WO2020145669A1 - 항 베타 1 인테그린 인간화 항체 및 이를 포함하는 암치료용 약학 조성물 - Google Patents

항 베타 1 인테그린 인간화 항체 및 이를 포함하는 암치료용 약학 조성물 Download PDF

Info

Publication number
WO2020145669A1
WO2020145669A1 PCT/KR2020/000353 KR2020000353W WO2020145669A1 WO 2020145669 A1 WO2020145669 A1 WO 2020145669A1 KR 2020000353 W KR2020000353 W KR 2020000353W WO 2020145669 A1 WO2020145669 A1 WO 2020145669A1
Authority
WO
WIPO (PCT)
Prior art keywords
monoclonal antibody
integrin
beta
fragment
cancer
Prior art date
Application number
PCT/KR2020/000353
Other languages
English (en)
French (fr)
Inventor
이지철
박종찬
민성원
권형선
Original Assignee
에스지메디칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200002048A external-priority patent/KR102423686B1/ko
Application filed by 에스지메디칼 주식회사 filed Critical 에스지메디칼 주식회사
Priority to US17/422,265 priority Critical patent/US20220372132A1/en
Priority to EP20737982.7A priority patent/EP3909981A4/en
Priority to JP2021540155A priority patent/JP7222104B2/ja
Priority to CN202080008501.8A priority patent/CN113330035A/zh
Publication of WO2020145669A1 publication Critical patent/WO2020145669A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2839Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the integrin superfamily
    • C07K16/2842Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the integrin superfamily against integrin beta1-subunit-containing molecules, e.g. CD29, CD49
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/77Internalization into the cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70546Integrin superfamily, e.g. VLAs, leuCAM, GPIIb/GPIIIa, LPAM
    • G01N2333/7055Integrin beta1-subunit-containing molecules, e.g. CD29, CD49
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Definitions

