WO2020148446A1 - Billes frittees d'alumine-zircone - Google Patents

Billes frittees d'alumine-zircone Download PDF

Info

Publication number
WO2020148446A1
WO2020148446A1 PCT/EP2020/051178 EP2020051178W WO2020148446A1 WO 2020148446 A1 WO2020148446 A1 WO 2020148446A1 EP 2020051178 W EP2020051178 W EP 2020051178W WO 2020148446 A1 WO2020148446 A1 WO 2020148446A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
zirconia
content
mass
powder
Prior art date
Application number
PCT/EP2020/051178
Other languages
English (en)
Inventor
Emmanuel Nonnet
Original Assignee
Saint-Gobain Centre De Recherches Et D'etudes Europeen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Centre De Recherches Et D'etudes Europeen filed Critical Saint-Gobain Centre De Recherches Et D'etudes Europeen
Priority to US17/423,431 priority Critical patent/US20220153650A1/en
Priority to EP20701934.0A priority patent/EP3911617A1/fr
Priority to CN202080022898.6A priority patent/CN113614050A/zh
Priority to KR1020217025590A priority patent/KR20210113664A/ko
Publication of WO2020148446A1 publication Critical patent/WO2020148446A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/20Disintegrating members
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6023Gel casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention relates to sintered alumina-zirconia balls, to a method of manufacturing these balls, and to the use of these balls as grinding agents, dispersing agents in a humid environment or for the treatment. of surfaces.
  • the mineral industry uses balls for the fine grinding of materials that may be pre-grinded dry by traditional methods, in particular for the fine grinding of calcium carbonate, titanium oxide, gypsum, kaolin and iron ore. .
  • Sand with rounded particles like sand from OTTAWA for example, is a natural and inexpensive product, but unsuitable for modern, pressurized and high-flow crushers. Indeed, the sand is not very resistant, of low density, variable in quality and abrasive for the material.
  • Widely used glass beads exhibit improved strength, lower abrasiveness and availability in a wider range of diameters.
  • the metal balls in particular steel, have a low inertia with respect to the treated products, causing in particular pollution of the mineral fillers and graying of the paints, and too high a density requiring special grinders. In particular, they involve high energy consumption, significant heating and high mechanical stress on the equipment.
  • Ceramic balls have better strength than glass balls, higher density and excellent chemical inertness.
  • the beads conventionally have a size of between 0.005 and 10 mm.
  • molten ceramic balls generally obtained by melting ceramic components, forming spherical drops from the molten material, then solidifying said drops, and
  • sintered ceramic balls generally obtained by cold shaping a ceramic powder, then consolidation by firing at high temperature.
  • molten beads most often include a very abundant intergranular glassy phase which fills a network of crystallized grains.
  • the problems encountered in their respective applications by the sintered balls and by the molten balls, and the technical solutions adopted to solve them, are therefore generally different.
  • a composition developed for manufacturing a molten ball is not a priori suitable for manufacturing a sintered ball, and vice versa.
  • a very specific application is the use of beads as a grinding medium, in particular for finely grinding mineral, inorganic or organic materials.
  • the beads are dispersed in an aqueous medium or a solvent, the temperature of which can exceed 80 ° C, while remaining preferably below 150 ° C, and undergo friction by contact with the material to be ground, for example mutual contact and by contact with the parts of the crusher.
  • the service life of the beads then depends directly on their resistance to wear in this aqueous or solvent medium.
  • the grinding balls In order to increase the yields of the grinding operations, the grinding balls must be increasingly resistant to wear, while having a high resistance to degradation in a hot liquid medium, in particular when they are in contact. with water at more than 80 ° C., these conditions being called hereinafter “hydrothermal conditions”.
  • Alumina-zirconia grinding balls are known, the zirconia being stabilized in the quadratic crystallographic form. These balls exhibit good wear resistance. However, their resistance under hydrothermal conditions is limited.
  • One aim of the invention is to meet, at least partially, this need.
  • the invention relates to a sintered ball, having: the following crystallized phases, in percentages by mass on the basis of the crystallized phases and for a total of 100%:
  • the sintered balls according to the invention are thus particularly well suited to applications of dispersion in a humid environment, micro-grinding, heat exchange and surface treatment.
  • the zircon content is less than 24%, in percentages by mass based on the crystallized phases
  • the cubic + quadratic zirconia content is less than 90%, in percentages by mass on the basis of the crystallized phases; the level of cubic zirconia is greater than 60%, in percentages by mass on the basis of the crystallized phases;
  • the content of monoclinic zirconia is less than 8%, preferably is substantially zero, in percentages by mass based on the crystallized phases;
  • the corundum content is greater than 8% and / or less than 45%, preferably less than 35%, in percentages by mass on the basis of the crystallized phases;
  • the content of crystallized phase other than zircon, cubic zirconia, quadratic zirconia, monoclinic zirconia and corundum is less than 8%, in percentages by mass based on the crystallized phases;
  • the Zr0 2 + HfC> 2 content is greater than 37.0%, preferably greater than 44.6% and / or less than 85.0%, preferably less than 75.0%, in percentages by mass on the base of oxides;
  • the HfC> 2 content is less than 3.0%, preferably less than 2.0%, in percentages by weight based on the oxides;
  • the S1O2 content is greater than 1.0%, preferably greater than 2.0% and / or less than 13.6%, preferably less than 12.0%, in percentages by mass based on the oxides;
  • the Al2O3 content is greater than 7.0%, preferably greater than 10.5% and / or less than 45.0%, preferably less than 34.9%, in percentages by mass based on the oxides;
  • the Y2O3 content is greater than 2.8%, preferably greater than 3.6% and / or less than 21.6%, preferably less than 18.0%, in percentages by mass based on the oxides;
  • the MgO content is greater than 0.1%, preferably greater than 0.15% and / or less than 4.0%, preferably less than 2.0%, in percentages by mass based on the oxides;
  • the CaO content is greater than 0.1%, preferably greater than 0.2% and / or less than 1.5%, preferably less than 1.0%, in percentages by mass based on the oxides;
  • the content of oxides other than ZrC> 2 , HfC> 2 , S1O 2 , Al 2 O 3 , Y 2 O 3 , CaO and MgO is less than 4.0%, preferably less than 2.0%;
  • the zircon content is greater than or equal to 10%, preferably greater than or equal to 15% and less than 25%, preferably less than or equal to 20%; and the stabilized zirconia content is greater than 50% and less than 80%, preferably less than 70%, the content of cubic zirconia being greater than 50%, preferably greater than 70%; and the content of monoclinic zirconia is less than 5%, preferably substantially zero; and the corundum content is greater than 10%, preferably greater than 15% and less than 35%, preferably less than 30%, preferably less than 28%, preferably less than 26%, preferably less than 25%; and the total content of crystalline phases other than zircon, stabilized zirconia, monoclinic zirconia and corundum is less than 6%; and the Zr0 2 + HfC> 2 content is greater than 43.5%, preferably greater than 56.0%, preferably greater than 57.0% and less than 80.2%, preferably less than 72.0 %; and the content of HfC> 2 is less than
  • the zircon content is less than 4%, preferably substantially zero; and the stabilized zirconia content is greater than 50%, preferably greater than 60% and less than 90%, preferably less than 85%, the level of cubic zirconia being greater than 50%, preferably greater than 70%; and the content of monoclinic zirconia is less than 5%, preferably substantially zero; and the corundum content is greater than 10%, preferably greater than 15% and less than 35%, preferably less than 30%, preferably less than 28%, preferably less than 26%, preferably less than 25% ; and the total content of crystalline phases other than zircon, stabilized zirconia, monoclinic zirconia and corundum is less than 6%; and the content of Zr0 2 + HfC> 2 is greater than 44.6%, preferably greater than 53.0%, preferably greater than 57.0% and less than 82.9%, preferably less than 70.0 %; and the content of HfC> 2 is less than 4.0%, preferably less than 3.0%;
  • the invention also relates to a powder of beads comprising more than 90%, preferably more than 95%, preferably substantially 100%, in percentages by weight, of beads according to the invention.
  • the invention also relates to a process for manufacturing sintered balls according to the invention comprising the following successive steps:
  • one or more powders of raw materials introduced into said particulate mixture are ground, preferably co-ground;
  • the particulate mixture comprises a stabilized zirconia powder, in a quantity by mass, on the basis of the particulate mixture, greater than 45% and less than 88%, more than 50% by mass of said powder of stabilized zirconia being in cubic form, said stabilized zirconia being at least in part, preferably fully stabilized by means of Y2C>3; -
  • the particulate mixture comprises a zircon powder in an amount greater than 9.1% and less than 24.5%; and a Y2O3 stabilized zirconia powder in an amount greater than 45% and less than 78.4%, more than 50% by weight of the stabilized zirconia particles being in the cubic form; and a corundum powder in an amount greater than 9.1% and less than 34.3%; and a silica powder in an amount greater than 0.5% and less than 6%; and a cordierite powder in an amount greater than 0.5% and less than 8%; and a clay powder in an amount greater
  • the particulate mixture comprises a zirconia powder stabilized at Y2O3 in an amount greater than 45% and less than 88%, more than 50% by mass of the stabilized zirconia particles being in cubic form; and a corundum powder in an amount greater than 9.1% and less than 34.3%; and a silica powder in an amount greater than 0.5% and less than 6%; and a cordierite powder in an amount greater than 0.5% and less than 8%; and a clay powder in an amount greater than 0.5% and less than 5%;
  • one or more of the powders of the particulate mixture can be replaced, at least partially, by equivalent powders which lead, in said balls, to the same constituents, in the same quantities, with the same crystallographic phases.
  • the invention finally relates to the use of a powder of beads according to the invention, in particular produced according to a process according to the invention, as grinding agents, in particular in a humid environment; wet dispersants; propping agents, in particular to prevent the closure of deep geological fractures created in the walls of an extraction well, in particular of oil; heat exchange agents, for example for fluidized beds; or for surface treatment.
  • powder is understood to mean an individualized solid product in a powder.
  • balls is meant a particle exhibiting sphericity, that is to say a ratio between its smallest Ferret diameter and its largest Ferret diameter, greater than 0.6, whatever the way by which this sphericity was obtained.
  • the balls according to the invention have a sphericity greater than 0.7.
  • the term “median size” of a powder of particles of raw material or of a particulate mixture is the size dividing the particles of this powder or of this particulate mixture into first and second populations equal in mass, these first and second populations comprising only particles having a size greater than or less, respectively, than the median size.
  • the median size can for example be evaluated using a laser particle size analyzer.
  • sintered ball is meant a solid ball obtained by sintering a green ball.
  • impurities is meant the inevitable constituents, necessarily introduced with the raw materials.
  • the compounds belonging to the group of oxides, nitrides, oxynitrides, carbides, oxycarbons, sodium carbonitrides and other alkalis, iron, vanadium and chromium are impurities.
  • the residual carbon forms part of the impurities in the composition of the beads according to the invention.
  • ZrC> 2 When referring to ZrÜ 2 0 u at (Zr0 2 + HfC> 2 ), it should be understood ZrC> 2 and a small amount, typically less than 4.0% of HfC> 2 , as a percentage mass on the basis of Zr0 2 + HfC> 2 . Indeed, a little HfC> 2 , chemically inseparable from ZrC> 2 and exhibiting similar properties, is always naturally present in sources of ZrC> 2 at levels generally less than 4.0%, in percentage by mass on the basis of Zr0 2 + HfC> 2 . HfC> 2 is not considered an impurity.
  • ZrC>2 (or “Zr0 2 + HfC> 2 "), “S1O 2 “ and “Al 2 O 3 " are used to denote the contents of these oxides in the composition
  • zirconia “silica” and “corundum” to denote crystalline phases of these oxides consisting of ZrC> 2 + HfC> 2 , SiC> 2 and Al 2 O 3 , respectively.
  • ZrC> 2 and S1O 2 can be present in the form of zircon (ZrSiCL).
  • zirconia conventionally includes the small amount of hafnia phase, not distinguishable by X-ray diffraction.
  • stabilized zirconia is meant the assembly consisting of quadratic zirconia and cubic zirconia. - The mass ratio (cubic zirconia / (cubic zirconia + quadratic zirconia)) is called “cubic zirconia rate”.
  • a corundum powder comprises more than 95% by mass of particles comprising more than 90% by mass of corundum.
  • a “cubic zirconia powder” comprises more than 95% by mass of particles comprising more than 90% by mass of cubic zirconia, the remainder preferably being monoclinic zirconia and / or quadratic zirconia, preferably quadratic zirconia.
  • a “quadratic zirconia powder” comprises more than 95% by mass of particles comprising more than 90% by mass of quadratic zirconia.
  • a “stabilized zirconia powder” comprises more than 95% by mass of particles comprising more than 90% by mass of stabilized zirconia.
  • the zircon content in percentage by mass based on the total amount of crystallized phases, is less than 24%, preferably less than 23%, preferably less than 22%;
  • the content of cubic zirconia + quadratic zirconia, as a percentage by mass based on the total amount of crystallized phases, is less than 90%, preferably less than 85%;
  • the level of cubic zirconia is greater than 55%, preferably greater than 60%, preferably greater than 65%, preferably greater than 70%, preferably greater than 75%, preferably greater than 80%, or even greater than 85%, or even greater than 90%, or even greater than 95%;
  • the stabilized zirconia is present substantially only in the form of cubic zirconia; the content of monoclinic zirconia, as a percentage by mass based on the total amount of crystallized phases, is less than 8%, preferably less than 5%, preferably substantially zero;
  • the corundum content in percentage by mass based on the total amount of crystallized phases, is greater than 8%, preferably greater than 10%, preferably greater than 15%, and / or less than 45%, of preferably less than 40%, preferably less than 35%, preferably less than 30%, preferably less than 28%, preferably less than 26%, preferably less than 25%;
  • the total content of "other crystallized phases”, that is to say of crystallized phases other than zircon, stabilized zirconia, monoclinic zirconia and corundum, in percentage by mass based on the total amount of crystallized phases, is less 8%, preferably less than 6%, or even less than 5%, or even less than 4%;
  • the “other crystallized phases” are, for more than 90%, more than 95%, substantially 100% by mass, mullite and / or cristoballite;
  • the mullite content is not detectable with the measurement method described for the examples;
  • the mass quantity of amorphous phase that is to say vitreous, as a percentage by mass relative to the mass of the bead, is less than 10%, preferably less than 8%;
  • the amorphous phase expressed in an oxide form, comprises MgO and S1O2, and / or Y2O3 and / or Al2O3 and / or CaO and / or Na 2 0 and / or K2O and / or P2O5;
  • the amorphous phase expressed in an oxide form, comprises MgO and S1O2 and Y2O3 and Al2O3 and Na 2 0 and K2O and P2O5;
  • the Zr0 2 + Hf0 2 content is greater than 37.0%, preferably greater than 40.0%, preferably greater than 43.5%, preferably greater than 44.6%, preferably greater than 46, 0%, preferably greater than 50.0%, preferably greater than 53.0%, preferably greater than 56.0%, preferably greater than 57.0%, and / or less than 85.0%, of preferably less than 82.9%, preferably less than 80.2%, preferably less than 75.0%, preferably less than 72.0%, in percentages by weight based on the oxides;
  • the Hf0 2 content is less than 3.0%, preferably less than 2.0%, in percentages by mass based on the oxides;
  • the S1O2 content is greater than 1.0%, preferably greater than 1.3%, preferably greater than 2.0%, preferably greater than 2.5%, or even greater than 4.5%, or even greater at 6.0%, and / or less than 13.6%, preferably less than 12.0%, preferably less than 11.0%, in percentages by weight based on the oxides;
