WO2020145365A1 - 放熱部材 - Google Patents

放熱部材 Download PDF

Info

Publication number
WO2020145365A1
WO2020145365A1 PCT/JP2020/000540 JP2020000540W WO2020145365A1 WO 2020145365 A1 WO2020145365 A1 WO 2020145365A1 JP 2020000540 W JP2020000540 W JP 2020000540W WO 2020145365 A1 WO2020145365 A1 WO 2020145365A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic porous
porous layer
base material
heat dissipation
dissipation member
Prior art date
Application number
PCT/JP2020/000540
Other languages
English (en)
French (fr)
Inventor
恵実 藤▲崎▼
崇弘 冨田
裕亮 尾下
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2020565215A priority Critical patent/JP7431176B2/ja
Priority to DE112020000384.1T priority patent/DE112020000384T5/de
Priority to CN202080008368.6A priority patent/CN113272474A/zh
Publication of WO2020145365A1 publication Critical patent/WO2020145365A1/ja
Priority to US17/305,409 priority patent/US20210341234A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/02Layer formed of wires, e.g. mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/16Layered products comprising a layer of metal next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/041Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1022Titania
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1023Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/62259Fibres based on titanium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F2013/001Particular heat conductive materials, e.g. superconductive elements

Definitions

  • This specification discloses the technology regarding a heat dissipation member.
  • Patent Document 1 discloses a heat dissipation member in which a heat insulation layer is provided on the surface of a heat dissipation layer (base material). Specifically, in the heat dissipation member of Patent Document 1, a heat insulating layer obtained by impregnating a nonwoven fabric with silica aerosol is bonded to a surface of a graphite layer (base material) using an adhesive layer (resin).
  • the heat dissipation member having such a structure can dissipate the heat generated by the heat source and suppress the transfer of the heat generated by the heat source to the space around the heat dissipation member. That is, the heat dissipation member of Patent Document 1 can dissipate the heat generated by the heat source without raising the environmental temperature around the heat source.
  • the heat dissipation member of Patent Document 1 is used in electronic devices such as smartphones.
  • the heat source (electronic component) arranged in the electronic device rises up to about 100°C.
  • the heat radiating member of Patent Document 1 has a sufficient function of radiating the heat of the heat source whose temperature rises to about 100° C., but it is difficult to use it for a heat source whose temperature rises to a higher temperature.
  • the heat dissipation member of Patent Document 1 when used for a heat source whose temperature rises to 500° C. or higher, the heat dissipation member itself deteriorates (deterioration of the graphite layer itself, separation of the graphite layer and the heat insulating layer, etc.) and a sufficient function is obtained.
  • the heat dissipation member disclosed in this specification dissipates heat generated by a heat source.
  • This heat dissipation member is provided on the surface of the base material having a porosity of 5% by volume or less, and has a porosity of 25% by volume or more and 85% by volume or less, and has a lower thermal conductivity than the substrate. It may have an inorganic porous layer.
  • the inorganic porous layer contains ceramic fibers, and 15% by mass or more of the constituent components of the inorganic porous layer may be alumina.
  • the form of a heat dissipation member is shown with a perspective view.
  • the sectional view of the example of use of a heat dissipation member is shown.
  • the perspective view which shows the modification of a heat dissipation member is shown.
  • the perspective view which shows the modification of a heat dissipation member is shown.
  • the perspective view which shows the modification of a heat dissipation member is shown.
  • the perspective view which shows the modification of a heat dissipation member. The perspective view which shows the modification of a heat dissipation member.
  • the perspective view which shows the modification of a heat dissipation member The raw material compounding quantity of the sample used in the experimental example is shown.
  • the result of an experimental example is shown.
  • the heat dissipation member disclosed in this specification can be used, for example, to dissipate heat generated by a heat source to a position away from the heat source.
  • the heat dissipation member includes a base material and an inorganic porous layer which is provided on the surface of the base material and has a thermal conductivity lower than that of the base material.
  • the base material functions as a heat dissipation plate itself that dissipates the heat generated by the heat source, or as a heat transfer material that transfers the heat generated by the heat source to a heat dissipation plate provided at a position distant from the heat source.
  • the inorganic porous layer functions as a heat insulating material that thermally cuts off the heat source and the space around the heat source.
  • the heat dissipation member disclosed in the present specification is provided with the inorganic porous layer on the surface of the base material, it can be suitably used as a heat dissipation member for a heat source that rises to a high temperature of 1000° C. or higher.
  • the base material only needs to have a thermal conductivity capable of exhibiting a function as a heat radiating material, and depending on the purpose of use, for example, the thermal conductivity may be 10 W/mK or more and 400 W/mK or less.
  • the thermal conductivity of the base material may be 50 W/mK or higher, 100 W/mK or higher, 150 W/mK or higher, and 200 W/mK or higher.
  • the thermal conductivity of the base material may be 350 W/mK or less, 300 W/mK or less, 250 W/mK or less, 200 W/mK or less, 150 W/mK or less. May be
  • the base material may have a dense structure, specifically, a porosity of 5% by volume or less, in order to ensure high thermal conductivity.
  • the base material may be formed of a material having a relatively low coefficient of thermal expansion.
  • the dimensional change (expansion/contraction) of the heat dissipation member (base material) due to the temperature change of the heat source is suppressed, and the durability of the heat dissipation member is improved. That is, by lowering the coefficient of thermal expansion of the base material, deterioration of the base material and/or the inorganic porous layer due to dimensional change, separation of the base material and the inorganic porous layer, and the like can be suppressed.
  • the coefficient of thermal expansion of the base material may be 11 ⁇ 10 ⁇ 6 /K or less.
  • the thermal expansion coefficient of the base material can be appropriately selected according to the temperature of the heat source to which the heat dissipation member is applied and the thermal expansion coefficient of the inorganic porous layer.
  • the thermal expansion coefficient of the base material is 10 ⁇ 10 ⁇ 6 /K or less, 8 ⁇ 10 ⁇ 6 /K or less, 6 ⁇ 10 ⁇ 6 /K or less, 5.5 ⁇ 10 ⁇ 6 /K or less, 5 ⁇ 10 -6 / K may be less, may be less 4.5 ⁇ 10 -6 / K, may be not more than 4 ⁇ 10 -6 / K.
  • the coefficient of thermal expansion of the base material depends on the coefficient of thermal expansion of the inorganic porous layer, but may be, for example, 1 ⁇ 10 ⁇ 6 /K or more.
  • the material of the base material is not particularly limited, but may be metal, alloy, ceramics, or the like.
  • metals include molybdenum, tungsten, iron and the like.
  • alloys include Kovar, Invar, carbon steel, chrome steel, nickel steel, stainless steel and the like.
  • ceramics include AlN, SiC, SiO 2 , BN, Si 3 N 4 , MgO, BeO, Al 2 O 3 and the like.
  • the material of the base material is preferably AlN, SiC or Si 3 N 4 .
  • the base material made of these materials can satisfy the above-mentioned characteristics (heat conductivity is 10 W/mK or more and 400 W/mK or less, porosity is 5 vol% or less). In addition, all of the above materials have a coefficient of thermal expansion of 11 ⁇ 10 ⁇ 6 /K or less.
  • the base material may be a composite material using a plurality of the above materials as long as the thermal expansion coefficient is 11 ⁇ 10 ⁇ 6 /K or less.
  • the inorganic porous layer may be provided only on one surface (front surface) of the base material, or may be provided on both surfaces (front surface and back surface) of the base material.
  • the inorganic porous layer may cover both surfaces of two base materials facing each other with a space.
  • the base material first base material, second base material
  • the base material may be bonded to both surfaces of one inorganic porous layer.
  • the heat of the second device can be prevented from being applied to the first device, and the heat generated by the second device can be radiated by the second base material. That is, by bonding the base material to both surfaces of one inorganic porous layer, in addition to the function as a heat dissipation member for a plurality of devices (heat sources), it also functions as a partition plate for insulating the devices.
  • the shape of the heat dissipation member (the shape of the base material) is not particularly limited, but may be linear (wire-like) or plate-like (sheet-like).
  • the inorganic porous layer may cover the outer peripheral surface of the substrate.
  • the inorganic porous layer may cover the entire exposed surface of the base material, or may cover the end surface in the thickness direction (front surface and/or back surface). The surface (side surface) of the width direction end may be covered, or the surface of the length direction end may be covered.
  • the inorganic porous layer covers both the front surface of the first plate-shaped base material (first base material) and the back surface of the second plate-shaped base material (second base material). It may be coated.
  • the inorganic porous layer may cover the entire surface of the base material, or may cover a part of the surface of the base material.
  • the inorganic porous layer may cover a portion of the base material excluding the end portions (one end or both ends).
  • the inorganic porous layer covers the front and back surfaces of the plate-shaped substrate (the surface of the end in the thickness direction)
  • the inorganic porous layer is a part of the front and back surface (for example, one or both ends in the longitudinal direction).
  • the inorganic porous layer may cover the entire back surface and cover the front surface, for example, a portion excluding both ends in the longitudinal direction.
  • the inorganic porous layer may have a thermal conductivity capable of exerting a function as a heat insulating layer that insulates the heat source (base material exposed to the heat source) and the space around the heat source.
  • the thermal conductivity of the inorganic porous layer may be lower than that of the substrate, and may be, for example, 0.05 W/mK or more and 3 W/mK or less.
  • the thermal conductivity of the inorganic porous layer may be 0.1 W/mK or higher, 0.2 W/mK or higher, 0.3 W/mK or higher, 0.5 W/mK. It may be above, may be 1 W/mK or above, and may be 2 W/mK or above.
  • the thermal conductivity of the inorganic porous layer may be 2 W/mK or less, 1 W/mK or less, 0.5 W/mK or less, and 0.3 W/mK or less. It may be 0.2 W/mK or less, and may be 0.1 W/mK or less.
  • the heat dissipation member radiates the heat generated by the heat source by the base material, and the heat source (or the base material) and the space around the heat source are insulated by the inorganic porous layer. Therefore, it is preferable that the substrate and the inorganic porous layer have a large difference in thermal conductivity.
  • the thermal conductivity of the base material may be 100 times or more the thermal conductivity of the inorganic porous layer.
  • the thermal conductivity of the base material may be 300 times or more the thermal conductivity of the inorganic porous layer, and may be 500 times or more the thermal conductivity of the inorganic porous layer.
  • the conductivity may be 600 times or more, and the thermal conductivity of the inorganic porous layer may be 1000 times or more.
  • the inorganic porous layer may be made of a uniform material in the thickness direction (from the surface in contact with the surface of the base material to the surface exposed to the external environment). That is, the inorganic porous layer may be a single layer. Further, the inorganic porous layer may be composed of a plurality of layers having different compositions in the thickness direction. That is, the inorganic porous layer may have a multilayer structure in which a plurality of layers are laminated. Alternatively, the inorganic porous layer may have a graded structure in which the composition gradually changes in the thickness direction. When the inorganic porous layer is a single layer, the heat dissipation member can be easily manufactured (step of molding the inorganic porous layer on the surface of the base material).
  • the inorganic porous layer has a multilayer structure or a gradient structure
  • the characteristics of the inorganic porous layer can be changed in the thickness direction.
  • the structure of the inorganic porous layer (single layer, multilayer, inclined structure) can be appropriately selected according to the usage environment to which the heat dissipation member is applied.
  • the inorganic porous layer may include ceramic fibers. That is, the inorganic porous layer may be composed of a matrix (matrix) and ceramic fibers. The ceramic fiber suppresses a decrease in strength (mechanical strength) of the inorganic porous layer.
  • the inorganic porous layer contains the ceramic fiber, the inorganic porous layer itself can absorb the influence of the difference in thermal expansion coefficient between the base material and the inorganic porous layer. Specifically, since the inorganic porous layer can be deformed following the dimensional change (thermal expansion, thermal contraction) of the base material, it is possible to prevent the inorganic porous layer from peeling from the base material. ..
  • the inorganic porous layer may contain 15% by mass or more of an alumina component. That is, 15% by mass or more of the constituent components of the inorganic porous layer may be alumina. By including 15% by mass or more of the alumina component, the melting point of the inorganic porous layer can be maintained high, and the shape of the heat dissipation member (inorganic porous layer) can be maintained even when the heat source is at a high temperature. The durability can be improved.
  • Alumina has a relatively small coefficient of thermal expansion (7.2 ⁇ 10 ⁇ 6 /K), and the inorganic porous layer contains 15% by mass or more of the alumina component, so that the heat dissipation member ( The dimensional change of the inorganic porous layer) is suppressed, and the durability of the heat dissipation member is improved.
  • the alumina component may be 15% by mass or more, 20% by mass or more, 30% by mass or more, 40% by mass or more, or 50% by mass or more of the constituent components of the inorganic porous layer. Good.
  • the alumina component may form a matrix or a ceramic fiber (alumina fiber).
  • the inorganic porous layer may contain a material having a coefficient of thermal expansion of less than 5 ⁇ 10 ⁇ 6 /K as a matrix.
  • materials include mullite (Al 6 O 13 Si 2 ), silicon dioxide (SiO 2 ), silicon carbide (SiC), aluminum nitride (AlN), low thermal expansion glass, aluminum titanate (TiO 2 ⁇ Al 2 O 3 ). , Zirconium phosphate, spodumene (LiAlSi 2 O 6 ), eucryptite (LiAlSiO 4 ), and the like.
  • the inorganic porous layer may include at least one of the above materials as a matrix.
  • the thermal expansion coefficient of the material contained in the matrix of the inorganic porous layer may be less than 3 ⁇ 10 ⁇ 6 /K or less than 2 ⁇ 10 ⁇ 6 /K.
  • cordierite is suitable as the matrix of the inorganic porous layer.
  • Cordierite has high heat resistance and a small coefficient of thermal expansion (less than 0.1 ⁇ 10 ⁇ 6 /K). Therefore, when the matrix contains cordierite, the dimensional change of the heat dissipation member (inorganic porous layer) due to the temperature change of the heat source is suppressed, and the durability of the heat dissipation member is improved.
