WO2020134448A1 - 一种天线单元、天线阵列和基站 - Google Patents

一种天线单元、天线阵列和基站 Download PDF

Info

Publication number
WO2020134448A1
WO2020134448A1 PCT/CN2019/113279 CN2019113279W WO2020134448A1 WO 2020134448 A1 WO2020134448 A1 WO 2020134448A1 CN 2019113279 W CN2019113279 W CN 2019113279W WO 2020134448 A1 WO2020134448 A1 WO 2020134448A1
Authority
WO
WIPO (PCT)
Prior art keywords
feeding
vibrating arm
antenna
horizontal
terminal
Prior art date
Application number
PCT/CN2019/113279
Other languages
English (en)
French (fr)
Inventor
刘见传
岳月华
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2020134448A1 publication Critical patent/WO2020134448A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/065Microstrip dipole antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means

Definitions

  • Embodiments of the present application relate to the field of communications, and in particular, to an antenna unit, antenna array, and base station.
  • Massive MIMO increases the flexibility of network coverage. Operators can use the horizontal and vertical coverage features of Massive MIMO to provide coverage in different scenarios.
  • Massive MIMO is expected to help operators use machine flexible billing policies to attract users, provide an unparalleled user experience, stimulate user data consumption, obtain traffic revenue, and increase operator revenue.
  • Massive MIMO is compatible with 4G terminals, and operators can now benefit from 4G network deployment. At the same time, it also supports the evolution of 5G-oriented networks to maintain and enhance the return on existing investments.
  • the purpose of the embodiments of the present application is to provide an antenna unit, an antenna array, and a base station, so that an antenna unit with good performance can be provided to meet the requirements of large network capacity or wide signal coverage.
  • an antenna unit which is applied to a base station and includes: a metal floor and first and second polarized antennas provided on an insulating support, the insulating support is provided on a metal On the floor; the polarization between the first polarized antenna and the second polarized antenna is orthogonal; the first polarized antenna is composed of the first feeding end, the second feeding end and the first symmetrical vibrator on the radiation surface, radiating
  • the shape of the surface is a figure surrounded by a star line.
  • the first symmetrical vibrator includes a first vibrating arm and a second vibrating arm; the first vibrating arm and the second vibrating arm are arranged symmetrically with the center point of the radiating surface as the center of symmetry;
  • the first feed terminal is coupled and connected, and the second vibrating arm is coupled to the second feed terminal, wherein the first feed terminal and the second feed terminal are differentially fed;
  • the second polarized antenna is provided by the third feed terminal, the first
  • the four feeding terminals are composed of a second symmetrical vibrator on the radiating surface.
  • the second symmetrical vibrator includes a third vibrating arm and a fourth vibrating arm; the third vibrating arm and the fourth vibrating arm are arranged symmetrically with the center point of the radiating surface as the center of symmetry;
  • the vibrating arm is coupled to the third power feeding end, and the fourth vibrating arm is coupled to the fourth power feeding end, wherein the third power feeding end and the fourth power feeding end are differentially fed.
  • An embodiment of the present application further provides an antenna array, including: at least two of the above antenna units, wherein the antenna units are arranged in a preset array manner.
  • Embodiments of the present application also provide a base station, including the above-mentioned antenna array.
  • the signal of the first polarized antenna and the signal of the second polarized antenna are orthogonally polarized, so that the antenna unit can work simultaneously in the transceiver duplex mode, which greatly saves each The number of antenna units in a cell; due to orthogonal polarization, it effectively guarantees the good effect of antenna unit diversity reception.
  • the first symmetrical vibrator in the first polarized antenna and the second symmetrical vibrator in the second polarized antenna are on the same radiation surface, and the radiation surface surrounded by the same star line radiates signals, reducing the size of the antenna unit At the same time, each side of the radiation surface is curved, which can enhance the signal strength.
  • This embodiment constitutes a low-profile, light-weight antenna unit, which improves the antenna's radiation range and load-bearing capacity.
  • the first feeding terminal includes a first horizontal feeding sheet and a first vertical feeding sheet, the first end of the first horizontal feeding sheet extends in the direction of the first vibrating arm, and the second end of the first horizontal feeding sheet The end is connected to the first end of the first vertical feeder, and the second end of the first vertical feeder extends in a direction perpendicular to the first horizontal feeder;
  • the second feeder includes a second horizontal feeder Sheet and a second vertical feed sheet, the first end of the second horizontal feed sheet extends in the direction of the second vibrating arm, and the second end of the second horizontal feed sheet is connected to the first end of the second vertical feed sheet ,
  • the second end of the second vertical feeder extends in a direction perpendicular to the second horizontal feeder;
  • the third feeder includes a third horizontal feeder and a third vertical feeder, the third horizontal feeder The first end of the electric sheet extends in the direction of the third vibrating arm, the second end of the third horizontal feeding sheet is connected to the first end of the third vertical feeding sheet, and the second end of the third vertical feeding sheet extend
  • the insulating support includes a support surface and a support frame; the first surface of the support surface is provided with a radiation surface, and the second surface of the support surface is connected to the support frame, wherein the area of the support surface is larger than the area of the radiation surface; the support frame includes the first The bracket and the second bracket, the first bracket and the second bracket are arranged crosswise; with the center point of the support surface as the center of symmetry, the first feeding end and the second feeding end are symmetrically arranged on the side wall of the first bracket; The center point of the plane is the center of symmetry, and the third feed terminal and the fourth feed terminal are symmetrically arranged on the side wall of the second bracket.
  • the insulating bracket can reduce the interference of other metals on the first polarized antenna and the second polarized antenna.
  • the antenna unit further includes at least one lightning protection grounding terminal, and the lightning protection grounding terminal is electrically connected to the preset area in the middle of the radiation surface; the lightning protection grounding terminal is provided at the first feed terminal, the second feed terminal, and the third feed In the middle area enclosed by the electric terminal and the fourth feeding terminal. Through the lightning protection grounding terminal, the antenna unit is prevented from being damaged in lightning weather.
  • the number of lightning protection ground terminals is four; the first lightning protection ground terminal is electrically connected to the first vibration arm; the second lightning protection ground terminal is electrically connected to the second vibration arm; the third lightning protection ground terminal is electrically connected to the third vibration arm Connection; the fourth lightning protection grounding terminal is electrically connected to the fourth vibrating arm.
  • Each vibrating arm in the antenna unit is electrically connected to a lightning protection grounding terminal to prevent each vibrating arm from being damaged under lightning weather conditions, further ensuring the safety of the entire antenna unit.
  • the four corners of the radiation surface are hollowed out; the radiation surface is hollowed out corresponding to the first lightning protection grounding end, the radiation surface is hollowed out corresponding to the second lightning protection grounding end, and the radiation surface is hollowed out corresponding to the third lightning protection grounding end , The radiation surface is hollowed out on the surface corresponding to the fourth lightning protection grounding end; the radiation surface is set on the insulating support by laser direct molding technology.
  • the four corners of the radiating surface are hollowed out, and the radiating surface corresponding to the lightning protection grounding terminal is hollowed out, which is convenient for manufacturing the antenna unit by laser direct molding technology.
  • the surface of the radiating surface is completely covered with a conductive layer; the radiating surface is set on the insulating support by a stamping process or a printed circuit board manufacturing process.
  • the radiating surface is fully covered with a conductive layer, which is convenient for manufacturing by a stamping process or a printed circuit board manufacturing process, and provides a variety of manufacturing methods to make the antenna unit more flexible.
  • the four corners of the radiating surface are hollowed out, and the surface where the middle preset area of the radiating surface is located is completely covered; the radiating surface is set on the insulating support by laser direct molding technology.
  • the four corners of the radiating surface are hollowed out, which is convenient for using laser direct forming technology to set the radiating surface on the insulating support, and increases the flexibility of manufacturing the antenna unit.
  • FIG. 1 is an exploded schematic diagram of an antenna unit according to the first embodiment of the present application