  • the AI2O3 content is greater than 7.0%, preferably greater than 10.5%, preferably greater than 12.0%, and / or less than 45.0%, preferably less than 40.0%, preferably less than 34.9%, preferably less than 32.0%, preferably less than 30.0%, preferably less than 28.0%, preferably less than 26.0%, preferably less than 25 , 0%, in percentages by mass based on the oxides;
  • the Y2O3 content is greater than 2.8%, preferably greater than 3.0%, preferably greater than 3.6%, preferably greater than 4.0%, preferably greater than 4.5%, and / or less than 21.6%, preferably less than 20.0%, preferably less than 19.2%, preferably less than 18.0%, preferably less than 16.0%, preferably less than 15 0%, preferably less than 14.0%, in percentages by weight based on the oxides;
  • the MgO content is greater than 0.1%, preferably greater than 0.15%, or even greater than 0.2%, or even greater than 0.3%, and / or less than 4.0%, preferably less than 3.0%, preferably less than 2.0%, preferably less than 1.5%, preferably less than 1.0%, in percentages by weight based on the oxides;
  • the CaO content is greater than 0.1%, preferably greater than 0.2%, preferably greater than 0.3%, and / or less than 1.5%, preferably less than 1.0%, in percentages by mass based on the oxides;
  • the total content of oxides other than ZrC> 2, HfC> 2, S1O2, AI2O3, Y2O3, CaO and MgO is less than 4.0%, preferably less than 3.0%, preferably less than 2.0% , or even less than 1.5%, or even less than 1.0%, in percentages by mass based on the oxides (preferably, the Na2O content is less than 0.8%, preferably less than 0.5% , preferably less than 0.3%, preferably less than 0.2% and / or the K2O content is less than 0.8%, preferably less than 0.5%, preferably less than 0.3% , preferably less than 0.2%);
  • oxides other than ZrO 2 , Hf02, S1O 2 , Al2O3, Y2O3, CaO and MgO are impurities;
  • any oxide other than ZrO2, Hf0 2 , S1O2, Al2O3, Y2O3, CaO and MgO is present in an amount less than 2.0%, preferably less than 1.5%, preferably less than 1.0 %, or even less than 0.8%, or even less than 0.5%, or even less than 0.3%;
  • the oxide content of a bead according to the invention represents more than 99%, preferably more than 99.5%, preferably more than 99.9%, and, more preferably, substantially 100% of the total mass of said ball;
  • the sintered ball has a size less than 10 mm, preferably less than 2.5 mm and / or greater than 0.005 mm, preferably greater than 0.1 mm, preferably greater than 0.15 mm;
  • the sintered ball has a sphericity greater than 0.7, preferably greater than 0.8, preferably greater than 0.85, or even greater than 0.9;
  • the density of the sintered ball is greater than 4.6 g / cm 3 , preferably greater than 4.7 g / cm 3 , or even greater than 4.8 g / cm 3 and / or less than 5.5 g / cm 3 , preferably less than 5.3 g / cm 3 , preferably less than 5.2 g / cm 3 .
  • a sintered ball according to the invention has:
  • zircon content in percentage by mass based on the total amount of crystallized phases, greater than or equal to 10%, preferably greater than 15% and less than 25%, preferably less than 20%, and
  • a stabilized zirconia content as a percentage by mass based on the total amount of crystallized phases, greater than 50% and less than 80%, preferably less than 70%, the cubic zirconia content being greater than 50%, preferably greater than 55%, preferably greater than 60%, preferably greater than 65%, preferably greater than 70%, preferably greater than 75%, preferably greater than 80%, or even greater than 85%, or even greater 90%, or even greater than 95%, and
  • corundum content in percentage by mass based on the total amount of crystallized phases, greater than 10%, preferably greater than 15% and less than 35%, preferably less than 30%, preferably less than 28 %, preferably less than 26%, preferably less than 25%, and
  • a quantity by mass of amorphous phase as a percentage by mass relative to the mass of the bead, less than 10%, preferably less than 8%, and
  • - a Zr0 2 + HfC> 2 content greater than 43.5% preferably greater than 46.0%, preferably greater than 50.0%, preferably greater than 53.0%, preferably greater than 56, 0%, preferably greater than 57.0% and less than 80.2%, preferably less than 75.0%, preferably less than 72.0%, in percentages by mass based on the oxides, and - an HfC content> 2 less than 4.0%, preferably less than 3.0%, preferably less than 2.0%, in percentages by mass based on the oxides, and
  • an S1O2 content greater than 4.5%, preferably greater than 6.0%, preferably greater than 7.5% and less than 13.6%, preferably less than 12.0%, preferably less than 11.0%, in percentages by mass based on the oxides, and
  • an Al2O3 content greater than 10.5%, preferably greater than 12.0% and less than 34.9%, preferably less than 32.0%, preferably less than 30.0%, preferably less than 27.0%, preferably less than 25.0%, preferably less than 23.0%, preferably less than 20.0%, in percentages by mass based on the oxides, and
  • Y2O3 content greater than 2.8%, preferably greater than 3.0%, preferably greater than 3.6%, preferably greater than 4.0%, preferably greater than 4.5% and less than 19.2%, preferably less than 18.0%, preferably less than 16.0%, preferably less than 15.0%, preferably less than 14.0%, preferably less than 13.0%, in percentages by mass based on the oxides, and
  • an MgO content greater than 0.1%, preferably greater than 0.15%, or even greater than 0.2%, or even greater than 0.3%, and less than 4.0%, preferably less than 3 , 0%, preferably less than 2.0%, preferably less than 1, 5%, preferably less than 1, 0%, in percentages by mass on the basis of the oxide, and
  • the Na2O content is less than 0.8%, preferably less than 0.5%, of preferably less than 0.3%, preferably less than 0.2% and / or the K2O content is less than 0.8%, preferably less than 0.5%, preferably less than 0.3%, of preferably less than 0.2%), and
  • any oxide other than ZrO2, Hf0 2 , S1O2, AI2O3, Y2O3, CaO and MgO preferably being present in an amount less than 2.0%, preferably less than 1.5%, preferably less than 1.0% , or even less than 0.8%, or even less than 0.5%, or even less than 0.3%, and - oxides other than ZrC> 2, HfC> 2, S1O2, AI2O3, Y2O3, CaO and MgO preferably being impurities, and
  • the oxide content being preferably greater than 99%, preferably greater than 99.5%, preferably greater than 99.9%, and more preferably substantially equal to 100% of the total mass of said ball.
  • a sintered ball according to the invention has:
  • corundum content in percentage by mass based on the total amount of crystallized phases, greater than 10%, preferably greater than 15% and less than 35%, preferably less than 30%, preferably less than 28 %, preferably less than 26%, preferably less than 25%, and
  • a stabilized zirconia content in percentage by mass based on the total amount of crystallized phases, greater than 50%, preferably greater than 60% and less than 90%, preferably less than 85%, the zirconia content cubic being greater than 50%, preferably greater than 55%, preferably greater than 60%, preferably greater than 65%, preferably greater than 70%, preferably greater than 75%, preferably greater than 80%, or even greater than 85%, or even greater than 90%, or even greater than 95%,
  • zircon content in percentage by mass based on the total amount of crystallized phases, of less than 4%, preferably substantially zero, and
  • a content of crystallized phases other than zircon, stabilized zirconia, monoclinic zirconia and corundum as a percentage by mass based on the total amount of crystallized phases, of less than 6%, or even less than 5%, or even less than 4%, and
  • a quantity by mass of amorphous phase as a percentage by mass relative to the mass of the bead, less than 10%, preferably less than 8%, and
  • a Zr0 2 + HfC> 2 content greater than 44.6%, preferably greater than 46.0%, preferably greater than 50.0%, preferably greater than 53.0%, preferably greater than 56, 0%, preferably greater than 57.0% and less than 82.9%, preferably less than 80.2%, preferably less than 75.0%, preferably less than 72.0%, preferably less than 70.0%, in percentages by mass based on the oxides, and
  • an Al2O3 content greater than 10.5%, preferably greater than 12.0%, preferably greater than 15.0%, preferably greater than 18.0%, preferably greater than 20.0% and less than 34.9%, preferably less than 32.0%, preferably less than 30.0%, preferably less than 28.0%, preferably less than 26.0%, preferably less than 25.0%, in percentages by mass based on the oxides, and
  • Y2O3 content greater than 3.6%, preferably greater than 4.0%, preferably greater than 4.5%, preferably greater than 5.0%, preferably greater than 5.5% and less than 21.6%, preferably less than 20.0%, preferably less than 19.2%, preferably less than 18.0%, preferably less than 16.0%, preferably less than 15.0%, preferably less than 14.0%, in percentages by mass based on the oxides, and
  • an MgO content greater than 0.1%, preferably greater than 0.15%, or even greater than 0.2%, or even greater than 0.3%, and less than 4.0%, preferably less than 3 0%, preferably less than 2.0%, preferably less than 1.5%, preferably less than 1.0%, in percentages by weight based on the oxides;
  • the Na2O content is less than 0.8%, preferably less 0.5%, preferably less than 0.3%, preferably less than 0.2% and / or the K 2 O content is less than 0.8%, preferably less than 0.5%, of preferably less than 0.3%, preferably less than 0.2%), and
  • any oxide other than ZrO2, Hf0 2 , S1O2, Al 2 O 3 , Y 2 O 3 , CaO and MgO preferably being present in an amount less than 2.0%, preferably less than 1.5%, preferably less than 1.0%, or even less than 0.8%, or even less than 0.5%, or even less than 0.3%, and
  • the oxides other than Zru 2, HF02, S1O 2, Al 2 O 3, Y 2 O 3, CaO and MgO being preferably impurities, and the oxide content being preferably greater than 99%, preferably greater than 99.5%, preferably greater than 99.9%, and more preferably substantially equal to 100% of the total mass of said ball.
  • a particulate mixture is prepared having a median size of less than 0.6 ⁇ m.
  • the composition of the particulate mixture is also suitable, in a manner known per se, so that the sintered balls have a composition in accordance with the invention.
  • the powders are mixed thoroughly.
  • the powders of raw materials can be crushed individually or, preferably, co-crushed so that the resulting particulate mixture has a median size of less than 0.6 ⁇ m, preferably less than 0.5 ⁇ m, preferably less than 0.4 ⁇ m, preferably less than 0.3 ⁇ m.
  • This grinding can be wet grinding.
  • the particulate mixture may comprise a zircon powder which, preferably, has a specific area, calculated by the BET method, greater than 5 m 2 / g, preferably greater than 8 m 2 / g, preferably greater than 10 m 2 / g, and / or less than 30 m 2 / g.
  • the content of stabilized zirconia in the particulate mixture is greater than 45% and less than 88%, preferably less than 83%, by mass based on the mass of the particulate mixture.
  • the particulate mixture comprises a stabilized zirconia powder which preferably has a specific area, calculated by the BET method, greater than 0.5 m 2 / g, preferably greater than 1 m 2 / g, preferably greater than 1.5 m 2 / g, and / or less than 20 m 2 / g, preferably less than 18 m 2 / g, preferably less than 15 m 2 / g.
  • the optional grinding generally in suspension, is facilitated.
  • the sintering temperature in step f) can be reduced.
  • More than 50% by mass of the stabilized zirconia in the particulate mixture is in the cubic form.
  • more than 55%, preferably more than 60%, preferably more than 65%, preferably more than 70%, preferably more than 75%, preferably more than 80%, or even more than 85%, or even more than 90% or even more than 95% by mass of the zirconia stabilized is in the cubic form.
  • the stabilized zirconia is present substantially only in cubic form.
  • the particulate mixture comprises cubic zirconia powder.
  • the molar content of Y2O3 in the cubic zirconia powder is between 7.5 mol% and 11 mol%, based on the total content of ZrC> 2, Y2O3 and HfC> 2.
  • the particulate mixture may also comprise a quadratic zirconia powder and / or a monoclinic zirconia powder in an amount less than or equal to (10% - 0.2 times the mass content of quadratic zirconia powder in the particulate mixture).
  • the particulate mixture does not contain monoclinic zirconia powder.
  • the stabilized zirconia is at least in part, preferably fully stabilized by means of Y2O3.
  • substantially all of the cubic zirconia, preferably all of the stabilized zirconia, is stabilized with Y2O3.
  • the particulate mixture preferably comprises a corundum powder which preferably has a median size of less than 7 ⁇ m, preferably less than 6 ⁇ m, or even less than 3 ⁇ m, or even less than 2 ⁇ m, or even less than 1.5 ⁇ m. .
  • the particulate mixture preferably contains corundum powder in an amount greater than 4.5%, preferably greater than 7.3%, preferably greater than 9.1%, preferably greater than 13.6% and less than 44. %, preferably less than 39.2%, preferably less than 34.3%, preferably less than 29.4%, by mass based on the mass of the particulate mixture.
  • the corundum powder is a reactive alumina powder and / or a calcined alumina powder.
  • the corundum powder is a reactive alumina powder.
  • the particulate mixture comprises a powder of a compound providing S1O2 chosen from a powder of particles in a glass containing S1O2, a powder of silica particles, a powder of particles in a glass ceramic containing S1O2, and their mixtures, preferably in an amount of preferably greater than 0.5%, preferably greater than 1%, and / or less than 6%, preferably less than 5%, preferably less than 4%, preferably less than 3 %, preferably less than 2%, by weight percentage based on the weight of the particulate mixture.
  • said powder of a compound providing S1O2 contains more than 40%, preferably more than 50%, or even more than 60%, or even more than 70%, or even more than 80% by mass of S1O2.
  • the powder of a compound providing S1O2 is chosen from a powder of particles in a glass containing S1O2, a powder of silica particles and mixtures thereof. More preferably, the glass ceramic powder also comprises MgO.
  • the compound comprising MgO and S1O2 also preferably comprises Al2O3.
  • said compound is chosen from a talc, cordierite and their mixtures.
  • said compound is cordierite.
  • the particulate mixture contains cordierite, preferably in an amount of preferably greater than 0.5%, preferably greater than 1%, preferably greater than 1.5%, and / or less than 10%, preferably less than 8%, preferably less than 6%, preferably less than 5%, preferably less than 4%, preferably less than 3%, as a percentage by mass based on the mass of the particulate mixture .
  • the particulate mixture contains a clay, preferably in an amount greater than 0.5%, preferably greater than 1%, preferably greater than 1.5%, and / or less than 5%, preferably less than 4%, preferably less than 3%, as a mass percentage based on the mass of the particulate mixture.
  • the particulate mixture comprises powders
  • ZrSi04 zirconia and / or monoclinic zirconia and / or quadratic zirconia optionally, ZrSi04 zirconia and / or monoclinic zirconia and / or quadratic zirconia .
  • the particulate mixture contains:
  • a zircon powder in an amount greater than 9.1%, preferably greater than 13.6% and less than 24.5%, preferably less than 19.6%, by mass based on the mass of the mixture particulate, and
  • a corundum powder in an amount greater than 9.1%, preferably greater than 13.6% and less than 34.3%, preferably less than 29.4%, by mass based on the mass of the mixture particulate, preferably, the corundum powder being a reactive alumina powder and / or a calcined alumina powder, preferably the corundum powder being a reactive alumina powder, and
  • a silica powder in an amount preferably greater than 0.5%, preferably greater than 1%, and / or less than 6%, preferably less than 5%, preferably less than 4%, preferably less than 3%, preferably less than 2%, as a percentage by mass based on the mass of the particulate mixture, and
  • a cordierite powder in an amount preferably greater than 0.5%, preferably greater than 1%, preferably greater than 1.5%, and / or less than 10%, preferably less than 8%, preferably less 6%, preferably less than 5%, preferably less than 4%, preferably less than 3%, as a percentage by mass based on the mass of the particulate mixture, and a clay powder, preferably in an amount greater than 0.5%, preferably greater than 1%, preferably greater than 1.5%, and / or less than 5%, preferably less than 4%, preferably less than 3%, as a percentage by mass on the basis of the mass of the particulate mixture.
  • the particulate mixture contains: a corundum powder, in an amount greater than 9.1%, preferably greater than 13.6% and less than 34.3%, preferably less than 29, 4%, by mass based on the mass of the particulate mixture, preferably the corundum powder being a reactive alumina powder and / or a calcined alumina powder, preferably the corundum powder being a powder of reactive alumina, and
  • a silica powder in an amount preferably greater than 0.5%, preferably greater than 1%, and / or less than 6%, preferably less than 5%, preferably less than 4%, preferably less than 3%, preferably less than 2%, as a percentage by mass based on the mass of the particulate mixture, and
