WO2020134951A1 - 一种多镜头摄像机的调试方法、装置及存储介质 - Google Patents

一种多镜头摄像机的调试方法、装置及存储介质 Download PDF

Info

Publication number
WO2020134951A1
WO2020134951A1 PCT/CN2019/123452 CN2019123452W WO2020134951A1 WO 2020134951 A1 WO2020134951 A1 WO 2020134951A1 CN 2019123452 W CN2019123452 W CN 2019123452W WO 2020134951 A1 WO2020134951 A1 WO 2020134951A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflecting mirror
lens camera
lens
mirror surfaces
camera
Prior art date
Application number
PCT/CN2019/123452
Other languages
English (en)
French (fr)
Inventor
何明
王立强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020134951A1 publication Critical patent/WO2020134951A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums

Definitions

  • the embodiments of the present application relate to the technical field of network communication, and particularly to a method, device and storage medium for debugging a multi-lens camera.
  • the collection of ultra-wide video is one of the key technologies in the telepresence system.
  • the wider the angle of view of the captured picture the greater the degree of optical distortion or sharpness reduction
  • the simplest and most effective solution is to use a multi-lens camera to capture video, that is, multiple camera lenses are used to horizontally diverge or converge in a fan-shaped layout to collect video images of a certain area in the scene, and then follow the A certain azimuth sequence is spliced and combined and output to multiple display devices, presenting a complete ultra-wide field of view image, covering the full field of view of the normal human eye.
  • the embodiments of the present application provide a debugging method and device for a multi-lens camera and a computer-readable storage medium, which can automatically realize the common optical center of the multi-lens camera, thereby simplifying the operation process and reducing manpower Cost consumption.
  • an embodiment of the present application provides a method for debugging a multi-lens camera, including: obtaining the field angle ⁇ of the lens of the multi-lens camera at the current focal length; adjusting the angle between adjacent mirror surfaces to 180°- ⁇ ; wherein, the number of mirror surfaces is the same as the number of imaging lenses of the multi-lens camera, and one mirror surface is opposite to one camera lens; the equivalent reflective length L of the mirror surface is calculated; along In the axial direction of the multi-lens camera, the vertical distance between the multi-lens camera and any one of the reflecting mirror surfaces is adjusted to L/2tan( ⁇ /2).
  • An embodiment of the present application further provides a multi-lens camera, including: an acquisition module for acquiring a field of view angle ⁇ of a lens of the multi-lens camera at a current focal length; a processing module for adjusting a clip between adjacent reflecting mirror surfaces Angle to 180°- ⁇ ; wherein, the number of the reflecting mirror surfaces is the same as the number of imaging lenses of the multi-lens camera, and one reflecting mirror surface is opposite to one imaging lens; the processing module is also used to calculate the The equivalent reflection length L of the mirror surface; the processing module is also used to adjust the vertical distance between the multi-lens camera to any one of the mirror surfaces along the axial direction of the multi-lens camera to L/2tan( ⁇ / 2).
  • An embodiment of the present application also provides a debugging device for a multi-lens camera, including: a processor and a memory, wherein the memory stores the following instructions that can be executed by the processor: acquiring the view of the lens of the multi-lens camera at the current focal length Field angle ⁇ ; adjust the angle between adjacent reflecting mirror surfaces to 180°- ⁇ ; wherein, the number of reflecting mirror surfaces is the same as the number of imaging lenses of the multi-lens camera, and one reflecting mirror surface and one imaging lens Relatively; calculate the equivalent reflection length L of the mirror surface; adjust the vertical distance between the multi-lens camera to any one of the mirror surfaces along the axial direction of the multi-lens camera to be L/2tan( ⁇ /2).
  • An embodiment of the present application further provides a storage medium on which computer-executable instructions are stored, and the computer-executable instructions are used to perform the following steps: obtain the angle of view of the lens of the multi-lens camera at the current focal length ⁇ ; adjust the angle between adjacent reflecting mirror surfaces to 180°- ⁇ ; wherein, the number of reflecting mirror surfaces is the same as the number of imaging lenses of the multi-lens camera, and one reflecting mirror surface is opposite to one imaging lens; Calculate the equivalent reflection length L of the mirror surface; adjust the vertical distance between the multi-lens camera to any one of the mirror surfaces along the axial direction of the multi-lens camera to be L/2tan( ⁇ /2).
  • FIG. 1 is a schematic flowchart of a method for debugging a multi-lens camera according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a debugging device for a multi-lens camera according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a multi-lens camera system provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another multi-lens camera system provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of yet another multi-lens camera system provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of yet another multi-lens camera system provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a virtual optical center change provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of changes in a physical optical center provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of yet another multi-lens camera system provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a control structure of a multi-lens camera system provided by an embodiment of the present application.
  • 11a is a schematic diagram of a virtual optical center provided by an embodiment of this application.
  • FIG. 11b is a schematic diagram of another virtual optical center provided by an embodiment of the present application.
  • An embodiment of the present application provides a method for debugging a multi-lens camera. As shown in FIG. 1, the method includes the following steps.
  • Step 101 Obtain the angle of view ⁇ of the lens of the multi-lens camera at the current focal length.
  • Step 102 Adjust the angle between adjacent mirror surfaces to 180°- ⁇ .
  • the number of reflecting mirror surfaces is the same as the number of imaging lenses of a multi-lens camera, and one reflecting mirror surface is opposite to one imaging lens.
  • Step 103 Calculate the equivalent reflection length L of the reflecting mirror.
  • Step 104 Adjust the vertical distance from the multi-lens camera to any one of the reflecting mirror surfaces in the axial direction of the multi-lens camera to L/2tan ( ⁇ /2).
  • the method for debugging a multi-lens camera provided by an embodiment of the present application has adjusted the angle between adjacent mirror surfaces to 180°- ⁇ , and adjusted the multi-lens camera to any mirror surface along the axial direction of the multi-lens camera The vertical distance between them is L/2tan( ⁇ /2), so the adjusted position must be the same as the vertical distance of all reflecting mirrors. It can be concluded that this position is the virtual common optical center of the multi-lens camera, so as to automatically The multi-lens camera realizes the common optical center, which simplifies the operation process and reduces the consumption of labor costs.
  • Calculating the equivalent reflection length L of the mirror surface includes the following steps.
  • Step 103a Measure the length of the top surface and the length of the bottom surface of the mirror surface.
  • Step 103b Calculate the sum of the length of the top surface and the length of the bottom edge and divide by two to obtain the equivalent reflection length L.
  • the mirror surface is a three-dimensional optical element with the same thickness and an isosceles trapezoidal surface.
  • adjusting the angle between adjacent reflecting mirror surfaces to 180°- ⁇ includes: using a motor to drive a linkage device connected to each reflecting mirror surface to adjust between adjacent reflecting mirror surfaces Angle to 180°- ⁇ .
