WO2020135484A1 - 一种钢筋套筒连接结构内的灌浆体密实度检测装置及方法 - Google Patents

一种钢筋套筒连接结构内的灌浆体密实度检测装置及方法 Download PDF

Info

Publication number
WO2020135484A1
WO2020135484A1 PCT/CN2019/128227 CN2019128227W WO2020135484A1 WO 2020135484 A1 WO2020135484 A1 WO 2020135484A1 CN 2019128227 W CN2019128227 W CN 2019128227W WO 2020135484 A1 WO2020135484 A1 WO 2020135484A1
Authority
WO
WIPO (PCT)
Prior art keywords
grouting
density
connection structure
signal
transmission rod
Prior art date
Application number
PCT/CN2019/128227
Other languages
English (en)
French (fr)
Inventor
王奎华
郑茗旺
杨雪枫
冀俊超
项驰轩
刘鑫
谭婕
涂园
瑞兹
吴君涛
邱欣晨
于喆
杨学林
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2020135484A1 publication Critical patent/WO2020135484A1/zh
Priority to US17/233,481 priority Critical patent/US11835490B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/36Analysing materials by measuring the density or specific gravity, e.g. determining quantity of moisture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/066Special adaptations of indicating or recording means with electrical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/383Concrete or cement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0066Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/08Shock-testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/001Impulsive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0032Generation of the force using mechanical means
    • G01N2203/0039Hammer or pendulum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/045Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks

Definitions

  • the invention belongs to the field of measurement, and in particular relates to a device and a method for detecting the density of grouting bodies in a reinforced sleeve connection structure in construction engineering.
  • the prefabricated building structure As an emerging green, environmentally-friendly and energy-saving building method, the prefabricated building structure has many advantages, and has been widely concerned by relevant personnel at home and abroad, representing the direction of technological progress in the construction industry.
  • the quality control of the on-site connection of prefabricated components is essential to ensure the safe and normal use of prefabricated buildings, but there is still no effective detection method in the project. Therefore, it is urgent to research and develop a method for testing and evaluating the quality of on-site connection of prefabricated structures Quality control and quality inspection during and after construction.
  • the dynamic test method has the most application potential, and the impact echo method (Impact Echo-Test, IET) accounts for the majority, followed by the ultrasonic method.
  • IET Impact Echo-Test
  • the sleeve pre-buried in the structural member the distance between the impact surface and the reflective surface is too short, causing the incident and reflected P waves to superimpose.
  • the final result is that the location and degree of the defect cannot be directly identified, or Directly submerged the time-domain bands showing defects.
  • the ultrasonic method it is also necessary to apply continuous vibration at a fixed frequency to the wall outside the sleeve, and then the ultrasonic sensor receives it, which is also based on the incident wave and reflected wave (or transmitted wave) analysis, due to the cavity between the sleeve and the reinforcement
  • the size is relatively small compared to the ultrasonic wavelength, and there is also the problem that the defects cannot be resolved.
  • this paper proposes a new method, that is, to apply a certain preload to the steel bar through the force transmission bar on a special device, and then apply an impact force to the end of the force transmission bar (may Use hammering method). Due to the pre-load exerted by the force transmission bar, after the steel bar is impacted, the vibration of the steel bar can be transmitted to the force transmission bar. With the help of the strain gauges installed on the force transmission bar, the vibration from the horizontal vibration of the steel bar can be collected information. By analyzing the time domain signal and frequency domain signal of the collected vibration signal, the density of the grouting connected by the steel sleeve can be analyzed.
  • the purpose of the present invention is to solve the problems in the prior art, and to provide a device and method for detecting the density of the grouting body in the connection structure of the steel sleeve.
  • the present invention provides a device for detecting the density of grouting body in a steel sleeve connection structure, which includes a rigid preloading member, a force transmission rod, a telescopic adjustment member, a vibration sensor, and a data acquisition system;
  • the force transmission rod is a rigid rod body, which is installed on the rigid preloading member through a telescopic adjustment member; the rigid preloading member is used to fix the force transmission rod to the wall body where the reinforcing sleeve connection structure is located,
  • the telescopic adjusting member is fixed on the rigid pre-compression member, and is used to control the force transmission rod to move in the direction of the vertical wall, so that the end of the force transmission rod is closely supported on the surface of the steel bar in the steel sleeve to be tested;
  • the vibration sensor is fixed on the force transmission rod.
  • the data collection system is used to collect the induction signal of the vibration sensor.
  • the present invention provides a method for detecting the grouting density of a reinforced sleeve connection structure.
  • the device used in the method includes an external steel structure preload member, a nut, a force transmission bar, a force measuring hammer, and a vibration sensor;
  • the external steel structure preloading member is a cover-shaped hollow steel member, and its bottom is fixed around the wall where the reinforced sleeve connection structure to be tested is located;
  • the cover of the external steel structure preloading member is provided with a through hole , And a nut is fixed at the position of the through hole;
  • the power transmission rod is a rigid bar body, and the middle part of the bar body is externally tapped, the power transmission rod passes through the through hole on the cover body and is screwed into the nut,
  • the thread on the rod body and the nut form a screw thread that drives the force transmission rod to move up and down;
  • the bottom of the force transmission rod is closely supported on the grouting entity of the reinforced sleeve connection
  • the steps of the detection method are as follows:
  • Step 1 When testing the grouting density of the reinforced sleeve, the power transmission rod with the vibration sensor is extended into the wall body at the position of the overflow hole and the grouting hole on the outer wall of the sleeve to make it match the The grouting entity contacts, and then fix the bottom of the preloading member to the wall surface;
  • Step 2 Rotate and tighten the power transmission rod through the nut fixed inside the device, so that the bottom of the power transmission rod is closely supported on the grouting entity of the reinforced sleeve connection structure to be tested to ensure that the two will not separate during the test;
  • Step 3 Strike the end of the force transmission rod with a force measuring hammer, and collect the change curve of the dynamic signal with time through the data collection system connected to the vibration sensor;
  • Step 4 Perform indoor full-scale model test, and set several groups of gradient grouting with different densities for comparative test; under the same hammering force as in step 3, use the same dynamic test device to determine the dynamics of different grouting densities
  • the variation curve of the signal with time is compared with the variation curve of the dynamic signal measured in the field in step 3 to determine the actual grouting density interval, and the quantitative judgment of the grouting density of the steel sleeve is completed.
  • the present invention provides a method for detecting the density of grouting body in a reinforced sleeve connection structure, which includes the following steps:
  • S1 Support the rigid power transmission rod against the surface of the steel bar in the connection structure of the steel sleeve to be tested, and maintain a pre-pressure between the two; the power transmission rod is fixed with vibration synchronously vibrating with the power transmission rod A sensor, the vibration sensor is one or more combinations of strain gauges, displacement sensors, acceleration sensors and speed sensors;
  • S3 Obtain the parameter value of the characteristic index from the vibration induction signal, and the characteristic index is one or more combinations of the time domain index or the frequency domain index;
  • the frequency domain index includes: the response frequency corresponding to the maximum amplitude obtained from the frequency domain signal curve of the vibration induction signal;
  • the present invention provides a method for detecting the density of a grout in a reinforced sleeve connection structure using the detection device according to the first aspect, the steps are as follows:
  • S3 Wiener filtering the amplified electrical signal stored in the data acquisition system to enhance the target frequency
  • a filter window of size N is set with the i-th sampling point as the center, and a vector Data i composed of all sampling points in the filter window is obtained; the initial setting is set Predicted amplitude of electrical signals among them, Is the average of all sampling points in the current filter window, Represents the signal value of the jth sampling point in the vector Data i , j ⁇ [1,N];
  • S5 Digitally filter the Kalman-filtered signal data. The process is to input the signal into a band-stop filter to suppress the frequency of the power frequency interference, and then filter out the high frequency through a low-pass filter with a cut-off frequency of 3000 Hz. Signal to derive new time-domain signal data;
  • the present invention has the following beneficial effects:
  • the device and method for detecting the density of the grouting body of the reinforced sleeve connection structure of the present invention can be used for qualitative and quantitative determination of the density of the grouting body of the reinforced sleeve joint after the grouting is completed, and different Sampling inspection and repeatability test of the quality of the sleeve connection steel bar can be recovered after the test is completed, which has great practical value for the quality inspection of the field connection node of the construction project.
  • the present invention provides a new type of detachable detection device, which separates the rigid preloading member from the force transmission rod, the rigid preloading member is separately positioned and installed, and the force transmission rod is detachable through the preload applying plate It is assembled on the rigid pre-compressed component, and it is directly disassembled after use.
  • Rigid preloaded members can be used as required, and more people can divide the work, which improves the efficiency of the entire test.
  • a plurality of characteristic indexes obtained from the signal curve are optimized, which further simplifies the comparison of the signal curve and facilitates the automation of the method.
  • the present invention can compare and verify the judgment results obtained by different sensors.
  • FIG. 1 is a schematic structural view of a device for detecting the density of grouting body in a connection structure of a steel sleeve
  • FIG. 2 is a schematic diagram of the installation state of the grouting body density detection device in the reinforced sleeve connection structure
  • Figure 3 is a schematic diagram of two kinds of vibration signal curves
  • Figure 4 is a schematic diagram of a device for detecting the density of the grout in the improved reinforced sleeve connection structure
  • Fig. 5 is a schematic structural view of a rigid preloading member
  • FIG. 6 is a schematic structural diagram of a pre-pressure applying plate
  • Figure 7 is a schematic diagram of the structure of the strain gauge
  • Figure 8 is a schematic diagram of the structure of the power transmission rod
  • FIG. 10 is a schematic diagram of the structure of the sensor fixing frame
  • FIG. 11 is a schematic diagram of the assembly of the detachable part
  • Figure 12 is a schematic diagram of the structure after the extractable part is assembled into the rigid preloading member
  • 13 is a schematic diagram of the structure after the extractable part and the rigid preloading member are locked by the lock catch;
  • FIG. 14 is a schematic view of the detection state of the grouting body density detection device in the improved reinforced sleeve connection structure
  • Figure 15 shows three types of reinforced sleeve connection structure
  • 16 is a schematic diagram of the structure of a manual impact hammer
  • Figure 17 is a schematic diagram of the structure of an automatic impact hammer
  • Figure 18 is a perspective view of an automatic impact hammer
  • connection structure and detection device of the reinforced sleeve under four groups of gradient grouting with different densities
  • Figure 20 is the compressive strength of the specimen at different times after grouting; where, ----- is the fitting line, ⁇ is the test result under the same condition curing, ⁇ is the test result under steam curing
  • Fig. 21 is the signal results of the grouting-free sleeve model under each density gradient; among them, Fig. 21(a), Fig. 21(b), and Fig. 21(c) are the time domain diagram, FFT power spectrum, and frequency, respectively. Domain map
  • Fig. 22 is the signal results of the 1/3 saturated grouting sleeve model under each density gradient; among them, Fig. 22(a), Fig. 22(b) and Fig. 22(c) are the time domain diagram and FFT power, respectively Spectrum, frequency domain diagram;
  • Figure 23 is the signal results of the 2/3 saturated grouting sleeve model under each density gradient; where, Figure 23(a), Figure 23(b), and Figure 23c) are the time domain diagram, FFT power spectrum, Frequency domain graph
  • Fig. 24 is the signal results of the fully saturated grouting sleeve model under each density gradient; among them, Fig. 24(a), Fig. 24(b) and Fig. 24(c) are the time domain diagram, FFT power spectrum, Frequency domain graph
  • Figure 25 is the normal distribution diagram of the maximum response frequency parameter value corresponding to different grouting density after the grouting body is cured for 24 hours; N represents the number of samples collected, the same below;
  • Figure 26 is the normal distribution of amplitude parameter values corresponding to different grouting densities after 24 hours of grouting solidification
  • Figure 27 is the normal distribution of half-peak width parameter values corresponding to different grouting densities after 24 hours of grouting solidification
  • Figure 28 is the normal distribution of half-peak width ratio parameter values corresponding to different grouting densities after 24 hours of grouting solidification
  • Figure 29 is the normal distribution of the maximum response frequency parameter value corresponding to different grouting density after 48 hours of grouting solidification
  • Figure 30 is the normal distribution of amplitude parameter values corresponding to different grouting densities after 48 hours of grouting solidification
  • Figure 31 is the normal distribution of half-peak width parameter values corresponding to different grouting densities after 48 hours of grouting solidification
  • Figure 32 is the normal distribution of half-height width ratio parameter values corresponding to different grouting densities after 48 hours of grouting solidification.
  • the device for detecting the density of the grout body in the reinforced sleeve connection structure proposed by the present invention is aimed at the reinforced sleeve connection structure.
  • two reinforcement bars are generally connected by a connection sleeve, and the inside of the sleeve is reinforced with concrete grouting.
  • the detection device quantitatively detects the density of the grouting body in the connection structure of the steel sleeve to eliminate the hidden dangers of engineering construction.
  • the manifestation of the lack of grouting body density is: insufficient grouting or leakage of grouting causes part of the steel bar to be exposed, or the appearance of cavities during the grouting process causes the grouting body outside the steel bar to solidify and appear voids.
  • an implementation form of a grouting body density detection device in a reinforced sleeve connection structure is proposed.
  • the basic components of the device include a rigid preloading member, a force transmission bar, a telescopic adjustment member, a vibration sensor, and a data acquisition system.
  • the force transmission rod is a rigid rod body, and the force transmission rod is installed on the rigid pre-compression member through the telescopic adjusting member.
  • the rigid preloading member here is a rigid member used to apply preload to the force transmission rod, and the force transmission rod is fixed to the wall body where the reinforcing sleeve connection structure is located by the rigid preloading member, so that the force transmission rod can be inserted into the sleeve
  • the inner cavity of the cylinder is supported on the surface of the steel bar.
  • the rigid material parts may be made of steel materials, and of course, other rigid materials may be used when necessary.
  • the depth of the sleeve buried in the wall is different, so the force transmission rod needs to have a certain expansion and adjustment ability in order to adapt to different detection scenarios.
  • the present invention it is achieved by providing a telescopic adjustment member.
  • the telescopic adjuster is fixed on the rigid pre-compression member, which is used to control the force transmission rod to move in the direction of the vertical wall, and the end of the force transmission rod can be closely supported on the surface of the steel bar in the steel sleeve to be tested through adjustment.
  • the pre-pressure is always maintained between the two throughout the inspection process.
  • the structure of the telescopic adjustment member can adopt various forms, as long as it can adjust the axial expansion and contraction of the force transmission rod, and some specific implementation forms will be given later.
  • the vibration sensor in order to meet the needs of detection, it is also necessary to fix the vibration sensor on the force transmission rod. Since the force transmission rod and the steel bar in the sleeve are tightly connected in the form of preload, the two can achieve synchronous vibration.
  • the data sensed by the vibration sensor on the power transmission rod also represents the vibration of the rebar in the sleeve.
  • a data collection system in order to obtain the data of the vibration sensor, a data collection system needs to be set up to collect the sensing signal of the vibration sensor. The specific form of the data acquisition system needs to be adjusted according to the form of the vibration sensor.
  • the vibration sensor is one or more combinations of strain gauge, displacement sensor, acceleration sensor and speed sensor.
  • the optimal one is the strain gauge, which can be directly fixed on the force transmission rod.
  • the strain gauge has the advantages of sensitive induction and simple fixing method, and can be well applied to the detection purpose of the present invention.
  • FIGS. 1 and 2 it is a schematic structural diagram of a device for detecting the density of a grout in a connection structure of a reinforced sleeve provided in a preferred embodiment of the present invention.
  • the first reinforcement J and the second reinforcement M are connected by a connection sleeve, and the grouting concrete L is injected inside the outer wall K of the sleeve.
  • the concrete slurry is injected through the grouting hole H on the outer wall K of the sleeve, and overflows from the grouting hole B.
  • the grouting body compactness detection device includes a rigid preloaded member C made of steel material, a nut D, a force transmission rod E, a force measuring hammer F, and a vibration sensor G.
  • the external steel structure pre-compression member C is a cover-shaped hollow steel member, which can be pressed from a steel plate to form a bottomless cylinder or a square cylinder, and the bottom of the cylinder is bent to form an annular flat surface, making it It can be attached to the surface of the wall A, and connected and fixed to the wall through an adhesive or other fixing parts.
  • a through hole is formed in the cover body of the external rigid preloading member C, and a nut D is fixed on the inner surface of the cover body at the position of the through hole.
  • the power transmission rod E is a rigid rod body, which can be made of steel, and the middle part of the rod body is tapped externally.
  • the force transmission rod E passes through the through hole on the cover body and is screwed into the nut D, and the thread on the rod body and the nut D form a screw thread that drives the force transmission rod E to move up and down.
  • the bottom position of the force transmission rod E can be adjusted up and down by rotating the force transmission rod E, adapting to different wall surface heights, so that the bottom of the force transmission rod E is closely supported on the first part of the connection structure of the reinforced sleeve to be tested A steel bar J.
  • the vibration signal that can be detected by hammering force transmission bar E will also be different, and it has a clear correlation with the grouting density, so the dynamic signal can be detected by vibration sensor G, and then It is used to quantitatively estimate the grouting density of the reinforced sleeve connection structure. Since the power transmission rod is hammered, it will receive the vibration feedback of the internal steel bar, so the dynamic signal detected by the vibration sensor G on it is actually the vibration signal of the steel bar inside the sleeve. In the present invention, the vibration sensor G is attached to the power transmission rod E, and the end of the power transmission rod E is struck by the load cell F.
  • the force transmission rod E is generally arranged perpendicular to the steel bar inside the sleeve, so the radial vibration of the steel bar will be conducted along the axial direction of the force transmission rod E, and then detected by the vibration sensor G.
  • Vibration sensor G can be selected according to the needs, the signal can reflect the grouting density of the reinforced sleeve connection structure, and one or more combinations of strain gauge, displacement sensor, acceleration sensor and speed sensor are optional .
  • the vibration sensor G also needs to be matched with the data acquisition system.
  • the vibration sensor G uses strain gauges, and the strain gauges need to be connected to a KD5018 integrating charge amplifier and a KD-LP16D data collector to collect the time-varying curve of dynamic signals that can reflect the grouting density.
  • FIG. 2 it is a schematic diagram of the installation of the dynamic test device on a sleeve connection structure.
  • the overflow hole B and the grouting hole H on the outer wall K of the sleeve are both exposed on the surface of the wall A. Therefore, the bottom of the force transmission rod E can directly pass through the overflow hole B or the grouting hole H and enter the interior of the sleeve.
  • the rigid preloading member C is fixed to the surface of the wall A by bolting or pasting, and makes the force transmission rod F Close contact with the surface of the first steel bar J, and then apply a pre-pressure to the force transmission bar F through the fixing nut D, so that the force transmission bar F and the surface of the grouting concrete L will not separate during the test.
  • the force transmission rod E is inserted into the sleeve through the overflow hole B.
  • the nut D may be directly welded to the through hole position of the rigid preloading member C, but may also be fixed to the rigid preloading member C in an indirect manner.
  • the dynamometer F can be configured as a set, or can be prepared by the user as long as it has rigidity.
  • a method for hammering preloading test sleeve connection structure grouting density can also be provided, the steps are as follows:
  • Step 1 When testing the grouting density of the reinforced sleeve, the power transmission rod E with the vibration sensor G is extended into the wall A at the positions of the overflow hole B and the grouting hole H on the outer wall K of the sleeve. Make it contact with the grouting entity to be tested.
  • the grouting entity selects the steel bar in the sleeve.
  • the bottom of the rigid pre-compression member C is bonded and fixed to the surface of the wall body A by an adhesive.
  • the adhesive can be AB glue.
  • the rigid preloading member C can also be fixed on the wall body A by expansion screws.
  • Step 2 Rotate and tighten the force transmission rod E through the nut D fixed inside the device, so that the bottom of the force transmission rod E is closely supported on the steel bar of the reinforced sleeve connection structure to be tested to ensure that the two will not separate during the test .
  • Step 3 Use the force measuring hammer F to hit the end of the power transmission rod E, and collect the dynamic signal of vibration with time through the data collection system connected to the vibration sensor G;
  • Step 4 Carry out an indoor full-scale model test.
  • the full-scale model is completely consistent with the connection structure of the steel sleeve to be tested.
  • several groups of gradient grouting with different densities are set for comparative tests. Multiple gradients can be divided into no grouting, 1/3 saturated grouting, 2/3 saturated grouting, and fully saturated grouting.
  • Under the same hammering force as step 3, use the same dynamic test device to determine the dynamic signal with time of different grouting density curve, and compare it with the dynamic signal with the time measured in step 3 Determine the interval where the actual grouting density is located, and complete the quantitative judgment of the grouting density of the steel sleeve.
  • the measured dynamic signal can be compared with the experimental data of different grouting density, and the interval of the measured data can be selected to determine the actual grouting.
  • the interval of compactness is a positive correlation between the signal of the strain gauge response and the grouting density.
  • Step 5 After the test is completed, disassemble the equipment and clean it up for the next use.
  • the device and method for detecting the density of the grout can determine the actual interval of the density of the grout based on the time-varying curve of the signal under hammer vibration.
  • the actual detection process it is very difficult to visually compare the two change curves. Therefore, it is necessary to further improve the above detection methods to make it easier and feasible to quantitatively determine the density of the grout.
  • the present invention provides a further improved grouting body density detection method in the reinforced sleeve connection structure, which mainly improves the feature extraction method of the vibration induction signal curve, It is possible to extract the characteristic index representing the density of the grouting body in the sleeve from the curve, and judge the density of the grouting body by the detection value of the characteristic index. It should be noted that this method does not need to be performed based on the detection device described in the foregoing embodiments, but any device that satisfies the description of the method steps may be used.
  • the improved method for detecting the density of the grout in the connection structure of the reinforced sleeve is shown in steps S1 to S4:
  • S1 Support the rigid power transmission rod against the surface of the steel bar in the connecting structure of the steel tube to be tested, and keep the pre-pressure between the two, and there will be no separation during the testing process.
  • a vibration sensor synchronously vibrating with the force transmission rod is fixed on the force transmission rod.
  • the vibration sensor is one or more combinations of strain gauges, displacement sensors, acceleration sensors, and speed sensors.
  • the force transmission bar is best supported vertically on the surface of the steel bar in the sleeve structure, so that the radial vibration of the steel bar will be transmitted along the axial direction of the power transmission bar, and then detected by the vibration sensor.
  • the grouting body can be further extracted according to the subsequent method.
  • the characteristic index value related to compactness refers to the time-domain signal detected by the vibration sensor with the vibration caused by the impact force on the steel bar transmitted to the vibration sensor as a starting point.
  • the specific vibration sensing signal changes as the vibration sensor used changes.
  • the vibration induction signal is the time-domain signal obtained after the electrical signals collected by the strain gauges are amplified, filtered, and de-noised.
  • the vibration sensor is an acceleration sensor
  • the vibration induction signal is a speed signal obtained by integrating the acceleration collected by the acceleration sensor. If the vibration sensor is a speed sensor, then the vibration sensing signal directly uses the speed signal it senses.
  • the vibration sensor may also be a displacement sensor, and the vibration sensing signal directly uses the displacement signal it senses.
  • the vibration sensing signal detected by the vibration sensor is actually a waveform curve composed of a series of discrete points. This signal is a time-domain signal, and the vibration amplitude changes with time. From the waveform curve of the vibration induction signal, the parameter value of the characteristic index can be extracted.
  • characteristic indexes that can reflect the compactness of the grout are divided into two types: time-domain indexes and frequency-domain indexes, which are described in detail below.
  • the N-th half-wave detected by it may appear as a peak wave above the abscissa axis or a valley wave below the abscissa axis, both Can be regarded as a half wave.
  • Figure 3a shows the case where the first half-wave in the waveform curve is a peak wave
  • the second half-wave is a valley wave. Both of these half-waves can be used to extract feature indexes.
  • Figure 3b shows the case where the first half-wave in the waveform curve is a valley wave. At this time, the second half-wave is a peak wave, and both of these half-waves can also be used to extract feature indexes.
  • the wave width of the valley wave is also called peak width
  • the ratio of the amplitude to the peak width is also called peak width ratio.
  • the formula for calculating the peak width ratio (Peak Width Ratio) of the N-th half-wave is as follows:
  • a half-wave For a half-wave, its amplitude, that is, the maximum amplitude is fixed, but its peak width is different at different heights.
  • the above-mentioned peak width at an arbitrary height means the half-wave peak width at an arbitrary height of a half-wave.
  • the frequency domain index mentioned in the present invention refers to the maximum response frequency, that is, the response frequency corresponding to the maximum amplitude obtained from the frequency domain signal curve of the vibration induction signal.