  • a cordierite powder in an amount preferably greater than 0.5%, preferably greater than 1%, preferably greater than 1.5%, and / or less than 10%, preferably less than 8%, preferably less 6%, preferably less than 5%, preferably less than 4%, preferably less than 3%, as a percentage by mass based on the mass of the particulate mixture, and a clay powder, preferably in an amount greater than 0.5%, preferably greater than 1%, preferably greater than 1.5%, and / or less than 5%, preferably less than 4%, preferably less than 3%, as a percentage by mass on the basis of the mass of the particulate mixture.
  • the powders providing the oxides are preferably chosen so that the total content of oxides other than ZrC> 2, HfC> 2, S1O2, Al2O3, MgO, CaO and Y2O3 is less than 5%, as a percentage by mass based on the oxides .
  • no raw material other than powders of cubic zirconia, optionally of quadratic zirconia, optionally of monoclinic zirconia, optionally of zircon, corundum, glass containing S1O2, and / or silica, and / or glass-ceramic containing S1O2, and / or of a compound comprising MgO and S1O2 is not intentionally introduced into the particulate mixture, the other oxides present being impurities.
  • the powders used in particular the powders of cubic zirconia, of corundum, of glass containing S1O2, and / or of silica, and / or of glass-ceramic containing S1O2, and / or of a compound comprising MgO and S1O2,
  • the optional powders of zircon, monoclinic zirconia and quadratic zirconia each have a median size of less than 5 ⁇ m, even less than 3 ⁇ m, less than 1 ⁇ m, less than 0.7 ⁇ m, preferably less than 0.6 ⁇ m, preferably less at 0.5 ⁇ m, preferably less than 0.4 ⁇ m, or even less than 0.3 ⁇ m.
  • grinding is optional.
  • one or more of the powders of the particulate mixture described above can be replaced, at least partially, by equivalent powders, that is to say by powders which, during the manufacture of a ball according to the invention, lead, in said ball, to the same constituents (same composition, same crystallographic phase), in the same quantities.
  • the powders of cubic zirconia and of quadratic zirconia can be replaced, partially or totally, by powders comprising particles containing ZrÜ2 + Hf0 2 , and Y2O3, preferably intimately mixed, the amount of Y2O3 being adapted to obtain, at after step g), cubic and quadratic zirconias, respectively.
  • a powder equivalent to a corundum powder is, for example, a transition alumina powder.
  • step b) the powders of ground raw materials are dried, for example in an oven or by atomization, in particular if they have been obtained by wet grinding.
  • the temperature and / or the duration of the drying step are adapted so that the residual humidity of the raw material powders is less than 2%, or even less than 1.5%.
  • a starting charge is prepared, preferably at room temperature, comprising the particulate mixture obtained at the end of step a) or at the end of step b) and, optionally, a solvent, preferably of water, the amount of which is suitable for the shaping method of step d).
  • the starting charge is suitable for the shaping process of step d).
  • the shaping can in particular result from a gelation process.
  • a solvent preferably water, is preferably added to the starting charge so as to produce a suspension.
  • the suspension preferably has a dry matter content by weight of between 50 and 70%.
  • the suspension may also contain one or more of the following constituents: - a dispersant, in an amount of 0 to 10%, as a percentage by mass based on the dry matter;
  • gelling agent in an amount of 0 to 2%, in percentage by mass on the basis of the dry matter.
  • Dispersants, surface tension modifiers and gelling agents are well known to those skilled in the art.
  • the family of sodium or ammonium polymethacrylates the family of sodium or ammonium polyacrylates, the family of citrates, for example of ammonium, the family of sodium phosphates, and the family of esters of carbonic acid;
  • organic solvents such as aliphatic alcohols
  • the particulate mixture is preferably added to a mixture of water and dispersants / deflocculants in a ball mill. After stirring, water is added in which a gelling agent has previously been dissolved so as to obtain a suspension.
  • thermoplastic polymers or thermosetting polymers can be added to the starting charge, said starting charge preferably not containing a solvent.
  • step d any conventional shaping method known for the manufacture of sintered balls can be implemented.
  • drops of the suspension described above are obtained by flowing the suspension through a calibrated orifice.
  • the drops coming out of the orifice fall into a bath of a gelation solution (suitable electrolyte to react with the gelling agent) where they harden after having recovered a substantially spherical shape.
  • step e) the green beads obtained in the previous step are washed, for example with water.
  • step f) the raw beads, optionally washed, are dried, for example in an oven.
  • step g) the green beads, optionally washed and / or dried, are sintered.
  • the sintering is carried out in air, preferably in an electric furnace, preferably at atmospheric pressure.
  • the sintering in step g) is carried out at a temperature greater than 1330 ° C, preferably greater than 1340 ° C, preferably greater than 1350 ° C, preferably greater than 1360 ° C, preferably greater than 1370 ° C , and lower than 1450 ° C, preferably lower than 1430 ° C, preferably lower than 1410 ° C, preferably lower than 1400 ° C, preferably lower than 1390 ° C.
  • a sintering temperature equal to 1375 ° C is well suited.
  • the sintering time is between 2 and 5 hours.
  • a sintering time equal to 4 hours is well suited.
  • the sintered balls obtained preferably have a smaller diameter greater than 0.005 mm, preferably greater than 0.1 mm, preferably greater than 0.15 mm and less than 10 mm, preferably less than 2.5 mm.
  • the sintered balls according to the invention are particularly well suited as grinding agents or as dispersing agents in a humid medium, as well as for the treatment of surfaces.
  • the invention therefore also relates to the use of a powder of beads according to the invention, or of beads produced according to a process according to the invention, as grinding agents, or dispersing agents in a humid environment.
  • the properties of the beads according to the invention in particular their mechanical resistance, their density, as well as their ease of obtaining, make them suitable for other applications, in particular as proppants or heat exchange agents, or else for treatment. of surfaces (by projection of the balls according to the invention in particular).
  • the invention therefore also relates to a device chosen from among a suspension, a grinder, a surface treatment apparatus and a heat exchanger, said device comprising a powder of beads according to the invention.
  • the contents of the bowl are then washed on a 100 ⁇ m sieve to remove residual silicon carbide as well as material tearing due to wear during grinding.
  • the beads After sieving on a 100 ⁇ m sieve, the beads are dried in an oven at 100 ° C for 3 hours and then weighed (mass m1). Said balls (mass m1) are again introduced into one of the bowls with a suspension of SiC (same concentration and quantity as above) and undergo a new grinding cycle, identical to the previous one.
  • the contents of the bowl are then washed on a 100 ⁇ m sieve to remove residual silicon carbide as well as material tearing due to wear during grinding.
  • the beads After sieving on a 100 ⁇ m sieve, the beads are dried in an oven at 100 ° C for 3 hours and then weighed (mass m2). Said balls (mass m2) are again introduced into one of the bowls with a suspension of SiC (same concentration and quantity as above) and undergo a new grinding cycle, identical to the previous one. The contents of the bowl are then washed on a 100 ⁇ m sieve to remove residual silicon carbide as well as material tearing due to wear during grinding. After sieving on a 100 ⁇ m sieve, the beads are dried in an oven at 100 ° C for 3 hours and then weighed (mass m3).
  • Planetary wear (UP) is expressed as a percentage (%) and is equal to the loss of mass of the balls reduced to the initial mass of the balls, that is: 100 (m2-m3) / (m2); the UP result is given in Table 2.
  • the hydrothermal attack on the beads of the examples is carried out according to the following protocol: for each of the examples, 30 ml of beads (volume measured using a graduated cylinder) are introduced into an autoclave comprising a Teflon chamber of total capacity equal to 45 ml and containing 20 ml of an aqueous suspension of calcium carbonate CaCCh having an adjusted pH equal to 9.3 and containing 70% of dry matter, and of which 40% of the grains of CaCCh by volume are less than 1 ⁇ m .
  • the quantification of the crystallized phases present in the sintered beads before and after hydrothermal attack is carried out directly on the beads, said beads being bonded to a self-adhesive carbon pellet, so that the surface of said pellet is covered as much as possible with beads.
  • the crystallized phases present in the sintered beads according to the invention are measured by X-ray diffraction, for example by means of an apparatus of the X'Pert PRO diffractometer type from the company Panalytical provided with a copper DX tube. Acquisition of the diffraction pattern is performed from this equipment, over an angular range 2Q between 5 ° and 100 °, with a step of 0.017 °, and a counting time of 150s / step.
  • the front optic features a fixed used 1/4 ° programmable divergence slit, 0.04 rad Soller slits, a 10mm mask, and a fixed 1/2 ° anti-scatter slit. The sample is rotated on itself to limit preferential orientations.
  • the rear optic features a fixed 1/4 ° used programmable anti-scatter slit, 0.04 rad Soller slit and Ni filter.
  • the diffraction patterns were then analyzed qualitatively using EVA software and the ICDD2016 database.
  • a refinement of the background signal is carried out using the "treatment", "determine background” function with the following choices: “bending factor” equal to 0 and “granularity” equal to 40;
  • the amount of amorphous phase present in the sintered balls according to the invention is measured by X-ray diffraction, for example by means of an apparatus of the X'Pert PRO diffractometer type from the company Panalytical provided with a copper DX tube.
  • the acquisition of the diffraction pattern is carried out from this equipment, in the same way as for the determination of the crystalline phases present in the beads, the sample analyzed being in the form of a powder.
  • the method applied consists of the addition of a known quantity of a fully crystallized standard, in this case a zinc oxide powder, ZnO in an amount equal to 20%, based on the mass of oxide zinc and a sample of ground sintered balls according to the invention.
  • the maximum size of the zinc oxide powder is equal to 1 ⁇ m and the beads according to the invention are ground so as to obtain a powder having a maximum size of less than 40 ⁇ m.
  • the maximum particle size of ZnO is entered in the High Score Plus software in order to limit the effects of micro-absorption.
  • the level of amorphous phase, in percentage, is calculated using the following formula, Qzno being the amount of ZnO determined from the diffraction pattern:
  • Amorphous phase rate 100 * (100 / (100-20)) * (1- (20 / Qzno)).
  • the density of the beads, in g / cm 3 is measured using a helium pycnometer (AccuPyc 1330 from the company Micromeritics®), according to a method based on measuring the volume of gas displaced (in the present case l 'helium).
  • a zircon powder having a specific area of the order of 8 m 2 / g, a median size equal to 1.5 ⁇ m and a total content of oxides other than ZrC> 2 and S1O2 equal to 1.1% ,
  • a stabilized zirconia powder TZ-10Y marketed by TOSOH, having a molar content of Y2O3 equal to 10% and being in a substantially entirely cubic crystallographic form.
  • the various powders were mixed and then co-milled in a humid medium until a particulate mixture was obtained having a median size of less than 0.3 ⁇ m.
  • the particulate mixture was then dried.
  • a starting charge consisting of an aqueous suspension comprising, in percentages by mass percentage based on the dry matter, 1% of a dispersant of the carboxylic acid ester type, 3% of a acid-type dispersant carboxylic acid and 0.4% of a gelling agent, namely a polysaccharide of the alginate family, was then prepared from the particulate mixture of Example 1 and 2, respectively.
  • Example 3 a starting charge consisting of an aqueous suspension comprising, in percentages by mass percentage based on the dry matter, 1% of a dispersant of the carboxylic acid ester type, 0.7% of a sodium phosphate dispersant, 3% of a carboxylic acid dispersant and 0.4% of a gelling agent, namely a polysaccharide of the alginate family, was then prepared from the particulate mixture of l example 3.
  • a starting charge consisting of an aqueous suspension comprising, in percentages by mass percentage based on the dry matter, 1% of a dispersant of the carboxylic acid ester type, 0.7% of a sodium phosphate dispersant, 3% of a carboxylic acid dispersant and 0.4% of a gelling agent, namely a polysaccharide of the alginate family, was then prepared from the particulate mixture of l example 3.
  • a ball mill was used for this preparation in order to obtain a good homogeneity of the starting charge: A solution containing the gelling agent was first formed. The particulate mixture and dispersants were then added to water. The solution containing the gelling agent was then added. The mixture thus obtained was stirred for 8 hours. The size of the particles was checked using a model LA950V2 laser particle size analyzer sold by the company Horiba (median size ⁇ 0.3 ⁇ m), then water was added in a determined quantity to obtain an aqueous suspension. at 68% dry matter and a viscosity, measured with a Brookfield viscometer using the LV3 spindle at a speed equal to 20 revolutions / minute, less than 5000 centipoise. The pH of the suspension was then about 9 after optional adjustment with a strong base.
  • the slurry was forced through a calibrated hole and at a flow rate to obtain after sintering beads of about 1.8 mm to 2.0 mm in the context of this example.
  • the suspension drops fell into an electrolyte (divalent cation salt) gel bath, reacting with the gelling agent.
  • the raw beads were collected, washed, then dried at 80 ° C to remove moisture.
  • the beads were then transferred to a sintering furnace where they were brought, at a speed of 100 ° C / h, to the temperature equal to 1375 ° C. At the end of a 4-hour plateau at this temperature, the temperature was lowered by natural cooling.
  • the bead powders of the examples exhibit an average sphericity greater than 0.9.
  • the beads of Examples 1 to 3 exhibit an amount of amorphous phase of less than 10% by mass.
  • the reference balls of Example 1, outside the invention, are sintered balls of the alumina-zirconia type.
  • the inventors consider that the planetary wear of an example is not significantly different from that of the comparative example when the difference between these two planetary wear is less than 10%.
  • the inventors also consider that a transformation into monoclinic zirconia of more than 10% by mass of zirconia stabilized in the quadratic and cubic form, after hydrothermal attack, is detrimental to the grinding performance of the sintered balls.
  • Example 2 exhibits planetary wear substantially identical to that of reference example 1, but that the stabilized zirconia of example 2 is not substantially transformed into monoclinic zirconia during the hydrothermal attack, unlike example 1 outside the invention, of which 12.8% of the Zirconia stabilized in quadratic form transformed into monoclinic zirconia upon hydrothermal attack.
  • Example 3 exhibits planetary wear substantially identical to that of reference example 1, but that the stabilized zirconia of example 3 is not substantially transformed into monoclinic zirconia during the hydrothermal attack, unlike example 1 outside the invention including 12.8% of the stabilized zirconia in quadratic form transformed into monoclinic zirconia upon hydrothermal attack.
  • the balls according to the invention tested made from a particulate mixture comprising cubic zirconia, have, compared with the reference balls , improved resistance in hydrothermal conditions without significant increase in planetary wear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Bille frittée présentant : - la composition cristallographique suivante, en pourcentages en masse sur la base de la masse totale des phases cristallisées et pour un total de 100% : - zircon < 25%; - 50% ≤ zircone cubique + zircone quadratique ≤ 95%, le taux de zircone cubique étant supérieur à 50%, le taux de zircone cubique étant le rapport massique (zircone cubique / (zircone cubique + zircone quadratique)); - 0 ≤ zircone monoclinique ≤ (10 - 0,2*zircone quadratique)%; - 5% ≤ corindon ≤ 50%; - phases cristallisées autres que zircon, zircone cubique, zircone quadratique, zircone monoclinique et corindon < 10%; - la composition chimique suivante, en pourcentages en masse sur la base des oxydes : 34% ≤ ZrO2 + HfO2, ZrO2 + HfO2 étant le complément à 100%; HfO2 ≤ 4,0%; 0,5% ≤ SiO2 ≤ 14,1%; 4,5% ≤ Al2O3 ≤ 49,6%; 2,75% ≤ Y2O3 ≤ 22,8%; MgO ≤ 5%; CaO ≤ 2%; oxydes autres que ZrO2, HfO2, SiO2, Al2O3, MgO, CaO et Y2O3 < 5,0%.