  • the material having a thermal expansion coefficient of less than 5 ⁇ 10 ⁇ 6 /K may be 30% by mass or more, and may be 40% by mass or more of the entire inorganic porous layer (ceramic fiber+matrix). , 50 mass% or more, 60 mass% or more, 70 mass% or more, and 80 mass% or more. Further, the material having a coefficient of thermal expansion of less than 5 ⁇ 10 ⁇ 6 /K may be 60% by mass or more, 70% by mass or more, and 80% by mass or more of the matrix of the inorganic porous layer. It may be 90% by mass or more, and may be 100% by mass. That is, the inorganic porous layer may be one in which ceramic fibers are contained in a matrix containing a material having a thermal expansion coefficient of less than 5 ⁇ 10 ⁇ 6 /K.
  • the porosity of the inorganic porous layer may be 25% by volume or more and 85% by volume or less. When the porosity is 25% by volume or more, the inorganic porous layer can sufficiently exhibit the function as the heat insulating layer. When the porosity is 85% by volume or less, the strength of the inorganic porous layer is sufficiently secured, and the durability of the heat dissipation member (inorganic porous layer) can be improved.
  • the porosity of the inorganic porous layer may be 30% by volume or more, 40% by volume or more, 50% by volume or more, 60% by volume or more, and 62% by volume. Or more, 64% by volume or more, 68% by volume or more, and 70% by volume or more.
  • the porosity of the inorganic porous layer may be 80% by volume or less, 70% by volume or less, 68% by volume or less, 66% by volume or less, and 64% by volume. It may be less than or equal to 62% by volume, or less than or equal to 60% by volume.
  • the porosity of the inorganic porous layer may be 25% by volume or more and 85% by volume or less as a whole, and the porosities may be different in the thickness direction. .. In this case, a portion having a porosity of less than 25% by volume or a portion having a porosity of more than 85% by volume may be partially present.
  • the coefficient of thermal expansion of the inorganic porous layer may be adjusted according to the coefficient of thermal expansion of the substrate and is not particularly limited, but may be 1 ⁇ 10 ⁇ 6 /K or more and 6 ⁇ 10 ⁇ 6 /K or less.
  • the coefficient of thermal expansion of the inorganic porous layer is 1 ⁇ 10 ⁇ 6 /K or more, the influence of the difference in coefficient of thermal expansion between the base material and the inorganic porous layer can be reduced.
  • the coefficient of thermal expansion of the inorganic porous layer is 6 ⁇ 10 ⁇ 6 /K or less, the dimensional change of the inorganic porous layer due to the temperature change of the heat source is suppressed, and the durability of the heat dissipation member is improved.
  • the coefficient of thermal expansion of the inorganic porous layer may be 2 ⁇ 10 ⁇ 6 /K or more, 3 ⁇ 10 ⁇ 6 /K or more, and 3.5 ⁇ 10 ⁇ 6 /K or more. 4 ⁇ 10 ⁇ 6 /K or more, 4.5 ⁇ 10 ⁇ 6 /K or more, 5 ⁇ 10 ⁇ 6 /K or more, 5.5 ⁇ 10 ⁇ 6 /K It may be K or more.
  • the thermal expansion coefficient of the inorganic porous layer may be 4.5.5 ⁇ 10 ⁇ 6 /K or less, 5 ⁇ 10 ⁇ 6 /K or less, and 4.5 ⁇ 10 ⁇ 6 /K. It may be K or less and may be 4 ⁇ 10 ⁇ 6 /K or less.
  • the thermal expansion coefficient of the inorganic porous layer is ⁇ 1 and the thermal expansion coefficient of the base material is ⁇ 2, the thermal expansion coefficients of both may be adjusted so as to satisfy the following formula 1.
  • the value of “ ⁇ 1/ ⁇ 2” may be 0.55 or more, may be 0.6 or more, may be 0.7 or more, may be 0.8 or more, and may be 0.9 or more.
  • the thickness of the inorganic porous layer may be 1 mm or more, depending on the purpose of use (required performance). When the thickness of the inorganic porous layer is 1 mm or more, the heat insulating property can be sufficiently exhibited. In the case of an inorganic porous layer in which ceramic fibers are not used, it is difficult to maintain the thickness at 1 mm or more because it shrinks in the manufacturing process (for example, the firing process). Since the inorganic porous layer disclosed in the present specification contains the ceramic fiber, the shrinkage in the manufacturing process is suppressed, and the thickness of 1 mm or more can be maintained.
  • the thickness of the inorganic porous layer may be 30 mm or less, 20 mm or less, 15 mm or less, 100 mm or less, or 5 mm or less.
  • the inorganic porous layer may include granular particles of 0.1 ⁇ m or more and 10 ⁇ m or less. When the inorganic porous layer is molded (fired), the ceramic fibers are bonded to each other through the granular particles to obtain a high-strength inorganic porous layer.
  • the ceramic particles may be used as a bonding material for bonding together the aggregates that form the skeleton of the inorganic porous layer such as plate-shaped ceramic particles and ceramic fibers described below.
  • the ceramic particles may be granular particles of 0.1 ⁇ m or more and 10 ⁇ m or less. It should be noted that the ceramic particles may have a large particle size due to sintering or the like in the manufacturing process (for example, a firing process). That is, as a raw material for producing the inorganic porous layer, the ceramic particles may be granular particles of 0.1 ⁇ m or more and 10 ⁇ m or less (average particle size before firing). The ceramic particles may be 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the material of the ceramic particles one having a small coefficient of thermal expansion (less than 5 ⁇ 10 ⁇ 6 /K) may be used.
  • materials having a low thermal expansion coefficient include mullite, silicon dioxide, silicon carbide, aluminum nitride, low thermal expansion glass, aluminum titanate, zirconium phosphate, spodumene, and eucryptite.
  • a metal oxide may be used as the material of the ceramic particles.
  • metal oxides include alumina (Al 2 O 3 ), spinel (MgAl 2 O 4 ), titania (TiO 2 ), zirconia (ZrO 2 ), magnesia (MgO), mullite, cordierite (MgO.Al 2 O). 3 ⁇ SiO 2 ) and the like.
  • plate-like ceramic particles may be included in the inorganic porous layer.
  • the plate-shaped ceramic particles By using the plate-shaped ceramic particles, a part of the ceramic fibers can be replaced with the plate-shaped ceramic particles.
  • the length (size in the longitudinal direction) of the plate-shaped ceramic particles is shorter than the length of the ceramic fibers. Therefore, by using the plate-like ceramic particles, the heat transfer path in the inorganic porous layer is divided, and heat transfer in the inorganic porous layer does not easily occur. As a result, the heat insulating performance of the inorganic porous layer is further improved.
  • the “plate-like ceramic particles” mean ceramic particles having an aspect ratio of 5 or more and a longitudinal size of 5 ⁇ m or more and 100 ⁇ m or less.
  • the plate-shaped ceramics can function as an aggregate and a reinforcing material in the inorganic porous layer. That is, the plate-like ceramics improve the strength of the inorganic porous layer, like the ceramic fibers, and further suppress the shrinkage of the inorganic porous layer in the manufacturing process.
  • the plate-shaped ceramic particles By using the plate-shaped ceramic particles, the heat transfer path in the inorganic porous layer can be divided. Therefore, as compared with the case where only the ceramic fiber is used as the aggregate, the heat generated by the heat source is less likely to be transferred in the inorganic porous layer, and the environment around the heat source and the heat dissipation member can be further insulated.
  • the plate-shaped ceramic particles may have a rectangular plate shape or a needle shape, and may have a longitudinal size of 5 ⁇ m or more and 100 ⁇ m or less.
  • the size in the longitudinal direction is 5 ⁇ m or more, excessive sintering of ceramic particles can be suppressed.
  • the size in the longitudinal direction is 100 ⁇ m or less, the effect of dividing the heat transfer path in the inorganic porous layer can be obtained as described above, and it can be suitably applied to a heat dissipation member used in a high temperature environment.
  • the plate-like ceramic particles may have an aspect ratio of 5 or more and 100 or less.
  • the aspect ratio is 5 or more, it is possible to excellently suppress the sintering of the ceramic particles, and when the aspect ratio is 100 or less, the strength reduction of the plate-shaped ceramic particles themselves is suppressed.
  • the material for the plate-shaped ceramic particles in addition to the metal oxide used as the material for the ceramic particles, talc (Mg 3 Si 4 O 10 (OH) 2 ), minerals such as mica, kaolin, clay, glass, etc. Can also be used.
  • the inorganic porous layer includes ceramic fibers.
  • the ceramic fiber can function as an aggregate and a reinforcing material in the inorganic porous layer. That is, the ceramic fibers improve the strength of the inorganic porous layer and further suppress the shrinkage of the inorganic porous layer in the manufacturing process.
  • the length of the ceramic fiber may be 50 ⁇ m or more and 200 ⁇ m or less. Further, the diameter (average diameter) of the ceramic fibers may be 1 to 20 ⁇ m.
  • the volume ratio of the ceramic fibers in the inorganic porous layer (the volume ratio of the ceramic fibers in the material forming the inorganic porous layer) may be 5% by volume or more and 25% by volume or less.
  • the ceramic fiber By including 5% by volume or more of the ceramic fiber, it is possible to sufficiently suppress the shrinkage of the ceramic particles in the inorganic porous layer in the manufacturing process (firing step) of the inorganic porous layer. Further, by setting the volume ratio of the ceramic fibers to be 25% by volume or less, the heat transfer path in the inorganic porous layer can be divided, and it can be suitably applied to a heat dissipation member used in a high temperature environment.
  • the material of the ceramic fiber the same material as the material of the plate-like ceramic particles described above can be used.
  • the content of the aggregate and the reinforcing material (ceramic fibers, plate-like ceramic particles, etc., hereinafter simply referred to as aggregate) in the inorganic porous layer may be 15% by mass or more and 50% by mass or less.
  • the content of the aggregate in the inorganic porous layer is 15% by mass or more, the shrinkage of the inorganic porous layer in the firing step can be sufficiently suppressed.
  • the content of the aggregate in the inorganic porous layer is 50% by mass or less, the aggregate is favorably bonded to each other by the ceramic particles.
  • the content of the aggregate in the inorganic porous layer may be 20% by mass or more, 30% by mass or more, and 40% by mass or more.
  • the content of the aggregate in the inorganic porous layer may be 40% by mass or less, and may be 30% by mass or less.
  • both the ceramic fibers and the plate-like ceramic particles can function as an aggregate and a reinforcing material in the inorganic porous layer.
  • the inorganic porous layer can be surely prevented from shrinking after the production of the heat dissipation member (after firing).
  • the content of ceramic fibers in the layer may be at least 5% by weight or more.
  • the content of the ceramic fibers may be adjusted in the range of 5% by mass to 50% by mass.
  • the ratio (weight ratio) of the plate-like ceramic particles in the whole aggregate may be 90% or less. That is, in terms of mass ratio, at least 10% or more of the aggregate may be ceramic fibers.
  • the proportion of the plate-shaped ceramic particles in the entire aggregate may be 60% or less, 50% or less, 40% or less, or 34% or less. Further, the proportion of the plate-shaped ceramic particles in the entire aggregate may be 33% or more, 40% or more, 50% or more, and 60% or more.
  • the content of the plate-like ceramic particles in the inorganic porous layer may be 10% by mass or more, 20% by mass or more, and 30% by mass or more.
  • the content of the plate-shaped ceramic particles may be 30% by mass or less, 20% by mass or less, and 10% by mass or less.
  • the inorganic porous layer may be made of at least one material selected from ceramic particles (granular particles), plate-like ceramic particles, and ceramic fibers.
  • the ceramic particles, the plate-shaped ceramic particles, and the ceramic fibers may contain alumina, cordierite, titania, etc. as constituent components.
  • the ceramic particles, the plate-shaped ceramic particles, and the ceramic fibers may be formed of alumina, cordierite, titania, or the like.
  • the inorganic porous layer may include the alumina component in an amount of 15% by mass or more in the entire constituent material (constituent substance).
  • the inorganic porous layer contains at least ceramic fibers, though the constituent components of the matrix and the ceramic fibers are arbitrary.
  • SiO 2 contained in the inorganic porous layer may be 25% by mass or less. Formation of an amorphous layer in the inorganic porous layer is suppressed, and heat resistance (durability) of the inorganic porous layer is improved.
  • a raw material obtained by mixing a binder, a pore-forming material, and a solvent may be used.
  • An inorganic binder may be used as the binder.
  • the inorganic binder include alumina sol, silica sol, titania sol, zirconia sol and the like. These inorganic binders can improve the strength of the inorganic porous layer after firing.
  • the pore-forming material polymer-based pore-forming material, carbon-based powder or the like may be used. Specific examples thereof include acrylic resin, melamine resin, polyethylene particles, polystyrene particles, carbon black powder, and graphite powder.
  • the pore-forming material may have various shapes depending on the purpose, and may have, for example, a spherical shape, a plate shape, or a fibrous shape.
  • the porosity and pore size of the inorganic porous layer can be adjusted by selecting the addition amount, size and shape of the pore-forming material. Any solvent can be used as long as it can adjust the viscosity of the raw material without affecting other raw materials, and for example, water, ethanol, isopropyl alcohol (IPA) or the like can be used.
  • IPA isopropyl alcohol
  • the above-mentioned inorganic binder is also a constituent material of the inorganic porous layer. Therefore, when using alumina sol, titania sol, or the like when forming the inorganic porous layer, the inorganic porous layer only needs to contain 15% by mass or more of the alumina component in the entire constituent material including the inorganic binder.
  • the above-mentioned raw material may be applied to the surface of the base material, and the inorganic porous layer may be formed on the surface of the base material through drying and firing.
  • a method for applying the raw material dip coating, spin coating, spray coating, slit die coating, thermal spraying, aerosol deposition (AD) method, printing, brush coating, iron coating, mold cast molding or the like can be used.
  • AD aerosol deposition
  • the target inorganic porous layer has a large thickness, or when the inorganic porous layer has a multilayer structure, coating of the raw material and drying of the raw material are repeated multiple times to adjust the target thickness or the multilayer structure. You may.
  • the above coating method can also be applied as a coating method for forming a coating layer described later.
  • a coating layer may be provided on the surface of the inorganic porous layer opposite to the surface on which the base material is provided. That is, the inorganic porous layer may be sandwiched between the base material and the coating layer.
  • the coating layer may be provided on the entire surface of the base material of the inorganic porous layer (the surface opposite to the surface on which the base material is provided) or may be provided on a part of the surface of the inorganic porous layer. It may be.
  • the inorganic porous layer can be protected (reinforced) by providing the coating layer.
  • the material of the coating layer may be porous or dense ceramics.
  • porous ceramics used in the coating layer include zirconia (ZrO 2 ), partially stabilized zirconia, and stabilized zirconia.
  • yttria-stabilized zirconia (ZrO 2 —Y 2 O 3 :YSZ) a metal oxide obtained by adding Gd 2 O 3 , Yb 2 O 3 , Er 2 O 3 or the like to YSZ, ZrO 2 —HfO 2 —Y 2 O 3 , ZrO 2 --Y 2 O 3 --La 2 O 3 , ZrO 2 --HfO 2 --Y 2 O 3 --La 2 O 3 , HfO 2 --Y 2 O 3 , CeO 2 --Y 2 O 3 , Gd 2 Zr 2 O 7 , Sm 2 Zr 2 O 7 , LaMnAl 11 O 19 , YTa 3 O 9 , Y 0.7 La 0.3 Ta 3 O 9 , Y 1.08 Ta 2.
  • Examples of dense ceramics used in the coating layer include alumina, silica, zirconia, and the like. Further, by removing the ceramic fibers from the above-mentioned constituent material of the inorganic porous layer, a low porosity (denseness) is obtained, and therefore, it may be used as a coating layer. Alternatively, the coating layer may be made of the same material as the inorganic porous layer without using a pore-forming material. By using porous or dense ceramics as the coating layer, it is possible to reinforce the inorganic porous layer and prevent the inorganic porous layer from peeling off from the surface of the substrate.