  • the methods for obtaining the above time domain indicators are:
  • the filter After amplifying the electrical signal collected by the vibration sensor, the filter removes the disturbance clutter and noise to obtain the time domain signal; from the waveform curve of the time domain signal, three time domain indicators can be obtained.
  • the acquisition method of the above frequency domain index is:
  • three kinds of time domain indexes and one kind of frequency domain indexes can all be used as characteristic indexes to reflect the compactness of the grout. In the actual detection process, you can choose one or more combinations.
  • the parameter value of the above characteristic index actually carries the information of the density of the grouting body in the sleeve structure
  • the parameter value of the characteristic index obtained from the vibration induction signal in S3 can be used to determine the reinforced sleeve connection to be detected The density of the grout in the structure. For specific determination, it is necessary to call the threshold interval of the characteristic index parameter value corresponding to the density of different grouts obtained by the full-scale test in advance.
  • the parameter value of the characteristic index obtained from the vibration induction signal in S3 can be used to determine which threshold interval the parameter value falls in, and then the density of the grouting body corresponding to the threshold interval is used as the reinforced sleeve to be detected The judgment result of the density of the grouting body in the connection structure, thus realizing the quantitative detection of the grouting body density.
  • the number of concrete density gradient groups can be adjusted, for example, 4 groups of gradient grouting with different density can be set, namely no grouting, 1/3 saturated grouting, 2/3 saturation Grouting, fully saturated grouting.
  • 4 groups of gradient grouting with different density can be set, namely no grouting, 1/3 saturated grouting, 2/3 saturation Grouting, fully saturated grouting.
  • more gradients can be set.
  • the pre-pressure applied to the force transmission rod should be kept as consistent as possible each time.
  • the pre-pressure is also consistent with the pre-pressure used in the previous full-scale test.
  • the present invention there are four kinds of characteristic indicators, including three kinds of time domain indicators and one kind of frequency domain indicators, all of which can reflect the density of the grouting body wrapped by the steel bar to a certain extent. If multiple characteristic indexes are used at the same time, the judgment result of the density of the grouting body in the connection structure of the reinforced sleeve to be tested needs to be determined according to each characteristic index, and then the results of the judgment of the density of the grouting body of all the characteristic indexes are synthesized to obtain the final grouting body Judgment result of compactness. Generally speaking, the density of the grouting body with the highest number of occurrences among the judgment results of all the characteristic indexes can be selected as the final result. Of course, the weight coefficient of each characteristic index can also be set to be determined comprehensively.
  • the vibration sensor preferably adopts a strain gauge
  • the characteristic index preferably adopts the half-height width ratio of the first half-wave in the waveform curve obtained from the time-domain signal of the vibration induction signal.
  • the half-height peak width ratio here refers to the half-wave width at the half-peak height of the half-wave, that is, the midpoint of the peak height is a straight line parallel to the bottom of the peak, and the distance between the intersection point of this straight line and the two sides of the half-wave. Since the signal curve is actually composed of discrete points, in actual operation, the difference between the abscissas of the two discrete sampling points closest to the two intersection points can also be used.
  • the original electrical signal collected by the vibration sensor is relatively weak, so it generally needs to be amplified.
  • a small-signal/low-noise amplifier small-signal amplifier or low-noise amplifier, specifically selected according to needs
  • the original signal collected is an analog signal.
  • After being amplified by a small signal/low noise amplifier it needs to be converted into a digital signal by an analog-to-digital converter and stored in a data acquisition device.
  • the data acquisition device generally adopts the signal detection instrument matched with the sensor.
  • there may be more disturbances and noises so it is necessary to remove disturbance clutters and noises through filters.
  • Filtering and denoising include one or more of Wiener filtering, Kalman filtering, band stop filter, and low-pass filter.
  • the filter is composed of a Wiener filter, a Kalman filter, a band stop filter, and a low-pass filter, and the amplified electrical signal is first subjected to Wiener filtering, and then to Kalman The filter is smoothed, and then digitally filtered. The process is to first input the signal into the band-stop filter to suppress the frequency of the power frequency interference (in this embodiment, set to 40Hz ⁇ 60Hz), and then pass the low-pass cut-off frequency of 3000Hz
  • the filter filters out high-frequency signals.
  • the effective information in the electrical signal collected by the strain gauge can be reflected to the greatest extent, which is convenient for the extraction of characteristic indexes.
  • the filtering process can be removed. If the original signal value is large enough, the amplification process can also be omitted. Or if the data acquisition device or the lower computer equipped with the strain gauge itself has amplification or filtering, the electrical signal output by it can also be directly used as the vibration induction signal without additional amplification or filtering.
  • the threshold interval of the characteristic index parameter value corresponding to the density of different grouting bodies can also directly form a threshold lookup table of different structural parameters through a large number of experiments in advance. Through the look-up table method, after knowing the parameters of the sleeve type, the strength of the grout used, the diameter of the steel bar and the length of the steel bar, find the applicable threshold interval.
  • a comparison test can be used to simulate the comparison test of the density gradient of the known grout in the field.
  • FEM Finite Element Method
  • the comparison test and the FEM method are fitted, and then the sleeve model under different conditions, the strength of the grout used, the steel bar diameter and the steel bar length are changed
  • a new set of comparative test data formed using FEM can be obtained, and the compactness of the sleeve connection steel can be determined qualitatively and quantitatively through the results of on-site testing.
  • the above embodiment 2 shows the concept of the improved method for detecting the density of the grout in the reinforced sleeve connection structure of the present invention, which can rely on a variety of detection devices.
  • the detection device in Example 1 in actual engineering, it is usually necessary to batch test the density of the grout in the connection structure of many steel sleeves, and the rigid pre-compression member of the detection device in Example 1 It is directly fixed on the wall, which will cause the force transmission rod with strain gauges to be quickly disassembled after the test is completed. Therefore, in the present invention, a device for detecting the density of the grouting body in the reinforced sleeve connection structure that is more suitable for batch testing in engineering is designed. The structure will be described in detail below.
  • the device for detecting the density of the grout includes a pre-pressure applying plate 4, a sensor fixing frame 10, a rigid pre-compression member 6, a strain gauge 11 (Strain Gauge), a lock 17, and a force transmission rod 16.
  • the rigid pre-compression member 6 is a cover-shaped hollow steel member, which can be formed by pressing a steel plate, and the bottom is folded outward at a right angle to form a fixed plane so that it can fit the surface of the wall to be installed.
  • the rigid preloading member 6 is provided with a slot 1, a small hole 2, a central hole 5 and a wing foot 18, the slot 1 is opened one at each end; the small hole 2 is opened two at each end; 3 is used for the transmission rod 16 to pass through.
  • the rigid preloading member 6 is connected and fixed to the wall body by a fixing member such as adhesive or expansion bolt.
  • the center hole 5 on the top cover is for passing the sensor fixing frame 10 fixed on the power transmission rod 16.
  • the slot 1 on the top cover is to enable the lock 17 to pass through the slot 1 on the pre-pressure applying plate 4 to achieve the effect of applying pre-pressure to the force transmission rod 16.
  • the small hole 2 on the top cover is used for positioning or passing through the sensor data line.
  • the rigid preloading member 6 can be fixed on the wall to be tested through nails or screws through the small holes 2 in the wing feet 18, or fixed on the surface to be measured using glue, or both.
  • the power transmission rod 16 has a multi-stage structure, which is sequentially divided into an externally tapped thread section 12, a hexagonal shank 13, a variable cross-section transition section 14, and a thin rod section 15.
  • the entire power transmission rod 16 is integrally formed of steel material .
  • the outer diameter of the thin rod section 15 should be smaller than the overflow hole of the sleeve to facilitate insertion into the sleeve.
  • the transition section 14 with a variable cross section has a flat surface on which the strain gauge 11 is attached.
  • the externally tapped threaded section 12 is used to install and cooperate with the rigid pre-compression member 6, and is also used to assemble the sensor fixing frame 10, and the hexagonal shank 13 is used to screw the force transmission rod 16.
  • the pre-pressure applying plate 4 is a rigid plate made of steel.
  • a slot 1, a small hole 2 and a force-transmitting rod through-hole 3 corresponding to the rigid preload member 6 are opened on the pre-pressure applying plate 4.
  • the power transmission rod through hole 3 is for passing the power transmission rod 16.
  • a limit nut is coaxially welded on the power transmission rod through hole 3, and the outer tapped thread section 12 of the power transmission rod 16 is formed with the limit nut With the screw thread, by rotating the hexagon handle 13, the force transmission rod 16 can be adjusted to expand and contract along its own axis.
  • the slot holes 1 on the preload applying plate 4 correspond to the slot holes 1 on the rigid preloading member 6 for mounting the lock catch 17.
  • the small holes 2 on the pre-pressure applying plate 4 correspond to the small holes 2 on the rigid pre-loading member 6 partly for passing through the sensor data line and partly for positioning.
  • the strain gauge 11 is planar, and can be directly attached to the flat surface of the transition section 14 with a variable cross-section.
  • the lock 17 is composed of a pair of bolts and nuts.
  • the bolts can be screwed into the corresponding slot holes 1 on the pre-pressure applying plate 4 and the rigid pre-loading member 6, and respectively form threads with the two slot holes 1 Fit, the nut is screwed to the end of the bolt.
  • the bolt can be used to lock the pre-pressure applying plate 4 and the rigid pre-compression member 6 while ensuring that the relative spacing can be adjusted, and the spacing adjustment direction is consistent with the axial direction of the force transmission rod.
  • the sensor fixing frame 10 is a rigid object composed of a sensor tray 7, a nut 8 and a small hole 2.
  • the sensor fixing frame 10 is sleeved on the external tapping thread section 12 of the force transmission rod 16 through the nut 8.
  • the acceleration sensor 9 Accelelerometer
  • speed sensor or displacement sensor
  • the sensor holder 10 can install or remove the attached sensor, you can install a single, or It is two or more sensors.
  • the strain gauge 11, acceleration sensor 9, speed sensor or displacement sensor output electrical signals, and the sensor needs to be calibrated before use to obtain the required physical quantity.
  • the pre-pressure applying plate 4, the sensor fixing frame 10, the strain gauge 11, and the force transmission rod 16 are combined to form the extractable part as shown in FIG. 11, and the rigid pre-compression member 6 and the lock have not been installed at this time 17.
  • the detachable part can be installed in the rigid pre-compression member 6, as shown in FIG. 12, the slot holes 1 at both ends are fixed by the lock catch 17, as shown in FIG.
  • the corresponding supporting data line 32 is used to connect the small signal/low noise to the strain gauge 11 on the force transmission rod 16 and the acceleration sensor 9
  • the amplifier 28 is then connected to the signal acquisition device 30, and finally the host computer 31 is also connected to form a signal detection path.
  • the signal acquisition device 30 of the vibration sensor is connected to the host computer through wired or wireless communication, and the vibration induction data is stored in the host computer 31.
  • the host computer 31 generally uses a computer.
  • the wing feet 18 on the rigid pre-compression member 6 are firmly fixed on the wall surface by AB glue or expansion bolts. Then, the detachable part shown in FIG. 11 is passed through the central hole 5 of the rigid pre-compression member 6, and then locked by the lock catch 17 to form a complete detection device 27.
  • the depth of the end position relative to the wall surface can be adjusted by rotating the force transmission rod 16 to adapt to different wall surface heights, and at the same time, it also cooperates with the adjustment of the spacing of the lock 17 to make the force transmission rod E
  • the bottom is closely supported on the surface of the steel bar in the connecting structure of the steel bar to be tested.
  • connection structure of the steel sleeve applicable to the detection device is various.
  • the first form is a semi-grouting connecting reinforced sleeve (a), including threaded drill holes 19, steel bars 20, grouting joints 21, and grouting joints 22;
  • the second form is the reserved hole slurry anchor of the grouting structure device Overlap structure (b), including steel bar 20, grouting joint 21, grouting joint 22, concrete 23; form three is full grouting connecting steel sleeve (c), steel bar 20, grouting joint 21, grouting joint 22, cover 24 .
  • the slurry discharge joint and the grouting joint are also referred to as the overflow hole and the grouting hole in Example 1, and have the same meaning.
  • a joint electric drill hole 26 is drilled from the wall surface toward the outer wall of the sleeve.
  • the bore 26 penetrates the discharge joint 21, and the end of the power transmission rod After passing through the drilling hole 26, it is supported on the steel bar 20 of the sleeve.
  • the rigid pre-compression members 6 can be fixed in batches on the wall to be tested connected to the steel sleeve. After the inspection of a wall is completed, the lock can be released by the lock 17 and then the rigid pre-compression members 6 remain On the wall surface, the remaining components are drawn away from the rigid pre-compression member 6, and the next test point is tested to improve the detection efficiency.
  • an impact force 33 can be applied to the end of the force transmission rod 16 to obtain a vibration induction signal.
  • a hammer 52 may be used to apply an impact force 33 to the device 27.
  • a manual impact hammer 49 or an automatic impact hammer 49 is used to apply the impact force 33 so that the impact force 33 can be applied multiple times and the signals will be collected simultaneously.
  • the manual impact hammer 49 is a hammering device installed on the top of the power transmission rod 16.
  • the components of the hammering device include a connecting rod 41, a spring 43, a mass 44 and a fixing frame 45.
  • the fixing frame 45 is a cylindrical steel block with a bottom-opening assembly hole, and the lower part of the assembly hole is internally tapped.
  • the external tapping thread section 12 and the hexagonal shank 13 on the top of the force transmission rod 16 extend into the assembly hole.
  • the threaded section 12 and the mounting hole of the fixing frame 45 form a threaded fit.
  • the spring 43 and the mass 44 are placed in the assembly hole.
  • the top of the fixing frame 45 has a light hole with an aperture larger than that of the connecting rod 41.
  • the connecting rod 41 extends from the light hole of the top of the fixing frame 45 into the assembly hole and is connected to the mass 44 through a hinge seat 46 for fixing.
  • the spring 43 is located between the mass 44 and the inner wall of the top of the mounting hole.
  • the connecting rod 41 can pull the mass 44.
  • the mass 44 compresses the spring 43 during the process of being pulled by the connecting rod 41 toward the top of the fixing frame 45, while the connecting rod 41 When it is not constrained by external force, the compression elastic force of the spring 43 will be used to push the mass 44 to exert an impact force on the top of the transmission rod 16 along the axial direction of the transmission rod.
  • a piston ring 34 may be further installed on the side wall of the mass 44 in the circumferential direction, and then the mass 44 is formed by the spring 43 and the mounting hole in the fixing frame 45
  • the piston structure restricts the moving direction of the mass 44 to be only along the axial direction of the assembly hole.
  • the springs with different stiffness k are changed; by changing the extension or compression distance x of the spring 42, the springs 43 with different displacements are adjusted so that different impact forces 33 are applied to the mass 44.
  • the connecting rod 41 in the above-mentioned manual impact hammer 49 needs to be manually pulled by an operator, and its pulling distance will determine the magnitude of the impact force 33. Furthermore, in order to facilitate control, an automatic stretching device is further provided on the basis of the manual impact hammer 49, thereby forming an automatic impact hammer 49.
  • the automatic stretching device has a displacement output end, which is used to push the connecting rod 41 and release the connecting rod 41 after compressing the spring 43 quantitatively.
  • the automatic stretching device includes a motor 39, a cam 40 and a pad 42, the pad 42 is placed on the pad 42, and the pad 42 can be mounted with a motor 39 ,
  • the cam 40 is mounted on the output shaft of the motor 39.
  • the top of the connecting rod 41 has a bent portion, and the rotation path of the cam 40 passes through the bent portion. Therefore, when the cam 40 rotates, the connecting rod 41 is pushed upward, and the spring 43 compresses and stores energy. When rotating to a certain angle, the cam 40 is disengaged from the bending portion of the connecting rod 41, the connecting rod 41 is not subjected to external force, and then the compression spring of the spring 43 is used to push the mass 44 to exert a force on the top of the transmission rod 16 along the axial direction of the transmission rod Impact. When the cam 40 continues to rotate under the action of the motor 39, the process will be repeated again, so that the same amount of impact force 33 can be continuously applied.
  • the magnitude of the impact force 33 applied by the automatic impact hammer 49 can be changed by changing the stiffness k of the spring, the compression distance x of the spring, the weight of the mass 44, or the far hub diameter of the cam 40.
  • the frequency of the impact force 33 applied by the automatic impact hammer 49 can be realized by changing the rotation speed of the motor 39.
  • the present invention can provide a preferred method for detecting the density of the grout in the connection structure of the reinforced sleeve, the steps are as follows:
  • Step 1 Using the corresponding supporting data cable 32, connect the small signal/low noise amplifier 28 to the strain gauge 11 and the acceleration sensor 9 (if any) on the force transmission rod 16, and then connect it to the signal On the collector 30, a communication connection is finally formed with the host computer 31, and then the small signal/low noise amplifier 28 and the signal collector 30 are turned on.
  • Step 2 Assemble the power transmission rod 16 already provided with the strain gauge 11 and the pre-pressure applying plate 4 into the form shown in FIG. 11.
  • Step 3 Locate the wall of the steel sleeve to be tested to match the two small holes 2 on the wing foot 18, and then use an impact drill to drill the marked marks on the concrete 23 for drilling .
  • a hole 26 is drilled from the surface of the wall toward the outer wall of the sleeve, and the hole 26 penetrates the slurry discharge joint 21 to check and confirm that the surface of the steel bar in the sleeve has been exposed.
  • Apply glue through the wing feet 18 on the rigid pre-compression member 6, and then fix the expansion screws into the wall through the small holes 2 on the wing feet 18, so that the rigid pre-compression member 6 can be firmly fixed to the connecting reinforcement to be tested The wall on which the sleeve is located.
  • Step 4 Install the detection device without the rigid preloading member 6 and the lock 17 on the rigid preloading member 6 in place, and perform the preload application plate 4 and the rigid preloading member 6 through the lock 17 Fixed, through the clockwise or counterclockwise rotation of the lock 17 and the power transmission rod 16 itself, the end of the power transmission rod 16 is closely supported on the surface of the steel bar in the form of preload, and the preload can be controlled by adjustment The amplitude.
  • Step 5 the installed detection device 27 applies an impact force 33 to the hexagonal handle 13 on the force transmission rod 16.
  • the strain gauge 11 on the force transmission rod 16 and the acceleration sensor 9 sense the electrical signal reflected by the shock wave from the reinforcing steel in the connecting sleeve, and the small signal/low noise amplifier 28 amplifies the originally weak instantaneous electrical signal Then, through the signal acquisition device 30, the electrical signal reflected by the instantaneous tiny shock wave is recorded, and then stored in the host computer 31.
  • Step 6 Repeat multiple times Step 5.
  • the vibration sensing signals of multiple sets of strain gauges 11 and acceleration sensors 9 are collected and stored in the host computer 31. Then, the data in the host computer 31 is programmed with MATLAB as the platform, and the acceleration signal output by the acceleration sensor 9 is first integrated into a speed signal, and then corresponding to the signal of the variable plate 11 and the acceleration sensor 9 Speed signals, both of which are time-domain signals with disturbances, are subjected to Wiener filtering, Kalman filtering, band-stop filtering, and low-pass filtering to extract effective signal information as much as possible.
  • Wiener filtering may use a Wiener filtering speech enhancement method (Wiener speech enhancement method) to suppress noise and enhance the target frequency.
  • Wiener speech enhancement method Wiener filtering speech enhancement method
  • the electrical signal after Wiener filtering is input into the Kalman filter.
  • the Kalman filter uses an improved Kalman filter. Knowing the collected electrical signal, a vector is formed through the time window, and then Is the amplitude of the output electrical signal, and To predict the amplitude of the electrical signal at the next point, the algorithm steps are as S41 ⁇ S46, where:
  • a filter window of size N is set with the i-th sampling point as the center, and a vector Data i composed of all sampling points in the filter window is obtained; the initial setting is set Predicted amplitude of electrical signals among them, Is the average of all sampling points in the current filter window, Represents the signal value of the jth sampling point in the vector Data i , j ⁇ [1,N];
  • the band-filtered signal passes through a low-pass filter with a cut-off frequency of 3000 Hz to filter out high-frequency signals with no valid information to obtain new time-domain signal data.
  • Step 8 Perform Fourier transform on the new time-domain signal data to obtain the FFT power spectrum, and then cut out the frequency domain diagram of the frequency and amplitude in the power spectrum to obtain the maximum response frequency from the frequency domain diagram.
  • the response frequency is the frequency corresponding to the maximum vibration amplitude in the frequency domain diagram;
  • Step 9 Taking any one or more of the amplitude, the peak width, the peak width ratio and the maximum response frequency as the feature index, based on the parameter values of the feature index determined in steps 7 and 8, based on the difference Threshold interval of the characteristic index parameter value corresponding to the density of the grouting body determines the density of the grouting body in the connection structure of the reinforced sleeve to be tested.
  • N is preferably taken as 1, and the characteristic index is preferably the half-height width ratio of the first half-wave on the waveform curve.
  • a full-scale test was conducted with a single strain gauge as a vibration sensor.
  • several grouting bodies with different densities are injected into the connection structure of several steel bars to be tested with the same model parameters.
  • four groups of gradient grouting with different densities are set, which is expressed in the sleeve
  • the grouting height of the grouting body 25 is different, which is no grouting, 1/3 saturated grouting, 2/3 saturated grouting, and fully saturated grouting, which means that the grouting height is 0, 1/3 sleeve cavity height, 2/ 3
  • the height and filling of the inner cavity of the sleeve are shown as (a) to (d) in FIG. 19 respectively.
  • the grouting method in the reinforced sleeve connection structure is as follows:
  • the sleeve uses Beijing Sida Jianmao JM steel bar semi-grouting connecting sleeve, the type of the sleeve is GT14, the connecting steel bar uses HRB400, and the diameter 14 steel bar is used for configuration;
  • a set of test blocks can produce three 40 ⁇ 40 ⁇ 160mm rectangular test blocks, apply silicone oil to the test blocks, and use 8 sets of test blocks to make 8 sets of test blocks.
  • the compressive and flexural strength of each group is based on the average of 3 rectangular test blocks;
  • the detection time needs to be set after the grouting body in the sleeve is cured, and the curing time is preferably 24h to 48h and above, this embodiment In the experiment, two groups of 24h and 48h trials were set up.
  • the iron hammer 52 impacts the steel bar in the sleeve with different density gradient grouting, and then the dynamic electrical signal result obtained by the strain gauge 11 on the force transmission rod 16 is then subjected to the aforementioned Wiener filtering, After improving Kalman filtering, band-stop filtering and low-pass filtering, a new time-domain signal is obtained. After that, the Fourier transform of the new time-domain signal is used to obtain the FFT power spectrum (Wavelet Power Spectrum), and then the frequency domain graph of the frequency (unit: kHz) and amplitude (unit: mV) is cut out.
  • multiple sets of parameter values of the characteristic index can be obtained for each type of grouting body density.
  • the sample size required for each characteristic index parameter value should meet the statistical requirements, so that it can accurately reflect the distribution interval of the characteristic index parameter value under such grouting body density.
  • the threshold value distribution of the parameter values of the characteristic indicators can be statistically analyzed to obtain the characteristic parameter threshold value interval corresponding to the density of each grout.
  • FIG. 25 There are 4 characteristic indexes, including 3 time domain indexes and 1 frequency domain index.
  • the frequency domain index is the response frequency corresponding to the maximum amplitude obtained from the frequency domain signal curve, that is, the maximum response frequency.
  • the result is shown in the figure. 25; the three time domain indicators are the amplitude, half-height width, and half-height width ratio of the first half-wave in the waveform curve, and the results are shown in Figures 26 to 28, respectively.
  • FIG. 29 There are 4 characteristic indexes, including 3 time domain indexes and 1 frequency domain index.
  • the frequency domain index is the response frequency corresponding to the maximum amplitude obtained from the frequency domain signal curve, that is, the maximum response frequency.
  • the result is shown in the figure. 29; the three time domain indicators are the amplitude, half-height width and half-height width ratio of the first half-wave in the waveform curve, and the results are shown in Figures 30 to 32, respectively.
  • the characteristic index in the present invention primarily advances the half-height width ratio of the first half-wave on the waveform curve.
  • more feature indexes can be combined, and weight coefficients can be appropriately assigned to the respective judgment results, so as to obtain a more accurate judgment result of grouting compactness.
  • strain gages are used as vibration sensors for description here, in fact, acceleration sensors, speed sensors, and displacement sensors can all be used to achieve the same function and can be combined as needed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明涉及一种钢筋套筒连接结构内的灌浆体密实度检测装置及方法,其包括预压构件、传力棒、伸缩调节件、振动传感器和数据采集***;所述传力棒为一条刚性棒体,其通过伸缩调节件安装在刚性预压构件上;所述的刚性预压构件用于将传力棒固定于钢筋套筒连接结构所在的墙体上,所述伸缩调节件固定于刚性预压构件上,用于控制传力棒沿垂直墙体方向移动,使传力棒端部紧密支顶于待检测的钢筋套筒内的钢筋表面上;所述的振动传感器固定于传力棒上,所述数据采集***用于采集振动传感器的感应信号;所述的对钢筋套筒连接的灌浆密实度进行定量的分析,可以使用时域信号得到峰宽比,或是频域信号的最大幅值对应的频率,作为定量分析的标准。

