellent thermal stability. Excellent adhesive properties such as peel resistance.
 (メタ)アクリルアミド系モノマーとしては、例えば、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-フェニル(メタ)アクリルアミド、N-ベンジル(メタ)アクリルアミド、N-イソボルニル(メタ)アクリルアミド、N-シクロヘキシル(メタ)アクリルアミド、N-3,5,5-トリメチルシクロヘキシル(メタ)アクリルアミド、N-ジシクロペンタニル(メタ)アクリルアミド、N-ジシクロペンテニル(メタ)アクリルアミド、N-アダマンチル(メタ)アクリルアミド、N,N-ジフェニル(メタ)アクリルアミドなどが挙げられる。なお、(メタ)アクリルアミド系モノマーは、単独で用いられても二種以上が併用されてもよい。 Examples of the (meth)acrylamide-based monomer include N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N-isopropyl(meth)acrylamide, N-phenyl(meth)acrylamide, N-benzyl. (Meth)acrylamide, N-isobornyl(meth)acrylamide, N-cyclohexyl(meth)acrylamide, N-3,5,5-trimethylcyclohexyl(meth)acrylamide, N-dicyclopentanyl(meth)acrylamide, N-di Examples thereof include cyclopentenyl (meth)acrylamide, N-adamantyl (meth)acrylamide, N,N-diphenyl (meth)acrylamide and the like. The (meth)acrylamide-based monomers may be used alone or in combination of two or more kinds.
 重合体ブロックBを構成しているモノマーと、重合体ブロックAを構成しているモノマーのうちの架橋性を有しないモノマーとは、同一であっても相違していてもよい。 The monomer constituting the polymer block B and the non-crosslinking monomer among the monomers constituting the polymer block A may be the same or different.
 架橋性ブロック共重合体において、重合体ブロックAの総含有量は、5質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上が特に好ましい。重合体ブロックAの総含有量が5質量%以上であると、架橋性ブロック共重合体は適度な溶融粘度を有して優れた塗工性を有していると共に、架橋性ブロック共重合体は架橋後において優れた耐剥がれ性を有する。 In the crosslinkable block copolymer, the total content of the polymer block A is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 15% by mass or more. When the total content of the polymer block A is 5% by mass or more, the crosslinkable block copolymer has appropriate melt viscosity and excellent coatability, and at the same time, the crosslinkable block copolymer is obtained. Has excellent peeling resistance after crosslinking.
 架橋性ブロック共重合体において、重合体ブロックAの総含有量は、39質量%以下が好ましく、30質量%以下がより好ましく、25質量%以下がより好ましい。重合体ブロックAの総含有量が39質量%以下であると、架橋性ブロック共重合体は適度な溶融粘度を有して優れた塗工性を有していると共に、架橋性ブロック共重合体は架橋後において優れた耐剥がれ性を有する。 In the crosslinkable block copolymer, the total content of the polymer block A is preferably 39% by mass or less, more preferably 30% by mass or less, and further preferably 25% by mass or less. When the total content of the polymer block A is 39% by mass or less, the crosslinkable block copolymer has appropriate melt viscosity and excellent coatability, and at the same time, the crosslinkable block copolymer. Has excellent peeling resistance after crosslinking.
 架橋性ブロック共重合体において、重合体ブロックBの含有量は、61質量%以上が好ましく、70質量%以上がより好ましく、75質量%以上がより好ましい。重合体ブロックBの総含有量が61質量%以上であると、架橋性ブロック共重合体は適度な溶融粘度を有して優れた塗工性を有していると共に、架橋性ブロック共重合体は架橋後において優れた耐剥がれ性を有する。 In the crosslinkable block copolymer, the content of the polymer block B is preferably 61% by mass or more, more preferably 70% by mass or more, and further preferably 75% by mass or more. When the total content of the polymer block B is 61% by mass or more, the crosslinkable block copolymer has appropriate melt viscosity and excellent coatability, and at the same time, the crosslinkable block copolymer is obtained. Has excellent peeling resistance after crosslinking.
 架橋性ブロック共重合体において、重合体ブロックBの含有量は、95質量%以下が好ましく、90質量%以下がより好ましく、85質量%以下がより好ましい。重合体ブロックBの総含有量が95質量%以下であると、架橋性ブロック共重合体は適度な溶融粘度を有して優れた塗工性を有していると共に、架橋性ブロック共重合体は架橋後において優れた耐剥がれ性を有する。 In the crosslinkable block copolymer, the content of the polymer block B is preferably 95% by mass or less, more preferably 90% by mass or less, and further preferably 85% by mass or less. When the total content of the polymer block B is 95% by mass or less, the crosslinkable block copolymer has appropriate melt viscosity and excellent coatability, and at the same time, the crosslinkable block copolymer is obtained. Has excellent peeling resistance after crosslinking.
 重合体ブロックBを構成している重合体の分子量は、5000以上が好ましく、40000以上がより好ましく、50000以上がより好ましい。重合体ブロックBを構成している重合体の分子量は、400000以下が好ましく、240000以下がより好ましく、150000以下が特に好ましい。重合体ブロックBを構成している重合体の重量平均分子量が5000以上であると、架橋性ブロック共重合体の架橋後における耐剥がれ性が向上する。重合体ブロックBを構成している重合体の分子量が400000以下であると、架橋性ブロック共重合体は適度な溶融粘度を有し、優れた塗工性を有する。 The molecular weight of the polymer constituting the polymer block B is preferably 5,000 or more, more preferably 40,000 or more, and even more preferably 50,000 or more. The molecular weight of the polymer constituting the polymer block B is preferably 400000 or less, more preferably 240000 or less, and particularly preferably 150,000 or less. When the weight average molecular weight of the polymer constituting the polymer block B is 5,000 or more, the peel resistance of the crosslinkable block copolymer after crosslinking is improved. When the molecular weight of the polymer constituting the polymer block B is 400000 or less, the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability.
 なお、本発明において、重合体ブロックBを構成している重合体の分子量は下記の要領で算出された値をいう。リビング重合を活性化しうる構造(例えば、交換連鎖反応部位など)を1分子当たり1個有する化合物を用いて重合された架橋性ブロック共重合体の場合、重合体ブロックBを構成している重合体の分子量は、重合体ブロックA-重合体ブロックB部分重合物又はA-B型のジブロック共重合体である架橋性ブロック共重合体のピークトップ分子量から、重合体ブロックA部分重合物のピークトップ分子量を引いた値をいう。リビング重合を活性化しうる構造(例えば、交換連鎖反応部位など)を1分子当たり2個有する化合物を用いて重合された架橋性ブロック共重合体の場合、重合体ブロックBを構成している重合体の分子量は、架橋性ブロック共重合体のピークトップ分子量から重合体ブロックA部分重合物のピークトップ分子量を引いた値をいう。 In the present invention, the molecular weight of the polymer constituting the polymer block B means the value calculated according to the following procedure. In the case of a crosslinkable block copolymer polymerized with a compound having one structure (for example, exchange chain reaction site) capable of activating living polymerization per molecule, the polymer constituting the polymer block B From the peak top molecular weight of the crosslinkable block copolymer, which is a polymer block A-polymer block B partial polymer or AB type diblock copolymer, to the peak of the polymer block A partial polymer. The value obtained by subtracting the top molecular weight. In the case of a crosslinkable block copolymer polymerized using a compound having two structures per molecule that can activate living polymerization (for example, exchange chain reaction sites), the polymer constituting the polymer block B Is the value obtained by subtracting the peak top molecular weight of the polymer block A partial polymer from the peak top molecular weight of the crosslinkable block copolymer.
 架橋性ブロック共重合体において、重合体ブロックAの分子量と重合体ブロックBの分子量との比(重合体ブロックAの分子量/重合体ブロックBの分子量)は、0.03以上が好ましく、0.05以上がより好ましく、0.08以上がより好ましい。架橋性ブロック共重合体において、重合体ブロックAの分子量と重合体ブロックBの分子量との比(重合体ブロックAの分子量/重合体ブロックBの分子量)は、0.32以下が好ましく、0.22以下がより好ましく、0.17以下が特に好ましい。重合体ブロックAの分子量と重合体ブロックBの分子量との比が0.03以上であると、架橋性ブロック共重合体の架橋後における耐剥がれ性が向上する。重合体ブロックAの分子量と重合体ブロックBの分子量との比が0.32以下であると、架橋性ブロック共重合体は適度な溶融粘度を有し、優れた塗工性を有する。なお、架橋性ブロック共重合体中に重合体ブロックAが複数個含有されている場合、重合体ブロックAの分子量は、複数個の重合体ブロックAの分子量の相加平均値をいう。架橋性ブロック共重合体中に重合体ブロックBが複数個含有されている場合、重合体ブロックBの分子量は、複数個の重合体ブロックBの分子量の相加平均値をいう。 In the crosslinkable block copolymer, the ratio of the molecular weight of the polymer block A and the molecular weight of the polymer block B (molecular weight of the polymer block A/molecular weight of the polymer block B) is preferably 0.03 or more, 05 or more is more preferable, and 0.08 or more is more preferable. In the crosslinkable block copolymer, the ratio of the molecular weight of the polymer block A and the molecular weight of the polymer block B (molecular weight of the polymer block A/molecular weight of the polymer block B) is preferably 0.32 or less, 22 or less is more preferable, and 0.17 or less is particularly preferable. When the ratio of the molecular weight of the polymer block A and the molecular weight of the polymer block B is 0.03 or more, the peel resistance of the crosslinkable block copolymer after crosslinking is improved. When the ratio of the molecular weight of the polymer block A to the molecular weight of the polymer block B is 0.32 or less, the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability. When the crosslinkable block copolymer contains a plurality of polymer blocks A, the molecular weight of the polymer block A means an arithmetic average value of the molecular weights of the plurality of polymer blocks A. When a plurality of polymer blocks B are contained in the crosslinkable block copolymer, the molecular weight of the polymer blocks B means an arithmetic average value of the molecular weights of the plurality of polymer blocks B.
 架橋性ブロック共重合体の重量平均分子量(Mw)は、10000以上が好ましく、50000以上がより好ましく、70000以上がより好ましく、80000以上が特に好ましい。架橋性ブロック共重合体の重量平均分子量(Mw)は、500000以下が好ましく、300000以下がより好ましく、250000以下がより好ましく、200000以下が特に好ましい。重量平均分子量(Mw)が10000以上であると、架橋性ブロック共重合体の架橋後における耐剥がれ性が向上する。重量平均分子量(Mw)が500000以下であると、架橋性ブロック共重合体は適度な溶融粘度を有し、優れた塗工性を有する。 The weight average molecular weight (Mw) of the crosslinkable block copolymer is preferably 10,000 or more, more preferably 50,000 or more, more preferably 70,000 or more, particularly preferably 80,000 or more. The weight average molecular weight (Mw) of the crosslinkable block copolymer is preferably 500,000 or less, more preferably 300,000 or less, more preferably 250,000 or less, and particularly preferably 200,000 or less. When the weight average molecular weight (Mw) is 10,000 or more, the peeling resistance of the crosslinkable block copolymer after crosslinking is improved. When the weight average molecular weight (Mw) is 500000 or less, the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability.
 架橋性ブロック共重合体の分散度(重量平均分子量Mw/数平均分子量Mn)は、3.0以下が好ましく、2.5以下がより好ましく、2.0以下が特に好ましい。分散度が3.0以下であると、架橋性ブロック共重合体の架橋後における耐剥がれ性が向上する。 The dispersity (weight average molecular weight Mw/number average molecular weight Mn) of the crosslinkable block copolymer is preferably 3.0 or less, more preferably 2.5 or less, and particularly preferably 2.0 or less. When the dispersity is 3.0 or less, the peeling resistance of the crosslinkable block copolymer after crosslinking is improved.
 架橋性ブロック共重合体の重合体ブロックを構成している重合体の分子量、並びに、重量平均分子量及び数平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)法によって測定されたポリスチレン換算した値である。具体的には、架橋性ブロック共重合体0.01gを採取し、採取した架橋性ブロック共重合体を試験管に供給した上で、試験管にTHF(テトラヒドロフラン)を加えて架橋性ブロック共重合体を500倍に希釈し、フィルタリングを行って、測定試料を作製する。 The molecular weight of the polymer constituting the polymer block of the crosslinkable block copolymer, and the weight average molecular weight and number average molecular weight are polystyrene-converted values measured by the GPC (gel permeation chromatography) method. .. Specifically, 0.01 g of the crosslinkable block copolymer was collected, the collected crosslinkable block copolymer was supplied to a test tube, and THF (tetrahydrofuran) was added to the test tube to add the crosslinkable block copolymer. The combined sample is diluted 500 times and filtered to prepare a measurement sample.