  • the present invention relates to an antibody that specifically binds to beta 1 integrin, which delivers a biochemical signal related to the growth, differentiation, invasion and metastasis of cancer cells, and more specifically, the antibody of the present invention has a beta 1 integrin signaling function. It can be used for diagnosis and treatment of various cancers (eg, non-small cell lung cancer) overexpressing beta 1 integrin by inhibiting.
  • various cancers eg, non-small cell lung cancer
  • NSCLC non-small cell lung cancer
  • NSCLC is a very heterogenous cancer type, it has very low reactivity to anticancer drugs, and is a carcinoma that still has a need for therapeutic treatment.
  • platinum-based cytotoxic drugs were used as the doublet therapy until the early 2000s. It is a combination of cisplatin, paclitaxel, gemcitabine, and docetaxel, or a combination of carboplatin and paclitaxel. This treatment method was not effective because it was accompanied by systemic side effects and drug resistance.
  • EGFR tyrosine kinase inhibitor such as erlotinib, gefitinib, and afatinib
  • TKI EGFR tyrosine kinase inhibitor
  • cetuximab (EGFR target), bevacizumab (VEGF target), and Ado-trastuzumab (HER2)
  • EGFR target cetuximab
  • VEGF target bevacizumab
  • HER2 Ado-trastuzumab
  • an immunocancer drug targeting 1 or PD-L1 its reactivity reaches about 20-30%, so there is still a need for new therapeutics.
  • EGFR TKI In the case of EGFR TKI, a high response rate of about 70% was observed for the EGFR variant patient group, but drug resistance occurs in almost one year. causess include resistant mutations, alternative splicing, gene amplification, and activation of by-pathway. That is, EGFR TKI causes drug resistance in such a way that new mutations such as EGFR T790M or abnormalities in various signal transduction systems such as HER2 or MET amplification occur.
  • Beta 1 integrin has been known as a substance that transmits biochemical signals related to the extracellular environment, particularly growth, differentiation, invasion and metastatic potential of malignant cells (Juliano RL. The role of beta 1 integrins in tumors [J]. Semin Cancer Biol , 1993;4(5):277-283.). However, abnormal expression of beta 1 integrin affects tumor suppression and progression, and an increase in beta 1 integrin is known to promote tumor cell survival and confer resistance to chemotherapy in several tumor cell types (Hodkinson PS, Elliott) T, Wong WS, et al.
  • ECM overrides DNA damage-induced cell cycle arrest and apoptosis in small-cell lung cancer cells through beta1 integrin-dependent activation of PI3-kinase[J] .Cell Death Differ , 2006;13(10) : 1776-1788 .; Aoudjit F, Vuori K. Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells [J] Oncogene, 2001; 20 (36):.
  • Beta 1 integrin silenced cells have been reported to have increased sensitivity to platin-based cisplatin and EGFR TKI drugs gefitinib (Morello V, Cabodi S, Sigismund S, Camacho-Leal MP, Repetto D, Volante M, Papotti M, Turco E, Defilippi P. ⁇ 1 integrin controls EGFR signaling and tumorigenic properties of lung cancer cells.Oncogene 2011;30:4087-4096.).
  • the present inventors have made great efforts to discover new antibodies that maximize the cancer apoptosis ability by specifically binding to beta 1 integrin.
  • the present invention was completed by confirming that anti-cancer activity can be maximized by substituting and optimizing some amino acid sequences of the P5 antibody with other amino acid sequences.
  • an object of the present invention is to provide a monoclonal antibody or fragment thereof that specifically binds to beta 1 integrin as an antigen.
  • Another object of the present invention is to provide a multispecific antibody (antibody-drug conjugate, ADC) comprising the monoclonal antibody or a fragment thereof.
  • ADC antibody-drug conjugate
  • Another object of the present invention is to provide a nucleic acid molecule encoding the monoclonal antibody or fragment thereof.
  • Another object of the present invention is to provide a vector containing the nucleic acid molecule.
  • Another object of the present invention is to provide a host cell comprising the vector.
  • Another object of the present invention is to provide a composition comprising the monoclonal antibody, nucleic acid molecule or vector.
  • Another object of the present invention is to provide a method for quantifying beta 1 integrin contained in a sample, comprising the step of treating the monoclonal antibody or fragment thereof.
  • Another object of the present invention is to provide a beta 1 integrin quantification kit comprising the monoclonal antibody or fragment thereof.
  • Another object of the present invention is to provide a method for providing information for diagnosing a disease by overexpression of beta 1 integrin.
  • the present invention provides a monoclonal antibody or fragment thereof that recognizes beta 1 integrin as an antigen and specifically binds it.
  • the present inventors made a great effort to discover new antibodies that specifically inhibit beta 1 integrin and inhibit the signal transduction process. As a result, some amino acid sequences of existing antibodies were replaced with other amino acid sequences to optimize the anti-cancer activity. Antibodies were excavated.
  • Beta 1 integrins are known to deliver biochemical signals related to the extracellular environment, particularly growth, differentiation, invasion and metastatic potential of malignant cells, and beta 1 integrin abnormal expression affects tumor suppression and progression.
  • an increase in beta 1 integrin is known to promote tumor cell survival and confer resistance to chemotherapy in several tumor cell types (Hodkinson PS, Elliott T, Wong WS, et al. ECM overrides DNA damage-induced cell cycle arrest and apoptosis in small-cell lung cancer cells through beta1 integrin-dependent activation of PI3-kinase[J].Cell Death Differ , 2006;13(10):1776-1788.; Aoudjit F, Vuori K.
  • Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells [J] Oncogene, 2001; 20 (36):.. 4995-5004 .; Morozevich GE, Kozlova NI, Preobrazhenskaya ME, et al The role of beta1 integrin subfamily in anchorage-dependent apoptosis of breast carcinoma cells differing in multidrug resistance [J] .Biochemistry (Mosc) , 2006;71(5):489-495).
  • the term “antibody” can be any type of antibody of an immunoglobulin molecule (eg, IgG, IgE, IgM, IgD, IgA, or IgY), and any subtype of antibody (eg, human For IgG1, IgG2, IgG3, and IgG4; and for mice, IgG1, IgG2a, IgG2b, and IgG3).
  • Immunoglobulins eg, IgG1 can have a variety of allotypes, and the term “antibody” herein includes commonly known isotypes and allotypes.
  • the term “antibody” in this specification may be IgG1, IgG2, IgG3, or IgG4, or may be a hybrid type thereof (for example, hybrid of IgG2 and IgG4).
  • the term “monoclonal antibody” or “monoclonal antibody” refers to an antibody that exhibits single binding specificity and affinity for a specific epitope.
  • the monoclonal antibody is used in a sense including a fragment thereof, and the fragment preferably means an antigen binding fragment.
  • the fragments can be prepared using various methods known in the art. For example, Fab and F(ab')2 fragments through proteolytic cleavage of immunoglobulin molecules using enzymes such as papain (production of Fab fragments) or pepsin (F(ab')2) Can be produced.
  • fragment may be Fab, Fab', F(ab')2, Fv, scFv (single-chain antibody, single-chain variable fragment), or sdAb comprising the VH or VL domain of a monomer, , These fragments are well known in the art.
  • the monoclonal antibody or fragment thereof is a single-chain variable fragment (scFv).
  • the monoclonal antibody or fragment thereof of the present invention is preferably a heavy chain variable region (VH) of the third sequence of SEQ ID NO: and/or a light chain variable region (VL) of the fourth sequence of SEQ ID NO: It may include.
  • the VH domain, or one or more CDRs can be linked to a constant domain to form a heavy chain.
  • the VL domain, or one or more CDRs can be linked to a constant domain to form a light chain.
  • the full-length heavy chain and the full-length light chain combine to form a full-length antibody.
  • the present invention provides a multispecific antibody or an antibody-drug conjugate (ADC) comprising the monoclonal antibody or fragment thereof.
  • ADC antibody-drug conjugate
  • a multispecific antibody refers to an antibody or fragment thereof targeting two or more antigens, including bispecific antibodies and trispecific antibodies.
  • a bispecific antibody comprises of two arms of an antibody, one arm comprising an antibody against the beta 1 integrin according to the invention (beta 1 integrin) or an antigen binding fragment thereof, the rest Another arm refers to a form containing an antigen other than beta 1 integrin.
  • Antibody-drug conjugate refers to a combination of the antibody or a fragment thereof and a drug, and the drug must be stably bound to the antibody before delivery to the target cell, and after delivery to the target The drug should be free from antibodies.
  • the antibody or fragment thereof and a drug are bound to each other (eg, covalent bond, peptide bond, etc.) to be used in the form of a conjugate or a fusion protein (when the drug is a protein).
  • the present invention provides a nucleic acid molecule encoding the monoclonal antibody or fragment thereof, a vector containing the nucleic acid molecule, or a host cell comprising the vector.
  • the nucleic acid molecule of the present invention may be isolated or recombined, and includes DNA and RNA in single and double chain forms as well as corresponding complementary sequences.
  • An “isolated nucleic acid” is a nucleic acid isolated from a surrounding genetic sequence present in the genome of an isolated individual, in the case of a nucleic acid isolated from a naturally occurring source.
  • nucleic acids synthesized enzymatically or chemically from a template such as PCR products, cDNA molecules, or oligonucleotides
  • nucleic acids generated from such procedures can be understood as isolated nucleic acid molecules.
  • An isolated nucleic acid molecule refers to a nucleic acid molecule as a separate fragment or as a component of a larger nucleic acid construct.
  • a nucleic acid is "operably linked" when placed in a functional relationship with another nucleic acid sequence.
  • the DNA of the entire sequence or secretory leader is operably linked to the DNA of the polypeptide when expressed as a preprotein, which is the form before the polypeptide is secreted
  • the promoter or enhancer is a polypeptide sequence When it affects the transcription of operably linked to the coding sequence, or the ribosome binding site is operably linked to the coding sequence when placed to facilitate translation.
  • operably linked means that the DNA sequences to be linked are contiguous and, in the case of a secretory leader, contiguous and in the same reading frame. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction enzyme sites. If such sites are not present, synthetic oligonucleotide adapters or linkers are used according to conventional methods.
  • vector refers to a carrier capable of inserting a nucleic acid sequence for introduction into a cell capable of replicating the nucleic acid sequence.
  • the nucleic acid sequence can be exogenous or heterologous.
  • examples of vectors include, but are not limited to, plasmids, cosmids, and viruses (eg, bacteriophage).
  • viruses eg, bacteriophage.
  • Those skilled in the art can construct vectors by standard recombinant techniques (Maniatis, et al., Molecular Cloning , A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, NY, 1988; and Ausubel et al., In: Current Protocols in Molecular Biology , John, Wiley & Sons, Inc, NY, 1994, etc.).
  • expression vector refers to a vector comprising a nucleic acid sequence encoding at least a portion of a gene product to be transcribed. In some cases, the RNA molecule is then translated into a protein, polypeptide, or peptide.
  • the expression vector may contain various regulatory sequences. In addition to regulatory sequences that regulate transcription and translation, vectors and expression vectors may also contain nucleic acid sequences that provide other functions.
  • host cell refers to any transgenic organism that includes eukaryotes and prokaryotes, capable of replicating the vector or expressing a gene encoded by the vector.
  • the host cell can be transfected or transformed by the vector, which means the process by which exogenous nucleic acid molecules are delivered or introduced into the host cell.
  • the host cell of the present invention is preferably a bacterial cell, yeast, animal or human cell (CHO cell, HeLa cell, HEK293 cell, BHK-21 cell, COS7 cell, COP5 cell, A549 cell, NIH3T3 cell) Etc.), but is not limited thereto.
  • the present invention provides a composition comprising the monoclonal antibody or fragment thereof, the nucleic acid molecule or the vector.
  • the composition of the present invention is a pharmaceutical composition for preventing or treating cancer.
  • composition of the present invention (a) the antibody or fragment thereof, the nucleic acid molecule or a vector comprising the nucleic acid molecule; And (b) a pharmaceutically acceptable carrier.
  • the present invention provides a method for preventing or treating cancer comprising administering the pharmaceutical composition.
  • the type of cancer to be prevented or treated by the present invention is not limited, and preferably, leukemias and acute lymphocytic leukemia, acute nonlymphocytic leukemias, chronic lymphocytic leukemia ), lymphomas, brain tumors, glioblastomas such as chronic myelogenous leukemia, Hodgkin's Disease, non-Hodgkin's lymphomas and multiple myeloma, etc.
  • Solid tumors in children such as (glioblastoma), neuroblastoma, rhabdomyosarcoma, retinoblastoma, Wilms Tumor, bone tumors and soft-tissue sarcomas (childhood solid tumors), lung cancer, breast cancer, prostate cancer, urinary cancers, uterine cancers, oral cancers, pancreatic cancer, Melanoma and other skin cancers, stomach cancer, colon cancer, ovarian cancer, brain tumors, liver cancer, laryngeal cancer , Administered to treat multiple cancers, including common solid tumors in adults, such as thyroid cancer, esophageal cancer and testicular cancer It may be, more preferably beta 1 integrin can be administered for the treatment of cancer by cancer cells overexpressing.
  • the pharmaceutically acceptable carrier included in the pharmaceutical composition of the present invention is commonly used in formulation, lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, Calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, but is not limited thereto It does not work.
  • the pharmaceutical composition of the present invention may further include a lubricant, a wetting agent, a sweetener, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, etc. in addition to the above components.
  • a lubricant e.g., a talc, a kaolin, a kaolin, a kaolin, a kaolin, a kaolin, kaolin, kaolin, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, a talct, a talct, a talct, a stevia, glycerin, a stevia, glycerin, glycerin, g
  • composition of the present invention may be administered orally or parenterally, preferably parenteral administration, for example, intravenous injection, topical injection and intraperitoneal injection.
  • Suitable dosages of the pharmaceutical compositions of the invention vary by factors such as formulation method, mode of administration, patient's age, weight, sex, morbidity, food, time of administration, route of administration, rate of excretion, and response sensitivity, Usually, a skilled physician can easily determine and prescribe a dose effective for the desired treatment or prevention.
  • the daily dosage of the pharmaceutical composition of the present invention is 0.0001-100 mg/kg.
  • the pharmaceutical composition of the present invention is prepared in a unit dose form by formulating using a pharmaceutically acceptable carrier and/or excipient according to a method that can be easily carried out by those skilled in the art to which the present invention pertains. Or it can be manufactured by incorporating into a multi-dose container.
  • the formulation may be in the form of a solution, suspension, or emulsion in an oil or aqueous medium, or may be in the form of ex, powder, granule, tablet, or capsule, and may further include a dispersant or stabilizer.
  • the pharmaceutical composition of the present invention may be used as a single therapy, but may also be used in combination with other conventional cytotoxic chemtherapy or radiotherapy, and more effective treatment of cancer is performed when such a combination therapy is performed. can do.
  • beta 1 integrin is known to cause resistance to cytotoxic chemotherapy in various cancers (Park CC et al. Cancer Res, 2006, 66(3):1526-35), it is resistant to the cytotoxic chemotherapy More significant results can be obtained for the treatment of this cancer.
  • Cytotoxic chemotherapeutic agents that can be used with the compositions of the present invention are gefitinib, erlotinib, afatinib, lapatinib, dacomintinib, canaltinib (canertinib), neratinib, icotinib, fertinib, cisplatin, carboplatin, procarbazine, mechlorethamine, cyclo Phosphamide, ifosfamide, melphalan, chlorambucil, bisulfan, nitrosourea, diactinomycin, daunorubicin (daunorubicin), doxorubicin, bleomycin, plicomycin, mitomycin, etoposide, tamoxifen, taxol, transplatinum (transplatinum), 5-fluorouracil, vincristin, vinblastin and methotrexate.
  • Radiotherapy that can be used with the compositions of the present invention is X-ray irradiation and ⁇ -ray irradiation.
  • the present invention provides a method for quantifying beta 1 integrin contained in a sample, comprising the step of treating a monoclonal antibody or fragment thereof.
  • the present invention provides a beta 1 integrin (beta 1 integrin) quantification kit comprising the monoclonal antibody or fragment thereof.
  • the monoclonal antibody or fragment thereof of the present invention specifically binds to beta 1 integrin, it is possible to accurately measure the amount of beta 1 integrin contained in the sample.
  • the amount of beta 1 integrin can be quantified by analyzing the antigen against the antibody through an antigen-antibody-binding reaction, and the antigen-antibody-binding reaction is a conventional ELISA (Enzyme-linked) immunosorbent assay), RIA (Radioimmnoassay), Sandwich assay, Western blot on polyacrylamide gel, Immunoblot assay, and immunohistochemical staining method It is preferred, but is not limited thereto.
  • a nitrocellulose membrane, a PVDF membrane, a well plate made of polyvinyl resin or polystyrene resin, and a slide glass made of glass are made. What is selected from the group can be used, but is not limited now.
  • the secondary antibody is preferably labeled with a conventional color developing agent that reacts with color development, HOR (Horseradish peroxidase), alkaline phosphatase, colloidal gold, and poly L-lysine-fluorescein isothiocyanate (FITC). ), RITC (Rhodamine-B-isothiocyanate), such as a fluorescent material (Fluorescein) and any one selected from the group consisting of a dye (Dye) can be used. It is preferable to use the substrate that induces color development depending on the labeling agent that reacts with color development.
  • TMB (3,3',5,5'-tetramethyl bezidine), ABTS[2,2'-azino-bis(3-ethylbenzothiazoline -6-sulfonic acid)] and preferably one selected from the group consisting of OPD (ophenylenediamine), but is not limited thereto.
  • OPD ophenylenediamine
  • a method for providing information for diagnosing a disease by overexpression of beta 1 integrin comprising the following steps:
  • the same portion as the description of the quantitative method and/or kit of the present invention will be referred to the portion.
  • beta 1 integrin Modified expression of beta 1 integrin affects tumor suppression and progression, and an increase in beta 1 integrin promotes tumor cell survival and confers resistance to chemotherapy in several tumor cell types (Hodkinson PS, Elliott T, Wong WS, et al. ECM overrides DNA damage-induced cell cycle arrest and apoptosis in small-cell lung cancer cells through beta1 integrin-dependent activation of PI3-kinase[J] .Cell Death Differ , 2006;13(10):1776 -1788 .; Aoudjit F, Vuori K. Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells [J] Oncogene, 2001; 20 (36):.
  • the disease caused by overexpression of the beta 1 integrin is cancer.
  • the present invention provides a monoclonal antibody or fragment thereof that specifically binds to beta 1 integrin as an antigen.
  • the present invention also provides a pharmaceutical composition for preventing or treating cancer comprising the monoclonal antibody or fragment thereof.
  • the monoclonal antibody of the present invention can be effectively used for the prevention or treatment of cancer by inhibiting the proliferation and angiogenesis of cancer cells and effectively inducing apoptosis.
  • Figure 1 shows the amino acid sequence of the heavy chain variable region and the light chain variable region of the GP5 monoclonal antibody of the present invention.
  • FIG. 2 is a result of confirming the purity (FIG. 2A) and homogeneity (FIG. 2B) of the GP5 monoclonal antibody of the present invention.
  • FIG. 3 shows the results of the binding strength of the GP5 monoclonal antibody of the present invention to recombinant human beta 1 integrin (FIG. 3A ), the binding force to recombinant mouse beta 1 integrin (FIG. 3B) and the specificity for beta 1 integrin (FIG. 3C ). to be.
  • FIG. 5 is a result showing the apoptosis capacity of the GP5 monoclonal antibody of the present invention (FIG. 5A), cell growth inhibitory capacity (FIG. 5B), and the signal pathway inhibited by the GP5 monoclonal antibody.
  • FIG. 6 is a result of confirming the induction of internalization of beta 1 integrin on the surface of a cancer cell by the GP5 monoclonal antibody of the present invention (FIG. 6A: 120 minutes; FIG. 6B: confirmation result over time in the A549 cell line).
  • FIG. 7 is a result of improving the reactivity of gefitinib to the level seen in the parent cell PC9 when the GP5 monoclonal antibody of the present invention is used in combination with gefitinib in the gefitinib resistant non-small cell lung cancer cell line PC9GR (FIG. As a result of confirming the expression of beta 1 integrin; Fig. 7b: results showing the degree of apoptosis induced when gefitinib and GP5 monoclonal antibodies are used in combination with PC9 and PC9GR).
  • FIG. 8 is a result showing the anti-cancer activity of the GP5 antibody of the present invention in a mouse model implanted with a non-small cell lung cancer cell line (FIG. 8A: tumor volume comparison; FIG. 8B: tumor size comparison).
  • FIG. 9 is a result of measuring the tumor cell proliferation inhibitory ability (FIG. 9A), the ability to inhibit angiogenesis in the tumor (FIG. 9B) and the ability to induce apoptosis of the tumor (FIG. 9C) of the GP5 antibody of the present invention.
  • the present inventors conducted the following experiment to develop a humanized antibody with increased cancer cell killing ability than P5 (Kim MY et al. J Biomed Res , 2016, 30(3):217-24).
  • mutations were introduced in 4 FRs of heavy chain variable regions (HFR1, HFR2, HFR3, HFR4) and 4 FRs of light chain variable regions (LFR1, LFR2, LFR3, LFR4) in the following manner:
  • HFR1 is IGHV7-4-1*03
  • HFR2 is IGHV4-30-4*06
  • HFR3 is IGHV1-69-2*01
  • HFR4 is IGHJ6*01.
  • the amino acids substituted in this way are I20V, T25S, S30T in IGHV7-4-1*03; R40H, H43K in IGHV4-30-4*06; In IGHV1-69-2*01 K66R, A67V, F69I, S75T, N76D, S79Y, Q81E, T83R, S87T; And S108T in IGHJ6*01.
  • mutations expected to have the best performance were selected.
  • amino acids were substituted using IGKV2-18*01 for LFR1, IGKV2-18*01 for LFR2, IGKV2-28*01 for LFR3, and IGKJ2*01 for LFR4 as follows: In IGKV2-18*01 A8P, V11L, T14N, S18P, V19A; R39K at IGKV2-18*01; No in IGKV2-28*01; L106I in IGKJ2*01. After the alignment of the substituted light chain variable region using IGKV2D-29*02 again, mutations expected to have the best performance were selected.
  • Heavy chain variable region A9S, I20V, T25S, S30T, K66R, S75T, N76D, Q81E.
  • the amino acid residue number of the antibody domain is the Kabat EU numbering system, Kabat et al., “Sequences of Proteins of Immunological Interest”, 5th Ed., US Department of Health and Human Services commonly used in the art. , According to the EU index number as in NIH Publication No. 91-3242, 1991).
  • the humanized heavy chain variable region was bound to the human IgG1 heavy chain constant regions (CH1, CH2, CH3), and the humanized light chain variable region was bound to the human light chain constant region (Ckappa) to finally complete humanization.
  • the humanized antibody was named GP5, the base sequence of which is shown in Table 1, and the contents of the substituted base sequence are shown in FIG. 1.
  • Heavy chain variable region P5 QVQLQQSG A ELMKPGASVK I SCKA T GYTF S NYWIEWIVQRPGHGLEWIGEILPGSVNTNYNAKFKD K ATFTADTS SN TASM Q LSSLTSEDSAVYYCALATPYYALDSWGQGTSVTVSS (SEQ ID NO: 1) GP5 QVQLQQSG S ELMKPGASVK V SCKA S GYTF T NYWIEWIVQRPGHGLEWIGEILPGSVNTNYNAKFKD R ATFTADTS TD TASM E LSSLTSEDSAVYYCALATPYYALDSWGQGTSVTVSS (SEQ ID NO: 3) Light chain variable region P5 DIVMTQAAPS V SVTPGESVSISCRSTESLLHSNGNTYLYW F LQ R PGQSPQLLIYRMSNRASGVPDRFSGSGSGTAFTLKIRRVEAEDVGVYYCMQHLEYPFTFGAGTKLELK (SEQ ID NO: 2)
  • the DNA of the GP5 variable region developed in Example 1 was synthesized in scFv form (Cosmogenetech, Korea) and converted to full antibody (full IgG) by PCR method.
  • scFv form Cosmogenetech, Korea
  • full antibody full IgG
  • PCR method First, fragments of the variable and constant regions of the heavy and light chains from the pUC vector containing scFv (Cosmogenetech, Korea) were obtained through PCR using a combination of V H , C H and V L , C K primers in Table 2 below. .
  • PCR was performed using the combination of HC and LC primers in Table 2 below with the variable and constant regions of the obtained antibody to secure the heavy and light chains of GP5.
  • the heavy chain was treated with EcoR I and Not I (New England Biolab, UK) enzymes and ligated to pCMV vector (Thermo Fisher SCIENTIFIC, USA), a vector for expression of animal cells treated with the same restriction enzyme.
  • the light chain was treated with Xba I (New England Biolab, UK) enzyme and ligated to the pCMV vector with the same restriction enzyme.
  • the ligated plasmid was transformed by applying heat shock to DH5 ⁇ E. coli competent cell (New England Biolab, UK), and after obtaining colonies, mass culturing was performed to obtain a plasmid.
  • the plasmids of the heavy and light chains converted to complete antibodies were transfected into HEK293F cells (Invitrogen, USA) using Polyethylenimine (PEI) (Polysciences, USA) and 150 mM NaCl, and 37°C in a Freestyle 293 expression medium (Invitrogen, USA).
  • the culture was carried out for 7 days under the conditions of temperature, 8% CO2 and 55% Humidity.
  • the expressed cell culture solution was centrifuged at 4,000 rpm for 10 minutes, and the supernatant was taken and filtered through a 0.22 ⁇ m filter. The filtered supernatant was induced to bind to 1 ml of protein A (GenScript, China) resin at 4°C.
  • the bound resin was washed with 10 cv (column volume) PBS solution, eluted with 100 mM glycine-HCl (pH 2.7) solution, and then neutralized with 1 M Tris-HCl (pH 9.0).
  • pH 7.2-7.4 PBS After buffer change with pH 7.2-7.4 PBS, the size and purity of the light and heavy chains of the purified antibody were confirmed through SDS-PAGE, and the results are shown in FIG. 2A.
  • the purified GP5 monoclonal antibody was able to confirm the molecular weight and high purity consistent with the theoretical calculations of the light and heavy chains.
  • SEC Size Exclusion Chromatography
  • the binding ability of the GP5 monoclonal antibody prepared in Example 2 to beta 1 integrin was confirmed by direct ELISA. Since the GP5 monoclonal antibody is a humanized antibody and P5 is a mouse antibody, HRP was labeled for each antibody using Peroxidase Labeling Kit-NH 2 (Dojindo, Japan) for direct binding comparison. Direct ELISA was diluted in 50 ⁇ l PBS with 1 ⁇ g/ml of recombinant human beta 1 integrin (Sino biological, China) and recombinant mouse beta 1 integrin (MyBioSource, USA) and added to a 96-well immune plate (Corning, USA). Stored overnight at 4° C. to adsorb.
  • the GP5 monoclonal antibody developed according to the present invention exhibits excellent binding strength to P5 for recombinant human beta 1 integrin and recombinant mouse beta 1 integrin (FIGS. 3A and B ).
  • the GP5 monoclonal antibody developed according to the present invention specifically bound only to the integrin whose ⁇ chain is beta 1 regardless of the ⁇ chain of the integrin (FIG. 3C).
  • the GP5 monoclonal antibody improved through the above method did not show a decrease in avidity during normal antibody humanization, and exhibited specificity for beta 1 integrin. Therefore, it was possible to expect the performance of various antibodies for the treatment of cancer, including non-small cell lung cancer, such as the parent antibody.
  • the present inventors conducted experiments as follows to confirm the expression of beta 1 integrin in various cancer cell lines including non-small cell lung cancer.
  • 5x10 5 non-small cell lung cancer cell line A549, breast cancer cell line MDA-MB-231 and colorectal cancer cell line HCT116 per sample were suspended in PBS with or without 10 ⁇ g/ml concentration of GP5 monoclonal antibody, and at 4° C. for 1 hour. Cultured. The culture was centrifuged at 3,500 rpm for 5 minutes, washed with 200 ⁇ l of PBS, and centrifuged again for 5 minutes at 3,000 rpm. Goat anti-human IgG antibody, Alexa Fluor 488 (ThermoFisher Scientific, USA) diluted at a ratio of 1:200 using PBS was treated to the cells and incubated for 30 minutes at 4° C. in a shaded state. Fluorescently stained cells were washed with PBS, suspended in 500 ⁇ l of PBS, analyzed using a FACS analysis equipment Attune NxT (ThermoFisher Scientific, USA), and the results are shown in FIG. 4.
  • beta 1 integrin was overexpressed on the cell surface of the non-small cell lung cancer cell line A549, breast cancer cell line MDA-MB-231, and colorectal cancer cell line HCT116 (FIG. 4).
  • the present inventors conducted experiments as follows to investigate whether P5 and the GP5 monoclonal antibody of the present invention can induce apoptosis in various cancer cell lines including beta 1 integrin-expressed non-small cell lung cancer.
  • non-small cell lung cancer cell line A549, breast cancer cell line MDA-MB-231 and colorectal cancer cell line HCT116 per well with RPMI medium (WELGENE, Korea) containing 10% right serum (GIBCO, USA) in a 24-well plate the day before the experiment 5x10 4 pieces were dispensed to 1 ml, and cultured overnight at 37°C 5% CO 2 .
  • the culture was removed and treated with RPMI medium (WELGENE, Korea) to treat P5 and GP5 monoclonal antibodies to 10 or 20 ⁇ g/ml, respectively, and reacted at 37°C 5% CO 2 for 48 hours.
  • Negative controls were filled with fresh RPMI medium (WELGENE, Korea).
  • the cells were washed with PBS, the cells were removed with 0.05% Trypsin-EDTA (Gibco, USA), placed in EP tubes, and washed again with PBS.
  • the GP5 monoclonal antibody of the present invention had superior apoptosis ability compared to P5, and the non-small cell lung cancer cell line A549 showed concentration-dependent apoptosis effect (FIG. 5A).
  • the present inventors conducted experiments as follows to investigate whether the GP5 monoclonal antibody of the present invention can inhibit cell growth in various cancer cell lines including non-small cell lung cancer expressing beta 1 integrin.
  • non-small cell lung cancer cell line A549, breast cancer cell line MDA-MB-231 and colorectal cancer cell line HCT116 per well were tested in RPMI medium (WELGENE, Korea) containing 10% right serum (GIBCO, USA) in a 12-well plate the day before the experiment. Each 1x10 5 was dispensed to 1 ml, and cultured overnight at 37°C 5% CO 2 .
  • the culture was removed and treated with RPMI medium (WELGENE, Korea) to treat GP5 monoclonal antibodies to 10, 20, or 50 ⁇ g/ml, respectively, and reacted at 37°C 5% CO 2 for 48 hours. Negative controls were filled with fresh RPMI medium (WELGENE, Korea).
  • the culture solution was removed, washed with PBS, and treated with 200% of 4% paraformaldehyde (Biosesang, Korea) per well and reacted at 4°C for 10 minutes to fix the cells.
  • the fixed cells were washed with PBS and treated with 0.5% cyrstal violet (Sigma, USA) at 300 ⁇ l per well, and reacted for 30 minutes in an orbital shaker.
  • the GP5 monoclonal antibody of the present invention has excellent cell growth inhibitory ability, and showed concentration-dependent cell growth inhibitory effect in non-small cell lung cancer cell line A549, breast cancer cell line MDA-MB-231, and colorectal cancer cell line HCT116. ( Figure 5b).
  • the present inventors conducted the following experiment to confirm the anticancer mechanism of the GP5 monoclonal antibody.
  • Beta 1 integrin is known to activate the Akt pathway and ERK pathway, which are involved in the survival and growth of cancer cells (Blandin AF, Renner G, Lehmann M, et al. ⁇ 1 integrin as therapeutic targets to disrupt hallmarks of cancer.Front Pharmacol , 2015 ;6:279.), The inhibitory ability of the GP5 monoclonal antibody against the signal pathway induced by beta 1 integrin was confirmed by immunoblot analysis. First, 20 ⁇ g/ml of GP5 monoclonal antibody was obtained for 48 hours of treatment or untreated A549 cell pellet, followed by Lee MS, Lee JC, Choi CY et al.
  • the GP5 monoclonal antibody of the present invention can exhibit apoptosis effect and cell growth inhibitory effect by inhibiting AKT pathway and ERK pathway related to survival and growth of cancer cells activated by beta 1 integrin.
  • the GP5 monoclonal antibody of the present invention has a therapeutic effect against various cancers including non-small cell lung cancer, and the apoptosis effect of the GP5 monoclonal antibody is superior to that of P5, resulting in efficient improvement. It means losing.
  • Non-small cell lung cancer cell line A549, breast cancer cell line MDA-MB-231 and colorectal cancer cell line HCT116 removed from T75 flask (SPL, Korea) treated with 0.05% Trypsin-EDTA (Gibco, USA) in 5 x 10 5 EP tubes. Put and centrifuged for 5 minutes at 3500 rpm, washed with PBS. Then, using PBS, the P5 or GP5 monoclonal antibody was diluted to 10 ⁇ g/ml, and then 100 ⁇ l was treated.
  • the non-small cell lung cancer cell line A549 continued to react at 0, 40, 60, 80, 90, 120, and 150 minutes at 37°C, respectively, and breast cancer cell line MDA-MB-231 and colon cancer cell line HCT116 continued the reaction for 120 minutes.
  • the anti-mouse antibody labeled with FITC (Sigma, USA) was diluted in PBS at a ratio of 1:100 to an EP tube washed with PBS and treated with P5, and treated with 100 ⁇ l of GP5 monoclonal antibody.
  • the FITC-labeled anti-human antibody (Life technologies, USA) was diluted with PBS at a 1:200 ratio and treated with 100 ul.
  • FIG. 6A is a result of reacting the non-small cell lung cancer cell line A549, the breast cancer cell line MDA-MB-231 and the colorectal cancer cell line HCT116 at 37°C for 120 minutes
  • FIG. 6B is the time-phased result of reacting the non-small cell lung cancer cell line A549 at 37°C. Is a graph.
  • beta 1 integrin on the surface of A549, MDA-MB-231 and HCT116 cells treated with GP5 monoclonal antibody was significantly reduced compared to A549, MDA-MB-231 and HCT116 cells treated with P5 (FIG. 6).
  • Beta 1 integrin is known to cause resistance to cytotoxic chemtherapy in a variety of cancers (Park CC et al. Cancer Res, 2006, 66(3):1526-35), so the inventors of gefitinib used for cytotoxic chemotherapy In order to confirm the degree of apoptosis induction when using GP5 monoclonal antibody alone or in combination with gefitinib in a non-small cell lung cancer cell line with resistance, an experiment was conducted as follows.
  • PC9 cell line and PC9GR cell line were respectively dispensed to 1 ml of 1 ⁇ 10 5 cells per well, and cultured overnight at 37° C. and 5% CO 2 conditions.
  • the culture was removed, and the RPMI medium (WELGENE, Korea) was treated with gefitinib (Sigma, USA) and GP5 monoclonal antibodies to 2 or 10 ⁇ g/ml, respectively, and then reacted at 37°C 5% CO 2 for 24 hours.
  • Negative controls were filled with fresh RPMI medium (WELGENE, Korea). After the reaction, the cells were washed with PBS, the cells were removed with 0.05% Trypsin-EDTA (Gibco, USA), placed in EP tubes, and washed again with PBS.
  • GP5 monoclonal antibody of the present invention can suppress resistance to anticancer agents through blocking of beta 1 integrin, which causes anticancer drug resistance.
  • Example 8 Analysis of anticancer activity of GP5 monoclonal antibody in human A549 non-small cell lung cancer xenograft model
  • the present inventors conducted experiments as follows to investigate whether P5 and the GP5 monoclonal antibody of the present invention exhibit anticancer activity in a nude mouse transplanted with a non-small cell lung cancer cell line.
  • the non-small cell lung cancer cell line A549 was inoculated subcutaneously in the flank of a female Balb/c nude mouse (SLC, Japan) at 5 ⁇ 10 6 per head. Mice were weighed twice per week, and tumor volume was calculated using the formula'width X width X length/2'. When the tumor volume reached about 80 mm 3 7 days after the inoculation of cancer cells, mice were randomized at 6 animals per group. Mice were administered twice a week for 5 weeks, intraperitoneally in mice at a dose of PBS (negative control), P5 or GP5 monoclonal antibody 1 mg/kg, cisplatin (Sigma, USA) per group.
  • PBS negative control
  • P5 or GP5 monoclonal antibody 1 mg/kg
  • cisplatin Sigma, USA
  • the GP5 monoclonal antibody of the present invention was confirmed to have excellent anti-cancer activity compared to P5 when administered alone, and also showed excellent anti-cancer activity compared to cisplatin, which is known as a therapeutic agent for non-small cell lung cancer. .
  • the GP5 monoclonal antibody and cisplatin were administered in combination, it was confirmed that the anticancer activity was superior to that when administered alone, and the tumor volume did not increase even after drug administration was stopped. Therefore, it was confirmed that the anti-cancer efficacy of the GP5 monoclonal antibody was higher than that of the P5 and cisplatin alone in both the alone or in combination.
  • TUNEL terminal deoxynucleotidyl transferase dUTP nick-end labeling
  • Ki67 and CD31 expression was highest in the negative control group (Figs. 9A and B), and TUNEL stained cells were hardly observed (Fig. 9C). This means that cancer cell proliferation and neovascular proliferation are actively performed in the negative control group.
  • the expression of Ki67 and CD31 was lower in the GP5 monoclonal antibody alone administration group than in the P5 monoclonal antibody alone administration group (Figs. 9A and B), and more TUNEL stained cells were observed (Fig. 9C). This means that the GP5 monoclonal antibody has a greater effect of inhibiting cancer cell proliferation and angiogenesis and inducing apoptosis than P5.

