WO2021147438A1 - 具有高隔离度和低交叉极化电平的天线、基站和终端 - Google Patents

具有高隔离度和低交叉极化电平的天线、基站和终端 Download PDF

Info

Publication number
WO2021147438A1
WO2021147438A1 PCT/CN2020/125207 CN2020125207W WO2021147438A1 WO 2021147438 A1 WO2021147438 A1 WO 2021147438A1 CN 2020125207 W CN2020125207 W CN 2020125207W WO 2021147438 A1 WO2021147438 A1 WO 2021147438A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
area
slot
layer
polarization level
Prior art date
Application number
PCT/CN2020/125207
Other languages
English (en)
French (fr)
Inventor
王咏超
杨晓强
缑城
彭杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/794,535 priority Critical patent/US20230084643A1/en
Priority to EP20915214.9A priority patent/EP4087058A4/en
Publication of WO2021147438A1 publication Critical patent/WO2021147438A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/001Crossed polarisation dual antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0478Substantially flat resonant element parallel to ground plane, e.g. patch antenna with means for suppressing spurious modes, e.g. cross polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 

Definitions

  • This application relates to the field of communication technology, and in particular to an antenna, base station, and terminal with high isolation and low cross-polarization level.
  • dual-polarized antennas have become research hotspots due to their low call loss and interference, low requirements for erection and installation, and no need for land acquisition to build towers.
  • dual-polarized antennas will produce cross-polarization when in use, which will have a negative impact on the transmit power and received signal-to-noise ratio of the communication system.
  • the isolation of dual-polarized antennas often deteriorates, which reduces the radiated energy of the antenna and is not conducive to signal propagation.
  • the purpose of the embodiments of the present application is to provide an antenna with high isolation and low cross-polarization level, which can effectively reduce the cross-polarization level and at the same time significantly improve its isolation.
  • the first aspect provide an antenna with high isolation and low cross-polarization level, including at least one radiation layer, a feed layer, and an aperture coupling layer arranged between the radiation layer and the feed layer, and the aperture coupling layer It includes a metal sheet.
  • the metal sheet is provided with a first feeding slot, a second feeding slot and a middle slot.
  • the middle slot is located between the first feeding slot and the second feeding slot, and is located in the weak electric field area of the metal sheet .
  • an intermediate slot is opened between the first feeding slot and the second feeding slot of the metal sheet, so that the existence of the intermediate slot can change the boundary conditions of the antenna without changing the antenna's radiation electric field condition.
  • the current generated in the cross-polarization direction on the antenna is weakened, thereby reducing the cross-polarization level, and on the other hand, the energy coupling phenomenon of the antenna is effectively weakened, thereby significantly improving the isolation of the antenna.
  • the shape of the metal sheet is a polygon with a diagonal line
  • the first feeding slot and the second feeding slot are respectively formed on opposite sides of the diagonal line
  • the middle slot is distributed along the diagonal line.
  • the first feeding slot and the second feeding slot are symmetrically arranged with respect to the diagonal.
  • the number of the intermediate slits is multiple, and they are arranged at intervals, and each intermediate slit is distributed along a diagonal line and is located in a weak electric field area. Among them, the length of each intermediate gap remains consistent or inconsistent.
  • the weak electric field region includes a first region with a relatively high electric field strength and a second region with a relatively low electric field strength.
  • the first region and the second region are distributed along a diagonal line, and the middle gap is located in the first region and/or Within the second area.
  • the number of intermediate slits in the first area and the second area may be the same or different.
  • the opening direction of the middle slit may be opened along the diagonal direction; or, the opening direction of the middle slit may be opened along the length direction of the first area or the second area; or, the opening direction of the middle slit may be along the first area or The second area is opened in the width direction; or, the middle gap is irregularly opened in the first area or the second area.
  • the intermediate gap includes a first gap and a second gap, and the first gap and the second gap are distributed in the first area and/or the second area at intervals.