  • adjust the angle between adjacent reflecting mirrors to 180°- ⁇ including: using a motor to drive the linkage device connected to each reflecting mirror except for the middle reflecting mirror to adjust the adjacent reflection
  • the angle between mirrors is up to 180°- ⁇ .
  • adjusting the vertical distance from the multi-lens camera to any one of the reflecting mirror surfaces in the axial direction of the multi-lens camera is L/2tan ( ⁇ /2), including: using the motor to drive the multi-lens camera along the multi-lens camera Axial direction adjusts the multi-lens camera to the vertical distance from any reflecting mirror surface by L/2tan( ⁇ /2).
  • An embodiment of the present application provides a debugging device for a multi-lens camera. As shown in FIG. 2, the debugging device 2 includes the following modules.
  • the obtaining module 21 is used to obtain the angle of view ⁇ of the lens of the multi-lens camera at the current focal length.
  • the processing module 22 is used to adjust the angle between adjacent reflecting mirror surfaces to 180°- ⁇ ; wherein, the number of reflecting mirror surfaces is the same as the number of imaging lenses of the multi-lens camera, and one reflecting mirror surface is opposite to one imaging lens.
  • the processing module 22 is also used to calculate the equivalent reflection length L of the reflecting mirror.
  • the processing module 22 is also used to adjust the vertical distance from the multi-lens camera to any one of the reflecting mirror surfaces in the axial direction of the multi-lens camera to L/2tan( ⁇ /2).
  • the processing module 22 is specifically used to: measure the length of the top surface and the length of the bottom surface of the reflecting mirror; calculate the sum of the length of the top surface and the length of the bottom surface and divide by 2 to obtain the equivalent reflection length L.
  • the processing module 22 is specifically used to adjust the angle between adjacent reflecting mirror surfaces to 180°- ⁇ by using a motor to drive a linkage device connected to each reflecting mirror surface.
  • adjusting the angle between adjacent reflecting mirrors to 180°- ⁇ includes: using a motor to drive the phase of the linkage device connected to each reflecting mirror except for the middle reflecting mirror The angle between adjacent mirrors is 180°- ⁇ .
  • adjusting the vertical distance from the multi-lens camera to any one of the reflecting mirror surfaces in the axial direction of the multi-lens camera is L/2tan ( ⁇ /2), including: using the motor to drive the multi-lens camera along the multi-lens camera Axial direction adjusts the multi-lens camera to the vertical distance from any reflecting mirror surface by L/2tan( ⁇ /2).
  • the debugging device of the multi-lens camera provided by the embodiment of the present application adjusts the angle between adjacent mirror surfaces to 180°- ⁇ , and adjusts the multi-lens camera to any mirror surface along the axial direction of the multi-lens camera
  • the vertical distance between them is L/2tan( ⁇ /2), so the adjusted position must be the same as the vertical distance of all reflecting mirrors. It can be concluded that this position is the virtual common optical center of the multi-lens camera, so as to automatically
  • the multi-lens camera realizes the common optical center, which simplifies the operation process and reduces the consumption of labor costs.
  • both the acquisition module 21 and the calculation module 22 can be composed of a central processing unit (CPU), a microprocessor (Micro Processing Unit, MPU), and a digital signal processor (Digital Signal Processor) located in the debugging device of the multi-lens camera Signal (Processor, DSP) or Field Programmable Gate Array (Field Programmable Gate Array, FPGA) and other implementations.
  • CPU central processing unit
  • MPU Micro Processing Unit
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • An embodiment of the present application further provides a debugging device for a multi-lens camera, including a memory and a processor, where the memory stores the following instructions that can be executed by the processor.
  • Adjust the angle between adjacent mirror surfaces to 180°- ⁇ ; where the number of mirror surfaces is the same as the number of camera lenses of a multi-lens camera, and one mirror surface is opposite to one camera lens.
  • the vertical distance between the multi-lens camera and any one of the reflecting mirror surfaces is L/2tan( ⁇ /2).
  • the memory specifically stores the following instructions that can be executed by the processor.
  • the memory specifically stores the following instructions that can be executed by the processor: use a motor to drive the linkage device connected to each mirror to adjust the angle between adjacent mirrors to 180°- ⁇ .
  • the memory specifically stores the following instructions that can be executed by the processor: a motor-driven linkage device connected to each reflecting mirror surface except the middle reflecting mirror surface is used to adjust the adjacent reflecting mirror surface The angle between them is 180°- ⁇ .
  • the memory specifically stores the following instructions that can be executed by the processor: the motor is used to drive the multi-lens camera to adjust the vertical distance between the multi-lens camera and any one of the mirror surfaces to be L/2tan( ⁇ /2).
  • An embodiment of the present application further provides a computer-readable storage medium, on which a computer-executable instruction is stored, and the computer-executable instruction is used to perform the following steps.
  • Adjust the angle between adjacent mirror surfaces to 180°- ⁇ ; where the number of mirror surfaces is the same as the number of camera lenses of a multi-lens camera, and one mirror surface is opposite to one camera lens.
  • the vertical distance between the multi-lens camera and any one of the reflecting mirror surfaces is L/2tan( ⁇ /2).
  • computer-executable instructions specifically perform the following steps.
  • the computer-executable instruction specifically executes the following steps: using a motor to drive a linkage device connected to each reflecting mirror surface to adjust the angle between adjacent reflecting mirror surfaces to 180°- ⁇ .
  • the computer-executable instruction specifically executes the following steps: using a motor to drive a linkage device connected to each reflecting mirror except for the middle reflecting mirror to adjust the angle between adjacent reflecting mirrors to 180°- ⁇ .
  • the computer-executable instructions specifically perform the following steps: use the motor to drive the multi-lens camera to adjust the vertical distance between the multi-lens camera and any one of the reflecting mirror surfaces to be L/2tan( ⁇ /2) along the axial direction of the multi-lens camera distance.
  • An embodiment of the present application also provides a multi-lens camera system.
  • the camera system includes: a plurality of mirror mirrors that are seamlessly connected to the horizontal plane at 45°, and adjacent mirror mirrors are spread at a certain horizontal angle .
  • Multiple cameras are designed to vertically distribute to each mirror surface so that it can receive 45° reflected light from the mirror.
  • the camera will shoot the virtual image of the front scene reflected by the reflecting mirror.
  • According to the principle of light reflection by designing the angle of the mirror and the placement of the camera, these cameras can have the same virtual optical center, that is, multiple cameras from the same Take images from a viewpoint without parallax. As shown in FIGS.
  • the virtual optical centers of the multi-lenses of the multi-lens camera system can coincide in both horizontal and vertical directions, which enables the seamless formation of the images formed by the camera units of the system to form a seamless Overall panoramic picture.
  • the mirror surface is actually an isosceles trapezoid, which is connected to an axial horizontal motor and connecting rod, and can be moved in the horizontal direction by an adjacent polyline as an axis, as shown in Figures 4 and 5.
  • the camera will be fixed on an angular platform that can vertically lift the rail and tilt forward and backward, so that it can move in two dimensions.
  • the present application adopts the way of adjusting the mirror surface to pursue a more accurate original stitched image.