Description

一种钢筋套筒连接结构内的灌浆体密实度检测装置及方法 技术领域
本发明属于测量领域,具体涉及一种建筑工程中钢筋套筒连接结构内的灌浆体密实度检测装置及其方法。
背景技术
装配式建筑结构作为一种新兴的绿色环保节能型建筑方式,其优点众多,得到了国内外相关人员的广泛关注,代表了建筑业技术进步的方向。预制构件现场连接的质量控制对于保证装配式建筑能够安全正常使用至关重要,但目前工程中尚缺乏有效的检测手段,因此急需研究开发装配式结构现场连接质量的检测与评估方法来实现对其施工过程中和施工完成后的质量控制和质量检测。
预制构件的现场拼接常采钢筋套筒节点连接,而这些连接结构一旦出现问题,将发生较大的安全事故,后果不堪设想。对于钢筋套筒节点连接来讲,连接质量好坏取决于套筒内的注浆是否饱满和密实。因此需要一种合理可靠的钢筋套筒注浆密实度定量检测方法,对装配式建筑关键节点进行连接质量检测,从而避免发生安全事故。
目前来说,测试钢筋套筒连接的灌浆密实度,从现有的文献和专利来看,主要有电阻测试法、钢丝拉拔法、带阻尼的振动传感器法、冲击回波法、超声波法。
在引述的电阻测试法、钢丝拉拔法和带阻尼的振动传感器法中,都需要进行预埋,不能进行随机检测,况且这种预埋构件有可能在预埋后已经损坏,无法进行测试。其二,因为进行试验需要预埋,出于成本的要求,不可能进行大量的试验,所以可靠性有待考证。
在钢筋套筒连接的灌浆密实度的测试中,动态测试方式是最具有应用潜力的,而其中冲击回波法(Impact Echo-Test,IET)就占了大多数,其次是超声波法。对于IET,预埋在结构构件里的套筒而言,冲击面和反射面的距离过短,导致入射和反射的P波会叠加,最后的结果就是无法直接辨认出来缺陷位置及程度,或 是直接把显示缺陷的时域波段都淹没掉了。
而对超声波法,也是需要在套筒外的墙面施加固定频率的持续振动,然后超声传感器接收,也是基于入射波以及反射波(或透射波)进行分析,由于套筒与钢筋之间空腔尺寸相对于超声波波长较小,也是会出现对缺陷无法分辨的问题。
所以,目前套筒灌浆体密实度的检测,还没有一个能在工程实践中行之有效的方案。本文正是基于这一背景,提出了一种新的方法,即通过专门装置上的传力棒,对钢筋施加一定的预压力,然后在传力棒上的端部,施加一个冲击力(可采用锤击方法)。由于传力棒施加了一定的预压力,所以在钢筋受冲击产生振动后,钢筋振动可传递到传力棒上,借助于传力棒上安装的应变片,可采集到来自钢筋水平振动的振动信息。对采集到的振动信号进行时域信号和频域信号的分析,可以分析得到钢筋套筒连接的灌浆密实程度。
发明内容
本发明的目的在于解决现有技术中存在的问题,并提供一种钢筋套筒连接结构内的灌浆体密实度检测装置及其方法。
本发明所采用的具体技术方案如下:
第一方面,本发明提供了一种钢筋套筒连接结构内的灌浆体密实度检测装置,其包括刚性预压构件、传力棒、伸缩调节件、振动传感器和数据采集***;
所述传力棒为一条刚性棒体,其通过伸缩调节件安装在刚性预压构件上;所述的刚性预压构件用于将传力棒固定于钢筋套筒连接结构所在的墙体上,所述伸缩调节件固定于刚性预压构件上,用于控制传力棒沿垂直墙体方向移动,使传力棒端部紧密支顶于待检测的钢筋套筒内的钢筋表面上;所述的振动传感器固定于传力棒上,所述数据采集***用于采集振动传感器的感应信号。
第二方面,本发明提供了一种钢筋套筒连接结构注浆密实度的检测方法,该方法所采用的装置包括外部钢结构预压构件、螺母、传力棒、测力锤、振动传感器;所述的外部钢结构预压构件为一个盖状的中空钢构件,其底部四周固定于待检测的钢筋套筒连接结构所在的墙体上;外部钢结构预压构件的盖体上开设通孔,且通孔位置固定有一个螺母;所述的传力棒为一条刚性棒体,且棒体中部位置外攻螺纹,传力棒穿过所述盖体上的通孔后旋入螺母中,棒体上的螺纹与所述螺母构成驱动传力棒上下移动的螺纹配合;传力棒底部紧密支顶于待检测的钢筋套筒 连接结构的注浆实体上;所述的振动传感器贴合于传力棒上;测力锤用于敲击传力棒端部;
所述检测方法的步骤如下:
步骤1、在进行钢筋套筒注浆密实度检测时,在套筒外壁上的溢浆孔和注浆孔位置将贴有振动传感器的传力棒伸入墙体内,使其与待检测的注浆实体接触,而后把预压构件底部固定到墙体表面;
步骤2、通过装置内部固定的螺母,旋转并拧紧传力棒,使得传力棒底部紧密支顶于待检测的钢筋套筒连接结构的注浆实体上,确保测试过程中两者不会分离;
步骤3、利用测力锤敲击传力棒端部,通过与振动传感器相连的数据采集***采集动态信号随时间的变化曲线;
步骤4、进行室内足尺模型试验,并设置若干组不同密实度梯度注浆,进行对比试验;在与步骤3相同的锤击力下,使用相同的动态测试装置测定不同注浆密实度的动态信号随时间的变化曲线,并与步骤3现场实测的动态信号随时间的变化曲线进行对比,从而确定实际的注浆密实度所在区间,完成对钢筋套筒注浆密实度的定量判断。
第三方面,本发明提供了一种钢筋套筒连接结构内的灌浆体密实度检测方法,其包括如下步骤:
S1:将刚性的传力棒支顶于待检测钢筋套筒连接结构内的钢筋表面,并保持两者之间始终具有预压力;所述传力棒上固定有与传力棒同步振动的振动传感器,所述振动传感器为应变片、位移传感器、加速度传感器和速度传感器中的一种或多种组合;
S2:对套筒结构内的钢筋施加沿传力棒轴向的冲击力,使钢筋和传力棒同步振动,通过所述振动传感器采集该冲击力下传力棒的振动感应信号;
S3:从所述振动感应信号中获取特征指标的参数值,特征指标为时域指标或频域指标中的一个或多个组合;
所述时域指标包括:从所述振动感应信号的时域信号中获取的波形曲线中第N个半波的幅值、任意高度处的峰宽和任意高度处的峰宽比,N=1或2;
所述频域指标包括:从所述振动感应信号的频域信号曲线中,获取的最大幅值所对应的响应频率;
S4:根据S3中获取的所述参数值,基于不同灌浆体密实度对应的特征指标参数值阈值区间,确定待检测钢筋套筒连接结构内的灌浆体密实度。
第四方面,本发明提供了一种利用如第一方面所述检测装置的钢筋套筒连接结构内的灌浆体密实度检测方法,其步骤如下:
S1:将刚性预压构件固定于待检测的钢筋套筒连接结构所在的墙体上,通过所述伸缩调节件将传力棒固定于墙体上,且使传力棒端部紧密支顶于钢筋套筒内的钢筋表面,两者之间始终具有预压力;
S2:对传力棒施加沿传力棒轴向的冲击力,使钢筋和传力棒同步振动,并采集该冲击力下所述振动传感器感应到的原始电信号,原始电信号通过经小信号/低噪声放大器放大和滤波器滤除噪声后,通过模数转换器采样转化为数字信号并存储于数据采集***中;
S3:对数据采集***中存储的放大后电信号进行维纳滤波以增强目标频率;
S4:然后将维纳滤波后的电信号输入卡尔曼滤波器中,按照S41~S46步骤进行平滑滤波,其中:
S41:针对放大后电信号中的第i个采样点x i,以第i个采样点为中心设置大小为N的滤波窗口,得到该滤波窗口中所有采样点构成的向量Data i;设定初始电信号预测幅值
Figure PCTCN2019128227-appb-000001
其中,
Figure PCTCN2019128227-appb-000002
为当前滤波窗口中所有采样点的平均值,
Figure PCTCN2019128227-appb-000003
表示向量Data i中第j个采样点的信号值,j∈[1,N];
S42:观测噪声的协方差矩阵
Figure PCTCN2019128227-appb-000004
S43:计算卡尔曼增益
Figure PCTCN2019128227-appb-000005
其中,H为观测矩阵,上标T表示转置;
S44:计算第i个采样点滤波后输出的电信号幅值:
Figure PCTCN2019128227-appb-000006
式中:
Figure PCTCN2019128227-appb-000007
表示第i个采样点x i的采样值;
S45:在进行下一个采样点的滤波前,更新电信号预测幅值
Figure PCTCN2019128227-appb-000008
Figure PCTCN2019128227-appb-000009
其中Q为状态转移协方差矩阵;同时使i=i+1;
S46:依次针对放大后电信号中的剩余采样点,不断重复步骤S42~步骤S45,完成卡尔曼滤波;
S5:将卡尔曼滤波后的信号数据进行数字滤波,其过程是将信号先输入带阻滤波器,对工频干扰的频率进行抑制,然后经过截止频率为3000Hz的低通滤波器滤除高频信号,得出新的时域信号数据;
S6:从所述新的时域信号数据中,获取波形曲线上第N个半波的幅值、任意高度处的峰宽和任意高度处的峰宽比;其中N=1或2;
S7:对所述新的时域信号数据进行傅里叶变换(Fast Fourier Transform,FFT),得到FFT功率谱,然后在功率谱中截取出频率和幅值的频域图,从频域图中得到最大响应频率,所述最大响应频率为频域图中最大振动幅值所对应的频率;
S8:以所述幅值、所述峰宽、所述峰宽比和所述最大响应频率中的任意一个或多个为特征指标,根据S6或S7步骤中确定的特征指标的参数值,基于不同灌浆体密实度对应的特征指标参数值阈值区间,确定待检测钢筋套筒连接结构内的灌浆体密实度。
本发明相对于现有技术而言,具有以下有益效果:
1.本发明的钢筋套筒连接结构灌浆体密实度的检测装置及方法,可用于对注浆完成后的钢筋套筒节点的灌浆体进行密实度进行定性及定量的判定,且可以对不同的套筒连接钢筋质量进行抽样检查以及可重复性试验,试验做完后都能进行回收,对于建筑工程的现场连接节点质量检测具有重大的实用价值。
2.本发明提供了一种新型的可分离式检测装置,其将刚性预压构件与传力棒进行分离,刚性预压构件单独进行定位安装,而传力棒则通过预压力施加板可拆卸式装配于刚性预压构件上,使用完毕直接拆卸。刚性预压构件可根据需要按照,可以又多人进行分工,使整个试验的效率提高。
3.在新型的可分离式检测装置中,由于使用预压力施加板和锁扣的结合对传力棒施加预压力,相比于单纯调节传力棒,更加容易控制预压力的大小值,及由于没有扭动所造成的扭矩,不容易使刚性预压构件脱落。
4.本发明中针对套筒内灌浆体密实度的定量检测,优化得到了多个从信号曲线上获取的特征指标,进而简化了信号曲线的对比,便于实现方法的自动化。
5.本发明中可以采用多种振动传感器组合使用,相比于只采用应变片一个单独的传感器,本发明可以将不同传感器下得到的判定结果进行相互比较验证。
附图说明
图1为钢筋套筒连接结构内的灌浆体密实度检测装置结构示意图;
图2为钢筋套筒连接结构内的灌浆体密实度检测装置的安装状态示意图;
图3为两种振动信号曲线的示意图;
图4为改进的钢筋套筒连接结构内的灌浆体密实度检测装置示意图;
图5为刚性预压构件的结构示意图;
图6为预压力施加板的结构示意图;
图7为应变片的结构示意图;
图8为传力棒的结构示意图;
图9为锁扣的结构示意图;
图10为传感器固定架的结构示意图;
图11为可抽离部分的组装示意图;
图12为可抽离部分装入刚性预压构件后的结构示意图;
图13为可抽离部分与刚性预压构件通过锁扣锁定后的结构示意图;
图14为改进的钢筋套筒连接结构内的灌浆体密实度检测装置检测状态示意图;
图15为三种钢筋套筒连接结构形式;
图16为手动冲击锤的结构示意图;
图17为自动冲击锤的结构示意图;
图18为自动冲击锤的立体图;
图19为4组不同密实度梯度注浆下的钢筋套筒连接结构与检测装置检测状态示意图;
图20为灌浆后不同时间的试件抗压强度;其中,-------为拟合线,×为同条件养护下的试验结果,◇为蒸汽养护下的试验结
图21为无注浆的套筒模型在各密实度梯度下的信号结果;其中,图21(a)、图21(b)、图21(c)分别为时域图、FFT功率谱、频域图;
图22为1/3饱和注浆的套筒模型在各密实度梯度下的信号结果;其中,图22(a)、图22(b)、图22(c)分别为时域图、FFT功率谱、频域图;
图23为2/3饱和注浆的套筒模型在各密实度梯度下的信号结果;其中,图23(a)、图23(b)、图23c)分别为时域图、FFT功率谱、频域图;
图24为完全饱和注浆的套筒模型在各密实度梯度下的信号结果;其中,图 24(a)、图24(b)、图24(c)分别为时域图、FFT功率谱、频域图;
图25为灌浆体固化24小时后不同注浆密实度对应的最大响应频率参数值正态分布图;N代表为样本采集数,下同;
图26为灌浆体固化24小时后不同注浆密实度对应的幅值参数值正态分布图;
图27为灌浆体固化24小时后不同注浆密实度对应的半高峰宽参数值正态分布图;
图28为灌浆体固化24小时后不同注浆密实度对应的半高峰宽比参数值正态分布图;
图29为灌浆体固化48小时后不同注浆密实度对应的最大响应频率参数值正态分布图;
图30为灌浆体固化48小时后不同注浆密实度对应的幅值参数值正态分布图;
图31为灌浆体固化48小时后不同注浆密实度对应的半高峰宽参数值正态分布图;
图32为灌浆体固化48小时后不同注浆密实度对应的半高峰宽比参数值正态分布图。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步阐述和说明。本发明中各个实施方式的技术特征在没有相互冲突的前提下,均可进行相应组合。
本发明提出的钢筋套筒连接结构内的灌浆体密实度检测装置,所针对的对象是钢筋套筒连接结构。常见的钢筋套筒连接结构中,一般是在两条钢筋之间通过连接套筒进行连接,而套筒内部进行混凝土灌浆加固。由于套筒连接结构注浆之后,套筒内有可能存在注浆密实度不足的问题,从而使抗拉承载力比设计值偏低,影响套筒连接结构的安全正常使用,因此需要提供一种检测装置对钢筋套筒连接结构内的灌浆体密实度进行定量检测,消除工程施工隐患。灌浆体密实度不足的表现形式为:灌浆量不足或者漏浆导致部分钢筋裸露,或者灌浆过程中出现空腔造成钢筋外的灌浆体固化后出现空洞。
本发明中,提出了一种钢筋套筒连接结构内的灌浆体密实度检测装置实现形式,该装置的基本部件包括刚性预压构件、传力棒、伸缩调节件、振动传感器和数据采集***。
其中,传力棒为一条刚性棒体,传力棒通过伸缩调节件安装在刚性预压构件上。此处的刚性预压构件是一个用于对传力棒施加预压力的刚性构件,传力棒通过刚性预压构件固定于钢筋套筒连接结构所在的墙体上,使传力棒能够***套筒的内腔并支顶在钢筋表面。本实施例中,为了保证振动传导的准确性,其刚性材料的部件均可以采用钢材料制成,当然必要时也可以采用其他的刚性材料。
由于在不同的建筑中,套筒埋于墙体内的深度不同,因此造成传力棒需要具备一定的伸缩调节能力,以便于适应不同的检测场景。本发明中,是通过设置伸缩调节件来实现的。伸缩调节件固定于刚性预压构件上,用于控制传力棒沿垂直墙体方向移动,通过调节使传力棒端部能够紧密支顶于待检测的钢筋套筒内的钢筋表面上,在整个检测过程中两者之间始终保持预压力。伸缩调节件的结构可以采用多种形式,只要能够调节传力棒轴向伸缩即可,后面将给出部分具体实现形式。另外,为了满足检测的需要,还需要在传力棒上固定振动传感器,由于传力棒与套筒内的钢筋是以预压力形式紧密连接的,因此两者能够实现同步振动。传力棒上的振动传感器所感应到的数据,也代表了套筒内的钢筋的振动情况。另外,为了获取振动传感器的数据,需要设置一个数据采集***来采集振动传感器的感应信号。数据采集***的具体形式需要根据振动传感器的形式来调整。
本发明中,振动传感器为应变片、位移传感器、加速度传感器和速度传感器中的一种或多种组合。其中,最优的为应变片,应变片可以直接贴合固定于传力棒上。应变片具有感应灵敏、固定方式简单的优点,能够较好地适用于本发明的检测目的。
下面给出本发明的灌浆体密实度检测装置的一个较佳实施例,以便于本领域技术人员更好地理解本发明。
实施例1
如图1和2所示,为本发明的一个较佳实施例中提供的钢筋套筒连接结构内的灌浆体密实度检测装置结构示意图。该钢筋套筒连接结构中,第一钢筋J及第二钢筋M之间通过连接套筒进行连接,而套筒外壁K内部注有注浆混凝土L。混凝土浆液通过套筒外壁K上的注浆孔H注入,从溢浆孔B溢出。