 この測定試料を用いてGPC法によって、架橋性ブロック共重合体の重合体ブロックを構成している重合体の分子量、並びに、架橋性ブロック共重合体の重量平均分子量Mw及び数平均分子量Mnを測定することができる。 Using this measurement sample, the molecular weight of the polymer constituting the polymer block of the crosslinkable block copolymer, and the weight average molecular weight Mw and the number average molecular weight Mn of the crosslinkable block copolymer were measured by the GPC method. can do.
 架橋性ブロック共重合体の重合体ブロックを構成している重合体の分子量、並びに、架橋性ブロック共重合体の重量平均分子量Mw及び数平均分子量Mnは、例えば、下記測定装置及び測定条件にて測定することができる。
測定装置 Waters社製 ACQUITY APCシステム
測定条件 カラム:Waters社製 HSPgel(TM)HR MB-M
     移動相:テトラヒドロフラン使用 0.5mL/分
     検出器:RI検出器
     標準物質:ポリスチレン
     SEC温度:40℃
The molecular weight of the polymer constituting the polymer block of the crosslinkable block copolymer, and the weight average molecular weight Mw and the number average molecular weight Mn of the crosslinkable block copolymer are, for example, in the following measurement device and measurement conditions. Can be measured.
Measuring apparatus Waters ACQUITY APC system Measurement conditions Column: Waters HSPgel(TM) HR MB-M
Mobile phase: using tetrahydrofuran 0.5 mL/min Detector: RI detector Standard substance: polystyrene SEC temperature: 40°C
 架橋性ブロック共重合体において、40℃での1HパルスNMR(20MHz)にてSolid echo法により得られる減衰曲線を非線形最小二乗法を用いて2成分緩和曲線フィッティングさせたとき、短い方(第1成分)のスピン-スピン緩和時間T2(1)(以下、単に「緩和時間T2(1)」ということがある)は、35μ秒以上が好ましく、40μ秒以上がより好ましく、42μ秒以上がより好ましく、60μ秒以上がより好ましい。架橋性ブロック共重合体において、40℃での1HパルスNMR(20MHz)にてSolid echo法により得られる減衰曲線を非線形最小二乗法を用いて2成分緩和曲線フィッティングさせたとき、短い方(第1成分)のスピン-スピン緩和時間T2(1)(以下、単に「緩和時間T2(1)」ということがある)は、85μ秒以下が好ましく、83μ秒以下がより好ましく、81μ秒以下がより好ましく、75μ秒以下がより好ましい。スピン-スピン緩和時間T2(1)が35μ秒以上であると、架橋性ブロック共重合体は適度な溶融粘度を有し、優れた塗工性を有する。スピン-スピン緩和時間T2(1)が85μ秒以下であると、架橋性ブロック共重合体の架橋後における耐剥がれ性が向上する。 In the cross-linkable block copolymer, when the decay curve obtained by the Solid echo method at 1 H pulse NMR (20 MHz) at 40° C. was subjected to the two-component relaxation curve fitting using the nonlinear least squares method, the shorter one ( The spin-spin relaxation time T 2 (1) (hereinafter sometimes referred to simply as “relaxation time T 2 (1)”) of one component) is preferably 35 μsec or more, more preferably 40 μsec or more, and 42 μsec or more. Is more preferable, and 60 μs or more is more preferable. In the cross-linkable block copolymer, when the decay curve obtained by the Solid echo method at 1 H pulse NMR (20 MHz) at 40° C. was subjected to the two-component relaxation curve fitting using the nonlinear least squares method, the shorter one ( The spin-spin relaxation time T 2 (1) (hereinafter sometimes referred to simply as “relaxation time T 2 (1)”) of one component is preferably 85 μsec or less, more preferably 83 μsec or less, and 81 μsec or less. Is more preferable, and 75 μsec or less is more preferable. When the spin-spin relaxation time T 2 (1) is 35 μsec or more, the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability. When the spin-spin relaxation time T 2 (1) is 85 μsec or less, the peeling resistance of the crosslinkable block copolymer after crosslinking is improved.
 架橋性ブロック共重合体において、上記2個の緩和曲線の緩和時間のうち、長い方(第2成分)の緩和時間T2(2)(以下、単に「緩和時間T2(2)」ということがある)は、500μ秒以上が好ましく、600μ秒以上がより好ましい。架橋性ブロック共重合体において、上記2個の緩和曲線の緩和時間のうち、長い方(第2成分)の緩和時間T2(2)は、1000μ秒以下が好ましく、800μ秒以下がより好ましい。スピン-スピン緩和時間T2(2)が500μ秒以上であると、架橋性ブロック共重合体は適度な溶融粘度を有し、優れた塗工性を有する。スピンースピン緩和時間T2(2)が1000μ秒以下であると、架橋性ブロック共重合体の架橋後における耐剥がれ性が向上する。 In the crosslinkable block copolymer, the relaxation time T 2 (2) of the longer one (second component) of the relaxation times of the two relaxation curves (hereinafter, simply referred to as “relaxation time T 2 (2)”) Is preferably 500 μsec or more, and more preferably 600 μsec or more. In the crosslinkable block copolymer, the relaxation time T 2 (2) of the longer one (the second component) of the relaxation times of the above two relaxation curves is preferably 1000 μsec or less, more preferably 800 μsec or less. When the spin-spin relaxation time T 2 (2) is 500 μsec or more, the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability. When the spin-spin relaxation time T 2 (2) is 1000 μsec or less, the peeling resistance of the crosslinkable block copolymer after crosslinking is improved.
 架橋性ブロック共重合体を架橋して得られるブロック共重合体において、40℃での1HパルスNMR(20MHz)にてSolid echo法により得られる減衰曲線を非線形最小二乗法を用いて2成分緩和曲線フィッティングさせたとき、短い方のスピン-スピン緩和時間T2(1)は、40μ秒以上であり、60μ秒以上が好ましい。架橋性ブロック共重合体を架橋して得られるブロック共重合体において、40℃での1HパルスNMR(20MHz)にてSolid echo法により得られる減衰曲線を非線形最小二乗法を用いて2成分緩和曲線フィッティングさせたとき、短い方のスピン-スピン緩和時間T2(1)は、90μ秒以下であり、75μ秒以下が好ましい。スピン-スピン緩和時間T2(1)が40μ秒以上であると、架橋性ブロック共重合体は適度な溶融粘度を有し、優れた塗工性を有する。スピン-スピン緩和時間T2(1)が90μ秒以下であると、架橋性ブロック共重合体の架橋後における耐剥がれ性が向上する。 In the block copolymer obtained by crosslinking the crosslinkable block copolymer, the decay curve obtained by the Solid echo method at 1 H pulse NMR (20 MHz) at 40° C. is subjected to two-component relaxation using the nonlinear least squares method. When the curve is fitted, the shorter spin-spin relaxation time T 2 (1) is 40 μsec or longer, preferably 60 μsec or longer. In the block copolymer obtained by crosslinking the crosslinkable block copolymer, the decay curve obtained by the Solid echo method at 1 H pulse NMR (20 MHz) at 40° C. is subjected to two-component relaxation using the nonlinear least squares method. When curve fitting is performed, the shorter spin-spin relaxation time T 2 (1) is 90 μsec or less, preferably 75 μsec or less. When the spin-spin relaxation time T 2 (1) is 40 μsec or more, the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability. When the spin-spin relaxation time T 2 (1) is 90 μsec or less, the peeling resistance of the crosslinkable block copolymer after crosslinking is improved.
 架橋性ブロック共重合体を架橋して得られるブロック共重合体において、上記2個の緩和曲線のスピン-スピン緩和時間のうち、長い方(第2成分)のスピン-スピン緩和時間T2(2)は、500μ秒以上が好ましく、600μ秒以上がより好ましい。架橋性ブロック共重合体を架橋して得られるブロック共重合体において、上記2個の緩和曲線のスピン-スピン緩和時間のうち、長い方(第2成分)のスピン-スピン緩和時間T2(2)は、1000μ秒以下が好ましく、800μ秒以下がより好ましい。緩和時間T2(2)が500μ秒以上であると、架橋性ブロック共重合体は適度な溶融粘度を有し、優れた塗工性を有する。緩和時間T2(2)が1000μ秒以下であると、架橋性ブロック共重合体の架橋後における耐剥がれ性が向上する。 In the block copolymer obtained by crosslinking the crosslinkable block copolymer, the longer spin-spin relaxation time T 2 (2) of the spin-spin relaxation times of the two relaxation curves described above. Is preferably 500 μsec or more, more preferably 600 μsec or more. In the block copolymer obtained by crosslinking the crosslinkable block copolymer, the longer spin-spin relaxation time T 2 (2) of the spin-spin relaxation times of the two relaxation curves described above. ) Is preferably 1000 μsec or less, more preferably 800 μsec or less. When the relaxation time T 2 (2) is 500 μsec or more, the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability. When the relaxation time T 2 (2) is 1000 μsec or less, the peeling resistance of the crosslinkable block copolymer after crosslinking is improved.
 架橋前後における架橋性ブロック共重合体において、緩和時間T2(2)の変化率は、10%以下が好ましく、6.5%以下がより好ましく、5%以下が特に好ましい。緩和時間T2(2)の変化率が10%以下であると、架橋性ブロック共重合体の重合体ブロックAがより選択的に架橋され、架橋性ブロック共重合体の架橋後における耐剥がれ性が向上する。 In the crosslinkable block copolymer before and after crosslinking, the rate of change of the relaxation time T 2 (2) is preferably 10% or less, more preferably 6.5% or less, and particularly preferably 5% or less. When the rate of change of the relaxation time T 2 (2) is 10% or less, the polymer block A of the crosslinkable block copolymer is more selectively crosslinked, and the peeling resistance of the crosslinkable block copolymer after crosslinking is increased. Is improved.
 なお、架橋前後における架橋性ブロック共重合体の緩和時間T2(2)の変化率(以下、単に「T2(2)の変化率」ということがある)は、下記式に基づいて算出された値をいう。
2(2)の変化率(%)
 =100×(架橋性ブロック共重合体(架橋前)のスピンースピン緩和時間T2(2)-架橋性ブロック共重合体の架橋後のブロック共重合体のスピンースピン緩和時間T2(2))/架橋性ブロック共重合体(架橋前)のスピンースピン緩和時間T2(2)
The rate of change in the relaxation time T 2 (2) of the crosslinkable block copolymer before and after crosslinking (hereinafter sometimes simply referred to as “the rate of change of T 2 (2)”) was calculated based on the following formula. Value.
Change rate (%) of T 2 (2)
= 100 × (the crosslinkable block copolymer (spin over spin relaxation time of the pre-crosslinking) T 2 (2) - crosslinkable block copolymer spin over spin relaxation time of the block copolymer after crosslinking of T 2 (2)) / crosslinking -Spin relaxation time T 2 (2) of the functional block copolymer (before crosslinking)
 更に、架橋性ブロック共重合体において、40℃での1HパルスNMR(20MHz)においてSolid echo法により得られる減衰曲線を後述の要領でフィッティングして得られた2成分の緩和曲線のスピン-スピン緩和時間のうち、短い方(第1成分)のスピン-スピン緩和時間T2(1)を有する緩和曲線の成分比A1は、6%以上が好ましく、10%以上がより好ましく、13%以上がより好ましい。架橋性ブロック共重合体において、40℃での1HパルスNMR(20MHz)においてSolid echo法により得られる減衰曲線を後述の要領でフィッティングして得られた2成分の緩和曲線のスピン-スピン緩和時間のうち、短い方(第1成分)のスピン-スピン緩和時間T2(1)を有する緩和曲線の成分比A1は、30%以下が好ましく、29%以下が好ましく、28%以下がより好ましい。成分比A1が6%以上であると、架橋性ブロック共重合体の架橋後における耐剥がれ性が向上する。成分比A1が30%以下であると、架橋性ブロック共重合体は適度な溶融粘度を有し、優れた塗工性を有する。 Further, in the crosslinkable block copolymer, the decay curve obtained by the Solid echo method in 1 H pulsed NMR (20 MHz) at 40° C. was fitted to the two-component relaxation curve spin-spin obtained by fitting as described below. Of the relaxation times, the component ratio A 1 of the relaxation curve having the shorter spin-spin relaxation time T 2 (1) is preferably 6% or more, more preferably 10% or more, and 13% or more. Is more preferable. In the crosslinkable block copolymer, the spin-spin relaxation time of the two-component relaxation curve obtained by fitting the decay curve obtained by the Solid echo method in 1 H pulsed NMR (20 MHz) at 40° C. as described below. Among these, the component ratio A 1 of the relaxation curve having the shorter spin-spin relaxation time T 2 (1) is preferably 30% or less, preferably 29% or less, and more preferably 28% or less. .. When the component ratio A 1 is 6% or more, the peeling resistance of the crosslinkable block copolymer after crosslinking is improved. When the component ratio A 1 is 30% or less, the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability.
