WO2020063194A1 - 终端设备 - Google Patents

终端设备 Download PDF

Info

Publication number
WO2020063194A1
WO2020063194A1 PCT/CN2019/101510 CN2019101510W WO2020063194A1 WO 2020063194 A1 WO2020063194 A1 WO 2020063194A1 CN 2019101510 W CN2019101510 W CN 2019101510W WO 2020063194 A1 WO2020063194 A1 WO 2020063194A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
metal frame
terminal device
tractor
radiator
Prior art date
Application number
PCT/CN2019/101510
Other languages
English (en)
French (fr)
Inventor
黄奂衢
王义金
简宪静
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020217012485A priority Critical patent/KR102535335B1/ko
Priority to ES19867410T priority patent/ES2952007T3/es
Priority to EP19867410.3A priority patent/EP3859879B1/en
Publication of WO2020063194A1 publication Critical patent/WO2020063194A1/zh
Priority to US17/214,613 priority patent/US11695210B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • H01Q9/0435Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave using two feed points
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a terminal device.
  • a millimeter-wave antenna is generally in the form of an independent antenna module, so it is necessary to set an accommodation space for the independent antenna module in a terminal device. In this way, the volume size of the entire terminal device is relatively large, resulting in a lower overall competitiveness of the terminal device.
  • Some embodiments of the present disclosure provide a terminal device to solve the problem that a receiving space is required for a millimeter wave antenna in the terminal device, so that the volume of the entire terminal device is relatively large.
  • Some embodiments of the present disclosure provide a terminal device including a feed source, a metal frame, and a radiating sheet; the outer side of the metal frame is provided with at least two grooves, and each groove is provided with two through holes, And each groove is provided with a radiating sheet, and the metal frame is grounded; each radiating sheet is provided with two antenna feeding points, and the feeding source is connected to one feeding point through a through hole, and each concave The antenna feed points in the slot correspond one-to-one with the through holes; each radiator is insulated from the groove by a non-conductive material.
  • the feed source, at least two grooves, and their radiators are equivalent to the millimeter-wave array antenna of the terminal device, and the metal frame is also the radiator of the non-millimeter-wave communication antenna.
  • FIG. 1 is a schematic structural diagram of a terminal device according to some embodiments of the present disclosure.
  • FIG. 2 is one of the structural schematic diagrams of one side of a metal frame provided by some embodiments of the present disclosure
  • FIG. 3 is a second schematic structural diagram of one side of a metal frame provided by some embodiments of the present disclosure.
  • FIG. 4 is a third schematic structural diagram of one side of a metal frame provided by some embodiments of the present disclosure.
  • FIG. 5 is one of the schematic diagrams of return loss of a single millimeter-wave antenna provided by some embodiments of the present disclosure.
  • FIG. 6 is a fourth schematic structural diagram of one side of a metal frame provided by some embodiments of the present disclosure.
  • FIG. 7 is a fifth schematic structural diagram of one side of a metal frame provided by some embodiments of the present disclosure.
  • FIG. 8 is a sixth schematic structural diagram of one side of a metal frame provided by some embodiments of the present disclosure.
  • FIG. 9 is a seventh schematic structural diagram of one side of a metal frame provided by some embodiments of the present disclosure.
  • FIG. 10 is a second schematic diagram of a return loss of a single millimeter wave antenna provided by some embodiments of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a terminal device according to some embodiments of the present disclosure. As shown in FIG. 1, it includes a feed source, a metal frame 1, and a radiation sheet; Grooves, each groove is provided with two through holes, and each groove is provided with a radiating sheet, and the metal frame 1 is grounded; each radiating sheet is provided with two antenna feeding points,
  • the feed source is connected to a feed point through a through hole, and the antenna feed point in each groove corresponds to the through hole one by one; each radiator is insulated from the groove by a non-conductive material.
  • the feed is a millimeter wave feed.
  • the metal frame 1 may include a first side 11, a second side 12, a third side 13, and a fourth side 14.
  • the metal frame 1 may be a frame connected end to end or not connected.
  • the metal frame 1 is grounded and can be electrically connected to a floor 2 in the terminal device.
  • the floor 2 may be a circuit board or a metal middle case.
  • the radiation sheet may be the same metal conductor as the metal frame 1 to maintain the metal appearance of the terminal device.
  • FIGS. 2 to 4. are schematic structural diagrams of one side of a metal frame provided by some embodiments of the present disclosure.
  • the third side 13 of the metal frame 1 is provided with a plurality of square grooves. Each groove is provided with a radiating sheet 3.
  • the millimeter wave signal constitutes a millimeter wave antenna, and a plurality of millimeter wave antennas form a millimeter wave array antenna.
  • the radiation sheet 3 and the groove of the metal frame 1 are filled with a non-conductive material.
  • the dielectric constant of the optional non-conductive material is 2.2, and the loss tangent is 0.0009.
  • the radiation sheet 3 shown in FIG. 3 is spaced from the bottom and side walls of the groove, and each groove is filled with a non-conductive material.
  • FIG. 4 again.
  • the bottom of the groove in FIG. 4 is provided with two through holes for accessing the feed signal of the millimeter wave antenna, and the through hole 4 can be used for accessing the first feed signal.
  • the hole 5 can be used for accessing the second feed signal.