  • FIG. 2 is an explosion schematic diagram of a first polarized antenna and a second polarized antenna provided according to the first embodiment of the present application;
  • FIG. 3 is a side view of a first polarized antenna provided according to the first embodiment of the present application.
  • FIG. 4 is a side view of a second polarized antenna provided according to the first embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an insulating support provided according to the first embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an insulating support and a radiation surface provided according to the first embodiment of the present application;
  • FIG. 7 is a top view of an antenna unit provided according to the first embodiment of the present application.
  • FIG. 8 is a schematic diagram of a reflection coefficient of an antenna according to the first embodiment of the present application.
  • FIG. 9 is a schematic diagram of gain of an antenna unit according to a first embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a lightning protection ground terminal in an antenna unit according to a second embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another lightning protection ground terminal in the antenna unit according to the second embodiment of the present application.
  • FIG. 14(a) is a schematic diagram of a radiation surface in an antenna unit according to a second embodiment of the present application.
  • Figure 14 (b) is a schematic diagram of a radiation surface in an antenna unit according to a second embodiment of the present application.
  • Figure 14 (c) is a schematic view of a radiation surface in an antenna unit according to a second embodiment of the present application.
  • 15 is a schematic diagram of an antenna array according to a third embodiment of the present application.
  • the first embodiment of the present application relates to an antenna unit.
  • the antenna unit is applied to a base station carrying a radio frequency unit, such as a macro base station or a distributed base station.
  • the antenna unit 10 includes a metal floor 101 and a first polarized antenna 103 and a second polarized antenna 104 provided on an insulating support 102.
  • the insulating support 102 is provided on the metal floor 101.
  • the structure of the antenna unit 10 is shown in FIGS. 1 and 2. Among them, FIG. 1 is an exploded view of the antenna unit 10.
  • the polarization between the first polarized antenna 103 and the second polarized antenna 104 is orthogonal.
  • the first polarized antenna 103 and the second polarized antenna 104 use ⁇ 45° Orthogonal polarization.
  • the first polarized antenna 103 is composed of a first feeding terminal 1031, a second feeding terminal 1032, and a first symmetrical vibrator 1033 on the radiation surface 105.
  • the shape of the radiation surface 105 is a pattern surrounded by star lines.
  • the symmetrical vibrator 1033 includes a first vibrating arm 1033a and a second vibrating arm 1033b.
  • the first vibrating arm 1033a and the second vibrating arm 1033b are symmetrically arranged; the first vibrating arm 1033a is coupled to the first feeding terminal 1031, and the second vibrating arm 1033b and the second feeding terminal 1032 Coupling connection, wherein the first feeding terminal 1031 and the second feeding terminal 1032 are fed differentially. See Figure 2 and Figure 3 for the specific structure.
  • FIG. 2 is a schematic diagram of the explosion structure of the first polarized antenna 103 and the second polarized antenna 104.
  • FIG. 3 is a side cross-sectional view of the first polarized antenna. The specific structure of the first polarized antenna will be described in detail below with reference to FIGS. 2 and 3.
  • the shape of the radiation surface 105 is a figure surrounded by a star line (that is, a figure including the sharp corner A, the sharp corner B, the sharp corner C, and the sharp corner D in FIG. 2 ),
  • the radiation surface 105 may be a conductive material, such as metal, or the radiation surface is entirely covered with a conductive layer, and the first symmetrical vibrator 1033 of the first polarized antenna 103 may be disposed along a diagonal direction of the radiation surface 105, wherein With the center point S of the radiation surface 105 as the center of symmetry, the first vibrating arm 1033a and the second vibrating arm 1033b are symmetrically arranged.
  • the radiating surface 105 may also be hollowed out. As shown in FIG. 2, the radiated surface 105 may be hollowed out by revealing each vibrating arm, and the preset area of the radiating surface 105 (The preset area is the middle parallelogram in FIG. 2) The conductive layer is fully covered.
  • the center point of the radiating surface 105 is S
  • the first vibrating arm 1033a takes the point S as a starting point and extends to the position of the acute angle A of the radiating surface 105 along the positive direction of the X axis.
  • the second vibrating arm 1033b takes the point S as a starting point and extends to the position of the sharp corner B of the radiation surface 105 in the negative direction of the X axis, where the sharp corner A and the sharp corner B are symmetrical.
  • the structures of the first power feeding terminal 1031 and the second power feeding terminal 1032 are shown in FIG. 3.
  • the first feeding terminal 1031 includes a first horizontal feeding sheet 10311 and a first vertical feeding sheet 10312.
  • the first end of the first horizontal feeding sheet 10311 extends along the direction of the first vibrating arm 1033a.
  • the second end of a horizontal feeder 10311 is connected to the first end of the first vertical feeder 10312, and the second end of the first vertical feeder 10312 extends in a direction perpendicular to the first horizontal feeder 10311 ;
  • the second feeding terminal 1032 includes a second horizontal feeding sheet 10321 and a second vertical feeding sheet 10322, the first end of the second horizontal feeding sheet 10321 extends along the direction of the second vibrating arm 1033b, and the second horizontal feeding sheet
  • the second end of 10321 is connected to the first end of the second vertical feeder 10322, and the second end of the second vertical feeder 10322 extends in a direction perpendicular to the second horizontal feeder 10321.
  • the second end of the first vertical power feeder 10312 is connected to the radio frequency unit of the base station, and the radio frequency signal is transmitted to the first horizontal power feeder 10311 through the first vertical power feeder 10312.
  • the horizontal feeder 10311 extends in the direction of the first vibrating arm 1033a (as shown in the positive direction of the X-axis in FIG. 3), parallel to the first vibrating arm 1033a, and when RF signals flow through the first horizontal feeder 10311 In this case, a coupling connection is formed with the first vibrating arm 1033a.
  • the coupling connection between the second feeding terminal 1032 and the second vibrating arm 1033b is similar to this, and will not be repeated here.
  • the second polarized antenna 104 is composed of a third feeding terminal 1041, a fourth feeding terminal 1042, and a second symmetrical vibrator 1043 on the radiation surface 105.
  • the second symmetrical vibrator 1043 includes a third vibrating arm 1043a and a fourth vibrating arm 1043b;
  • the center point of the radiation surface 105 is the second symmetric center, and the third vibrating arm 1043a and the fourth vibrating arm 1043b are symmetrically arranged;
  • the third vibrating arm 1043a is coupled to the third feed terminal 1041, and the fourth vibrating arm 1043b is coupled to the fourth feed terminal 1042 Connected, wherein the third feed terminal 1041 and the fourth feed terminal 1042 are fed differentially.
  • the specific structure is shown in Figure 2 and Figure 4.
  • the second symmetrical vibrator 1043 is on the radiation surface 105, that is, the first symmetrical vibrator 1033 and the second symmetrical vibrator 1043 are coplanar, similar to the structure of the first symmetrical vibrator 1033, the second symmetrical vibrator 1043 is along the The radiation surface 105 is arranged in the direction of another diagonal line, wherein the second vibration arm 1043a and the fourth vibration arm 1043b are symmetrically arranged with the center point S of the radiation surface 105 as the center of symmetry. As shown in FIG.
  • the center point of the radiating surface 105 is S
  • the second vibrating arm 1043a takes the S point as a starting point, and extends to the sharp corner C position of the radiating surface along the positive direction of the Y axis
  • the fourth vibrating arm 1043b takes the S point As a starting point, it extends in the negative direction of the Y axis to the position of the sharp corner D of the radiation surface 105, wherein the sharp corner C and the sharp corner D are symmetrical.
  • the third vibration arm 1043a and the third feed terminal 1041 are coupled and connected, and the fourth vibration arm 1043b and the fourth feed terminal 1042 are coupled and connected.
  • the third feed terminal 1041 includes a third horizontal feed tab 10411 and a third vertical feed tab 10412.
  • the first end of the third horizontal feed tab 10411 extends along the direction of the third vibrating arm 1043a.
  • the second end of the three horizontal feeder 10411 is connected to the first end of the third vertical feeder 10412, and the second end of the third vertical feeder 10412 extends in a direction perpendicular to the third horizontal feeder 10411
  • the fourth feed terminal 1042 includes a fourth horizontal feed tab 10421 and a fourth vertical feed tab 10422, the first end of the fourth horizontal feed tab 10421 extends in the direction of the fourth vibrating arm 1043b, and the fourth horizontal feed tab
  • the second end of 10421 is connected to the first end of the fourth vertical feeder 10422, and the second end of the fourth vertical feeder 10422 extends in a direction perpendicular to the fourth horizontal feeder 10421.
  • the second end of the third vertical feeder 10412 is connected to the radio frequency unit of the base station, and the radio frequency signal is transmitted to the third horizontal feeder 10411 through the third vertical feeder 10412.