  • a dense ceramic used as the coating layer, for example, high temperature gas can be prevented from passing through the inorganic porous layer, or high temperature gas can be prevented from staying in the inorganic porous layer. As a result, the effect of suppressing the heat of the high temperature gas from being transferred to the base material can be expected.
  • the use of dense ceramics as the coating layer improves the effect of electrically insulating the base material from the external environment.
  • the material of the coating layer may be porous or dense glass.
  • the use of porous or dense glass as the coating layer also reinforces the inorganic porous layer and can prevent the inorganic porous layer from peeling off from the surface of the substrate.
  • the material of the coating layer may be metal. By providing the metal layer on the surface of the inorganic porous layer, radiant heat from the outside can be reflected, and heat applied to the base material can be further suppressed.
  • the heat dissipation member 10 includes a base material 2 made of aluminum nitride, and a porous protective layer 4 provided on both surfaces of the base material 2 (both surfaces of the end face in the thickness direction).
  • the porous protective layer 4 is an example of an inorganic porous layer.
  • the porous protective layer 4 is bonded to the entire surface of one surface (back surface) of the base material 2, and the other surface (front surface) excludes end portions (both end portions) 2a and 2b in the longitudinal direction of the base material 2. It is joined to the middle part.
  • the porous protective layer 4 is also provided on the side surfaces (four surfaces) of the base material 2.
  • the heat radiating member 10 is a heat conducting member that transfers heat from one end 2a (heat generating part side) to the other end 2b (heat radiating part side).
  • the heat dissipating member 10 was manufactured by immersing the base material 2 in the raw material slurry, drying and firing it while masking a part of the surface of the base material 2 (portions corresponding to the ends 2a and 2b).
  • the raw material slurry had a total of 50% by mass of alumina fibers (average fiber length 140 ⁇ m) 20% by mass and plate-like alumina particles (longitudinal size 10 ⁇ m) 30% by mass as the main raw material of the alumina component, and cordierite particles (average particle size 1 0.5 ⁇ m), 50% by mass, 10% by mass of alumina sol (1.1% by mass of alumina contained in alumina sol), 40% by mass of acrylic resin (average particle size 8 ⁇ m), and ethanol were mixed to prepare.
  • the alumina sol, acrylic resin, and ethanol were externally added to the alumina fibers and cordierite particles.
  • the raw material slurry was adjusted so that the viscosity was 2000 mPa ⁇ s.
  • the base material 2 After immersing the base material 2 in the raw material slurry to apply the raw materials to the front and back surfaces of the base material 2, the base material 2 was put into a dryer and dried at 200° C. (atmosphere atmosphere) for 1 hour. As a result, a porous protective layer having a thickness of about 300 ⁇ m was formed on the front and back surfaces of the base material 2. After that, the step of immersing the base material 2 in the raw material slurry and drying it was repeated three times to form a 1.2 mm porous protective layer on the front and back surfaces of the base material 2. Then, the base material 2 was placed in an electric furnace and baked at 800° C. (atmosphere atmosphere) for 3 hours to prepare the heat dissipation member 10.
  • the porosity of the porous protective layer 4 was 67% by volume and the thermal expansion coefficient was 4.5 ⁇ 10 ⁇ 6 /K.
  • the cordierite particles are present between the front surface (front and back surfaces) of the base material 2 and the aggregate (alumina fiber and the like), so that the surface of the base material 2 and the aggregate are separated. It was confirmed that they were joined. It was also confirmed from the results of X-ray diffraction that cordierite was contained in the porous suture layer 4.
  • FIG. 2 shows a state in which the heat dissipation member 10 is joined to the heat generating part 20 and the heat dissipation part (heat dissipation plate) 22.
  • One end 2 a of the heat dissipation member 10 is joined to the heat generating part 20, and the other end 2 b is joined to the heat dissipation part 22.
  • the heat received by the heat generating portion 20 moves through the base material 2 and is radiated by the heat radiating portion 22. Since the porous protective layer 4 is bonded to the front surface (intermediate portion) and the back surface of the heat conducting member 10, heat radiation from the base material 2 is suppressed between the heat generating portion (heat source) 20 and the heat radiating portion 22. Therefore, it is possible to prevent heat from being applied to devices and the like provided in the space 30 near the front surface of the heat conduction member 10 and the space 32 near the back surface of the heat dissipation member 10.
  • the heat dissipating members 10a to 10e differ from the heat dissipating member 10 in the shape of the base material, the formation position of the porous protective layer, and the presence or absence of the coating layer.
  • the heat radiating members 10a to 10e were adjusted according to the purpose such as the masking position, the conditions for forming the porous protective layer, and the firing conditions after forming the porous protective layer. It was manufactured through the same process. In the following description, description of features common to the heat dissipation member 10 may be omitted.
  • the porous protective layer 4 is provided only on the surface of the base material 2 (one of the end faces in the thickness direction).
  • one end 2a of the back surface of the base material 2 is joined to the heat generating part, and the other end 2b is joined to the heat dissipation part (heat dissipation plate).
  • one end of the heat dissipation member 10a is suppressed while the heat of the heat generating portion is suppressed from being dissipated to the surface side of the heat dissipation member 10a (the side where the porous protection layer 4 is provided) by the porous protection layer 4.
  • the heat of 2a can be transferred to the other end 2b.
  • the porous protection layer 4 may be provided in an intermediate portion of the base member 2 except for the longitudinal end portions (both ends) 2a and 2b, similarly to the heat dissipation member 10 (see also FIG. 1). ).
  • the heat generating portion and/or the heat radiating portion may be bonded to the surface of the base material 2.
  • the heat dissipation member 10b shown in FIG. 4 is a modification of the heat dissipation member 10a.
  • the coating layer 6 is provided on the surface of the porous protective layer 4 (the surface opposite to the surface on which the base material 2 is provided).
  • the coating layer 6 was formed by forming the porous protective layer 4 on the surface of the base material 2, applying a raw material slurry on the surface of the porous protective layer 4 using a spray, and then drying and firing.
  • the raw material slurry used for forming the coating layer 6 was 20% by mass of alumina fibers (average fiber length 140 ⁇ m), 30% by mass of plate-like alumina particles (longitudinal size 10 ⁇ m), and a total of 50% by mass, and cordierite particles ( 50 mass% of the average particle diameter of 1.5 ⁇ m, 10 mass% of alumina sol (1.1 mass% of alumina contained in the alumina sol), and ethanol were mixed to prepare. That is, the raw material slurry used for forming the coating layer 6 is obtained by removing the pore-forming material (acrylic resin) from the raw material slurry used for forming the porous protective layer 4.
  • the coating layer 6 has a denser structure than the porous protective layer 4, and thus functions as a reinforcing material for the porous protective layer 4.
  • the material of the coating layer 6 can be appropriately changed to, for example, the above-mentioned material according to the purpose.
  • the porous protective layer 4 may be provided at an intermediate portion of the base material 2 excluding the longitudinal end portions (both end portions) 2a and 2b. In that case, the heat generating portion and/or the heat radiating portion may be bonded to the surface of the base material 2.
  • the heat dissipation member 10c shown in FIG. 5 is a modified example of the heat dissipation member 10b.
  • the coating layer 6 is intermittently (partially) provided on the surface of the porous protective layer 4 in the longitudinal direction of the heat dissipation member 10c.
  • the coating layer 6 is peeled from the porous protective layer 4 by intermittently providing the coating layer 6 on the surface of the porous protective layer 4. Can be suppressed.
  • the porous protective layer 4 may be provided at an intermediate portion of the base material 2 excluding the longitudinal end portions (both end portions) 2a and 2b. In that case, the heat generating portion and/or the heat radiating portion may be bonded to the surface of the base material 2.
  • the characteristics of the heat dissipation members 10b and 10c (providing a coating layer on the surface of the porous protective layer) can also be applied to the heat dissipation members 10 and 10a.
  • first base material 2X, second base material 2Y are bonded to both surfaces (front and back surfaces) of the porous protective layer 4.
  • one porous protective layer 4 is connected to two base materials (first base material 2X and second base material 2Y) that face each other with a space.
  • a first device (not shown), which is a heat source arranged on the first base material 2X side, is joined to the first base material 2X, and the first base material 2Y is arranged on the second base material 2Y side.
  • a second device (not shown) that is a heat source is joined.
  • the first base material 2X and the second base material 2Y can radiate heat generated from each device.
  • the porous protective layer 4 can suppress the heat of one device (for example, the first device) from being applied to the other device (the second device). That is, the heat dissipation member 410 functions as a heat dissipation plate for two devices and also as a partition plate for insulating between the two devices.
  • the base material 2 is formed of a linear metal.
  • end portions (both end portions) 2a and 2b in the longitudinal direction of the linear base material 2 are exposed. That is, in the heat dissipation member 10e, the porous protective layer 4 is bonded to the intermediate portion of the base material 2 excluding the end portions 2a and 2b.
  • the heat radiating member 10e like the heat radiating members 10 to 10d, has one end 2a joined to the heat generating portion and the other end 2b joined to the heat radiating portion, so that the heat of the heat generating portion (heat source) is radiated. It can dissipate heat.
  • the porous protective layer 4 is provided in the intermediate portion in the longitudinal direction of the heat dissipation member 10e, it is possible to prevent heat from being applied to the components existing around the intermediate portion.
  • the porous protective layer is prepared by mixing the alumina main component (alumina fiber and plate-like alumina particles), cordierite particles, alumina sol, acrylic resin and ethanol to prepare a raw material slurry, and using the base material (aluminum nitride, metal). ) Was dipped in the raw material slurry, and then dried and fired to prepare.
  • the ratio of the alumina component and the cordierite particles was changed and the state of the porous protective layer after firing was confirmed.
  • the compounding amounts of alumina fibers, plate-like alumina particles, titania particles and cordierite particles are changed as shown in FIG. 8 so that the total amount of alumina fibers, plate-like alumina particles, titania particles and cordierite particles is 100.
  • 10% by mass of alumina sol (1.1% by mass of alumina contained in alumina sol) and 40% by mass of acrylic resin are added by external coating, and the slurry viscosity is adjusted with ethanol to prepare a raw material slurry. It was created. Note that Samples 6 and 9 to 13 did not use plate-like alumina particles, and Samples 1 and 7 to 12 did not use titania particles.
  • the raw material slurry was applied to an aluminum nitride plate (base material), dried at 200° C. in the air for 1 hour, and then baked at 800° C. in the air for 3 hours.
  • the number of times the raw material slurry was applied to each sample was adjusted so that a porous protective layer of about 1.2 mm was formed on the aluminum nitride plate.
  • the sample 10 used the silicon carbide board as a base material instead of the aluminum nitride board.
  • a silicon nitride plate was used as the base material instead of the aluminum nitride plate.
  • the appearance of the fired sample was evaluated. For appearance evaluation, the presence or absence of cracks, peeling, etc. was visually observed. In FIG. 9, “ ⁇ ” is assigned to the sample in which cracks and peeling did not occur, and “x” was assigned to the sample in which cracks and peeling occurred.
  • the proportion (mass %) of the alumina component in the porous protective layer was measured. Further, the porosity (volume %), the thermal conductivity and the thermal expansion coefficient of the porous protective layer and the substrate were measured. The porosity, thermal conductivity and thermal expansion coefficient were measured separately for the porous protective layer and the substrate.
  • the amount of aluminum was measured using an ICP emission spectrometer (PS3520UV-DD, manufactured by Hitachi High-Tech Science Co., Ltd.), and the results are shown as oxide conversion (Al 2 O 3 ).
  • the porosity was measured by using a mercury porosimeter in accordance with JIS R1655 (a method for testing the pore size distribution of a molded body by the mercury intrusion method for fine ceramics), and the total pore volume (unit: cm 3 /g) and the gas substitution formula
  • the apparent density (unit: g/cm 3 ) measured with a densitometer (Acupic 1330, manufactured by Micromeritics) was used to calculate from the following formula (2).
  • the thermal conductivity was calculated by multiplying the thermal diffusivity, the specific heat capacity and the bulk density.
  • the thermal diffusivity was measured using a laser flash method thermal constant measuring device, and the specific heat capacity was measured using a DSC (differential scanning calorimeter) according to JIS R1611 (thermal diffusivity/specific heat capacity/thermal conductivity test by laser flash method of fine ceramics). According to the method), the measurement was performed at room temperature.
  • the bulk density (unit: cm 3 /g) was calculated from the following formula (3).
  • the thermal diffusivity was obtained by forming the raw material slurry described above into a bulk body having a diameter of 10 mm and a thickness of 1 mm
  • the specific heat capacity was obtained by forming the raw material slurry described above into a bulk body having a diameter of 5 mm and a thickness of 1 mm.
  • a sample for thermal diffusivity and specific heat capacity measurement was prepared by firing at °C and measured.
  • the above raw material slurry was molded into a bulk body of 3 mm x 4 mm x 20 mm, and then the bulk body was fired at 800°C to prepare a measurement sample. Then, the measurement sample was measured using a thermal expansion meter in accordance with JIS R1618 (a method for measuring thermal expansion by thermomechanical analysis of fine ceramics). The measurement result is shown in FIG.
  • sample 12 has an alumina component ratio of less than 15% by mass, so that the bonding force between the ceramics (particles and fibers) is reduced and cracks are generated in the porous protective layer. ..
  • This result shows that when the thermal expansion coefficient ratio ( ⁇ 1/ ⁇ 2) of the porous protective layer to the substrate is out of the predetermined range (0.5 ⁇ 1/ ⁇ 2 ⁇ 1.2), the substrate has an inorganic porous layer
  • the porous protective layer was easily separated from the base material based on the difference in thermal expansion. From the above, it was confirmed that by making 15% by mass or more of the constituent components of the porous protective layer an alumina component, deterioration such as cracks and peeling is less likely to occur in the porous protective layer after firing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