  • the first gap and the second gap may be both distributed in the first area and the second area, or the first gap and the second gap may be separately distributed in the first area or the second area.
  • the contour of the middle gap is rectangular, circular, elliptical or irregular.
  • the contour of the middle gap may match the contour of the first area and/or the second area.
  • the number of radiating layers is two, both radiating layers include a first dielectric layer and a radiating patch, the two first dielectric layers and the two radiating patches are overlapped, and the first of the next layer
  • the dielectric layer is arranged on the metal sheet.
  • the first dielectric layer is a PCB board layer, and the corresponding radiation patch is attached to the first dielectric layer.
  • a parasitic patch is further provided on the upper part of the radiating layer away from the aperture coupling layer, and a second dielectric layer is formed between the parasitic patch and the radiating patch.
  • the parasitic patch and the corresponding radiating patch are arranged at intervals, and a second dielectric layer is filled between the second parasitic patch and the corresponding radiating patch.
  • the aperture coupling layer further includes a third dielectric layer, and the metal sheet is disposed on the third dielectric layer.
  • the feeding layer includes two feeding lines, the two feeding lines are attached to the side of the third dielectric layer away from the aperture coupling layer and respectively corresponding to the first feeding slot and the second feeding slot, and the two feeding lines extend to the first
  • the positions of the edges of the three dielectric layers are all provided with feed ports.
  • the two feeders are arranged symmetrically with respect to the diagonal.
  • the two feeders are arranged perpendicular to each other, and in the direction perpendicular to the feed layer, the two feeders are symmetrically distributed based on the middle slot, and the first and second feeder slots are symmetrically distributed based on the middle slot.
  • the main body parts of the two feeder lines are arranged vertically, and the feeder port parts of the two feeder lines are kept parallel to each other.
  • the feeding layer further includes a fourth dielectric layer, the two feeding lines are both arranged on the fourth dielectric layer, and a metal floor is pasted on the bottom of the fourth dielectric layer.
  • the antenna is a millimeter wave antenna or a submillimeter wave antenna.
  • a base station including the above-mentioned antenna with high isolation and low cross-polarization level.
  • the base station provided by the embodiment of the present application includes the above-mentioned antenna with high isolation and low cross-polarization level, and the above-mentioned antenna can not only ensure its better isolation, but also significantly reduce the cross-polarization power. In this way, the transmission power of the base station is guaranteed, and the received signal-to-noise ratio is effectively improved. At the same time, the radiated energy of the antenna is increased, and the stable propagation of the signal is guaranteed.
  • the third aspect a terminal is provided, including the above-mentioned antenna with high isolation and low cross-polarization level.
  • the terminal provided by the embodiment of the present application includes the above-mentioned antenna with high isolation and low cross-polarization level, the above-mentioned antenna can not only ensure its better isolation, but also significantly reduce the cross-polarization level. In this way, the signal receiving strength of the terminal is ensured, thereby ensuring the stability of the communication connection between the terminal and external devices, and improving the user's product experience.
  • FIG. 1 is a cross-sectional view of an antenna with high isolation and low cross-polarization level provided by an embodiment of the application;
  • FIG 2 is another cross-sectional view of the antenna with high isolation and low cross-polarization level provided by an embodiment of the application;
  • FIG. 3 is a schematic diagram of the exploded structure of the parasitic patch, radiating patch, metal sheet, and feeder of the antenna with high isolation and low cross-polarization level provided by an embodiment of the application;
  • FIG. 4 is a schematic structural diagram of a metal sheet of an antenna with high isolation and low cross-polarization level provided by an embodiment of the application;
  • FIG. 5 is a first structural diagram of a metal sheet of an antenna with high isolation and low cross-polarization level provided by an embodiment of the application;
  • FIG. 6 is a second structural diagram of a metal sheet of an antenna with high isolation and low cross-polarization level provided by an embodiment of the application;
  • FIG. 7 is the third structural schematic diagram of the metal sheet of the antenna with high isolation and low cross polarization level provided by an embodiment of the application;
  • FIG. 8 is a diagram showing the relationship between the return loss and the isolation with frequency of the feed port of the antenna with high isolation and low cross-polarization level provided by an embodiment of the application;
  • FIG. 9 is a diagram of the relationship between the polarization direction and the cross-polarization level of the feed port of the antenna with high isolation and low cross-polarization level provided by an embodiment of the application when it is horizontally polarized;
  • FIG. 10 is a diagram of the relationship between the polarization direction and the cross-polarization level of the feed port of the antenna with high isolation and low cross-polarization level provided by an embodiment of the application when it is vertically polarized.