 架橋性ブロック共重合体において、40℃での1HパルスNMR(20MHz)においてSolid echo法により得られる減衰曲線を後述の要領でフィッティングして得られた2成分の緩和曲線のスピン-スピン緩和時間のうち、長い方(第2成分)のスピン-スピン緩和時間T2(2)を有する緩和曲線の成分比A2は、70%以上が好ましく、71%以上がより好ましく、72%以上が特に好ましい。架橋性ブロック共重合体において、40℃での1HパルスNMR(20MHz)においてSolid echo法により得られる減衰曲線を後述の要領でフィッティングして得られた2成分の緩和曲線のスピン-スピン緩和時間のうち、長い方(第2成分)のスピン-スピン緩和時間T2(2)を有する緩和曲線の成分比A2は、94%以下が好ましく、90%以下がより好ましく、87%以下が特に好ましい。成分比A2が70%以上であると、架橋性ブロック共重合体は適度な溶融粘度を有し、優れた塗工性を有する。成分比A2が94%以下であると、架橋性ブロック共重合体の架橋後における耐剥がれ性が向上する。 In the crosslinkable block copolymer, the spin-spin relaxation time of the two-component relaxation curve obtained by fitting the decay curve obtained by the Solid echo method in 1 H pulsed NMR (20 MHz) at 40° C. as described below. Of these, the component ratio A 2 of the relaxation curve having the longer spin-spin relaxation time T 2 (2) is preferably 70% or more, more preferably 71% or more, and particularly preferably 72% or more. preferable. In the crosslinkable block copolymer, the spin-spin relaxation time of the two-component relaxation curve obtained by fitting the decay curve obtained by the Solid echo method in 1 H pulsed NMR (20 MHz) at 40° C. as described below. Among them, the component ratio A 2 of the relaxation curve having the longer spin-spin relaxation time T 2 (2) is preferably 94% or less, more preferably 90% or less, and particularly preferably 87% or less. preferable. When the component ratio A 2 is 70% or more, the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability. When the component ratio A 2 is 94% or less, the peeling resistance of the crosslinkable block copolymer after crosslinking is improved.
 更に、架橋性ブロック共重合体を架橋して得られるブロック共重合体において、40℃での1HパルスNMR(20MHz)においてSolid echo法により得られる減衰曲線を後述の要領でフィッティングして得られた2成分の緩和曲線のスピン-スピン緩和時間のうち、短い方(第1成分)のスピン-スピン緩和時間T2(1)を有する緩和曲線の成分比A1は、10%以上であり、12%以上が好ましく、15%以上がより好ましい。架橋性ブロック共重合体を架橋して得られるブロック共重合体において、40℃での1HパルスNMR(20MHz)においてSolid echo法により得られる減衰曲線を後述の要領でフィッティングして得られた2成分の緩和曲線のスピン-スピン緩和時間のうち、短い方(第1成分)のスピン-スピン緩和時間T2(1)を有する緩和曲線の成分比A1は、35%以下であり、33%以下が好ましく、30%以下がより好ましい。成分比A1が10%以上であると、架橋性ブロック共重合体の架橋後における耐剥がれ性が向上する。成分比A1が35%以下であると、架橋性ブロック共重合体は適度な溶融粘度を有し、優れた塗工性を有する。 Further, in a block copolymer obtained by crosslinking a crosslinkable block copolymer, it was obtained by fitting the decay curve obtained by the Solid echo method in 1 H pulse NMR (20 MHz) at 40° C. according to the procedure described below. Among the spin-spin relaxation times of the two- component relaxation curves, the component ratio A 1 of the relaxation curve having the shorter spin-spin relaxation time T 2 (1) is 10% or more, 12% or more is preferable and 15% or more is more preferable. In the block copolymer obtained by crosslinking the crosslinkable block copolymer, the decay curve obtained by the Solid echo method in 1 H pulse NMR (20 MHz) at 40° C. was obtained by fitting 2 as described below. Of the spin-spin relaxation times of the component relaxation curve, the component ratio A 1 of the relaxation curve having the shorter spin-spin relaxation time T 2 (1) is 35% or less, 33% The following is preferable, and 30% or less is more preferable. When the component ratio A 1 is 10% or more, the peeling resistance of the crosslinkable block copolymer after crosslinking is improved. When the component ratio A 1 is 35% or less, the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability.
 架橋性ブロック共重合体を架橋して得られるブロック共重合体において、40℃での1HパルスNMR(20MHz)においてSolid echo法により得られる減衰曲線を後述の要領でフィッティングして得られた2成分の緩和曲線のスピン-スピン緩和時間のうち、長い方(第2成分)のスピン-スピン緩和時間T2(2)を有する緩和曲線の成分比A2は、65%以上が好ましく、67%以上がより好ましく、70%以上が特に好ましい。架橋性ブロック共重合体を架橋して得られるブロック共重合体において、40℃での1HパルスNMR(20MHz)においてSolid echo法により得られる減衰曲線を後述の要領でフィッティングして得られた2成分の緩和曲線のスピン-スピン緩和時間のうち、長い方(第2成分)のスピン-スピン緩和時間T2(2)を有する緩和曲線の成分比A2は、90%以下が好ましく、88%以下がより好ましく、85%以下が特に好ましい。成分比A2が65%以上であると、架橋性ブロック共重合体は適度な溶融粘度を有し、優れた塗工性を有する。成分比A2が90%以下であると、架橋性ブロック共重合体の架橋後における耐剥がれ性が向上する。 In the block copolymer obtained by crosslinking the crosslinkable block copolymer, the decay curve obtained by the Solid echo method in 1 H pulse NMR (20 MHz) at 40° C. was obtained by fitting 2 as described below. Of the spin-spin relaxation times of the relaxation curve of the component, the component ratio A 2 of the relaxation curve having the longer spin-spin relaxation time T 2 (2) is preferably 65% or more, and 67%. The above is more preferable, and 70% or more is particularly preferable. In the block copolymer obtained by crosslinking the crosslinkable block copolymer, the decay curve obtained by the Solid echo method in 1 H pulse NMR (20 MHz) at 40° C. was obtained by fitting 2 as described below. Of the spin-spin relaxation times of the relaxation curve of the component, the component ratio A 2 of the relaxation curve having the longer spin-spin relaxation time T 2 (2) is preferably 90% or less, and 88%. The following is more preferable, and 85% or less is particularly preferable. When the component ratio A 2 is 65% or more, the crosslinkable block copolymer has an appropriate melt viscosity and excellent coatability. When the component ratio A 2 is 90% or less, the peeling resistance of the crosslinkable block copolymer after crosslinking is improved.
 架橋性ブロック共重合体を架橋させて得られるブロック共重合体が、緩和時間T2(1)と、緩和時間T2(1)を有する緩和曲線の成分比A1とが上述の範囲を満たすことによって、硬質成分と軟質成分とが所定の割合で存在しており、架橋性ブロック共重合体を架橋させて得られるブロック共重合体は、良好な層分離構造を発現すると共に、上記硬質成分が適度な硬さを有していることから、架橋性ブロック共重合体を架橋させて得られるブロック共重合体は、優れた耐剥がれ性を発現し、更に、架橋性ブロック共重合体は優れた塗工性を有する。 In the block copolymer obtained by crosslinking the crosslinkable block copolymer, the relaxation time T 2 (1) and the component ratio A 1 of the relaxation curve having the relaxation time T 2 (1) satisfy the above range. Thus, the hard component and the soft component are present in a predetermined ratio, the block copolymer obtained by crosslinking the crosslinkable block copolymer, while expressing a good layer separation structure, the hard component Has a suitable hardness, the block copolymer obtained by cross-linking the cross-linkable block copolymer, exhibits excellent peel resistance, and further, the cross-linkable block copolymer is excellent. It has good coatability.
 架橋性ブロック共重合体は、重合体ブロックA及び重合体Bを含み、好ましくは、A-B-A型トリブロック共重合体であり、硬質成分は、重合体ブロックA及びBのうちのガラス転移温度の高い重合体ブロックによって主に構成される一方、軟質成分は、重合体ブロックA及びBのうちのガラス転移温度の低い重合体ブロックによって主に構成される。 The crosslinkable block copolymer contains a polymer block A and a polymer B, and is preferably an ABA type triblock copolymer, and the hard component is a glass of the polymer blocks A and B. While the soft component is mainly composed of the polymer block having a high transition temperature, the soft component is mainly composed of the polymer block having a low glass transition temperature among the polymer blocks A and B.
 硬質成分を主に重合体ブロックAによって構成し且つ軟質成分を主に重合体ブロックBによって構成すると共に、重合体ブロックAに積極的に架橋構造を導入することによって、架橋性ブロック共重合体に適度な硬さを付与しつつ、架橋性ブロック共重合体を架橋させて得られるブロック共重合体の重合体ブロックA及びB間の極性差に起因した層分離構造を良好に形成することができ、架橋性ブロック共重合体を架橋させて得られるブロック共重合体に優れた耐剥がれ性を付与することができ好ましい。 By forming the hard component mainly by the polymer block A and the soft component mainly by the polymer block B, and by positively introducing a crosslinked structure into the polymer block A, a crosslinkable block copolymer is obtained. It is possible to favorably form a layer separation structure due to the polarity difference between the polymer blocks A and B of the block copolymer obtained by crosslinking the crosslinkable block copolymer while imparting appropriate hardness. The block copolymer obtained by crosslinking the crosslinkable block copolymer can impart excellent peeling resistance, which is preferable.
 重合体ブロックAを構成する架橋性を有しないモノマーとして、飽和脂肪族環構造を有するモノマー(好ましくは、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、3,5,5-トリメチルシクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート及びアダマンチル(メタ)アクリレート、より好ましくは、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート及び4-t-ブチルシクロヘキシル(メタ)アクリレート)を含有させることによって、硬質成分を高い比率で重合体ブロックAから構成することができ、架橋性ブロック共重合体を架橋させて得られるブロック共重合体はより優れた耐剥がれ性を有する。 As the monomer having no crosslinkability which constitutes the polymer block A, a monomer having a saturated aliphatic ring structure (preferably isobornyl (meth)acrylate, cyclohexyl (meth)acrylate, t-butylcyclohexyl (meth)acrylate, 3, 5,5-trimethylcyclohexyl (meth)acrylate, dicyclopentanyl (meth)acrylate and adamantyl (meth)acrylate, more preferably isobornyl (meth)acrylate, cyclohexyl (meth)acrylate and 4-t-butylcyclohexyl (meth) ) Acrylate), the hard component can be composed of the polymer block A in a high ratio, and the block copolymer obtained by crosslinking the crosslinkable block copolymer has more excellent peeling resistance. Have.