  • the horizontal feeder 10411 extends in the direction of the third vibrating arm 1043a and is parallel to the third vibrating arm 1043a.
  • a radio frequency signal flows through the third horizontal feeder 10411, it forms a coupling connection with the third vibrating arm 1043a.
  • the coupling connection between the fourth feeding terminal 1042 and the fourth vibrating arm 1043b is similar to this, and will not be repeated here.
  • the first feed terminal 1031 and the second feed terminal 1032 share a first feed point (the first feed point is not shown in the figure), and the first feed terminal 1031
  • the phase between the second power feeding terminal 1032 and the second power feeding terminal 1032 is 180 degrees, so that the first power feeding terminal 1031 and the second power feeding terminal 1032 form a differential power feeding.
  • the third feed terminal 1041 and the fourth feed terminal 1042 share the second feed point (the second feed point is not shown in the figure), and the third feed terminal 1041 and the fourth The phases between the feeding terminals 1042 are 180 degrees apart, so that the third feeding terminal 1041 and the fourth feeding terminal 1042 form a differential feeding.
  • first feed terminal 1031, the second feed terminal 1032, the third feed terminal 1041, and the fourth feed terminal 1042 have the same shape and the area of each feed terminal should be the same, so that the first vibrating arm 1033a, A stable signal generated by the second vibrating arm 1033b, the third vibrating arm 1043a, and the fourth vibrating arm 1043b.
  • the insulating support 102 includes a support surface 1021 and a support frame 1022; the first surface of the support surface 1021 is provided with a radiation surface 105, and the second surface of the support surface 1021 is connected to the support frame 1022, wherein the support surface 1021 The area is larger than the area of the radiation surface 105; the support frame 1022 includes a first support 1022a and a second support 1022b, the first support 1022a and the second support 1022b are arranged crosswise, with the center point of the support surface 1021 as the center of symmetry, the first support 1022a
  • the first feeding end 1031 and the second feeding end 1032 are symmetrically arranged on the side wall of the second wall; the third feeding end 1041 and the third feeding end are symmetrically arranged on the side wall of the second support 1022b with the center point of the support surface 1021 as the center of symmetry Four feed terminals 1042.
  • the specific structure is shown in Figure 1, Figure 5, and Figure 6.
  • FIG. 7 is a top view of the antenna unit.
  • the area of the support surface 1021 is larger than the area of the radiation surface 105, and the specific size can be selected according to the operating frequency band, for example, operating at 3400 ⁇ 3600MHz
  • the support surface can be set to a square with a width m of 27 mm
  • the height h of the entire insulating support 102 is 7.4 mm
  • the size of the floor 101 may be a square with a side length L of 100 mm.
  • the dimensions of the metal floor 101, the radiation surface 105, and the support surface 1021 are only examples.
  • the specific structure of the insulating support 102 wherein the insulating support 102 may be a plastic support. If the surface of the radiation surface 105 is completely covered with a conductive layer, a stamping process or a PCB process may be used to set the radiation surface 105 on the first surface of the support surface 1021. If the four corners of the radiation surface 105 are hollowed out, the radiation surface 105 can be disposed on the first surface of the support surface 1021 using the LSD process.
  • the pattern of the second symmetrical element of the antenna unit is shown in 11(a) and 11(b).
  • the signal of the first polarized antenna and the signal of the second polarized antenna are orthogonally polarized, so that the antenna unit can work simultaneously in the transceiver duplex mode, which greatly saves each The number of antenna units in a cell; due to orthogonal polarization, it effectively guarantees the good effect of antenna unit diversity reception.
  • the first symmetrical vibrator in the first polarized antenna and the second symmetrical vibrator in the second polarized antenna are on the same radiation surface, and the radiation surface surrounded by the same star line radiates signals, reducing the size of the antenna unit At the same time, each side of the radiation surface is curved, which can enhance the signal strength.
  • This embodiment constitutes a low-profile, light-weight antenna unit, which improves the antenna's radiation range and load-bearing capacity.
  • the second embodiment of the present application relates to an antenna unit.
  • the second embodiment is a further improvement of the first embodiment.
  • the main improvement is that the antenna unit in this embodiment further includes at least one lightning protection grounding terminal 106.
  • the lightning protection ground terminal 106 is electrically connected to the middle preset area of the radiation surface, and the lightning protection ground terminal 106 is provided at the first feed terminal 1031, the second feed terminal 1031, and the third feed terminal 1041 (FIG. 12 (Not shown) and the fourth feeding terminal 1042 (not shown in FIG. 12) in the middle area enclosed.
  • the lightning protection grounding terminal 106 is disposed below the radiation surface.
  • FIG. 12 is a side view of the lightning protection grounding terminal.
  • the first end of the lightning protection grounding terminal 106 can be directly electrically connected to the radiation surface, and the second end of the lightning protection grounding terminal 106 is connected to the grounding port of the base station, while the first symmetrical vibrator 1033 and the second symmetrical vibrator 1043 are on the radiating surface
  • the lightning protection ground terminal 106 can prevent the probability of the antenna unit being damaged in a lightning weather.
  • one lightning protection ground terminal 106 may be provided (as shown in FIG. 12 ), or more than two.
  • the number of lightning protection grounding terminals 106 may be four; the first lightning protection grounding terminal 1061 is electrically connected to the first vibrating arm (not shown in FIG. 13) ;
  • the second lightning protection ground terminal 1062 is electrically connected to the second vibration arm (not shown in FIG. 13 );
  • the third lightning protection ground terminal is electrically connected to the third vibration arm;
  • the fourth lightning protection ground terminal is electrically connected to the fourth vibration arm
  • the structure diagram is similar to FIG. 13, and reference may be made to FIG. 13.
  • the specific connection structure of the lightning protection ground terminal 106 is shown in FIG. 13.
  • the radiating surface 105 is set on the first surface of the supporting surface 1021 by stamping process or PCB process. If the four corners of the radiating surface 105 are hollowed out (as shown in FIG. 14(b)), the radiating surface 105 can be adopted by the LDS process Set on the first surface of the support surface 1021.
  • the four corners of the radiation surface 105 are hollowed out; the radiation surface 105 and the first lightning protection ground terminal 1061 correspond to the hollow surface, the radiation surface 105 and the second lightning protection ground terminal 1062 correspond to the hollow surface, the radiation surface 105 and the third The corresponding surface of the lightning protection ground terminal is hollowed out, and the radiation surface 105 and the corresponding surface of the fourth lightning protection ground terminal are hollowed out (as shown in FIG. 14(c)); the radiation surface 105 is provided on the first surface of the support surface 1021 by LDS technology.
  • the antenna unit provided in this embodiment prevents the antenna unit from being damaged in a lightning weather through the lightning protection grounding terminal. Further, each vibrating arm in the antenna unit is electrically connected to the corresponding lightning protection grounding terminal to prevent each vibrating arm from being damaged in a lightning weather, thereby further ensuring the safety of the entire antenna unit.
  • the third embodiment of the present application relates to an antenna array including at least two antenna units 10 in the first embodiment or the second embodiment.
  • the antenna units 10 may be arranged in a preset array manner, and the preset array may be: 1 ⁇ N, M ⁇ 1, or M ⁇ N, an integer of M>1, and an integer of N>1.
  • the preset array is 12 ⁇ 8, and each antenna unit 10 includes two polarized antennas to form an antenna array of 192 polarized ports.
  • the form of the array is shown in Figure 15
  • the distance between each antenna unit 10 should be greater than 1/2 ⁇ ( ⁇ is the wavelength length), which can be set according to the actual application.
  • is the wavelength length
  • the distance d between the antenna elements 10 in each row may be set to 44 mm
  • the distance D between the antenna elements 10 in each column may be set to 60 mm.
  • the distance between the antenna units in this embodiment is only an example, and this embodiment does not limit the distance between the antenna units.
  • the fourth embodiment of the present application relates to a base station including the antenna array in the third embodiment.
  • the embodiments provided in this application are applicable to the field of wireless mobile communication base stations, and can also be applied to receiving and transmitting devices of various wireless communication systems, which are not specifically limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请实施例涉及通信领域,公开了一种天线单元、天线阵列和基站。本申请中天线单元应用于基站,包括:金属地板以及设置在绝缘支架上的第一极化天线和第二极化天线,绝缘支架设置在金属地板上;第一极化天线和第二极化天线之间极化正交;辐射面的形状为星形线所围成的图形,对称设置第一振臂和第二振臂;第一馈电端和第二馈电端差分馈电;第二极化天线由第三馈电端、第四馈电端和处于辐射面的第二对称振子组成;对称设置第三振臂和第四振臂;第三馈电端和第四馈电端差分馈电。本实施方式中,使得可以提供性能良好的天线单元,以满足网络容量大或者信号覆盖范围广的需求。