  • the first feed signal and the second feed signal are connected to the bottom of the radiation plate 3, and are used to excite the millimeter wave antenna to generate a radiation signal, so as to support the function of Multiple-Input Multiple-Output (MIMO).
  • MIMO Multiple-Input Multiple-Output
  • FIG. 5 is a schematic diagram of a return loss of a single millimeter wave antenna provided by some embodiments of the present disclosure.
  • (S1, 1) is a return loss formed by the feed signal of the first feed signal
  • (S2, 2) is a return loss formed by the feed signal of the second feed signal.
  • the outer side of the metal frame 1 is provided with at least two grooves, and each groove is provided with a radiating sheet 3, and each radiating sheet is respectively connected to a feed source to form a millimeter wave array antenna for radiating millimeters. Wave signal.
  • the communication antenna may be in a region shown by a dotted line in FIG. 1.
  • the communication antenna is composed of the third side edge 13, part of the second side edge 12, and part of the fourth side edge. 14 composed.
  • at least two grooves may be provided on the first side edge 11, the second side edge 12, or the fourth side edge 14, which is not limited in this embodiment. .
  • the existing antennas such as cellular antennas and non-cellular antennas
  • the original discrete millimeter-wave antennas are integrated into the existing non-millimeter-wave antennas in the terminal device to form Antenna-in-antenna (mm-Wave Antenna, Non-Wave Antennas, AiA) solution design, or integration of the original discrete millimeter-wave antenna into the existing metal structure of the terminal device solution design, without the need to significantly increase the overall
  • the size of the system, and the metal design (such as metal ring) that can maintain the appearance, achieve industrial design (Industrial Design, ID) beautiful, highly symmetrical and so on.
  • the antenna itself can form a function of multiple transmission and multiple reception (ie, MIMO).
  • MIMO multiple transmission and multiple reception
  • the terminal device may be a mobile phone, a tablet computer, a laptop computer, a personal digital assistant (PDA), and a mobile Internet device (MID). Or wearable device (Wearable Device) and so on.
  • PDA personal digital assistant
  • MID mobile Internet device
  • MID wearable device
  • two through holes of each groove are located at the bottom of the groove.
  • the two through holes of each groove are located at the bottom of the groove, so that the radiation sheet 3 is electrically connected to the feed source through a short path, so that the millimeter wave antenna can have better performance.
  • a first straight line determined by one of the two through holes at the bottom of each groove and the center of the bottom of the groove is parallel to the length direction of the metal frame 1, and the other through hole and the groove are parallel
  • a second straight line determined by the center of the bottom is parallel to the width direction of the metal frame 1, and the first straight line is perpendicular to the second straight line;
  • One of the two antenna feed points on each radiator is a third straight line defined by the center of the radiator 3 and the length of the metal frame 1, and the other antenna is determined by the center of the radiator 3
  • the fourth straight line is parallel to the width direction of the metal frame 1, and the third straight line is perpendicular to the fourth straight line.
  • the orthogonal feeding method is used for feeding, on the one hand, a multiple transmission and multiple reception (ie, MIMO) function can be formed to improve the data transmission rate.
  • a multiple transmission and multiple reception (ie, MIMO) function can be formed to improve the data transmission rate.
  • MIMO multiple transmission and multiple reception
  • it can also increase the wireless connection capability of the millimeter wave antenna, reduce the probability of communication disconnection, and improve the communication effect and user experience.
  • the terminal device further includes a tractor 6, each tractor is provided with a tractor 6, and the radiator 3 in each groove is provided between the tractor 6 and the bottom of the groove, each There is a gap between the tractor 6 and the radiation sheet 3, and there is a gap between each tractor 6 and a side wall of the groove, and the area of the tractor 6 is smaller than the area of the radiator 3.
  • the tractor 6 may be a metal conductor of the same material as the metal frame 1 to maintain the metallic appearance of the terminal device.
  • the interval between the tractor 6 and the radiator 3 may be 0.2 mm, and the interval between the radiator 3 and the bottom of the groove may be optional. 0.4mm.
  • the area of the tractor 6 is smaller than the area of the radiating sheet 3, so that the tractor 6 can perform better traction on the signal radiated by the radiating sheet 3.
  • FIGS. 6 to 9 are schematic structural diagrams of one side of a metal frame provided by some embodiments of the present disclosure. As shown in FIGS. 6 and 7, a groove is provided on the third side 13 of the metal frame 1, and the radiation sheet 3 is provided between the tractor 6 and the bottom of the groove.
  • FIG. 8 shows the structure after the shield 6 of FIG. 7 is removed.
  • the first feed point 31 and the second feed point 32 may be electrically connected to the feed to receive the first feed signal and the second feed signal.
  • a groove is provided on the third side 13 of the metal frame 1, and the radiation sheet 3 is disposed between the tractor 6 and the bottom of the groove.
  • One of the two antenna feeding points on the radiating sheet 3 receives the first feed signal 7 and the other receives the second feed signal 8.
  • FIG. 10 is a schematic diagram of a return loss of a single millimeter wave antenna provided by some embodiments of the present disclosure.
  • a single millimeter wave antenna includes a radiating sheet 3 and a tractor 6.
  • (S1, 1) is a return loss formed by the feed signal of the first feed signal