 架橋性ブロック共重合体の40℃での1HパルスNMR(20MHz)による減衰曲線の測定方法、得られた減衰曲線を非線形最小二乗法を用いて2成分緩和曲線フィッティングする方法、及び、緩和曲線に基づいてスピンースピン緩和時間及び成分比を定める方法を説明する。 Method for measuring decay curve of crosslinkable block copolymer at 40° C. by 1 H pulse NMR (20 MHz), method of fitting two-component relaxation curve of the obtained decay curve using nonlinear least squares method, and relaxation curve A method of determining the spin-spin relaxation time and the component ratio will be described based on
 1HパルスNMR測定装置を用いる。1HパルスNMR測定装置は、測定試料中に存在する全プロトンに対し永久磁石による低周波数(数10MHz)下でパルス状のラジオ波を照射して核磁気共鳴を引き起こし、その応答(スピンースピン緩和時間)を観測する測定装置である。 A 1 H pulse NMR measuring device is used. The 1 H pulse NMR measurement apparatus irradiates all protons existing in a measurement sample with pulsed radio waves at a low frequency (tens of MHz) by a permanent magnet to cause nuclear magnetic resonance, and its response (spin-spin relaxation time). ) Is a measuring device for observing.
 架橋前の架橋性ブロック共重合体又は架橋後のブロック共重合体をNMRチューブの底部にそれぞれ約0.2gずつ測り取り、1HパルスNMR測定装置にセットし、以下の条件にて測定を行って減衰曲線を得る。なお、1HパルスNMR測定装置として、ブルカー社から商品名「minispec mq20」にて市販されている測定装置を用いることができる。 About 0.2 g each of the cross-linkable block copolymer before cross-linking or the block copolymer after cross-linking is measured at the bottom of the NMR tube, set in a 1 H pulse NMR measuring device, and measured under the following conditions. To obtain the decay curve. As the 1 H pulse NMR measuring device, a measuring device commercially available from Bruker under the trade name “minispec mq20” can be used.
 周波数:20MHz
 測定温度:40℃
 測定条件:Solid-echo法
 scans:64
 Recycle delay:1s
 Detection Mode:Magnitude
 acquisition scales:3ms
Frequency: 20MHz
Measurement temperature: 40°C
Measurement conditions: Solid-echo method scans: 64
Recycle delay: 1s
Detection Mode: Magnitude
acquisition scales: 3ms
 上記架橋後のブロック共重合体は、次の要領で作製する。離型処理されたポリエチレンテレフタレートシート上に、架橋前の架橋性ブロック共重合体を厚みが20μmとなるように塗工する。次に、架橋性ブロック共重合体をゲル分率が50~90質量%となるように架橋させて、架橋後のブロック共重合体を作製する。 ▼ The block copolymer after cross-linking is prepared as follows. A cross-linkable block copolymer before cross-linking is applied onto a release-treated polyethylene terephthalate sheet so as to have a thickness of 20 μm. Next, the crosslinkable block copolymer is crosslinked so that the gel fraction is 50 to 90% by mass to prepare a crosslinked block copolymer.
 例えば、架橋性ブロック共重合体に紫外線照射装置を用いてUV-C照射強度約48mW/cm2、UV-C積算光量100mJ/cm2の条件下にて紫外線を照射して架橋性ブロック共重合体を架橋させて、架橋後のブロック共重合体を作製する。なお、紫外線照射装置としては、例えば、ヘレウス(旧フュージョンUVシステムズ)社から商品名「Light Hammer6」(Hバルブ使用)にて市販されている紫外線照射装置を用いることができる。照度計としては、例えば、EIT Instrument Markets社から商品名「UV Power Puck II」にて市販されている照度計を用いることができる。 For example, the crosslinkable block copolymer is irradiated with ultraviolet rays under the conditions of UV-C irradiation intensity of about 48 mW/cm 2 and UV-C integrated light amount of 100 mJ/cm 2 using an ultraviolet irradiation device. The united body is crosslinked to produce a crosslinked block copolymer. As the ultraviolet irradiation device, for example, an ultraviolet irradiation device commercially available from Heraeus (former Fusion UV Systems) under the trade name "Light Hammer 6" (using H bulb) can be used. As the illuminance meter, for example, an illuminance meter commercially available from EIT Instrument Markets under the trade name "UV Power Puck II" can be used.
 次に、解析用ソフトウェアを用いて、上述の要領で測定された架橋前の架橋性ブロック共重合体又は架橋後のブロック共重合体の減衰曲線を2成分の緩和曲線に分解する。2個の緩和曲線ともワイブル係数を1(指数関数)とし、非線形最小二乗法を用いてフィッティングを行う。即ち、下記式におけるスピン-スピン緩和時間Tおよび成分比Aを算出する。その際、[SSR/err]の[err]が0又は1判定であり、2成分フィッティング後のデータが実測減衰曲線と充分に近似であることを確認する。なお、「^」は、累乗を意味する。
f(t) = A1×exp{-1/W(1)(t/T2(1))^W(1)}+A2×exp{-1/W(2)(t/T2(2))^W(2)}
Next, using the analysis software, the decay curve of the crosslinkable block copolymer before crosslinking or the block copolymer after crosslinking measured in the above manner is decomposed into a two-component relaxation curve. For each of the two relaxation curves, the Weibull coefficient is set to 1 (exponential function), and fitting is performed using the nonlinear least squares method. That is, the spin-spin relaxation time T 2 and the component ratio A in the following formula are calculated. At that time, it is confirmed that the [err] of [SSR/err] is 0 or 1 and that the data after the two-component fitting is sufficiently close to the measured attenuation curve. "^" means exponentiation.
f(t) = A 1 × exp{-1/W(1)(t/T 2 (1))^W(1)} + A 2 × exp{-1/W(2)(t/T 2 ( 2))^W(2)}
 スピンースピン緩和時間のうちの短い方のスピンースピン緩和時間をスピンースピン緩和時間T2(1)とし、長い方のスピンースピン緩和時間をスピンースピン緩和時間T2(2)とする。スピンースピン緩和時間T2(1)を有する緩和曲線の成分比をA1とし、スピンースピン緩和時間T2(2)を有する緩和曲線の成分比をA2とする。W(1)及びW(2)を各緩和曲線のワイブル係数(いずれも1)とする。なお、解析用ソフトウェアとして、ブルカー社から商品名「TD-NMR Analyzer」にて市販されている解析用ソフトウェアを用いることができる。 Of the spin-spin relaxation times, the shorter spin-spin relaxation time is defined as spin-spin relaxation time T 2 (1), and the longer spin-spin relaxation time is defined as spin-spin relaxation time T 2 (2). The relaxation curve component ratio having the spin-spin relaxation time T 2 (1) is A 1, and the relaxation curve component ratio having the spin-spin relaxation time T 2 (2) is A 2 . Let W(1) and W(2) be Weibull coefficients (both are 1) of each relaxation curve. As the analysis software, analysis software commercially available from Bruker under the trade name "TD-NMR Analyzer" can be used.
 架橋後のブロック共重合体のゲル分率は、次の要領により測定された値をいう。架橋後のブロック共重合体0.2gをガラス瓶に供給する。テトラヒドロフラン30gをガラス瓶に供給し、常温にて24時間放置し、架橋後のブロック共重合体を膨潤させた。 The gel fraction of the block copolymer after crosslinking is the value measured according to the following procedure. 0.2 g of the block copolymer after crosslinking is supplied to a glass bottle. 30 g of tetrahydrofuran was supplied to a glass bottle and left at room temperature for 24 hours to swell the cross-linked block copolymer.
 膨潤させた架橋後のブロック共重合体を200メッシュの金網でろ過し、80℃に昇温した恒温槽にて架橋後のブロック共重合体を金網ごと乾燥させた。乾燥後の架橋後のブロック共重合体の質量Ygを測定し、下記の要領に従ってゲル分率を算出する。
 ゲル分率(質量%)=100×Y/0.2
The swollen cross-linked block copolymer was filtered through a 200-mesh wire net, and the cross-linked block copolymer was dried together with the wire net in a thermostat heated to 80°C. The mass Yg of the block copolymer after crosslinking after drying is measured, and the gel fraction is calculated according to the following procedure.
Gel fraction (mass %)=100×Y/0.2
 架橋性ブロック共重合体及びこれの架橋後のブロック共重合体において、硬質成分を主に形成する重合体ブロックを構成するモノマーのガラス転移温度を高くする程、スピン-スピン緩和時間T2を短くすることができる。硬質成分を主に形成する重合体ブロックを構成するモノマーのガラス転移温度を低くする程、スピン-スピン緩和時間T2を長くすることができる。軟質成分を主に形成する重合体ブロックを構成するモノマーのガラス転移温度を高くする程、スピン-スピン緩和時間T2を短くすることができる。軟質成分を主に形成する重合体ブロックを構成するモノマーのガラス転移温度を低くする程、スピン-スピン緩和時間T2を長くすることができる。 In the crosslinkable block copolymer and the crosslinked block copolymer thereof, the higher the glass transition temperature of the monomer constituting the polymer block mainly forming the hard component, the shorter the spin-spin relaxation time T 2 becomes. can do. The lower the glass transition temperature of the monomer forming the polymer block mainly forming the hard component, the longer the spin-spin relaxation time T 2 can be made. The spin-spin relaxation time T 2 can be shortened as the glass transition temperature of the monomer constituting the polymer block mainly forming the soft component is increased. The lower the glass transition temperature of the monomer forming the polymer block mainly forming the soft component, the longer the spin-spin relaxation time T 2 can be made.
 架橋性ブロック共重合体及びこれの架橋後のブロック共重合体において、硬質成分を主に形成する重合体ブロックの含有量を多くする程、成分比A1を高くすることができる。軟質成分を主に形成する重合体ブロックの含有量を多くする程、成分比Aを低くすることができる。 In the crosslinkable block copolymer and the crosslinked block copolymer thereof, the component ratio A 1 can be increased as the content of the polymer block mainly forming the hard component is increased. The component ratio A 1 can be lowered as the content of the polymer block mainly forming the soft component is increased.
 架橋性ブロック共重合体において、硬質成分を主に形成する重合体ブロック中における非架橋性モノマーの含有量は、10.0質量%以上が好ましく、14.0質量%以上がより好ましく、16.0質量%以上がより好ましい。架橋性ブロック共重合体において、硬質成分を主に形成する重合体ブロック中における非架橋性モノマーの含有量は、29.6質量%以下が好ましく、25.6質量%以下がより好ましく、23.6質量%以下がより好ましい。硬質成分を主に形成する重合体ブロック中における非架橋性モノマーの含有量は、10.0質量%以上であると、架橋性ブロック共重合体は架橋後における耐剥がれ性が向上する。硬質成分を主に形成する重合体ブロック中における非架橋性モノマーの含有量は、29.6質量%以下であると、架橋性ブロック共重合体は適度な溶融粘度を有し、優れた塗工性を有する。 In the crosslinkable block copolymer, the content of the non-crosslinkable monomer in the polymer block mainly forming the hard component is preferably 10.0% by mass or more, more preferably 14.0% by mass or more, and 16. 0 mass% or more is more preferable. In the crosslinkable block copolymer, the content of the non-crosslinkable monomer in the polymer block mainly forming the hard component is preferably 29.6% by mass or less, more preferably 25.6% by mass or less, and 23. It is more preferably 6% by mass or less. When the content of the non-crosslinkable monomer in the polymer block mainly forming the hard component is 10.0% by mass or more, the crosslinkable block copolymer has improved peeling resistance after crosslinking. When the content of the non-crosslinkable monomer in the polymer block that mainly forms the hard component is 29.6% by mass or less, the crosslinkable block copolymer has an appropriate melt viscosity and is excellent in coating. Have sex.
 架橋性ブロック共重合体において、軟質成分を主に形成する重合体ブロック中における非架橋性モノマーの含有量は、70.1質量%以上が好ましく、75.0質量%以上がより好ましく、76.0質量%以上がより好ましい。架橋性ブロック共重合体において、軟質成分を主に形成する重合体ブロック中における非架橋性モノマーの含有量は、89.9質量%以下が好ましく、85.0質量%以下がより好ましく、84.0質量%以下がより好ましい。軟質成分を主に形成する重合体ブロック中における非架橋性モノマーの含有量は、70.1質量%以上であると、架橋性ブロック共重合体は適度な溶融粘度を有し、優れた塗工性を有する。軟質成分を主に形成する重合体ブロック中における非架橋性モノマーの含有量は、89.9質量%以下であると、架橋性ブロック共重合体は架橋後における耐剥がれ性が向上する。 In the crosslinkable block copolymer, the content of the non-crosslinkable monomer in the polymer block mainly forming the soft component is preferably 70.1% by mass or more, more preferably 75.0% by mass or more, and 76. 0 mass% or more is more preferable. In the crosslinkable block copolymer, the content of the non-crosslinkable monomer in the polymer block mainly forming the soft component is preferably 89.9% by mass or less, more preferably 85.0% by mass or less, and 84. It is more preferably 0% by mass or less. When the content of the non-crosslinkable monomer in the polymer block mainly forming the soft component is 70.1% by mass or more, the crosslinkable block copolymer has an appropriate melt viscosity and is excellent in coating. Have sex. When the content of the non-crosslinkable monomer in the polymer block mainly forming the soft component is 89.9% by mass or less, the crosslinkable block copolymer has improved peeling resistance after crosslinking.