Abstract

본 발명은 베타 1 인테그린을 항원으로 인식하여 이에 특이적으로 결합하는 단일클론항체 또는 이의 단편에 대한 것이다. 또한, 본 발명은 상기 단일클론항체 또는 이의 단편을 포함하는 암의 예방 또는 치료용 약제학적 조성물에 대한 것이다. 본 발명의 단일클론항체는 암세포의 증식 및 혈관 신생을 억제하고 세포자멸사를 효과적으로 유도하여 암의 예방 또는 치료에 유용하게 사용될 수 있다.

Description

항 베타 1 인테그린 인간화 항체 및 이를 포함하는 암치료용 약학 조성물
본 발명은 암세포의 성장, 분화, 침입 및 전이와 관련된 생화학적 신호를 전달하는 베타 1 인테그린에 특이적으로 결합하는 항체에 관한 것으로서, 보다 상세하게는 본 발명의 항체는 베타 1 인테그린의 신호전달기능을 억제시킴으로써 베타 1 인테그린 과발현되는 다양한 암(예를 들어, 비소세포 폐암)의 진단 및 치료용도로 사용될 수 있다.
2018년 세계 암 발병은 1,800만 건이고 사망은 900만 건으로 추산된다. 남성 5명 중 1명과 여성 6명 중 1명이 생애에 암을 발병할 수 있고, 남성 8명 중 1명과 여성 11명 중 1명이 암으로 사망할 수 있다. 세계적으로 암 진단 후 5년 이내에 생존자 총 수는 4,380만 명으로 추산된다 (Press ReleaseN°263, WHO, Internal Agency for Research on Cancer, 12 September 2018). 폐암은 유방암 및 대장암과 더불어 발병률이 가장 높은 3대 암이다. 2018년 Global cancer statistics에 따르면 전 세계 폐암 발생자는 210만 명, 사망자는 180만 명으로 전체 암 사망자 중 1/5인 18.4%로 예측된다 (World Health Organization Global Health Observatory Geneva 2018 who.int/gho/database/en/. Accessed June 21, 2018).
폐암은 크게 소세포폐암 (small cell lung cancer)과 비소세포성폐암(non-small cell lung cancer; NSCLC)으로 구분한다. NSCLC는 암세포의 크기와 모양에 따라 편평상피세포암 (squamous cell lung cancer), 선암 (adenocarcinoma), 대세포암 (large-cell lung cancer)으로 분류된다. 2018년 국가암정보센타에 따르면 2017년 폐암 전체발생건수 24,235건 중에 암종 (carcinoma)이 86.6%, 육종 (sarcoma)이 0.2%를 차지하였고 암종 중에서는 NSCLC가 78%를 차지하였을 정도로 그 비율이 높다.
NSCLC는 매우 heterogenouse한 암 형태(cancer type)이므로 항암제에 대한 반응성이 매우 낮아 현재에도 치료제 개발에 대한 니즈가 있는 암종이다. 1950년대 이후로 폐암에 대한 유전학적, 조직학적 연구가 있었음에도 불구하고 2000년대 초반 까지는 platinum 기반의 세포독성약물 (cytotoxic drug)의 병용치료 (doublet therapy)를 주로 사용하였다. 이는 cisplatin과 paclitaxel, gemcitabine, docetaxel 중 하나와 복합제 또는 carboplatin과 paclitaxel 복합제를 사용하는 것이다. 이러한 치료방법은 전신적인 부작용과 아울러 약재 내성을 동반하기 때문에 효과적이지 못하였다.
이후로 등장한 약물은 EGFR, RAS, ALK의 유전적 변이체에 대해 특이적으로 작용하는 표적치료제들이다. EGFR 변이체를 갖는 환자군에 대하여는 erlotinib, gefitinib, afatinib 등의 EGFR tyrosine kinase inhibitor (TKI)가 있으나, RAS 변이체에 대해서는 이러한 EGFR TKI에 저항성을 보이는 것으로 알려졌다. ALK 변이체의 경우 역시 EGFR TKI에 저항성을 보이나 Xalkori (crixotinib)이 효과를 보이는 것으로 알려져 있다. 항체 치료제의 경우 기존에 다른 적응증으로 사용되던 cetuximab (EGFR target), bevacizumab (VEGF target), Ado-trastuzumab (HER2) 등이 폐암치료제로 허가를 받았으나 큰 효과를 보지 못하고 있고, 최근에 대두되는 PD-1 또는 PD-L1을 target으로 하는 면역항암제의 경우 그 반응성이 약 20~30%에 이르므로 여전히 새로운 치료제개발의 니즈가 있다.
EGFR TKI의 경우 EGFR 변이체 환자군에 대해 약 70%의 높은 반응율을 보였으나 거의 대부분 1년 이내에 약물 저항성이 발생한다. 그 원인으로는 resistant mutation, alternative splicing, gene amplification, by-pathway의 활성화 등을 들 수 있다. 즉, EGFR TKI에 의해 EGFR T790M 등의 mutation이 새로 발생하거나 HER2 또는 MET amplification 등 다양한 신호 전달체계의 이상이 발생되는 방식으로 약물저항성이 유발된다.
또 하나의 중요한 약물저항성의 원인은 beta 1 integrin 과발현 때문이다. Beta 1 integrin은 세포 외 환경, 특히 성장, 분화, 침입 및 악성 세포의 전이 잠재력과 관련된 생화학적 신호를 전달하는 물질로 알려져 왔다 (Juliano RL. The role of beta 1 integrins in tumors[J]. Semin Cancer Biol, 1993;4(5):277-283.). 그러나 beta 1 integrin의 이상 발현은 종양 억제 및 진행에 영향을 미치며, beta 1 integrin의 증가는 종양 세포의 생존을 촉진하고 여러 종양 세포 유형에서 화학 요법에 내성을 부여하는 것으로 알려졌으며 (Hodkinson PS, Elliott T, Wong WS, et al. ECM overrides DNA damage-induced cell cycle arrest and apoptosis in small-cell lung cancer cells through beta1 integrin-dependent activation of PI3-kinase[J]. Cell Death Differ, 2006;13(10):1776-1788.; Aoudjit F, Vuori K. Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells[J]. Oncogene, 2001;20(36):4995-5004.; Morozevich GE, Kozlova NI, Preobrazhenskaya ME, et al. The role of beta1 integrin subfamily in anchorage-dependent apoptosis of breast carcinoma cells differing in multidrug resistance[J]. Biochemistry (Mosc), 2006;71(5):489-495.), 방사능치료에 대한 저항성과 관련된 물질로 알려졌다 (Park CC, Zhang HJ, Yao ES, Park CJ, Bissell MJ. Beta1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts. Cancer Res, 2008;68(11):4398-405.). 또한, bevacizumab을 사용하는 혈관형성을 억제하는 암치료에 대한 저항과 관련이 있다고 알려졌다 (Carbonell WS, DeLay M, Jahangiri A, Park CC, Aghi MK. β1 integrin targeting potentiates antiangiogenic therapy and inhibits the growth of bevacizumab-resistant glioblastoma. Cancer Res, 2013;73(10):3145-54.). Beta 1 integrin silenced cell의 경우 platin 계열의 cisplatin 및 EGFR TKI 약물인 gefitinib에 대한 민감도가 높아졌다는 보고가 있다 (Morello V, Cabodi S, Sigismund S, Camacho-Leal MP, Repetto D, Volante M, Papotti M, Turco E, Defilippi P. β1 integrin controls EGFR signaling and tumorigenic properties of lung cancer cells. Oncogene 2011;30:4087-4096.).
따라서, 기존 폐암 치료제의 저항성의 해결이라는 의학적 미충족 수요를 해결하기 위하여 그 원인물질을 초기에 무력화시킬 수 있는 새로운 약물의 필요성이 대두되고 있고 그 약물은 기존 약물치료제와 병용으로 사용하는 사용법이 필요한 상황이다.
상기한 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.
본 발명자들은 베타 1 인테그린에 특이적으로 결합하여 암 세포자멸능이 극대화된 신규항체를 발굴하고자 예의 노력을 하였다. 그 결과, P5 항체의 일부 아미노산 서열을 다른 아미노산 서열로 치환하여 최적화함으로써, 항암활성을 극대화할 수 있음을 확인함으로써 본 발명을 완성하였다.
따라서, 본 발명의 목적은 베타 1 인테그린을 항원으로 인식하여 이에 특이적으로 결합하는 단일클론항체 또는 이의 단편을 제공하는데 있다.
본 발명의 다른 목적은 상기 단일클론항체 또는 이의 단편을 포함하는 다중특이 항체(multispecific antibody) 또는 항체-약물 접합체(Antibody-drug conjugate, ADC)를 제공하는데 있다.
본 발명의 또 다른 목적은 상기 단일클론항체 또는 이의 단편을 코딩하는 핵산분자를 제공하는데 있다.
본 발명의 또 다른 목적은 상기 핵산분자를 포함하는 벡터를 제공하는데 있다.
본 발명의 또 다른 목적은 상기 벡터를 포함하는 숙주세포를 제공하는데 있다.
본 발명의 또 다른 목적은 상기 단일클론항체, 핵산분자 또는 벡터를 포함하는 조성물을 제공하는데 있다.
본 발명의 또 다른 목적은 상기 단일클론항체 또는 이의 단편을 처리하는 단계를 포함하는, 샘플 중에 포함된 베타 1 인테그린의 정량 방법을 제공하는데 있다.
본 발명의 또 다른 목적은 상기 단일클론항체 또는 이의 단편을 포함하는 베타 1 인테그린 정량 키트를 제공하는데 있다.
본 발명의 또 다른 목적은 베타 1 인테그린의 과발현에 의한 질환의 진단을 위한 정보를 제공하는 방법을 제공하는데 있다.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
본 발명의 일 양태에 따르면, 본 발명은 베타 1 인테그린(beta 1 integrin)을 항원으로 인식하여 이에 특이적으로 결합하는 단일클론항체 또는 이의 단편을 제공한다.
본 발명자들은 베타 1 인테그린에 특이적으로 결합하여 신호전달과정을 저해하는 신규항체를 발굴하고자 예의 노력을 한 결과, 기존 항체의 일부 아미노산 서열을 다른 아미노산 서열로 치환하여 최적화함으로써 항암활성이 극대화된 신규항체를 발굴하였다.
베타 1 인테그린은 세포 외 환경, 특히 성장, 분화, 침입 및 악성 세포의 전이 잠재력과 관련된 생화학적 신호를 전달하는 물질로 알려져 있으며, 베타 1 인테그린의 이상 발현은 종양 억제 및 진행에 영향을 미친다. 또한, 베타 1 인테그린의 증가는 종양 세포의 생존을 촉진하고 여러 종양 세포 유형에서 화학 요법에 내성을 부여하는 것으로 알려져 있다(Hodkinson PS, Elliott T, Wong WS, et al. ECM overrides DNA damage-induced cell cycle arrest and apoptosis in small-cell lung cancer cells through beta1 integrin-dependent activation of PI3-kinase[J]. Cell Death Differ, 2006;13(10):1776-1788.; Aoudjit F, Vuori K. Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells[J]. Oncogene, 2001;20(36):4995-5004.; Morozevich GE, Kozlova NI, Preobrazhenskaya ME, et al. The role of beta1 integrin subfamily in anchorage-dependent apoptosis of breast carcinoma cells differing in multidrug resistance[J]. Biochemistry (Mosc), 2006;71(5):489-495).
본 명세서에서, 용어 “항체”는 면역글로불린 분자 중 어느 유형의 항체(예를 들어, IgG, IgE, IgM, IgD, IgA, 또는 IgY)일 수 있으며, 어느 하위 유형의 항체(예를 들어, 인간에 있어서 IgG1, IgG2, IgG3, 및 IgG4; 및 마우스에 있어서 IgG1, IgG2a, IgG2b, 및 IgG3)일 수 있다. 면역글로불린(예를 들어, IgG1)은 다양한 알로타입(allotype)이 존재할 수 있으며, 본 명세서에서 용어 “항체”는 일반적으로 알려진 아이소타입(isotype) 및 알로타입(allotype)을 포함한다. 또한, 본 명세서에서 용어 “항체”는 IgG1, IgG2, IgG3, 또는 IgG4 이거나, 이의 하이브리드(hybrid) 유형일 수 있다(예를 들어, IgG2 및 IgG4의 하이브리드).
본 명세서에서 용어 “단일글론항체”또는 “monoclonal antibody”는 특정 에피토프에 대한 단일 결합 특이성(single binding specificity) 및 친화도(affinity)를 나타내는 항체를 의미한다.
본 명세서에서 상기 단일클론항체는 이의 단편을 포함하는 의미로 사용되며, 상기 단편은 바람직하게는 항원 결합 단편(antigen binding fragment)을 의미한다. 상기 단편은 당업계에 알려진 다양한 방법을 이용하여 제조할 수 있다. 예를 들어, 파파인 (Fab 단편의 생산) 또는 펩신(F(ab')2)과 같은 효소를 이용하여 면역글로불린 분자의 단백질분해성 절단(proteolytic cleavage)을 통하여, Fab 및 F(ab')2 단편을 제조할 수 있다.
본 명세서에서, 용어 “단편”은 Fab, Fab', F(ab')2, Fv, scFv(단일사슬항체, single-chain variable fragment), 또는 모노머의 VH 또는 VL 도메인을 포함하는 sdAb일 수 있으며, 상기 단편에 대해서는 당업계에 잘 알려져 있다.
본 발명의 일 실시예에 따르면, 상기 단일클론항체 또는 이의 단편은 단일사슬항체(single-chain variable fragment, scFv)인 것이다.
본 발명의 단일클론항체 또는 이의 단편은 바람직하게는 서열목록 제3서열의 중쇄가변영역(heavy chain variable region, VH) 및/또는 서열목록 제4서열의 경쇄가변영역(light chain variable region, VL)을 포함할 수 있다.
VH 도메인, 또는 하나 또는 그 이상의 CDR은 중쇄(heavy chain)를 형성하기 위하여 불변 도메인에 연결될 수 있다. 또한, VL 도메인, 또는 하나 또는 그 이상의 CDR은 경쇄(light chain)를 형성하기 위하여 불변 도메인에 연결될 수 있다. 전장(full length) 중쇄 및 전장 경쇄가 결합하여 전장 항체를 구성한다.
본 발명의 다른 양태에 따르면, 본 발명은 상기 단일클론항체 또는 이의 단편을 포함하는 다중특이 항체(multispecific antibody) 또는 항체-약물 접합체(Antibody-drug conjugate, ADC)를 제공한다.
다중특이 항체(multispecific antibody)는 이중특이 항체(bispecific antibody) 및 삼중특이 항체(trispecific antibody)를 포함하는 2개 이상의 항원을 표적으로 하는 항체 또는 이의 단편을 의미한다. 예를 들어, 이중특이 항체는 항체의 2개의 암(arm) 중에서, 하나의 암(arm)은 본 발명에 따른 베타 1 인테그린(beta 1 integrin)에 대한 항체 또는 이의 항원 결합 단편을 포함하고, 나머지 다른 암(arm)은 베타 1 인테그린 이외의 다른 항원을 포함하는 형태를 의미한다.
항체-약물 접합체(Antibody-drug conjugate, ADC)는 상기 항체 또는 이의 단편과 약물의 결합체를 의미하며, 타겟 세포로 약물을 전달하기 전까지 약물이 항체에 안정적으로 결합되어 있어야 하고, 타겟으로 전달된 후 약물은 항체로부터 유리되어야 한다. 본 발명에 있어서, 상기 항체 또는 이의 단편과 약물(항암제 등)은 서로 결합(예컨대, 공유결합, 펩타이드 결합 등)되어 접합체(conjugate) 또는 융합 단백질(약물이 단백질인 경우)의 형태로 사용될 수 있다.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 단일클론항체 또는 이의 단편을 코딩하는 핵산분자, 상기 핵산분자를 포함하는 벡터 또는 상기 벡터를 포함하는 숙주세포를 제공한다.