  • (S2, 2) is a return loss formed by the feed signal of the second feed signal.
  • the side of the tractor 6 far from the bottom of the groove is flush with the plane on which the outer side wall of the metal frame 1 is located.
  • the side of the tractor 6 far from the bottom of the groove is flush with the plane on which the outer side wall of the metal frame 1 is located, that is, The side of the tractor 6 far from the bottom of the groove is the same plane as the plane on which the outer side wall of the metal frame 1 is located.
  • the shapes of the grooves, the radiation sheet 3 and the tractor 6 are circular or regular polygons.
  • the shape of the groove, the radiation sheet 3, and the tractor 6 is circular or regular polygon, so that different shapes can be set according to actual needs to meet different performances of the millimeter wave antenna. Make terminal equipment have better adaptability. It should be noted that the shapes of the groove, the radiation sheet 3 and the tractor 6 may be the same or different, which is not limited in this embodiment.
  • the shape of the groove, the radiation sheet 3 and the tractor 6 are all square; each gap between the side of the radiation sheet 3 and the side wall of the groove is equal; Each gap between the side of the tractor 6 and the side wall of the groove is equal, so that a better symmetry can be ensured and the appearance can be more beautiful.
  • the side length or the perimeter of the radiation sheet 3 and the tractor 6 are smaller than the side length or the perimeter of the groove, so that the terminal device can have a better appearance. It should be noted that if there is a change in the side length or perimeter of the side wall at different depths of the groove, the side length or perimeter of the radiator 3 and the tractor 6 are both smaller than the minimum side length or perimeter of the groove .
  • the side of the radiation sheet 3 far from the bottom of the groove is flush with the plane on which the outer side wall of the metal frame 1 is located.
  • the side of the radiation sheet 3 far from the bottom of the groove is flush with the plane on which the outer side wall of the metal frame 1 is located.
  • the structure of the millimeter wave antenna is simplified, and the radiation sheet 3 is lifted away from the ground structure where the metal frame 1 is located, so as to improve the efficiency performance of the millimeter wave antenna and the bandwidth of the millimeter wave antenna.
  • this can also make the terminal device have a better appearance.
  • FIG. 3 the side of the radiation sheet 3 far from the bottom of the groove is flush with the plane on which the outer sidewall of the metal frame 1 is located.
  • the at least two grooves are located on the same side of the metal frame 1.
  • the at least two grooves are located on the same side of the metal frame 1, so that the millimeter wave antennas on the same side can form a millimeter wave array antenna, which is convenient for receiving or radiating a millimeter wave signal.
  • at least two grooves located on the same side of the metal frame 1 can also facilitate the setting of multiple grooves.
  • the at least two grooves are arranged along a length direction of the metal frame 1. It can be a single row or multiple rows. It is not limited here, and can be set according to the area of the frame.
  • the at least two grooves are arranged along the length direction of the metal frame 1.
  • the interval between two adjacent millimeter-wave antennas is determined by the performance of the isolation between the adjacent two millimeter-wave antennas and the beam scanning coverage angle of the array antenna.
  • the interval between two adjacent millimeter-wave antennas is determined by the isolation between the two adjacent millimeter-wave antennas and the performance of the beam scanning coverage angle of the array antenna, so that the millimeter-wave signals can be better matched.
  • the feed source, the radiating sheet 3, and the tractor 6 may form a millimeter wave antenna as a whole, and the millimeter wave antenna may implement the function of a millimeter wave antenna.
  • the diameters of the grooves in the depth direction are the same; or the diameters of the grooves in the depth direction are different.
  • the diameter of the groove near the outer wall of the metal frame 1 is smaller than the diameter of the groove far from the outer wall of the metal frame 1.
  • the diameter of the groove in the Y-axis direction varies, that is, on the outer surface of the metal frame 1, the length of the square side is shorter, and the optional length can be 4.6 mm, and the length of the square side is longer in the interior of the groove.
  • Optional can be 5.0mm, which can optimize the metal appearance of the terminal equipment.
  • the side lengths or perimeters of the square structures of the radiation sheet 3 and the tractor 6 are smaller than the side lengths or perimeters of the grooves.
  • a terminal device includes a feed source, a metal frame 1, and a radiating sheet; the outer side of the metal frame 1 is provided with at least two grooves, and each groove is provided with two through holes And each groove is provided with a radiating sheet, and the metal frame 1 is grounded; each radiating sheet is provided with two antenna feeding points, and the feeding source is connected to one feeding point through a through hole, and each The antenna feed points in the grooves correspond to the through holes one by one; each radiator is insulated from the groove by a non-conductive material.
  • millimeter-wave antennas constitute a millimeter-wave array antenna of the terminal device, and the metal frame 1 is also a radiator of the non-millimeter-wave communication antenna, thereby saving the space for containing the millimeter-wave antenna and reducing the volume of the terminal device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Control And Other Processes For Unpacking Of Materials (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Undergarments, Swaddling Clothes, Handkerchiefs Or Underwear Materials (AREA)
  • Support Of Aerials (AREA)