放熱部材は、熱源で生じた熱を放熱する。放熱部材は、気孔率が5体積%以下の基材と、基材の表面に設けられているとともに気孔率が25体積%以上85体積%以下であり、基材より熱伝導率が低い無機多孔質層を備えている。この放熱部材では、無機多孔質層の構成成分のうちの15質量%以上がアルミナである。

Description

放熱部材
 本明細書は、放熱部材に関する技術を開示する。
 特開2016-28880号公報(以下、特許文献1と称する)に、放熱層(基材)の表面に断熱層を設けた放熱部材が開示されている。具体的には、特許文献1の放熱部材は、不織布にシリカエアロゾルを含浸させた断熱層を、粘着層(樹脂)を用いて、グラファイト層(基材)の表面に接合している。このような構造の放熱部材は、熱源で生じた熱を放熱するとともに、熱源で生じた熱が放熱部材の周囲の空間に伝達することを抑制することができる。すなわち、特許文献1の放熱部材は、熱源の周囲の環境温度を上昇させることなく、熱源で生じた熱を放熱することができる。
 特許文献1の放熱部材は、スマートフォン等の電子機器で用いられる。電子機器内に配置されている熱源(電子部品)は、最大で100℃程度まで上昇する。特許文献1の放熱部材は、100℃程度まで温度上昇する熱源の熱を放熱する機能は十分に有しているが、より高い温度まで温度上昇する熱源に対して使用することは困難である。たとえば、特許文献1の放熱部材を500℃以上まで温度上昇する熱源に対して使用すると、放熱部材自体が劣化し(グラファイト層自体の劣化、グラファイト層と断熱層の剥離等)、十分な機能を果たすことができなくなる。すなわち、特許文献1の放熱部材は、用途が限定され、汎用性が低い。本明細書は、汎用性の高い放熱部材を提供することを目的とする。
 本明細書で開示する放熱部材は、熱源で生じた熱を放熱する。この放熱部材は、気孔率が5体積%以下の基材と、基材の表面に設けられているとともに、気孔率が25体積%以上85体積%以下であり、基材より熱伝導率が低い無機多孔質層を備えていてよい。また、無機多孔質層はセラミック繊維を含んでおり、無機多孔質層の構成成分のうちの15質量%以上がアルミナであってよい。
放熱部材の形態を斜視図で示す。 放熱部材の使用例の断面図を示す。 放熱部材の変形例を斜視図で示す。 放熱部材の変形例を斜視図で示す。 放熱部材の変形例を斜視図で示す。 放熱部材の変形例を斜視図で示す。 放熱部材の変形例を斜視図で示す。 実験例で用いた試料の原料配合量を示す。 実験例の結果を示す。
 本明細書で開示する放熱部材は、例えば、熱源で生じた熱を熱源から離れた位置に放熱ために用いることができる。放熱部材は、基材と、基材の表面に設けられており、基材より熱伝導率が低い無機多孔質層を備えている。基材は、熱源で生じた熱を放熱する放熱板自体、あるいは、熱源で生じた熱を熱源から離れた位置に設けられている放熱板に伝達する熱伝達材として機能する。無機多孔質層は、熱源と熱源の周囲の空間を熱的に断つ断熱材として機能する。なお、本明細書で開示する放熱部材は、基材の表面に無機多孔質層を備えているので、1000℃以上の高温に上昇する熱源の放熱部材として好適に利用することができる。
 基材は、放熱材としての機能を発揮し得る熱伝導率を有していればよく、使用目的に依るが、例えば、熱伝導率が10W/mK以上400W/mK以下であってよい。なお、基材の熱伝導率は、50W/mK以上であってよく、100W/mK以上であってよく、150W/mK以上であってよく、200W/mK以上であってよい。また、基材の熱伝導率は、350W/mK以下であってよく、300W/mK以下であってよく、250W/mK以下であってよく、200W/mK以下であってよく、150W/mK以下であってもよい。
 基材は、高熱伝導率を確保するため、緻密な構造、具体的には気孔率が5体積%以下であってよい。基材の気孔率は、小さい程好ましく、5体積%以下であってよく、3体積%以下であってよく、1体積%以下であってよく、実質的に0体積%(検出限界以下)であってもよい。
 また、基材は、比較的熱膨張係数が低い材料で形成されていてよい。熱源の温度変化に伴う放熱部材(基材)の寸法変化(膨張・収縮)が抑制され、放熱部材の耐久性が向上する。すなわち、基材の熱膨張係数を低くすることにより、寸法変化に伴う基材及び/又は無機多孔質層の劣化、基材と無機多孔質層の剥離等を抑制することができる。具体的には、基材の熱膨張係数は、11×10-6/K以下であってよい。なお、基材の熱膨張係数は、放熱部材が適用される熱源の温度、無機多孔質層の熱膨張係数によって適宜選択することができ、例えば、基材の熱膨張係数は、10×10-6/K以下であってよく、8×10-6/K以下であってよく、6×10-6/K以下であってよく、5.5×10-6/K以下であってよく、5×10-6/K以下であってよく、4.5×10-6/K以下であってよく、4×10-6/K以下であってもよい。なお、基材の熱膨張係数は、無機多孔質層の熱膨張係数に依るが、例えば、1×10-6/K以上であってよい。
 基材の材料は、特に限定されないが、金属、合金、セラミックス等であってよい。金属の一例として、モリブデン、タングステン、鉄等が挙げられる。合金の一例として、コバール、インバー、炭素鋼、クロム鋼、ニッケル鋼、ステンレス鋼等が挙げられる。セラミックスの一例として、AlN、SiC、SiO2、BN、Si34、MgO、BeO、Al23等が挙げられる。なお、基材の材料としてセラミックスを用いる場合、基材の材料は、AlN、SiC又はSi34であることが好ましい。これらの材料で作成された基材は、上記した特性(熱伝導率が10W/mK以上400W/mK以下、気孔率5体積%以下)を満足し得る。また、上記した材料は、何れも、熱膨張係数が11×10-6/K以下である。なお、熱膨張係数が11×10-6/K以下であれば、基材は、上記材料の複数を利用した複合材であってもよい。
 無機多孔質層は、基材の片面(表面)のみに設けられていてもよいし、基材の両面(表面及び裏面)に設けられていてもよい。また、無機多孔質層は、間隔をあけて対向する2個の基材の双方の表面を被覆していてもよい。換言すると、1個の無機多孔質層の両面に、基材(第1基材,第2基材)が接合されていてもよい。この場合、第1基材側に配置されている第1機器から生じる熱が第2基材側に配置されている第2機器に加わることを防止することができるとともに、第1基材によって、第1機器が生じた熱を放熱することができる。同様に、第2機器の熱が第1機器に加わることを防止することができるとともに、第2基材によって第2機器が生じた熱を放熱することができる。すなわち、1個の無機多孔質層の両面に基材を接合することにより、複数の機器(熱源)に対する放熱部材としての機能に加え、機器間を断熱する仕切り板としても機能する。
 放熱部材の形状(基材の形状)は、特に限定されないが、線状(ワイヤー状)、板状(シート状)であってよい。基材が線状の場合、無機多孔質層は、基材の外周面を被覆していてよい。基材が板状の場合、無機多孔質層は、基材の露出面全体を被覆していてもよいし、厚み方向端部の面(表面、及び/又は、裏面)を被覆していてもよいし、幅方向端部の面(側面)を被覆していてもよいし、長さ方向端部の面を被覆していてもよい。また、基材が板状の場合、無機多孔質層は、第1の板状基材(第1基材)の表面と第2の板状基材(第2基材)の裏面の双方を被覆していてよい。
 無機多孔質層は、基材表面の全面を被覆していてもよいし、基材表面の一部を被覆していてもよい。例えば、無機多孔質層は、基材の端部(一端または両端)を除く部分を被覆していてよい。また、無機多孔質層が板状の基材の表裏面(厚み方向端部の面)を被覆している場合、無機多孔質層は、表裏面の一部(例えば、長手方向の一端または両端)を除く部分を被覆していてよい。あるいは、無機多孔質層は、裏面については全体を被覆し、表面については例えば長手方向の両端を除く部分を被覆している等、表裏面で被覆する範囲が異なっていてもよい。
 無機多孔質層は、熱源(熱源に露出する基材)と熱源の周囲空間を断熱する断熱層としての機能を発揮し得る熱伝導率であってよい。無機多孔質層の熱伝導率は、基材より低くてよく、例えば、0.05W/mK以上3W/mK以下であってよい。なお、無機多孔質層の熱伝導率は、0.1W/mK以上であってよく、0.2W/mK以上であってよく、0.3W/mK以上であってよく、0.5W/mK以上であってよく、1W/mK以上であってよく、2W/mK以上であってもよい。また、無機多孔質層の熱伝導率は、2W/mK以下であってよく、1W/mK以下であってよく、0.5W/mK以下であってよく、0.3W/mK以下であってよく、0.2W/mK以下であってよく、0.1W/mK以下であってもよい。
 上記したように、放熱部材は、熱源で生じた熱を基材によって放熱し、熱源(または基材)と熱源の周囲の空間を無機多孔質層によって断熱する。そのため、基材と無機多孔質層は、熱伝導率の差が大きいことが好ましい。具体的には、基材の熱伝導率は、無機多孔質層の熱伝導率の100倍以上であってよい。なお、基材の熱伝導率は、無機多孔質層の熱伝導率の300倍以上であってよく、無機多孔質層の熱伝導率の500倍以上であってよく、無機多孔質層の熱伝導率の600倍以上であってよく、無機多孔質層の熱伝導率の1000倍以上であってもよい。
 無機多孔質層は、厚み方向(基材表面と接する面から外部環境に露出する面に至る範囲)において、均一の材料で構成されていてよい。すなわち、無機多孔質層は単層であってよい。また、無機多孔質層は、厚み方向において、組成の異なる複数の層で構成されていてもよい。すなわち、無機多孔質層は、複数の層が積層した多層構造であってよい。あるいは、無機多孔質層は、厚み方向において、組成が除々に変化する傾斜構造であってもよい。無機多孔質層が単層の場合、放熱部材の製造(基材表面に無機多孔質層を成形する工程)を容易に行うことができる。無機多孔質層が多層又は傾斜構造の場合、厚み方向において、無機多孔質層の特性を変化させることができる。無機多孔質層の構造(単層、多層、傾斜構造)については、放熱部材が適用される使用環境に応じて適宜選択することができる。
 無機多孔質層は、セラミックス繊維を含んでいてよい。すなわち、無機多孔質層は、母材(マトリックス)とセラミックス繊維で構成されていてよい。セラミックス繊維は、無機多孔質層の強度(機械的強度)が低下することを抑制する。また、無機多孔質層がセラミックス繊維を含むことにより、無機多孔質層自体が、基材と無機多孔質層の熱膨張係数差の影響を吸収することができる。具体的には、無機多孔質層が基材の寸法変化(熱膨張,熱収縮)に追従して変形することができるので、無機多孔質層が基材から剥離することを防止することができる。