Description

Description
BILLES FRITTEES D’ALUMINE-ZIRCONE
Domaine technique
La présente invention se rapporte à des billes frittées d’alumine-zircone, à un procédé de fabrication de ces billes, et à l’utilisation de ces billes en tant qu’agents de broyage, agents de dispersion en milieu humide ou pour le traitement de surfaces.
Technique antérieure
Les industries des peintures, encres, colorants, laques magnétiques, ou composés agrochimiques utilisent des billes pour la dispersion et l'homogénéisation de constituants liquides et solides.
L'industrie minérale met en œuvre des billes pour le broyage fin de matières éventuellement prébroyées à sec par des procédés traditionnels, notamment pour le broyage fin de carbonate de calcium, d'oxyde de titane, de gypse, de kaolin et de minerai de fer.
Dans le domaine du microbroyage, on connaît le sable à particules arrondies, les billes de verre, les billes métalliques et les billes céramiques.
Le sable à particules arrondies, comme le sable d'OTTAWA par exemple, est un produit naturel et bon marché, mais inadapté aux broyeurs modernes, pressurisés et à fort débit. En effet, le sable est peu résistant, de faible densité, variable en qualité et abrasif pour le matériel.
Les billes de verre, largement utilisées, présentent une meilleure résistance, une plus faible abrasivité et une disponibilité dans une gamme de diamètres plus large. Les billes métalliques, notamment en acier, présentent une faible inertie vis-à-vis des produits traités, entraînant notamment une pollution des charges minérales et un grisaillement des peintures, et une densité trop élevée nécessitant des broyeurs spéciaux. Elles impliquent notamment une forte consommation d’énergie, un échauffement important et une sollicitation mécanique élevée du matériel.
Les billes en matière céramique ont une meilleure résistance que les billes de verre, une densité plus élevée et une excellente inertie chimique.
Les billes présentent classiquement une taille comprise entre 0,005 et 10 mm.
On peut distinguer : les billes céramiques fondues, généralement obtenues par fusion de composants céramiques, formation de gouttes sphériques à partir de la matière en fusion, puis solidification desdites gouttes, et
les billes céramiques frittées, généralement obtenues par un façonnage à froid d’une poudre céramique, puis une consolidation par cuisson à haute température.
A la différence des billes frittées, les billes fondues comportent le plus souvent une phase vitreuse intergranulaire très abondante qui vient remplir un réseau de grains cristallisés. Les problèmes rencontrés dans leurs applications respectives par les billes frittées et par les billes fondues, et les solutions techniques adoptées pour les résoudre, sont donc généralement différents. Par ailleurs, du fait des différences importantes entre les procédés de fabrication, une composition mise au point pour fabriquer une bille fondue n'est pas adaptée a priori pour fabriquer une bille frittée, et réciproquement.
Une application très spécifique est l’utilisation de billes comme média de broyage, notamment pour broyer finement des matières minérales, inorganiques ou organiques. Dans cette application, les billes sont dispersées dans un milieu aqueux ou un solvant, dont la température peut dépasser 80°C, tout en restant de préférence en dessous de 150°C, et subissent des frottements par contact avec la matière à broyer, par contact mutuel et par contact avec les organes du broyeur. La durée de vie des billes dépend alors directement de leur résistance à l’usure dans ce milieu aqueux ou solvant.
Afin d’augmenter les rendements des opérations de broyage, les billes de broyage doivent être de plus en plus résistantes à l’usure, tout en présentant une résistance élevée à la dégradation dans un milieu liquide chaud, en particulier lorsqu’elles sont en contact avec une eau à plus de 80°C, ces conditions étant appelées ci-après « conditions hydrothermales ».
On connaît les billes de broyage en alumine-zircone, la zircone étant stabilisée sous la forme cristallographique quadratique. Ces billes présentent une bonne résistance à l’usure. Cependant, leur résistance en conditions hydrothermales est limitée.
Il existe un besoin de billes d’alumine-zircone présentant une résistance en conditions hydrothermales améliorée, sans dégradation substantielle de la résistance à l’usure.
Un but de l’invention est de répondre, au moins partiellement, à ce besoin.
Exposé de l’invention
Résumé de l’invention
L’invention concerne une bille frittée, présentant : les phases cristallisées suivantes, en pourcentages en masse sur la base des phases cristallisées et pour un total de 100% :
- zircon < 25% ;
- 50% £ zircone cubique + zircone quadratique £ 95%, le taux de zircone cubique étant supérieur à 50% ;
- 0 £ zircone monoclinique £ (10 - 0,2*zircone quadratique)% ;
- 5% £ corindon £ 50% ;
- phases cristallisées autres que zircon, zircone cubique, zircone quadratique, zircone monoclinique et corindon < 10% ;
la composition chimique suivante, en pourcentages en masse sur la base des oxydes :
34% £ ZrC>2 + HfC>2, ZrC>2 + HfC>2 étant le complément à 100% ;
Hf02 < 4,0% ;
0,5% £ Si02 < 14,1 % ;
4,5% £ Al203 < 49,6% ;
2,75% £ Y203 < 22,8% ;
MgO £ 5% ;
CaO £ 2% ;
oxydes autres que ZrC>2, HfC>2, S1O2, AI2O3, MgO, CaO et Y2O3 < 5,0%.
Comme on le verra plus en détail dans la suite de la description, les inventeurs ont découvert que cette combinaison de caractéristiques améliore considérablement la résistance en conditions hydrothermales. De façon inattendue, ils ont également découvert que la résistance à l’usure planétaire restait sensiblement identique à celle des billes frittées de l’état de l’art. Cette découverte est surprenante car il était communément admis que la présence de zircone cubique a un effet très préjudiciable sur la résistance à l’usure, comme décrit par exemple dans US 6,905,993.
Les billes frittées selon l’invention sont ainsi particulièrement bien adaptées à des applications de dispersion en milieu humide, de microbroyage, d’échange thermique et de traitement de surfaces.
Une bille frittée selon l’invention peut encore présenter une ou plusieurs des caractéristiques optionnelles suivantes :
la teneur en zircon est inférieure à 24%, en pourcentages en masse sur la base des phases cristallisées ;
la teneur en zircone cubique + quadratique est inférieure à 90%, en pourcentages en masse sur la base des phases cristallisées ; le taux de zircone cubique est supérieur à 60%, en pourcentages en masse sur la base des phases cristallisées ;
la teneur en zircone monoclinique est inférieure à 8%, de préférence est sensiblement nulle, en pourcentages en masse sur la base des phases cristallisées ;
la teneur en corindon est supérieure à 8% et/ou inférieure à 45%, de préférence inférieure à 35%, en pourcentages en masse sur la base des phases cristallisées ; la teneur en phase cristallisées autres que zircon, zircone cubique, zircone quadratique, zircone monoclinique et corindon est inférieure à 8%, en pourcentages en masse sur la base des phases cristallisées ;
la teneur en Zr02+HfC>2 est supérieure à 37,0%, de préférence supérieure à 44,6% et/ou inférieure à 85,0%, de préférence inférieure à 75,0%, en pourcentages en masse sur la base des oxydes ;
la teneur en HfC>2 est inférieure à 3,0%, de préférence inférieure à 2,0%, en pourcentages en masse sur la base des oxydes ;
la teneur en S1O2 est supérieure à 1 ,0%, de préférence supérieure à 2,0% et/ou inférieure à 13,6%, de préférence inférieure à 12,0%, en pourcentages en masse sur la base des oxydes ;
la teneur en AI2O3 est supérieure à 7,0%, de préférence supérieure à 10,5% et/ou inférieure à 45,0%, de préférence inférieure à 34,9%, en pourcentages en masse sur la base des oxydes ;
la teneur en Y2O3 est supérieure à 2,8%, de préférence supérieure à 3,6% et/ou inférieure à 21 ,6%, de préférence inférieure à 18,0%, en pourcentages en masse sur la base des oxydes ;
la teneur en MgO est supérieure à 0,1%, de préférence supérieure à 0,15% et/ou inférieure à 4,0%, de préférence inférieure à 2,0%, en pourcentages en masse sur la base des oxydes ;
la teneur en CaO est supérieure à 0,1 %, de préférence supérieure à 0,2% et/ou inférieure à 1 ,5%, de préférence inférieure à 1 ,0%, en pourcentages en masse sur la base des oxydes ;
la teneur en oxydes autres que ZrC>2, HfC>2, S1O2, AI2O3, Y2O3, CaO et MgO est inférieure à 4,0%, de préférence inférieure à 2,0% ;
dans un mode de réalisation, la teneur en zircon est supérieure ou égale à 10%, de préférence supérieure ou égale à 15% et inférieure à 25%, de préférence inférieure ou égale à 20% ; et la teneur en zircone stabilisée est supérieure à 50% et inférieure à 80%, de préférence inférieure à 70%, le taux de zircone cubique étant supérieur à 50%, de préférence supérieur à 70% ; et la teneur en zircone monoclinique est inférieure à 5%, de préférence sensiblement nulle ; et la teneur en corindon est supérieure à 10%, de préférence supérieure à 15% et inférieure à 35%, de préférence inférieure à 30%, de préférence inférieure à 28%, de préférence inférieure à 26%, de préférence inférieure à 25% ; et la teneur totale en phases cristallisées autres que zircon, zircone stabilisée, zircone monoclinique et corindon est inférieure à 6% ; et la teneur en Zr02+HfC>2 est supérieure à 43,5%, de préférence supérieure à 56,0%, de préférence supérieure à 57,0% et inférieure à 80,2%, de préférence inférieure à 72,0% ; et la teneur en HfC>2 est inférieure à 4,0%, de préférence inférieure à 3,0% ; et la teneur en S1O2 est supérieure à 4,5%, de préférence supérieure à 7,5% et inférieure à 13,6%, de préférence inférieure à 11 ,0% ; et la teneur en AI2O3 est supérieure à 10,5%, de préférence supérieure à 12,0% et inférieure à 34,9%, de préférence inférieure à 32,0%, de préférence inférieure à 30,0%, de préférence inférieure à 28,0%, de préférence inférieure à 26,0%, de préférence inférieure à 25,0%, de préférence inférieure à 20,0% ; et la teneur en Y2O3 est supérieure à 2,8%, de préférence supérieure à 4,5% et inférieure à 19,2%, de préférence inférieure à 13,0% ; et la teneur en MgO est supérieure à 0,1 %, de préférence supérieure à 0,15% et inférieure à 4,0%, de préférence inférieure à 2,0% ; et la teneur en CaO est supérieure à 0, 1 %, de préférence supérieure à 0,3% et inférieure à 1 ,5%, de préférence inférieure à 1 ,0% ; et la teneur en oxydes autres que ZrC>2, HfC>2, S1O2, AI2O3, Y2O3, CaO et MgO est inférieure à 4,0%, de préférence inférieure à 2,0% ;
dans un mode de réalisation, la teneur en zircon est inférieure à 4%, de préférence sensiblement nulle ; et la teneur en zircone stabilisée est supérieure à 50%, de préférence supérieure à 60% et inférieure à 90%, de préférence inférieure à 85%, le taux de zircone cubique étant supérieur à 50%, de préférence supérieur à 70% ; et la teneur en zircone monoclinique est inférieure à 5%, de préférence sensiblement nulle ; et la teneur en corindon est supérieure à 10%, de préférence supérieure à 15% et inférieure à 35%, de préférence inférieure à 30%, de préférence inférieure à 28%, de préférence inférieure à 26%, de préférence inférieure à 25% ; et la teneur totale en phases cristallisées autres que zircon, zircone stabilisée, zircone monoclinique et corindon est inférieure à 6% ; et la teneur en Zr02+HfC>2 est supérieure à 44,6%, de préférence supérieure à 53,0%, de préférence supérieure à 57,0% et inférieure à 82,9%, de préférence inférieure à 70,0% ; et la teneur en HfC>2 est inférieure à 4,0%, de préférence inférieure à 3,0% ; et la teneur en S1O2 est supérieure à 1 ,0%, de préférence supérieure à 2,5% et inférieure à 6,1 %, de préférence inférieure à 5,0% ; et la teneur en AI2O3 est supérieure à 10,5%, de préférence supérieure à 20,0% et inférieure à 34,9%, de préférence inférieure à 30,0%, de préférence inférieure à 28,0%, de préférence inférieure à 26,0%, de préférence inférieure à 25,0% ; et la teneur en Y2O3 est supérieure à 3,6%, de préférence supérieure à 5,5% et inférieure à 21 ,6%, de préférence inférieure à 14,0% ; et la teneur en MgO est supérieure à 0, 1 %, de préférence supérieure à 0, 15% et inférieure à 4,0%, de préférence inférieure à 2,0% ; et la teneur en CaO est supérieure à 0, 1 %, de préférence supérieure à 0,3% et inférieure à 1 ,5%, de préférence inférieure à 1 ,0% ; et la teneur en oxydes autres que ZrÜ2, Hf02, S1O2, AI2O3, Y2O3, CaO et MgO est inférieure à 4,0%, de préférence inférieure à 2,0%.
L’invention concerne également une poudre de billes comprenant plus de 90%, de préférence plus de 95%, de préférence sensiblement 100%, en pourcentages en masse, de billes selon l’invention.
L’invention concerne également un procédé de fabrication de billes frittées selon l’invention comprenant les étapes successives suivantes :
a) préparation d’un mélange particulaire présentant une taille médiane inférieure à 0,6 pm et une composition adaptée pour obtenir, à l’issue de l’étape g), des billes frittées selon l’invention, le mélange particulaire comportant plus de 0,5% en masse de particules en un verre contenant S1O2, et/ou de particules de silice, et/ou de particules en une vitrocéramique contenant S1O2, et/ou de particules en un composé comportant MgO et S1O2, et/ou de particules équivalentes à ces particules, b) optionnellement, séchage dudit mélange particulaire,
c) préparation d’une charge de départ à partir dudit mélange particulaire, optionnellement séché,
d) mise en forme de la charge de départ sous la forme de billes crues,
e) optionnellement, lavage,
f) optionnellement, séchage,
g) frittage à une température de frittage supérieure à 1330°C et inférieure à 1450°C de manière à obtenir des billes frittées.
Un procédé de fabrication selon l’invention peut encore présenter une ou plusieurs des caractéristiques optionnelles suivantes :
- à l’étape a), une ou plusieurs poudres de matières premières introduites dans ledit mélange particulaire sont broyées, de préférence cobroyées ;
- à l’étape a), le mélange particulaire comporte une poudre de zircone stabilisée, en une quantité massique, sur la base du mélange particulaire, supérieure à 45% et inférieure à 88%, plus de 50% en masse de ladite poudre de zircone stabilisée étant sous la forme cubique, ladite zircone stabilisée étant au moins en partie, de préférence totalement stabilisée au moyen d’Y2C>3 ; - dans un mode de réalisation, à l’étape a), le mélange particulaire comporte une poudre de zircon en une quantité supérieure à 9,1 % et inférieure à 24,5% ; et une poudre de zircone stabilisée à Y2O3 en une quantité supérieure à 45% et inférieure à 78,4%, plus de 50% en masse des particules de zircone stabilisée étant sous la forme cubique ; et une poudre de corindon dans une quantité supérieure à 9, 1 % et inférieure à 34,3% ; et une poudre de silice en une quantité supérieure à 0,5% et inférieure à 6% ; et une poudre de cordiérite en une quantité supérieure à 0,5% et inférieure à 8% ; et une poudre d’argile en une quantité supérieure à 0,5% et inférieure à 5% ;
- dans un mode de réalisation, à l’étape a), le mélange particulaire comporte une poudre de zircone stabilisée à Y2O3 en une quantité supérieure à 45% et inférieure à 88%, plus de 50% en masse des particules de zircone stabilisée étant sous la forme cubique ; et une poudre de corindon dans une quantité supérieure à 9, 1 % et inférieure à 34,3% ; et une poudre de silice en une quantité supérieure à 0,5% et inférieure à 6% ; et une poudre de cordiérite en une quantité supérieure à 0,5% et inférieure à 8% ; et une poudre d’argile en une quantité supérieure à 0,5% et inférieure à 5% ;
- une ou plusieurs des poudres du mélange particulaire peuvent être remplacées, au moins partiellement, par des poudres équivalentes qui conduisent, dans lesdites billes, aux mêmes constituants, dans les mêmes quantités, avec les mêmes phases cristallographiques.
L’invention concerne enfin l’utilisation d’une poudre de billes selon l'invention, en particulier fabriquées suivant un procédé selon l’invention, en tant qu’agents de broyage, en particulier en milieu humide ; agents de dispersion en milieu humide ; agents de soutènement, en anglais « propping agents », notamment pour empêcher la fermeture des fractures géologiques profondes créées dans les parois d’un puits d’extraction, en particulier de pétrole ; agents d'échange thermique, par exemple pour lit fluidisé ; ou pour le traitement de surfaces.
Définitions
- Une somme de teneurs d’oxydes ou de phases cristallisées (c'est-à-dire une formule dans laquelle ces teneurs sont reliées par le signe « + ») n’implique pas que les deux oxydes ou phases cristallisées reliés par ce signe « + » sont nécessairement simultanément présents.
- Par « particule », on entend un produit solide individualisé dans une poudre.
- On appelle classiquement « frittage » la consolidation par traitement thermique à plus de 1100°C d’une particule crue (agglomérat granulaire), avec éventuellement une fusion, partielle ou totale, de certains de ses constituants (mais pas de tous ses constituants).
- Par « bille », on entend une particule présentant une sphéricité, c'est-à-dire un rapport entre son plus petit diamètre de Ferret et son plus grand diamètre de Ferret, supérieure à 0,6, quelle que soit la façon par laquelle cette sphéricité a été obtenue. De préférence les billes selon l’invention présentent une sphéricité supérieure à 0,7.
- On appelle « taille » d’une bille, son plus petit diamètre de Ferret.
- On appelle « taille médiane » d’une poudre de particules de matière première ou d’un mélange particulaire, généralement notée D50, la taille divisant les particules de cette poudre ou de ce mélange particulaire en première et deuxième populations égales en masse, ces première et deuxième populations ne comportant que des particules présentant une taille supérieure, ou inférieure respectivement, à la taille médiane. La taille médiane peut par exemple être évaluée à l’aide d’un granulomètre laser.