Abstract

本公开提供终端设备,该终端设备包括馈源、金属边框和辐射片;所述金属边框的外侧面设置有至少两个凹槽,每个凹槽均设置有两个通孔,且每个凹槽中均设置有辐射片,所述金属边框接地;每个辐射片上设置有两个天线馈电点,所述馈源通过一个通孔连接至一个馈电点,且每个凹槽内所述天线馈电点与通孔一一对应;每个辐射片通过非导电材料与所述凹槽绝缘。

Description

终端设备
相关申请的交叉引用
本申请主张在2018年9月28日在中国提交的中国专利申请号No.201811142604.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种终端设备。
背景技术
随着通信技术的迅速发展,多天线通讯已经成为终端设备的主流和未来的发展趋势,并且在此过程中,毫米波天线逐渐被引入到终端设备上。相关技术中,毫米波天线一般为一个独立天线模块的形态,从而需要在终端设备内为该独立天线模块设置一个容置空间。这样,使整个终端设备的体积尺寸比较大,导致终端设备的整体竞争力比较低。
发明内容
本公开的一些实施例提供一种终端设备,以解决终端设备内需要为毫米波天线设置容置空间,使整个终端设备的体积尺寸比较大的问题。
为了解决上述技术问题,本公开是这样实现的:
本公开的一些实施例提供了一种终端设备,包括馈源、金属边框和辐射片;所述金属边框的外侧面设置有至少两个凹槽,每个凹槽均设置有两个通孔,且每个凹槽中均设置有辐射片,所述金属边框接地;每个辐射片上设置有两个天线馈电点,所述馈源通过一个通孔连接至一个馈电点,且每个凹槽内所述天线馈电点与通孔一一对应;每个辐射片通过非导电材料与所述凹槽绝缘。这样,馈源、至少两个凹槽及其辐射片就相当于终端设备的毫米波阵列天线,金属边框同时也是非毫米波通信天线的辐射体,从而节省了毫米波天线的容置空间,可以减小终端设备的体积,并可更好地支持金属外观的设计,且可与外观金属作为其他天线的方案进行兼容设计,提高终端设备整体 的竞争力。
附图说明
为了更清楚地说明本公开的一些实施例的技术方案,下面将对本公开的一些实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开的一些实施例提供的终端设备的结构示意图;
图2是本公开的一些实施例提供的金属边框一侧边的结构示意图之一;
图3是本公开的一些实施例提供的金属边框一侧边的结构示意图之二;
图4是本公开的一些实施例提供的金属边框一侧边的结构示意图之三;
图5是本公开的一些实施例提供的单个毫米波天线的回波损耗示意图之一;
图6是本公开的一些实施例提供的金属边框一侧边的结构示意图之四;
图7是本公开的一些实施例提供的金属边框一侧边的结构示意图之五;
图8是本公开的一些实施例提供的金属边框一侧边的结构示意图之六;
图9是本公开的一些实施例提供的金属边框一侧边的结构示意图之七;
图10是本公开的一些实施例提供的单个毫米波天线的回波损耗示意图之二。
具体实施方式
下面将结合本公开的一些实施例中的附图,对本公开的一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
参见图1,图1是本公开的一些实施例提供的终端设备的结构示意图,如图1所示,包括馈源、金属边框1和辐射片;所述金属边框1的外侧面设置有至少两个凹槽,每个凹槽均设置有两个通孔,且每个凹槽中均设置有辐 射片,所述金属边框1接地;每个辐射片上设置有两个天线馈电点,所述馈源通过一个通孔连接至一个馈电点,且每个凹槽内天线馈电点与通孔一一对应;每个辐射片通过非导电材料与所述凹槽绝缘。其中馈源为毫米波馈源。
本实施例中,上述金属边框1可以包括第一侧边11、第二侧边12、第三侧边13和第四侧边14,该金属边框1可以是一个首尾相连或者不相连的边框。上述金属边框1接地,可以与终端设备内的地板2电连接,该地板2可以是电路板或者金属中壳等等。上述辐射片可以与金属边框1为同样的金属导体,以维持终端设备的金属外观。
本实施例中,为了更好的理解上述设置方式,请参阅图2至图4。图2至图4均为本公开的一些实施例提供的金属边框一侧边的结构示意图。
首先,可以如图2所示,金属边框1的第三侧边13上开有多个正方形的凹槽,每个凹槽内设置一个辐射片3,该辐射片3与凹槽及馈源的毫米波信号构成毫米波天线,多个毫米波天线形成毫米波阵列天线。辐射片3与金属边框1的凹槽之间使用非导电材料填充,可选的非导电材料介电常数为2.2,损耗角正切为0.0009。
请再参阅图3,图3中所示的辐射片3与凹槽的底部和侧壁均存在间隔,每个凹槽内均填充有非导电材料。请再参阅图4,图4中凹槽的底部设置有两个通孔,用于毫米波天线的馈源信号的接入,并且通孔4可以用于第一馈源信号的接入,通孔5可以用于第二馈源信号的接入。将第一馈源信号和第二馈源信号接入到辐射片3的底部,用于激励毫米波天线产生辐射信号,以支持多发多收(Multiple-Input Multiple-Output,MIMO)的功能。
请再参阅图5,图5为本公开的一些实施例提供的单个毫米波天线的回波损耗示意图。如图5所示,(S1,1)为第一馈源信号的馈电信号形成的回波损耗,(S2,2)为第二馈源信号的馈电信号形成的回波损耗。以(S1,1)的-10dB来计算带宽,能够覆盖26.7-28.5GHz。
本实施例中,金属边框1的外侧面设置有至少两个凹槽,每个凹槽中均设置有辐射片3,每个辐射片分别连接至馈源形成毫米波阵列天线,用于辐射毫米波信号。当第三侧边13上设置有至少两个凹槽时,通信天线可以如图1中的虚线所示区域,通信天线由第三侧边13、部分第二侧边12和部分第四 侧边14组成。当然,除了把至少两个凹槽设置在第三侧边13,第一侧边11、第二侧边12或者第四侧边14亦可以设置至少两个凹槽,对此本实施例不作限定。
这样,可在保有既存的天线(如蜂窝天线与非蜂窝天线),同时兼容5G毫米波的天线的情况下,将原先分立的毫米波天线整合入终端设备内既存的非毫米波天线中以形成天线在天线内(mm-Wave Antenna in non-Wave Antennas,AiA)的解决方案设计,或将原先分立的毫米波天线整合入终端设备既存的金属结构上的解决方案设计,而不需显著增加整体***的尺寸,并且可维持外观的金属设计(如金属环),做到工业设计(Industrial Design,ID)美观,高度对称等。且在高屏占比下,可避免当终端设备正置(即屏幕朝上时)于金属桌时,终端设备背部受金属桌遮挡,也可以避免手握等情况下使毫米波天线性能大幅下降而明显劣化用户无线体验的概率,且天线本身可形成多发多收(即MIMO)的功能。毫米波阵列天线波束扫描时亦可在正反方向上的性能相近。并且,基于终端设备的金属边框设计,而不影响终端设备的金属质感。使用金属边框本身作为毫米波天线的反射器,以获得较高增益。与金属边框作为天线的非毫米波天线相整合为一体,即让毫米天线兼容在金属边框作为天线的非毫米波天线内。
本实施例中,上述终端设备可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等等。