  • the camera's field diaphragm is usually at the position of the image chip, not the position of the mirror surface. Therefore, the position of the reflecting mirror can only eliminate the influence of stray light from the adjacent reflecting surface and realize the segmentation of part of the common field of view, but cannot completely solve the problem of the common field of view (field overlap and inaccurate segmentation). Therefore, a driving motor in the direction of the camera is introduced to adjust the lens lift, so that the distance between the camera and the mirror changes accordingly, so that x satisfies the condition of L/2tan( ⁇ /2) more accurately, and realizes accurate parallel segmentation of the field of view.
  • the mirror surface is not an accurate field diaphragm, stray light outside the field of view will enter the camera, but because there is no attenuation of the light energy caused by the polarization analyzer, the lens aperture can be reduced to ensure the camera field of view While the internal light is normally imaged, the effect of stray light outside the field of view is reduced.
  • the reflected stray light from the adjacent mirror surface in FIG. 6 cannot enter the field of view of the camera, and thus no polarized light is required.
  • changes.
  • the common optical center adjustment needs to be performed again.
  • the reflecting mirror surface is designed as a structure in which multiple reflecting mirrors are seamlessly connected. For example, in the case of three reflecting mirror surfaces, the middle reflecting mirror surface is fixed, and the angle ⁇ between the reflecting mirrors on both sides and the intermediate reflecting mirror is adjusted by a driving motor.
  • the actual physical correspondence of x-x' is shown in Figure 8, which is the distance from the mirror to the physical optical center.
  • this distance can be equivalent to the distance from the reflecting surface to the virtual optical center.
  • x and ⁇ when the zoom is changed, that is, when ⁇ is changed, an accurate common optical path is still achieved, and the splicing effect of the optical image is maintained.
  • the camera system needs to have a certain pitch angle to meet the needs of subordinate and subordinate shooting.
  • the camera needs to have a certain rotation angle around the physical optical center and along the direction of the mirror, such as Figure 9 shows.
  • FIG. 10 is a schematic diagram of a control structure of a multi-lens camera system provided by an embodiment of the present application. As shown in FIG. 10, the optical path of the common optical center camera can be adjusted electrically, and a corresponding control circuit is designed. By calling the pre-stored measurement, The calibrated parameters or externally input data instructions use a Microcontroller Unit (MCU) to control and drive the axial motor, so that the structural parts are in a suitable position for splicing and camera shooting.
  • MCU Microcontroller Unit
  • optical and mechanical parameters to be adjusted by the common optical center camera are the following.
  • the vertical distance x between the camera and the reflector because the angle between the camera and the reflecting surface is 45°, when the camera moves vertically, the displacement of each camera is exactly the same, and in order to maintain the consistency of stitching, it needs to be adjusted synchronously.
  • the adjustment can use one axial motor to bind 3 cameras for synchronized movement.
  • the angle ⁇ between adjacent mirrors is the same as the angle between the symmetrical layout of the left and right mirrors and the middle mirror. Synchronous adjustment is required to maintain the consistency of the splicing. Therefore, the adjustment of this angle can use an axial motor to push through the mechanical structure of the connecting rod. The left and right mirrors move synchronously.
  • each reflecting mirror and camera constitute a 45°reflective system, it can perform the tilting operation synchronously.
  • the specific implementation is to fix the three cameras with an integral fixture and install them at a high-precision angle On the stage, the overall tilt of the three cameras is realized through this mechanism.
  • the MCU needs to independently control multiple motors according to the calibration data of the pre-existing electrically erasable programmable write-only memory (Electrically, Erasable, Programmable, read only memory, EEPROM) or the control parameters sent from the communication interface, and independently control multiple motors and adjust the corresponding The parameters make the relative positions of multiple cameras and reflecting mirrors reconstruct the common optical center system.
  • electrically erasable programmable write-only memory Electrically erasable programmable write-only memory (Electrically, Erasable, Programmable, read only memory, EEPROM) or the control parameters sent from the communication interface, and independently control multiple motors and adjust the corresponding
  • the parameters make the relative positions of multiple cameras and reflecting mirrors reconstruct the common optical center system.
  • This invention can fully support the problem of changing and readjusting the common optical center of the focal length of the lens, but it has higher requirements for the optical machine system, requiring accurate assembly of multiple mirrors, and assembling seamlessly between adjacent mirrors and adjusting The control accuracy of the mechanism also needs to be guaranteed.
  • the problem of the adjustment accuracy of the optical center is mainly that when the motor adjusts the mirror, because the mirror has a certain physical thickness, there may be a gap during the adjustment, and the gap cannot reflect the image, so some areas of the image will be missing when the image is stitched. If you want to adjust the angle to 10 light (30-40), if the initial angle is 30, there is no gap between the adjacent mirrors, when the thickness of the mirror is 1mm, adjust the field of view to 40, the gap is 0.117mm, corresponding to 3 Meter distance, the missing area is 4.8mm, corresponding to the 5m object distance, the missing area corresponds to about 8mm. This area is further reduced in size by special treatment.
  • the missing area error is approximately 1%, that is, the error is ⁇ 0.08mm at 5 meters.
  • the change of the field of view from 300 to 40 to the field of view causes a change in focal length of about 1f-1.35f.
  • the focal length f of the lens is generally in the order of mm.
  • a relative change of 1/100 corresponds to a focal length accuracy requirement of 0.01mm.
  • the mirror is fixed on a mechanical rotating table, and the camera is fixed on an electronically controlled motion rail.
  • the precision of the precision optical machine/tool holder is high.
  • the rotating table is better than 0.1 precision and the guide rail is better than 0.01mm. Therefore, relative control accuracy, the relative change of 1/100 can be fully realized.
  • the virtual optical centers of multiple cameras can be completely coincident, solving the parallax problem, and achieving seamless stitching of any depth.
  • the optical centers of the cameras cannot be completely overlapped, and the optical centers need to be dynamically adjusted at this time.
  • the meaning of dynamic adjustment is to translate, rotate or crop the images of different lenses/cameras through software (effective area selection), so that the coordinates of the center of the field of view in the image coordinate system are dynamically changed, so that the optical centers of cameras at different positions are completely coincident .
  • the dotted rectangle and the cross of the rectangle represent the imaging area and optical center coordinates of a lens, respectively.
  • the coordinate of the rectangle's optical center is on the upper left.
  • the optical center is dynamically adjusted to a lower right to a certain value to achieve the purpose of aligning the optical center of the dashed rectangle with the optical center of the normal line segment. It is also possible to adjust the optical center of the short-line rectangle. In terms of software-related adjustment of optical center coincidence, the use of cropping will lose effective pixels and require scaling of the image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Studio Devices (AREA)