- Par « bille frittée », on entend une bille solide obtenue par frittage d’une bille crue.
- Par « impuretés », on entend les constituants inévitables, introduits nécessairement avec les matières premières. En particulier, dans un mode de réalisation, les composés faisant partie du groupe des oxydes, nitrures, oxynitrures, carbures, oxycarbures, carbonitrures de sodium et autres alcalins, fer, vanadium et chrome sont des impuretés. A titre d’exemples, on peut citer Fe2C>3 ou "PO2. Le carbone résiduel fait partie des impuretés de la composition des billes selon l’invention.
- Lorsqu'il est fait référence à ZrÜ2 0u à (Zr02+HfC>2), il y a lieu de comprendre ZrC>2 et une faible quantité, typiquement moins de 4,0% de HfC>2, en pourcentage massique sur la base de Zr02+HfC>2. En effet, un peu de HfC>2, chimiquement indissociable du ZrC>2 et présentant des propriétés semblables, est toujours naturellement présente dans les sources de ZrC>2 à des teneurs généralement inférieures à 4,0%, en pourcentage massique sur la base de Zr02+HfC>2. HfC>2 n’est pas considéré comme une impureté.
- Dans un souci de clarté, on utilise les termes « ZrC>2 » (ou « Zr02+HfC>2 »), « S1O2 » et « AI2O3 » pour désigner les teneurs de ces oxydes dans la composition, et « zircone », « silice » et « corindon » pour désigner des phases cristallisées de ces oxydes constituées de ZrC>2 + HfC>2, de SiC>2et de AI2O3, respectivement. Ces oxydes peuvent cependant être également présents sous d’autres phases. En particulier ZrC>2 et S1O2 peuvent être présents sous la forme de zircon (ZrSiCL). Le terme « zircone » inclut classiquement la faible quantité de phase hafnie, non distinguable par diffraction X.
- Par « zircone stabilisée », on entend l’ensemble constitué de la zircone quadratique et de la zircone cubique. - On appelle « taux de zircone cubique » le rapport massique (zircone cubique / (zircone cubique + zircone quadratique)).
- Par « poudre d’un composé », on entend une poudre comportant plus de 95% en masse de particules comportant plus de 90% en masse dudit composé. Ainsi, une poudre de corindon comporte plus de 95% en masse de particules comportant plus de 90% en masse de corindon. Une « poudre de zircone cubique » comporte plus de 95% en masse de particules comportant plus de 90% en masse de zircone cubique, le complément étant de préférence la zircone monoclinique et/ou la zircone quadratique, de préférence la zircone quadratique. Une « poudre de zircone quadratique » comporte plus de 95% en masse de particules comportant plus de 90% en masse de zircone quadratique. Une « poudre de zircone stabilisée » comporte plus de 95% en masse de particules comportant plus de 90% en masse de zircone stabilisée.
Tous les pourcentages de la présente description sont des pourcentages en masse sur la base des oxydes, sauf mention contraire.
Toutes les caractéristiques des billes peuvent être mesurées conformément aux protocoles décrits pour les exemples.
Les expressions « contenant un », « comprenant un » ou « comportant un » doivent être interprétées de manière large, non limitative, sauf indication contraire.
Description détaillée
Bille frittée
Une bille frittée selon l’invention peut présenter une ou plusieurs des caractéristiques optionnelles suivantes :
- la teneur en zircon, en pourcentage en masse sur la base de la quantité totale de phases cristallisées, est inférieure à 24%, de préférence inférieure à 23%, de préférence inférieure à 22% ;
- la teneur en zircone cubique + zircone quadratique, en pourcentage en masse sur la base de la quantité totale de phases cristallisées, est inférieure à 90%, de préférence inférieure à 85% ;
- de préférence, le taux de zircone cubique est supérieur à 55%, de préférence supérieur à 60%, de préférence supérieur à 65%, de préférence supérieur à 70%, de préférence supérieur à 75%, de préférence supérieur à 80%, voire supérieur à 85%, voire supérieur à 90%, voire supérieur à 95% ;
- dans un mode de réalisation, la zircone stabilisée est présente sensiblement uniquement sous la forme de zircone cubique ; - la teneur en zircone monoclinique, en pourcentage en masse sur la base de la quantité totale de phases cristallisées, est inférieure à 8%, de préférence inférieure à 5%, de préférence sensiblement nulle ;
- la teneur en corindon, en pourcentage en masse sur la base de la quantité totale de phases cristallisées, est supérieure à 8%, de préférence supérieure à 10%, de préférence supérieure à 15%, et/ou inférieure à 45%, de préférence inférieure à 40%, de préférence inférieure à 35%, de préférence inférieure à 30%, de préférence inférieure à 28%, de préférence inférieure à 26%, de préférence inférieure à 25% ;
- la teneur totale en « autres phases cristallisées », c'est-à-dire en phases cristallisées autres que zircon, zircone stabilisée, zircone monoclinique et corindon, en pourcentage en masse sur la base de la quantité totale de phases cristallisées, est inférieure à 8%, de préférence inférieure à 6%, voire inférieure à 5%, voire inférieure à 4% ;
- les « autres phases cristallisées » sont, pour plus de 90%, plus de 95%, sensiblement 100% en masse, la mullite et/ou la cristoballite ;
- dans un mode de réalisation, la teneur en mullite est non détectable avec la méthode de mesure décrite pour les exemples ;
- la quantité massique de phase amorphe, c’est-à-dire vitreuse, en pourcentage en masse par rapport à la masse de la bille, est inférieure à 10%, de préférence inférieure à 8% ;
- la phase amorphe, exprimée sous une forme oxyde, comporte MgO et S1O2, et/ou Y2O3 et/ou AI2O3 et/ou CaO et/ou Na20 et/ou K2O et/ou P2O5 ;
- la phase amorphe, exprimée sous une forme oxyde, comporte MgO et S1O2 et Y2O3 et AI2O3 et Na20 et K2O et P2O5 ;
- la teneur en Zr02+Hf02 est supérieure à 37,0%, de préférence supérieure à 40,0%, de préférence supérieure à 43,5%, de préférence supérieure à 44,6%, de préférence supérieure à 46,0%, de préférence supérieure à 50,0%, de préférence supérieure à 53,0%, de préférence supérieure à 56,0%, de préférence supérieure à 57,0%, et/ou inférieure à 85,0%, de préférence inférieure à 82,9%, de préférence inférieure à 80,2%, de préférence inférieure à 75,0%, de préférence inférieure à 72,0%, en pourcentages en masse sur la base des oxydes ;
- la teneur en Hf02 est inférieure à 3,0%, de préférence inférieure à 2,0%, en pourcentages en masse sur la base des oxydes ;
- la teneur en S1O2 est supérieure à 1 ,0%, de préférence supérieure à 1 ,3%, de préférence supérieure à 2,0%, de préférence supérieure à 2,5%, voire supérieure à 4,5%, voire supérieure à 6,0%, et/ou inférieure à 13,6%, de préférence inférieure à 12,0%, de préférence inférieure à 11 ,0%, en pourcentages en masse sur la base des oxydes ;
- la teneur en AI2O3 est supérieure à 7,0%, de préférence supérieure à 10,5%, de préférence supérieure à 12,0%, et/ou inférieure à 45,0%, de préférence inférieure à 40,0%, de préférence inférieure à 34,9%, de préférence inférieure à 32,0%, de préférence inférieure à 30,0%, de préférence inférieure à 28,0%, de préférence inférieure à 26,0%, de préférence inférieure à 25,0%, en pourcentages en masse sur la base des oxydes ;
- la teneur en Y2O3 est supérieure à 2,8%, de préférence supérieure à 3,0%, de préférence supérieure à 3,6%, de préférence supérieure à 4,0%, de préférence supérieure à 4,5%, et/ou inférieure à 21 ,6%, de préférence inférieure à 20,0%, de préférence inférieure à 19,2%, de préférence inférieure à 18,0%, de préférence inférieure à 16,0%, de préférence inférieure à 15,0%, de préférence inférieure à 14,0%, en pourcentages en masse sur la base des oxydes ;
- la teneur en MgO est supérieure à 0,1%, de préférence supérieure à 0,15%, voire supérieure à 0,2%, voire supérieure à 0,3%, et/ou inférieure à 4,0%, de préférence inférieure à 3,0%, de préférence inférieure à 2,0%, de préférence inférieure à 1 ,5%, de préférence inférieure à 1 ,0%, en pourcentages en masse sur la base des oxydes ;
- la teneur en CaO est supérieure à 0,1%, de préférence supérieure à 0,2%, de préférence supérieure à 0,3%, et/ou inférieure à 1 ,5%, préférence inférieure à 1 ,0%, en pourcentages en masse sur la base des oxydes ;
- la teneur totale en oxydes autres que ZrC>2, HfC>2, S1O2, AI2O3, Y2O3, CaO et MgO est inférieure à 4,0%, de préférence inférieure à 3,0%, de préférence inférieure à 2,0%, voire inférieure à 1 ,5%, voire inférieure à 1 ,0%, en pourcentages en masse sur la base des oxydes (de préférence, la teneur en Na2Û est inférieure à 0,8%, de préférence inférieure à 0,5%, de préférence inférieure à 0,3%, de préférence inférieure à 0,2% et/ou la teneur en K2O est inférieure à 0,8%, de préférence inférieure à 0,5%, de préférence inférieure à 0,3%, de préférence inférieure à 0,2%) ;
- les oxydes autres que ZrÛ2, Hf02, S1O2, AI2O3, Y2O3, CaO et MgO sont des impuretés ;
- de préférence, tout oxyde autre que ZrÛ2, Hf02, S1O2, AI2O3, Y2O3, CaO et MgO est présent en une quantité inférieure à 2,0%, de préférence inférieure à 1 ,5%, de préférence inférieure à 1 ,0%, voire inférieure à 0,8%, voire inférieure à 0,5%, voire inférieure à 0,3% ;
- de préférence, la teneur en oxydes d’une bille selon l’invention représente plus de 99%, de préférence plus de 99,5%, de préférence plus de 99,9%, et, de préférence encore, sensiblement 100% de la masse totale de ladite bille ; - la bille frittée présente une taille inférieure à 10 mm, de préférence inférieure à 2,5 mm et/ou supérieure à 0,005 mm, de préférence supérieure à 0,1 mm, de préférence supérieure à 0,15 mm ;
- la bille frittée présente une sphéricité supérieure à 0,7, de préférence supérieure à 0,8, de préférence supérieure à 0,85, voire supérieure à 0,9 ;
- la densité de la bille frittée est supérieure à 4,6 g/cm3, de préférence supérieure à 4,7 g/cm3, voire supérieure à 4,8 g/cm3 et/ou inférieure à 5,5 g/cm3, de préférence inférieure à 5,3 g/cm3de préférence inférieure à 5,2 g/cm3.
Dans un premier mode de réalisation, une bille frittée selon l’invention présente :
- une teneur en zircon, en pourcentage en masse sur la base de la quantité totale de phases cristallisées, supérieure ou égale à 10%, de préférence supérieure à 15% et inférieure à 25%, de préférence inférieure à 20%, et
- une teneur en zircone stabilisée, en pourcentage en masse sur la base de la quantité totale de phases cristallisées, supérieure à 50% et inférieure à 80%, de préférence inférieure à 70%, le taux de zircone cubique étant supérieur à 50%, de préférence supérieur à 55%, de préférence supérieur à 60%, de préférence supérieur à 65%, de préférence supérieur à 70%, de préférence supérieur à 75%, de préférence supérieur à 80%, voire supérieur à 85%, voire supérieur à 90%, voire supérieur à 95%, et
- une teneur en zircone monoclinique, en pourcentage en masse sur la base de la quantité totale de phases cristallisées, inférieure à 5%, de préférence sensiblement nulle, et
- une teneur en corindon, en pourcentage en masse sur la base de la quantité totale de phases cristallisées, supérieure à 10%, de préférence supérieure à 15% et inférieure à 35%, de préférence inférieure à 30%, de préférence inférieure à 28%, de préférence inférieure à 26%, de préférence inférieure à 25%, et
- une teneur totale en phases cristallisées autres que zircon, zircone stabilisée, zircone monoclinique et corindon, en pourcentage en masse sur la base de la quantité totale de phases cristallisées, inférieure à 6%, voire inférieure à 5%, voire inférieure à 4%, et
- de préférence, une quantité massique de phase amorphe, en pourcentage en masse par rapport à la masse de la bille inférieure à 10%, de préférence inférieure à 8%, et
- une teneur en Zr02+HfC>2 supérieure à 43,5%, de préférence supérieure à 46,0%, de préférence supérieure à 50,0%, de préférence supérieure à 53,0%, de préférence supérieure à 56,0%, de préférence supérieure à 57,0% et inférieure à 80,2%, de préférence inférieure à 75,0%, de préférence inférieure à 72,0%, en pourcentages en masse sur la base des oxydes, et - une teneur en HfC>2 inférieure à 4,0%, de préférence inférieure à 3,0%, de préférence inférieure à 2,0%, en pourcentages en masse sur la base des oxydes, et
- une teneur en S1O2 supérieure à 4,5%, de préférence supérieure à 6,0%, de préférence supérieure à 7,5% et inférieure à 13,6%, de préférence inférieure à 12,0%, de préférence inférieure à 11 ,0%, en pourcentages en masse sur la base des oxydes, et
- une teneur en AI2O3 supérieure à 10,5%, de préférence supérieure à 12,0% et inférieure à 34,9%, de préférence inférieure à 32,0%, de préférence inférieure à 30,0%, de préférence inférieure à 27,0%, de préférence inférieure à 25,0%, de préférence inférieure à 23,0%, de préférence inférieure à 20,0%, en pourcentages en masse sur la base des oxydes, et
- une teneur en Y2O3 supérieure à 2,8%, de préférence supérieure à 3,0%, de préférence supérieure à 3,6%, de préférence supérieure à 4,0%, de préférence supérieure à 4,5% et inférieure à 19,2%, de préférence inférieure à 18,0%, de préférence inférieure à 16,0%, de préférence inférieure à 15,0%, de préférence inférieure à 14,0%, de préférence inférieure à 13,0%, en pourcentages en masse sur la base des oxydes, et
- une teneur en MgO supérieure à 0,1%, de préférence supérieure à 0,15%, voire supérieure à 0,2%, voire supérieure à 0,3%, et inférieure à 4,0%, de préférence inférieure à 3,0%, de préférence inférieure à 2,0%, de préférence inférieure à 1 ,5%, de préférence inférieure à 1 ,0%, en pourcentages en masse sur la base des oxyde, et
- une teneur en CaO supérieure à 0,1 %, de préférence supérieure à 0,2%, de préférence supérieure à 0,3% et inférieure à 1 ,5%, préférence inférieure à 1 ,0%, en pourcentages en masse sur la base des oxydes, et
- une teneur en oxydes autres que ZrC>2, HfC>2, S1O2, AI2O3, Y2O3, CaO et MgO inférieure à 4,0%, de préférence inférieure à 3,0%, de préférence inférieure à 2,0%, voire inférieure à 1 ,5%, voire inférieure à 1 ,0%, en pourcentages en masse sur la base des oxydes (de préférence, la teneur en Na2Û est inférieure à 0,8%, de préférence inférieure à 0,5%, de préférence inférieure à 0,3%, de préférence inférieure à 0,2% et/ou la teneur en K2O est inférieure à 0,8%, de préférence inférieure à 0,5%, de préférence inférieure à 0,3%, de préférence inférieure à 0,2%), et
- tout oxyde autre que ZrÛ2, Hf02, S1O2, AI2O3, Y2O3, CaO et MgO étant de préférence présent en une quantité inférieure à 2,0%, de préférence inférieure à 1 ,5%, de préférence inférieure à 1 ,0%, voire inférieure à 0,8%, voire inférieure à 0,5%, voire inférieure à 0,3%, et - les oxydes autres que ZrC>2, HfC>2, S1O2, AI2O3, Y2O3, CaO et MgO étant de préférence des impuretés, et
- la teneur en oxydes étant de préférence supérieure à 99%, de préférence supérieure à 99,5%, de préférence supérieure à 99,9%, et, de préférence encore, sensiblement égale à 100% de la masse totale de ladite bille.
Dans un deuxième mode de réalisation, une bille frittée selon l’invention présente :
- une teneur en corindon, en pourcentage en masse sur la base de la quantité totale de phases cristallisées, supérieure à 10%, de préférence supérieure à 15% et inférieure à 35%, de préférence inférieure à 30%, de préférence inférieure à 28%, de préférence inférieure à 26%, de préférence inférieure à 25%, et
- une teneur en zircone stabilisée, en pourcentage en masse sur la base de la quantité totale de phases cristallisées, supérieure à 50%, de préférence supérieure à 60% et inférieure à 90%, de préférence inférieure à 85%, le taux de zircone cubique étant supérieur à 50%, de préférence supérieur à 55%, de préférence supérieur à 60%, de préférence supérieur à 65%, de préférence supérieur à 70%, de préférence supérieur à 75%, de préférence supérieur à 80%, voire supérieur à 85%, voire supérieur à 90%, voire supérieur à 95%,
- une teneur en zircone monoclinique, en pourcentage en masse sur la base de la quantité totale de phases cristallisées, inférieure à 5%, de préférence sensiblement nulle, et
- une teneur en zircon, en pourcentage en masse sur la base de la quantité totale de phases cristallisées, inférieure à 4%, de préférence sensiblement nulle, et
- une teneur en phases cristallisées autres que zircon, zircone stabilisée, zircone monoclinique et corindon, en pourcentage en masse sur la base de la quantité totale de phases cristallisées, inférieure à 6%, voire inférieure à 5%, voire inférieure à 4%, et
- de préférence, une quantité massique de phase amorphe, en pourcentage en masse par rapport à la masse de la bille inférieure à 10%, de préférence inférieure à 8%, et
- une teneur en Zr02+HfC>2 supérieure à 44,6%, de préférence supérieure à 46,0%, de préférence supérieure à 50,0%, de préférence supérieure à 53,0%, de préférence supérieure à 56,0%, de préférence supérieure à 57,0% et inférieure à 82,9%, de préférence inférieure à 80,2%, de préférence inférieure à 75,0%, de préférence inférieure à 72,0%, de préférence inférieure à 70,0%, en pourcentages en masse sur la base des oxydes, et
- une teneur en HfC>2 inférieure à 4,0%, de préférence inférieure à 3,0%, de préférence inférieure à 2,0%, en pourcentages en masse sur la base des oxydes, et - une teneur en S1O2 supérieure à 1 ,0%, de préférence supérieure à 1 ,3%, de préférence supérieure à 2,0%, de préférence supérieure à 2,5% et inférieure à 6,1 %, de préférence inférieure à 5,5%, de préférence inférieure à 5,0%, en pourcentages en masse sur la base des oxydes, et
- une teneur en AI2O3 supérieure à 10,5%, de préférence supérieure à 12,0%, de préférence supérieure à 15,0%, de préférence supérieure à 18,0%, de préférence supérieure à 20,0% et inférieure à 34,9%, de préférence inférieure à 32,0%, de préférence inférieure à 30,0%, de préférence inférieure à 28,0%, de préférence inférieure à 26,0%, de préférence inférieure à 25,0%, en pourcentages en masse sur la base des oxydes, et