 次に、架橋性ブロック共重合体の製造方法を説明する。架橋性ブロック共重合体は、汎用の重合方法を用いて製造することができるが、リビング重合を用いて製造することが好ましい。 Next, the method for producing the crosslinkable block copolymer will be described. The crosslinkable block copolymer can be produced using a general-purpose polymerization method, but it is preferable to produce it using living polymerization.
 リビング重合は、例えば、リビングラジカル重合、リビングカチオン重合、リビングアニオン重合が挙げられるが、高い汎用性と重合反応の安全性の点からリビングラジカル重合が好ましい。 Examples of living polymerization include living radical polymerization, living cationic polymerization, and living anionic polymerization, but living radical polymerization is preferable from the viewpoint of high versatility and safety of polymerization reaction.
 リビングラジカル重合法としては、例えば、イニファーター重合、ニトロキシド介在重合(NMP)、遷移金属触媒による原子移動ラジカル付加重合(ATRP)、ジチオエステル化合物による可逆的連鎖移動重合(RAFT)、有機テルル化合物による重合(TERP)、有機化合物触媒による可逆移動触媒重合(RTCP)、可逆配位媒介重合(RCMP)などが挙げられる。 Examples of the living radical polymerization method include iniferter polymerization, nitroxide-mediated polymerization (NMP), transition metal-catalyzed atom transfer radical addition polymerization (ATRP), dithioester compound reversible chain transfer polymerization (RAFT), and organic tellurium compound. Polymerization (TERP), reversible transfer catalytic polymerization (RTCP) using an organic compound catalyst, reversible coordination-mediated polymerization (RCMP), etc.
 特に、可逆的連鎖移動重合(RAFT)は、(1)モノマー汎用性が高いこと、(2)酸素及び光に対して極端な反応性低下を生じないこと、(3)極端な低温又は高温でなくても反応が進行することから簡便な重合反応環境で実施可能でき高い生産性を有すること、(4)金属及びハロゲンなどの毒物を使用しないこと、(5)十分な分子量を有する架橋性ブロック共重合体を製造できることから好ましい。 In particular, reversible chain transfer polymerization (RAFT) is (1) highly versatile in monomers, (2) does not cause an extreme decrease in reactivity to oxygen and light, and (3) at extremely low or high temperatures. Since the reaction proceeds even without it, it can be carried out in a simple polymerization reaction environment and has high productivity, (4) no poisons such as metals and halogens are used, and (5) a crosslinkable block having a sufficient molecular weight. It is preferable because a copolymer can be produced.
 可逆的連鎖移動重合(RAFT)を実施するために用いられるジチオエステル化合物としては、交換連鎖反応性を有するジチオエステル化合物であれば、特に限定されず、例えば、ジチオベンゾエート化合物、トリチオカーボネート化合物、ジチオカルバメート化合物、キサンテート化合物などが挙げられ、トリチオカーボネート化合物が好ましい。 The dithioester compound used for carrying out the reversible chain transfer polymerization (RAFT) is not particularly limited as long as it is a dithioester compound having exchange chain reactivity, and examples thereof include a dithiobenzoate compound, a trithiocarbonate compound, Examples thereof include dithiocarbamate compounds and xanthate compounds, with trithiocarbonate compounds being preferred.
 トリチオカーボネート化合物としては、特に限定されないが、例えば、2-[(ドデシルスルファニルチオカルボニル)スルファニル]プロパン酸、4-{[(2-カルボキシエチル)スルファニルチオカルボニル]スルファニル}プロパン酸、4-シアノ-4-[(ドデシルスルファニルチオカルボニル)スルファニル]ペンタン酸、4-[(2-カルボキシエチルスルファニルチオカルボニル)スルファニル]-4-シアノペンタン酸などの交換連鎖反応部位を1個のみ有するトリチオカーボネート化合物、S,S-ジベンジルトリチオカーボネート、ビス{4-[エチル-(2-ヒドロキシエチル)カルバモイル]ベンジル}トリチオカーボネートなどの交換連鎖反応部位を2個有するトリチオカーボネート化合物など挙げられ、交換連鎖反応部位を1個のみ有するトリチオカーボネート化合物が好ましく、2-[(ドデシルスルファニルチオカルボニル)スルファニル]プロパン酸がより好ましい。 The trithiocarbonate compound is not particularly limited, and examples thereof include 2-[(dodecylsulfanylthiocarbonyl)sulfanyl]propanoic acid, 4-{[(2-carboxyethyl)sulfanylthiocarbonyl]sulfanyl}propanoic acid, 4-cyano. A trithiocarbonate compound having only one exchange chain reaction site such as -4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid and 4-[(2-carboxyethylsulfanylthiocarbonyl)sulfanyl]-4-cyanopentanoic acid , S,S-dibenzyltrithiocarbonate, bis{4-[ethyl-(2-hydroxyethyl)carbamoyl]benzyl}trithiocarbonate, etc., such as trithiocarbonate compounds having two exchange chain reaction sites. A trithiocarbonate compound having only one chain reaction site is preferable, and 2-[(dodecylsulfanylthiocarbonyl)sulfanyl]propanoic acid is more preferable.
 トリチオカーボネート化合物を用いて製造される架橋性ブロック共重合体において、トリチオカーボネート化合物の化学構造に起因して、架橋性ブロック共重合体中におけるトリチオカーボネート化合物残基の導入位置が異なる。トリチオカーボネート化合物が一個の交換連鎖反応部位のみを有している場合、トリチオカーボネート化合物残基は、架橋性ブロック共重合体を構成している重合体ブロックの末端に導入される。一方、トリチオカーボネート化合物が2個の交換連鎖反応部位を有している場合、トリチオカーボネート化合物残基は、架橋性ブロック共重合体を構成している重合体ブロックの内部に導入される。そして、交換連鎖反応部位を1個のみ有するトリチオカーボネート化合物を用いて可逆的連鎖移動重合(RAFT)によって製造された架橋性ブロック共重合体は、熱や光によってトリチオカーボネート化合物残基が分解しても、架橋性ブロック共重合体構造自体は分解されないことから、熱安定性及び紫外線架橋反応性に更に優れている。 In a crosslinkable block copolymer produced using a trithiocarbonate compound, the introduction position of the trithiocarbonate compound residue in the crosslinkable block copolymer differs due to the chemical structure of the trithiocarbonate compound. When the trithiocarbonate compound has only one exchange chain reaction site, the trithiocarbonate compound residue is introduced at the end of the polymer block constituting the crosslinkable block copolymer. On the other hand, when the trithiocarbonate compound has two exchange chain reaction sites, the trithiocarbonate compound residue is introduced inside the polymer block constituting the crosslinkable block copolymer. A crosslinkable block copolymer produced by reversible chain transfer polymerization (RAFT) using a trithiocarbonate compound having only one exchange chain reaction site decomposes the trithiocarbonate compound residue by heat or light. However, since the crosslinkable block copolymer structure itself is not decomposed, it is more excellent in thermal stability and UV crosslinking reactivity.
 架橋性ブロック共重合体は、上述の通り、ジチオエステル化合物による可逆的連鎖移動重合(RAFT)により製造されることが好ましい。可逆的連鎖移動重合(RAFT)の重合形態としては、例えば、塊状重合、溶液重合、懸濁重合、乳化重合などが挙げられ、溶液重合が好ましい。なお、架橋性ブロック共重合体を溶液重合によって製造する場合、架橋性ブロック共重合体をホットメルト粘着剤とするためには、系内の溶剤を脱処理する必要がある。 As described above, the crosslinkable block copolymer is preferably produced by reversible chain transfer polymerization (RAFT) with a dithioester compound. Examples of the reversible chain transfer polymerization (RAFT) polymerization mode include bulk polymerization, solution polymerization, suspension polymerization and emulsion polymerization, and solution polymerization is preferable. When the crosslinkable block copolymer is produced by solution polymerization, it is necessary to remove the solvent in the system in order to use the crosslinkable block copolymer as a hot melt adhesive.
 架橋性ブロック共重合体を製造するには多段階重合が行われる。例えば、交換連鎖反応部位を1個のみ有するジチオエステル化合物を用いて可逆的連鎖移動重合(RAFT)を行う場合、先ず、重合体ブロックAを構成するモノマーを、ジチオエステル化合物を用いて(ジチオエステル化合物の存在下にて)十分に重合させて、重合体ブロックA部分重合物を得る(1段階目重合)。次に、重合反応系内に重合体ブロックBを構成するモノマーを供給して十分に重合させ、重合体ブロックA-重合体ブロックB部分重合物を得る(2段階目重合)。更に、重合反応系内に重合体ブロックAを構成するモノマーを供給して十分に重合させて、重合体ブロックBの両末端に重合体ブロックAが結合してなるA-B-A型トリブロック共重合体である架橋性ブロック共重合体を得ることができる。なお、A-B型ジブロック共重合体である架橋性ブロック共重合体を製造する場合は、上記の1段階目重合及び2段階目重合を行なえばよい。 Multistep polymerization is performed to produce a crosslinkable block copolymer. For example, in the case of performing reversible chain transfer polymerization (RAFT) using a dithioester compound having only one exchange chain reaction site, first, a monomer constituting the polymer block A is converted into a dithioester compound (dithioester compound). It polymerizes sufficiently (in the presence of a compound) to obtain a polymer block A partial polymer (first stage polymerization). Next, a monomer that constitutes the polymer block B is supplied into the polymerization reaction system and sufficiently polymerized to obtain a polymer block A-polymer block B partial polymer (second-stage polymerization). Further, an ABA type triblock obtained by supplying the monomer constituting the polymer block A into the polymerization reaction system and sufficiently polymerizing it to bond the polymer block A to both ends of the polymer block B. A crosslinkable block copolymer which is a copolymer can be obtained. In the case of producing a crosslinkable block copolymer which is an AB type diblock copolymer, the above-mentioned first stage polymerization and second stage polymerization may be carried out.
 又、交換連鎖反応部位を2個有するジチオエステル化合物を用いて可逆的連鎖移動重合(RAFT)を行う場合、重合体ブロックAを構成するモノマーを、ジチオエステル化合物を用いて(ジチオエステル化合物の存在下にて)十分に重合させて、重合体ブロックA部分重合物を得る(1段階目重合)。次に、重合反応系内に重合体ブロックBを構成するモノマーを供給し重合する(2段階目重合)ことによって、重合体ブロックA部分重合物の中間部に重合体ブロックBを形成し、A-B-A型トリブロック共重合体である架橋性ブロック共重合体を得ることができる。 When reversible chain transfer polymerization (RAFT) is carried out using a dithioester compound having two exchange chain reaction sites, the dithioester compound is used as the monomer constituting the polymer block A. (Below) polymerize sufficiently to obtain polymer block A partial polymer (first stage polymerization). Next, a monomer constituting the polymer block B is supplied into the polymerization reaction system and polymerized (second-stage polymerization) to form a polymer block B in the intermediate part of the polymer block A partial polymer, and A A crosslinkable block copolymer which is a —BA type triblock copolymer can be obtained.
 重合体ブロックAを生成するための原料となるモノマー中において、架橋性を有しないモノマーの含有量は、架橋性ブロック共重合体の架橋後における耐剥がれ性が向上するので、60質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がより好ましく、98質量%以上が特に好ましい。重合体ブロックAを生成するための原料となるモノマー中において、架橋性を有しないモノマーの含有量は、架橋性ブロック共重合体の架橋後における耐剥がれ性が向上するので、99.9質量%以下が好ましく、99.8質量%以下がより好ましく、99.7質量%以下が特に好ましい。 In the monomer that is the raw material for producing the polymer block A, the content of the monomer having no crosslinkability is 60% by mass or more because the peel resistance after crosslinking of the crosslinkable block copolymer is improved. 90 mass% or more is more preferable, 95 mass% or more is more preferable, and 98 mass% or more is especially preferable. In the monomer that is the raw material for producing the polymer block A, the content of the monomer having no crosslinkability is 99.9% by mass because the peeling resistance of the crosslinkable block copolymer after crosslinking is improved. The following is preferable, 99.8 mass% or less is more preferable, and 99.7 mass% or less is particularly preferable.