 無機多孔質層は、15質量%以上のアルミナ成分を含んでいてよい。すなわち、無機多孔質層の構成成分のうちの15質量%以上がアルミナであってよい。15質量%以上のアルミナ成分を含むことにより、無機多孔質層の融点を高く維持することができ、熱源が高温であっても放熱部材(無機多孔質層)の形状が維持され、放熱部材の耐久性を向上させることができる。また、アルミナは、熱膨張係数が比較的小さく(7.2×10-6/K)、無機多孔質層が15質量%以上のアルミナ成分を含むことにより、熱源の温度変化に伴う放熱部材(無機多孔質層)の寸法変化が抑制され、放熱部材の耐久性が向上する。アルミナ成分は、無機多孔質層の構成成分の15質量%以上あってよく、20質量%以上あってよく、30質量%以上あってよく、40質量%以上あってよく、50質量%以上あってもよい。なお、アルミナ成分は、マトリックスを構成していてもよいし、セラミックス繊維(アルミナ繊維)を構成していてもよい。
 無機多孔質層は、マトリックスとして、熱膨張係数が5×10-6/K未満の材料を含んでいてよい。このような材料として、ムライト(Al613Si2)、二酸化珪素(SiO2)、炭化珪素(SiC)、窒化アルミニウム(AlN)、低熱膨張ガラス、アルミニウムチタネート(TiO2・Al23)、リン酸ジルコニウム、スポジュメン(LiAlSi26)、ユークリプタイト(LiAlSiO4)等が挙げられる。無機多孔質層は、マトリックスとして、上記材料のうちの少なくとも一種を含んでいてよい。なお、無機多孔質層のマトリックスに含まれる材料の熱膨張係数は、3×10-6/K未満であってよく、2×10-6/K未満であってもよい。なお、上記した材料の中で、コージェライトは、無機多孔質層のマトリックスとして好適である。コージェライトは、耐熱性が高く、また、熱膨張係数が小さい(0.1×10-6/K未満)。そのため、マトリックスがコージェライトを含むことにより、熱源の温度変化に伴う放熱部材(無機多孔質層)の寸法変化が抑制され、放熱部材の耐久性が向上する。
 熱膨張係数が5×10-6/K未満の材料(コージェライト等)は、無機多孔質層全体(セラミックス繊維+マトリックス)の30質量%以上であってよく、40質量%以上であってよく、50質量%以上であってよく、60質量%以上であってよく、70質量%以上であってよく、80質量%以上であってもよい。また、熱膨張係数が5×10-6/K未満の材料は、無機多孔質層のマトリックスの60質量%以上であってよく、70質量%以上であってよく、80質量%以上であってよく、90質量%以上であってよく、100質量%であってもよい。すなわち、無機多孔質層は、熱膨張係数が5×10-6/K未満の材料を含むマトリックスに、セラミックス繊維が含まれたものであってよい。
 無機多孔質層の気孔率は、25体積%以上85体積%以下であってよい。気孔率が25体積%以上であれば、無機多孔質層が断熱層としての機能を十分に発揮し得る。気孔率が85体積%以下であれば、無機多孔質層の強度が十分に確保され、放熱部材(無機多孔質層)の耐久性を向上させることができる。なお、無機多孔質層の気孔率は、30体積%以上であってよく、40体積%以上であってよく、50体積%以上であってよく、60体積%以上であってよく、62体積%以上であってよく、64体積%以上であってよく、68体積%以上であってよく、70体積%以上であってもよい。また、無機多孔質層の気孔率は、80体積%以下であってよく、70体積%以下であってよく、68体積%以下であってよく、66体積%以下であってよく、64体積%以下であってよく、62体積%以下であってよく、60体積%以下であってもよい。なお、無機多孔質層が多層構造又は傾斜構造の場合、無機多孔質層の気孔率は、全体として25体積%以上85体積%以下であればよく、厚み方向で気孔率が異なっていてもよい。この場合、部分的に、気孔率が25体積%未満の部分、あるいは、気孔率が85体積%超の部分が存在していてよい。
 無機多孔質層の熱膨張係数は、基材の熱膨張係数に応じて調整してよく、特に限定されないが、1×10-6/K以上6×10-6/K以下であってよい。無機多孔質層の熱膨張係数が1×10-6/K以上であれば、基材と無機多孔質層の熱膨張係数差の影響を緩和することができる。また、無機多孔質層の熱膨張係数が6×10-6/K以下であれば、熱源の温度変化に伴う無機多孔質層の寸法変化が抑制され、放熱部材の耐久性が向上する。無機多孔質層の熱膨張係数は、2×10-6/K以上であってよく、3×10-6/K以上であってよく、3.5×10-6/K以上であってよく、4×10-6/K以上であってよく、4.5×10-6/K以上であってよく、5×10-6/K以上であってよく、5.5×10-6/K以上であってもよい。また、無機多孔質層の熱膨張係数は、4.5.5×10-6/K以下であってよく、5×10-6/K以下であってよく、4.5×10-6/K以下であってよく、4×10-6/K以下であってもよい。
 上記したように、基材と無機多孔質層の熱膨張係数差を低減することにより、熱源の温度変化に伴って放熱部材が寸法変化(熱膨張・熱収縮)しても、基材と無機多孔質層の剥離等を抑制することができる。そのため、無機多孔質層の熱膨張係数をα1とし、基材の熱膨張係数をα2としたときに、下記式1を満足するように両者の熱膨張係数を調整してよい。なお、「α1/α2」の値は、0.55以上であってよく、0.6以上であってよく、0.7以上であってよく、0.8以上であってよく、0.9以上であってよく、1以上であってよく、1.1以上であってもよい。また、「α1/α2」の値は、1.1以下であってよく、1.0以下であってよく、0.9以下であってよく、0.8以下であってよく、0.7以下であってよく、0.65以下であってもよい。
式1:0.5<α1/α2<1.2
 無機多孔質層の厚みは、使用目的(要求性能)に依るが、1mm以上であってよい。無機多孔質層の厚みが1mm以上であれば、断熱性を十分に発揮し得る。なお、セラミックス繊維が用いられていない無機多孔質層の場合、製造過程(例えば焼成工程)において収縮するため、厚みを1mm以上に維持することが困難である。本明細書で開示する無機多孔質層は、セラミックス繊維を含んでいるので、製造過程における収縮が抑制され、1mm以上の厚みを維持することができる。なお、無機多孔質層の厚みが厚すぎると、コスト(製造コスト、材料コスト)に見合う特性の向上が得られにくくなる。そのため、特に限定されないが、無機多孔質層の厚みは、30mm以下であってよく、20mm以下であってよく、15mm以下であってよく、100mm以下であってよく、5mm以下であってよい。
 無機多孔質層に、0.1μm以上10μm以下の粒状粒子が含まれていてよい。無機多孔質層を成形(焼成)する際、セラミックス繊維同士が粒状粒子を介して結合され、高強度の無機多孔質層が得られる。
 セラミックス粒子は、後述する板状セラミックス粒子,セラミックス繊維等の無機多孔質層の骨格をなす骨材同士を接合する接合材として用いられてよい。セラミックス粒子は、0.1μm以上10μm以下の粒状粒子であってよい。なお、セラミックス粒子は、製造過程(例えば焼成工程)において、焼結等により粒径が大きくなってもよい。すなわち、無機多孔質層を製造する原料として、セラミックス粒子は、0.1μm以上10μm以下(焼成前の平均粒径)の粒状粒子であってよい。なお、セラミックス粒子は、0.5μm以上であってよく、5μm以下であってもよい。セラミックス粒子の材料として、熱膨張係数が小さい(5×10-6/K未満)ものを利用してよい。低熱膨張係数の材料として、ムライト、二酸化珪素、炭化珪素、窒化アルミニウム、低熱膨張ガラス、アルミニウムチタネート、リン酸ジルコニウム、スポジュメン、ユークリプタイト等が挙げられる。また、セラミックス粒子の材料として、例えば金属酸化物を利用してよい。金属酸化物の一例として、アルミナ(Al23)、スピネル(MgAl24)、チタニア(TiO2)、ジルコニア(ZrO2)、マグネシア(MgO)、ムライト、コージェライト(MgO・Al23・SiO2)等が挙げられる。
 本明細書で開示する放熱部材では、無機多孔質層に板状セラミックス粒子が含まれていてよい。板状セラミックス粒子を用いることにより、セラミックス繊維の一部を板状セラミックス粒子に置換することができる。典型的に、板状セラミックス粒子の長さ(長手方向サイズ)は、セラミックス繊維の長さより短い。そのため、板状セラミックス粒子を用いることにより、無機多孔質層内の伝熱経路が分断され、無機多孔質層内の熱伝達が起こりにくくなる。その結果、無機多孔質層の断熱性能がさらに向上する。なお、「板状セラミックス粒子」とは、アスペクト比5以上で、長手方向サイズが5μm以上100μm以下のセラミックス粒子を意味する。
 板状セラミックスは、無機多孔質層内において、骨材、補強材として機能し得る。すなわち、板状セラミックスは、セラミックス繊維と同様に、無機多孔質層の強度を向上させ、さらに、製造工程において無機多孔質層が収縮することを抑制する。なお、板状セラミックス粒子を用いることにより、無機多孔質層内の伝熱経路を分断することができる。そのため、骨材としてセラミックス繊維のみを用いる形態と比較して、熱源で生じた熱が無機多孔質層内を伝熱しにくく、熱源と放熱部材の周囲の環境をより断熱することができる。
 板状セラミックス粒子は、矩形板状、あるいは、針状であってよく、長手方向サイズが5μm以上100μm以下であってよい。長手方向サイズが5μm以上であれば、セラミックス粒子の過剰な焼結を抑制することができる。長手方向サイズが100μm以下であれば、上述したように無機多孔質層内の伝熱経路を分断する効果が得られ、高温環境で用いる放熱部材に好適に適用し得る。また、板状セラミックス粒子は、アスペクト比が5以上100以下であってよい。アスペクト比が5以上であればセラミックス粒子の焼結を良好に抑制することができ、100以下であれば板状セラミックス粒子自体の強度低下が抑制される。なお、板状セラミックス粒子の材料として、上記したセラミックス粒子の材料として用いられる金属酸化物に加え、タルク(Mg3Si410(OH)2)、マイカ、カオリン等の鉱物・粘土、ガラス等を用いることもできる。
 上記したように、本明細書で開示する放熱部材は、無機多孔質層がセラミックス繊維を含んでいる。セラミックス繊維は、無機多孔質層内において、骨材、補強材として機能し得る。すなわち、セラミックス繊維は、無機多孔質層の強度を向上させ、さらに、製造工程において無機多孔質層が収縮することを抑制する。セラミックス繊維の長さは、50μm以上200μm以下であってよい。また、セラミックス繊維の直径(平均径)は、1~20μmであってよい。無機多孔質層内におけるセラミックス繊維の体積率(無機多孔質層を構成する材料に占めるセラミックス繊維の体積率)は、5体積%以上25体積%以下であってよい。5体積%以上のセラミックス繊維を含むことにより、無機多孔質層の製造過程(焼成工程)において無機多孔質内のセラミックス粒子の収縮を十分に抑制することができる。また、セラミックス繊維の体積率を25体積%以下とすることにより、無機多孔質層内の伝熱経路を分断することができ、高温環境で用いる放熱部材に好適に適用し得る。なお、セラミックス繊維の材料として、上述した板状セラミックス粒子の材料と同様の材料を用いることができる。