- une teneur en Y2O3 supérieure à 3,6%, de préférence supérieure à 4,0%, de préférence supérieure à 4,5%, de préférence supérieure à 5,0%, de préférence supérieure à 5,5% et inférieure à 21 ,6%, de préférence inférieure à 20,0%, de préférence inférieure à 19,2%, de préférence inférieure à 18,0%, de préférence inférieure à 16,0%, de préférence inférieure à 15,0%, de préférence inférieure à 14,0%, en pourcentages en masse sur la base des oxydes, et
- une teneur en MgO supérieure à 0,1%, de préférence supérieure à 0,15%, voire supérieure à 0,2%, voire supérieure à 0,3%, et inférieure à 4,0%, de préférence inférieure à 3,0%, de préférence inférieure à 2,0%, de préférence inférieure à 1 ,5%, de préférence inférieure à 1 ,0%, en pourcentages en masse sur la base des oxydes ;
- une teneur en CaO supérieure à 0,1 %, de préférence supérieure à 0,2%, de préférence supérieure à 0,3% et inférieure à 1 ,5%, préférence inférieure à 1 ,0%, en pourcentages en masse sur la base des oxydes, et
- une teneur totale en oxydes autres que ZrC>2, HfC>2, S1O2, AI2O3, Y2O3, CaO et MgO inférieure à 4,0%, de préférence inférieure à 3,0%, de préférence inférieure à 2,0%, voire inférieure à 1 ,5%, voire inférieure à 1 ,0%, en pourcentages en masse sur la base des oxydes (de préférence, la teneur en Na2Û est inférieure à 0,8%, de préférence inférieure à 0,5%, de préférence inférieure à 0,3%, de préférence inférieure à 0,2% et/ou la teneur en K2O est inférieure à 0,8%, de préférence inférieure à 0,5%, de préférence inférieure à 0,3%, de préférence inférieure à 0,2%), et
- tout oxyde autre que ZrÛ2, Hf02, S1O2, AI2O3, Y2O3, CaO et MgO étant de préférence présent en une quantité inférieure à 2,0%, de préférence inférieure à 1 ,5%, de préférence inférieure à 1 ,0%, voire inférieure à 0,8%, voire inférieure à 0,5%, voire inférieure à 0,3%, et
- les oxydes autres que ZrÛ2, Hf02, S1O2, AI2O3, Y2O3, CaO et MgO étant de préférence des impuretés, et - la teneur en oxydes étant de préférence supérieure à 99%, de préférence supérieure à 99,5%, de préférence supérieure à 99,9%, et, de préférence encore, sensiblement égale à 100% de la masse totale de ladite bille.
Procédé de fabrication des billes frittées
Pour fabriquer des billes frittées selon l’invention, on peut procéder suivant les étapes a) à g) décrites ci-dessus et détaillées ci-dessous.
A l’étape a), on prépare un mélange particulaire présentant une taille médiane inférieure à 0,6 pm. La composition du mélange particulaire est également adaptée, d’une manière connue en soi, pour que les billes frittées aient une composition conforme à l’invention.
Les poudres sont mélangées intimement.
Les poudres de matières premières peuvent être broyées individuellement ou, de préférence, cobroyées afin que le mélange particulaire obtenu présente une taille médiane inférieure à 0,6 pm, de préférence inférieure à 0,5 pm, de préférence inférieure à 0,4 pm, de préférence inférieure à 0,3 pm. Ce broyage peut être un broyage humide.
Un broyage ou un cobroyage peuvent être également utilisés pour obtenir un mélange intime.
Le mélange particulaire peut comporter une poudre de zircon qui, de préférence, présente une aire spécifique, calculée par la méthode BET, supérieure à 5 m2/g, de préférence supérieure à 8 m2/g, de préférence supérieure à 10 m2/g, et/ou inférieure à 30 m2/g.
La teneur en zircone stabilisée dans le mélange particulaire est supérieure à 45% et inférieure à 88%, de préférence inférieure à 83%, en masse sur la base de la masse du mélange particulaire.
De préférence, le mélange particulaire comporte une poudre de zircone stabilisée qui, de préférence, présente une aire spécifique, calculée par la méthode BET, supérieure à 0,5 m2/g, de préférence supérieure à 1 m2/g, de préférence supérieure à 1 ,5 m2/g, et/ou inférieure à 20 m2/g, de préférence inférieure à 18 m2/g, de préférence inférieure à 15 m2/g. Avantageusement, le broyage optionnel, généralement en suspension, en est facilité. De plus, la température de frittage à l’étape f) peut être réduite.
Plus de 50% en masse de la zircone stabilisée dans le mélange particulaire est sous la forme cubique. De préférence, plus de 55%, de préférence plus de 60%, de préférence plus de 65%, de préférence plus de 70%, de préférence plus de 75%, de préférence plus de 80%, voire plus de 85%, voire plus de 90%, voire plus de 95% en masse de la zircone stabilisée est sous la forme cubique. Dans un mode de réalisation, la zircone stabilisée est présente sensiblement uniquement sous la forme cubique.
De préférence, le mélange particulaire comporte une poudre de zircone cubique. De préférence, la teneur molaire en Y2O3 de la poudre de zircone cubique est comprise entre 7,5 mol% et 1 1 mol%, sur la base de la teneur totale en ZrC>2, Y2O3 et HfC>2.
Le mélange particulaire peut encore comporter une poudre de zircone quadratique et/ou une poudre de zircone monoclinique en une quantité inférieure ou égale à (10% - 0,2 fois la teneur massique de poudre de zircone quadratique dans le mélange particulaire). De préférence, le mélange particulaire ne contient pas de poudre de zircone monoclinique.
Selon l’invention, il est essentiel que la zircone stabilisée soit au moins en partie, de préférence totalement stabilisée au moyen de Y2O3. De préférence, sensiblement toute la zircone cubique, de préférence toute la zircone stabilisée, est stabilisée avec Y2O3.
Le mélange particulaire comporte de préférence une poudre de corindon qui, de préférence, présente une taille médiane inférieure à 7 pm, de préférence inférieure à 6 pm, voire inférieure à 3 pm, voire inférieure à 2 pm, voire inférieure à 1 ,5 pm.
Le mélange particulaire contient de préférence une poudre de corindon dans une quantité supérieure à 4,5%, de préférence supérieure à 7,3%, de préférence supérieure à 9, 1 %, de préférence supérieure à 13,6% et inférieure à 44%, de préférence inférieure à 39,2%, de préférence inférieure à 34,3%, de préférence inférieure à 29,4%, en masse sur la base de la masse du mélange particulaire. De préférence, la poudre de corindon est une poudre d’alumine réactive et/ou une poudre d’alumine calcinée. De préférence la poudre de corindon est une poudre d’alumine réactive.
Dans un premier mode de réalisation, le mélange particulaire comporte une poudre d’un composé apportant S1O2 choisie parmi une poudre de particules en un verre contenant S1O2, une poudre de particules de silice, une poudre de particules en une vitrocéramique contenant S1O2, et leurs mélanges, de préférence en une quantité de préférence supérieure à 0,5%, de préférence supérieure à 1 %, et/ou inférieure à 6%, de préférence inférieure à 5%, de préférence inférieure à 4%, de préférence inférieure à 3%, de préférence inférieure à 2%, en pourcentage massique sur la base de la masse du mélange particulaire. De préférence ladite poudre d’un composé apportant S1O2 contient plus de 40%, de préférence plus de 50%, voire plus de 60%, voire plus de 70%, voire plus de 80% en masse de S1O2. De préférence, la poudre d’un composé apportant S1O2 est choisie parmi une poudre de particules en un verre contenant S1O2, une poudre de particules de silice et leurs mélanges. De préférence encore, la poudre de vitrocéramique comporte également MgO.
Le composé comportant MgO et S1O2 comporte également, de préférence, AI2O3. De préférence, ledit composé est choisi parmi un talc, la cordiérite et leurs mélanges. De préférence, ledit composé est la cordiérite.
Dans un deuxième mode de réalisation, le mélange particulaire contient de la cordiérite, de préférence en une quantité de préférence supérieure à 0,5%, de préférence supérieure à 1 %, de préférence supérieure à 1 ,5%, et/ou inférieure à 10%, de préférence inférieure à 8%, de préférence inférieure à 6%, de préférence inférieure à 5%, de préférence inférieure à 4%, de préférence inférieure à 3%, en pourcentage massique sur la base de la masse du mélange particulaire.
Dans un troisième mode de réalisation, le mélange particulaire contient une argile, de préférence en une quantité supérieure à 0,5%, de préférence supérieure à 1 %, de préférence supérieure à 1 ,5%, et/ou inférieure à 5%, de préférence inférieure à 4%, de préférence inférieure à 3%, en pourcentage massique sur la base de la masse du mélange particulaire.
Dans un mode de réalisation, les premier à troisième modes de réalisation décrits immédiatement ci-dessus sont combinés.
Dans un procédé selon l’invention, le mélange particulaire comporte des poudres
de zircone cubique,
de corindon,
de verre contenant S1O2 et/ou de silice et/ou de vitrocéramique contenant S1O2 et/ou d’un composé comportant MgO et S1O2, et
optionnellement, de zircon ZrSiÜ4 et/ou de zircone monoclinique et/ou de zircone quadratique.
Dans un premier mode de réalisation principal, le mélange particulaire contient :
une poudre de zircon, dans une quantité supérieure à 9, 1 %, de préférence supérieure à 13,6% et inférieure à 24,5%, de préférence inférieure à 19,6%, en masse sur la base de la masse du mélange particulaire, et
une poudre de particules de zircone stabilisée à Y2O3 en une quantité supérieure à 45% et inférieure à 78,4%, de préférence inférieure à 68,6%, en masse sur la base de la masse du mélange particulaire, plus de 50%, de préférence plus de 55%, de préférence plus de 60%, de préférence plus de 65%, de préférence plus de 70%, de préférence plus de 75%, de préférence plus de 80%, voire plus de 85%, voire plus de 90%, voire plus de 95% en masse des particules de zircone stabilisée étant sous la forme cubique, la teneur molaire en Y2O3 de la poudre de zircone cubique étant de préférence comprise entre 7,5 mol% et 11 mol%, sur la base de la teneur totale en ZrC>2, Y2O3 et HfC>2, et
une poudre de corindon, dans une quantité supérieure à 9,1%, de préférence supérieure à 13,6% et inférieure à 34,3%, de préférence inférieure à 29,4%, en masse sur la base de la masse du mélange particulaire, de préférence, la poudre de corindon étant une poudre d’alumine réactive et/ou une poudre d’alumine calcinée, de préférence la poudre de corindon étant une poudre d’alumine réactive, et
une poudre de silice, en une quantité de préférence supérieure à 0,5%, de préférence supérieure à 1 %, et/ou inférieure à 6%, de préférence inférieure à 5%, de préférence inférieure à 4%, de préférence inférieure à 3%, de préférence inférieure à 2%, en pourcentage massique sur la base de la masse du mélange particulaire, et
une poudre de cordiérite en une quantité de préférence supérieure à 0,5%, de préférence supérieure à 1 %, de préférence supérieure à 1 ,5%, et/ou inférieure à 10%, de préférence inférieure à 8%, de préférence inférieure à 6%, de préférence inférieure à 5%, de préférence inférieure à 4%, de préférence inférieure à 3%, en pourcentage massique sur la base de la masse du mélange particulaire, et une poudre d’argile, de préférence en une quantité supérieure à 0,5%, de préférence supérieure à 1 %, de préférence supérieure à 1 ,5%, et/ou inférieure à 5%, de préférence inférieure à 4%, de préférence inférieure à 3%, en pourcentage massique sur la base de la masse du mélange particulaire.
Dans un deuxième mode de réalisation principal, le mélange particulaire contient : une poudre de corindon, dans une quantité supérieure à 9,1%, de préférence supérieure à 13,6% et inférieure à 34,3%, de préférence inférieure à 29,4%, en masse sur la base de la masse du mélange particulaire, de préférence, la poudre de corindon étant une poudre d’alumine réactive et/ou une poudre d’alumine calcinée, de préférence la poudre de corindon étant une poudre d’alumine réactive, et
une poudre de particules de zircone stabilisée à Y2O3 en une quantité supérieure à 45%, de préférence supérieure à 54,5% et inférieure à 88%, de préférence inférieure à 83,3%, en masse sur la base de la masse du mélange particulaire, plus de 50%, de préférence plus de 55%, de préférence plus de 60%, de préférence plus de 65%, de préférence plus de 70%, de préférence plus de 75%, de préférence plus de 80%, voire plus de 85%, voire plus de 90%, voire plus de 95% en masse des particules de zircone stabilisée étant sous la forme cubique, la teneur molaire en Y2O3 de la poudre de zircone cubique étant de préférence comprise entre 7,5 mol% et 11 mol%, sur la base de la teneur totale en ZrC>2, Y2O3 et HfC>2, et
une poudre de silice, en une quantité de préférence supérieure à 0,5%, de préférence supérieure à 1 %, et/ou inférieure à 6%, de préférence inférieure à 5%, de préférence inférieure à 4%, de préférence inférieure à 3%, de préférence inférieure à 2%, en pourcentage massique sur la base de la masse du mélange particulaire, et
une poudre de cordiérite en une quantité de préférence supérieure à 0,5%, de préférence supérieure à 1 %, de préférence supérieure à 1 ,5%, et/ou inférieure à 10%, de préférence inférieure à 8%, de préférence inférieure à 6%, de préférence inférieure à 5%, de préférence inférieure à 4%, de préférence inférieure à 3%, en pourcentage massique sur la base de la masse du mélange particulaire, et une poudre d’argile, de préférence en une quantité supérieure à 0,5%, de préférence supérieure à 1 %, de préférence supérieure à 1 ,5%, et/ou inférieure à 5%, de préférence inférieure à 4%, de préférence inférieure à 3%, en pourcentage massique sur la base de la masse du mélange particulaire.
Les poudres apportant les oxydes sont de préférence choisies de manière que la teneur totale en oxydes autres que ZrC>2, HfC>2, S1O2, AI2O3, MgO, CaO et Y2O3 soit inférieure à 5%, en pourcentage massique sur la base des oxydes.
De préférence, aucune matière première autre que les poudres de zircone cubique, optionnellement de zircone quadratique, optionnellement de zircone monoclinique, optionnellement de zircon, de corindon, de verre contenant S1O2, et/ou de silice, et/ou de vitrocéramique contenant S1O2, et/ou de composé comportant MgO et S1O2 n’est introduite volontairement dans le mélange particulaire, les autres oxydes présents étant des impuretés.
De préférence, les poudres utilisées, notamment les poudres de zircone cubique, de corindon, de verre contenant S1O2, et/ou de silice, et/ou de vitrocéramique contenant S1O2, et/ou de composé comportant MgO et S1O2, les poudres optionnelles de zircon, de zircone monoclinique et de zircone quadratique, présentent chacune une taille médiane inférieure à 5 pm, voire inférieure à 3 pm, inférieure à 1 pm, inférieure à 0,7 pm, de préférence inférieure à 0,6 pm, de préférence inférieure à 0,5 pm, de préférence inférieure à 0,4 pm, voire inférieure à 0,3 pm. Avantageusement, lorsque chacune de ces poudres présente une taille médiane inférieure à 0,6 pm, de préférence inférieure à 0,5 pm, de préférence inférieure à 0,4 pm, voire inférieure à 0,3 pm, le broyage est optionnel.
Quel que soit le mode de réalisation, une ou plusieurs des poudres du mélange particulaire décrites précédemment peuvent être remplacées, au moins partiellement, par des poudres équivalentes, c'est-à-dire par des poudres qui, lors de la fabrication d’une bille selon l’invention, conduisent, dans ladite bille, aux mêmes constituants (même composition, même phase cristallographique), dans les mêmes quantités.
En particulier, les poudres de zircone cubique et de zircone quadratique peuvent être remplacées, partiellement ou totalement, par des poudres comportant des particules contenant ZrÜ2 + Hf02, et Y2O3, de préférence intimement mélangés, la quantité de Y2O3 étant adaptée pour obtenir, à l’issue de l’étape g), des zircones cubique et quadratique, respectivement.
Une poudre équivalente à une poudre de corindon est par exemple une poudre d’alumine de transition.
A l’étape b), optionnelle, les poudres de matières premières broyées sont séchées, par exemple en étuve ou par atomisation, en particulier si elles ont été obtenues par broyage humide. De préférence, la température et/ou la durée de l’étape de séchage sont adaptées de manière à ce que l’humidité résiduelle des poudres de matières premières soit inférieure à 2%, voire inférieure à 1 ,5%.
A l’étape c), on prépare, de préférence à température ambiante, une charge de départ comportant le mélange particulaire obtenu en fin d’étape a) ou en fin d’étape b) et, optionnellement, un solvant, de préférence de l’eau, dont la quantité est adaptée à la méthode de mise en forme de l’étape d).
Comme cela est bien connu de l’homme du métier, la charge de départ est adaptée au procédé de mise en forme de l’étape d).
La mise en forme peut en particulier résulter d’un procédé de gélification. A cet effet, un solvant, de préférence de l’eau, est de préférence ajouté à la charge de départ de manière à réaliser une suspension.
La suspension présente de préférence une teneur massique en matière sèche comprise entre 50 et 70%.
La suspension peut encore comporter un ou plusieurs des constituants suivants : - un dispersant, à raison de 0 à 10%, en pourcentage massique sur la base de la matière sèche ;
- un modificateur de tension de surface, à raison de 0 à 3%, en pourcentage massique sur la base de la matière sèche ;
- un agent gélifiant, ou « agent de gélification », à raison de 0 à 2%, en pourcentage massique sur la base de la matière sèche.
Les dispersants, modificateurs de tension de surface et agents gélifiants sont bien connus de l’homme du métier.
A titre d’exemples, on peut citer,
- comme dispersants, la famille des polyméthacrylates de sodium ou d’ammonium, la famille des polyacrylates de sodium ou d’ammonium, la famille des citrates, par exemple d’ammonium, la famille des phosphates de sodium, et la famille des esters de l’acide carbonique ;
- comme modificateurs de tension de surface, les solvants organiques tels que des alcools aliphatiques ;
- comme agents gélifiants, des polysaccharides naturels.