  • first”, “second”, “third” and “fourth” are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined as “first”, “second”, “third”, and “fourth” may explicitly or implicitly include one or more of these features. In the description of the present application, “multiple” means two or more than two, unless otherwise specifically defined.
  • the terms “installation”, “connection”, “connection”, “setting” and other terms should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • the specific meanings of the above-mentioned terms in this application can be understood according to specific circumstances.
  • the embodiments of the present application provide an antenna with high isolation and low cross-polarization level, which is applied to base stations, especially mobile communication base stations, with high isolation and low cross-polarization.
  • Level antennas include, but are not limited to, dual-polarized antennas or single-polarized antennas, aperture-coupled antennas or probe-fed antennas, etc., and the above-mentioned antennas include, but are not limited to, millimeter wave antennas or sub-millimeter wave antennas.
  • Aperture coupling means that two gaps that are not in contact with each other but have a certain small distance between them are electromagnetically coupled with the antenna by the feeder.
  • Cross polarization refers to the polarization component orthogonal to the main polarization.
  • Isolation refers to the spatial loss caused by the distance between the transmitting and receiving antennas.
  • Tolerance performance refers to the allowable error or deviation range in processing.
  • the above-mentioned antenna includes at least one radiation layer 10, a power feeding layer 30, and an aperture coupling layer 20 disposed between the radiation layer 10 and the power feeding layer 30.
  • the number of the radiation layer 10 is preferably two. Improve the radiated energy of the antenna and ensure the stable propagation of the signal.
  • the aperture coupling layer 20 includes a metal sheet 21, wherein the metal sheet 21 is a copper-clad metal sheet, and the metal sheet 21 is provided with a first power feeding slot 22, a second power feeding slot 23, and a middle slot 24
  • the first feeding slot 22, the second feeding slot 23, and the middle slot 24 can be formed by but not limited to etching.
  • the middle slot 24 is located between the first feeding slot 22 and the second feeding slot 23, and Located in the weak electric field area 211 of the metal sheet 21. It is understandable that the area shown by the dashed line in FIG. 4 is only a general area where the weak electric field is located, and the dashed line boundary in the figure does not constitute a strict limitation on the weak electric field area.
  • the first feeding slot 22 and the second feeding slot 23 form an electromagnetic coupling with the antenna through non-contact feeding, so that the antenna can have a broadband standing wave ratio characteristic.
  • the existence of the intermediate slot 24 can change the boundary of the antenna without changing the radiated electric field of the antenna.
  • the isolation of the first feeding slot 22 and the second feeding slot 23 is achieved, on the one hand, the current generated in the cross-polarization direction on the antenna is weakened, thereby reducing the cross-polarization level, on the other hand, it is also Effectively weaken the energy coupling phenomenon of the antenna, thereby significantly improving the isolation of the antenna.
  • the base station provided by the embodiment of the application includes the above-mentioned antenna with high isolation and low cross-polarization level, and the above-mentioned antenna can have better isolation while significantly reducing the cross-polarization level. In this way, the transmission power of the base station is increased, the received signal-to-noise ratio is effectively improved, and the radiated energy of the antenna is also increased, ensuring the stable propagation of the signal.