 重合体ブロックAを生成するための原料となるモノマー中において、架橋性を有するモノマーの含有量は、架橋性ブロック共重合体の架橋後における耐剥がれ性が向上するので、40質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下がより好ましく、2質量%以下が特に好ましい。重合体ブロックAを生成するための原料となるモノマー中において、架橋性を有するモノマーの含有量は、架橋性ブロック共重合体の架橋後における耐剥がれ性が向上するので、0.1質量%以上が好ましく、0.2質量%以上がより好ましく、0.3質量%以上が特に好ましい。 In the monomer that is a raw material for producing the polymer block A, the content of the crosslinkable monomer is preferably 40% by mass or less because the peeling resistance of the crosslinkable block copolymer after crosslinking is improved. 10 mass% or less is more preferable, 5 mass% or less is more preferable, and 2 mass% or less is particularly preferable. In the monomer that is a raw material for forming the polymer block A, the content of the crosslinkable monomer is 0.1% by mass or more because the peeling resistance after crosslinking of the crosslinkable block copolymer is improved. Is preferable, 0.2 mass% or more is more preferable, and 0.3 mass% or more is particularly preferable.
 ジチオエステル化合物を用いて製造された架橋性ブロック共重合体は、その化学構造に由来する着色や、硫黄原子に由来する独特の臭気を有する場合がある。このような着色及び臭気の低減又は除去を目的として、架橋性ブロック共重合体中のジチオエステル化合物残基の低減又は除去処理、及び、架橋性ブロック共重合体中に混入している残存ジチオエステル化合物の低減又は除去処理を行うことが好ましい。ジチオエステル化合物残基又は残存ジチオエステル化合物の低減又は除去処理方法としては、例えば、熱による処理、紫外線による処理、過剰のラジカル開始剤による処理、求核試薬や還元剤による処理、酸化剤による処理、金属触媒による処理、ジエン化合物とのヘテロDiels-Alder反応による処理などが挙げられる。上記処理によって、ジチオエステル化合物残基又は残存ジチオエステル化合物の低減又は除去処理されたとしても架橋性ブロック共重合体の奏する作用効果に変化はない。 A crosslinkable block copolymer produced using a dithioester compound may have a coloring derived from its chemical structure or a unique odor derived from a sulfur atom. For the purpose of reducing or removing such coloring and odor, a treatment for reducing or removing a dithioester compound residue in the crosslinkable block copolymer, and a residual dithioester mixed in the crosslinkable block copolymer. It is preferable to perform a compound reduction or removal treatment. Examples of the treatment method for reducing or removing the dithioester compound residue or the residual dithioester compound include treatment with heat, treatment with ultraviolet light, treatment with excess radical initiator, treatment with nucleophile or reducing agent, treatment with oxidizing agent. , Treatment with a metal catalyst, treatment with a hetero Diels-Alder reaction with a diene compound, and the like. Even if the dithioester compound residue or the residual dithioester compound is reduced or removed by the treatment, the action and effect of the crosslinkable block copolymer does not change.
 上記架橋性ブロック共重合体は、必要に応じて粘着付与剤及び光酸発生剤などの添加剤を添加することによってホットメルト粘着剤として好適に用いることができる。架橋性ブロック共重合体を含むホットメルト粘着剤は、適度な溶融粘度を有していることから、優れた塗工性を有している。 The crosslinkable block copolymer can be suitably used as a hot-melt pressure-sensitive adhesive by adding additives such as a tackifier and a photo-acid generator, if necessary. The hot-melt pressure-sensitive adhesive containing the crosslinkable block copolymer has an appropriate melt viscosity and therefore has excellent coatability.
 架橋性ブロック共重合体は、被着体上に塗工された後、架橋性ブロック共重合体に架橋処理が施されることによって、重合体ブロックA中に含まれる架橋性を有するモノマー単位の架橋性基が架橋構造を形成し、重合体ブロックA中に架橋構造が導入される。架橋構造が導入されたブロック共重合体は、耐剥がれ性などの優れた粘着性を発現する。 The crosslinkable block copolymer is coated on the adherend and then subjected to a crosslinking treatment to the crosslinkable block copolymer, whereby the crosslinkable monomer units contained in the polymer block A are The crosslinkable group forms a crosslinked structure, and the crosslinked structure is introduced into the polymer block A. The block copolymer having the crosslinked structure introduced exhibits excellent tackiness such as peel resistance.
 ホットメルト粘着剤は、その物性を損なわない範囲内において、粘着付与剤、紫外線重合開始剤、可塑剤、酸化防止剤、着色剤、難燃剤及び帯電防止剤などの添加剤が含まれていてもよい。 The hot-melt pressure-sensitive adhesive may contain additives such as a tackifier, a UV polymerization initiator, a plasticizer, an antioxidant, a colorant, a flame retardant and an antistatic agent as long as the physical properties of the hot-melt adhesive are not impaired. Good.
 本発明の架橋性ブロック共重合体は、粘度が低くて塗工性に優れる。本発明の架橋性ブロック共重合体を架橋させて得られるブロック共重合体は、粘着物性、特に耐剥がれ性に優れている。 The crosslinkable block copolymer of the present invention has low viscosity and excellent coatability. The block copolymer obtained by cross-linking the cross-linkable block copolymer of the present invention is excellent in adhesive property, particularly peeling resistance.
実施例1で得られた架橋性ブロック共重合体の減衰曲線及びこの減衰曲線を2成分緩和曲線フィッティングさせて得られた緩和曲線を示したグラフである。3 is a graph showing an attenuation curve of the crosslinkable block copolymer obtained in Example 1 and a relaxation curve obtained by fitting the attenuation curve to a two-component relaxation curve.
 以下に、本発明を実施例を用いてより具体的に説明するが、本発明はこれに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
(実施例1~12、比較例1~3及び6)
 攪拌機、冷却管、温度計及び窒素ガス導入口を備えたセパラブルフラスコに、非架橋性モノマーとしてイソボルニルアクリレート、シクロヘキシルアクリレート、4-t-ブチルシクロヘキシルアクリレート及びn-ブチルアクリレートと、架橋性モノマーとして4-アクリロイルオキシベンゾフェノン、4-[2-(アクリロイルオキシ)エトキシ]ベンゾフェノン及び4-ヒドロキシブチルアクリレートグリシジルエーテルと、トリチオカーボネート化合物として2-[(ドデシルスルファニルチオカルボニル)スルファニル]プロパン酸と、溶剤として酢酸エチルとをそれぞれ表1及び2に示した配合量ずつ供給し、攪拌して反応液を作製した。
(Examples 1 to 12, Comparative Examples 1 to 3 and 6)
In a separable flask equipped with a stirrer, a cooling tube, a thermometer and a nitrogen gas inlet, isobornyl acrylate, cyclohexyl acrylate, 4-t-butylcyclohexyl acrylate and n-butyl acrylate as non-crosslinking monomers, and a crosslinking monomer 4-acryloyloxybenzophenone, 4-[2-(acryloyloxy)ethoxy]benzophenone and 4-hydroxybutyl acrylate glycidyl ether as a compound, 2-[(dodecylsulfanylthiocarbonyl)sulfanyl]propanoic acid as a trithiocarbonate compound, and a solvent As a mixture, ethyl acetate and the compounding amounts shown in Tables 1 and 2 were supplied and stirred to prepare a reaction solution.
 セパラブルフラスコ内を窒素ガスで置換した後、ウォーターバスを用いて反応液を60℃に保持した。次に、セパラブルフラスコ内の反応液に重合開始剤として2,2’-アゾビス(イソブチロニトリル)を表1及び2に示した配合量供給して可逆的連鎖移動重合(RAFT)を開始した。反応液を6時間に亘って60℃に保持し、重合体ブロックA部分重合物を得た。重合体ブロックA部分重合物のピークトップ分子量及び重量平均分子量を表1及び2に示した。 After purging the inside of the separable flask with nitrogen gas, the reaction solution was kept at 60° C. using a water bath. Then, 2,2′-azobis(isobutyronitrile) as a polymerization initiator was supplied to the reaction solution in the separable flask in the compounding amounts shown in Tables 1 and 2 to start reversible chain transfer polymerization (RAFT). did. The reaction liquid was kept at 60° C. for 6 hours to obtain a polymer block A partial polymer. The peak top molecular weight and the weight average molecular weight of the polymer block A partial polymer are shown in Tables 1 and 2.
 重合体ブロックA部分重合物を含む反応液に、非架橋性モノマーとしてn-ブチルアクリレート及び2-エチルヘキシルアクリレートと、架橋性モノマーとして4-アクリロイルオキシベンゾフェノンと、溶剤として酢酸エチルとをそれぞれ表1及び2に示した配合量ずつ供給した。反応液を6時間に亘って60℃に保持して可逆的連鎖移動重合(RAFT)を行い、重合体ブロックA-重合体ブロックB部分重合物を得た。重合体ブロックA-重合体ブロックB部分重合物のピークトップ分子量及び重量平均分子量を表1及び2に示した。 In a reaction liquid containing the polymer block A partial polymer, n-butyl acrylate and 2-ethylhexyl acrylate as non-crosslinkable monomers, 4-acryloyloxybenzophenone as a crosslinkable monomer, and ethyl acetate as a solvent were respectively used in Table 1 and The compounding amounts shown in 2 were supplied. The reaction solution was kept at 60° C. for 6 hours for reversible chain transfer polymerization (RAFT) to obtain a polymer block A-polymer block B partial polymer. The peak top molecular weight and the weight average molecular weight of the polymer block A-polymer block B partial polymer are shown in Tables 1 and 2.
 重合体ブロックA-重合体ブロックB部分重合物を含む反応液に、非架橋性モノマーとしてイソボルニルアクリレート、シクロヘキシルアクリレート、4-t-ブチルシクロヘキシルアクリレート及びn-ブチルアクリレートと、架橋性モノマーとして4-アクリロイルオキシベンゾフェノン、4-[2-(アクリロイルオキシ)エトキシ]ベンゾフェノン及び4-ヒドロキシブチルアクリレートグリシジルエーテルと、溶剤として酢酸エチルとをそれぞれ表1及び2に示した配合量供給した。反応液を6時間に亘って60℃に保持して可逆的連鎖移動重合(RAFT)を行った後、酢酸エチルを除去して架橋性ブロック共重合体を得た。架橋性ブロック共重合体は、重合体ブロックBの両末端に重合体ブロックAが結合してなるA-B-A型トリブロック共重合体であった。架橋性ブロック共重合体のピークトップ分子量及び重量平均分子量及び分散度を表1及び2に示した。架橋性ブロック共重合体中の重合体ブロックA及びBの含有量を表1及び2に示した。架橋性ブロック共重合体中における重合体ブロックAの総含有量及び重合体ブロックBの含有量を表1及び2に示した。 In a reaction solution containing a polymer block A-polymer block B partial polymer, isobornyl acrylate, cyclohexyl acrylate, 4-t-butylcyclohexyl acrylate and n-butyl acrylate as non-crosslinking monomers and 4 as crosslinkable monomers -Acryloyloxybenzophenone, 4-[2-(acryloyloxy)ethoxy]benzophenone and 4-hydroxybutyl acrylate glycidyl ether, and ethyl acetate as a solvent were supplied in the amounts shown in Tables 1 and 2, respectively. The reaction solution was kept at 60° C. for 6 hours for reversible chain transfer polymerization (RAFT), and then ethyl acetate was removed to obtain a crosslinkable block copolymer. The crosslinkable block copolymer was an ABA type triblock copolymer in which the polymer block A was bound to both ends of the polymer block B. The peak top molecular weight, the weight average molecular weight and the dispersity of the crosslinkable block copolymer are shown in Tables 1 and 2. The contents of polymer blocks A and B in the crosslinkable block copolymer are shown in Tables 1 and 2. The total content of the polymer block A and the content of the polymer block B in the crosslinkable block copolymer are shown in Tables 1 and 2.