该灌浆体密实度检测装置包括钢材料制成的刚性预压构件C、螺母D、传力棒E、测力锤F、振动传感器G。其中,外部钢结构预压构件C为一个盖状的中 空钢构件,可由钢板压制形成无底的圆筒状或方筒状,且该筒体的底部通过弯折形成一个环形的平面,使其能够贴合墙体A表面,通过粘结剂或者其他的固定件与墙体连接固定。外部刚性预压构件C的盖体上开设通孔,且通孔位置的盖体内表面固定有一个螺母D。传力棒E为一条刚性棒体,可采用钢材质,且棒体中部位置外攻螺纹。传力棒E穿过盖体上的通孔后旋入螺母D中,棒体上的螺纹与螺母D构成驱动传力棒E上下移动的螺纹配合。在实际使用时,可通过旋转传力棒E实现其底部位置的上下调整,适应于不同的墙体表面高度,使得传力棒E底部紧密支顶于待检测的钢筋套筒连接结构内的第一钢筋J上。在不同的注浆密实度下,锤击传力棒E所能够检测到的振动信号也会不同,且与注浆密实度具有明显的相关关系,因此可通过振动传感器G检测该动态信号,进而用于定量估算钢筋套筒连接结构的注浆密实度。由于传力棒在锤击使会收到内部钢筋的振动反馈,因此其上的振动传感器G检测到的动态信号实际上就是套筒内部钢筋的振动信号。在本发明中,振动传感器G贴合于传力棒E上,通过测力锤F敲击传力棒E端部。为了保证准确性,传力棒E一般与套筒内部的钢筋垂直设置,因此钢筋的径向振动会沿传力棒E的轴向传导,进而被振动传感器G检测到。
振动传感器G可以根据需要进行选择,以该信号能够反映钢筋套筒连接结构的注浆密实度为准,可选的是应变片、位移传感器、加速度传感器和速度传感器中的一种或多种组合。振动传感器G同时还需要与数据采集***进行配套。在本实施例中,振动传感器G采用应变片,而应变片需要连接KD5018积分电荷放大器和KD-LP16D数据采集器,采集能够反映注浆密实度的动态信号随时间的变化曲线。
如图2所示,为动态测试装置在一种套筒连接结构上的安装示意图。在该待检测的钢筋套筒连接结构中,套筒外壁K上的溢浆孔B和注浆孔H均外露于墙体A表面。因此传力棒E底部可以直接穿过溢浆孔B或注浆孔H后进入套筒内部,刚性预压构件C通过螺栓连接或粘贴的方式固定在墙体A表面,并使得传力棒F紧密接触第一钢筋J表面,而后通过固定螺母D对置传力棒F施加预压力,使传力棒F与注浆混凝土L表面在测试过程中不会分离。本实施例中,为了保证检测准确性,传力棒E通过溢浆孔B***套筒内部。
需要注意的是,上述实施例中,螺母D可以直接焊接在刚性预压构件C的通孔位置,但也可以以间接方式固定在刚性预压构件C上。另外,测力锤F可以是成套配置的,也可以由用户自行准备,只要具有刚性即可。
基于上述动态测试装置,还可以提供一种锤击预压式测试套筒连接结构注浆密实度的方法,步骤如下:
步骤1、在进行钢筋套筒注浆密实度检测时,在套筒外壁K上的溢浆孔B和注浆孔H位置将贴有振动传感器G的传力棒E伸入墙体A内,使其与待检测的注浆实体接触。本实施例中,当溢浆孔B和注浆孔H外露时,注浆实体选择套筒内的钢筋。而后通过粘结剂把刚性预压构件C底部粘结固定到墙体A表面。粘结剂可以采用AB胶。当然,通过刚性预压构件C也可以通过膨胀螺丝固定在墙体A上。
步骤2、通过装置内部固定的螺母D,旋转并拧紧传力棒E,使得传力棒E底部紧密支顶于待检测的钢筋套筒连接结构的钢筋上,确保测试过程中两者不会分离。
步骤3、利用测力锤F敲击传力棒E端部,通过与振动传感器G相连的数据采集***采集振动的动态信号随时间的变化曲线;
步骤4、进行室内足尺模型试验,足尺模型与待检测的钢筋套筒连接结构完全一致。针对足尺模型设置若干组不同密实度梯度注浆进行对比试验,可以分无注浆、1/3饱和注浆、2/3饱和注浆、完全饱和注浆等多个梯度。在与步骤3相同的锤击力下,使用相同的动态测试装置测定不同注浆密实度的动态信号随时间的变化曲线,并与步骤3现场实测的动态信号随时间的变化曲线进行对比,从而确定实际的注浆密实度所在区间,完成对钢筋套筒注浆密实度的定量判断。一般而言,应变片反应的信号与注浆密实度存在正相关关系,因此可以通过实测的动态信号与不同注浆密度的试验数据进行比对,选择实测数据所在区间,进而确定实际的注浆密实度所在区间。
步骤5、测试完成后,将装置设备拆卸,并进行整理清洁,以便用于下次使用。
实施例2
由上述实施例可以看出,该灌浆体密实度检测装置和方法,能够基于锤击振动下信号随时间的变化曲线确定实际的灌浆体密实度所在区间。但在实际的检测 过程中,肉眼对比两条变化曲线的难度是很大的,因此需要进一步对上述检测方法进行完善,使得定量化确定灌浆体密实度更加简单、可行。
因此,本发明在前述的灌浆体密实度检测方法基础上,提供了一种进一步改进的钢筋套筒连接结构内的灌浆体密实度检测方法,其主要改进了振动感应信号曲线的特征提取方式,使得能够从曲线中提取处代表套筒内灌浆体密实度的特征指标,以特征指标的检测值来判断灌浆体密实度。需要注意的是,该方法并不需要基于前述实施例所述的检测装置进行,而是可以采用任意满足方法步骤说明的装置。
下面详细说明该改进的检测方法的具体实现。在本发明中,改进的钢筋套筒连接结构内的灌浆体密实度检测方法,其步骤如S1~S4所示:
S1:将刚性的传力棒支顶于待检测钢筋套筒连接结构内的钢筋表面,并保持两者之间始终具有预压力,检测过程中不会出现脱离。两者之间保持预压力的方式可以是多样的,不做限定。同样的,传力棒上固定有与传力棒同步振动的振动传感器,振动传感器为应变片、位移传感器、加速度传感器和速度传感器中的一种或多种组合。为了保证检测信号的准确性,传力棒最好垂直支顶于套筒结构内的钢筋表面,使钢筋的径向振动会沿传力棒的轴向传导,进而被振动传感器检测到。
S2:对套筒结构内的钢筋施加沿传力棒轴向的冲击力,使钢筋和传力棒同步振动,通过传力棒上固定的振动传感器采集该冲击力下传力棒的振动感应信号。由于套筒结构内的钢筋***包裹有混凝土灌浆体,因此待灌浆体固化时钢筋与灌浆体是一体的,钢筋会与灌浆体同步振动。灌浆体的密实度会直接影响钢筋的振动特性,因此振动传感器检测到的振动感应信号中实际上会带有灌浆体的密实度信息,从其振动感应信号中可以根据后续方法进一步提取与灌浆体密实度相关的特征指标值。需要注意的是,该冲击力下传力棒的振动感应信号是指以该冲击力对钢筋造成的振动传递到振动传感器为起始点,由振动传感器检测到的时域信号。
在本步骤中,具体的振动感应信号是随着所采用的振动传感器变化而变化的。假如,振动传感器采用应变片,那么振动感应信号为应变片采集的电信号经过放大、滤波去噪后得到的时域信号。另外,假如振动传感器为加速度传感器,那么振动感应信号为将加速度传感器采集到的加速度进行积分后获得的速度信号。假如振动传感器为速度传感器,那么振动感应信号直接采用其感应到的速度信号。 再者,振动传感器也可以是位移传感器,振动感应信号直接采用其感应到的位移信号。
S3:由于钢筋的振动是连续的,因此振动传感器检测到的振动感应信号实际上也是一系列离散点组成的波形曲线,该信号是一种时域信号,振动幅值随时间的变化而变化。从振动感应信号的波形曲线中,可以提取特征指标的参数值。在本发明中,经过研究发现,能够反映灌浆体密实度的特征指标分为时域指标和频域指标两类,下面分别详细叙述。
本发明所说的时域指标包括3种,即从振动感应信号的时域信号中获取的波形曲线中第N个半波的幅值、任意高度处的峰宽和任意高度处的峰宽比,N=1或2。此处,半波是指位于横坐标轴一侧且跨度为半个周期的波。N=1或2,表明可以是时域信号中的首个半波或者第二个半波。需要注意的是,由于振动传感器的接线方式不同,其检测到的第N个半波可能表现为位于横坐标轴上方的峰波,也可能表现为位于横坐标轴下方的谷波,两者均可视为半波。如图3a)所示,展示了波形曲线中首个半波为峰波的情况,此时第二个半波为谷波,这两个半波都可以用于提取特征指标。如图3b)所示,展示了波形曲线中首个半波为谷波的情况,此时第二个半波为峰波,这两个半波也都可以用于提取特征指标。本发明中,为了便于描述,谷波的波宽度也称为峰宽,幅值与峰宽的比值也称为峰宽比。本发明中,第N个半波的峰宽比(Peak Width Ratio)计算公式如下:
Figure PCTCN2019128227-appb-000010
对于一个半波而言,其幅值也就是最大振幅是固定的,但其峰宽在不同的高度处是不同的。上述所说的任意高度处的峰宽是指半波的任意高度处的半波峰宽。而任意高度处的峰宽比则是指半波的幅值与任意高度处的半波宽度之比,也就是将上述计算公式中的分母改为相应高度处的半波的峰宽。例如,半波峰宽=幅值/半高峰宽。
本发明所说的频域指标指最大响应频率,即从振动感应信号的频域信号曲线中,获取的最大幅值所对应的响应频率。
上述时域指标的获取方法为:
对振动传感器采集到的电信号进行放大后,再通过滤波器去除扰动杂波和噪 音,得到时域信号;从时域信号的波形曲线中,即可获取3种时域指标。
上述频域指标的获取方法为:
对振动感应信号的时域信号进行傅里叶变换(Fast Fourier Transform,FFT),得出FFT功率谱,然后在功率谱中截取出频率和幅值的频域图,从频域图中得到最大振动幅值所对应的频率,记为最大响应频率,将其作为频域指标。
本发明中,3种时域指标和1种频域指标均可以作为特征指标,用于反应灌浆体密实度。在实际检测过程中,可以选择其中一种或多种组合。
S4:由于上述特征指标的参数值实际上带有套筒结构内灌浆体密实度的信息,因此就可以根据S3中从振动感应信号获取的特征指标的参数值,来确定待检测钢筋套筒连接结构内的灌浆体密实度。具体确定时,需要调用预先足尺试验所获得的不同灌浆体密实度对应的特征指标参数值阈值区间。
由于不同的型号参数的钢筋、套筒、注浆混凝土均会影响特征指标反映出的参数值,因此调用的特征指标参数值阈值区间也是需要基于与待检测的钢筋套筒连接结构相同的钢筋套筒连接结构,通过足尺试验获取的。下面提供一种,不同灌浆体密实度对应的特征指标参数值阈值区间确定方法,具体如下:
利用型号参数相同的若干待检测的钢筋套筒连接结构,分别注入不同密实度的灌浆体,按照S1~S3中所说的方法针对每一种灌浆体密实度获取特征指标的多组参数值。每一种灌浆体密实度中,每个特征指标的参数值所需的样本量应当满足统计学的要求,使其能够准确反映这种灌浆体密实度下特征指标参数值的分布区间。当获取到这些参数值后,即可对特征指标的参数值阈值分布进行统计学分析,得到每种灌浆体密实度对应的特征指标参数值阈值区间。基于这些阈值区间,即可根据S3中从振动感应信号获取的特征指标的参数值,判断该参数值落在哪个阈值区间,进而将该阈值区间对应的灌浆体密实度作为待检测的钢筋套筒连接结构内灌浆体密实度的判断结果,由此实现了灌浆体密实度的定量检测。
在预先足尺试验过程中,具体设置的灌浆体密实度梯度组数可以调整,例如可以设置4组不同密实度梯度注浆,分别为无注浆、1/3饱和注浆、2/3饱和注浆、完全饱和注浆。当然若对定量检测的精度要求较高,则可以设置更多的梯度。
另外,足尺试验时,在不同灌浆体密实度对应的特征指标参数值阈值区间确定过程中,每次检测施加于传力棒上的预压力应当尽量保持一致。同时,实际检 测时,其预压力也与前期的足尺试验中所用的预压力一致。
本发明中,特征指标一共具有4种,包括3种时域指标和1种频域指标,其都可以在一定程度上反应钢筋外包裹的灌浆体密实度。假如特征指标同时采用多个,那么需要根据每个特征指标确定待检测钢筋套筒连接结构内的灌浆体密实度判断结果,然后综合所有特征指标的灌浆体密实度判断结果得出最终的灌浆体密实度判断结果。一般来说,可以选择所有特征指标的判断结果中出现次数最多的那个灌浆体密实度作为最终的结果,当然也可以设置各特征指标的权重系数综合确定。
从实际测试结果来看,在本发明中,振动传感器优选采用应变片,而特征指标则优选采用从振动感应信号的时域信号中获取的波形曲线中第1个半波的半高峰宽比。此处半高峰宽比是指该半波的一半峰值高度处的半波宽度,即通过峰高的中点作平行于峰底的直线,此直线与半波两侧相交交点之间的距离。由于信号曲线实际上为离散点组成的,因此实际操作时也可以采用最接近两个交点的两个离散采样点的横坐标之差。
本发明中,振动传感器采集到的原始电信号较为微弱,因此一般需要经过放大处理,一般可以采用小信号/低噪声放大器(小信号放大器或低噪声放大器,具体根据需要选择)进行放大。采集的原始信号为模拟信号,经小信号/低噪声放大器放大后,需要通过模数转换器采样转化为数字信号存储于数据采集装置中。数据采集装置一般采用与传感器配套的信号检测仪器。另外,可能存在较多的扰动以及噪音,因此需要通过滤波器去除扰动杂波和噪音。滤波去噪包括维纳滤波、卡尔曼滤波、带阻滤波器、低通滤波器中的一种或多种。在本发明的一种较佳滤波方式中,滤波器由维纳滤波、卡尔曼滤波器、带阻滤波器和低通滤波器组成,放大后的电信号先经过维纳滤波,再经过卡尔曼滤波器进行平滑,然后进行数字滤波,其过程是将信号先输入带阻滤波器对工频干扰的频率(本实施例中设为40Hz~60Hz)进行抑制,然后经过截止频率为3000Hz的低通滤波器滤除高频信号。经过该组合滤波器的滤波处理后,应变片采集的电信号中有效信息能够得到最大程度的体现,便于特征指标的提取。当然假如应变片采集的电信号本身基本没有噪声或者扰动,那么滤波过程可以去除,若原始信号值足够大,放大过程也可以省略。或者假如数据采集装置或者应变片配套的下位机中本身带有放大或滤 波,也可以直接采用其输出的电信号作为振动感应信号,无需进行额外的放大或滤波处理。
另外,不同灌浆体密实度对应的特征指标参数值阈值区间也可以事先通过大量试验,直接形成不同结构参数的阈值查找表。通过查表法,在知道套筒型号、使用的灌浆体强度、钢筋直径及钢筋长度等参数下,查找得到适用的阈值区间。
另外,还可以通过对比试验,在现场模拟出已知灌浆体密实度梯度的对比试验。完成对比试验以后,通过有限元方法(Finite Element Method,FEM)进行计算,把对比试验和FEM方法进行拟合,然后改变不同条件的套筒型号、使用的灌浆体强度、钢筋直径及钢筋长度下,通过试验得出新的一组使用FEM形成的对比试验的数据,就可以通过现场检测的结果,定性及定量的判定套筒连接钢筋的密实度。
实施例3
上述实施例2中展示了本发明中改进的钢筋套筒连接结构内的灌浆体密实度检测方法的构思,其所依赖的检测装置形式可以多样。虽然其也可以通过实施例1中的检测装置来实现,但是在实际工程中,通常需要批量检测许多钢筋套筒连接结构内的灌浆体密实度,而实施例1中检测装置的刚性预压构件是直接固定在墙壁上的,这会导致带有应变片的传力棒在检测完毕后无法快速拆卸。因此,本发明中,设计了一种更适用于工程上批量检测的钢筋套筒连接结构内的灌浆体密实度检测装置,下面详细描述其结构。
如图4所示,该灌浆体密实度检测装置包括预压力施加板4、传感器固定架10、刚性预压构件6、应变片11(Strain Gauge)、锁扣17、传力棒16。
如图5所示,刚性预压构件6为一个盖状的中空钢构件,可由钢板压制成型,底部通过直角向外翻折形成一个固定平面,使其能够贴合待安装的墙体表面。刚性预压构件6上开有槽孔1、小孔2、中心孔5和翼脚18,槽孔1在两端各开设一个;小孔2在两端各开设两个;传力棒通孔3用于供传力棒16穿过。刚性预压构件6通过粘结剂或者膨胀螺栓等固定件与墙体连接固定。顶盖上的中心孔5是为了让固定在传力棒施16上的传感器固定架10通过。顶盖上的槽孔1是为了能使锁扣17通过预压力施加板4上的槽孔1,达到对传力棒16施加预压力的作用。顶盖上的小孔2用于定位或者穿过传感器数据线。刚性预压构件6可通过翼 脚18上的小孔2,使用钉子或是螺丝在待测墙面上进行固定,或是使用胶在待测面上进行固定,或是两者兼施。
如图8所示,传力棒16呈多段式结构,依次划分为外攻螺纹段12、六角柄13、变截面过渡段14、细杆段15,整条传力棒16由钢材料一体成型。其中细杆段15的外径应当小于套筒的溢浆孔,以便于***套筒中。变截面过渡段14上有一块平坦的表面,上面贴有应变片11。其外攻螺纹段12用于与刚性预压构件6安装配合,同时也用于装配传感器固定架10,而六角柄13用于施拧传力棒16。
如图6所示,预压力施加板4为一块刚性板,采用钢材制成。预压力施加板4上面开设有与刚性预压构件6对应的槽孔1、小孔2及传力棒通孔3。传力棒通孔3是为了能通传力棒16,本发明中,在传力棒通孔3上同轴焊接一个限位螺母,传力棒16的外攻螺纹段12与限位螺母构成螺纹配合,通过旋转六角柄13,可以调节传力棒16沿自身轴向前后伸缩。预压力施加板4上的槽孔1与刚性预压构件6上的槽孔1一一对应,用于安装锁扣17。预压力施加板4上的小孔2与刚性预压构件6上的小孔2一一对应,部分用于穿过传感器数据线,部分用于定位。
如图7所示,应变片11呈平面状,可以直接贴在变截面过渡段14的平坦表面。
如图9所示,锁扣17由一对螺栓和螺母组成,螺栓能够旋入预压力施加板4上和刚性预压构件6的对应槽孔1中,且分别与两个槽孔1构成螺纹配合,螺母拧于螺栓的端部。由此,通过螺栓即可在实现预压力施加板4上和刚性预压构件6锁定的同时,保证其相对间距可调节,且间距调节方向与传力棒轴向一致。