본 발명의 핵산분자는 단리된 것이거나 재조합된 것일 수 있으며, 단일쇄 및 이중쇄 형태의 DNA 및 RNA뿐만 아니라 대응하는 상보성 서열이 포함된다. "단리된 핵산"은 천연 생성 원천에서 단리된 핵산의 경우, 핵산이 단리된 개체의 게놈에 존재하는 주변 유전 서열로부터 분리된 핵산이다. 주형으로부터 효소적으로 또는 화학적으로 합성된 핵산, 예컨대 PCR 산물, cDNA 분자, 또는 올리고뉴클레오타이드의 경우, 이러한 절차로부터 생성된 핵산이 단리된 핵산분자로 이해될 수 있다. 단리된 핵산분자는 별도 단편의 형태 또는 더 큰 핵산 구축물의 성분으로서의 핵산 분자를 나타낸다. 핵산은 다른 핵산 서열과 기능적 관계로 배치될 때 "작동가능하게 연결"된다. 예를 들면, 전서열 또는 분비 리더(leader)의 DNA는 폴리펩타이드가 분비되기 전의 형태인 전단백질(preprotein)로서 발현되는 경우 폴리펩타이드의 DNA에 작동가능하게 연결되고, 프로모터 또는 인핸서는 폴리펩타이드 서열의 전사에 영향을 주는 경우 코딩 서열에 작동가능하게 연결되며, 또는 리보솜 결합 부위는 번역을 촉진하도록 배치될 때 코딩 서열에 작동가능하게 연결된다. 일반적으로 "작동가능하게 연결된"은 연결될 DNA 서열들이 인접하여 위치함을 의미하며, 분비 리더의 경우 인접하여 동일한 리딩 프레임 내에 존재하는 것을 의미한다. 그러나 인핸서는 인접하여 위치할 필요는 없다. 연결은 편리한 제한 효소 부위에서 라이게이션에 의해 달성된다. 이러한 부위가 존재하지 않는 경우, 합성 올리고뉴클레오타이드 어댑터 또는 링커를 통상적인 방법에 따라 사용한다.
본 명세서에서 용어 "벡터"는 핵산 서열을 복제할 수 있는 세포로의 도입을 위해서 핵산 서열을 삽입할 수 있는 전달체를 의미한다. 핵산 서열은 외생 (exogenous) 또는 이종 (heterologous)일 수 있다. 벡터로서는 플라스미드, 코스미드 및 바이러스(예를 들면 박테리오파지)를 들 수 있으나, 이에 제한되지 않는다. 당업자는 표준적인 재조합 기술에 의해 벡터를 구축할 수 있다(Maniatis, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y., 1988; 및 Ausubel et al., In: Current Protocols in Molecular Biology, John, Wiley & Sons, Inc, NY, 1994 등).
본 명세서에서 용어 "발현 벡터"는 전사되는 유전자 산물 중 적어도 일부분을 코딩하는 핵산 서열을 포함한 벡터를 의미한다. 일부의 경우에는 그 후 RNA 분자가 단백질, 폴리펩타이드, 또는 펩타이드로 번역된다. 발현 벡터에는 다양한 조절서열을 포함할 수 있다. 전사 및 번역을 조절하는 조절서열과 함께 벡터 및 발현 벡터에는 또 다른 기능도 제공하는 핵산 서열도 포함될 수 있다.
본 명세서에서 용어 "숙주세포"는 진핵생물 및 원핵생물을 포함하며, 상기 벡터를 복제할 수 있거나 벡터에 의해 코딩되는 유전자를 발현할 수 있는 임의의 형질 전환 가능한 생물을 의미한다. 숙주세포는 상기 벡터에 의해 형질감염(transfected) 또는 형질전환(transformed) 될 수 있으며, 이는 외생의 핵산분자가 숙주세포 내에 전달되거나 도입되는 과정을 의미한다.
본 발명의 숙주세포는 바람직하게는 세균(bacteria)세포, 이스트(yeast), 동물 또는 인간 세포(CHO 세포, HeLa 세포, HEK293 세포, BHK-21 세포, COS7 세포, COP5 세포, A549 세포, NIH3T3 세포 등)을 들 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 단일클론항체 또는 이의 단편, 상기 핵산분자 또는 상기 벡터를 포함하는 조성물을 제공한다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 조성물은 암의 예방 또는 치료용 약제학적 조성물이다.
본 발명의 약제학적 조성물은 (a) 상기 항체 또는 이의 단편, 상기 핵산분자 또는 상기 핵산분자를 포함하는 벡터; 및 (b) 약제학적으로 허용되는 담체를 포함할 수 있다.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 약제학적 조성물을 투여하는 단계를 포함하는 암의 예방 또는 치료방법을 제공한다.
본 발명이 예방 또는 치료하고자 하는 암의 종류는 제한되지 않으며, 바람직하게는 백혈병(leukemias) 및 급성 림프구 백혈병(acute lymphocytic leukemia), 급성 비림프구 백혈병(acute nonlymphocytic leukemias), 만성 림프구 백혈병(chronic lymphocytic leukemia), 만성 골수 백혈병(chronic myelogenous leukemia), 호지킨 병(Hodgkin's Disease), 비호지킨 림프종(non-Hodgkin's lymphomas) 및 다발 골수종(multiple myeloma) 등과 같은 림프종(lymphomas), 뇌종양(brain tumors), 교모세포종(glioblastoma), 신경모세포종(neuroblastoma), 횡문근육종 (Rhabdomyosarcoma), 망막모세포종(retinoblastoma), 윌름즈종양(Wilms Tumor), 골종양(bone tumors) 및 연부조직육종(soft-tissue sarcomas) 등과 같은 소아 고형 종양(childhood solid tumors), 폐암(lung cancer), 유방암(breast cancer), 전립선암(prostate cancer), 요로암(urinary cancers), 자궁암(uterine cancers), 구강암(oral cancers), 췌장암(pancreatic cancer), 흑색종(melanoma) 및 기타 피부암(skin cancers), 위암(stomach cancer), 대장암(colon cancer), 난소암(ovarian cancer), 뇌종양(brain tumors), 간암(liver cancer), 후두암(laryngeal cancer), 갑상선암(thyroid cancer), 식도암(esophageal cancer) 및 고환암(testicular cancer) 등과 같은 성인들의 통상의 고형 종양(common solid tumors)들을 포함하여 다수의 암들을 치료하도록 투여될 수 있으며, 보다 바람직하게는 베타 1 인테그린을 과발현하는 암세포에 의한 암의 치료를 위해 투여될 수 있다.
본 발명의 약제학적 조성물에 포함되는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences (19th ed., 1995)에 상세히 기재되어 있다.
본 발명의 약제학적 조성물은 경구 또는 비경구로 투여할 수 있고, 바람직하게는 비경구 투여이며, 예컨대, 정맥 내 주입, 국소 주입 및 복강 주입 등으로 투여할 수 있다.
본 발명의 약제학적 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하며, 보통으로 숙련된 의사는 소망하는 치료 또는 예방에 효과적인 투여량을 용이하게 결정 및 처방할 수 있다. 본 발명의 바람직한 구현예에 따르면, 본 발명의 약제학적 조성물의 1일 투여량은 0.0001-100 ㎎/㎏이다.
본 발명의 약제학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화 함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.
본 발명의 약제학적 조성물은 단독의 요법으로 이용될 수 있으나, 다른 통상적인 세포독성화학요법(cytotoxic chemtherapy) 또는 방사 요법과 함께 이용될 수도 있으며, 이러한 병행 요법을 실시하는 경우에는 보다 효과적으로 암 치료를 할 수 있다. 특히, 베타 1 인테그린은 다양한 암에서 세포독성화학요법에 대한 내성의 원인이 된다고 알려져 있으므로(Park CC et al. Cancer Res, 2006, 66(3):1526-35), 상기 세포독성화학요법에 내성이 생긴 암의 치료에 보다 유의한 결과를 얻을 수 있다.
본 발명의 조성물과 함께 이용될 수 있는 세포독성화학요법제는 제피티닙 (gefitinib), 엘로티닙(erlotinib), 아파티닙(afatinib), 라파티닙(lapatinib), 다코미티닙(dacomintinib), 카널티닙(canertinib), 네라타닙(neratinib), 이코티닙(icotinib), 페리티닙(Pelitinib), 시스플라틴(cisplatin), 카르보플라틴(carboplatin), 프로카르바진(procarbazine), 메클로레타민(mechlorethamine), 시클로포스파미드(cyclophosphamide), 이포스파미드(ifosfamide), 멜팔란(melphalan), 클로라부실(chlorambucil), 비술판(bisulfan), 니트로소우레아(nitrosourea), 디악티노마이신(dactinomycin), 다우노루비신(daunorubicin), 독소루비신(doxorubicin), 블레오마이신(bleomycin), 플리코마이신(plicomycin), 미토마이신(mitomycin), 에토포시드(etoposide), 탁목시펜(tamoxifen), 택솔(taxol), 트랜스플라티눔(transplatinum), 5-플루오로우라실(5-fluorouracil), 빈크리스틴(vincristin), 빈블라스틴(vinblastin) 및 메토트렉세이트(methotrexate) 등을 포함한다.
본 발명의 조성물과 함께 이용될 수 있는 방사 요법은 X-선 조사 및 γ-선 조사 등이다.
본 발명의 또 다른 양태에 따르면, 본 발명은 단일클론항체 또는 이의 단편을 처리하는 단계를 포함하는, 샘플 중에 포함된 베타 1 인테그린(beta 1 integrin)의 정량 방법을 제공한다.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 단일클론항체 또는 이의 단편을 포함하는 베타 1 인테그린(beta 1 integrin) 정량 키트를 제공한다.
본 발명의 단일클론항체 또는 이의 단편은 베타 1 인테그린에 특이적으로 결합하기 때문에 이를 이용하면 샘플 중에 포함된 베타 1 인테그린의 양을 정확하게 측정 가능하다.
본 발명의 정량 방법 및/또는 키트를 이용하면 항원항체 결합반응을 통하여 상기 항체에 대한 항원을 분석함으로써 베타 1 인테그린의 양을 정량할 수 있으며, 상기 항원항체 결합반응은 통상의 ELISA(Enzyme-linked immunosorbent assay), RIA(Radioimmnoassay), 샌드위치 측정법(Sandwich assay), 폴리아크릴아미드 겔 상의 웨스턴 블롯(Western Blot), 면역블롯 분석(Immunoblot assay) 및 면역조직화학염색 방법(Immnohistochemical staining)으로 이루어지는 군에서 선택되는 것이 바람직하나 이에 제한되지 않는다.
항원-항체 결합 반응을 위한 고정체로는 니트로셀룰로오스 막, PVDF막, 폴리비닐(Polyvinyl) 수지 또는 폴리스티렌(Polystyrene) 수지로 합성된 웰 플레이트(Well plate) 및 유리로 된 슬라이드 글라스(Slide glass)로 이루어지는 군으로부터 선택되는 것이 사용될 수 있으나, 이제 제한되는 것은 아니다.
상기 2차 항체는 발색반응을 하는 통상의 발색제로 표지되는 것이 바람직하며, HRP(Horseradish peroxidase), 알칼리성 인산분해효소(Alkaline phosphatase), 콜로이드 골드(Coloid gold), FITC(Poly L-lysine-fluorescein isothiocyanate), RITC(Rhodamine-B-isothiocyanate) 등의 형광물질(Fluorescein) 및 색소(Dye)로 이루어지는 군으로부터 선택되는 어느 하나의 표지체가 사용될 수 있다. 발색을 유도하는 기질은 발색반응을 하는 표지체에 따라 사용하는 것이 바람직하며, TMB(3,3',5,5'-tetramethyl bezidine), ABTS[2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] 및 OPD(ophenylenediamine)로 이루어지는 군으로부터 선택되는 어느 하나를 사용하는 것이 바람직하나 이에 제한되는 것은 아니다.
본 발명의 또 다른 양태에 따르면, 하기의 단계를 포함하는 베타 1 인테그린(beta 1 integrin)의 과발현에 의한 질환의 진단을 위한 정보를 제공하는 방법을 제공한다:
(a) 피검자로부터 체외로 분리된 샘플을 취득하는 단계;
(b) 상기 단일클론항체 또는 이의 단편을 상기 샘플에 처리하는 단계; 및
(c) 상기 피검자의 샘플 중에 포함된 LPA2의 발현양이 정상군 샘플 중에 포함된 베타 1 인테그린의 발현양 보다 높은지 여부를 확인하는 단계.
상기 베타 1 인테그린의 과발현에 의한 질환의 진단을 위한 정보를 제공하는 방법에 대한 설명 중 상술한 본 발명의 정량 방법 및/또는 키트에 대한 설명과 동일한 부분은 그 부분을 참고하기로 한다.
베타 1 인테그린의 변형된 발현은 종양 억제 및 진행에 영향을 미치며, 베타 1 인테그린의 증가는 종양 세포의 생존을 촉진하고 여러 종양 세포 유형에서 화학 요법에 내성을 부여하기 때문에(Hodkinson PS, Elliott T, Wong WS, et al. ECM overrides DNA damage-induced cell cycle arrest and apoptosis in small-cell lung cancer cells through beta1 integrin-dependent activation of PI3-kinase[J]. Cell Death Differ, 2006;13(10):1776-1788.; Aoudjit F, Vuori K. Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells[J]. Oncogene, 2001;20(36):4995-5004.; Morozevich GE, Kozlova NI, Preobrazhenskaya ME, et al. The role of beta1 integrin subfamily in anchorage-dependent apoptosis of breast carcinoma cells differing in multidrug resistance[J]. Biochemistry (Mosc), 2006;71(5):489-495.), 상기 베타 1 인테그린의 발현량을 정상인의 것과 비교함으로써, 베타 1 인테그린의 과발현에 의한 질환의 진단을 위한 정보를 제공할 수 있다.
본 발명의 바람직한 구현예에 따르면, 상기 베타 1 인테그린의 과발현에 의한 질환은 암이다.
본 발명의 특징 및 이점을 요약하면 다음과 같다:
(i) 본 발명은 베타 1 인테그린을 항원으로 인식하여 이에 특이적으로 결합하는 단일클론항체 또는 이의 단편을 제공한다.
(ii) 또한, 본 발명은 상기 단일클론항체 또는 이의 단편을 포함하는 암의 예방 또는 치료용 약제학적 조성물을 제공한다.
(iii) 본 발명의 단일클론항체는 암세포의 증식 및 혈관 신생을 억제하고 세포자멸사를 효과적으로 유도하여 암의 예방 또는 치료에 유용하게 사용될 수 있다.
도 1은 본 발명의 GP5 단클론 항체의 중쇄 가변영역 및 경쇄 가변영역의 아미노산 서열을 나타낸다.
도 2는 본 발명의 GP5 단클론 항체의 순도(도 2a) 및 균질성(도 2b)을 확인한 결과이다.
도 3은 본 발명의 GP5 단클론 항체의 재조합 인간 베타 1 인테그린에 대한 결합력(도 3a), 재조합 마우스 베타 1 인테그린에 대한 결합력(도 3b) 및 베타 1 인테그린에 대한 특이도(도 3c)를 나타낸 결과이다.
도 4는 비소세포 폐암 세포주 A549, 유방암 세포주 MDA-MB-231 및 대장암 세포주 HCT116의 표면에서 베타 1 인테그린의 발현을 확인한 결과이다.
도 5는 본 발명의 GP5 단클론 항체의 세포자멸능(도 5a), 세포 성장 억제능(도 5b) 및 GP5 단클론 항체가 억제하는 signal pathway를 나타낸 결과이다.
도 6은 본 발명의 GP5 단클론 항체가 암세포 표면의 베타 1 인테그린의 내재화 유도를 확인한 결과이다(도 6a: 120분; 도 6b: A549 세포주에서 시간대별 확인 결과).
도 7은 gefitinib 내성 비소세포 폐암 세포주인 PC9GR에서 본 발명의 GP5 단클론 항체가 gefitinib과 병용되었을 때, gefitinib의 반응성을 모세포인 PC9에서 나타나는 수준으로 향상 시키는 결과이다(도 7a: PC9과 PC9GR의 표면에서 베타 1 인테그린의 발현을 확인한 결과; 도 7b: PC9과 PC9GR에서 gefitinib과 GP5 단클론 항체가 병용되었을 때 유도되는 세포자멸능의 정도를 나타낸 결과).
도 8은 비소세포 폐암 세포주가 이식된 마우스 모델에서 본 발명의 GP5 항체의 항암 활성을 나타내는 결과이다(도 8a: tumor volume 비교; 도 8b: tumor size 비교).
도 9은 본 발명의 GP5 항체의 종양 세포 증식 억제능(도 9a), 종양내 신생혈관 형성 억제능(도 9b) 및 종양의 세포자멸사 유도능(도 9c)을 측정한 결과이다.
이하, 실시 예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시 예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시 예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예
<실시예 1> P5의 암세포 살상능 개량 및 인간화
본 발명자들은 P5 (Kim MY et al. J Biomed Res, 2016, 30(3):217-24) 보다 암세포 살상능이 증가된 인간화 항체를 개발하기 위해 다음과 같은 실험을 수행하였다.
P5의 개량을 위해, 중쇄 가변영역의 FR 4개 (HFR1, HFR2, HFR3, HFR4)와 경쇄 가변영역의 FR 4개 (LFR1, LFR2, LFR3, LFR4)에 다음과 같은 방식으로 돌연변이를 도입하였다:
1) 구체적으로, HFR1은 IGHV7-4-1*03, HFR2는 IGHV4-30-4*06, HFR3은 IGHV1-69-2*01, HFR4는 IGHJ6*01의 서열을 이용하여, 아미노산의 물리화학적 성질의 유사성 또는 비유사성을 고려하여 모항체와 다른 아미노산들을 치환하였다. 이러한 방법으로 치환된 아미노산들은 IGHV7-4-1*03에서는 I20V, T25S, S30T; IGHV4-30-4*06에서는 R40H, H43K; IGHV1-69-2*01에서는 K66R, A67V, F69I, S75T, N76D, S79Y, Q81E, T83R, S87T; 및 IGHJ6*01에서는 S108T이었다. 이렇게 치환된 중쇄 가변영역을 다시 IGHV1-2*02를 이용하여 alignment를 진행한 후, 가장 성능이 뛰어날 것으로 예상되는 돌연변이를 선별하였다.
2) 또한, LFR1은 IGKV2-18*01, LFR2는 IGKV2-18*01, LFR3는 IGKV2-28*01, LFR4는 IGKJ2*01을 이용하여 아미노산을 다음과 같이 치환하였다: IGKV2-18*01에서는 A8P, V11L, T14N, S18P, V19A; IGKV2-18*01에서는 R39K; IGKV2-28*01에서는 없고; IGKJ2*01에서는 L106I. 이렇게 치환된 경쇄 가변영역을 다시 IGKV2D-29*02를 이용하여 alignment를 진행한 후, 가장 성능이 뛰어날 것으로 예상되는 돌연변이를 선별하였다.
3) 상기와 같은 과정을 통하여 선별된 돌연변이 위치는 다음과 같다:
① 중쇄 가변영역: A9S, I20V, T25S, S30T, K66R, S75T, N76D, Q81E.
② 경쇄 가변영역: V11L, F36Y, R39K.
(항체 도메인의 아미노산 잔기 번호는 당업계에서 통상적으로 사용되는 카밧 EU 넘버링 시스템(Kabat EU numbering system, Kabat et al., “Sequences of Proteins of Immunological Interest”, 5th Ed., U.S. Department of Health and Human Services, NIH Publication No. 91-3242, 1991에서와 같은 EU 지수번호에 따름)에 따라 넘버링하였다.)
인간화 중쇄 가변영역은 인간 IgG1 중쇄 불변영역 (CH1, CH2, CH3)과 결합하였고, 인간화 경쇄 가변영역은 인간 경쇄 불변영역 (Ckappa)과 결합하여 최종적으로 인간화를 완료하였다.
최종적으로 인간화된 항체를 GP5라고 명명하였고 그 염기서열을 표 1에, 치환된 염기서열에 관한 내용은 도 1에 나타내었다.
중쇄 가변영역
P5 QVQLQQSGAELMKPGASVKISCKATGYTFSNYWIEWIVQRPGHGLEWIGEILPGSVNTNYNAKFKDKATFTADTSSNTASMQLSSLTSEDSAVYYCALATPYYALDSWGQGTSVTVSS (서열번호 1)
GP5 QVQLQQSGSELMKPGASVKVSCKASGYTFTNYWIEWIVQRPGHGLEWIGEILPGSVNTNYNAKFKDRATFTADTSTDTASMELSSLTSEDSAVYYCALATPYYALDSWGQGTSVTVSS (서열번호 3)
경쇄 가변영역
P5 DIVMTQAAPSVSVTPGESVSISCRSTESLLHSNGNTYLYWFLQRPGQSPQLLIYRMSNRASGVPDRFSGSGSGTAFTLKIRRVEAEDVGVYYCMQHLEYPFTFGAGTKLELK (서열번호 2)
GP5 DIVMTQAAPSLSVTPGESVSISCRSTESLLHSNGNTYLYWYLQKPGQSPQLLIYRMSNRASGVPDRFSGSGSGTAFTLKIRRVEAEDVGVYYCMQHLEYPFTFGAGTKLELK (서열번호 4)
P5 및 GP5 중쇄 및 경쇄 가변 영역 아미노산 서열
상기 표에서 볼드체는 아미노산 치환위치를 나타낸다(카밧 EU 넘버링 시스템에 따른 A9S, I20V, T25S, S30T, K66R, S75T, N76D, Q81E, V11L, F36Y, R39K)
<실시예 2> GP5 클론의 완전항체 전환 및 발현/정제
실시예 1에서 개발한 GP5 가변영역의 DNA를 scFv 형태로 합성하였고 (Cosmogenetech, 한국) PCR 방법에 의해 완전항체(full IgG)로 전환하였다. 먼저 scFv를 포함하는 pUC 벡터(Cosmogenetech, 한국)로부터 중쇄 및 경쇄의 가변영역과 불변영역의 절편을 하기 표 2의 VH, CH 및 VL, CK 프라이머 조합을 이용해서 PCR을 통하여 수득하였다. 수득한 항체의 가변영역과 불변영역을 가지고 하기 표 2의 HC 및 LC 프라이머 조합을 이용하여 PCR을 수행하여 GP5의 중쇄와 경쇄를 확보하였다. 중쇄는 EcoRⅠ과 NotⅠ (New England Biolab, 영국) 효소를 사용하여 처리하였으며 마찬가지로 똑같은 제한효소로 처리된 동물세포 발현용 벡터인 pCMV 벡터(Thermo Fisher SCIENTIFIC, 미국)에 라이게이션 하였다. 또한 경쇄는 XbaⅠ(New England Biolab, 영국) 효소를 사용하여 처리하였으며 마찬가지로 똑 같은 제한효소로 pCMV 벡터에 라이게이션 하였다. 라이게이션된 플라스미드는 DH5α 대장균 competent cell(New England Biolab, 영국)에 열충격을 가하여 형질전환하였고, 콜로니를 얻은 후 대량 배양하여 플라스미드를 얻었다.
프라이머 서열 서열번호
VH 정방향1 CAG AAT TCA CTC TAA CCA TGG AAT GGA GCT GGG TCT TTC TCT TCT TCC TGT CAG TAA CTA CAG 5
정방향2 CTT CCT GTC AGT AAC TAC AGG TGT CCA CTC CCA GGT GCA ACT GCA GCA GTC 6
역방향1 CCA GCG TGA CCG TAT CCA GCG CCT CCA CCA AGG GCC CCA 7
역방향2 CCA GCG TGA CCG TAT CCA GCG CCT CCA CCA AGG GCC CCA 8
CH 정방향1 GGG CCC TTG GTG GAG GCG CTG GAT ACG GTC ACG CTG G 9
역방향1 GCA TTG TCT GAG TAG GTG TC 10
HC 정방향1 CAG AAT TCA CTC TAA CCA TGG AAT GGA GCT GGG TCT TTC TCT TCT TCC TGT CAG TAA CTA CAG 11
역방향1 GCA TTG TCT GAG TAG GTG TC 12
VL 정방향1 AAG CTT CGG CAC GAG CAG ACC AGC ATG GGC ATC AAG ATG GAG ACA CAT TCT CAG GTC TTT GTA TAC AT 13
정방향2 TCT CAG GTC TTT GTA TAC ATG TTG CTG TGG TTG TCT GGT GTT GAA GGA GAT ATT GTG ATG ACT CAG GC 14
역방향1 GGA CCA AGC TGG AGC TGA AAC GTA CGG T 15
역방향2 GGA CCA AGC TGG AGC TGA AAC GTA CGG T 16
Ck 정방향1 TGG GGC CCT TGG TGG AGG CGC TGG ATA CGG TCA CGC TGG 17
역방향1 CAT TTT GTC TGA CTA GGT GTC C 18
LC 정방향1 AAG CTT CGG CAC GAG CAG ACC AGC ATG GGC ATC AAG ATG GAG ACA CAT TCT CAG GTC TTT GTA TAC AT 19
역방향1 CAT TTT GTC TGA CTA GGT GTC C 20
GP5 완전항체 클로닝시 사용되는 프라이머 list
완전항체로 전환시킨 중쇄와 경쇄 각각의 플라스미드를 Polyethylenimine (PEI) (Polysciences, 미국)와 150 mM NaCl을 이용하여 HEK293F 세포 (Invitrogen, 미국)에 transfection 시키고 Freestyle 293 expression medium (Invitrogen, 미국)에서 37℃의 온도, 8% CO2 그리고 55% Humidity의 조건으로 7일간 배양하였다. 발현된 세포 배양액을 4,000 rpm, 10분간 원심분리한 후, 상등액을 취해 0.22 μm filter를 통해 여과하였다. 걸러진 상등액은 4℃에서 protein A (GenScript, 중국) 레진 1 ml에 결합 유도하였다. 결합된 resin은 10 cv (column volume)의 PBS 용액으로 세척 후, 100 mM glycine-HCl (pH 2.7) 용액을 용출한 후, 1 M Tris-HCl (pH 9.0)으로 중화시켰다. pH 7.2-7.4 PBS로 buffer change 진행 후 SDS-PAGE를 통해 정제된 항체의 경쇄와 중쇄의 크기와 순도를 확인하였고, 그 결과를 도 2a에 나타내었다. 정제된 GP5 단클론 항체는 경쇄와 중쇄의 이론적 계산치와 일치하는 분자량과 높은 순도를 확인할 수 있었다. 또한, Size Exclusion Chromatography (SEC)(GE Healthcare, 미국)를 통하여 정제된 항체의 균질성 (homogeneity)를 확인한 결과 95%의 homogeneity를 보였고 그 결과를 도 2b에 표시하였다.
<실시예 3> GP5 단클론 항체의 beta 1 integrin에 대한 결합력 분석
상기 실시예 2에서 제작한 GP5 단클론 항체의 beta 1 integrin에 대한 결합력을 direct ELISA로 확인하였다. GP5 단클론 항체는 인간화 항체이고, P5는 마우스 항체이므로 직접적인 결합력 비교를 위하여 Peroxidase Labeling Kit-NH2 (Dojindo, 일본)를 사용하여 각 항체에 HRP를 표지하였다. Direct ELISA는 50 μl의 PBS에 1 μg/ml로 recombinant human beta 1 integrin (Sino biological, 중국) 및 recombinant mouse beta 1 integrin (MyBioSource, 미국)을 희석하여 96웰 면역 플레이트 (Corning, 미국)에 넣고, 4℃에서 밤새 보관하여 흡착시켰다. 3% 우혈청 알부민 (Milipore, 미국)이 포함된 완충용액으로 37℃에서 1시간 반응시킨 후, 순차적 농도로 (0.01, 0.03, 0.1, 0.3, 1, 3, 100, 300, 1000 nM)로 희석한 각각의 HRP가 표지된 항체를 웰 당 50 μl씩 처리하였다. 항원에 항체가 결합할 수 있도록 37℃에서 2시간 반응시킨 후, 0.5% Tween 20 (Amresco, 미국)이 포함된 완충용액으로 3회 세척한 후, 3,3',5,5'-Tetramethylbenzidine (TMB) (Life technologies, 미국)를 50 μl씩 각 웰에 분주하고 30분간 발색시켰다. 분광 광도계 (Biotek, 미국)를 이용하여 450 nm에서 흡광도를 측정하고 그 결과를 도 3a 및 b에 나타내었다.
그 결과, 본 발명에 따라 개발된 GP5 단클론 항체는 recombinant human beta 1 integrin 및 recombinant mouse beta 1 integrin에 대하여 P5와 동등수준의 우수한 결합력을 나타냄을 확인할 수 있었다(도 3a 및 b).
또한 GP5 단클론항체의 beta 1 integrin에 대한 특이성을 확인하기 위하여 다양한 integrin에 대한 결합력을 direct ELISA로 확인하였다. 50 μl의 PBS에 1 μg/ml로 recombinant human αVβ1 integrin (R&D Systems, 미국), αVβ3 integrin (R&D Systems, 미국), αVβ5 (R&D Systems, 미국), αVβ6 (R&D Systems, 미국), αVβ8 (R&D Systems, 미국), α5β1 (R&D Systems, 미국) 및 α2bβ3 (R&D Systems, 미국)를 각각 희석하여 96웰 면역 플레이트 (Corning, 미국)에 넣고, 4℃에서 밤새 보관하여 흡착시켰다. 3% 우혈청 알부민 (Milipore, 미국)이 포함된 완충용액으로 37℃에서 1시간 반응시킨 후, 순차적 농도로 (0.01, 0.03, 0.1, 0.3, 1, 3, 100, 300, 1000 nM)로 희석한 GP5 단클론 항체를 웰 당 50 μl씩 처리하였다. 항원에 항체가 결합할 수 있도록 37℃에서 2시간 반응시키고 0.5% Tween 20 (Amresco, 미국)이 포함된 완충용액으로 3회 세척한 후, PBS로 1:3000 비율로 희석한 HRP가 표지된 항 human Fc IgG를 웰 당 50 μl씩 이차항체로 처리하였다. 37℃에서 1시간 반응시킨 후, 0.5% Tween 20 (Amresco, 미국)이 포함된 완충용액으로 3회 세척한 후, 3,3',5,5'-Tetramethylbenzidine (TMB) (Life technologies, 미국)를 50 μl씩 각 웰에 분주하고 30분간 발색시켰다. 분광 광도계 (Biotek, 미국)를 이용하여 450 nm에서 흡광도를 측정하고 그 결과를 도 3c에 나타내었다.
그 결과, 본 발명에 따라 개발된 GP5 단클론 항체는 integrin의 α chain과는 상관없이 β chain이 beta 1인 integrin에만 특이적으로 결합하였다(도 3c).
이상과 같이 상기 방법을 통하여 개량한 GP5 단클론 항체는 통상적인 항체 인간화시 나타나는 결합력 저하를 보이지 않았고, beta 1 integrin에 대한 특이성을 나타내었다. 그러므로 모항체와 같이 비소세포폐암을 포함하는 다양한 암 치료용 항체의 성능을 기대할 수 있었다.
<실시예 4> 비소세포폐암을 포함하는 다양한 암 세포주에서 beta 1 integrin의 발현 확인
본 발명자들은 비소세포 폐암을 포함한 다양한 암 세포주에서 beta 1 integrin의 발현을 확인하기 위하여 하기와 같이 실험을 진행하였다.
샘플 당 5x105개의 비소세포 폐암 세포주 A549, 유방암 세포주 MDA-MB-231 및 대장암 세포주 HCT116을 10 μg/ml 농도의 GP5 단클론 항체가 포함되거나 포함되지 않은 PBS로 현탁하고, 4℃에서 1시간 동안 배양하였다. 배양액을 3,500 rpm에서 5분간 원심분리 후, PBS 200 μl로 세척하고 3,000 rpm에서 5분간 다시 원심분리 하였다. PBS를 이용하여 1:200의 비율로 희석한 Goat anti-human IgG antibody, Alexa Fluor 488 (ThermoFisher Scientific, 미국)을 세포에 처리하고 차광한 상태로 4℃에서 30분 동안 배양하였다. 형광 염색된 세포를 PBS로 세척 후 PBS 500 μl로 현탁하고 FACS 분석 장비인 Attune NxT(ThermoFisher Scientific, 미국)를 이용하여 분석하고 그 결과를 도 4에 나타내었다.
FACS 평가 결과, 비소세포 폐암 세포주 A549, 유방암 세포주 MDA-MB-231 및 대장암 세포주 HCT116의 세포 표면에 beta 1 integrin이 과발현 되어 있음을 확인할 수 있었다(도 4).
<실시예 5> GP5 단클론 항체의 암세포주에서 세포자멸사, 세포 성장 억제능 및 항암효과 기전 분석
본 발명자들은 P5와 본 발명의 GP5 단클론 항체가 beta 1 integrin이 발현된 비소세포 폐암을 포함한 다양한 암 세포주에서 세포 자멸사를 유발할 수 있는지를 알아보기 위하여 하기와 같이 실험을 진행하였다.
먼저, 실험 전 날 24웰 플레이트에 10% 우혈청 (GIBCO, 미국)이 포함된 RPMI 배지 (WELGENE, 한국)로 비소세포 폐암 세포주 A549, 유방암 세포주 MDA-MB-231 및 대장암 세포주 HCT116을 웰 당 5x104개씩 1 ml이 되게 분주하고, 37℃ 5% CO2 조건에서 하룻밤 동안 배양하였다.
다음 날 배양액을 걷어 내고 RPMI배지 (WELGENE, 한국)에 P5 및 GP5 단클론 항체를 각각 10 또는 20 μg/ml이 되도록 처리한 후 48시간 동안 37℃ 5% CO2 조건에서 반응시켰다. 음성 대조군에는 신선한 RPMI 배지 (WELGENE, 한국)만 채웠다. 반응이 끝나면 PBS로 세척하고 0.05% Trypsin-EDTA (Gibco, 미국)로 cell을 떼어낸 후, EP 튜브에 넣고 PBS로 다시 세척하였다. 그 후, 3,500 rpm에서 5분간 원심분리 하고 모아진 cell pellet을 FITC Annexin V Apoptosis Detection Kit with 7-AAD (BioLegend, 미국)를 이용하여 유세포 분석 장비인 Attune NxT (ThermoFisher Scientific, 미국)로 유세포 분석을 실시하고 그 결과를 도 5에 나타내었다.
그 결과, 본 발명의 GP5 단클론 항체는 P5에 비하여 우수한 세포자멸능이 있음을 확인할 수 있었으며, 비소세포 폐암 세포주 A549에서는 농도 의존적으로 세포자멸능 효과를 나타내었다(도 5a).
또한 본 발명자들은 본 발명의 GP5 단클론 항체가 beta 1 integrin이 발현된 비소세포 폐암을 포함한 다양한 암 세포주에서 세포 성장을 억제할 수 있는지를 알아보기 위하여 하기와 같이 실험을 진행하였다.
먼저, 실험 전 날 12웰 플레이트에 10% 우혈청 (GIBCO, 미국)이 포함된 RPMI 배지 (WELGENE, 한국)로 비소세포 폐암 세포주 A549, 유방암 세포주 MDA-MB-231 및 대장암 세포주 HCT116을 웰 당 1x105개씩 1 ml이 되게 분주하고, 37℃ 5% CO2 조건에서 하룻밤 동안 배양하였다.