Description

一种天线单元、天线阵列和基站 技术领域
本申请实施例涉及通信领域,特别涉及一种天线单元、天线阵列和基站。
背景技术
工信部为我国5G技术研发试验规划了以下4个频段:3.3-3.6GHz频段、4.8-5.0GHz频段、24.75-27.5 GHz频段、37-42.5GHz频段。充分体现了我国大力支持5G国际标准和技术验证、加速推进5G产业发展的决心。而大规模多输入多输出天线技术(Massive MIMO)无疑是5G***中的最关键的技术之一。
采用大规模天线,可以显著增加频谱效率,尤其在容量需求较大或者覆盖范围较广时,它可以使4G网络满足网络增长需求。从运营商的角度看,这项技术具有较好的前景,因此应当提前在5G硬件中实施,并通过软件升级来提供5G空中接口功能,以促进5G的部署。
大规模多输入多输出 (Massive MIMO)技术具有以下优点:
采用Massive MIMO天线阵列,频谱效率比普通宏基站增加3到5倍。
Massive MIMO增加了网络覆盖的灵活性,运营商可以利用Massive MIMO的水平和垂直覆盖特性来提供不同场景下的覆盖。
采用惊人的高容量增益,Massive MIMO有望帮助运营商使用机器灵活的计费政策来吸引用户,提供无与伦比的用户体验,刺激用户数据消费,获得话务收益,增加运营商收入。
Massive MIMO与4G终端兼容,运营商现在就可以从4G网络部署中获取收益。同时,它还支持面向5G的网络演进,从而保持和提升现有投资的回报。
可见,为了实现上述Massive MIMO的技术优势,如何设计Massive MIMO天线是现在急需解决的问题。
技术问题
本申请实施方式的目的在于提供一种天线单元、天线阵列和基站,使得可以提供性能良好的天线单元,以满足网络容量大或者信号覆盖范围广的需求。
技术解决方案
为解决上述技术问题,本申请的实施方式提供了一种天线单元,应用于基站,包括:金属地板以及设置在绝缘支架上的第一极化天线和第二极化天线,绝缘支架设置在金属地板上;第一极化天线和第二极化天线之间极化正交;第一极化天线由第一馈电端、第二馈电端和处于辐射面的第一对称振子组成,辐射面的形状为星形线所围成的图形,第一对称振子包括第一振臂和第二振臂;以辐射面的中心点为对称中心,对称设置第一振臂和第二振臂;第一振臂与第一馈电端耦合连接,第二振臂与第二馈电端耦合连接,其中,第一馈电端和第二馈电端差分馈电;第二极化天线由第三馈电端、第四馈电端和处于辐射面的第二对称振子组成,第二对称振子包括第三振臂和第四振臂;以辐射面的中心点为对称中心,对称设置第三振臂和第四振臂;第三振臂与第三馈电端耦合连接,第四振臂与第四馈电端耦合连接,其中,第三馈电端和第四馈电端差分馈电。
本申请的实施方式还提供了一种天线阵列,包括:至少两个上述的天线单元,其中,天线单元按照预设阵列方式排列。
本申请的实施方式还提供了一种基站,包括上述的天线阵列。
有益效果
本申请实施方式相对于现有技术而言,第一极化天线的信号和第二极化天线的信号正交极化,使得天线单元可以同时工作在收发双工模式下,大大节省了每个小区的天线单元的数量;由于正交极化,有效保证了天线单元分集接收的良好效果。第一极化天线中的第一对称振子和第二极化天线中的第二对称振子均处于同一个辐射面,由同一个星形线所围成的辐射面辐射信号,减少天线单元的尺寸,同时该辐射面每个边呈弧形,可以增强信号的强度。本实施方式构成了低剖面,轻量化的天线单元,提高了天线的辐射范围以及承载容量的范围。
进一步地,第一馈电端包括第一水平馈电片和第一竖直馈电片,第一水平馈电片的第一端沿第一振臂方向延伸,第一水平馈电片的第二端与第一竖直馈电片的第一端连接,第一竖直馈电片的第二端沿垂直于第一水平馈电片的方向延伸;第二馈电端包括第二水平馈电片和第二竖直馈电片,第二水平馈电片的第一端沿第二振臂方向延伸,第二水平馈电片的第二端与第二竖直馈电片的第一端连接,第二竖直馈电片的第二端沿垂直于第二水平馈电片的方向延伸;第三馈电端包括第三水平馈电片和第三竖直馈电片,第三水平馈电片的第一端沿第三振臂方向延伸,第三水平馈电片的第二端与第三竖直馈电片的第一端连接,第三竖直馈电片的第二端沿垂直于第三水平馈电片的方向延伸;第四馈电端包括第四水平馈电片和第四竖直馈电片,第四水平馈电片的第一端沿第四振臂方向延伸,第四水平馈电片的第二端与第四竖直馈电片的第一端连接,第四竖直馈电片的第二端沿垂直于第四水平馈电片的方向延伸。具体限定该每个馈电端的构造,馈电端通过水平馈电片实现与对应振臂之间的耦合连接。
进一步地,绝缘支架包括支撑面和支撑架;支撑面的第一面设置辐射面,支撑面的第二面与支撑架连接,其中,支撑面的面积大于辐射面的面积;支撑架包括第一支架和第二支架,第一支架和第二支架交叉设置;以支撑面的中心点为对称中心,在第一支架的侧壁上对称设置第一馈电端和第二馈电端;以支撑面的中心点为对称中心,在第二支架的侧壁上对称设置第三馈电端和第四馈电端。通过绝缘支架可以减少其他金属对该第一极化天线和第二极化天线的干扰。
进一步地,天线单元还包括至少一个防雷接地端,防雷接地端与辐射面的中间预设区域电连接;防雷接地端设置在第一馈电端、第二馈电端、第三馈电端和第四馈电端围设的中间区域内。通过防雷接地端,防止天线单元在雷电天气出现损坏的情况。
进一步地,防雷接地端的个数为4个;第一防雷接地端与第一振臂电连接;第二防雷接地端与第二振臂电连接;第三防雷接地端与第三振臂电连接;第四防雷接地端与第四振臂电连接。天线单元中的每个振臂与一个防雷接地端电连接,防止每个振臂在雷电天气情况下被损坏的情况,进一步确保了整个天线单元的安全性。
进一步地,辐射面的四个角镂空设置;辐射面与第一防雷接地端对应表面镂空,辐射面与第二防雷接地端对应表面镂空,辐射面与第三防雷接地端对应表面镂空,辐射面与第四防雷接地端对应表面镂空;辐射面由激光直接成型技术设置在绝缘支架上。辐射面的四个角设置镂空,且与防雷接地端对应的辐射面镂空,便于采用激光直接成型技术工艺制造该天线单元。
进一步地,辐射面的表面全覆盖导电层;辐射面由冲压工艺或印刷电路板制作工艺设置在绝缘支架上。辐射面全覆盖导电层,便于采用冲压工艺或印刷电路板制作工艺制造,提供多种制作方法,使得制作该天线单元更加灵活性。
进一步地,辐射面的四个角镂空设置,且辐射面的中间预设区域所在表面全覆盖设置;辐射面由激光直接成型技术设置在绝缘支架上。辐射面的四个角镂空,便于采用激光直接成型技术将该辐射面设置在绝缘支架上,增加制作该天线单元的灵活性。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是根据本申请第一实施方式提供的一种天线单元的***示意图;
图2是根据本申请第一实施方式提供的第一极化天线和第二极化天线的***示意图;
图3是根据本申请第一实施方式提供的第一极化天线的侧视图;
图4是根据本申请第一实施方式提供的第二极化天线的侧视图;
图5是根据本申请第一实施方式提供的绝缘支架的结构示意图;
图6是根据本申请第一实施方式提供的绝缘支架和辐射面的结构示意图;
图7是根据本申请第一实施方式提供的一种天线单元的俯视图;
图8是根据本申请第一实施方式提供的一种天线的反射系数示意图;