 また、無機多孔質層内における骨材、補強材(セラミックス繊維,板状セラミックス粒子等。以下、単に骨材と称する)の含有率は、15質量%以上50質量%以下であってよい。無機多孔質層内の骨材の含有率が15質量%以上であれば、焼成工程における無機多孔質層の収縮を十分に抑制することができる。また、無機多孔質層内の骨材の含有率が50質量%以下であれば、セラミックス粒子によって骨材同士が良好に接合される。無機多孔質層内における骨材の含有率は、20質量%以上であってよく、30質量%以上であってよく、40質量%以上であってもよい。また、無機多孔質層内における骨材の含有率は、40質量%以下であってよく、30質量%以下であってもよい。
 上記したように、セラミックス繊維及び板状セラミックス粒子は、ともに無機多孔質層内において骨材、補強材として機能し得る。しかしながら、放熱部材の作製後(焼成後)に無機多孔質層が収縮することを確実に抑制するため、骨材としてセラミックス繊維と板状セラミックス粒子の双方を用いる場合であっても、無機多孔質層内のセラミックス繊維の含有量は、少なくとも5質量%以上であってよい。なお、セラミックス繊維の含有量は、5質量%以上50質量%以下の間で調整してよい。
 骨材としてセラミックス繊維と板状セラミックス粒子の双方を用いる場合、骨材全体に占める板状セラミックス粒子の割合(重量比)は、90%以下であってよい。すなわち、質量比で、骨材の少なくとも10%以上がセラミックス繊維であってよい。骨材全体に占める板状セラミックス粒子の割合は、60%以下であってよく、50%以下であってよく、40%以下であってよく、34%以下であってもよい。また、骨材全体に占める板状セラミックス粒子の割合は、33%以上であってよく、40%以上であってよく、50%以上であってよく、60%以上であってもよい。具体的には、無機多孔質層内の板状セラミックス粒子の含有量は、10質量%以上であってよく、20質量%以上であってよく、30質量%以上であってよい。また、板状セラミックス粒子の含有量は、30質量%以下であってよく、20質量%以下であってよく、10質量%以下であってもよい。
 上記したように、無機多孔質層は、セラミックス粒子(粒状粒子)、板状セラミックス粒子、セラミックス繊維のうちの1以上の材料により構成されていてよい。なお、セラミックス粒子、板状セラミックス粒子及びセラミックス繊維は、構成成分として、アルミナ、コージェライト、チタニア等を含んでいてよい。換言すると、アルミナ、コージェライト、チタニア等によって、セラミックス粒子、板状セラミックス粒子、セラミックス繊維が形成されていてよい。無機多孔質層は、構成材料(構成物質)全体で、15質量%以上のアルミナ成分を含んでいればよい。無機多孔質層は、マトリックスとセラミックス繊維の構成成分は各々任意であるが、少なくともセラミックス繊維を含んでいる。
 なお、特に高温環境で用いられる放熱部材においては、無機多孔質層に含まれるSiO2が25質量%以下であってよい。無機多孔質層内に非晶質層が形成されることが抑制され、無機多孔質層の耐熱性(耐久性)が向上する。
 無機多孔質層を形成する際、セラミックス粒子、板状セラミックス粒子、セラミックス繊維の他に、バインダ、造孔材、溶媒を混合した原料を用いてよい。バインダとして、無機バインダを使用してよい。無機バインダの一例として、アルミナゾル、シリカゾル、チタニアゾル、ジルコニアゾル等が挙げられる。これらの無機バインダは、焼成後の無機多孔質層の強度を向上させることができる。造孔材として、高分子系造孔材、カーボン系粉等を使用してよい。具体的には、アクリル樹脂、メラミン樹脂、ポリエチレン粒子、ポリスチレン粒子、カーボンブラック粉末、黒鉛粉末等が挙げられる。造孔材は、目的に応じて種々の形状であってよく、例えば、球状、板状、繊維状等であってよい。造孔材の添加量、サイズ、形状等を選択することにより、無機多孔質層の気孔率、気孔サイズを調整することができる。溶媒は、他の原料に影響を及ぼすことなく原料の粘度を調整可能なものであればよく、例えば、水、エタノール、イソプロピルアルコール(IPA)等を使用することができる。
 なお、上記した無機バインダも無機多孔質層の構成材料である。そのため、無機多孔質層を形成する際にアルミナゾル、チタニアゾル等を用いる場合、無機多孔質層は、無機バインダを含む構成材料全体で、15質量%以上のアルミナ成分を含んでいればよい。
 本明細書で開示する放熱部材では、基材表面に上記原料を塗布し、乾燥、焼成を経て基材表面に無機多孔質層を形成してよい。原料の塗布方法として、ディップコート、スピンコート、スプレーコート、スリットダイコート、溶射、エアロゾルデポジション(AD)法、印刷、刷毛塗り、コテ塗り、モールドキャスト成形等を用いることができる。なお、目的とする無機多孔質層の厚みが厚い場合、あるいは、無機多孔質層が多層構造の場合、原料の塗布、原料の乾燥を複数回繰り返し、目的とする厚み、あるいは、多層構造に調整してもよい。上記塗布方法は、後述する被覆層を形成する塗布方法として適用することもできる。
 また、本明細書で開示する放熱部材では、無機多孔質層の基材が設けられている面とは反対側の面に、被覆層が設けられていてもよい。すなわち、無機多孔質層が、基材と被覆層によって挟まれていてよい。なお、被覆層は、無機多孔質層の基材(基材が設けられている面と反対側の面)の全面に設けられていてもよいし、無機多孔質層の表面の一部に設けられていてもよい。被覆層を設けることにより、無機多孔質層を保護(補強)することができる。
 被覆層の材料は、多孔質または緻密質なセラミックスであってよい。被覆層で用いられる多孔質セラミックスの一例として、ジルコニア(ZrO2),部分安定化ジルコニア,安定化ジルコニア等が挙げられる。また、イットリア安定化ジルコニア(ZrO2-Y23:YSZ)、YSZにGd23、Yb23、Er23等を添加した金属酸化物、ZrO2-HfO2-Y23、ZrO2-Y23-La23、ZrO2-HfO2-Y23-La23、HfO2-Y23、CeO2-Y23、Gd2Zr27、Sm2Zr27、LaMnAl1119、YTa39、Y0.7La0.3Ta39、Y1.08Ta2.76Zr0.249、Y2Ti27、LaTa39、Yb2Si27、Y2Si27、Ti35等が挙げられる。被覆層で用いられる緻密質なセラミックスの一例として、アルミナ、シリカ、ジルコニアなどが挙げられる。また、上述した無機多孔質層の構成材料からセラミックス繊維を除去することにより、低気孔率(緻密質)となるため、被覆層として用いてもよい。あるいは、被覆層は、造孔材を用いることなく、無機多孔質層と同じ材料で作成されたものであってもよい。被覆層として多孔質または緻密質セラミックスを用いることにより、無機多孔質層が補強され、無機多孔質層が基材の表面から剥がれることを抑制することができる。なお、被覆層として緻密質なセラミックスを用いると、例えば高温ガスが無機多孔質層を透過することを抑制したり、無機多孔質層内で高温ガスが滞留することを抑制することができる。その結果、高温ガスの熱が基材に伝熱することを抑制する効果が期待できる。また、被覆層として緻密質なセラミックスを用いることにより、基材と外部環境を電気的に絶縁する効果が向上する。
 被覆層の材料は、多孔質または緻密質なガラスであってよい。被覆層として多孔質または緻密質ガラスを用いることによっても、無機多孔質層が補強され、無機多孔質層が基材の表面から剥がれることを抑制することができる。また、被覆層の材料は、金属であってもよい。無機多孔質層の表面に金属層を設けることにより、外部からの輻射熱を反射することができ、基材に熱が加わることをさらに抑制することができる。
(放熱部材の形態)
 図1及び図2を参照し、放熱部材10の形態について説明する。図1に示すように、放熱部材10は、窒化アルミニウム製の基材2と、基材2の両面(厚み方向端面の双方の面)に設けられた多孔質保護層4を備えている。多孔質保護層4は、無機多孔質層の一例である。多孔質保護層4は、基材2の一方の面(裏面)の全面に接合されており、他方の面(表面)では基材2の長手方向の端部(両端部)2a,2bを除く中間部分に接合されている。なお、図示は省略しているが、基材2の側面(4面)にも多孔質保護層4が設けられている。放熱部材10は、一方の端部2a(発熱部側)の熱を他方の端部2b(放熱部側)に伝達する熱伝導部材である。
 放熱部材10は、基材2の表面の一部(端部2a,2bに相当する部分)をマスキングした状態で、基材2を原料スラリーに浸漬し、乾燥、焼成を行って製造した。原料スラリーは、アルミナ成分の主原料としてアルミナ繊維(平均繊維長140μm)20質量%,板状アルミナ粒子(長手方向サイズ10μm)30質量%の合計50質量%と、コージェライト粒子(平均粒子径1.5μm)50質量%と、アルミナゾル10質量%(アルミナゾルに含まれるアルミナ量1.1質量%)と、アクリル樹脂(平均粒子径8μm)40質量%と、エタノールを混合し、作成した。なお、アルミナゾル、アクリル樹脂及びエタノールは、アルミナ繊維及びコージェライト粒子に対して外掛けで加えた。また、原料スラリーは、粘度が2000mPa・sとなるように調整した。
 基材2を上記原料スラリーに浸漬して基材2の表裏面に原料を塗布した後、基材2を乾燥機に投入し、200℃(大気雰囲気)で1時間乾燥させた。これにより、基材2の表裏面におよそ300μmの多孔質保護層が形成された。その後、基材2を上記原料スラリーに浸漬して乾燥する工程を3回繰り返し、基材2の表裏面に1.2mmの多孔質保護層を形成した。その後、基材2を電気炉内に配置し、800℃(大気雰囲気)で3時間焼成し、放熱部材10を作成した。得られた放熱部材10は、多孔質保護層4の気孔率が67体積%であり、熱膨張係数が4.5×10-6/Kであった。なお、図示は省略するが、放熱部材10では、コージェライト粒子が、基材2の表面(表裏面)と骨材(アルミナ繊維及)の間に介在し、基材2の表面と骨材を接合していることが確認された。また、多孔質縫合層4内にコージェライトが含まれていることは、X線回折の結果からも確認された。
 図2は、放熱部材10を発熱部20及び放熱部(放熱板)22に接合した状態を示している。放熱部材10の一方の端部2aが発熱部20に接合し、他方の端部2bが放熱部22に接合している。発熱部20で受熱した熱は、基材2を移動し、放熱部22で放熱される。熱伝導部材10は、表面(中間部分)及び裏面に多孔質保護層4が接合されているので、発熱部(熱源)20と放熱部22の間において基材2からの放熱が抑制される。そのため、熱伝導部材10の表面近傍の空間30、及び、放熱部材10の裏面近傍の空間32に設けられている機器等に熱が加わることを抑制することができる。