可选的,每个凹槽的两个通孔位于凹槽的底部。
该实施方式中,每个凹槽的两个通孔位于凹槽的底部,便于辐射片3通过较短的路径与馈源电连接,使毫米波天线可以有比较好的性能。
可选的,每个凹槽底部的两个通孔中的其中一个通孔与凹槽底部的中心确定的第一直线与所述金属边框1的长度方向平行,另一个通孔与凹槽底部的中心确定的第二直线与所述金属边框1的宽度方向平行,所述第一直线与所述第二直线垂直;
每个辐射片上两个天线馈电点中的一个天线馈电点与辐射片3中心确定 的第三直线与所述金属边框1的长度方向平行,另一个天线馈电点与辐射片3中心确定的第四直线与所述金属边框1的宽度方向平行,所述第三直线与所述第四直线垂直。
该实施方式中,使用正交馈电方式进行馈电,一方面可以形成多发多收(即MIMO)功能,以提升数据的传输速率。另一方面还可以增加毫米波天线的无线连接能力,减少通信断线的几率,提升通信效果和用户体验。
可选的,所述终端设备还包括牵引器6,每个凹槽中均设置有牵引器6,每个凹槽中的辐射片3设置于牵引器6与凹槽的底部之间,每个牵引器6与辐射片3之间存在间隔,且每个牵引器6与凹槽的侧壁之间存在间隔,所述牵引器6的面积小于所述辐射片3的面积。
该实施方式中,上述牵引器6可以与金属边框1为同材料的金属导体,以维持终端设备的金属外观。对于每个凹槽中的辐射片3和牵引器6,牵引器6与辐射片3之间的间隔可选的可以为0.2mm,辐射片3与凹槽的底部之间的间隔可选的可以为0.4mm。上述牵引器6的面积小于所述辐射片3的面积,从而牵引器6对辐射片3辐射的信号可以进行更好的牵引。
为了更好的理解上述设置方式,可以参阅图6至图9。图6至图9均为本公开的一些实施例提供的金属边框一侧边的结构示意图。如图6和图7所示,金属边框1的第三侧边13上设置有凹槽,且辐射片3设置于牵引器6与凹槽的底部之间。
请再参阅图8,图8表示图7中去掉牵引器6的遮挡之后的结构,辐射片3上存在两个天线馈电点,如图第一馈电点31和第二馈电点32所示。其中第一馈电点31、第二馈电点32可以与馈源电连接,以接收第一馈源信号和第二馈源信号。
请再参阅图9,金属边框1的第三侧边13上设置有凹槽,且辐射片3设置于牵引器6与凹槽的底部之间。辐射片3上存在两个天线馈电点中一个接收第一馈源信号7,另一个接收第二馈源信号8。
请再参阅图10,图10为本公开的一些实施例提供的单个毫米波天线的回波损耗示意图。此时单个毫米波天线包括辐射片3和牵引器6。如图10所示,(S1,1)为第一馈源信号的馈电信号形成的回波损耗,(S2,2)为第二 馈源信号的馈电信号形成的回波损耗。以(S1,1)的-10dB来计算带宽,能够覆盖27.35-28.5GHz。
可选的,所述牵引器6远离所述凹槽底部的一面,与所述金属边框1外侧壁所在的平面平齐。
该实施方式中,为了更好的理解上述设置方式,依旧可以参阅图9,所述牵引器6远离所述凹槽底部的一面,与所述金属边框1外侧壁所在的平面平齐,即所述牵引器6远离所述凹槽底部的一面,与所述金属边框1外侧壁所在的平面为同一个平面。通过这种设置方式,可以保证终端设备较好的外观。
可选的,所述凹槽、所述辐射片3和所述牵引器6的形状为圆形或者正多边形。
该实施方式中,所述凹槽、所述辐射片3和所述牵引器6的形状为圆形或者正多边形,从而可以根据实际的需要设置不同的形状,以满足毫米波天线不同的性能,使终端设备具有更好的适应性。需要说明的是,所述凹槽、所述辐射片3和所述牵引器6的形状可以相同,也可以不同,对此本实施方式不作限定。
可选的,所述凹槽、所述辐射片3和所述牵引器6的形状均为正方形;所述辐射片3的侧边与所述凹槽侧壁之间的各个间隙均相等;所述牵引器6的侧边与所述凹槽侧壁之间的各个间隙均相等,从而可以保证比较好的对称性,亦能使外观比较美观。
并且,上述辐射片3和所述牵引器6的边长或周长均小于所述凹槽的边长或周长,使终端设备可以有一个比较好的外观。需要说明的是,如果凹槽不同深度侧壁的边长或周长若存在变化,此时所述辐射片3和所述牵引器6的边长或周长均小于所述凹槽的最小边长或周长。
可选的,所述辐射片3远离所述凹槽底部的一面,与所述金属边框1外侧壁所在的平面平齐。
该实施方式中,所述辐射片3远离所述凹槽底部的一面,与所述金属边框1外侧壁所在的平面平齐。这样,使毫米波天线结构简单,同时将辐射片 3抬高远离金属边框1所在的地结构,以提升毫米波天线效率性能和毫米波天线带宽。当然,这样还可以使终端设备具有较好的外观。为了更好的理解上述设置方式,亦可以参阅图3,图3中,所述辐射片3远离所述凹槽底部的一面,与所述金属边框1外侧壁所在的平面平齐。
可选的,所述至少两个凹槽位于所述金属边框1的同一侧边。
该实施方式中,上述至少两个凹槽位于所述金属边框1的同一侧边,从而,同一侧边的毫米波天线可以形成毫米波阵列天线,便于接收或者辐射毫米波信号。并且,至少两个凹槽位于所述金属边框1的同一侧边亦可以方便多个凹槽的设置。
可选的,所述至少两个凹槽沿所述金属边框1的长度方向排布。可以是一排,也可以是多排。此处不作限定,可以根据边框的面积而设置。
该实施方式中,上述至少两个凹槽沿所述金属边框1的长度方向排布,首先,可以便于在金属边框1上设置多个凹槽从而形成毫米波阵列天线。
可选的,相邻两个毫米波天线之间的间隔,由相邻两毫米波天线之间的隔离度与阵列天线的波束扫描覆盖角度的性能确定。
该实施方式中,相邻两个毫米波天线之间的间隔,由相邻两毫米波天线之间的隔离度与阵列天线的波束扫描覆盖角度的性能确定,从而可以更好的匹配毫米波信号进行工作。需要说明的是,馈源、辐射片3和牵引器6整体可以形成一个毫米波天线,该毫米波天线可以实现毫米波天线的功能。
可选的,所述凹槽沿深度方向的口径相同;或凹槽沿深度方向的口径不同。一种情形,所述凹槽靠近所述金属边框1外壁的口径,小于所述凹槽远离所述金属边框1外壁的口径。
该实施方式中,为了更好的理解上述设置方式,可以参阅图7。图7中,凹槽在Y轴方向口径大小有变化,即在金属边框1的外表面,方形的边长较短,可选的可以为4.6mm,在凹槽的内部方形的边长较长,可选的可以为5.0mm,这样可以优化终端设备的金属外观。辐射片3和牵引器6的方形结构边长或周长均小于凹槽的边长或周长。
本公开的一些实施例的一种终端设备,包括馈源、金属边框1和辐射片;所述金属边框1的外侧面设置有至少两个凹槽,每个凹槽均设置有两个通孔, 且每个凹槽中均设置有辐射片,所述金属边框1接地;每个辐射片上设置有两个天线馈电点,所述馈源通过一个通孔连接至一个馈电点,且每个凹槽内所述天线馈电点与通孔一一对应;每个辐射片通过非导电材料与所述凹槽绝缘。多个毫米波天线构成了终端设备的毫米波阵列天线,金属边框1同时也是非毫米波通信天线的辐射体,从而节省了毫米波天线的容置空间,可以减小终端设备的体积,并可更好地支持金属外观的设计,且可与外观金属作为其他天线的方案进行兼容设计,提高终端设备整体的竞争力。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (12)