如图10所示,传感器固定架10是由包括传感器托盘7、螺母8和小孔2在内所组成的刚性物体。传感器固定架10通过螺母8套在传力棒16的外攻螺纹段12上。通过传感器托盘7上左右各有小孔2,可以安装除加速度传感器9(Accelerometer)、速度传感器,或是位移传感器,传感器固定架10可以安装或是拆卸附在上面的传感器,可安装单个,或是两个或以上的传感器。应变片11、加速度传感器9、速度传感器或位移传感器,输出的是电信号,使用前需要对传感器进行标定,得出需要的物理量。
把预压力施加板4、传感器固定架10、应变片11、传力棒16结合在一起, 就形成了如图11所示的可抽离部分,此时尚未安装刚性预压构件6和锁扣17。后续可以将该可抽离部分装入刚性预压构件6中,如图12所示,两端的槽孔1利用锁扣17进行固定,如图13所示。如图14所示,以传感器固定架10上安装加速度传感器9为例,使用相应的配套数据线32,对传力棒16上的应变片11及加速度传感器9对应的接上小信号/低噪声放大器28,然后再将其接到信号采集仪30上,最后在把上位机31也接上,构成信号检测通路。振动传感器的信号采集仪30与上位机之间通过有线或者无线方式通信连接,振动感应数据存储在上位机31中。上位机31一般采用电脑。在待检测的钢筋套筒连接结构所在的墙面上,通过AB胶或者膨胀螺栓将刚性预压构件6上的翼脚18牢固的固定在墙面上。再把图11所示的可抽离部分穿过刚性预压构件6的中心孔5中,然后利用锁扣17进行锁定,形成完整的检测装置27。在实际使用时,可通过旋转传力棒16实现其端部位置相对于墙面的进出深度调整,适应于不同的墙体表面高度,同时也配合锁扣17的间距调整,使得传力棒E底部紧密支顶于待检测的钢筋套筒连接结构内的钢筋表面。
需要注意的是,本实施例中可以适用于该检测装置的钢筋套筒连接结构形式多样。如图15所示,其形式一是半灌浆连接钢筋套筒(a),包括螺纹钻孔19、钢筋20、排浆接头21、灌浆接头22;形式二是灌浆结构装置的预留孔浆锚搭接结构(b),包括钢筋20、排浆接头21、灌浆接头22、混凝土23;形式三是全灌浆连接钢筋套筒(c),钢筋20、排浆接头21、灌浆接头22、盖子24。此处,排浆接头、灌浆接头别称就是实施例1中的溢浆孔、注浆孔,含义相同。假如套筒外壁上的排浆接头21不外露于墙体表面;从墙体表面朝套筒外壁钻设一条接头电钻钻孔26,钻孔26穿透排浆接头21,传力棒端部穿过钻孔26后,支顶于套筒的钢筋20上。
上述检测装置27中,刚性预压构件6可以批量固定在待测连接钢筋套筒的墙面上,做完一个墙面的检测之后,可以通过锁扣17解除锁定,然后刚性预压构件6留在墙面上,将其余组件从刚性预压构件6上抽离,进行下一个测点的试验,以提高检测效率。
上述检测装置27安装完毕后,可以对传力棒16端部施加一个冲击力33,进而获取振动感应信号。此处,可以使用锤子52对该装置27施加冲击力33。但是,作 为优选,在另一个优选实施例中,使用手动冲击锤49或者自动冲击锤49施加冲击力33,这样就可以施加多次冲击力33,并将同时采集信号。
如图16所示,手动冲击锤49是一个安装在传力棒16顶部的锤击设备,该锤击设备的部件包括连杆41、弹簧43、质量块44和固定架45。固定架45是一个圆柱形的钢块,其中开有底部开口的装配孔,装配孔下部内攻螺纹,传力棒16顶部的外攻螺纹段12和六角柄13伸入装配孔中,外攻螺纹段12与固定架45的装配孔构成螺纹配合。弹簧43和质量块44置于装配孔中。固定架45的顶部卡有一个孔径大于连杆41的光孔,连杆41从固定架45的顶部光孔伸入装配孔中并与质量块44通过铰座46连接固定。弹簧43位于质量块44和装配孔顶部内壁之间,连杆41可以拉动质量块44,质量块44在被连杆41朝固定架45顶部拉动过程中对弹簧43进行压缩,而在连杆41不受外力约束时,将会利用弹簧43的压缩弹力推动质量块44对传力棒16顶部施加沿传力棒轴向的冲击力。
为了保证冲击力33能够沿着传力棒16的轴向,可以进一步在质量块44的侧壁沿周向安装有活塞环34,然后质量块44通过弹簧43与固定架45内的装配孔形成活塞结构,限制质量块44的移动方向仅能够沿装配孔的轴向。
弹簧43通过质量块44产生的冲击力33可以换算为F=kx,即F为力,k为刚度,x为压缩距离。根据试验对冲击力33不同的要求,改变不同刚度k的弹簧;通过改变弹簧42的拉伸或是压缩距离x,调整不同位移的弹簧43,使得对质量块44施加不同的冲击力33。
上述手动冲击锤49中的连杆41需要依靠操作人员手动拉动,其拉动距离会决定冲击力33的大小。再进一步的,为了便于控制,在该手动冲击锤49基础上进一步设置了自动拉伸装置,进而构成自动冲击锤49。自动拉伸装置中具有位移输出端,位移输出端用于推动连杆41,并在对弹簧43定量压缩后释放连杆41。本发明的一个优选实施例中,如图17和18所示,自动拉伸装置包括马达39、凸轮40和垫块42,垫块42置于垫块42,垫块42上可以安装上马达39,马达39的输出轴上安装凸轮40。连杆41的顶部具有一个弯折部,凸轮40的旋转路径经过该弯折部,因此凸轮40转动过程中会推动连杆41向上,弹簧43压缩及蓄能。当转动至一定角度时,凸轮40脱离连杆41的弯折部,连杆41不受外力作用,进而利用弹簧43的压缩弹力推动质量块44对传力棒16顶部施加沿传力 棒轴向的冲击力。凸轮40在马达39作用下继续转动时,又会再次重复该过程,由此可以不断施加相同大小的冲击力33。
自动冲击锤49施加的冲击力33大小可以通过更换弹簧的刚度k、弹簧的压缩距离x变化、质量块44的重量或凸轮40的远毂直径来改变。而自动冲击锤49所施加的冲击力33频率则可以改变马达39的转速来实现。
基于本实施例中的检测装置,本发明可以提供一种优选的钢筋套筒连接结构内的灌浆体密实度检测方法,其步骤如下:
步骤1、使用相应的配套数据线32,对传力棒16上的应变片11和加速度传感器9(如果有的话),分别接上小信号/低噪声放大器28,然后再将其接到信号采集仪30上,最后与上位机31构成通信连接,然后打开小信号/低噪声放大器28和信号采集仪30。
步骤2、把已经带有应变片11的传力棒16、预压力施加板4等部件装配呈图11所示形态。
步骤3、在待测连接钢筋套筒的墙面上,进行定位,以匹配翼脚18上的两个小孔2,然后使用冲击钻,把混凝土23上已经定位好的记号,进行钻孔工作。从墙体表面朝套筒外壁钻设一条钻孔26,钻孔26穿透排浆接头21,检查并确定套筒内的钢筋表面已经外露。接下来,通过刚性预压构件6上的翼脚18涂抹胶,然后通过翼脚18上的小孔2向墙壁内固定膨胀螺丝,使刚性预压构件6能够牢固的固定在待测的连接钢筋套筒所在的墙体上。
步骤4、将未安装刚性预压构件6和锁扣17的检测装置,安装到已就位的刚性预压构件6上,通过锁扣17,对预压力施加板4与刚性预压构件6进行固定,通过锁扣17以及传力棒16自身的顺时或是逆时针的转动,使传力棒16端部以具有预压力的形式紧密支顶在钢筋表面,且可通过调节可控制预压力的幅值。
步骤5、安装好的检测装置27如图14所示,对传力棒16上的六角柄13,施加冲击力33。传力棒16上的应变片11和加速度传感器9感应到来自连接套筒里钢筋的冲击波所反映的电信号,通过小信号/低噪声放大器28,使本来微弱的瞬间电信号,使之放大之后,再通过信号采集仪30,将瞬间微小的冲击波所反映的电信号记录下来,然后存储在上位机31里。
步骤6、重复进行多次步骤5采集到多组应变片11和加速度传感器9的振 动感应信号,储存在上位机31里。再将上位机31中的数据,以MATLAB为平台,通过编程的方式,先把加速度传感器9所输出的加速度信号,把其积分为速度信号,然后对应变片11信号和加速度传感器9所得出的速度信号,两者均为带扰动的时域信号,分别进行维纳滤波、卡尔曼滤波、带阻滤波和低通滤波,以尽可能提取有效信号信息。
本实施例中,维纳滤波可采用Wiener滤波语音增强方法(Wiener speech enhancement method),以抑制噪声,增强目标频率。
维纳滤波后的电信号输入卡尔曼滤波器中,卡尔曼滤波采用了改进型卡尔曼滤波,已知采集的电信号,通过时间窗形成一个向量,然后
Figure PCTCN2019128227-appb-000011
为输出的电信号幅值,而
Figure PCTCN2019128227-appb-000012
为下一个点的电信号预测幅值,其算法步骤如S41~S46,其中:
S41:针对放大后电信号中的第i个采样点x i,以第i个采样点为中心设置大小为N的滤波窗口,得到该滤波窗口中所有采样点构成的向量Data i;设定初始电信号预测幅值
Figure PCTCN2019128227-appb-000013
其中,
Figure PCTCN2019128227-appb-000014
为当前滤波窗口中所有采样点的平均值,
Figure PCTCN2019128227-appb-000015
表示向量Data i中第j个采样点的信号值,j∈[1,N];
S42:观测噪声的协方差矩阵
Figure PCTCN2019128227-appb-000016
S43:计算卡尔曼增益
Figure PCTCN2019128227-appb-000017
其中,H为观测矩阵,上标T表示转置;
S44:计算第i个采样点滤波后输出的电信号幅值:
Figure PCTCN2019128227-appb-000018
式中:
Figure PCTCN2019128227-appb-000019
表示第i个采样点x i的采样值;
S45:在进行下一个采样点的滤波前,更新电信号预测幅值
Figure PCTCN2019128227-appb-000020
Figure PCTCN2019128227-appb-000021
其中Q为状态转移协方差矩阵;同时使i=i+1;
S46:依次针对放大后电信号中的剩余采样点,不断重复步骤S42~步骤S45,完成卡尔曼滤波;
将卡尔曼滤波后的信号数据输入带阻滤波器,对40Hz~60Hz波段的工频干扰频率进行抑制;
最后带阻滤波后的信号再经过截止频率为3000Hz的低通滤波器,滤除非有效信息的高频信号,得出新的时域信号数据。
步骤7、从新的时域信号数据中,获取波形曲线上第N个半波的幅值、任意高度处的峰宽和任意高度处的峰宽比,其中N=1或2。
步骤8、对新的时域信号数据进行傅里叶变换,得到FFT功率谱,然后在功率谱中截取出频率和幅值的频域图,从频域图中得到最大响应频率,所述最大响应频率为频域图中最大振动幅值所对应的频率;
步骤9、以幅值、所述峰宽、所述峰宽比和所述最大响应频率中的任意一个或多个为特征指标,根据步骤7和8中确定的特征指标的参数值,基于不同灌浆体密实度对应的特征指标参数值阈值区间,确定待检测钢筋套筒连接结构内的灌浆体密实度。
本实施例中,N优选取1,特征指标优选为波形曲线上第1个半波的半高峰宽比。
为了证明本实施例中的上述检测方法的有效性,以单独的应变片作为振动传感器进行了足尺试验。足尺试验时,利用型号参数相同的若干待检测的钢筋套筒连接结构,分别注入不同密实度的灌浆体,本实施例中设置4组不同密实度梯度注浆,表现形式为其套筒内灌浆体25的灌浆高度不同,分别为无注浆、1/3饱和注浆、2/3饱和注浆、完全饱和注浆,代表灌浆高度为0、1/3套筒内腔高度、2/3套筒内腔高度、灌满,分别如图19中的(a)~(d)所示。钢筋套筒连接结构内的注浆方法如下:
(1)套筒使用北京思达建茂JM钢筋半灌浆连接套筒,套筒型号为GT14,连接钢筋使用HRB400,直径14的钢筋进行配置;
(2)使用钢筋套筒连接专用的洋灰,制作灌浆体25,制作过程如下:
a)计算好需要用到的灌浆体25的体积,称好相应的水和灰,先将所有的水放进去容器;
b)所有的水放进去容器后,先掺入70%的灰,大约搅拌2分钟;
c)搅拌后,再将剩下20%的灰掺入,搅拌均匀后,直到观察无聚集颗粒为止,然后大约静止5分钟后排气;
d)将搅拌好的灌浆体25,放如圆截锥试模并垫上钢化玻璃板,然后测试其流动性,满足300mm的塌落度;
e)一套试块试模能制作出3个40×40×160mm的矩形试块,在试块试模上涂抹硅油,使用8套试块试模制作出8组试块。每一组抗压和抗折强度都以3 个矩形试块的平均值为准;
f)为保证灌浆体25的流动性,从洋灰和水掺入的时间算起,不能超过30分钟完成所有作业,否则将重新制作灌浆体25;
(3)使用手动灌浆枪,制作好的灌浆体25,从灌浆接头22开始灌,分别制备无注浆、1/3饱和注浆、2/3饱和注浆、完全饱和注浆的钢筋套筒连接结构模型。对于满灌浆的套筒,直到灌浆料从排浆接头21冒出后,停止灌浆作业,并且使用橡胶塞,对灌浆接头22及、排浆接头21进行封堵;而其他的套筒模型,将灌浆体25灌到预定高度后,停止灌浆,并且使用橡胶塞,对灌浆接头22及、排浆接头21进行封堵;
8组试块的制作,在灌浆后的24h、32h、48h、72h、8d、14d及28d,使用水泥抗压试验机对试件进行破坏性试验,得出相应的抗压强度,如图20所示。由此表明,灌浆体25注入套筒内24h后已达到将近50%强度,而48h后基本达到接近80%的强度,再往后强化速率降低。因此,考虑到效率和准确性的平衡,本发明各实施例的检测方法中,检测的时间均需要设置在套筒内灌浆体固化后,且固化时间优选为24h~48h及以上,本实施例的试验中设置了24h和48h两组试验。
由铁质的锤子52对不同密实度梯度注浆的套筒内钢筋进行冲击,然后由传力棒16上的应变片11得出的动态电信号结果,然后对其进行前述的维纳滤波、改进Kalman滤波、带阻滤波和低通滤波后,得到新的时域信号。之后对新的时域信号进行傅里叶变换得出的FFT功率谱(Wavelet Power Spectrum),然后截取出频率(单位:kHz)和幅值(单位:mV)的频域图。其中无注浆、1/3饱和注浆、2/3饱和注浆、完全饱和注浆的模型的结果分别如图21~24所示,图21~24中(a)、(b)、(c)分别对应各梯度下新的时域信号经过平移后的动态时域图、FFT功率谱、频域图。
由此,按照上述检测方法,即可针对每一种灌浆体密实度获取到了特征指标的多组参数值。每一种灌浆体密实度中,每个特征指标的参数值所需的样本量应当满足统计学的要求,使其能够准确反映这种灌浆体密实度下特征指标参数值的分布区间。当获取到这些参数值后,即可对特征指标的参数值阈值分布进行统计学分析,得到每种灌浆体密实度对应的特征指标参数值阈值区间。
在灌浆体25凝结固化24小时后,分别对不同注浆密实度的灌浆体25对应的套筒模型,共进行了431次试验并对其进行统计分析,得到了特征指标的参数值正态分布图。特征指标共具有4种,包括3种时域指标,以及1种频域指标,其中频域指标为频域信号曲线中获取的最大幅值所对应的响应频率,即最大响应频率,结果如图25所示;3种时域指标分别为波形曲线中第1个半波的幅值、半高峰宽和半高峰宽比,结果分别如图26~28所示。
在灌浆体25凝结固化48小时后,分别对不同注浆密实度的灌浆体25对应的套筒模型,共进行了554次试验并对其进行统计分析,得到了特征指标的参数值正态分布图。特征指标共具有4种,包括3种时域指标,以及1种频域指标,其中频域指标为频域信号曲线中获取的最大幅值所对应的响应频率,即最大响应频率,结果如图29所示;3种时域指标分别为波形曲线中第1个半波的幅值、半高峰宽和半高峰宽比,结果分别如图30~32所示。
基于这些阈值区间,即可根据实际检测过程中,从振动感应信号获取的特征指标的参数值,判断该参数值落在哪个阈值区间,进而将该阈值区间对应的灌浆体密实度作为待检测的钢筋套筒连接结构内灌浆体密实度的判断结果,由此实现了灌浆体密实度的定量检测。
但从上述结果中可以发现,半高峰宽比相对于另外三种特征指标更具有优势,其在不同注浆密实度下的参数值分布区间具有更为显著的差异,因此能够更为准确的反应套筒内的注浆密实度。因此,本发明中特征指标首要推进波形曲线上第1个半波的半高峰宽比。当然,为了准确期间,可以组合更多的特征指标,并适当对各自的判定结果分配权重系数,以便于更准确的得到注浆密实度的判定结果。
另外需要注意的是,根据前述内容所述,虽然此处以应变片作为振动传感器进行说明,但事实上,加速度传感器、速度传感器、位移传感器均可以用于实现相同的功能,可以根据需要进行组合。
以上所述的实施例只是本发明的一种较佳的方案,然其并非用以限制本发明。有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型。因此凡采取等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (32)