Abstract

本申请公开了一种多镜头摄像机的调试方法、装置及存储介质,包括:获取多镜头摄像机的镜头在当前焦距下的视场角度θ(101);调节相邻反射镜面之间的夹角至180°-θ(102);计算反射镜面的等效反光长度L(103);沿多镜头摄像机的轴向方向调节多镜头摄像机至任意一个反射镜面之间的垂直距离为L/2tan(θ/2)(104)。

Description

一种多镜头摄像机的调试方法、装置及存储介质
交叉引用
本申请引用于2018年12月28日递交的名称为“一种多镜头摄像机的调试方法、装置及存储介质”的第201811627853.2号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请实施例涉及网络通信技术领域,尤指一种多镜头摄像机的调试方法、装置及存储介质。
背景技术
超宽视频的采集是远程呈现***中的关键技术之一,对于装载有单个摄像镜头的普通摄像机而言,随着拍摄的画面视角越广,必然带来的光学畸变或清晰度下降程度就越大,考虑上述弊端,最简单和有效的方案是采用多镜头摄像机进行视频采集,即由多个摄像镜头以水平发散或汇聚的扇形布局方式,分别采集场景中某一区域的视频画面,再按照一定的方位顺序拼接组合输出至多台显示设备,呈现一副完整的超宽视野的图像,覆盖正常人眼的全视场。
由于多镜头摄像机需要进行视频拼接,因此要保证多个摄像镜头的光心重合于一点,即共光心。相关技术中,往往通过手动方式调节多镜头摄像机与反射镜面的相对位置以使多个摄像镜头实现共光心。
然而,这种方法完全依靠手动方式进行调节,因此操作过程复杂,并且耗费人力成本。
发明内容
为了解决上述技术问题,本申请实施例提供了一种多镜头摄像机的调 试方法、装置及计算机可读存储介质,能够以自动的方式使多镜头摄像机实现共光心,从而简化操作过程,减少人力成本的消耗。
为了达到本申请目的,本申请实施例提供了一种多镜头摄像机的调试方法,包括:获取多镜头摄像机的镜头在当前焦距下的视场角度θ;调节相邻反射镜面之间的夹角至180°-θ;其中,所述反射镜面的个数与所述多镜头摄像机的摄像镜头个数相同,且一个反射镜面与一个摄像镜头相对;计算所述反射镜面的等效反光长度L;沿所述多镜头摄像机的轴向方向调节所述多镜头摄像机至任意一个反射镜面之间的垂直距离为L/2tan(θ/2)。
本申请实施例还提供了一种多镜头摄像机,包括:获取模块,用于获取多镜头摄像机的镜头在当前焦距下的视场角度θ;处理模块,用于调节相邻反射镜面之间的夹角至180°-θ;其中,所述反射镜面的个数与所述多镜头摄像机的摄像镜头个数相同,且一个反射镜面与一个摄像镜头相对;所述处理模块,还用于计算所述反射镜面的等效反光长度L;所述处理模块,还用于沿所述多镜头摄像机的轴向方向调节所述多镜头摄像机至任意一个反射镜面之间的垂直距离为L/2tan(θ/2)。
本申请实施例还提供了一种多镜头摄像机的调试装置,包括:处理器和存储器,其中,存储器中存储有以下可被处理器执行的指令:获取多镜头摄像机的镜头在当前焦距下的视场角度θ;调节相邻反射镜面之间的夹角至180°-θ;其中,所述反射镜面的个数与所述多镜头摄像机的摄像镜头个数相同,且一个反射镜面与一个摄像镜头相对;计算所述反射镜面的等效反光长度L;沿所述多镜头摄像机的轴向方向调节所述多镜头摄像机至任意一个反射镜面之间的垂直距离为L/2tan(θ/2)。
本申请实施例还提供了一种存储介质,所述存储介质上存储有计算机可执行指令,所述计算机可执行指令用于执行以下步骤:获取多镜头摄像机的镜头在当前焦距下的视场角度θ;调节相邻反射镜面之间的夹角至180°-θ;其中,所述反射镜面的个数与所述多镜头摄像机的摄像镜头个数相同,且一个反射镜面与一个摄像镜头相对;计算所述反射镜面的等效反光长度L;沿所述多镜头摄像机的轴向方向调节所述多镜头摄像机至任意一个反射镜面之间的垂直距离为L/2tan(θ/2)。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为本申请实施例提供的一种多镜头摄像机的调试方法的流程示意图;
图2为本申请实施例提供的一种多镜头摄像机的调试装置的结构示意图;
图3为本申请实施例提供的一种多镜头摄像机***的结构示意图;
图4为本申请实施例提供的另一种多镜头摄像机***的结构示意图;
图5为本申请实施例提供的又一种多镜头摄像机***的结构示意图;
图6为本申请实施例提供的又一种多镜头摄像机***的结构示意图;
图7为本申请实施例提供的虚拟光心变化的示意图;
图8为本申请实施例提供的物理光心变化的示意图;
图9为本申请实施例提供的又一种多镜头摄像机***的结构示意图;
图10为本申请实施例提供的一种多镜头摄像机***的控制结构示意图;
图11a为本申请实施例提供的虚拟光心的示意图;
图11b为本申请实施例提供的另一种虚拟光心的示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机***中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本申请实施例提供一种多镜头摄像机的调试方法,如图1所示,该方法包括以下步骤。
步骤101、获取多镜头摄像机的镜头在当前焦距下的视场角度θ。
步骤102、调节相邻反射镜面之间的夹角至180°-θ。
其中,反射镜面的个数与多镜头摄像机的摄像镜头个数相同,且一个反射镜面与一个摄像镜头相对。
步骤103、计算反射镜面的等效反光长度L。
步骤104、沿多镜头摄像机的轴向方向调节多镜头摄像机至任意一个反射镜面之间的垂直距离为L/2tan(θ/2)。
本申请实施例提供的多镜头摄像机的调试方法,由于调节了相邻反射镜面之间的夹角至180°-θ,并且沿多镜头摄像机的轴向方向调节了多镜头摄像机至任意一个反射镜面之间的垂直距离为L/2tan(θ/2),因此所调节到的位置必定到所有反射镜面的垂直距离都相同,可以得出该位置是多镜头摄像机的虚拟共光心,从而以自动的方式使多镜头摄像机实现了共光心,简化了操作过程,减少了人力成本的消耗。
计算反射镜面的等效反光长度L,包括以下步骤。
步骤103a、测量反射镜面的顶面长度和底边长度。
步骤103b、计算顶面长度与底边长度的和再除以2,得到等效反光长度L。