(比較例4及び5)
 攪拌機、冷却管、温度計及び窒素ガス導入口を備えたセパラブルフラスコに、非架橋性モノマーとしてn-ブチルアクリレート、イソボルニルアクリレート、シクロヘキシルアクリレート及び4-t-ブチルシクロヘキシルアクリレートと、架橋性モノマーとして4-アクリロイルオキシベンゾフェノンと、トリチオカーボネート化合物として2-[(ドデシルスルファニルチオカルボニル)スルファニル]プロパン酸と、溶剤として酢酸エチルとをそれぞれ表3に示した配合量ずつ供給し、攪拌して反応液を作製した。
(Comparative Examples 4 and 5)
In a separable flask equipped with a stirrer, a cooling tube, a thermometer and a nitrogen gas inlet, n-butyl acrylate, isobornyl acrylate, cyclohexyl acrylate and 4-t-butyl cyclohexyl acrylate as non-crosslinking monomers, and a crosslinking monomer 4-acryloyloxybenzophenone as the compound, 2-[(dodecylsulfanylthiocarbonyl)sulfanyl]propanoic acid as the trithiocarbonate compound, and ethyl acetate as the solvent in the amounts shown in Table 3, respectively, and stirred to react. A liquid was prepared.
 セパラブルフラスコ内を窒素ガスで置換した後、ウォーターバスを用いて反応液を60℃に保持した。次に、セパラブルフラスコ内の反応液に重合開始剤として2,2’-アゾビス(イソブチロニトリル)を表3に示した配合量供給して可逆的連鎖移動重合(RAFT)を開始した。反応液を6時間に亘って60℃に保持して可逆的連鎖移動重合(RAFT)を行った後、酢酸エチルを除去して架橋性ランダム共重合体を得た。架橋性ランダム共重合体のピークトップ分子量、重量平均分子量及び分散度を表3に示した。 After purging the inside of the separable flask with nitrogen gas, the reaction solution was kept at 60° C. using a water bath. Next, reversible chain transfer polymerization (RAFT) was started by supplying 2,2'-azobis(isobutyronitrile) as a polymerization initiator in the reaction liquid in the separable flask in the compounding amounts shown in Table 3. The reaction solution was kept at 60° C. for 6 hours for reversible chain transfer polymerization (RAFT), and then ethyl acetate was removed to obtain a crosslinkable random copolymer. Table 3 shows the peak top molecular weight, weight average molecular weight and dispersity of the crosslinkable random copolymer.
(ホットメルト粘着剤の作製)
 実施例1及び4~12、比較例1~3及び6の架橋性ブロック共重合体、並びに、比較例4及び5の架橋性ランダム共重合体を何ら処理することなくホットメルト粘着剤として用いた。
(Preparation of hot melt adhesive)
The crosslinkable block copolymers of Examples 1 and 4 to 12 and Comparative Examples 1 to 3 and 6 and the crosslinkable random copolymers of Comparative Examples 4 and 5 were used as hot melt adhesives without any treatment. ..
 実施例2の架橋性ブロック共重合体100質量部に粘着付与剤としてロジンエステル系タッキファイヤー(Eastman Chemical社製 商品名「Foral 85-E」)10質量部を添加して130℃にて均一に混合してホットメルト粘着剤を得た。 To 100 parts by mass of the crosslinkable block copolymer of Example 2, 10 parts by mass of a rosin ester-based tackifier (Product name "Foral 85-E" manufactured by Eastman Chemical Co., Ltd.) was added as a tackifier, and uniformly added at 130°C. A hot melt adhesive was obtained by mixing.
 実施例3の架橋性ブロック共重合体100質量部に光酸発生剤(UVカチオン発生剤)としてトリアリールスルホニウム塩系光酸発生剤(サンアプロ社製 商品名「CPI-200K」)2質量部を添加して130℃にて均一に混合してホットメルト粘着剤を得た。 To 100 parts by mass of the crosslinkable block copolymer of Example 3, 2 parts by mass of a triarylsulfonium salt-based photoacid generator (trade name "CPI-200K" manufactured by San-Apro Co.) as a photoacid generator (UV cation generator) was added. The mixture was added and uniformly mixed at 130° C. to obtain a hot melt adhesive.
 実施例及び比較例で得られた架橋性ブロック共重合体、この架橋性ブロック共重合体を架橋させたブロック共重合体、架橋性ランダム共重合体及びこの架橋性ランダム共重合体を架橋させたランダム共重合体について、上述の要領で減衰曲線を測定し、この減衰曲線に基づいて、スピンースピン緩和時間T2(1)及びT2(2)、並びに、成分比A1及びA2を得た。緩和時間T2(2)の変化率(%)も算出した。架橋後のブロック共重合体及びランダム共重合体のゲル分率を表3~5に記載した。 The crosslinkable block copolymers obtained in Examples and Comparative Examples, block copolymers obtained by crosslinking this crosslinkable block copolymer, crosslinkable random copolymers and this crosslinkable random copolymer were crosslinked. The decay curve of the random copolymer was measured as described above, and the spin-spin relaxation times T 2 (1) and T 2 (2) and the component ratios A 1 and A 2 were obtained based on the decay curve. .. The rate of change (%) of the relaxation time T 2 (2) was also calculated. The gel fractions of the block copolymer and the random copolymer after crosslinking are shown in Tables 3 to 5.
 実施例1で得られた架橋性ブロック共重合体の減衰曲線及びこの減衰曲線を2成分緩和曲線フィッティングさせて得られた緩和曲線を示したグラフを図1に示した。なお、縦軸は、「減衰曲線の最大強度を1としたときの信号強度比」である。緩和曲線の成分比A1は、スピン-スピン緩和時間T2(1)を有する緩和曲線のY軸の切片の値から読み取ることができる。緩和曲線の成分比A2は、スピン-スピン緩和時間T2(2)を有する緩和曲線のY軸の切片の値から読み取ることができる。 A graph showing an attenuation curve of the crosslinkable block copolymer obtained in Example 1 and a relaxation curve obtained by fitting the attenuation curve to a two-component relaxation curve is shown in FIG. The vertical axis represents the "signal intensity ratio when the maximum intensity of the attenuation curve is 1." The component ratio A 1 of the relaxation curve can be read from the value of the intercept on the Y axis of the relaxation curve having the spin-spin relaxation time T 2 (1). The relaxation curve component ratio A 2 can be read from the value of the intercept on the Y axis of the relaxation curve having the spin-spin relaxation time T 2 (2).
 実施例及び比較例で得られた架橋性ブロック共重合体及び架橋性ランダム共重合体について、塗工性及び粘着性を下記の要領で測定した。 The coatability and tackiness of the crosslinkable block copolymers and crosslinkable random copolymers obtained in the examples and comparative examples were measured as follows.
(塗工性)
 下記に示した測定装置を用意した。ホットメルト粘着剤13g採取し、Thermosel内に装着するアルミ筒に投入した。温度を130℃に設定してホットメルト粘着剤を溶融した。スピンドル4-29を用いて30分間に亘って溶融粘度の測定を行った。30分間の測定後の数値を読み取り、130℃における溶融粘度とした。
 測定器:DV-E Viscometer(Brookfield社製)
     Thermosel(Brookfield社製)
(Coatability)
The measuring device shown below was prepared. 13 g of the hot melt adhesive was collected and put into an aluminum cylinder mounted in Thermosel. The temperature was set to 130° C. to melt the hot melt adhesive. Melt viscosity measurements were taken over 30 minutes using spindle 4-29. The numerical value after the measurement for 30 minutes was read to obtain the melt viscosity at 130°C.
Measuring device: DV-E Viscometer (manufactured by Brookfield)
Thermosel (manufactured by Brookfield)
 得られた130℃における溶融粘度に基づいて下記基準にて評価した。
  A:溶融粘度が70Pa・s未満であった。
  B:溶融粘度が70Pa・s以上で且つ150Pa・s未満であった。
  C:溶融粘度が150Pa・s以上であった。
The following criteria were evaluated based on the obtained melt viscosity at 130°C.
A: Melt viscosity was less than 70 Pa·s.
B: Melt viscosity was 70 Pa·s or more and less than 150 Pa·s.
C: Melt viscosity was 150 Pa·s or more.
(耐剥がれ性:定荷重保持力 対SUS)
 ホットメルト粘着剤をポリエチレンテレフタレート(PET)フィルム上に厚み20μmとなるように塗工した。次に、紫外線照射装置(ヘレウス(旧フュージョンUVシステムズ)社製 商品名「Light Hammer6」(Hバルブ使用))を用いて、UV-C照射強度:約48mW/cm2、UV-C積算光量:60mJ/cm2にてホットメルト粘着剤に紫外線(UV-C)を照射して、ホットメルト粘着剤を硬化させた。ポリエチレンテレフタレートフィルム上に厚みが20μmの粘着剤層が積層一体化されてなる試験片を作製した。
(Peeling resistance: Constant load holding force vs. SUS)
The hot melt adhesive was applied onto a polyethylene terephthalate (PET) film so as to have a thickness of 20 μm. Next, UV-C irradiation intensity: about 48 mW/cm 2 , UV-C integrated light amount: using an ultraviolet irradiation device (Hereus (former Fusion UV Systems), trade name “Light Hammer 6” (H bulb used)) The hot melt adhesive was irradiated with ultraviolet rays (UV-C) at 60 mJ/cm 2 to cure the hot melt adhesive. A 20 μm-thick adhesive layer was laminated and integrated on a polyethylene terephthalate film to prepare a test piece.
 試験フィルムを幅15mm、長さ150mmに切断して試験片を作製した。一方、SUS板を用意し、このSUS板の表面を#240の耐水紙やすりで研磨した後にヘキサンとアセトンの混合溶剤を用いて払拭して脱脂した。 A test film was prepared by cutting the test film into a width of 15 mm and a length of 150 mm. On the other hand, a SUS plate was prepared, the surface of the SUS plate was polished with a #240 water resistant sandpaper, and then wiped with a mixed solvent of hexane and acetone to degrease.
 SUS板の表面に試験片を粘着剤層によって試験片の端部より75mmの長さを貼合した後、試験片上に2kgハンドローラーを往復させた。30分の養生時間を置いた後、試験片貼合面が下向きとなるように設置した。SUS板に貼着させていない試験片の端部に150gの分銅を吊るし、SUS表面に対して試験片が90度の角度で剥離されるように荷重を掛けた状態で測定を開始した。貼合した75mmが全面的に剥離して試験片が落下した時点、又は、測定開始から1時間を経過した時点で測定を終了した。 After sticking the test piece on the surface of the SUS plate with a pressure-sensitive adhesive layer to a length of 75 mm from the end of the test piece, a 2 kg hand roller was reciprocated on the test piece. After allowing a curing time of 30 minutes, the test piece bonding surface was installed so as to face downward. The weight of 150 g was hung on the end portion of the test piece not attached to the SUS plate, and the measurement was started in a state where the load was applied so that the test piece was peeled off at an angle of 90 degrees with respect to the SUS surface. The measurement was terminated when the bonded 75 mm was entirely peeled off and the test piece dropped, or when 1 hour passed from the start of the measurement.
 測定開始から1時間を経過した時点において、試験片がSUS板から剥離した距離(剥離距離)を測定した。1時間以内に試験片がSUS板から落下した場合、試験開始から試験片が落下するのに要した時間に基づいて、試験開始から1時間経過した時点における剥離距離を比例計算した。剥離距離が短い程、耐剥がれ性に優れている。 At a time point 1 hour after the start of measurement, the distance (peeling distance) at which the test piece peeled from the SUS plate was measured. When the test piece fell from the SUS plate within 1 hour, the peeling distance at the time when 1 hour passed from the start of the test was proportionally calculated based on the time required for the test piece to fall from the start of the test. The shorter the peeling distance, the better the peeling resistance.