  1. 一种钢筋套筒连接结构内的灌浆体密实度检测装置,其特征在于,包括刚性预压构件、传力棒、伸缩调节件、振动传感器和数据采集***;
    所述传力棒为一条刚性棒体,其通过伸缩调节件安装在刚性预压构件上;所述的刚性预压构件用于将传力棒固定于钢筋套筒连接结构所在的墙体上,所述伸缩调节件固定于刚性预压构件上,用于控制传力棒沿垂直墙体方向移动,使传力棒端部紧密支顶于待检测的钢筋套筒内的钢筋表面上;所述的振动传感器固定于传力棒上,所述数据采集***用于采集振动传感器的感应信号。
  2. 如权利要求1所述的钢筋套筒连接结构内的灌浆体密实度检测装置,其特征在于,所述的刚性预压构件为一个盖状的中空钢构件,其底部四周固定于待检测的钢筋套筒连接结构所在的墙体上。
  3. 如权利要求2所述的钢筋套筒连接结构内的灌浆体密实度检测装置,其特征在于,所述的刚性预压构件的盖体上开设通孔;所述伸缩调节件为螺母,其固定于所述盖体的通孔位置传力棒的棒体中部位置外攻螺纹,传力棒穿过所述盖体上的通孔后旋入螺母中,棒体上的螺纹与螺母构成驱动传力棒轴向移动的螺纹配合。
  4. 如权利要求1或3所述的钢筋套筒连接结构内的灌浆体密实度检测装置,其特征在于,检测装置中还包括测力锤,用于敲击传力棒端部。
  5. 如权利要求1所述的钢筋套筒连接结构内的灌浆体密实度检测装置,其特征在于,所述的钢筋套筒连接结构中,套筒外壁上的溢浆孔和注浆孔均外露于墙体表面;所述的传力棒端部穿过溢浆孔后进入套筒内部,支顶于钢筋表面。
  6. 如权利要求1所述的钢筋套筒连接结构内的灌浆体密实度检测装置,其特征在于,所述的振动传感器为应变片、位移传感器、加速度传感器和速度传感器中的一种或多种组合。
  7. 如权利要求1所述的钢筋套筒连接结构内的灌浆体密实度检测装置,其特征在于,所述的振动传感器为应变片,应变片贴合固定于传力棒上。
  8. 如权利要求1所述的钢筋套筒连接结构内的灌浆体密实度检测装置,其特征在于,所述的伸缩调节件包括预压力施加板和锁定件;所述传力棒与预压力施加板刚性连接固定,预压力施加板通过至少一个锁定件与刚性预压构件构成相对间距可调节的锁定,且间距调节方向与所述传力棒轴向一致。
  9. 如权利要求8所述的钢筋套筒连接结构内的灌浆体密实度检测装置,其特征在于,所述的预压力施加板上开设有一个通孔,通孔位置固定有一个限位螺母,所述传力棒的棒体中部位置外攻螺纹,传力棒穿过所述预压力施加板上的通孔后旋入限位螺母中,棒体上的螺纹与所述限位螺母构成驱动传力棒轴向移动的螺纹配合。
  10. 如权利要求8所述的架中开有底部开口的装配孔,所述传力棒顶部与所述固定架的装配孔构成螺纹配合;弹簧和质量块置于所述装配孔中,所述连杆从固定架的顶部伸入装配孔中并与质量块连接固定,质量块在被连杆朝固定架顶部拉动过程中对弹簧进行压缩,在连杆不受外力约束时利用弹簧的压缩弹力推动质量块对传力棒顶部施加沿传力棒轴向的冲击力。
  11. 如权利要求10所述的钢筋套筒连接结构内的灌浆体密实度检测装置,其特征在于,所述的锤击设备中还包括自动拉伸装置,所述自动拉伸装置中具有位移输出端,位移输出端用于推动连杆,并在对弹簧定量压缩后释放连杆。
  12. 如权利要求1所述的钢筋套筒连接结构内的灌浆体密实度检测装置,其特征在于,所述的数据采集***包括小信号/低噪声放大器和上位机,所述的振动传感器连接小信号/低噪声放大器、信号采集仪后,与上位机通信连接。
  13. 一种钢筋套筒连接结构注浆密实度的检测方法,其特征在于,该方法所采用的装置包括外部钢结构预压构件、螺母、传力棒、测力锤、振动传感器;所述的外部钢结构预压构件为一个盖状的中空钢构件,其底部四周固定于待检测的钢筋套筒连接结构所在的墙体上;外部钢结构预压构件的盖体上开设通孔,且通孔位置固定有一个螺母;所述的传力棒为一条刚性棒体,且棒体中部位置外攻螺纹,传力棒穿过所述盖体上的通孔后旋入螺母中,棒体上的螺纹与所述螺母构成驱动传力棒上下移动的螺纹配合;传力棒底部紧密支顶于待检测的钢筋套筒连接结构的注浆实体上;所述的振动传感器贴合于传力棒上;测力锤用于敲击传力棒端部;所述检测方法的步骤如下:
    步骤1、在进行钢筋套筒注浆密实度检测时,在套筒外壁上的溢浆孔和注浆孔位置将贴有振动传感器的传力棒伸入墙体内,使其与待检测的注浆实体接触,而后把预压构件底部固定到墙体表面;
    步骤2、通过装置内部固定的螺母,旋转并拧紧传力棒,使得传力棒底部紧密支 顶于待检测的钢筋套筒连接结构的注浆实体上,确保测试过程中两者不会分离;
    步骤3、利用测力锤敲击传力棒端部,通过与振动传感器相连的数据采集***采集动态信号随时间的变化曲线;
    步骤4、进行室内足尺模型试验,并设置若干组不同密实度梯度注浆,进行对比试验;在与步骤3相同的锤击力下,使用相同的动态测试装置测定不同注浆密实度的动态信号随时间的变化曲线,并与步骤3现场实测的动态信号随时间的变化曲线进行对比,从而确定实际的注浆密实度所在区间,完成对钢筋套筒注浆密实度的定量判断。
  14. 如权利要求13所述的检测方法,其特征在于,所述的步骤4中,进行室内足尺模型试验时,共设置4组不同密实度梯度注浆,分别为无注浆、1/3饱和注浆、2/3饱和注浆、完全饱和注浆。
  15. 一种钢筋套筒连接结构内的灌浆体密实度检测方法,其特征在于,包括如下步骤:
    S1:将刚性的传力棒支顶于待检测钢筋套筒连接结构内的钢筋表面,并保持两者之间始终具有预压力;所述传力棒上固定有与传力棒同步振动的振动传感器,所述振动传感器为应变片、位移传感器、加速度传感器和速度传感器中的一种或多种组合;
    S2:对套筒结构内的钢筋施加沿传力棒轴向的冲击力,使钢筋和传力棒同步振动,通过所述振动传感器采集该冲击力下传力棒的振动感应信号;
    S3:从所述振动感应信号中获取特征指标的参数值,特征指标为时域指标或频域指标中的一个或多个组合;
    所述时域指标包括:从所述振动感应信号的时域信号中获取的波形曲线中第N个半波的幅值、任意高度处的峰宽和任意高度处的峰宽比,N=1或2;
    所述频域指标包括:从所述振动感应信号的频域信号曲线中,获取的最大幅值所对应的响应频率;
    S4:根据S3中获取的所述参数值,基于不同灌浆体密实度对应的特征指标参数值阈值区间,确定待检测钢筋套筒连接结构内的灌浆体密实度。
  16. 如权利要求15所述的钢筋套筒连接结构内的灌浆体密实度检测方法,其特征在于,所述的半波为峰波或谷波。
  17. 如权利要求15所述的钢筋套筒连接结构内的灌浆体密实度检测方法,其特 征在于,所述的传力棒垂直支顶于套筒结构内的钢筋表面。
  18. 如权利要求15所述的钢筋套筒连接结构内的灌浆体密实度检测方法,其特征在于,所述的振动传感器为应变片、位移传感器、速度传感器和加速度传感器。
  19. 如权利要求18所述的钢筋套筒连接结构内的灌浆体密实度检测方法,其特征在于,所述的振动感应信号为应变片采集的电信号经过放大、滤波去噪后得到的时域信号。
  20. 如权利要求19所述的钢筋套筒连接结构内的灌浆体密实度检测方法,其特征在于,所述的滤波去噪包括维纳滤波、卡尔曼滤波、带阻滤波器、低通滤波器中的一种或多种。
  21. 如权利要求15所述的钢筋套筒连接结构内的灌浆体密实度检测方法,其特征在于,所述的振动传感器为加速度传感器,所述的振动感应信号为将加速度传感器采集到的加速度进行积分后获得的速度信号。
  22. 如权利要求15所述的钢筋套筒连接结构内的灌浆体密实度检测方法,其特征在于,所述的特征指标为从所述振动感应信号的时域信号中获取的波形曲线中第1个半波的半高峰宽比。
  23. 如权利要求15所述的钢筋套筒连接结构内的灌浆体密实度检测方法,其特征在于,所述的时域指标的获取方法为:
    对所述振动传感器采集到的电信号进行放大后,再通过滤波器去除扰动杂波和噪音,得到时域信号;从时域信号的波形曲线中,获取第1个半波的幅值、半高峰宽和半高峰宽比中一个或多个,作为时域指标。
  24. 如权利要求23所述的钢筋套筒连接结构内的灌浆体密实度检测方法,其特征在于,所述的滤波器由维纳滤波、卡尔曼滤波器、带阻滤波器和低通滤波器组成,放大后的电信号先经过维纳滤波,再经过卡尔曼滤波器进行平滑,然后经过带阻滤波器对工频干扰的频率进行抑制,最后经过截止频率为3000Hz的低通滤波器滤除高频信号。
  25. 如权利要求15所述的钢筋套筒连接结构内的灌浆体密实度检测方法,其特征在于,所述的频域指标的获取方法为:
    对所述振动感应信号的时域信号进行傅里叶变换,得出FFT功率谱,然后在功率谱中截取出频率和幅值的频域图,从频域图中得到最大振动幅值所对应的频率, 作为频域指标。
  26. 如权利要求15所述的钢筋套筒连接结构内的灌浆体密实度检测方法,其特征在于,所述不同灌浆体密实度对应的特征指标参数值阈值区间确定方法如下:利用型号参数相同的若干待检测的钢筋套筒连接结构,分别注入不同密实度的灌浆体,按照S1~S3所述的方法针对每一种灌浆体密实度获取特征指标的多组参数值,对特征指标的参数值阈值分布进行统计学分析,得到每种灌浆体密实度对应的特征指标参数值阈值区间。
  27. 如权利要求26所述的钢筋套筒连接结构内的灌浆体密实度检测方法,其特征在于,所述不同灌浆体密实度对应的特征指标参数值阈值区间确定过程中,每次检测施加于传力棒上的预压力保持一致。
  28. 如权利要求15所述的钢筋套筒连接结构内的灌浆体密实度检测方法,其特征在于,所述的特征指标有多个,根据每个特征指标确定待检测钢筋套筒连接结构内的灌浆体密实度判断结果,然后综合所有特征指标的灌浆体密实度判断结果得出最终的灌浆体密实度判断结果。
  29. 如权利要求15所述的钢筋套筒连接结构内的灌浆体密实度检测方法,其特征在于,所述的灌浆体密实度检测方法在套筒内灌浆体固化后进行,固化时间优选为至少为24~48h。
  30. 如权利要求15所述的钢筋套筒连接结构内的灌浆体密实度检测方法,其特征在于,所述的传力棒从套筒的溢浆孔***套筒内。
  31. 一种利用如权利要求1所述的检测装置的钢筋套筒连接结构内的灌浆体密实度检测方法,其特征在于,步骤如下:
    S1:将刚性预压构件固定于待检测的钢筋套筒连接结构所在的墙体上,通过所述伸缩调节件将传力棒固定于墙体上,且使传力棒端部紧密支顶于钢筋套筒内的钢筋表面,两者之间始终具有预压力;
    S2:对传力棒施加沿传力棒轴向的冲击力,使钢筋和传力棒同步振动,并采集该冲击力下所述振动传感器感应到的原始电信号,原始电信号为模拟信号经小信号/低噪声放大器放大后,通过模数转换器采样转化为数字信号并存储于数据采集***中;
    S3:对数据采集***中存储的数字信号进行维纳滤波以增强目标频率;
    S4:然后将维纳滤波后的电信号输入卡尔曼滤波器中,按照S41~S46步骤进行平 滑滤波,其中:
    S41:针对放大后电信号中的第i个采样点x i,以第i个采样点为中心设置大小为N的滤波窗口,得到该滤波窗口中所有采样点构成的向量Data i;设定初始电信号预测幅值
    Figure PCTCN2019128227-appb-100001
    其中,
    Figure PCTCN2019128227-appb-100002
    为当前滤波窗口中所有采样点的平均值,
    Figure PCTCN2019128227-appb-100003
    表示向量Data i中第j个采样点的信号值,j∈[1,N];
    S42:观测噪声的协方差矩阵
    Figure PCTCN2019128227-appb-100004
    S43:计算卡尔曼增益
    Figure PCTCN2019128227-appb-100005
    其中H为观测矩阵,上标T表示转置;
    S44:计算第i个采样点滤波后输出的电信号幅值:
    Figure PCTCN2019128227-appb-100006
    式中:
    Figure PCTCN2019128227-appb-100007
    表示第i个采样点x i的采样值;
    S45:在进行下一个采样点的滤波前,更新电信号预测幅值
    Figure PCTCN2019128227-appb-100008
    Figure PCTCN2019128227-appb-100009
    其中Q为状态转移协方差矩阵;同时使i=i+1;
    S46:依次针对放大后电信号中的剩余采样点,不断重复步骤S42~步骤S45,完成卡尔曼滤波;
    S5:将卡尔曼滤波后的信号数据进行数字滤波,其过程是将信号先输入带阻滤波器,对工频干扰的频率进行抑制,然后经过截止频率为3000Hz的低通滤波器滤除高频信号,得出新的时域信号数据;
    S6:从所述新的时域信号数据中,获取波形曲线上第N个半波的幅值、任意高度处的峰宽和任意高度处的峰宽比;其中N=1或2;
    S7:对所述新的时域信号数据进行傅里叶变换,得到FFT功率谱,然后在功率谱中截取出频率和幅值的频域图,从频域图中得到最大响应频率,所述最大响应频率为频域图中最大振动幅值所对应的频率;
    S8:以所述幅值、所述峰宽、所述峰宽比和所述最大响应频率中的任意一个或多个为特征指标,根据S6或S7步骤中确定的特征指标的参数值,基于不同灌浆体密实度对应的特征指标参数值阈值区间,确定待检测钢筋套筒连接结构内的灌浆体密实度。
  32. 如权利要求31所述的钢筋套筒连接结构内的灌浆体密实度检测方法,其特征在于,所述的特征指标优选为波形曲线上第1个半波的半高峰宽比。
PCT/CN2019/128227 2018-12-25 2019-12-25 一种钢筋套筒连接结构内的灌浆体密实度检测装置及方法 WO2020135484A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/233,481 US11835490B2 (en) 2018-12-25 2021-04-17 Device and method for detecting grout compactness of splice sleeve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811592823.2 2018-12-25
CN201811592823.2A CN109406340A (zh) 2018-12-25 2018-12-25 锤击预压式测试套筒连接结构注浆密实度的装置及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/233,481 Continuation US11835490B2 (en) 2018-12-25 2021-04-17 Device and method for detecting grout compactness of splice sleeve