图9是根据本申请第一实施方式提供的一种天线单元的增益示意图;
图10(a)是根据本申请第一实施方式提供的一种天线单元在Phi=0°平面内的辐射方向图;
图10(b)是根据本申请第一实施方式提供的一种天线单元在Phi=90°平面内的辐射方向图;
图11(a)是根据本申请第一实施方式提供的一种天线单元在Phi=0°平面内的辐射方向图;
图11(b)是根据本申请第一实施方式提供的一种天线单元在Phi=90°平面内的辐射方向图;
图12是根据本申请第二实施方式提供的天线单元中一种防雷接地端的结构示意图;
图13是根据本申请第二实施方式提供的天线单元中另一种防雷接地端的结构示意图;
图14(a)是根据本申请第二实施方式提供的一种天线单元中辐射面的示意图;
图14(b)是根据本申请第二实施方式提供的一种天线单元中辐射面的示意图;
图14(c)是根据本申请第二实施方式提供的一种天线单元中辐射面的示意图;
图15是根据本申请第三实施方式提供的一种天线阵列的示意图。
本发明的实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。
本申请的第一实施方式涉及一种天线单元。该天线单元应用于携带射频单元的基站,如可以是宏基站、分布式基站等。该天线单元10包括:金属地板101以及设置在绝缘支架102上的第一极化天线103和第二极化天线104,绝缘支架102设置在金属地板101上。该天线单元10的结构如图1、图2所示。其中,图1为该天线单元10的***结构图。
为了增加天线单元10的信号增益,第一极化天线103和第二极化天线104之间极化正交,本实施方式中第一极化天线103和第二极化天线104采用±45°正交极化方式。
第一极化天线103由第一馈电端1031、第二馈电端1032和处于辐射面105的第一对称振子1033组成,辐射面105的形状为星形线所围成的图形,第一对称振子1033包括第一振臂1033a和第二振臂1033b。以辐射面105的中心点为第一对称中心,对称设置第一振臂1033a和第二振臂1033b;第一振臂1033a与第一馈电端1031耦合连接,第二振臂1033b与第二馈电端1032耦合连接,其中,第一馈电端1031和第二馈电端1032差分馈电。具体结构参见图2、图3。
图2为第一极化天线103和第二极化天线104的***结构示意图。图3为该第一极化天线的侧面剖视图。下面将结合图2和图3详细说明该第一极化天线的具体结构。
具体的说,如图2所示,该辐射面105的形状为星形线所围成的图形(即图2中包含尖角A、尖角B、尖角C和尖角D的图形),该辐射面105可以为导电材料,如金属,或者该辐射面整体覆盖导电层,可以将第一极化天线103的第一对称振子1033沿该辐射面105的一个对角线的方向设置,其中,以该辐射面105的中心点S为对称中心,对称设置该第一振臂1033a和第二振臂1033b。
可以理解的是,辐射面105还可以设置为镂空,如图2中所示镂空的辐射面105,可以采用显露各个振臂的方式对辐射面105进行镂空设置,且该辐射面105的预设区域(预设区域即图2中的中间平行四边形)全覆盖导电层。
为了便于描述,在图2中引入直角坐标系,辐射面105的中心点为S,第一振臂1033a以S点为起点,沿X轴的正方向延伸至该辐射面105的尖角A位置,第二振臂1033b以S点为起点,沿该X轴的负方向延伸至该辐射面105的尖角B位置,其中,尖角A和尖角B对称。
第一馈电端1031和第二馈电端1032的结构如图3中所示。
一种实施方式中,第一馈电端1031包括第一水平馈电片10311和第一竖直馈电片10312,第一水平馈电片10311的第一端沿第一振臂1033a方向延伸,第一水平馈电片10311的第二端与第一竖直馈电片10312的第一端连接,第一竖直馈电片10312的第二端沿垂直于第一水平馈电片10311的方向延伸;第二馈电端1032包括第二水平馈电片10321和第二竖直馈电片10322,第二水平馈电片10321的第一端沿第二振臂1033b方向延伸,第二水平馈电片10321的第二端与第二竖直馈电片10322的第一端连接,第二竖直馈电片10322的第二端沿垂直于第二水平馈电片10321的方向延伸。
具体的说, 第一竖直馈电片10312的第二端与基站的射频单元连接,该射频信号通过该第一竖直馈电片10312传输至该第一水平馈电片10311,由于第一水平馈电片10311沿该第一振臂1033a的方向延伸(如图3中的X轴的正方向),与该第一振臂1033a平行,当射频信号流过该第一水平馈电片10311的过程中,与该第一振臂1033a形成耦合连接。同理,第二馈电端1032与第二振臂1033b的耦合连接与此类似,此处将不再进行赘述。
第二极化天线104由第三馈电端1041、第四馈电端1042和处于辐射面105的第二对称振子1043组成,第二对称振子1043包括第三振臂1043a和第四振臂1043b;以辐射面105的中心点为第二对称中心,对称设置第三振臂1043a和第四振臂1043b;第三振臂1043a与第三馈电端1041耦合连接,第四振臂1043b与第四馈电端1042耦合连接,其中,第三馈电端1041和第四馈电端1042差分馈电。具体结构如图2、图4所示。
具体的说,第二对称振子1043与处于该辐射面105上,即第一对称振子1033和第二对称振子1043共面,与第一对称振子1033的结构类似,该第二对称振子1043沿该辐射面105另一个对角线的方向设置,其中,以该辐射面105的中心点S为对称中心,对称设置该第二振臂1043a和第四振臂1043b。如图2中所示,辐射面105的中心点为S,第二振臂1043a以S点为起点,沿Y轴的正方向延伸至该辐射面的尖角C位置,第四振臂1043b以S点为起点,沿该Y轴的负方向延伸至该辐射面105的尖角D的位置,其中,尖角C和尖角D对称。
下面结合图2、图4说明第三振臂1043a与第三馈电端1041耦合连接,第四振臂1043b与第四馈电端1042耦合连接。
一种实施方式中,第三馈电端1041包括第三水平馈电片10411和第三竖直馈电片10412,第三水平馈电片10411的第一端沿第三振臂1043a方向延伸,第三水平馈电片10411的第二端与第三竖直馈电片10412的第一端连接,第三竖直馈电片10412的第二端沿垂直于第三水平馈电片10411的方向延伸;第四馈电端1042包括第四水平馈电片10421和第四竖直馈电片10422,第四水平馈电片10421的第一端沿第四振臂1043b方向延伸,第四水平馈电片10421的第二端与第四竖直馈电片10422的第一端连接,第四竖直馈电片10422的第二端沿垂直于第四水平馈电片10421的方向延伸。
具体的说, 第三竖直馈电片10412的第二端与基站的射频单元连接,该射频信号通过该第三竖直馈电片10412传输至该第三水平馈电片10411,由于第三水平馈电片10411沿该第三振臂1043a的方向延伸,与该第三振臂1043a平行,当射频信号流过该第三水平馈电片10411的过程中,与该第三振臂1043a形成耦合连接。同理,第四馈电端1042与第四振臂1043b的耦合连接与此类似,此处将不再进行赘述。