다음 날 배양액을 걷어 내고 RPMI배지 (WELGENE, 한국)에 GP5 단클론 항체를 각각 10, 20 또는 50 μg/ml이 되도록 처리한 후 48시간 동안 37℃ 5% CO2 조건에서 반응시켰다. 음성 대조군에는 신선한 RPMI 배지 (WELGENE, 한국)만 채웠다. 반응이 끝나면 배양액을 걷어 내고 PBS로 세척 후, 4% paraformaldehyde (Biosesang, 한국)을 웰 당 200 μl를 처리하고 4℃에서 10분간 반응하여 cell을 고정하였다. 고정된 cell을 PBS로 세척하고 0.5% cyrstal violet (Sigma, 미국)을 웰 당 300 μl를 처리한 후, 오비탈 쉐이커에서 30분간 반응하였다. 그 후 3차 증류수를 사용하여 세척액에 보라색이 나오지 않을 때 까지 세척한 후, 건조하였다. 건조된 플레이트에 1% sodium dodecyl sulfate (amresco, 미국)를 웰 당 300 μl를 처리하여 cell을 녹였다. 분광 광도계 (Biotek, 미국)를 이용하여 570 nm에서 흡광도를 측정하고 그 결과를 도 5b에 나타내었다.
그 결과, 본 발명의 GP5 단클론 항체는 우수한 세포 성장 억제능이 있음을 확인할 수 있었으며, 비소세포 폐암 세포주 A549, 유방암 세포주 MDA-MB-231 및 대장암 세포주 HCT116에서 농도 의존적으로 세포 성장 억제능 효과를 나타내었다(도 5b).
그리고, 본발명자들은 GP5 단클론 항체의 항암 기전을 확인하기 위하여 하기와 같은 실험을 진행하였다.
Beta 1 integrin은 암세포의 생존과 성장과 관계되는 Akt pathway와 ERK pathway를 활성화 시킨다고 알려져 있으므로(Blandin AF, Renner G, Lehmann M, et al. β1 integrin as therapeutic targets to disrupt hallmarks of cancer. Front Pharmacol, 2015;6:279.), beta 1 integrin이 유도하는 signal pathway에 대한 GP5 단클론 항체의 억제능을 면역블롯 분석을 통하여 확인하였다. 먼저 GP5 단클론 항체 20 μg/ml이 48시간 동안 처리되거나, 처리되지 않은 A549 cell pellet을 확보한 후, 문헌(Lee MS, Lee JC, Choi CY et al. Production and characterization of monoclonal antibody to botulinum neurotoxin type B light chain by phage display. Hybridoma (Larchmt), 2008;27(1):18-24)에 기재된 과정에 따라 웨스턴 블롯을 수행하였다. 이때, 일차 항체로서 AKT, pAKT, ERK, pERK (1:1000 희석; Cell Signaling Technology, 미국) 및 β-actin (1:3000 희석; Santa Cruz Biotechnology) 항체를 사용하였고, 이차 항체로서 HRP가 표지된 항-토끼 IgG (1:5000 희석; Abcam, 영국) 또는 HRP가 표지된 항-마우스 IgG (1:5000 희석; Abcam, 영국)를 사용하였다. 상기 블롯을 증강된 화학발광 시스템 (ThermoFisher Scientific, 미국)를 이용하여 제조사의 지침에 따라 시각화하고 그 결과를 도 5c에 나타내었다. 도 5c에서 보는바와 같이, GP5 단클론 항체로 처리된 A549 세포에서 pAKT와 pERK의 발현이 현저히 감소하였다.
그 결과, 본 발명의 GP5 단클론 항체는 beta 1 integrin이 활성화 시키는 암세포의 생존과 성장과 관계되는 AKT pathway와 ERK pathway를 억제함으로서 세포자멸능 효과와 세포 성장 억제능 효과를 나타낼 수 있다.
따라서, 상기의 결과로 본 발명의 GP5 단클론 항체는 비소세포 폐암을 포함한 다양한 암에 대하여 치료 효과가 있음을 알 수 있었고, GP5 단클론 항체의 세포자멸능 효과가 P5에 비해 우월한 결과는 효율적인 개량이 이루어 진 것을 의미한다.
<실시예 6> GP5 단클론 항체의 암 세포에서 beta 1 integrin의 내재화(internalization) 분석
본 발명자들은 P5와 본 발명의 GP5 단클론 항체가 비소세포 폐암을 포함한 다양한 암 세포주에서 beta 1 integrin의 내재화를 유도하는 효과를 확인하기 위하여 하기와 같이 실험을 진행하였다. 0.05% Trypsin-EDTA (Gibco, 미국)를 처리하여 T75 flask (SPL, 한국)에서 떼어낸 비소세포 폐암 세포주 A549, 유방암 세포주 MDA-MB-231 및 대장암 세포주 HCT116을 5 x 105개씩 EP 튜브에 넣고 3500 rpm에서 5분간 원심분리 후, PBS로 세척하였다. 그 후 PBS를 이용하여 P5 또는 GP5 단클론 항체를 10 μg/ml가 되도록 희석한 후, 100 μl를 처리하였다. 4℃에서 1시간 동안 반응시킨 후, 37℃에서 비소세포 폐암 세포주 A549는 0, 40, 60, 80, 90, 120 및 150분씩 각각 반응을 지속하였고, 유방암 세포주 MDA-MB-231 및 대장암 세포주 HCT116는 120분간 반응을 지속하였다. 반응이 끝난 후, PBS로 세척하고 P5가 처리된 EP 튜브에는 FITC가 표지된 항 마우스 항체 (Sigma, 미국)를 1:100 비율로 PBS에 희석하여 100 μl 처리하고 GP5 단클론 항체가 처리된 EP 튜브에는 FITC가 표지된 항 인간 항체 (Life technologies, 미국)를 1:200 비율로 PBS로 희석하여 100 ul를 처리하였다. 30분간 차광하여 4℃에서 반응 후, PBS로 세척하고 유세포 분석 장비인 Attune NxT (ThermoFisher Scientific, 미국)로 유세포 분석을 실시하고 그 결과를 도 6에 나타내었다. 도 6a는 37℃에서 비소세포 폐암 세포주 A549, 유방암 세포주 MDA-MB-231 및 대장암 세포주 HCT116을 120분 반응을 시킨 결과이고, 도 6b는 비소세포 폐암 세포주 A549를 37℃에서 반응시킨 시간대별 결과를 그래프로 나타낸 것이다. 그 결과, P5가 처리된 A549, MDA-MB-231 및 HCT116 세포에 비하여 GP5 단클론 항체가 처리된 A549, MDA-MB-231 및 HCT116 세포 표면의 beta 1 integrin이 크게 감소하였다(도 6).
이는 beta 1 integrin에 대한 GP5 단클론 항체의 결합이 세포막의 beta 1 integrin 내재화를 유도하는 것을 의미한다. 또한, 이러한 결과는 GP5 단클론 항체가 비소세포 폐암세포 외에 beta 1 integrin이 과발현된 세포에 결합하여 내재화될 수 있음을 제시한다. P5와 비교하여 GP5 단클론 항체가 나타내는 우수한 항암 활성은 이러한 내재화 효과에 의한 것으로 설명할 수 있으며 이것은 본 발명에 의한 개량의 효과이다.
<실시예 7> GP5 단클론 항체의 gefitinib 내성세포주에서 세포자멸사 분석
Beta 1 integrin이 다양한 암에서 cytotoxic chemtherapy에 대한 내성의 원인이 된다고 알려져 있으므로 (Park CC et al. Cancer Res, 2006, 66(3):1526-35),본 발명자들은 cytotoxic chemotherapy에 사용되는 gefitinib에 대한 내성이 나타난 비소세포 폐암 세포주에서 GP5 단클론 항체의 단독 또는 gefitinib과의 병용 사용 시 세포자멸사 유도 정도 확인을 위하여 하기와 같이 실험을 진행하였다.
우선 gefitinib 내성 비소세포 폐암 세포주 PC9GR과 모세포인 비소세포 폐암 세포주 PC9의 beta 1 integrin의 발현을 확인하기 위하여, 실시예 4와 같은 방법으로 실험을 진행하였다.
FACS 평가 결과, 모세포인 비소세포 폐암 세포주 PC9에 비하여 gefitinib 내성 비소세포 폐암 세포주 PC9GR에서 GP5 단클론 항체가 beta 1 integrin에 결합하여 나타나는 피크가 오른쪽으로 더 이동하였다. 그러므로 모세포인 PC9에 비하여 PC9GR에서 beta 1 integrin이 더 발현됨을 확인할 수 있었다(도 7a).
PC9 세포주와 PC9GR 세포주에서 GP5 단클론 항체 단독 또는 gefitinib과 병용 사용 시 세포 자멸사 유도능을 확인하기 위하여, 실험 전 날 12웰 플레이트에 10% 우혈청 (GIBCO, 미국)이 포함된 RPMI 배지 (WELGENE, 한국)로 PC9 세포주 및 PC9GR 세포주를 각각 웰 당 1x105개씩 1 ml이 되게 분주하고, 37℃ 5% CO2 조건에서 하룻밤 동안 배양하였다.
다음 날 배양액을 걷어 내고 RPMI배지 (WELGENE, 한국)에 gefitinib (Sigma, 미국) 및 GP5 단클론 항체를 각각 2 또는 10 μg/ml이 되도록 처리한 후 24시간 동안 37℃ 5% CO2 조건에서 반응시켰다. 음성 대조군에는 신선한 RPMI 배지 (WELGENE, 한국)만 채웠다. 반응이 끝나면 PBS로 세척하고 0.05% Trypsin-EDTA (Gibco, 미국)로 cell을 떼어낸 후, EP 튜브에 넣고 PBS로 다시 세척하였다. 그 후, 3500 rpm에서 5분간 원심분리 하고 모아진 cell pellet을 FITC Annexin V Apoptosis Detection Kit with 7-AAD (BioLegend, 미국)를 이용하여 유세포 분석 장비인 Attune NxT (ThermoFisher Scientific, 미국)로 유세포 분석을 실시하고 그 결과를 도 7b에 나타내었다. 도 7b에서 보는바와 같이, 모세포인 PC9에서 gefitinib에 의한 세포자멸사가 50% 이상 나타났으나, PC9GR에서는 30% 정도로 나타났다. 또한 PC9GR에서 GP5 단클론 항체가 gefitinib과 병용되었을 때, 세포자멸사가 50% 정도 나타났다.
그 결과, 모세포인 PC9에 비하여 gefitinib 내성 세포주인 PC9GR에서 gefitinib의 반응성이 낮아져 있음을 확인할 수 있었고, gefitinib과 GP5 단클론 항체 병용시 PC9GR에서 낮아진 gefitinib에 대한 반응성이 PC9 세포주 수준으로 회복됨을 확인할 수 있었다(도 7b).
이러한 결과는 본 발명의 GP5 단클론 항체는 항암제 내성의 원인이 되는 beta 1 integrin의 차단을 통하여 항암제에 대한 내성을 억제할 수 있음을 의미한다.
<실시예 8> 비소세포 폐암 세포주 A549 이종이식 모델 (human A549 non-small cell lung cancer xenograft model)에서의 GP5 단클론 항체 항암 활성 분석
본 발명자들은 P5와 본 발명의 GP5 단클론 항체가 비소세포 폐암 세포주가 이식된 누드마우스에서 항암 활성을 나타내는 지를 알아보기 위하여 하기와 같이 실험을 진행하였다.
비소세포 폐암 세포주 A549를 마리 당 5x106개씩 암컷 Balb/c 누드마우스 (SLC, 일본)의 옆구리 피하에 접종하였다. 주 당 2회씩 마우스 무게를 측정하고, ‘폭 X 폭 X 길이/2’의 식을 이용하여 종양 부피를 계산하였다. 암세포 접종 7일 후 종양 부피가 약 80 mm3에 도달하였을 때, 마우스를 군 당 6 마리씩 무작위 추출하였다. 군 당 PBS(음성 대조군), P5 또는 GP5 단클론 항체 1 mg/kg, 시스플라틴 (Sigma, 미국) 2.5 mg/kg의 용량으로 마우스의 복강에 주 2회, 5주 동안 투여하였다. 병용 처리군은 P5 또는 GP5 단클론 항체 1 mg/kg과 시스플라틴 (Sigma, 미국) 2.5 mg/kg를 마우스의 복강에 주 2회, 5주 동안 투여하였다. 그 후, 3주일 동안은 항체 및 시스플라틴 투여 없이 주 2회씩 종양의 크기 및 체중을 측정하였다. 각 약물 투여에 의한 종양 부피를 산출하고, 그 결과를 도 8a에 나타내었다(화살표(↓): 투여 시점, *: 음성대조군과 student’s t test를 통한 비교 결과 P<0.05, ***: 음성대조군과 student’s t test를 통한 비교 결과 P<0.001). 또한 실시예 9을 위하여 마우스를 희생한 후, 적출한 암 조직 사진을 도 8b에 나타내었다.
도 8a 및 b에 나타난 바와 같이, 본 발명의 GP5 단클론 항체는 단독 투여 시 P5에 비하여 우수한 항암 활성이 있음을 확인할 수 있었으며, 기존 비소세포 폐암의 치료제로 알려져 있는 시스플라틴에 비해서도 우수한 항암 활성을 나타내었다. 또한 GP5 단클론 항체와 시스플라틴을 병용 투여했을 때 단독 투여하였을 때 보다 항암 활성이 더 뛰어남을 확인할 수 있었고 약물 투여가 중단된 후에도 종양의 부피가 증가하지 않았다. 따라서, GP5 단클론 항체는 단독투여 또는 병용투여 모두 P5 및 시스플라틴 단독투여 보다 항암 효능이 증가함을 확인하였다.
<실시예 9> 면역조직화학염색(immunohistochemistry)에 따른 조직병리학적 연구(Histopathological studies)
면역조직화학염색은 록원바이오 융합연구재단에서 수행하였고, 조직병리학적 분석은 에스지메디칼㈜에서 수행하였다. 실험 종료시점 (Day 60)에 모든 마우스는 조직 처리 및 면역조직화학염색, 조직학적 분석을 위해 희생되었다. 실험 동물들을 깊이 마취시킨 상태에서 개복하여 심장에서 채혈한 후, 조직을 적출하고 적출한 조직은 4% 포름알데히드 용액에 고정한 후, 파라핀으로 포매하였다. 조직절편은 종양의 가장 큰 부분에서 4 μm 두께로 박절하고, 파라핀을 제거한 뒤 재수화하였다. 면역퍼옥시다아제 라벨링을 위해 세포 내의 퍼옥시다아제를 0.3% H2O2에 15분간 노출하여 억제하였다. 그 후, 항원 복구를 위해 항원 복구액 (antigen retrieval solution; TE pH 9.0)(Sigma, 미국)에 넣고 압력 쿠커 (pressure cooker)(Bio SB, 미국)에서 30분 동안 가열하였다. 비특이성 면역 반응 배제를 위해 블로킹 용액에 20분간 노출시켰다.
종양의 세포 증식 (proliferation) 정도를 평가하기 위하여, 인간 Ki67에 대한 일차 토끼 항체 (Abcam, 영국)를 사용하여 Ki67의 면역조직화학 염색을 수행하였다. 블로킹 용액을 처리한 조직 절편 위에 희석한 일차 항체를 1시간 동안 상온에서 반응시켜 항원-항체 반응 복합체를 형성시켰다. EnVision+ System-HRP Labelled Polymer Anti-Rabbit (Dako, 미국)을 사용하여 항원-항체 반응 복합체에 HRP가 표지된 2차 항체를 결합시킨 후, Liquid DAB+ Substrate Chromogen System (Dako, 미국)을 사용하여 3,3'Diaminobenzidine (DAB)를 기질로 발색하였다. 헤마톡실린 (Hematoxylin) (Sigma, 미국) 염색은 DAB 염색의 대조염색으로 수행하였다. 이미지는 ix71 광학현미경 (Olympus, 일본)을 사용하여 관찰하였다. Ki67 염색 부위의 비율은 Image J 소프트웨어 (NIH, 미국)를 사용하여 계산하고 그 결과를 도 9a에 나타내었다 (*: 음성대조군과 student’s t test를 통한 비교 결과 P<0.05, ***: 음성대조군과 student’s t test를 통한 비교 결과 P<0.001).
종양 혈관의 변화를 평가하기 위하여, 마우스 CD31에 대한 일차 토끼 항체 (Abcam, 영국)를 사용하여 CD31의 면역조직화학 염색을 수행하였다. 면역조직화학 염색은 위의 Ki67 염색과 동일한 과정으로 수행하였다. 이미지는 ix71 광학현미경 (Olympus, 일본)을 사용하여 관찰하였다. CD31 염색 부위의 비율은 Image J 소프트웨어 (NIH, 미국)를 사용하여 계산하고 그 결과를 도 9b에 나타내었다 (*: 음성대조군과 student’s t test를 통한 비교 결과 P<0.05, ***: 음성대조군과 student’s t test를 통한 비교 결과 P<0.001).
종양의 세포자멸사 (apoptosis) 정도를 평가하기 위하여, 말단 데옥시뉴클레오티딜 트란스페라제 (terminal deoxynucleotidyl transferase) dUTP 닉-말단 리벨링 (nick-end labeling) (TUNEL) 염색을 ApopTag Peroxidase In Situ Apoptosis Detection Kit (Chemicon, 미국)를 사용하여 수행하였다. 발색은 Liquid DAB+ Substrate Chromogen System (Dako, 미국)를 사용하여 수행하였다. 헤마톡실린 (Hematoxylin) 염색은 DAB 염색의 대조염색으로 수행하였다. 이미지는 ix71 광학현미경 (Olympus, 일본)을 사용하여 관찰하였다. 세포자멸사 부위의 비율은 Image J 소프트웨어 (NIH, 미국)를 사용하여 계산하고 그 결과를 도 9c에 나타내었다 (*: 음성대조군과 student’s t test를 통한 비교 결과 P<0.05).
면역화학조직염색 결과, 음성대조군에서 Ki67 및 CD31 발현은 가장 높았고(도 9a 및 b), TUNEL 염색된 세포는 거의 관찰되지 않았다(도 9c). 이는 음성대조군에서 암세포 증식 및 신생혈관 증식이 활발히 이루어지고 있음을 의미한다. GP5 단클론 항체 단독 투여군에서 P5 단클론 항체 단독 투여군에 비해 Ki67 및 CD31의 발현은 낮았고(도 9a 및 b), TUNEL 염색된 세포는 더 많이 관찰되었다(도 9c). 이는 GP5 단클론 항체는 P5에 비해 암세포 증식 및 혈관 신생을 억제하고 세포자멸사를 유도하는 효과가 더 크다는 것을 의미한다. 또한 GP5 단클론 항체와 시스플라틴을 단독 투여하였을 때보다 병용 투여했을 때 이러한 효과가 더 커짐을 확인할 수 있었다(도 9a, b 및 c). 이는 GP5 단클론 항체는 암세포 증식을 억제하고 혈관 신생을 억제하며 세포자멸사를 유도하여 항암효과를 나타내는 것을 의미한다. 또한 시스플라틴과 병용에 의하여 증가된 항암 활성은 이러한 효과가 극대화되면서 나타나는 것을 의미한다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.