需要说明的是,反射镜面是薄厚相同且表面为等腰梯形的立体光学元件。
例如,当反射镜面的个数为双数时,调节相邻反射镜面之间的夹角至180°-θ,包括:利用电机驱动与每一个反射镜面连接的联动装置调节相邻反射镜面之间的夹角至180°-θ。
当反射镜面的个数为单数时,调节相邻反射镜面之间的夹角至180°-θ,包括:利用电机驱动与除中间的反射镜面以外每一个反射镜面连接的联动装置调节相邻反射镜面之间的夹角至180°-θ。
例如,沿多镜头摄像机的轴向方向调节多镜头摄像机至与任意一个反射镜面之间的垂直距离为L/2tan(θ/2)的距离,包括:利用电机驱动多镜头摄像机沿多镜头摄像机的轴向方向调节多镜头摄像机至与任意一个反射镜面之间的垂直距离为L/2tan(θ/2)的距离。
本申请实施例提供一种多镜头摄像机的调试装置,如图2所示,该调试装置2包括以下模块。
获取模块21,用于获取多镜头摄像机的镜头在当前焦距下的视场角度θ。
处理模块22,用于调节相邻反射镜面之间的夹角至180°-θ;其中,反射镜面的个数与多镜头摄像机的摄像镜头个数相同,且一个反射镜面与一个摄像镜头相对。
处理模块22,还用于计算反射镜面的等效反光长度L。
处理模块22,还用于沿多镜头摄像机的轴向方向调节多镜头摄像机至任意一个反射镜面之间的垂直距离为L/2tan(θ/2)。
例如,处理模块22具体用于:测量反射镜面的顶面长度和底边长度;计算顶面长度与底边长度的和再除以2,得到等效反光长度L。
例如,当反射镜面的个数为双数时,处理模块22,具体用于利用电机驱动与每一个反射镜面连接的联动装置调节相邻反射镜面之间的夹角至180°-θ。
例如,当反射镜面的个数为单数时,调节相邻反射镜面之间的夹角至180°-θ,包括:利用电机驱动与除中间的反射镜面以外每一个反射镜面连接的联动装置调节相邻反射镜面之间的夹角至180°-θ。
例如,沿多镜头摄像机的轴向方向调节多镜头摄像机至与任意一个反射镜面之间的垂直距离为L/2tan(θ/2)的距离,包括:利用电机驱动多镜头摄像机沿多镜头摄像机的轴向方向调节多镜头摄像机至与任意一个反射镜面之间的垂直距离为L/2tan(θ/2)的距离。
本申请实施例提供的多镜头摄像机的调试装置,由于调节了相邻反射镜面之间的夹角至180°-θ,并且沿多镜头摄像机的轴向方向调节了多镜头摄像机至任意一个反射镜面之间的垂直距离为L/2tan(θ/2),因此所调节到的位置必定到所有反射镜面的垂直距离都相同,可以得出该位置是多镜头摄像机的虚拟共光心,从而以自动的方式使多镜头摄像机实现了共光心,简化了操作过程,减少了人力成本的消耗。
在实际应用中,获取模块21和计算模块22均可由位于多镜头摄像机的调试装置的中央处理器(Central Processing Unit,CPU)、微处理器(Micro Processor Unit,MPU)、数字信号处理器(Digital Signal Processor,DSP)或现场可编程门阵列(Field Programmable Gate Array,FPGA)等实现。
本申请实施例还提供一种多镜头摄像机的调试装置,包括存储器和处理器,其中,存储器中存储有以下可被处理器执行的指令。
获取多镜头摄像机的镜头在当前焦距下的视场角度θ。
调节相邻反射镜面之间的夹角至180°-θ;其中,反射镜面的个数与多镜头摄像机的摄像镜头个数相同,且一个反射镜面与一个摄像镜头相对。
计算反射镜面的等效反光长度L。
沿多镜头摄像机的轴向方向调节多镜头摄像机至任意一个反射镜面之间的垂直距离为L/2tan(θ/2)。
例如,存储器中具体存储有以下可被处理器执行的指令。
测量反射镜面的顶面长度和底边长度。
计算顶面长度与底边长度的和再除以2,得到等效反光长度L。
例如,当反射镜面的个数为双数时,存储器中具体存储有以下可被处理器执行的指令:利用电机驱动与每一个反射镜面连接的联动装置调节相邻反射镜面之间的夹角至180°-θ。
例如,当反射镜面的个数为单数时,存储器中具体存储有以下可被处理器执行的指令:利用电机驱动与除中间的反射镜面以外每一个反射镜面连接的联动装置调节相邻反射镜面之间的夹角至180°-θ。
例如,存储器中具体存储有以下可被处理器执行的指令:利用电机驱动多镜头摄像机沿多镜头摄像机的轴向方向调节多镜头摄像机至与任意一个反射镜面之间的垂直距离为L/2tan(θ/2)的距离。
本申请实施例还提供一种计算机可读存储介质,存储介质上存储有计算机可执行指令,计算机可执行指令用于执行以下步骤。
获取多镜头摄像机的镜头在当前焦距下的视场角度θ。
调节相邻反射镜面之间的夹角至180°-θ;其中,反射镜面的个数与多镜头摄像机的摄像镜头个数相同,且一个反射镜面与一个摄像镜头相对。
计算反射镜面的等效反光长度L。
沿多镜头摄像机的轴向方向调节多镜头摄像机至任意一个反射镜面之间的垂直距离为L/2tan(θ/2)。
例如,计算机可执行指令具体执行以下步骤。
测量反射镜面的顶面长度和底边长度。
计算顶面长度与底边长度的和再除以2,得到等效反光长度L。
例如,当反射镜面的个数为双数时,计算机可执行指令具体执行以下步骤:利用电机驱动与每一个反射镜面连接的联动装置调节相邻反射镜面之间的夹角至180°-θ。
例如,当反射镜面的个数为单数时,计算机可执行指令具体执行以下步骤:利用电机驱动与除中间的反射镜面以外每一个反射镜面连接的联动装置调节相邻反射镜面之间的夹角至180°-θ。
例如,计算机可执行指令具体执行以下步骤:利用电机驱动多镜头摄像机沿多镜头摄像机的轴向方向调节多镜头摄像机至与任意一个反射镜面之间的垂直距离为L/2tan(θ/2)的距离。
本申请实施例还提供一种多镜头摄像机***,如图3所示,该摄像机***包括:多个与水平面呈45°的无缝相连反射镜面,相邻反射镜面之间以一定水平夹角展开。多个摄像机,被设计以垂直方式分散对应至每个反射镜面,使其可接收反射镜的45°反射光。摄像机将拍摄由反射镜面反射的前方景物的 虚像,根据光线反射原理,通过设计镜面的角度和摄像机的摆放位置,可使这些摄像机都具有同一个虚拟光心,即多个摄像机都从同一个视点拍摄图像,没有视差。如图4、图5所示,该多镜头摄像机***种多镜头的虚拟光心在水平和垂直方向上均能重合,这使得***各分摄像机单元所形成的视像能够无缝拼接,形成一个整体全景画面。如图4所示,反射镜面实际上是一个等腰梯形,它和一个轴向水平电机和连杆相接,在水平方向可以相邻折线为轴进行旋转移动,如图4、图5所示,摄像机将固定在一个可以垂直升降导轨和前后倾斜俯仰的角位移台之上,使其可以在两个维度上运动。在实现视场精确平行分割的方式上,本申请采用了调节反射镜面的方式追求更精确的原始拼接图像。