(放熱部材の変形例)
 以下、放熱部材の変形例(放熱部材10a~10e)について説明する。放熱部材10a~10eは、放熱部材10と比較して、基材の形状、多孔質保護層の形成位置及び被覆層の有無が異なる。放熱部材10a~10eは、マスキングを施す位置、多孔質保護層の形成条件、及び、多孔質保護層を形成した後の焼成条件等を目的に合わせて調整したが、実質的に放熱部材10と同じ工程を経て製造した。以下の説明においては、放熱部材10と共通する特徴については説明を省略することがある。
 図3に示す放熱部材10aは、基材2の表面(厚み方向端面のうちの一方の面)にのみ多孔質保護層4が設けられている。放熱部材10aでは、基材2の裏面の一方の端部2aを発熱部に接合し、他方の端部2bを放熱部(放熱板)に接合する。放熱部材10aでは、多孔質保護層4によって、発熱部の熱が放熱部材10aの表面側(多孔質保護層4が設けられている側)に放熱されることを抑制しながら、一方の端部2aの熱を他方の端部2bに伝達することができる。なお、放熱部材10aにおいて、放熱部材10と同様に、基材2の長手方向の端部(両端部)2a,2bを除く中間部分に多孔質保護層4を設けてもよい(図1も参照)。その場合、発熱部及び/又は放熱部を、基材2の表面に接合してもよい。
 図4に示す放熱部材10bは、放熱部材10aの変形例である。放熱部材10bでは、多孔質保護層4の表面(基材2が設けられている面とは反対側の面)に、被覆層6が設けられている。被覆層6は、基材2の表面に多孔質保護層4を形成した後、スプレーを用いて多孔質保護層4の表面に原料スラリーを塗布し、乾燥、焼成を経て成形した。被覆層6を成形するために用いた原料スラリーは、アルミナ繊維(平均繊維長140μm)20質量%,板状アルミナ粒子(長手方向サイズ10μm)30質量%の合計50質量%と、コージェライト粒子(平均粒子径1.5μm)50質量%と、アルミナゾル10質量%(アルミナゾルに含まれるアルミナ量1.1質量%)と、エタノールを混合し、作成した。すなわち、被覆層6を成形するために用いた原料スラリーは、多孔質保護層4を形成するために用いた原料スラリーから造孔材(アクリル樹脂)を除去したものである。被覆層6は、多孔質保護層4と比較して緻密な構造を有しているので、多孔質保護層4の補強材として機能する。なお、被覆層6の材料は、目的に応じて、例えば上述した材料に適宜変更することができる。なお、放熱部材10bにおいても、基材2の長手方向の端部(両端部)2a,2bを除く中間部分に多孔質保護層4を設けてもよい。その場合、発熱部及び/又は放熱部を、基材2の表面に接合してもよい。
 図5に示す放熱部材10cは、放熱部材10bの変形例である。放熱部材10cでは、被覆層6が、放熱部材10cの長手方向において、多孔質保護層4の表面に間欠的に(部分的に)設けられている。例えば、被覆層6と多孔質保護層4の熱膨張係数差が大きい場合、被覆層6を多孔質保護層4の表面に間欠的に設けることにより、被覆層6が多孔質保護層4から剥離することを抑制することができる。なお、放熱部材10cにおいても、基材2の長手方向の端部(両端部)2a,2bを除く中間部分に多孔質保護層4を設けてもよい。その場合、発熱部及び/又は放熱部を、基材2の表面に接合してもよい。また、放熱部材10b,10cの特徴(多孔質保護層の表面に被覆層を設ける)は、放熱部材10,10aに適用することもできる。
 図6に示す放熱部材10dは、多孔質保護層4の両面(表裏面)に、基材(第1基材2X,第2基材2Y)が接合している。換言すると、間隔をあけて対向する2個の基材(第1基材2X,第2基材2Y)に、1個の多孔質保護層4が接続されている。第1基材2Xには第1基材2X側に配置されている熱源である第1機器(図示省略)が接合され、第1基材2Yには第2基材2Y側に配置されている熱源である第2機器(図示省略)が接合される。第1基材2X及び第2基材2Yは、各機器から生じる熱を放熱することができる。また、多孔質保護層4は、一方の機器(例えば第1機器)の熱が他方の機器(第2機器)に加わることを抑制することができる。すなわち、放熱部材410は、2個の機器に対する放熱板として機能するとともに、2個の機器の間を断熱する仕切板としても機能する。
 図7に示す放熱部材10eは、基材2が線状(ライン状)の金属で形成されている。放熱部材10eは、線状の基材2の長手方向の端部(両端部)2a,2bが露出している。すなわち、放熱部材10eは、基材2の端部2a,2bを除く中間部分に多孔質保護層4が接合されている。放熱部材10eは、放熱部材10~10dと同様に、一方の端部2aを発熱部に接合し、他方の端部2bを放熱部に接合することにより、発熱部(熱源)の熱を放熱部で放熱することができる。なお、放熱部材10eは、長手方向の中間部分に多孔質保護層4が設けられているので、中間部分の周囲に存在する部品に熱が加わることを抑制することができる。
(実験例)
 上記したように、多孔質保護層は、アルミナ主成分(アルミナ繊維及び板状アルミナ粒子)、コージェライト粒子、アルミナゾル、アクリル樹脂及びエタノールを混合した原料スラリーを作成し、基材(窒化アルミニウム、金属)を原料スラリーに浸漬させた後、乾燥及び焼成を行い作成した。本実験例では、アルミナ成分量が多孔質保護層の特性に与える影響を確認するため、アルミナ成分及びコージェライト粒子の割合を変化させ、焼成後の多孔質保護層の状態を確認した。
 具体的には、アルミナ繊維、板状アルミナ粒子、チタニア粒子及びコージェライト粒子の配合量を図8に示すように変化させ、アルミナ繊維、板状アルミナ粒子、チタニア粒子及びコージェライト粒子の合計が100質量%になるように配合し、さらに、外掛けでアルミナゾル10質量%(アルミナゾルに含まれるアルミナ量1.1質量%)、アクリル樹脂40質量%を加え、エタノールでスラリー粘度を調整して原料スラリーを作成した。なお、試料6、9~13は板状アルミナ粒子を用いておらず、試料1及び7~12はチタニア粒子を用いていない。その後、窒化アルミニウム板(基材)に原料スラリーを塗布し、大気雰囲気200℃で1時間乾燥させた後、大気雰囲気800℃で3時間焼成した。なお、窒化アルミニウム板上に約1.2mmの多孔質保護層が形成されるように、各試料における原料スラリーの塗布回数(窒化アルミニウム板の浸漬回数)を調整した。なお、試料10は、基材として、窒化アルミニウム板に代えて炭化ケイ素板を用いた。また、試料11は、基材として、窒化アルミニウム板に代えて窒化ケイ素板を用いた。
 焼成後の試料について、外観の評価を行った。外観評価は、目視にて、クラック、剥離等の発生の有無を観察した。図9に、クラック,剥離等が発生しなかった試料に「〇」を付し、クラック,剥離等が発生した試料に「×」を付している。
 また、作成した試料1~13について、多孔質保護層におけるアルミナ成分の割合(質量%)の測定を行った。また、多孔質保護層及び基材について、気孔率(体積%)、熱伝導率及び熱膨張係数の測定を行った。なお、気孔率、熱伝導率及び熱膨張係数の測定は、多孔質保護層と基材を別個に測定した。アルミナ成分は、ICP発光分析装置((株)日立ハイテクサイエンス製、PS3520UV-DD)を用いてアルミニウム量を測定し、酸化物換算(Al23)した結果を示している。
 気孔率は、水銀ポロシメーターを用いてJIS R1655(ファインセラミックスの水銀圧入法による成形体気孔径分布試験方法)に準拠して測定した全細孔容積(単位:cm3/g)と、ガス置換式密度測定計(マイクロメリティックス社製、アキュピック1330)により測定した見掛け密度(単位:g/cm3)を用いて、下記式(2)より算出した。
式2:気孔率[%]=全細孔容積/{(1/見掛け密度)+全細孔容積} ×100
 熱伝導率は、熱拡散率、比熱容量及び嵩密度を乗算し、算出した。熱拡散率は、レーザーフラッシュ法熱定数測定装置を用い、比熱容量はDSC(示差走査熱量計)を用いて、JIS R1611(ファインセラミックスのレーザーフラッシュ法による熱拡散率・比熱容量・熱伝導率試験方法)に準拠して室温で測定した。また、嵩密度(単位:cm3/g)は下記式(3)から算出した。なお、熱拡散率は上記した原料スラリーをφ10mm×厚み1mmのバルク体に成形し、また、比熱容量は上記した原料スラリーをφ5mm×厚み1mmのバルク体に成形した後、それぞれのバルク体を800℃で焼成して熱拡散率および比熱容量測定用試料を作製し、測定した。
式3:嵩密度=見掛け密度×(1-気孔率[%]/100)
 熱膨張係数は、上記した原料スラリーを3mm×4mm×20mmのバルク体に成形した後、バルク体を800℃で焼成して測定用試料を作製した。その後、測定用試料を、熱膨張計を用いてJIS R1618(ファインセラミックスの熱機械分析による熱膨張の測定方法)に準拠して測定した。測定結果を図9に示す。
 図9に示すように、アルミナ成分が15質量%以上の試料(試料1~11)は、焼成後の多孔質保護層にクラック及び剥離が確認されなかった。一方、アルミナ成分が15質量%未満(6質量%,12質量%)の試料12及び13は、焼成後の多孔質保護層にクラック及び剥離が確認された。この結果は、試料12及び13は、アルミナ成分の割合が15質量%未満であるため、セラミックス(粒子、繊維)間の結合力が低下し、多孔質保護層にクラックが発生したと推察される。また、試料12は、試料1~11と比較して、基材に対する多孔質保護層の熱膨張係数比が小さい(α1/α2=0.5)。一方、試料13は、試料1~11と比較して、基材に対する多孔質保護層の熱膨張係数比が大きい(α1/α2=1.3)。この結果は、基材に対する多孔質保護層の熱膨張係数比(α1/α2)が所定の範囲(0.5<α1/α2<1.2)を外れると、基材に無機多孔質層間の熱膨張差に基づいて多孔質保護層が基材から剥離し易くなったためと推察される。以上より、多孔質保護層の構成成分のうちの15質量%以上をアルミナ成分にすることにより、焼成後の多孔質保護層にクラック及び剥離等の劣化が生じにくくなることが確認された。なお、試料5,12の結果より、多孔質保護層に含まれるセラミック繊維(アルミナ繊維)の割合が少なくても(5質量%)、基材及び多孔質保護層の気孔率を適値に調整し、多孔質保護層がセラミック繊維(アルミナ繊維)を含むとともに多孔質保護層のアルミナ成分が15質量%以上であれば、クラック及び剥離の発生を抑制できることが確認された。
 以上、本発明の実施形態について詳細に説明したが、これらは例示に過ぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。