需要说明的是,第一极化天线中第一馈电端1031和第二馈电端1032共用第一馈电点(图中未示出第一馈电点),且第一馈电端1031和第二馈电端1032之间的相位相差180度,从而使得第一馈电端1031和第二馈电端1032形成差分馈电。同理,第二极化天线中第三馈电端1041和第四馈电端1042共用第二馈电点(图中未示出第二馈电点),第三馈电端1041和第四馈电端1042之间的相位相差180度,从而使得第三馈电端1041和第四馈电端1042形成差分馈电。
可以理解的是,第一馈电端1031、第二馈电端1032、第三馈电端1041和第四馈电端1042的形状相同且各个馈电端的面积应当相同,以便第一振臂1033a、第二振臂1033b、第三振臂1043a和第四振臂1043b产生的稳定的信号。
一种实施方式中,该绝缘支架102包括支撑面1021和支撑架1022;支撑面1021的第一面设置辐射面105,支撑面1021的第二面与支撑架1022连接,其中,支撑面1021的面积大于辐射面105的面积;支撑架1022包括第一支架1022a和第二支架1022b,第一支架1022a和第二支架1022b交叉设置,以支撑面1021的中心点为对称中心,在第一支架1022a的侧壁上对称设置第一馈电端1031和第二馈电端1032;以支撑面1021的中心点为对称中心,在第二支架1022b的侧壁上对称设置第三馈电端1041和第四馈电端1042。具体结构如图1、图5、图6所示。
具体的说,图7为该天线单元的俯视图,如图7所示,该支撑面1021的面积大于该辐射面105的面积,具体的尺寸可以根据工作频段进行选择,例如,工作在3400~3600MHz时,若辐射面的相邻尖角之间的距离n为25.5mm,那么支撑面可以设置成宽度m为27mm的正方形,整个绝缘支架102的高度h为7.4mm,放置该绝缘支架102的金属地板101的尺寸可以是边长L为100mm的正方形。当然,可以理解的是,上述的金属地板101、辐射面105以及支撑面1021的尺寸仅为举例说明。
具体的说,该绝缘支架102的具体结构,其中,该绝缘支架102可以为塑料支架。若该辐射面105的表面全覆盖导电层时,可以采用冲压工艺或PCB工艺,将该辐射面105设置在支撑面1021的第一面上。若辐射面105的四个角镂空设置即可以利用LSD工艺将该辐射面105设置在支撑面1021的第一面上。
下面将以结合该天线单元的性能图介绍该天线单元10的工作效果:
天线单元的反射系数性能仿真如图8所示,以及该天线单元的增益如图9所示。本实施方式中,在工作频段3.4GHZ~3.6GHZ内,可以看出,性能良好。
该天线单元10第一对称振子的方向图为10(a)和10(b)所示,图10(a)为该第一对称振子工作在3.5GHz,方位角Phi=0°的方向图,其中,主瓣增益为9.09dB ,3dB波束宽度为63.9°,图10(b)为第一对称振子工作在3.5GHz,方位角Phi=90°的方向图,其中,主瓣增益为9.09dB ,3dB波束带宽度为63.8°。该天线单元第二对称振子的方向图为11(a)和11(b)所示,图11(a)为该第二对称振子工作在3.5GHz,方位角Phi=0°的方向图,其中,主瓣增益为9.07dB ,3dB波束带宽为64.2°,图11(b)为第二对称振子工作在3.5GHz,方位角Phi=90°的方向图,其中,主瓣增益为9.07dB ,3dB波束带宽为61.4°。
本申请实施方式相对于现有技术而言,第一极化天线的信号和第二极化天线的信号正交极化,使得天线单元可以同时工作在收发双工模式下,大大节省了每个小区的天线单元的数量;由于正交极化,有效保证了天线单元分集接收的良好效果。第一极化天线中的第一对称振子和第二极化天线中的第二对称振子均处于同一个辐射面,由同一个星形线所围成的辐射面辐射信号,减少天线单元的尺寸,同时该辐射面每个边呈弧形,可以增强信号的强度。本实施方式构成了低剖面,轻量化的天线单元,提高了天线的辐射范围以及承载容量的范围。
本申请的第二实施方式涉及一种天线单元。第二实施方式是对第一实施方式的进一步改进,主要改进之处在于:本实施方式中的天线单元还包括至少一个防雷接地端106。
具体的说,防雷接地端106与辐射面的中间预设区域电连接,防雷接地端106设置在第一馈电端1031、第二馈电端1031、第三馈电端1041(图12未示出)和第四馈电端1042(图12未示出)围设的中间区域内。防雷接地端106设置在辐射面的下方位置,图12为该防雷接地端的侧视图。
防雷接地端106第一端可以与辐射面直接电连接,该防雷接地端106的第二端与基站的接地端口连接,同时第一对称振子1033和第二对称振子1043共处于辐射面上,进而通过防雷接地端106可以防止天线单元在雷电天气被损坏的概率。其中,防雷接地端106可以设置一个(如图12所示),也可以设置2个以上。
一种实施方式中,为了更好地起到防雷的作用,防雷接地端106的个数可以为4个;第一防雷接地端1061与第一振臂(图13未示出)电连接;第二防雷接地端1062与第二振臂(图13未示出)电连接;同理,第三防雷接地端与第三振臂电连接;第四防雷接地端与第四振臂电连接,该结构图与图13类似,可参考图13。该防雷接地端106的具体连接结构如图13所示。
值得一提的是,本实施方式中增加防雷接地端106后,也可以如第一实施方式中类似,当辐射面105全覆盖导电层时(如图14(a)所示),可以采用冲压工艺或PCB工艺将辐射面105设置在支撑面1021的第一面上,若辐射面105的四个角镂空设置(如图14(b)所示),则可以采用LDS工艺将辐射面105设置在支撑面1021的第一面上。
可以理解的是辐射面105的四个角镂空设置;辐射面105与第一防雷接地端1061对应表面镂空,辐射面105与第二防雷接地端1062对应表面镂空,辐射面105与第三防雷接地端对应表面镂空,辐射面105与第四防雷接地端对应表面镂空(如图14(c)所示);辐射面105由LDS技术设置在支撑面1021的第一面上。
本实施方式中提供的天线单元,通过防雷接地端,防止天线单元在雷电天气出现损坏的情况。进一步地天线单元中的每个振臂与对应的防雷接地端电连接,防止每个振臂在雷电天气出现被损坏的情况,进一步确保了整个天线单元的安全性。
本申请的第三实施方式涉及天线阵列,该天线阵列包括至少两个第一实施方式或第二实施方式中的天线单元10。天线单元10可以按照预设阵列方式排列,预设阵列可以为:1×N,M×1、或者M×N,M>1的整数,且N>1的整数。本实施方式中预设阵列为12×8,每个天线单元10包括两个极化天线,形成192个极化端口的天线阵列。阵列的形式如图15所示
具体的说,每个天线单元10之间的距离满足大于1/2λ(λ为波长长度)即可,具体可以根据实际应用进行设置,例如,如图15所示,在频段为3.5GHZ时,可以将每行的天线单元10之间的距离d设置为44mm,每列的天线单元10之间的距离D设置为60mm。当然,本实施方式中的天线单元之间的距离仅为举例,本实施方式并不限制天线单元之间的距离。
本申请的第四实施方式涉及一种基站,该基站包含第三实施方式中的天线阵列。
本申请提供的实施例适用于无线移动通信基站领域,还可应用于各类无线通信***的接收和发射设备中,具体不做限定。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (10)