如图6所示,从几何光学上看,摄像机的视场光阑通常在图像芯片位置,而非反射镜面位置。因此在反射镜面位置仅能消除相邻反射面的杂散光影响和实现部分公共视场的分割,而无法完全解决公共视场(视场重叠和分割不精确)的问题。因此引入沿摄像机方向的驱动电机,调节镜头升降,使摄像机到反射镜的间距随动变化,使x更准确满足L/2tan(θ/2)的条件,实现准确的视场平行分割。同样因为反射镜面不是准确的视场光阑,会有视场外的边缘杂散光进入相机,但因为没有偏振检偏装置带来的光能量衰减,可以将镜头孔径调小,在保证相机视场内光线正常成像的同时,降低视场外杂散光的影响。而且此时因为x已经满足视场完美分割条件,图6中的相邻镜面的反射杂光就进入不到摄像机的视场内,也就无需采用偏振光。
上述方法已经可以实现x=L/2tan(θ/2)的调节,当镜头进行光学变焦时,θθ改变,此时需重新进行共光心调节。如图7、图8所示,要调节镜头到反射镜面的距离x和相邻镜面夹角α。将反射镜面设计为多个反射镜无缝相连的结构,如3个反射镜面的情况下,中间一个反射镜面固定,两侧反射镜与中间反射镜的夹角α通过驱动电机调节。x-x'的实际物理对应关系如图8所示,是反射镜到物理光心的距离,按照反射原理可以将此距离等效到反射面到虚拟光心的距离。这样通过x和α的调节,使变焦情况下,即θ改变的情况下,依然实现准确的共光心光路,保持光学图像的拼接效果。如图7所示,假设镜头进行变焦调节,此时每个镜头的视场角变为θ',要实现新的等价共光心***,此时需要将相邻棱镜面的夹角α调整为α'=180°-θ',同时在反射镜的尺寸 L无法改变的情况下,将x调整为x'=L/2tan(θ'/2)。并且根据部署场景的不同,摄像机***需要具备一定的俯仰角度,适应下位和下位拍摄的需要,对于反射式***来说,就是需要摄像机围绕物理光心,沿反射镜方向具备一定的旋转角度,如图9所示。
图10为本申请实施例提供的一种多镜头摄像机***的控制结构示意图,如图10所示,共光心摄像机的光路调节可电动实现,设计相应的控制电路,通过调用预先存储的测量、标定的参数或外部输入的数据指令,采用微控制单元(Microcontroller Unit,MCU)控制驱动轴向电机,使结构件处于可拼接摄像的适当位置。
共光心摄像机需要调整的光学机械参数为以下几种。
摄像机与反射镜的垂直距离x,由于摄像机与反射面为45°夹角,在摄像机垂直运动时,各摄像机的位移量是完全一致的,且为保持拼接一致性需要同步调节,因此该距离的调整可使用一台轴向电机绑定3台摄像机做同步运动。
相邻镜面的夹角α,由于左右镜面和中间镜面的对称布局夹角相同,为保持拼接一致性需要同步调节,因此该夹角的调整可使用一台轴向电机通过连杆机械结构,推动左右镜面同步运动。
镜头的俯仰角度β,由于每个反射镜面和摄像机均构成45°反射式***,故可同步进行俯仰操作,具体实现上是采用整体固定件固定三个摄像机,并将其安装在高精度的角位移台上,通过此机构实现三个摄像机的整体俯仰。
综上,总计需要2台电控导轨和1个电控角位移台。每次焦距改变时,MCU需根据预存在带电可擦可编程只写存储器(Electrically Erasable Programmable read only memory,EEPROM)的标定数据或根据通信接口发送过来的控制参数,独立控制多个电机,调整相应参数,使多个摄像机、反射镜面的相对位置重新构成共光心***。
此发明可完全支持镜头焦距的共光心改变和重新调节问题,但对光机***要求较高,要求多个反射镜的装配准确,反射镜相邻之间尽量做到无缝装配,且调节机构的控制精度同样需要保证。
对于光心调整精度的问题,主要在于电机调节反射镜时,因反射镜有一定物理厚度,所以调节时会有间隙产生的可能,间隙无法反射图像,所以图像拼接时有部分区域图像会缺失。若希望调节角度为10光(30-40整),若初始角度为30若,相邻反射镜无间隙,反射镜厚度为1mm时,调整到40调视场,间隙为0.117mm,对应到3米物距,缺失区域为4.8mm,对应到5米物距,缺失区域对应为8mm左右。这个区域还通过特殊处理进一步降低缺失区域的尺寸。若角度调节精度误差为0.1这,缺失区域误差相对大致为1%,即5米时误差为±0.08mm。300视场到40到视场变化,引起焦距变化量约为1f-1.35f,镜头焦距f一般为mm量级,1/100的相对变化对应焦距准确度要求为0.01mm。本申请将反射镜固定在机械旋转台上,摄像机固定在电控运动导轨上,精密光机/具座的精度都较高,旋转台优于0.1精,导轨优于0.01mm。因此相对控制精度来说,1/100的相对变化量可完全实现。
理论上通过电控反射镜面的设计,可使多个摄像机的虚拟光心完全重合,解决视差问题,实现任意深度的无缝拼接。但是由于存在不可避免的加工和装配误差,摄像机的光心无法完全重合,此时需要对光心进行动态调整。动态调整的含义是通过软件对不同镜头/摄像机的画面进行平移、旋转或裁剪(有效区域选择),使视场中心在图像坐标系中的坐标动态改变,从而实现不同位置摄像机光心的完全重合。如图11a所示,假如3个摄像机的虚拟光心在图像坐标系中稍有偏差,比如虚线矩形和该矩形的十字分别代表一个镜头的成像区域和光心坐标,此光心坐标相比正常线段矩形的光心坐标偏左上,通过对虚线矩形成像区域的裁剪(图11b),使光心动态向右下方调整某个值,达到虚线矩形的光心和正常线段矩形的光心重合的目的,同样也可以实现点短线矩形光心的调整。在涉及软件处理光心重合调整方面,采用裁剪的方式,会损失有效像素,并需要对图像进行缩放,但通过光机***的电机精度及装调方法,可保证光心的偏移很少,经过计算和实际测试,即使采用裁剪方式,有效像素的损失小于1%,几乎无需缩放,对图像效果的影响很轻微。
虽然本申请所揭露的实施例如上,但所述的内容仅为便于理解本申请而采用的实施例,并非用以限定本申请。任何本申请所属领域内的技术人员,在不脱离本申请所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求 书所界定的范围为准。