  1. 一种终端设备,包括馈源、金属边框和辐射片;所述金属边框的外侧面设置有至少两个凹槽,每个凹槽均设置有两个通孔,且每个凹槽中均设置有辐射片,所述金属边框接地;每个辐射片上设置有两个天线馈电点,所述馈源通过一个通孔连接至一个馈电点,且每个凹槽内所述天线馈电点与通孔一一对应;每个辐射片通过非导电材料与所述凹槽绝缘。
  2. 根据权利要求1所述的终端设备,其中,每个凹槽的两个通孔位于凹槽的底部。
  3. 根据权利要求2所述的终端设备,其中,每个凹槽底部的两个通孔中的其中一个通孔与凹槽底部的中心确定的第一直线与所述金属边框的长度方向平行,另一个通孔与凹槽底部的中心确定的第二直线与所述金属边框的宽度方向平行,所述第一直线与所述第二直线垂直;
    每个辐射片上两个天线馈电点中的一个天线馈电点与辐射片中心确定的第三直线与所述金属边框的长度方向平行,另一个天线馈电点与辐射片中心确定的第四直线与所述金属边框的宽度方向平行,所述第三直线与所述第四直线垂直。
  4. 根据权利要求3所述的终端设备,还包括牵引器,每个凹槽中均设置有牵引器,每个凹槽中的辐射片设置于牵引器与凹槽的底部之间,每个牵引器与辐射片之间存在间隔,且每个牵引器与凹槽的侧壁之间存在间隔,所述牵引器的面积小于所述辐射片的面积。
  5. 根据权利要求4所述的终端设备,其中,所述牵引器远离所述凹槽底部的一面,与所述金属边框外侧壁所在的平面平齐。
  6. 根据权利要求4所述的终端设备,其中,所述凹槽、所述辐射片和所述牵引器的形状为圆形或者正多边形。
  7. 根据权利要求6所述的终端设备,其中,所述凹槽、所述辐射片和所述牵引器的形状均为正方形;所述辐射片的侧边与所述凹槽侧壁之间的各个间隙均相等;所述牵引器的侧边与所述凹槽侧壁之间的各个间隙均相等。
  8. 根据权利要求1所述的终端设备,其中,所述辐射片远离所述凹槽底 部的一面,与所述金属边框外侧壁所在的平面平齐。
  9. 根据权利要求1所述的终端设备,其中,所述至少两个凹槽位于所述金属边框的同一侧边。
  10. 根据权利要求1至9中任一项所述的终端设备,其中,所述至少两个凹槽沿所述金属边框的长度方向排布。
  11. 根据权利要求1至9中任一项所述的终端设备,其中,所述凹槽靠近所述金属边框外壁的口径,小于所述凹槽远离所述金属边框外壁的口径。
  12. 根据权利要求1所述的终端设备,其中,所述馈源为毫米波馈源。
PCT/CN2019/101510 2018-09-28 2019-08-20 终端设备 WO2020063194A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217012485A KR102535335B1 (ko) 2018-09-28 2019-08-20 단말 기기
ES19867410T ES2952007T3 (es) 2018-09-28 2019-08-20 Dispositivo terminal
EP19867410.3A EP3859879B1 (en) 2018-09-28 2019-08-20 Terminal device
US17/214,613 US11695210B2 (en) 2018-09-28 2021-03-26 Terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811142604.4A CN109346829B (zh) 2018-09-28 2018-09-28 一种终端设备
CN201811142604.4 2018-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/214,613 Continuation US11695210B2 (en) 2018-09-28 2021-03-26 Terminal device