  • the embodiment of the present application also provides a terminal, which also includes the above-mentioned antenna with high isolation and low cross-polarization level.
  • the terminal referred to in the embodiment of the present application includes, but is not limited to, cameras, mobile phones, tablet computers, and Wearable devices, in-vehicle devices, augmented reality (AR)/virtual reality (VR) devices, notebook computers, ultra-mobile personal computers (UMPC), netbooks, or personal digital assistants (personal Digital assistant, PDA), etc., the embodiments of this application do not impose any restrictions on the specific types of terminals.
  • the terminal device in the embodiment of the present application is described by taking a mobile phone as an example. It should be understood that it cannot be construed as a limitation of the present application.
  • the terminal provided by the embodiment of the present application taking a mobile phone as an example, includes the above-mentioned antenna with high isolation and low cross-polarization level.
  • the above-mentioned antenna can have better isolation while also significantly reducing the cross-polarization.
  • Polarization level which improves the signal reception strength of the mobile phone, thereby improving the stability of the communication connection between the mobile phone and external devices. In terms of user experience, it improves the call quality and the stability of data transmission, and improves the user experience.
  • Product experience In terms of user experience, it improves the call quality and the stability of data transmission, and improves the user experience.
  • the shape of the metal sheet 21 is a polygon with a diagonal line 212, and the first power feeding slot 22 and the second power feeding slot 23 are respectively formed at the opposite corners.
  • the middle slits 24 are distributed along the diagonal line 212.
  • the first feeding slot 22 and the second feeding slot 23 can achieve a certain symmetry with respect to the middle slot 24, which can further realize the antenna
  • the optimization of the boundary conditions further reduces the current intensity in the cross-polarization direction generated on the antenna, and further reduces the cross-polarization level of the antenna.
  • the first power feeding slot 22 and the second power feeding slot 23 are symmetrically arranged with respect to the diagonal 212.
  • the distances of any group of symmetry points of the first feeding slot 22 and the second feeding slot 23 with respect to the diagonal 212 are equal, so that the distance between the first feeding slot 22 and the second feeding slot 23
  • the boundary conditions tend to be the same, which can further reduce the current intensity in the cross-polarization direction on the antenna.
  • the number of the intermediate slits 24 is multiple, and the intermediate slits 24 are arranged at intervals, and each of the intermediate slits 24 is distributed along the diagonal 212 and is located in the weak electric field region 211.
  • the number of the intermediate slits 24 may be multiple, so that each intermediate slit 24 can be arranged in the weak electric field area 211 distributed along the diagonal 212 in a targeted manner, for example, at a position where the weak electric field area 211 is relatively concentrated, refer to As shown in FIG.
  • multiple middle slits 24 can be arranged corresponding to each weak electric field area 211, and at a position where the weak electric field area 211 is relatively rare, the number of the middle slits 24 can correspond to one or two weak electric field areas 211. In this way, the targeted distribution of the middle slot 24 relative to the weak electric field area 211 is realized.
  • the boundary conditions of the first feeding slot 22 and the second feeding slot 23 are converged, and on the other hand, the antenna is further weakened. The phenomenon of energy coupling, thereby improving the isolation of the antenna.
  • the weak electric field region 211 includes a first region 213 with a relatively high electric field strength and a second region 214 with a relatively low electric field strength.
  • the first region 213 And the second area 214 are distributed along the diagonal 212.
  • the intermediate slit 24 may be located in the first area 213 or the second area 214, or the intermediate slit 24 may be provided in both the first area 213 and the second area 214.
  • one or more intermediate slits 24 may be located in the first area 213 or the second area 214.
  • the energy coupling phenomenon can be realized. It is fully weakened to achieve a significant improvement in the isolation of the antenna and an effective reduction in the cross-polarization level.
  • the plurality of intermediate slits 24 are located in the second region 214 where the electric field strength is relatively weak, the cross-polarization level can be effectively reduced.