(耐剥がれ性:定荷重保持力 対PET)
 アモルファスポリエチレンテレフタレート(A-PET)板を用意し、A-PET板の表面をヘキサンとアセトンの混合溶剤を用いて払拭して脱脂した。このA-PET板をSUS板の代わりに用いたこと、分銅の質量を100gとしたこと以外は、上述と同様の要領で剥離距離を測定した。
(Peel resistance: Constant load holding force vs. PET)
An amorphous polyethylene terephthalate (A-PET) plate was prepared, and the surface of the A-PET plate was wiped with a mixed solvent of hexane and acetone for degreasing. The peel distance was measured in the same manner as described above except that this A-PET plate was used instead of the SUS plate, and the mass of the weight was 100 g.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明によれば、溶融粘度が低くて塗工性に優れ、且つ粘着物性、特に耐剥がれ性に優れた架橋性ブロック共重合体及びこれを用いたホットメルト粘着剤を提供することができる。 According to the present invention, it is possible to provide a crosslinkable block copolymer having a low melt viscosity, excellent coatability, and excellent adhesive physical properties, particularly peeling resistance, and a hot melt adhesive using the same.
 (関連出願の相互参照)
 本出願は、2019年1月16日に出願された日本国特許出願第2019-5256号、及び2019年5月23日に出願された日本国特許出願第2019-96487号に基づく優先権を主張し、この出願の開示はこれらの全体を参照することにより本明細書に組み込まれる。
(Cross-reference of related applications)
This application claims priority based on Japanese Patent Application No. 2019-5256 filed on January 16, 2019 and Japanese Patent Application No. 2019-96487 filed on May 23, 2019. However, the disclosure of this application is incorporated herein by reference in its entirety.
C  減衰曲線を非線形最小二乗法を用いて2成分緩和曲線フィッティングさせて得られる緩和曲線のうち、短い方(第1成分)のスピン-スピン緩和時間T2(1)を有する緩和曲線
D  減衰曲線を非線形最小二乗法を用いて2成分緩和曲線フィッティングさせて得られる緩和曲線のうち、長い方(第2成分)のスピン-スピン緩和時間T2(2)を有する緩和曲線
E  減衰曲線
C relaxation curve D relaxation curve having a shorter spin-spin relaxation time T 2 (1) of relaxation curves obtained by fitting a two-component relaxation curve using a nonlinear least squares method A relaxation curve E having a longer spin-spin relaxation time T 2 (2) among relaxation curves obtained by fitting a two-component relaxation curve using the nonlinear least squares method

Claims (6)

  1.  架橋性を有するモノマー単位を含む重合体ブロックAと、
     重合体ブロックBとを有し、
     架橋させた後において、40℃での1HパルスNMR(20MHz)においてSolid echo法により得られる減衰曲線を非線形最小二乗法を用いて2成分緩和曲線フィッティングさせたとき、短い方のスピン-スピン緩和時間T2(1)が40~90μ秒であり、上記スピン-スピン緩和時間T2(1)を有する緩和曲線の成分比A1が10~35%であることを特徴とする架橋性ブロック共重合体。
    A polymer block A containing a monomer unit having crosslinkability,
    Having a polymer block B,
    After cross-linking, when the decay curve obtained by the Solid echo method in 1 H pulsed NMR (20 MHz) at 40° C. was fitted with a two-component relaxation curve using the nonlinear least squares method, the shorter spin-spin relaxation was obtained. A crosslinkable block having a time T 2 (1) of 40 to 90 μsec and a component ratio A 1 of a relaxation curve having the spin-spin relaxation time T 2 (1) of 10 to 35% Polymer.
  2.  重合体ブロックBの両末端に重合体ブロックAが結合してなるA-B-A型の架橋性ブロック共重合体であることを特徴とする請求項1に記載の架橋性ブロック共重合体。 The crosslinkable block copolymer according to claim 1, which is an ABA type crosslinkable block copolymer in which the polymer block A is bonded to both ends of the polymer block B.
  3.  重合体ブロックAは、飽和脂肪族環構造を有するモノマー単位を含むことを特徴とする請求項1又は請求項2に記載の架橋性ブロック共重合体。 3. The crosslinkable block copolymer according to claim 1 or 2, wherein the polymer block A contains a monomer unit having a saturated aliphatic ring structure.
  4.  飽和脂肪族環構造を有するモノマー単位は、イソボルニル(メタ)アクリレート単位、シクロヘキシル(メタ)アクリレート単位及び4-t-ブチルシクロへキシル(メタ)アクリレート単位からなる群から選ばれた少なくとも一種の(メタ)アクリレート単位を含むことを特徴とする請求項3に記載の架橋性ブロック共重合体。 The monomer unit having a saturated alicyclic structure is at least one (meth) selected from the group consisting of an isobornyl (meth)acrylate unit, a cyclohexyl (meth)acrylate unit and a 4-t-butylcyclohexyl (meth)acrylate unit. The crosslinkable block copolymer according to claim 3, comprising an acrylate unit.
  5.  架橋性を有するモノマー単位は、放射線架橋性モノマー単位を含むことを特徴とする請求項1~4の何れか1項に記載の架橋性ブロック共重合体。 The crosslinkable block copolymer according to any one of claims 1 to 4, wherein the crosslinkable monomer unit includes a radiation crosslinkable monomer unit.
  6.  請求項1~5の何れか1項に記載の架橋性ブロック共重合体を含むことを特徴とするホットメルト粘着剤。 A hot melt pressure-sensitive adhesive containing the crosslinkable block copolymer according to any one of claims 1 to 5.
PCT/JP2020/001389 2019-01-16 2020-01-16 Crosslinkable block copolymer and hot-melt adhesive WO2020149388A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020533043A JP7289148B2 (en) 2019-01-16 2020-01-16 Crosslinkable block copolymer and hot melt adhesive

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019005256 2019-01-16
JP2019-005256 2019-01-16
JP2019096487 2019-05-23
JP2019-096487 2019-05-23

Publications (1)

Publication Number Publication Date
WO2020149388A1 true WO2020149388A1 (en) 2020-07-23

Family

ID=71614420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001389 WO2020149388A1 (en) 2019-01-16 2020-01-16 Crosslinkable block copolymer and hot-melt adhesive

Country Status (2)

Country Link
JP (2) JP7289148B2 (en)
WO (1) WO2020149388A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055630A (en) * 2001-06-20 2003-02-26 Tesa Ag Pressure-sensitive adhesive particularly for nonpolar surface
JP2008038116A (en) * 2006-08-10 2008-02-21 Asahi Kasei Chemicals Corp Emulsion having high endurance
US20080233348A1 (en) * 2007-03-19 2008-09-25 3M Innovative Properties Company Adhesive sheet article
JP2012229354A (en) * 2011-04-27 2012-11-22 Hitachi Chemical Co Ltd Acrylic resin having polyglycidyl block at both terminals, method for producing the same, and resin composition using the same
WO2015030207A1 (en) * 2013-08-30 2015-03-05 株式会社クラレ Modified acrylic block copolymer, method for producing same, and intended use of same
WO2017014154A1 (en) * 2015-07-22 2017-01-26 株式会社クラレ (meth)acrylic block copolymer
JP2017082162A (en) * 2015-10-30 2017-05-18 日本合成化学工業株式会社 Acrylic resin, acrylic adhesive composition, adhesive sheet
WO2017217363A1 (en) * 2016-06-13 2017-12-21 東亞合成株式会社 Molding resin composition and molded article
WO2018013330A1 (en) * 2016-07-11 2018-01-18 3M Innovative Properties Company Polymeric material and methods of making using controlled radical initiators
WO2018016407A1 (en) * 2016-07-21 2018-01-25 大塚化学株式会社 Block copolymer, composition, and film
JP2018504509A (en) * 2014-12-15 2018-02-15 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Photocrosslinkable block copolymers for hot melt adhesives.
US20180112021A1 (en) * 2016-10-25 2018-04-26 Avery Dennison Corporation Controlled Architecture Polymerization with Photoinitiator Groups in Backbone
WO2018181251A1 (en) * 2017-03-31 2018-10-04 東亞合成株式会社 Curable resin composition and production method therefor
WO2019098153A1 (en) * 2017-11-15 2019-05-23 株式会社クラレ (meth)acrylic block copolymer, and active-energy-ray-curable composition containing same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055630A (en) * 2001-06-20 2003-02-26 Tesa Ag Pressure-sensitive adhesive particularly for nonpolar surface
JP2008038116A (en) * 2006-08-10 2008-02-21 Asahi Kasei Chemicals Corp Emulsion having high endurance
US20080233348A1 (en) * 2007-03-19 2008-09-25 3M Innovative Properties Company Adhesive sheet article
JP2012229354A (en) * 2011-04-27 2012-11-22 Hitachi Chemical Co Ltd Acrylic resin having polyglycidyl block at both terminals, method for producing the same, and resin composition using the same
WO2015030207A1 (en) * 2013-08-30 2015-03-05 株式会社クラレ Modified acrylic block copolymer, method for producing same, and intended use of same
JP2018504509A (en) * 2014-12-15 2018-02-15 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Photocrosslinkable block copolymers for hot melt adhesives.
WO2017014154A1 (en) * 2015-07-22 2017-01-26 株式会社クラレ (meth)acrylic block copolymer
JP2017082162A (en) * 2015-10-30 2017-05-18 日本合成化学工業株式会社 Acrylic resin, acrylic adhesive composition, adhesive sheet
WO2017217363A1 (en) * 2016-06-13 2017-12-21 東亞合成株式会社 Molding resin composition and molded article
WO2018013330A1 (en) * 2016-07-11 2018-01-18 3M Innovative Properties Company Polymeric material and methods of making using controlled radical initiators
WO2018016407A1 (en) * 2016-07-21 2018-01-25 大塚化学株式会社 Block copolymer, composition, and film
US20180112021A1 (en) * 2016-10-25 2018-04-26 Avery Dennison Corporation Controlled Architecture Polymerization with Photoinitiator Groups in Backbone
WO2018181251A1 (en) * 2017-03-31 2018-10-04 東亞合成株式会社 Curable resin composition and production method therefor
WO2019098153A1 (en) * 2017-11-15 2019-05-23 株式会社クラレ (meth)acrylic block copolymer, and active-energy-ray-curable composition containing same

Also Published As

Publication number Publication date
JPWO2020149388A1 (en) 2021-02-18
JP7289148B2 (en) 2023-06-09
JP2021080474A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
JP6698269B2 (en) (Meth)acrylic copolymer, pressure-sensitive adhesive composition containing the same, and pressure-sensitive adhesive sheet
JP6513347B2 (en) Adhesive sheet
TW201235429A (en) Optical acrylic pressure-sensitive adhesive composition and optical acrylic pressure-sensitive adhesive tape
KR101932489B1 (en) Photo curable adhesive and bonding film composition, adhesive and bonding film and method for preparing adhesive and bonding film
KR20160011785A (en) Photo curable adhesive composition and adhesive sheet
JP5639438B2 (en) Temperature sensitive adhesive
JP2011231203A (en) Acrylic adhesive for surface protective film
JP2014205835A (en) Black silane primer for improving adhesion of adhesive tape to glass surface
JP6881500B2 (en) Adhesive sheet and laminate
JP7335770B2 (en) Adhesive film and surface protection film
JP5277425B2 (en) Protective film for optical members
JPH07505431A (en) UV-curable acrylate pressure-sensitive adhesive composition
WO2020149385A1 (en) Crosslinkable block copolymer and coating agent
WO2020149388A1 (en) Crosslinkable block copolymer and hot-melt adhesive
CN107406737B (en) Temperature sensitive adhesive composition
JP2014181258A (en) Acrylic adhesive composition and method of producing adhesive tape using the same
JP2020128492A (en) Adhesive sheet and laminate
WO2020149387A1 (en) Crosslinkable block copolymer, production method therefor, and stretchable member
JP6898227B2 (en) Temperature-sensitive adhesive tape and temperature-sensitive adhesive sheet
WO2020149386A1 (en) Crosslinkable block copolymer, production method therefor, and hot-melt adhesive
JP6881501B2 (en) Adhesive sheet and laminate
JP2004010835A (en) Ultraviolet-curable acrylic pressure sensitive adhesive, process for producing it and pressure sensitive adhesive sheet
JP4530444B2 (en) Film base for adhesive tape
TW202022065A (en) Cross-linkable copolymer and uses of the same
JP6393510B2 (en) Temperature-sensitive adhesive composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020533043

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20742064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20742064

Country of ref document: EP

Kind code of ref document: A1