Claims (10)

  1. 一种多镜头摄像机的调试方法,包括:
    获取多镜头摄像机的镜头在当前焦距下的视场角度θ;
    调节相邻反射镜面之间的夹角至180°-θ;其中,所述反射镜面的个数与所述多镜头摄像机的摄像镜头个数相同,且一个反射镜面与一个摄像镜头相对;
    计算所述反射镜面的等效反光长度L;
    沿所述多镜头摄像机的轴向方向调节所述多镜头摄像机至任意一个反射镜面之间的垂直距离为L/2 tan(θ/2)。
  2. 根据权利要求1所述的调试方法,其特征在于,所述计算反射镜面的等效反光长度L,包括:
    测量所述反射镜面的顶面长度和底边长度;
    计算所述顶面长度与所述底边长度的和再除以2,得到所述等效反光长度L。
  3. 根据权利要求1所述的调试方法,其特征在于,当所述反射镜面的个数为双数时,所述调节相邻反射镜面之间的夹角至180°-θ,包括:
    利用电机驱动与每一个反射镜面连接的联动装置调节相邻反射镜面之间的夹角至180°-θ。
  4. 根据权利要求1所述的调试方法,其特征在于,当所述反射镜面的个数为单数时,所述调节相邻反射镜面之间的夹角至180°-θ,包括:
    利用电机驱动与除中间的反射镜面以外每一个反射镜面连接的联动装置调节相邻反射镜面之间的夹角至180°-θ。
  5. 根据权利要求1所述的调试方法,其特征在于,所述沿多镜头摄像机的轴向方向调节多镜头摄像机至与任意一个反射镜面之间的垂直距离为L/2 tan(θ/2)的距离,包括:
    利用电机驱动所述多镜头摄像机沿所述多镜头摄像机的轴向方向调节多 镜头摄像机至与任意一个反射镜面之间的垂直距离为L/2 tan(θ/2)的距离。
  6. 一种多镜头摄像机的调试装置,其特征在于,包括:
    获取模块,用于获取多镜头摄像机的镜头在当前焦距下的视场角度θ;
    处理模块,用于调节相邻反射镜面之间的夹角至180°-θ;其中,所述反射镜面的个数与所述多镜头摄像机的摄像镜头个数相同,且一个反射镜面与一个摄像镜头相对;
    所述处理模块,还用于计算所述反射镜面的等效反光长度L;
    所述处理模块,还用于沿所述多镜头摄像机的轴向方向调节所述多镜头摄像机至任意一个反射镜面之间的垂直距离为L/2 tan(θ/2)。
  7. 根据权利要求6所述的多镜头摄像机,当所述反射镜面的个数为双数时,其特征在于,
    所述处理模块,具体用于利用电机驱动与每一个反射镜面连接的联动装置调节相邻反射镜面之间的夹角至180°-θ。
  8. 根据权利要求6所述的多镜头摄像机,其特征在于,
    所述处理模块,具体用于利用电机驱动所述多镜头摄像机沿所述多镜头摄像机的轴向方向调节多镜头摄像机至与任意一个反射镜面之间的垂直距离为L/2 tan(θ/2)的距离。
  9. 一种多镜头摄像机的调试装置,其特征在于,包括:处理器和存储器,其中,存储器中存储有以下可被处理器执行的指令:
    获取多镜头摄像机的镜头在当前焦距下的视场角度θ;
    调节相邻反射镜面之间的夹角至180°-θ;其中,所述反射镜面的个数与所述多镜头摄像机的摄像镜头个数相同,且一个反射镜面与一个摄像镜头相对;
    计算所述反射镜面的等效反光长度L;
    沿所述多镜头摄像机的轴向方向调节所述多镜头摄像机至任意一个反射镜面之间的垂直距离为L/2 tan(θ/2)。
  10. 一种存储介质,其特征在于,所述存储介质上存储有计算机可执行指 令,所述计算机可执行指令用于执行以下步骤:
    获取多镜头摄像机的镜头在当前焦距下的视场角度θ;
    调节相邻反射镜面之间的夹角至180°-θ;其中,所述反射镜面的个数与所述多镜头摄像机的摄像镜头个数相同,且一个反射镜面与一个摄像镜头相对;
    计算所述反射镜面的等效反光长度L;
    沿所述多镜头摄像机的轴向方向调节所述多镜头摄像机至任意一个反射镜面之间的垂直距离为L/2 tan(θ/2)。
PCT/CN2019/123452 2018-12-28 2019-12-05 一种多镜头摄像机的调试方法、装置及存储介质 WO2020134951A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811627853.2A CN111385487A (zh) 2018-12-28 2018-12-28 一种多镜头摄像机的调试方法、装置及存储介质
CN201811627853.2 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020134951A1 true WO2020134951A1 (zh) 2020-07-02