Le mélange particulaire est de préférence ajouté dans un mélange d’eau et de dispersants/défloculants dans un broyeur à boulets. Après agitation, on ajoute de l’eau dans laquelle a été préalablement dissout un agent gélifiant de manière à obtenir une suspension.
Si la mise en forme résulte d’une extrusion, des polymères thermoplastiques ou des polymères thermodurcissables peuvent être ajoutés à la charge de départ, ladite charge de départ ne contenant de préférence pas de solvant.
A l’étape d), tout procédé conventionnel de mise en forme connu pour la fabrication de billes frittées peut être mis en œuvre.
Parmi ces procédés, on peut citer :
- les procédés de granulation, mettant par exemple en œuvre des granulateurs, des granulateurs à lit fluidisé, ou des disques de granulation,
- les procédés de gélification,
- les procédés de moulage par injection ou extrusion, et
- les procédés de pressage.
Dans un procédé de gélification, des gouttes de la suspension décrite ci-dessus sont obtenues par écoulement de la suspension à travers un orifice calibré. Les gouttes sortant de l’orifice tombent dans un bain d’une solution de gélification (électrolyte adapté pour réagir avec l’agent gélifiant) où elles durcissent après avoir recouvré une forme sensiblement sphérique.
A l’étape e), optionnelle, les billes crues obtenues lors de l’étape précédente sont lavées, par exemple à l’eau.
A l’étape f), optionnelle, les billes crues, éventuellement lavées, sont séchées, par exemple à l’étuve.
A l’étape g), les billes crues, éventuellement lavées et/ou séchées, sont frittées. De préférence, le frittage s’effectue sous air, de préférence dans un four électrique, de préférence à pression atmosphérique.
Le frittage à l’étape g) est effectué à une température supérieure à 1330°C, de préférence supérieure à 1340°C, de préférence supérieure à 1350°C, de préférence supérieure à 1360°C, de préférence supérieure à 1370°C, et inférieure à 1450°C, de préférence inférieure à 1430°C, de préférence inférieure à 1410°C, de préférence inférieure à 1400°C, de préférence inférieure à 1390°C. Une température de frittage égale à 1375°C est bien adaptée.
De préférence, la durée de frittage est comprise entre 2 et 5 heures. Une durée de frittage égale à 4 heures est bien adaptée.
Les billes frittées obtenues présentent de préférence un plus petit diamètre supérieur à 0,005 mm, de préférence supérieur à 0, 1 mm, de préférence supérieur à 0, 15 mm et inférieur à 10 mm, de préférence inférieur à 2,5 mm.
Les billes frittées selon l'invention sont particulièrement bien adaptées comme agents de broyage ou comme agents de dispersion en milieu humide, ainsi que pour le traitement de surfaces. L’invention concerne donc également l’utilisation d’une poudre de billes selon l’invention, ou de billes fabriquées suivant un procédé selon l’invention, en tant qu’agents de broyage, ou agents de dispersion en milieu humide.
Les propriétés des billes selon l’invention, notamment leur résistance mécanique, leur densité, ainsi que leur facilité d'obtention, les rendent aptes à d'autres applications, notamment comme agents de soutènement ou d'échange thermique, ou encore pour le traitement de surfaces (par projection des billes selon l’invention en particulier).
L’invention concerne donc encore un dispositif choisi parmi une suspension, un broyeur, un appareil de traitement de surfaces et un échangeur thermique, ledit dispositif comportant une poudre de billes selon l’invention.
Exemples Les exemples non limitatifs suivants sont donnés dans le but d'illustrer l'invention. Protocoles de mesure
Les méthodes suivantes ont été utilisées pour déterminer certaines propriétés de différents mélanges de billes frittées. Elles permettent une excellente simulation du comportement réel en service dans l’application de microbroyage.
Pour déterminer la sphéricité d’une bille, les plus petit et plus grand diamètres de Ferret sont mesurés sur un Camsizer XT commercialisé par la société Horiba.
Pour déterminer l’usure dite « planétaire », 20 ml (volume mesuré à l’aide d’une éprouvette graduée) de billes à tester de taille comprise entre 1 ,8 et 2,0 mm, sont pesées (masse mO) et introduites dans un des 4 bols revêtus d’alumine frittée dense, de contenance de 125 ml, d’un broyeur planétaire rapide du type PM400 de marque RETSCH. Sont ajoutés dans le même bol contenant déjà les billes, 2,2 g de carbure de silicium de marque Presi (présentant une taille médiane D50 de 23 pm) et 40 ml d’eau. Le bol est refermé et mis en rotation (mouvement planétaire) à 400 tr/min avec inversion du sens de rotation toutes les minutes pendant 1 h30. Le contenu du bol est ensuite lavé sur un tamis de 100 pm de manière à enlever le carbure de silicium résiduel ainsi que les arrachements de matière dus à l’usure lors du broyage. Après un tamisage sur un tamis de 100 pm, les billes sont séchées à l’étuve à 100 °C pendant 3h puis pesées (masse m1). Lesdites billes (masse m1) sont à nouveau introduites dans un des bols avec une suspension de SiC (même concentration et quantité que précédemment) et subissent un nouveau cycle de broyage, identique au précédent. Le contenu du bol est ensuite lavé sur un tamis de 100 pm de manière à enlever le carbure de silicium résiduel ainsi que les arrachements de matière dus à l’usure lors du broyage. Après un tamisage sur un tamis de 100 pm, les billes sont séchées à l’étuve à 100 °C pendant 3h puis pesées (masse m2). Lesdites billes (masse m2) sont à nouveau introduites dans un des bols avec une suspension de SiC (même concentration et quantité que précédemment) et subissent un nouveau cycle de broyage, identique au précédent. Le contenu du bol est ensuite lavé sur un tamis de 100 pm de manière à enlever le carbure de silicium résiduel ainsi que les arrachements de matière dus à l’usure lors du broyage. Après un tamisage sur un tamis de 100 pm, les billes sont séchées à l’étuve à 100 °C pendant 3h puis pesées (masse m3).
L’usure planétaire (U P) est exprimée en pourcentage (%) et est égale à la perte de masse des billes ramenée à la masse initiale des billes, soit : 100(m2-m3) / (m2) ; le résultat UP est donné dans le tableau 2. L’attaque hydrothermale des billes des exemples est effectuée selon le protocole suivant : pour chacun des exemples, 30 ml de billes (volume mesuré à l’aide d’une éprouvette graduée) sont introduits dans un autoclave comportant une chambre en téflon de contenance totale égale à 45 ml et contenant 20 ml d’une suspension aqueuse de carbonate de calcium CaCCh présentant un pH réglé égal à 9,3 et contenant 70 % de matière sèche, et dont 40 % des grains de CaCCh en volume sont inférieurs à 1 pm. Après fermeture de l’autoclave, le tout est porté dans une étuve à une température égale à 140°C et maintenu pendant 24 heures à cette température. L’autoclave est ensuite sorti de l’étuve, puis refroidit naturellement jusqu’à la température ambiante. L’attaque hydrothermale permet de mettre en évidence le comportement des billes en conditions hydrothermales.
La quantification des phases cristallisées présentes dans les billes frittées avant et après attaque hydrothermale est effectuée directement sur les billes, lesdites billes étant collées sur une pastille carbone autocollante, de manière à ce que la surface de ladite pastille soit recouverte au maximum de billes.
Les phases cristallisées présentes dans les billes frittées selon l’invention sont mesurées par diffraction X, par exemple au moyen d’un appareil du type diffractomètre X’Pert PRO de la société Panalytical pourvu d’un tube DX en cuivre. L’acquisition du diagramme de diffraction est réalisée à partir de cet équipement, sur un domaine angulaire 2Q compris entre 5° et 100°, avec un pas de 0,017°, et un temps de comptage de 150s/pas. L’optique avant comporte une fente de divergence programmable utilisée fixe de 1/4°, des fentes de Soller de 0,04 rad, un masque égal à 10mm et une fente anti diffusion fixe de 1/2°. L’échantillon est en rotation sur lui-même afin de limiter les orientations préférentielles. L’optique arrière comporte une fente anti diffusion programmable utilisée fixe de 1/4°, une fente de Soller de 0,04 rad et un filtre Ni.
Les diagrammes de diffraction ont ensuite été analysés qualitativement à l’aide du logiciel EVA et de la base de données ICDD2016.
Une fois les phases présentes mises en évidence, les diagrammes de diffraction ont été analysés quantitativement avec le logiciel High Score Plus par affinement Rietveld selon la stratégie suivante :
- Un affinement du signal de fond est réalisé à l’aide de la fonction « treatment », « détermine background » avec les choix suivants : « bending factor » égal à 0 et « granularity » égal à 40;
- Classiquement, les fiches ICDD des phases présentes mises en évidence et quantifiables sont sélectionnées, et donc prises en compte dans l’affinement ; - Un affinement automatique est ensuite réalisé en sélectionnant le signal de fond déterminé précédemment « use available background » et en sélectionnant le mode « automatic : option phase fit-default Rietveld » ;
- Un affinement manuel du paramètre « B overall » de toutes les phases sélectionnées est ensuite effectué de manière simultanée ;
- Enfin, un affinement manuel simultané du paramètre W de Caglioti des phases zircone quadratique et zircone cubique est réalisé si la fonction automatique ne l’a pas effectué. Dans ce cas, « W » est sélectionné pour lesdites phases de zircone et l’affinement est à nouveau effectué. Les résultats ne sont conservés que si le paramètre « Goodness of fit » du deuxième affinement est inférieur à celui du premier affinement.
La quantité de phase amorphe présente dans les billes frittées selon l’invention est mesurée par diffraction X, par exemple au moyen d’un appareil du type diffractomètre X’Pert PRO de la société Panalytical pourvu d’un tube DX en cuivre. L’acquisition du diagramme de diffraction est réalisée à partir de cet équipement, de la même manière que pour la détermination des phases cristallisées présentes dans les billes, l’échantillon analysé se présentant sous la forme d’une poudre. La méthode appliquée consiste en l’ajout d’une quantité connue d’un étalon totalement cristallisé, dans le cas présent une poudre d’oxyde de zinc, ZnO en une quantité égale à 20%, sur la base de la masse d’oxyde de zinc et d’échantillon de billes frittées broyées selon l’invention. La taille maximale de la poudre d’oxyde de zinc est égale à 1 pm et les billes selon l’invention sont broyées de manière à obtenir une poudre présentant une taille maximale inférieure à 40 pm.
La taille maximale des particules de ZnO est entrée dans le logiciel High Score Plus de manière à limiter les effets de micro-absorption.
Le taux de phase amorphe, en pourcentage, se calcule à l’aide de la formule suivante, Qzno étant la quantité de ZnO déterminée à partir du diagramme de diffraction :
Taux de phase amorphe = 100*(100/(100-20))*(1-(20/Qzno)).
Par exemple, si Qzno est égal à 22%, alors le taux de phase amorphe est égal à 100*(100/(100-20))*(1 - (20/22)) = 1 1 ,4%.
La densité des billes, en g/cm3, est mesurée à l’aide d’un pycnomètre hélium (AccuPyc 1330 de la société Micromeritics®), selon une méthode basée sur la mesure du volume de gaz déplacé (dans le cas présent l’hélium).
Protocole de fabrication Des billes frittées ont été préparées à partir :
d’une poudre de zircon, présentant une aire spécifique de l’ordre de 8 m2/g, une taille médiane égale à 1 ,5 pm et une teneur totale en oxydes autres que ZrC>2 et S1O2 égale à 1 ,1 %,
d’une poudre de cordiérite de pureté supérieure à 95% et de taille médiane inférieure à 63 pm,
d’une poudre d’argile de taille médiane inférieure à 53 pm, présentant une perte au feu réalisée à 1000°C comprise entre 10% et 15% et présentant une teneur totale S1O2 + AI2O3 supérieure à 82%,
d’une poudre de silice de pureté supérieure à 98,5% et présentant une taille médiane égale à 1 ,5 pm, et, en fonction des exemples réalisés,
d’une poudre d’ALCh de pureté égale à 99,5% et de taille médiane inférieure à 5 pm, d’une poudre de zircone stabilisée CY3Z commercialisée par Saint-Gobain ZirPro, présentant une teneur molaire en Y2O3 égale à 3% et se présentant majoritairement sous une forme cristallographique quadratique,
et d’une poudre de zircone stabilisée TZ-10Y, commercialisée par TOSOH, présentant une teneur molaire en Y2O3 égale à 10% et se présentant sous une forme cristallographique sensiblement entièrement cubique.
Le tableau 1 suivant résume les mélanges particulaires des exemples.
[Tableau 1]
Figure imgf000028_0001
(*) : hors invention
Les différentes poudres ont été mélangées puis cobroyées en milieu humide jusqu’à obtention d’un mélange particulaire présentant une taille médiane inférieure à 0,3 pm. Le mélange particulaire a ensuite été séché.
Pour les exemples 1 et 2, une charge de départ consistant en une suspension aqueuse comportant, en pourcentages en pourcentage massique sur la base de la matière sèche, 1 % d’un dispersant de type ester d’acide carboxylique, 3% d’un dispersant de type acide carboxylique et 0,4% d’un agent gélifiant, à savoir un polysaccharide de la famille des alginates, a ensuite été préparée à partir du mélange particulaire de l’exemple 1 et 2, respectivement.
Pour l’exemple 3, une charge de départ consistant en une suspension aqueuse comportant, en pourcentages en pourcentage massique sur la base de la matière sèche, 1 % d’un dispersant de type ester d’acide carboxylique, 0,7% d’un dispersant de type phosphate de sodium, 3% d’un dispersant de type acide carboxylique et 0,4% d’un agent gélifiant, à savoir un polysaccharide de la famille des alginates, a ensuite été préparée à partir du mélange particulaire de l’exemple 3.
Un broyeur à boulets a été utilisé pour cette préparation de manière à obtenir une bonne homogénéité de la charge de départ : Une solution contenant l’agent gélifiant a d’abord été formée. Successivement on a ajouté dans de l’eau, le mélange particulaire et les dispersants. La solution contenant l’agent gélifiant a ensuite été ajoutée. Le mélange ainsi obtenu a été agité pendant 8 heures. La taille des particules a été contrôlée l’aide d’un granulomètre laser de modèle LA950V2 commercialisé par la société Horiba (taille médiane < 0,3 pm), puis de l’eau a été ajoutée en une quantité déterminée pour obtenir une suspension aqueuse à 68% en matière sèche et une viscosité, mesurée au viscosimètre Brookfield à l’aide du mobile LV3 à une vitesse égale à 20 tours/minutes, inférieure à 5000 centipoises. Le pH de la suspension était alors d’environ 9 après un ajustement optionnel à l’aide d’une base forte.
La suspension a été forcée à travers un trou calibré et à un débit permettant d’obtenir après frittage des billes d’environ 1 ,8 mm à 2,0 mm dans le cadre de cet exemple. Les gouttes de suspension tombaient dans un bain de gélification à base d’un électrolyte (sel de cation divalent), réagissant avec l’agent gélifiant. Les billes crues ont été collectées, lavées, puis séchées à 80°C pour éliminer l’humidité. Les billes ont ensuite été transférées dans un four de frittage où elles ont été portées, à une vitesse de 100°C/h, jusqu’à la température égale à 1375°C. A la fin d’un palier de 4 heures à cette température, la descente en température a été effectuée par refroidissement naturel.
Résultats
Les résultats obtenus sont résumés dans le tableau 2 suivant.
[Tableau 2]
Figure imgf000029_0001
Figure imgf000030_0001
(*) : hors invention
Les poudres de billes des exemples présentent une sphéricité moyenne supérieure à 0,9.
Les billes des exemples 1 à 3 présentent une quantité de phase amorphe inférieure à 10% en masse.
Les billes de référence de l’exemple 1 , hors invention, sont des billes frittées de type alumine-zircone.
Les inventeurs considèrent que l’usure planétaire d’un exemple n’est significativement pas différente de celle de l’exemple comparatif lorsque l’écart entre ces deux usures planétaires est inférieur à 10%.
Les inventeurs considèrent également qu’une transformation en zircone monoclinique de plus de 10% en masse de zircone stabilisée sous la forme quadratique et cubique, après attaque hydrothermale, est préjudiciable à la performance au broyage des billes frittées.
Une comparaison de l’exemple 1 hors invention, et de l’exemple 2 selon l’invention comportant 79,2% d’une poudre de zircone cubique dans le mélange particulaire, montre que l’exemple 2 présente une usure planétaire sensiblement identique à celle de l’exemple 1 de référence, mais que la zircone stabilisée de l’exemple 2 n’est sensiblement pas transformée en zircone monoclinique lors de l’attaque hydrothermale, contrairement à l’exemple 1 hors invention dont 12,8% de la zircone stabilisée sous forme quadratique s’est transformée en zircone monoclinique lors de l’attaque hydrothermale. Une comparaison de l’exemple 1 hors invention, et de l’exemple 3 selon l’invention comportant 60% d’une poudre de zircone cubique dans le mélange particulaire, montre que l’exemple 3 présente une usure planétaire sensiblement identique à celle de l’exemple 1 de référence, mais que la zircone stabilisée de l’exemple 3 n’est sensiblement pas transformée en zircone monoclinique lors de l’attaque hydrothermale, contrairement à l’exemple 1 hors invention dont 12,8% de la zircone stabilisée sous forme quadratique s’est transformée en zircone monoclinique lors de l’attaque hydrothermale.
Les exemples montrent que, de façon surprenante, et contrairement aux connaissances générales de l’homme du métier, les billes selon l’invention testées, fabriquées à partir d’un mélange particulaire comportant de la zircone cubique présentent, par rapport aux billes de référence, une amélioration de la résistance en conditions hydrothermales sans augmentation significative de l’usure planétaire.