Publications (1)

Publication Number Publication Date
WO2020135484A1 true WO2020135484A1 (zh) 2020-07-02

Family

ID=65461449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128227 WO2020135484A1 (zh) 2018-12-25 2019-12-25 一种钢筋套筒连接结构内的灌浆体密实度检测装置及方法

Country Status (3)

Country Link
US (1) US11835490B2 (zh)
CN (1) CN109406340A (zh)
WO (1) WO2020135484A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112504840A (zh) * 2020-11-26 2021-03-16 上海建工二建集团有限公司 一种装配式建筑套筒灌浆质量检测装置及其施工方法
CN113492461A (zh) * 2021-07-08 2021-10-12 昆山市建设工程质量检测中心 一种用于套筒灌浆连接施工质量检测的内窥孔道制备方法
CN114113558A (zh) * 2022-01-26 2022-03-01 秦皇岛市政建材集团有限公司 一种灌浆料自干燥收缩的试验设备及方法
CN114280154A (zh) * 2021-12-21 2022-04-05 重庆交大建设工程质量检测中心有限公司 一种预应力混凝土管道灌浆密实度叠加成像检测方法
CN115506600A (zh) * 2022-09-22 2022-12-23 滁州学院 可直观检测灌浆饱满度的pc构件组装方法
CN115979941A (zh) * 2023-01-10 2023-04-18 江苏省华厦工程项目管理有限公司 一种灌浆料套筒密实度检测装置
CN115993401A (zh) * 2023-03-23 2023-04-21 四川省公路规划勘察设计研究院有限公司 一种用于注浆饱和度测量设备的校准***

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109406340A (zh) * 2018-12-25 2019-03-01 浙江大学 锤击预压式测试套筒连接结构注浆密实度的装置及方法
CN212008418U (zh) * 2019-12-25 2020-11-24 浙江大学 可抽离式的钢筋套筒内灌浆体密实度动态测试装置
CN114018800B (zh) * 2021-10-29 2023-06-30 福建工程学院 一种预应力孔道灌浆密实度的测量装置及方法
CN114741923B (zh) * 2022-04-11 2023-05-02 哈尔滨工业大学 基于高密度测点应变的大跨径桥梁吊索索力识别方法
CN114720641B (zh) * 2022-04-18 2023-06-02 西南交通大学 地铁盾构同步注浆料浮力消散特性的测试装置及测试方法
CN116297713B (zh) * 2023-03-23 2024-01-23 广州市市政工程试验检测有限公司 一种预应力孔道注浆饱满度的检测方法及装置
CN117213761A (zh) * 2023-09-18 2023-12-12 闫朝范 水利工程施工用漏浆检测方法
CN117922268B (zh) * 2024-03-22 2024-06-14 中国标准化研究院 新能源汽车底盘模块组装装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150097589A1 (en) * 2013-10-08 2015-04-09 University Of Florida Research Foundation, Inc. Corrosion detection in structural tendons
CN106596298A (zh) * 2015-11-10 2017-04-26 安徽建筑大学 一种套筒灌浆密实度检测装置及检测方法
CN107328921A (zh) * 2017-05-11 2017-11-07 中国建筑股份有限公司 一种灌浆套筒灌浆料饱满度检测装置及方法
CN107478719A (zh) * 2017-06-27 2017-12-15 浙江大学 内置振动测试法检测后注浆套筒式钢筋接头的结构及方法
CN109406340A (zh) * 2018-12-25 2019-03-01 浙江大学 锤击预压式测试套筒连接结构注浆密实度的装置及方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773024A (zh) * 2004-11-12 2006-05-17 北京市机械施工公司 植入钢筋笼的混凝土灌注桩成桩工艺
CN1724993A (zh) * 2005-07-21 2006-01-25 中国科学院武汉岩土力学研究所 室内动力排水固结试验***及其方法
CN101683632A (zh) * 2008-09-23 2010-03-31 徐兆督 一种脉冲振打器
WO2012133784A1 (ja) * 2011-03-31 2012-10-04 国立大学法人横浜国立大学 コンクリート表面の吸水試験方法及び吸水試験装置
CN203069466U (zh) * 2013-01-29 2013-07-17 中建商品混凝土有限公司 水泥基胶凝材料和混凝土抗冲击性能测试装置
CN203881508U (zh) * 2014-05-26 2014-10-15 浙江大学 一种悬浮隧道整体冲击响应试验装置
CN205426852U (zh) * 2015-11-10 2016-08-03 安徽建筑大学 一种套筒灌浆密实度检测装置
CN205246602U (zh) * 2015-11-10 2016-05-18 安徽建筑大学 一种***式钢筋预留孔灌浆密实度检测装置
CN105866394A (zh) * 2016-04-29 2016-08-17 南通筑升土木工程科技有限责任公司 岩土工程介质的信号处理方法、装置及***
CN106501495B (zh) * 2016-10-21 2019-10-29 河海大学 一种套筒中灌浆料密实度的检测装置及检测方法
CN107389791B (zh) * 2017-06-27 2023-04-07 浙江大学 外置振动测试法检测后注浆套筒式钢筋接头的结构及方法
CN207440010U (zh) * 2017-09-20 2018-06-01 北京市地铁运营有限公司地铁运营技术研发中心 一种基于冲击回波的预应力孔道灌浆密实度检测装置
CN207336290U (zh) * 2017-11-08 2018-05-08 山东泉建工程检测有限公司 一种预应力孔道灌浆密实度检测仪器
CN108051480A (zh) * 2017-12-29 2018-05-18 中冶建筑研究总院有限公司 一种灌浆料饱满度检测方法和装置以及灌浆套筒
CN108918660B (zh) * 2018-05-19 2020-12-25 徐光大 钢筋套筒灌浆连接接头的套筒灌浆饱满度的无损检测方法
CN108827825B (zh) * 2018-05-30 2021-11-12 广州建设工程质量安全检测中心有限公司 一种钢筋套筒中灌浆料密实度检测***及检测方法
CN108828197B (zh) * 2018-05-30 2021-03-30 广东睿住住工科技有限公司 通过检测灌浆料ph值检测灌浆料是否达到饱满度的方法
CN108872548A (zh) * 2018-05-31 2018-11-23 宁波联城住工科技有限公司 一种检测灌浆套筒灌浆密实性的检测装置及其检测方法
CN108761049B (zh) * 2018-06-13 2021-03-19 中国建筑科学研究院有限公司 预成孔检测钢筋连接套筒灌浆饱满度的装置和方法
CN108956962A (zh) * 2018-07-27 2018-12-07 宁波联城住工科技有限公司 灌浆套筒内灌浆料饱满度的评价装置及方法
CN108802188B (zh) * 2018-08-03 2021-04-16 中国建筑科学研究院有限公司 基于套筒表面激振的灌浆饱满度检测方法及***
CN209460091U (zh) * 2018-12-25 2019-10-01 浙江大学 一种锤击预压式测试套筒连接结构注浆密实度的装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150097589A1 (en) * 2013-10-08 2015-04-09 University Of Florida Research Foundation, Inc. Corrosion detection in structural tendons
CN106596298A (zh) * 2015-11-10 2017-04-26 安徽建筑大学 一种套筒灌浆密实度检测装置及检测方法
CN107328921A (zh) * 2017-05-11 2017-11-07 中国建筑股份有限公司 一种灌浆套筒灌浆料饱满度检测装置及方法
CN107478719A (zh) * 2017-06-27 2017-12-15 浙江大学 内置振动测试法检测后注浆套筒式钢筋接头的结构及方法
CN109406340A (zh) * 2018-12-25 2019-03-01 浙江大学 锤击预压式测试套筒连接结构注浆密实度的装置及方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112504840A (zh) * 2020-11-26 2021-03-16 上海建工二建集团有限公司 一种装配式建筑套筒灌浆质量检测装置及其施工方法
CN113492461A (zh) * 2021-07-08 2021-10-12 昆山市建设工程质量检测中心 一种用于套筒灌浆连接施工质量检测的内窥孔道制备方法
CN113492461B (zh) * 2021-07-08 2022-02-01 昆山市建设工程质量检测中心 一种用于套筒灌浆连接施工质量检测的内窥孔道制备方法
CN114280154A (zh) * 2021-12-21 2022-04-05 重庆交大建设工程质量检测中心有限公司 一种预应力混凝土管道灌浆密实度叠加成像检测方法
CN114280154B (zh) * 2021-12-21 2023-08-18 重庆交大建设工程质量检测中心有限公司 一种预应力混凝土管道灌浆密实度叠加成像检测方法
CN114113558A (zh) * 2022-01-26 2022-03-01 秦皇岛市政建材集团有限公司 一种灌浆料自干燥收缩的试验设备及方法
CN115506600A (zh) * 2022-09-22 2022-12-23 滁州学院 可直观检测灌浆饱满度的pc构件组装方法
CN115506600B (zh) * 2022-09-22 2024-02-09 滁州学院 可直观检测灌浆饱满度的pc构件组装方法
CN115979941A (zh) * 2023-01-10 2023-04-18 江苏省华厦工程项目管理有限公司 一种灌浆料套筒密实度检测装置
CN115979941B (zh) * 2023-01-10 2023-12-01 江苏省华厦工程项目管理有限公司 一种灌浆料套筒密实度检测装置
CN115993401A (zh) * 2023-03-23 2023-04-21 四川省公路规划勘察设计研究院有限公司 一种用于注浆饱和度测量设备的校准***
CN115993401B (zh) * 2023-03-23 2023-05-30 四川省公路规划勘察设计研究院有限公司 一种用于注浆饱和度测量设备的校准***

Also Published As

Publication number Publication date
US11835490B2 (en) 2023-12-05
US20210293676A1 (en) 2021-09-23
CN109406340A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2020135484A1 (zh) 一种钢筋套筒连接结构内的灌浆体密实度检测装置及方法
CN111272867B (zh) 一种钢筋套筒连接结构内的灌浆体密实度检测方法
Kim et al. In situ nonlinear ultrasonic technique for monitoring microcracking in concrete subjected to creep and cyclic loading
US11187681B2 (en) Method for evaluating state of member
Foti et al. Dynamic investigation of an ancient masonry bell tower with operational modal analysis: A non-destructive experimental technique to obtain the dynamic characteristics of a structure
CN101672751B (zh) 一种测试预应力锚固体系张力的无损检测方法
CN101105433A (zh) 便携式现场和室内两用直剪试验仪及其取样测试方法
CN108871965B (zh) 一种锚杆荷载加载试验装置
CN115616078B (zh) 一种基于声振特性的钢管混凝土脱空检测方法
CN101762347A (zh) 一种用半波法测量多跨钢拉索索力的方法
CN108333061A (zh) 一种测量应力松弛的***及测量方法
Bechtum Automation and further development of the borehole shear test
Kim et al. Application of nonlinear ultrasonic method for monitoring of stress state in concrete
KR101300589B1 (ko) 콘크리트 강도 시험기
CN209460091U (zh) 一种锤击预压式测试套筒连接结构注浆密实度的装置
CN109610527A (zh) 一种针对边坡防治工程中抗滑桩的失效测试***和方法
CN112097964B (zh) 一种基于磁通量测试的螺纹钢筋预应力检测装置及方法
CN108692834A (zh) 一种用于验证内荷载作用下混凝土应力试验装置
CN104501941B (zh) 航空发动机传感器低频固有频率的测试方法
CN207366350U (zh) 一种钢管混凝土徐变的检测试件
JP7257797B2 (ja) コンクリート凝結時間判定装置、判定方法およびコンクリート施工方法
JP2000206017A (ja) 構造体コンクリ―トの強度推定方法
CN207816745U (zh) 一种测量应力松弛的***
CN219434558U (zh) 一种便携式现场岩石弯拉强度测定仪
CN111458090A (zh) 模型基础动力参数测试***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905007

Country of ref document: EP

Kind code of ref document: A1