Publications (1)

Publication Number Publication Date
WO2020063194A1 true WO2020063194A1 (zh) 2020-04-02

Family

ID=65307218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101510 WO2020063194A1 (zh) 2018-09-28 2019-08-20 终端设备

Country Status (6)

Country Link
US (1) US11695210B2 (zh)
EP (1) EP3859879B1 (zh)
KR (1) KR102535335B1 (zh)
CN (1) CN109346829B (zh)
ES (1) ES2952007T3 (zh)
WO (1) WO2020063194A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI769107B (zh) * 2021-09-28 2022-06-21 大陸商深圳市睿德通訊科技有限公司 柔性天線結構及電子設備
TWI778916B (zh) * 2021-11-16 2022-09-21 大陸商深圳市睿德通訊科技有限公司 天線裝置及電子設備
TWI792268B (zh) * 2020-04-30 2023-02-11 大陸商深圳市睿德通訊科技有限公司 毫米波與非毫米波天線整合模組系統和電子設備

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109346829B (zh) * 2018-09-28 2020-10-02 维沃移动通信有限公司 一种终端设备
CN110034391A (zh) * 2019-04-26 2019-07-19 维沃移动通信有限公司 一种终端设备
CN110233328A (zh) * 2019-05-29 2019-09-13 维沃移动通信有限公司 移动终端
CN112151938A (zh) * 2019-06-28 2020-12-29 深圳市超捷通讯有限公司 天线结构及具有所述天线结构的无线通信装置
WO2021000073A1 (zh) * 2019-06-29 2021-01-07 瑞声声学科技(深圳)有限公司 天线振子、天线阵列和基站
CN112216954B (zh) * 2019-07-11 2023-06-30 北京小米移动软件有限公司 电子设备及其安装方法
CN112310655B (zh) * 2019-07-31 2022-12-20 Oppo广东移动通信有限公司 电子设备
CN110518340B (zh) * 2019-08-30 2022-01-11 维沃移动通信有限公司 一种天线单元及终端设备
CN110635244B (zh) * 2019-09-06 2022-07-15 维沃移动通信有限公司 一种天线和电子设备
WO2021065818A1 (ja) 2019-10-02 2021-04-08 パナソニックIpマネジメント株式会社 アンテナ装置及び車両
CN110649384B (zh) * 2019-10-30 2021-04-23 维沃移动通信有限公司 一种天线及电子设备
CN112751169B (zh) * 2019-10-31 2023-11-21 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN110931944A (zh) * 2019-12-24 2020-03-27 天通凯美微电子有限公司 一种集成毫米波阵列天线的电子设备
CN112216958B (zh) * 2020-09-30 2022-11-18 维沃移动通信有限公司 电子设备
EP4216369A4 (en) 2021-01-20 2024-04-24 Samsung Electronics Co., Ltd. ANTENNA AND ELECTRONIC DEVICE INCLUDING SAME