Family

ID=71129665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123452 WO2020134951A1 (zh) 2018-12-28 2019-12-05 一种多镜头摄像机的调试方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN111385487A (zh)
WO (1) WO2020134951A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114637121B (zh) * 2022-03-31 2023-09-01 杭州海康威视数字技术股份有限公司 用于摄像机的定位装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080304398A1 (en) * 2004-12-01 2008-12-11 Kazutoshi Onozawa Optical Head That Improves Read Signal Characteristics
CN101521745A (zh) * 2009-04-14 2009-09-02 王广生 一组多镜头光心重合式全方位摄像装置及全景摄像、转播的方法
CN104469340A (zh) * 2014-12-01 2015-03-25 深圳凯澳斯科技有限公司 一种立体视频共光心成像***及其成像方法
CN105812640A (zh) * 2016-05-27 2016-07-27 北京伟开赛德科技发展有限公司 球型全景摄像装置及其视频图像传输方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101783883B (zh) * 2009-12-26 2012-08-29 华为终端有限公司 共光心摄像中的调整方法和共光心摄像***
CN101980080B (zh) * 2010-09-19 2012-05-23 华为终端有限公司 共光心摄像机、图像处理方法及装置
CN102685445B (zh) * 2012-04-27 2015-10-21 华为技术有限公司 网真视频图像输送方法、设备及网真***
CN103235478B (zh) * 2012-12-19 2017-04-12 乔楠 用于环幕立体摄像的***、设备、图像处理方法及装置
CN205982980U (zh) * 2016-08-29 2017-02-22 上海霖度网络科技有限公司 一种镜面反射全景拍摄设备
CN106249517B (zh) * 2016-09-29 2019-04-19 长春理工大学 单相机全视角线号识别装置
CN106647148A (zh) * 2017-01-25 2017-05-10 成都中信华瑞科技有限公司 一种获取全景图像的装置及其组装方法
CN107561831A (zh) * 2017-04-25 2018-01-09 广州市红鹏直升机遥感科技有限公司 一种用于航空器的单相机多角度倾斜摄影的实现方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080304398A1 (en) * 2004-12-01 2008-12-11 Kazutoshi Onozawa Optical Head That Improves Read Signal Characteristics
CN101521745A (zh) * 2009-04-14 2009-09-02 王广生 一组多镜头光心重合式全方位摄像装置及全景摄像、转播的方法
CN104469340A (zh) * 2014-12-01 2015-03-25 深圳凯澳斯科技有限公司 一种立体视频共光心成像***及其成像方法
CN105812640A (zh) * 2016-05-27 2016-07-27 北京伟开赛德科技发展有限公司 球型全景摄像装置及其视频图像传输方法

Also Published As

Publication number Publication date
CN111385487A (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
JP6700345B2 (ja) フォールデッドオプティクスを用いたマルチカメラシステム
US9819863B2 (en) Wide field of view array camera for hemispheric and spherical imaging
CN105549305B (zh) 便携式电子设备,及其中的摄像结构与获取影像的方法
JP4115801B2 (ja) 3次元撮影装置
US9648233B2 (en) System, device, and vehicle for recording panoramic images
KR20170020789A (ko) 시차 및 틸트 아티팩트들이 없는 폴딩형 광학계를 이용한 멀티-카메라 시스템
CN100547484C (zh) 一种环幕摄像***
US20050035314A1 (en) Range finder and method
WO2011095026A1 (zh) 摄像方法及***
US11924395B2 (en) Device comprising a multi-aperture imaging device for generating a depth map
US11693224B2 (en) Optical adapter for microscope and method for adjusting direction of optical image
US10225533B2 (en) Structured light generation and processing on a mobile device
WO2016165644A1 (zh) 全景影像采集装置
WO2020134951A1 (zh) 一种多镜头摄像机的调试方法、装置及存储介质
CN103676446A (zh) 摄影支架
CN104460011B (zh) 立体成像装置和立体图像生成方法
CN101556427B (zh) 三维实时摄像中光投影和图像采集的装置及其采集方法
CN106060354B (zh) 一种双大面阵高帧频数字ccd摄像装置
CN110568716B (zh) 一种倾斜摄影装置及视角调节方法
CN111669565A (zh) 一种立体成像装置及其成像方法
EP3009887B1 (en) Optical imaging processing system
US20150281674A1 (en) Stereo adapter and stereo imaging apparatus
CN107065402A (zh) 用于三维成像的多镜头合成转接件组件及相机
TW201516553A (zh) 顯示裝置與應用其之顯示方法
CN206906770U (zh) 用于三维成像的多镜头合成转接件组件及相机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.11.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19903996

Country of ref document: EP

Kind code of ref document: A1