Claims (14)

  1. 베타 1 인테그린(beta 1 integrin)을 항원으로 인식하여 이에 특이적으로 결합하는 단일클론항체 또는 이의 단편으로써, 상기 단일클론항체 또는 이의 단편은 카밧 EU 넘버링 시스템 (Kabat EU numbering system)에 따른 하기의 아미노산 치환을 포함하는 것을 특징으로 하는 단일클론항체 또는 이의 단편:
    a) 서열목록 제1서열의 중쇄가변영역(heavy chain variable region, VH)에서 A9S, I20V, T25S, S30T, K66R, S75T, N76D 및 Q81E의 아미노산 치환; 및
    b) 서열목록 제2서열의 경쇄가변영역(light chain variable region, VL)에서 V11L, F36Y 및 R39K의 아미노산 치환.
  2. 제 1 항에 있어서, 상기 단일클론항체 또는 이의 단편은 서열목록 제3서열의 중쇄가변영역 및 서열목록 제4서열의 경쇄가변영역을 포함하는 것을 특징으로 하는 단일클론항체 또는 이의 단편.
  3. 제 1 항에 있어서, 상기 단일클론항체 또는 이의 단편은 단일사슬항체(single-chain variable fragment, scFv)인 것을 특징으로 하는 단일클론항체 또는 이의 단편.
  4. 제 1 항의 단일클론항체 또는 이의 단편을 포함하는 다중특이 항체(multispecific antibody) 또는 항체-약물 접합체(Antibody-drug conjugate, ADC).
  5. 제 1 항의 단일클론항체 또는 이의 단편을 코딩하는 핵산분자.
  6. 제 5 항의 핵산분자를 포함하는 벡터.
  7. 제 6 항의 벡터를 포함하는 숙주세포.
  8. 제 1 항의 단일클론항체 또는 이의 단편, 제 5 항의 핵산분자 또는 제 6 항의 벡터를 포함하는 암의 예방 또는 치료용 약제학적 조성물.
  9. 제 8 항에 있어서, 상기 암은 세포독성화학요법(cytotoxic chemtherapy)에 내성이 생긴 것을 특징으로 하는 약제학적 조성물.
  10. 제 8 항에 있어서, 상기 암은 폐암, 유방암 또는 대장암인 것을 특징으로 하는 약제학적 조성물.
  11. 제 1 항의 단일클론항체 또는 이의 단편을 처리하는 단계를 포함하는, 샘플 중에 포함된 베타 1 인테그린(beta 1 integrin)의 정량 방법.
  12. 하기의 단계를 포함하는 베타 1 인테그린(beta 1 integrin)의 과발현에 의한 질환의 진단을 위한 정보를 제공하는 방법:
    (a) 피검자로부터 체외로 분리된 샘플을 취득하는 단계;
    (b) 제 1 항의 단일클론항체 또는 이의 단편을 상기 샘플에 처리하는 단계; 및
    (c) 상기 피검자의 샘플 중에 포함된 베타 1 인테그린의 발현양이 정상군 샘플 중에 포함된 베타 1 인테그린의 발현양 보다 높은지 여부를 확인하는 단계.
  13. 제 11 항에 있어서, 상기 베타 1 인테그린의 과발현에 의한 질환은 암인 것을 특징으로 하는 방법.
  14. 제 1 항의 단일클론항체 또는 이의 단편을 포함하는 베타 1 인테그린(beta 1 integrin) 정량 키트.
PCT/KR2020/000353 2019-01-10 2020-01-08 항 베타 1 인테그린 인간화 항체 및 이를 포함하는 암치료용 약학 조성물 WO2020145669A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/422,265 US20220372132A1 (en) 2019-01-10 2020-01-08 Anti-beta 1 integrin humanized antibody, and pharmaceutical composition for treating cancer, comprising same
EP20737982.7A EP3909981A4 (en) 2019-01-10 2020-01-08 HUMANIZED ANTI-BETA-1 INTEGRIN ANTIBODY AND PHARMACEUTICAL COMPOSITION FOR THE TREATMENT OF CANCER THEREOF
JP2021540155A JP7222104B2 (ja) 2019-01-10 2020-01-08 抗ベータ1インテグリンヒト化抗体及びこれを含む癌治療用薬学組成物
CN202080008501.8A CN113330035A (zh) 2019-01-10 2020-01-08 抗β1整合素人源化抗体以及包含其的用于治疗癌症的药学组合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0003213 2019-01-10
KR20190003213 2019-01-10
KR1020200002048A KR102423686B1 (ko) 2019-01-10 2020-01-07 항 베타 1 인테그린 인간화 항체 및 이를 포함하는 암치료용 약학 조성물
KR10-2020-0002048 2020-01-07