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070132642A1 (en) * 2005-12-08 2007-06-14 Elta Systems Ltd. Patch antenna element and application thereof in a phased array antenna
CN2938452Y (zh) * 2006-05-18 2007-08-22 兰州大学 背腔式微带天线
JP2007235592A (ja) * 2006-03-01 2007-09-13 Mitsubishi Electric Corp アンテナ装置
CN201910487U (zh) * 2010-12-10 2011-07-27 中国电子科技集团公司第三十八研究所 宽带双极化背腔式双层微带贴片天线
EP2477275A1 (en) * 2011-01-12 2012-07-18 Alcatel Lucent Patch antenna
CN203481374U (zh) * 2013-07-11 2014-03-12 中兴通讯股份有限公司 终端
US20150188239A1 (en) * 2012-06-08 2015-07-02 Ucl Business Plc Antenna configuration for use in a mobile communication device
CN109346829A (zh) * 2018-09-28 2019-02-15 维沃移动通信有限公司 一种终端设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038428A1 (fr) * 2006-09-27 2008-04-03 Renesas Technology Corp. Carte à circuit intégré et son étui
US7541982B2 (en) * 2007-03-05 2009-06-02 Lockheed Martin Corporation Probe fed patch antenna
US20130278468A1 (en) * 2012-04-20 2013-10-24 Wilocity Arrangement of millimeter-wave antennas in electronic devices having a radiation energy blocking casing
US9692126B2 (en) * 2014-05-30 2017-06-27 King Fahd University Of Petroleum And Minerals Millimeter (mm) wave switched beam antenna system
JP6682413B2 (ja) * 2016-09-20 2020-04-15 株式会社Nttドコモ フェーズドアレーアンテナ
CN106921023B (zh) * 2016-10-25 2020-12-11 瑞声科技(新加坡)有限公司 天线装置
CN207199825U (zh) * 2017-06-15 2018-04-06 昆山睿翔讯通通信技术有限公司 一种基于方向图可调的毫米波阵列天线的通信终端
CN206864616U (zh) * 2017-06-22 2018-01-09 昆山睿翔讯通通信技术有限公司 一种基于移动终端金属边框的毫米波阵列天线***
CN107331946B (zh) * 2017-06-22 2019-09-06 昆山睿翔讯通通信技术有限公司 一种基于移动终端金属外壳的毫米波阵列天线***
CN108011182A (zh) * 2017-11-01 2018-05-08 湖北三江航天险峰电子信息有限公司 一种圆极化天线
CN108232470A (zh) * 2017-12-13 2018-06-29 瑞声科技(南京)有限公司 一种天线***和移动终端
CN108400424A (zh) * 2018-03-30 2018-08-14 深圳市中天迅通信技术股份有限公司 一种金属外框智能电视天线

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070132642A1 (en) * 2005-12-08 2007-06-14 Elta Systems Ltd. Patch antenna element and application thereof in a phased array antenna
JP2007235592A (ja) * 2006-03-01 2007-09-13 Mitsubishi Electric Corp アンテナ装置
CN2938452Y (zh) * 2006-05-18 2007-08-22 兰州大学 背腔式微带天线
CN201910487U (zh) * 2010-12-10 2011-07-27 中国电子科技集团公司第三十八研究所 宽带双极化背腔式双层微带贴片天线
EP2477275A1 (en) * 2011-01-12 2012-07-18 Alcatel Lucent Patch antenna
US20150188239A1 (en) * 2012-06-08 2015-07-02 Ucl Business Plc Antenna configuration for use in a mobile communication device
CN203481374U (zh) * 2013-07-11 2014-03-12 中兴通讯股份有限公司 终端
CN109346829A (zh) * 2018-09-28 2019-02-15 维沃移动通信有限公司 一种终端设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792268B (zh) * 2020-04-30 2023-02-11 大陸商深圳市睿德通訊科技有限公司 毫米波與非毫米波天線整合模組系統和電子設備
TWI769107B (zh) * 2021-09-28 2022-06-21 大陸商深圳市睿德通訊科技有限公司 柔性天線結構及電子設備
TWI778916B (zh) * 2021-11-16 2022-09-21 大陸商深圳市睿德通訊科技有限公司 天線裝置及電子設備

Also Published As

Publication number Publication date
KR20210060607A (ko) 2021-05-26
EP3859879A4 (en) 2021-11-10
EP3859879A1 (en) 2021-08-04
US11695210B2 (en) 2023-07-04
KR102535335B1 (ko) 2023-05-26
CN109346829B (zh) 2020-10-02
ES2952007T3 (es) 2023-10-26
EP3859879B1 (en) 2023-07-12
CN109346829A (zh) 2019-02-15
US20210218143A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
WO2020063194A1 (zh) 终端设备
WO2020063196A1 (zh) 终端设备
US10135149B2 (en) Phased array for millimeter-wave mobile handsets and other devices
US9742070B2 (en) Open end antenna, antenna array, and related system and method
WO2020216187A1 (zh) 高度集成天线设计的无线终端设备
TWI509888B (zh) 指向性天線及智慧型天線系統
KR102505800B1 (ko) 누설파 위상 어레이 안테나를 포함하는 무선 통신 장치
JP7153133B2 (ja) 端末装置用アンテナ
WO2019144739A1 (zh) 一种双极化天线、射频前端装置和通信设备
US20210320394A1 (en) Antenna structure and high-frequency wireless communications terminal
WO2021104191A1 (zh) 天线单元及电子设备
EP3828998B1 (en) Terminal device
CN110112561B (zh) 一种单极化天线
US11539145B2 (en) Dual-polarized antenna
EP3852195B1 (en) Terminal device antenna
WO2020134448A1 (zh) 一种天线单元、天线阵列和基站
WO2020135171A1 (zh) 天线结构及终端
WO2020020013A1 (zh) 毫米波无线终端设备
CN111463582A (zh) 天线模组及终端
WO2021213182A1 (zh) 一种电子设备及天线装置
CN209804905U (zh) 一种双极化天线
CN209913031U (zh) 一种单极化天线
KR20150053098A (ko) 이중편파 다이폴 안테나 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217012485

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019867410

Country of ref document: EP

Effective date: 20210428