Claims (9)

  1.  熱源で生じた熱を放熱する放熱部材であり、
     気孔率が5体積%以下の基材と、
     基材の表面に設けられているとともに、気孔率が25体積%以上85体積%以下であり、基材より熱伝導率が低い無機多孔質層と、を備えており、
     無機多孔質層はセラミック繊維を含んでおり、
     無機多孔質層の構成成分のうちの15質量%以上がアルミナである放熱部材。
  2.  無機多孔質層の母材の熱膨張係数が、5×10-6/K未満の材料を含んでいる請求項1に記載の放熱部材。
  3.  基材の熱伝導率が10W/mK以上400W/mK以下である請求項1または2に記載の放熱部材。
  4.  基材の熱膨張係数が11×10-6/K以下である請求項1から3のいずれか一項に記載の放熱部材。
  5.  無機多孔質層の熱膨張係数が1×10-6/K以上6×10-6/K以下である請求項1から4のいずれか一項に記載の放熱部材。
  6.  無機多孔質層の熱膨張係数をα1とし、基材の熱膨張係数をα2としたときに、下記式(1)を満足する請求項1から5のいずれか一項に記載の放熱部材。
    0.5<α1/α2<1.2   (1)
  7.  無機多孔質層に、板状セラミックス粒子が含まれている請求項1から6のいずれか一項に記載の放熱部材。
  8.  無機多孔質層に、0.1μm以上10μm以下の粒状粒子が含まれている請求項1から7のいずれか一項に記載の放熱部材。
  9.  無機多孔質層の基材が設けられている面とは反対側の面に、被覆層が設けられている請求項1から8のいずれか一項に記載の放熱部材。
PCT/JP2020/000540 2019-01-10 2020-01-09 放熱部材 WO2020145365A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020565215A JP7431176B2 (ja) 2019-01-10 2020-01-09 放熱部材
DE112020000384.1T DE112020000384T5 (de) 2019-01-10 2020-01-09 Wärmeableitungselement
CN202080008368.6A CN113272474A (zh) 2019-01-10 2020-01-09 散热部件
US17/305,409 US20210341234A1 (en) 2019-01-10 2021-07-07 Heat dissipation member

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPPCT/JP2019/000585 2019-01-10
JP2019000585 2019-01-10
JP2019182462 2019-10-02
JP2019-182462 2019-10-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/305,409 Continuation US20210341234A1 (en) 2019-01-10 2021-07-07 Heat dissipation member

Publications (1)

Publication Number Publication Date
WO2020145365A1 true WO2020145365A1 (ja) 2020-07-16

Family

ID=71520965

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/000541 WO2020145366A1 (ja) 2019-01-10 2020-01-09 複合部材
PCT/JP2020/000540 WO2020145365A1 (ja) 2019-01-10 2020-01-09 放熱部材

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000541 WO2020145366A1 (ja) 2019-01-10 2020-01-09 複合部材

Country Status (5)

Country Link
US (2) US20210341234A1 (ja)
JP (3) JP7431176B2 (ja)
CN (2) CN113272475B (ja)
DE (2) DE112020000388T5 (ja)
WO (2) WO2020145366A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022014611A1 (ja) * 2020-07-13 2022-01-20
JPWO2022014616A1 (ja) * 2020-07-13 2022-01-20
JPWO2022014615A1 (ja) * 2020-07-13 2022-01-20
WO2022014617A1 (ja) * 2020-07-13 2022-01-20 日本碍子株式会社 排気管

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962510A (ja) * 1972-06-08 1974-06-18
JPH03153092A (ja) * 1989-11-10 1991-07-01 Mitsubishi Heavy Ind Ltd 電子基板
JP2010024077A (ja) * 2008-07-17 2010-02-04 Denki Kagaku Kogyo Kk アルミニウム−炭化珪素質複合体及びその製造方法
JP2010050239A (ja) * 2008-08-21 2010-03-04 Hitachi Ltd 放熱シート、それを用いた放熱用積層板及び半導体装置
WO2016013648A1 (ja) * 2014-07-24 2016-01-28 電気化学工業株式会社 複合体及びその製造方法
WO2018135517A1 (ja) * 2017-01-19 2018-07-26 国立大学法人福井大学 高熱伝導性材料及びその製造方法

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1580909A (en) * 1977-02-10 1980-12-10 Micropore Internatioonal Ltd Thermal insulation material
US4639388A (en) * 1985-02-12 1987-01-27 Chromalloy American Corporation Ceramic-metal composites
US4921731A (en) * 1986-02-25 1990-05-01 University Of Florida Deposition of ceramic coatings using sol-gel processing with application of a thermal gradient
DE3741732C1 (de) * 1987-12-09 1988-12-22 Messerschmitt Boelkow Blohm Mehrschicht-Waermedaemmung
US5667898A (en) * 1989-01-30 1997-09-16 Lanxide Technology Company, Lp Self-supporting aluminum titanate composites and products relating thereto
JPH07216479A (ja) * 1994-01-31 1995-08-15 Ee M Technol:Kk 金属複合体
US5585136A (en) * 1995-03-22 1996-12-17 Queen's University At Kingston Method for producing thick ceramic films by a sol gel coating process
JPH08319582A (ja) * 1995-05-19 1996-12-03 Isuzu Ceramics Kenkyusho:Kk 金属表面の絶縁性セラミックス膜及びその形成方法
JP3388949B2 (ja) * 1995-07-28 2003-03-24 株式会社東芝 耐熱部材およびその製造方法
DE19542944C2 (de) * 1995-11-17 1998-01-22 Daimler Benz Ag Brennkraftmaschine und Verfahren zum Aufbringen einer Wärmedämmschicht
US6849334B2 (en) * 2001-08-17 2005-02-01 Neophotonics Corporation Optical materials and optical devices
JPH11216795A (ja) * 1998-01-30 1999-08-10 Dainippon Printing Co Ltd 外装用断熱シート及び外装用化粧材
US6733907B2 (en) * 1998-03-27 2004-05-11 Siemens Westinghouse Power Corporation Hybrid ceramic material composed of insulating and structural ceramic layers
US8357454B2 (en) * 2001-08-02 2013-01-22 Siemens Energy, Inc. Segmented thermal barrier coating
WO2005091902A2 (en) * 2004-03-03 2005-10-06 Intellectual Property Holdings, Llc Highly insulated exhaust manifold
JP4903457B2 (ja) * 2005-09-06 2012-03-28 財団法人電力中央研究所 金属−多孔質基材複合材料及びその製造方法
JP4679324B2 (ja) * 2005-09-30 2011-04-27 イビデン株式会社 断熱材
US7628951B1 (en) * 2005-10-21 2009-12-08 Ceramatec, Inc. Process for making ceramic insulation
EP1984173A2 (en) * 2006-01-25 2008-10-29 Ceramatec, Inc. Environmental and thermal barrier coating to protect a pre-coated substrate
JP2007230858A (ja) * 2006-02-02 2007-09-13 Nichias Corp 断熱材及びその製造方法
JP5014656B2 (ja) * 2006-03-27 2012-08-29 国立大学法人東北大学 プラズマ処理装置用部材およびその製造方法
DE102006038713A1 (de) * 2006-05-10 2007-11-29 Schunk Kohlenstofftechnik Gmbh Druckfester fluidbeaufschlagter Körper
US7855163B2 (en) * 2007-05-14 2010-12-21 Geo2 Technologies, Inc. Low coefficient of thermal expansion bonding system for a high porosity ceramic body and methods of manufacture
JP2010188299A (ja) * 2009-02-19 2010-09-02 Nippon Electric Glass Co Ltd 白金材料容器の乾燥被膜及び焼成被膜の形成方法
JP4962510B2 (ja) * 2009-02-25 2012-06-27 日本電気株式会社 目標捜索信号生成方法および目標捜索装置
WO2011084688A2 (en) * 2009-12-21 2011-07-14 Geo2 Technologies, Inc Fiber enhanced porous substrate
JP2012119671A (ja) * 2010-11-11 2012-06-21 Kitagawa Ind Co Ltd 電子回路及びヒートシンク
JP5727808B2 (ja) * 2011-02-09 2015-06-03 イビデン株式会社 構造体、及び、構造体の製造方法
WO2013080389A1 (ja) * 2011-12-02 2013-06-06 日本碍子株式会社 エンジン燃焼室構造
JP5764506B2 (ja) * 2012-02-08 2015-08-19 美濃窯業株式会社 セラミックス多孔体−金属断熱材及びその製造方法
JP5390682B1 (ja) * 2012-11-13 2014-01-15 日本特殊陶業株式会社 ガスセンサ素子及びガスセンサ
JP2015116697A (ja) * 2013-12-17 2015-06-25 Jsr株式会社 塗装体
JP6220296B2 (ja) * 2014-03-19 2017-10-25 日本碍子株式会社 耐熱性部材及びその製造方法
ES2910667T3 (es) * 2015-05-19 2022-05-13 Basf Se Tubo compuesto multicapa estanco al gas
JP6207682B2 (ja) * 2015-07-06 2017-10-04 日本碍子株式会社 積層体及び電気化学デバイス
JP6716296B2 (ja) * 2016-03-11 2020-07-01 日本特殊陶業株式会社 多孔体複合部材
JP2017214913A (ja) * 2016-06-02 2017-12-07 株式会社東芝 蒸気タービン翼及びその製造方法
JP2019527658A (ja) * 2016-06-24 2019-10-03 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 開放容器とその使用
JP6743579B2 (ja) * 2016-08-24 2020-08-19 船井電機株式会社 受電装置
FR3058469B1 (fr) * 2016-11-09 2020-08-21 Safran Piece de turbomachine revetue d'une barriere thermique et procede pour l'obtenir
JP2018184860A (ja) 2017-04-25 2018-11-22 日立オートモティブシステムズ株式会社 内燃機関のピストン及び内燃機関のピストン冷却制御方法
CN107326330B (zh) * 2017-06-30 2019-03-12 福州大学 一种具有氧化铝多孔结构缓冲层的内热式一体化蒸发舟

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962510A (ja) * 1972-06-08 1974-06-18
JPH03153092A (ja) * 1989-11-10 1991-07-01 Mitsubishi Heavy Ind Ltd 電子基板
JP2010024077A (ja) * 2008-07-17 2010-02-04 Denki Kagaku Kogyo Kk アルミニウム−炭化珪素質複合体及びその製造方法
JP2010050239A (ja) * 2008-08-21 2010-03-04 Hitachi Ltd 放熱シート、それを用いた放熱用積層板及び半導体装置
WO2016013648A1 (ja) * 2014-07-24 2016-01-28 電気化学工業株式会社 複合体及びその製造方法
WO2018135517A1 (ja) * 2017-01-19 2018-07-26 国立大学法人福井大学 高熱伝導性材料及びその製造方法

Also Published As

Publication number Publication date
CN113272474A (zh) 2021-08-17
JP6813718B2 (ja) 2021-01-13
JPWO2020145365A1 (ja) 2021-11-25
US20210341234A1 (en) 2021-11-04
DE112020000384T5 (de) 2021-09-23
DE112020000388T5 (de) 2021-09-23
CN113272475A (zh) 2021-08-17
JP7423502B2 (ja) 2024-01-29
CN113272475B (zh) 2023-06-27
WO2020145366A1 (ja) 2020-07-16
JP2021054088A (ja) 2021-04-08
JP7431176B2 (ja) 2024-02-14
JPWO2020145366A1 (ja) 2021-02-18
US20210331450A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2020145365A1 (ja) 放熱部材
KR102083748B1 (ko) 미세다공성 절연체
EP2865722B1 (en) Porous plate-shaped filler, coating composition, heat-insulating film, and heat-insulating film structure
US10385801B2 (en) Heat-insulation film, and heat-insulation-film structure
US20210341413A1 (en) Gas sensor
US20220252540A1 (en) Sensor element
JPWO2015115667A1 (ja) 多孔質板状フィラー
WO2022014613A1 (ja) 排気管
JP6423360B2 (ja) 断熱膜、および断熱膜構造
CN110015910B (zh) 烧成用承烧板
JP6373866B2 (ja) 断熱膜、および断熱膜構造
WO2022014611A1 (ja) 複合部材
JP2022017128A (ja) 複合部材
JP2015036346A (ja) 複合耐火断熱材
WO2022014614A1 (ja) 排気管
WO2022014612A1 (ja) 排気管
JP2006086054A (ja) 発熱構造体及びその製造方法
WO2022014616A1 (ja) 排気管
WO2022014615A1 (ja) 排気管
WO2022014617A1 (ja) 排気管
YANG et al. FABRICATION AND PROPERTIES OF SiO2/ZIRCONIUM PHOSPHATE–B2O3–SiO2 ANTI-OXIDATION COATINGS FOR Cf/SiC COMPOSITES

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20737955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565215

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20737955

Country of ref document: EP

Kind code of ref document: A1