  1. 一种天线单元,应用于基站,其特征在于,包括:金属地板以及设置在绝缘支架上的第一极化天线和第二极化天线,所述绝缘支架设置在所述金属地板上;
    所述第一极化天线和所述第二极化天线之间极化正交;
    所述第一极化天线由第一馈电端、第二馈电端和处于辐射面的第一对称振子组成,所述辐射面的形状为星形线所围成的图形,所述第一对称振子包括第一振臂和第二振臂;
    以所述辐射面的中心点为对称中心,对称设置所述第一振臂和所述第二振臂;
    所述第一振臂与所述第一馈电端耦合连接,所述第二振臂与所述第二馈电端耦合连接,其中,所述第一馈电端和所述第二馈电端差分馈电;
    所述第二极化天线由第三馈电端、第四馈电端和处于所述辐射面的第二对称振子组成,所述第二对称振子包括第三振臂和第四振臂;
    以所述辐射面的中心点为对称中心,对称设置所述第三振臂和所述第四振臂;
    所述第三振臂与所述第三馈电端耦合连接,所述第四振臂与所述第四馈电端耦合连接,其中,所述第三馈电端和所述第四馈电端差分馈电。
  2. 根据权利要求1所述的天线单元,其特征在于,所述第一馈电端包括第一水平馈电片和第一竖直馈电片,所述第一水平馈电片的第一端沿所述第一振臂方向延伸,所述第一水平馈电片的第二端与所述第一竖直馈电片的第一端连接,所述第一竖直馈电片的第二端沿垂直于所述第一水平馈电片的方向延伸;
    所述第二馈电端包括第二水平馈电片和第二竖直馈电片,所述第二水平馈电片的第一端沿所述第二振臂方向延伸,所述第二水平馈电片的第二端与所述第二竖直馈电片的第一端连接,所述第二竖直馈电片的第二端沿垂直于所述第二水平馈电片的方向延伸;
    所述第三馈电端包括第三水平馈电片和第三竖直馈电片,所述第三水平馈电片的第一端沿所述第三振臂方向延伸,所述第三水平馈电片的第二端与所述第三竖直馈电片的第一端连接,所述第三竖直馈电片的第二端沿垂直于所述第三水平馈电片的方向延伸;
    所述第四馈电端包括第四水平馈电片和第四竖直馈电片,所述第四水平馈电片的第一端沿所述第四振臂方向延伸,所述第四水平馈电片的第二端与所述第四竖直馈电片的第一端连接,所述第四竖直馈电片的第二端沿垂直于所述第四水平馈电片的方向延伸。
  3. 根据权利要求2所述的天线单元,其特征在于,所述绝缘支架包括支撑面和支撑架;
    所述支撑面的第一面设置所述辐射面,所述支撑面的第二面与所述支撑架连接,其中,所述支撑面的面积大于所述辐射面的面积;
    所述支撑架包括第一支架和第二支架,所述第一支架和所述第二支架交叉设置;
    以所述支撑面的中心点为对称中心,在所述第一支架的侧壁上对称设置所述第一馈电端和所述第二馈电端;
    以所述支撑面的中心点为对称中心,在所述第二支架的侧壁上对称设置所述第三馈电端和所述第四馈电端。
  4. 根据权利要求1至3中任一项所述的天线单元,其特征在于,所述天线单元还包括至少一个防雷接地端,所述防雷接地端与所述辐射面的中间预设区域电连接;
    所述防雷接地端设置在所述第一馈电端、所述第二馈电端、第三馈电端和第四馈电端围设的中间区域内。
  5. 根据权利要求4所述的天线单元,其特征在于,所述防雷接地端的个数为4个;
    第一防雷接地端与所述第一振臂电连接;
    第二防雷接地端与所述第二振臂电连接;
    第三防雷接地端与所述第三振臂电连接;
    第四防雷接地端与所述第四振臂电连接。
  6. 根据权利要求5所述的天线单元,其特征在于,所述辐射面的四个角镂空设置;
    所述辐射面与所述第一防雷接地端对应表面镂空,所述辐射面与所述第二防雷接地端对应表面镂空,所述辐射面与所述第三防雷接地端对应表面镂空,所述辐射面与所述第四防雷接地端对应表面镂空;
    所述辐射面由所述激光直接成型技术设置在所述绝缘支架上。
  7. 根据权利要求4所述的天线单元,其特征在于,所述辐射面的表面全覆盖导电层;
    所述辐射面由冲压工艺或印刷电路板制作工艺设置在所述绝缘支架上。
  8. 根据权利要求4所述的天线单元,其特征在于,所述辐射面的四个角镂空设置,且所述辐射面的中间预设区域所在表面全覆盖设置;
    所述辐射面由所述激光直接成型技术设置在所述绝缘支架上。
  9. 一种天线阵列,其特征在于,包括:至少两个如权利要求1至8中任一项所述的天线单元,其中,所述天线单元按照预设阵列方式排列。
  10. 一种基站,其特征在于,包括如权利要求9所述的天线阵列。
PCT/CN2019/113279 2018-12-25 2019-10-25 一种天线单元、天线阵列和基站 WO2020134448A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811587798.9A CN110011026B (zh) 2018-12-25 2018-12-25 一种天线单元、天线阵列和基站
CN201811587798.9 2018-12-25