Claims

REVENDICATIONS
1. Bille frittée présentant :
- la composition cristallographique suivante, en pourcentages en masse sur la base de la masse totale des phases cristallisées et pour un total de 100% :
- zircon < 25% ;
- 50% £ zircone cubique + zircone quadratique £ 95%, le taux de zircone cubique étant supérieur à 50%, le taux de zircone cubique étant le rapport massique (zircone cubique / (zircone cubique + zircone quadratique)) ;
- 0 £ zircone monoclinique £ (10 - 0,2*zircone quadratique)% ;
- 5% £ corindon £ 50% ;
- phases cristallisées autres que zircon, zircone cubique, zircone quadratique, zircone monoclinique et corindon < 10% ;
- la composition chimique suivante, en pourcentages en masse sur la base des oxydes : 34% £ ZrC>2 + HfC>2, ZrC>2 + HfC>2 étant le complément à 100% ;
Hf02 < 4,0% ;
0,5% £ Si02 < 14, 1 % ;
4,5% £ Al203 < 49,6% ;
2,75% £ Y203 < 22,8% ;
MgO £ 5% ;
CaO £ 2% ;
oxydes autres que ZrC>2, HfC>2, S1O2, AI2O3, MgO, CaO et Y2O3 < 5,0%.
2. Bille frittée selon la revendication précédente dans laquelle, en pourcentages en masse sur la base de la masse totale des phases cristallisées, la teneur en zircon est inférieure à 24% et/ou la teneur totale en (zircone cubique + zircone quadratique) est inférieure à 90% et/ou le taux de zircone cubique est supérieur à 60% et/ou la teneur en zircone monoclinique est inférieure à 8% et/ou la teneur en corindon est supérieure à 8% et/ou la teneur en phases cristallisées autres que zircon, zircone cubique, zircone quadratique, zircone monoclinique et corindon est inférieure à 8%.
3. Bille frittée selon l’une quelconque des revendications précédentes, dans laquelle, en pourcentage en masse sur la base de la masse totale des phases cristallisées, la teneur en zircone monoclinique est sensiblement nulle et/ou la teneur en corindon est inférieure à 45%.
4. Bille frittée selon la revendication précédente, dans laquelle en pourcentage en masse sur la base de la masse totale des phases cristallisées, la teneur en corindon est inférieure à 35%.
5. Bille frittée selon l’une quelconque des revendications précédentes, dans laquelle en pourcentages en masse sur la base des oxydes, Zr02+HfC>2 > 37,0% et/ou S1O2 > 1 ,0% et/ou AI2O3 > 7,0% et/ou Y2O3 > 2,8% et/ou MgO > 0,1 % et/ou CaO > 0,1%.
6. Bille frittée selon l’une quelconque des revendications précédentes, dans laquelle en pourcentages en masse sur la base des oxydes,
Zr02+HfC>2 > 44,6% et/ou S1O2 > 2,0% et/ou AI2O3 > 10,5% et/ou Y2O3 > 3,6% et/ou MgO > 0,15% et/ou CaO > 0,2%.
7. Bille frittée selon l’une quelconque des revendications précédentes, dans laquelle en pourcentages en masse sur la base des oxydes,
Zr02+Hf02 < 85,0% et/ou Hf02 < 3,0% et/ou Si02 < 13,6% et/ou AI2O3 < 45,0% et/ou Y203
< 21 ,6% et/ou MgO < 4,0% et/ou CaO < 1 ,5% et/ou la teneur en oxydes autres que ZrÜ2, Hf02, S1O2, AI2O3, Y2O3, CaO et MgO est inférieure à 4,0%.
8. Bille frittée selon la revendication immédiatement précédente, dans laquelle en pourcentages en masse sur la base des oxydes,
Zr02+Hf02 < 75,0% et/ou Hf02 < 2,0% et/ou Si02 < 12,0% et/ou AI2O3 < 34,9% et/ou Y203
< 18,0% et/ou MgO < 2,0% et/ou CaO < 1 ,0% et/ou la teneur en oxydes autres que ZrÜ2, Hf02, S1O2, AI2O3, Y2O3, CaO et MgO est inférieure à 2,0%.
9. Bille frittée selon l’une quelconque des revendications précédentes, dans laquelle en pourcentages en masse sur la base de la masse totale des phases cristallisées,
- la teneur en zircon est supérieure ou égale à 10% et inférieure à 25% ; et
- la teneur en zircone stabilisée est supérieure à 50% et inférieure à 80%, le taux de zircone cubique étant supérieur à 50% ; et
- la teneur en zircone monoclinique est inférieure à 5% ; et
- la teneur en corindon est supérieure à 10% et inférieure à 35% ; et
- la teneur totale en phases cristallisées autres que zircon, zircone stabilisée, zircone monoclinique et corindon est inférieure à 6% ; et
en pourcentages en masse sur la base des oxydes,
80,2% > Zr02+Hf02 > 43,5% ; et
Hf02 < 4,0% ; et
13,6% > Si02 > 4,5% ; et 34,9% > AI2O3 > 10,5% ; et
19,2% > Y2O3 > 2,8% ; et
4,0% > MgO > 0,1 % ; et
1 ,5% > CaO > 0,1% ; et
la teneur en oxydes autres que ZrC>2, HfC>2, S1O2, AI2O3, Y2O3, CaO et MgO est inférieure à 4,0%.
10. Bille frittée selon la revendication précédente, dans laquelle en pourcentages en masse sur la base de la masse totale des phases cristallisées,
- la teneur en zircon est supérieure ou égale à 15% et inférieure à 20% ; et
- la teneur en zircone stabilisée est inférieure à 70%, le taux de zircone cubique étant supérieur à 70% ; et
- la teneur en zircone monoclinique est sensiblement nulle ; et
- la teneur en corindon est supérieure à 15% et inférieure à 30% ; et
en pourcentages en masse sur la base des oxydes,
72,0% > Zr02+Hf02 > 57,0 % ; et
Hf02 < 3,0% ; et
11 ,0% > Si02 > 7,5% ; et
20,0% > AI2O3 > 12,0% ; et
13,0% > Y2O3 > 4,5% ; et
2,0% > MgO > 0,15% ; et
1 ,0% > CaO > 0,3% ; et
la teneur en oxydes autres que ZrC>2, Hf02, S1O2, AI2O3, Y2O3, CaO et MgO est inférieure à 2,0%.
11. Bille frittée selon l’une quelconque des revendications 1 à 9, dans laquelle en pourcentages en masse sur la base de la masse totale des phases cristallisées,
- la teneur en zircon est inférieure à 4% ; et
- la teneur en zircone stabilisée est supérieure à 50% et inférieure à 90%, le taux de zircone cubique étant supérieur à 50% ; et
- la teneur en zircone monoclinique est inférieure à 5% ; et
- la teneur en corindon est supérieure à 10% et inférieure à 35% ; et
- la teneur totale en phases cristallisées autres que zircon, zircone stabilisée, zircone monoclinique et corindon est inférieure à 6% ; et
en pourcentages en masse sur la base des oxydes,
82,9% > Zr02+Hf02 > 44,6% ; et
Hf02 < 4,0% ; et 6,1 % > Si02 > 1 ,0% ; et
34,9% > AI2O3 > 10,5% ; et
21 ,6% > Y2O3 > 3,6% ; et
4,0% > MgO > 0,1 % ; et
1 ,5% > CaO > 0,1% ; et
la teneur en oxydes autres que Zr02, Hί02, S1O2, AI2O3, Y2O3, CaO et MgO est inférieure à 4,0%.
12. Bille frittée selon la revendication précédente, dans laquelle en pourcentages en masse sur la base de la masse totale des phases cristallisées,
- la teneur en zircon est sensiblement nulle ; et
- la teneur en zircone stabilisée est supérieure à 60% et inférieure à 85%, le taux de zircone cubique étant supérieur à 70% ; et
- la teneur en zircone monoclinique est sensiblement nulle ; et
- la teneur en corindon est supérieure à 15% et inférieure à 30% ; et
en pourcentages en masse sur la base des oxydes,
70% > Zr02+Hf02 > 53,0% ; et
Hf02 < 3,0% ; et
5,0% > Si02 > 2,5% ; et
30,0% > AI2O3 > 20,0% ; et
14,0% > Y2O3 > 5,5% ; et
2,0% > MgO > 0,15% ; et
1 ,0% > CaO > 0,3% ; et
la teneur en oxydes autres que Zr02, Hί02, S1O2, AI2O3, Y2O3, CaO et MgO est inférieure à 2,0%.
13. Poudre comprenant plus de 90% en pourcentages en masse, de billes selon l’une quelconque des revendications précédentes.
14. Dispositif choisi parmi une suspension, un broyeur, un appareil de traitement de surfaces et un échangeur thermique, ledit dispositif comportant une poudre de billes selon la revendication immédiatement précédente.
15. Procédé de fabrication de billes frittées selon l’une quelconque des revendications 1 à 12, comprenant les étapes successives suivantes :
a) préparation d’un mélange particulaire présentant une taille médiane inférieure à 0,6 pm et une composition adaptée pour obtenir, à l’issue de l’étape g), des billes frittées selon l’une quelconque des revendications 1 à 12, le mélange particulaire comportant plus de 0,5% en masse de particules en un verre contenant S1O2, et/ou de particules de silice, et/ou de particules en une vitrocéramique contenant S1O2 et/ou de particules en un composé comportant MgO et S1O2, et/ou de particules équivalentes à ces particules, b) optionnellement, séchage dudit mélange particulaire,
c) préparation d’une charge de départ à partir dudit mélange particulaire, optionnellement séché,
d) mise en forme de la charge de départ sous la forme de billes crues,
e) optionnellement, lavage,
f) optionnellement, séchage,
g) frittage à une température de frittage supérieure à 1330°C et inférieure à 1450°C de manière à obtenir des billes frittées.
16. Procédé de fabrication selon la revendication précédente, dans lequel à l’étape a), une ou plusieurs poudres de matières premières introduites dans ledit mélange particulaire sont broyées, de préférence cobroyées.
17. Procédé de fabrication selon l’une quelconque des deux revendications immédiatement précédentes, dans lequel à l’étape a), le mélange particulaire comporte une poudre de zircone stabilisée, en une quantité massique, sur la base du mélange particulaire, supérieure à 45% et inférieure à 88%, plus de 50% en masse de ladite poudre de zircone stabilisée étant sous la forme cubique, ladite zircone stabilisée étant au moins en partie, de préférence totalement stabilisée au moyen d’Y2C>3.
18. Procédé de fabrication selon l’une quelconque des trois revendications immédiatement précédentes, dans lequel à l’étape a), le mélange particulaire comporte, en pourcentages massiques sur la base du mélange particulaire :
- une poudre de zircon en une quantité supérieure à 9,1% et inférieure à 24,5% ; et
- une poudre de zircone stabilisée à Y2O3 en une quantité supérieure à 45% et inférieure à 78,4%, plus de 50% des particules de zircone stabilisée étant sous la forme cubique, en pourcentage en masse sur la base des particules de zircone stabilisée ; et
- une poudre de corindon dans une quantité supérieure à 9,1% et inférieure à 34,3% ; et
- une poudre de silice en une quantité supérieure à 0,5% et inférieure à 6% ; et
- une poudre de cordiérite en une quantité supérieure à 0,5% et inférieure à 8% ; et
- une poudre d’argile en une quantité supérieure à 0,5% et inférieure à 5%.
19. Procédé de fabrication selon l’une quelconque des revendications 15 à 17, dans lequel à l’étape a), le mélange particulaire comporte, en pourcentages massiques sur la base du mélange particulaire : - une poudre de zircone stabilisée à Y2O3 en une quantité supérieure à 45% et inférieure à 88%, plus de 50% des particules de zircone stabilisée étant sous la forme cubique, en pourcentage en masse sur la base des particules de zircone stabilisée ; et
- une poudre de corindon dans une quantité supérieure à 9,1% et inférieure à 34,3% ; et - une poudre de silice en une quantité supérieure à 0,5% et inférieure à 6% ; et
- une poudre de cordiérite en une quantité supérieure à 0,5% et inférieure à 8% ; et
- une poudre d’argile en une quantité supérieure à 0,5% et inférieure à 5%.
20. Procédé de fabrication selon l’une quelconque des cinq revendications immédiatement précédentes, dans lequel une ou plusieurs des poudres du mélange particulaire sont remplacées, au moins partiellement, par des poudres équivalentes qui conduisent, dans lesdites billes, aux mêmes constituants, dans les mêmes quantités, avec les mêmes phases cristallographiques.
PCT/EP2020/051178 2019-01-18 2020-01-17 Billes frittees d'alumine-zircone WO2020148446A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/423,431 US20220153650A1 (en) 2019-01-18 2020-01-17 Sintered alumina-zirconia balls
EP20701934.0A EP3911617A1 (fr) 2019-01-18 2020-01-17 Billes frittees d'alumine-zircone
CN202080022898.6A CN113614050A (zh) 2019-01-18 2020-01-17 烧结的氧化铝-氧化锆球
KR1020217025590A KR20210113664A (ko) 2019-01-18 2020-01-17 소결 알루미나-지르코니아 볼

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1900449A FR3091866B1 (fr) 2019-01-18 2019-01-18 Billes frittees d’alumine-zircone
FR1900449 2019-01-18

Publications (1)

Publication Number Publication Date
WO2020148446A1 true WO2020148446A1 (fr) 2020-07-23

Family

ID=67107653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/051178 WO2020148446A1 (fr) 2019-01-18 2020-01-17 Billes frittees d'alumine-zircone

Country Status (6)

Country Link
US (1) US20220153650A1 (fr)
EP (1) EP3911617A1 (fr)
KR (1) KR20210113664A (fr)
CN (1) CN113614050A (fr)
FR (1) FR3091866B1 (fr)
WO (1) WO2020148446A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116669856A (zh) * 2020-12-22 2023-08-29 法商圣高拜欧洲实验及研究中心 磁性球

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929457A (zh) * 2021-11-11 2022-01-14 长裕控股集团有限公司 氧化锆粉体及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6905993B2 (en) 2001-10-18 2005-06-14 Nikkato Corporation Zirconia based sintered body excellent in durability and wear resistant parts using the same
FR2882749A1 (fr) * 2005-03-01 2006-09-08 Saint Gobain Ct Recherches Bille frittee a base de zircone et d'oxyde de cerium
WO2015055950A1 (fr) * 2013-10-17 2015-04-23 Saint-Gobain Centre De Recherches Et D'etudes Europeen Mélange particulaire pour l'obtention d'un produit en zircone yttriee
WO2016008967A1 (fr) * 2014-07-16 2016-01-21 Magotteaux International S.A. Grains de céramique et leur procédé de fabrication

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2910467B1 (fr) * 2006-12-21 2010-02-05 Saint Gobain Ct Recherches Produit fritte dope a base de zircon et de zircone
DE102013106372B4 (de) * 2013-06-19 2018-08-23 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Schleifkörner auf Basis von eutektischem Zirkonkorund
US10479730B2 (en) * 2015-10-19 2019-11-19 Saint-Gobain Centre De Recherches Et D'etudes Europeen Fused spinel-zirconia grains and refractory product obtained from said grains

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6905993B2 (en) 2001-10-18 2005-06-14 Nikkato Corporation Zirconia based sintered body excellent in durability and wear resistant parts using the same
FR2882749A1 (fr) * 2005-03-01 2006-09-08 Saint Gobain Ct Recherches Bille frittee a base de zircone et d'oxyde de cerium
WO2015055950A1 (fr) * 2013-10-17 2015-04-23 Saint-Gobain Centre De Recherches Et D'etudes Europeen Mélange particulaire pour l'obtention d'un produit en zircone yttriee
WO2016008967A1 (fr) * 2014-07-16 2016-01-21 Magotteaux International S.A. Grains de céramique et leur procédé de fabrication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIN GUO ET AL: "Hydrothermal degradation of cubic zirconia", ACTA MATERIALIA., vol. 51, no. 17, October 2003 (2003-10-01), GB, pages 5123 - 5130, XP055630531, ISSN: 1359-6454, DOI: 10.1016/S1359-6454(03)00362-8 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116669856A (zh) * 2020-12-22 2023-08-29 法商圣高拜欧洲实验及研究中心 磁性球

Also Published As

Publication number Publication date
EP3911617A1 (fr) 2021-11-24
KR20210113664A (ko) 2021-09-16
FR3091866A1 (fr) 2020-07-24
FR3091866B1 (fr) 2021-01-22
US20220153650A1 (en) 2022-05-19
CN113614050A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
CA2763679C (fr) Produit fritte a base d&#39;alumine et de zircone
EP2879800B1 (fr) Particule frittee a base d&#39;alumine
EP2603466B1 (fr) Poudre a base d&#39;oxyde de chrome
EP1853532B1 (fr) Bille frittee à base de zircone et d&#39;oxyde de cerium
WO2013011436A1 (fr) Particule frittée à base de zircon
EP3655376B1 (fr) Billes frittees de zircon
WO2020148446A1 (fr) Billes frittees d&#39;alumine-zircone
WO2009081074A2 (fr) Produit en matiere ceramique fondue, procede de fabrication et utilisations
WO2023052303A1 (fr) Billes frittees de zircone
EP2675578A1 (fr) Procede de fabrication de grains refractaires contenant de l&#39;oxyde de chrome 3
EP4126791B1 (fr) Billes frittees de zircone
CA2270582C (fr) Fabrication d&#39;alumine calcinee a taille de cristallite reglee a la demande avec une faible dispersion
FR2978143A1 (fr) Particule frittee a base de zircon.
WO2022136176A1 (fr) Bille magnetique
EP3365109B1 (fr) Bille en un produit fondu
FR2966824A1 (fr) Particule en matiere ceramique fondue.
FR2963786A1 (fr) Produit refractaire a base d&#39;oxyde de chrome.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20701934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217025590

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020701934

Country of ref document: EP

Effective date: 20210818