Publications (1)

Publication Number Publication Date
WO2020145669A1 true WO2020145669A1 (ko) 2020-07-16

Family

ID=71520541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/000353 WO2020145669A1 (ko) 2019-01-10 2020-01-08 항 베타 1 인테그린 인간화 항체 및 이를 포함하는 암치료용 약학 조성물

Country Status (3)

Country Link
US (1) US20220372132A1 (ko)
JP (1) JP7222104B2 (ko)
WO (1) WO2020145669A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114053409A (zh) * 2021-11-16 2022-02-18 四川大学华西医院 整合素蛋白作为标志物在制备治疗结直肠癌药物中的应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024040194A1 (en) 2022-08-17 2024-02-22 Capstan Therapeutics, Inc. Conditioning for in vivo immune cell engineering

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8124082B2 (en) * 2004-09-03 2012-02-28 Genentech, Inc. Humanized anti-beta7 antagonists and uses therefor
KR20140030153A (ko) * 2011-03-23 2014-03-11 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 항-인테그린을 사용하여 항혈관 형성 요법을 개선하기 위한 방법 및 조성물
KR20150103094A (ko) * 2012-12-26 2015-09-09 온코시너지, 인코포레이티드 항-인테그린 β1 항체 조성물 및 이의 이용 방법
KR101671069B1 (ko) * 2014-10-24 2016-10-31 충북대학교 산학협력단 베타1 인테그린을 특이적으로 인지하는 항체 및 이의 용도

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8124082B2 (en) * 2004-09-03 2012-02-28 Genentech, Inc. Humanized anti-beta7 antagonists and uses therefor
KR20140030153A (ko) * 2011-03-23 2014-03-11 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 항-인테그린을 사용하여 항혈관 형성 요법을 개선하기 위한 방법 및 조성물
KR20150103094A (ko) * 2012-12-26 2015-09-09 온코시너지, 인코포레이티드 항-인테그린 β1 항체 조성물 및 이의 이용 방법
KR101671069B1 (ko) * 2014-10-24 2016-10-31 충북대학교 산학협력단 베타1 인테그린을 특이적으로 인지하는 항체 및 이의 용도

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
"Remington's Pharmaceutical Sciences", 1995
"WHO", 12 September 2018, PRESS RELEASE, article "Internal Agency for Research on Cancer"
AOUDJIT FVUORI K: "Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells [J", ONCOGENE, vol. 20, no. 36, 2001, pages 4995 - 5004, XP002429314, DOI: 10.1038/sj.onc.1204554
AOUDJIT FVUORI K: "Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells[J", ONCOGENE, vol. 20, no. 36, 2001, pages 4995 - 5004, XP002429314, DOI: 10.1038/sj.onc.1204554
AUSUBEL ET AL.: "Current Protocols in Molecular Biology", 1994, JOHN, WILEY & SONS, INC
CARBONELL WSDELAY MJAHANGIRI APARK CCAGHI MK: "ø 1 integrin targeting potentiates antiangiogenic therapy and inhibits the growth of bevacizumab-resistant glioblastoma", CANCER RES, vol. 73, no. 10, 2013, pages 3145 - 54
HODKINSON PSELLIOTT TWONG WS ET AL.: "ECM overrides DNA damage-induced cell cycle arrest and apoptosis in small-cell lung cancer cells through betal integrin-dependent activation of PI3-kinase [J", CELL DEATH DIFFER, vol. 13, no. 10, 2006, pages 1776 - 1788
HODKINSON PSELLIOTT TWONG WS ET AL.: "ECM overrides DNA damage-induced cell cycle arrest and apoptosis in small-cell lung cancer cells through betal integrin-dependent activation of PI3-kinase[J", CELL DEATH DIFFER, vol. 13, no. 10, 2006, pages 1776 - 1788
JULIANO RL.: "The role of beta 1 integrins in tumors [J].", SEMIN CANCER BIOL, vol. 4, no. 5, 1993, pages 277 - 283
KABAT ET AL.: "Sequences of Proteins of Immunological Interest", 1991, U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
KIM MIN-YOUNG, WOON-DONG CHO, KWON PYO HONG, DA BIN CHOI, JEONG WON HONG, SOSEUL KIM, YOO RI MOON, SEUNG-MYOUNG SON, OK-JUN LEE, H: "Novel monoclonal antibody against beta 1 integrin enhances cisplatin efficacy in human lung adenocarcinoma cells", JOURNAL OF BIOMEDICAL RESEARCH, vol. 30, no. 3, 20 April 2016 (2016-04-20) - May 2016 (2016-05-01), pages 217 - 224, XP055724788 *
KIM MY ET AL., J BIOMEDRES, vol. 30, no. 3, 2016, pages 217 - 24
LEE MSLEE JCCHOI CY ET AL.: "Production and characterization of monoclonal antibody to botulinum neurotoxin type B light chain by phage display", HYBRIDOMA (LARCHMT, vol. 27, no. 1, 2008, pages 18 - 24, XP055053161, DOI: 10.1089/hyb.2007.0532
MANIATIS ET AL.: "A Laboratory Manual", 1988, COLD SPRING HARBOR PRESS, article "Molecular Cloning"
MORELLO VCABODI SSIGISMUND SCAMACHO-LEAL MPREPETTO DVOLANTE MPAPOTTI MTURCO EDEFILIPPI P: "pi integrin controls EGFR signaling and tumorigenic properties of lung cancer cells", ONCOGENE, vol. 30, 2011, pages 4087 - 4096
MOROZEVICH GEKOZLOVA NIPREOBRAZHENSKAYA ME ET AL.: "The role of betal integrin subfamily in anchorage-dependent apoptosis of breast carcinoma cells differing in multidrug resistance [J", BIOCHEMISTRY (MOSC), vol. 71, no. 5, 2006, pages 489 - 495, XP019391973, DOI: 10.1134/S000629790605004X
MOROZEVICH GEKOZLOVA NIPREOBRAZHENSKAYA ME ET AL.: "The role of betal integrin subfamily in anchorage-dependent apoptosis of breast carcinoma cells differing in multidrug resistance[J", BIOCHEMISTRY (MOSC), vol. 71, no. 5, 2006, pages 489 - 495, XP019391973, DOI: 10.1134/S000629790605004X
PARK CC ET AL., CANCER RES, vol. 66, no. 3, 2006, pages 1526 - 35
PARK CCZHANG HJYAO ESPARK CJBISSELL MJ.: "Betal integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts", CANCER RES, vol. 68, no. 11, 2008, pages 4398 - 405, XP055272738, DOI: 10.1158/0008-5472.CAN-07-6390

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114053409A (zh) * 2021-11-16 2022-02-18 四川大学华西医院 整合素蛋白作为标志物在制备治疗结直肠癌药物中的应用

Also Published As

Publication number Publication date
JP7222104B2 (ja) 2023-02-14
JP2022519342A (ja) 2022-03-23
US20220372132A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
US11498972B2 (en) Anti-OX40 antibody and use thereof
WO2020076105A1 (ko) 신규 항-c-kit 항체
TW201604207A (zh) 抗切口3(anti-notch3)抗體及抗體-藥物共軛體
KR20150085828A (ko) 항-ceacam5 항체 및 이의 용도
WO2020145669A1 (ko) 항 베타 1 인테그린 인간화 항체 및 이를 포함하는 암치료용 약학 조성물
WO2020116963A1 (ko) 엔도텔린 수용체 a 활성 조절 항체
KR102423686B1 (ko) 항 베타 1 인테그린 인간화 항체 및 이를 포함하는 암치료용 약학 조성물
WO2020004937A1 (ko) 항-bcma 항체-약물 접합체 및 그 용도
WO2019216675A1 (ko) 조절 t 세포 표면 항원의 에피토프 및 이에 특이적으로 결합하는 항체
WO2022216014A1 (ko) 항-cntn4 항체 및 그의 용도
WO2016084993A1 (ko) 신규 EGFRvIII 항체 및 이를 포함하는 조성물
WO2020242200A1 (ko) 엔도텔린 수용체 a 결합력이 향상된 항체
WO2022131889A1 (ko) Taci 단백질의 용도
US20240018254A1 (en) Anti-cd73 antibody and use thereof
WO2022025585A1 (ko) 항-lilrb1 항체 및 그의 용도
WO2022231032A1 (ko) 항-cntn4 특이적 항체 및 그의 용도
WO2022116079A1 (zh) 一种抗ceacam5的人源化抗体及其制备方法和用途
KR20210043475A (ko) 다중 특이적 융합 단백질 및 이의 용도
WO2018124851A1 (ko) L1cam 단백질에 특이적으로 결합하는 항체; 및 피리미딘 유사체 및/또는 플라틴계 항암제를 포함하는 암의 예방 또는 치료용 약학적 조성물
WO2023027534A1 (ko) 신규 항 muc1항체 및 이의 용도
WO2022244908A1 (ko) 항-bcam 항체 또는 그의 항원 결합 단편
WO2023101438A1 (ko) Smo 인간 항체
WO2024090927A1 (ko) 신규 항-cdcp1 항체 및 이의 용도
WO2017142294A1 (ko) EGFRvIII에 대한 항체 및 이의 용도
WO2023224390A1 (ko) Ccr7의 활성 조절 항체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20737982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021540155

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020737982

Country of ref document: EP

Effective date: 20210810