Publications (1)

Publication Number Publication Date
WO2020134448A1 true WO2020134448A1 (zh) 2020-07-02

Family

ID=67165192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113279 WO2020134448A1 (zh) 2018-12-25 2019-10-25 一种天线单元、天线阵列和基站

Country Status (3)

Country Link
US (1) US11196143B2 (zh)
CN (1) CN110011026B (zh)
WO (1) WO2020134448A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011026B (zh) * 2018-12-25 2021-05-04 瑞声科技(新加坡)有限公司 一种天线单元、天线阵列和基站
CN110768003A (zh) * 2019-10-24 2020-02-07 深圳市信维通信股份有限公司 Lte基站天线***
CN111277309B (zh) * 2020-01-21 2023-05-05 Oppo广东移动通信有限公司 客户前置设备
CN115176385A (zh) * 2020-02-24 2022-10-11 华为技术有限公司 用于天线阵列辐射恢复、增益增强和mpe减小的超表面覆盖材料
US11539118B2 (en) * 2021-01-27 2022-12-27 Rockwell Collins, Inc. Multi-polarization HF NVIS for vertical lift aircraft
CN117134113A (zh) * 2022-05-20 2023-11-28 华为技术有限公司 天线模组和通信设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090309806A1 (en) * 2008-06-13 2009-12-17 Silitek Electronic (Guangzhou) Co., Ltd. Multi-input multi-output antenna system
US20100265151A1 (en) * 2009-04-16 2010-10-21 Silitek Electronic (Guangzhou) Co., Ltd. Dual-feed antenna
CN203895597U (zh) * 2014-05-30 2014-10-22 武汉虹信通信技术有限责任公司 一种超宽频双极化基站天线辐射单元
CN106299690A (zh) * 2016-09-27 2017-01-04 华南理工大学 一种差分馈电宽带圆极化天线
CN110011026A (zh) * 2018-12-25 2019-07-12 瑞声科技(新加坡)有限公司 一种天线单元、天线阵列和基站

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356242B1 (en) * 2000-01-27 2002-03-12 George Ploussios Crossed bent monopole doublets
CN2619374Y (zh) * 2003-04-14 2004-06-02 中国电子科技集团公司第五十研究所 无线电高度表用微带天线
KR101711150B1 (ko) * 2011-01-31 2017-03-03 주식회사 케이엠더블유 이동통신 기지국용 이중편파 안테나 및 이를 이용한 다중대역 안테나 시스템
CN103474757A (zh) * 2013-09-11 2013-12-25 华为技术有限公司 一种天线***
US9490542B1 (en) * 2014-01-17 2016-11-08 Stellenbosch University Multi-mode composite antenna
US9548544B2 (en) * 2015-06-20 2017-01-17 Huawei Technologies Co., Ltd. Antenna element for signals with three polarizations
US20170085009A1 (en) * 2015-09-18 2017-03-23 Paul Robert Watson Low-profile, broad-bandwidth, dual-polarization dipole radiating element
WO2018010817A1 (en) * 2016-07-15 2018-01-18 Huawei Technologies Co., Ltd. Radiating element, a system comprising the radiating element and a method for operating the radiating element or the system
US10270185B2 (en) * 2016-12-19 2019-04-23 Huawei Technologies Co., Ltd. Switchable dual band antenna array with three orthogonal polarizations
CN106654529B (zh) * 2016-12-29 2019-03-19 重庆邮电大学 一种高隔离度的紧凑型双极化微基站天线
CN107069197A (zh) * 2017-01-11 2017-08-18 上海安费诺永亿通讯电子有限公司 一种十六分之一波长超低剖面双极化振子单元及基站天线
US10530068B2 (en) * 2017-07-18 2020-01-07 The Board Of Regents Of The University Of Oklahoma Dual-linear-polarized, highly-isolated, crossed-dipole antenna and antenna array
CN107528115B (zh) * 2017-08-04 2020-03-27 上海安费诺永亿通讯电子有限公司 一种差分馈电双极化振子组件、振子单元及振子天线
CN109951205B (zh) * 2017-12-20 2021-04-20 立积电子股份有限公司 无线信号收发装置
US10797408B1 (en) * 2019-04-18 2020-10-06 Huawei Technologies Co., Ltd. Antenna structure and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090309806A1 (en) * 2008-06-13 2009-12-17 Silitek Electronic (Guangzhou) Co., Ltd. Multi-input multi-output antenna system
US20100265151A1 (en) * 2009-04-16 2010-10-21 Silitek Electronic (Guangzhou) Co., Ltd. Dual-feed antenna
CN203895597U (zh) * 2014-05-30 2014-10-22 武汉虹信通信技术有限责任公司 一种超宽频双极化基站天线辐射单元
CN106299690A (zh) * 2016-09-27 2017-01-04 华南理工大学 一种差分馈电宽带圆极化天线
CN110011026A (zh) * 2018-12-25 2019-07-12 瑞声科技(新加坡)有限公司 一种天线单元、天线阵列和基站

Also Published As

Publication number Publication date
CN110011026A (zh) 2019-07-12
US20200203803A1 (en) 2020-06-25
US11196143B2 (en) 2021-12-07
CN110011026B (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
US11973280B2 (en) Antenna element and terminal device
WO2020134448A1 (zh) 一种天线单元、天线阵列和基站
WO2020063194A1 (zh) 终端设备
US10135149B2 (en) Phased array for millimeter-wave mobile handsets and other devices
WO2020063196A1 (zh) 终端设备
US6593891B2 (en) Antenna apparatus having cross-shaped slot
CN107808998B (zh) 多极化辐射振子及天线
WO2020134362A1 (zh) 一种天线、天线阵列和基站
WO2021104191A1 (zh) 天线单元及电子设备
CN108292794B (zh) 一种通信设备
WO2020187207A1 (zh) 一种天线单元及一种滤波天线阵列
CN111129704B (zh) 一种天线单元和电子设备
CN114976665B (zh) 一种加载频率选择表面辐射稳定的宽带双极化偶极子天线
CN107196047B (zh) 宽波束高增益天线
KR101541374B1 (ko) 다중대역 다이폴 안테나 및 시스템
WO2021244158A1 (zh) 双极化天线及客户前置设备
WO2021083223A1 (zh) 天线单元及电子设备
CN102377016A (zh) 高增益回圈阵列天线***及具有该***的电子装置
CN109560387B (zh) 一种用于移动终端的毫米波双极化天线
WO2021000187A1 (zh) 振子装置及低剖面天线
WO2022134786A1 (zh) 一种天线和通信设备
CN109742515B (zh) 一种用于移动终端的毫米波圆极化天线
CN206022633U (zh) 一种便携式多功能卫星通信天线
EP4340127A1 (en) Broadside antenna, package antenna, and communication device
WO2021147438A1 (zh) 具有高隔离度和低交叉极化电平的天线、基站和终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905223

Country of ref document: EP

Kind code of ref document: A1