  • the opening direction of the intermediate slit 24 in the first area 213 and/or the second area 214 can be along the diagonal 212, or along the first area 213 or the second area.
  • the length direction of the area 214 may be opened along the width direction of the first area 213 or the second area 214, or it may be opened irregularly in the first area 213 or the second area 214.
  • the opening direction of the middle gap 24 can be selected to be opened along a direction that can cover a larger area of the first area 213 and/or the second area 214.
  • one or more intermediate slits 24 may be located in the first area 213 and the second area 214 at the same time, so that the intermediate slits 24 can cover both areas where the weak electric field strength is relatively low and relatively high. , And further effectively take into account the improvement of the isolation of the antenna and the suppression of the cross-polarization level.
  • the length of the middle gap 24 is close to the length of the diagonal line 212.
  • the middle gap 24 is sufficient. It covers most of the area of the weak electric field distributed along the diagonal 212, which further improves the isolation of the antenna and further effectively suppresses the cross-polarization level.
  • the middle gap 24 includes a first gap 241 and a second gap 242, and the first gap 241 and the second gap 242 are distributed in the first area 213 and/or the second area 214 at intervals. Specifically, in order to cover the corresponding first area 213 or the corresponding second area 214 as much as possible, the first slits 241 and the second slits 242 are distributed in the first area 213 and/or the second area 214 at intervals. This can further achieve a significant improvement in the isolation of the antenna and an effective reduction in the cross-polarization level.
  • the middle slot 24 can be further divided into three or more slots according to actual needs.
  • the contour of the middle gap 24 is rectangular, circular, elliptical or irregular.
  • the contour of the middle slit 24 refers to its projected contour relative to the feeding layer 30, and the contour of the middle slit 24 can match the contour of the first area 213 and/or the second area 214.
  • the number of radiating layers 10 is two, and both radiating layers include a first dielectric layer 11 and a radiating patch 12, and two first dielectric layers 11
  • the two radiating patches 12 are overlapped and arranged, and the next first dielectric layer 11 is arranged on the metal sheet 21.
  • the radiating patch 12 can realize the radiation propagation of the antenna signal, and the multiple radiating patches 12 can realize the enhancement processing of the antenna radiation energy, thereby increasing the gain of the antenna.
  • the first dielectric layer 11 can ensure the structural strength of the radiation patch 12 on the one hand, and also provide insulation protection for the radiation patch 12 on the other hand.
  • a parasitic patch 13 is further provided on the upper part of the radiation layer 10 that is away from the aperture coupling layer 20, and a parasitic patch 13 is formed between the parasitic patch 13 and the radiation patch 12.
  • the second dielectric layer 14 Specifically, by setting the parasitic patch 13 on the radiating patch 12, the parasitic patch 13 can form a resonant loop in the antenna. Then, when the resonant frequency of the parasitic patch 13 is close to the resonant frequency of the antenna itself, the antenna The impedance bandwidth can be significantly widened.
  • the number of parasitic patches 13 may be multiple, and by arranging multiple parasitic patches 13, the impedance bandwidth of the antenna can be broadened successively and recursively.
  • the second dielectric layer 14 is a foam layer or an air layer. Specifically, by setting the second dielectric layer 14 as a foam layer or an air layer, the foam layer and the air layer both have a higher dielectric constant and breakdown field strength, which is equivalent to a parasitic paste.
  • An insulating protective layer is arranged between the sheet 13 and the radiation patch 12 to avoid mutual interference between the parasitic patch 13 and the radiation patch 12.
  • the second dielectric layer 14 is a foam layer, so that on the one hand, the foam layer can provide effective support for the parasitic patch 13, and on the other hand, it can also achieve good insulation for the parasitic patch 13 and the corresponding radiation patch 12. protect.
  • the aperture coupling layer 20 further includes a third dielectric layer 25 on which the metal sheet 21 is formed.
  • the metal sheet 21 can be welded and fixed on the third dielectric layer 25, and the third dielectric layer 25 is provided, so as to provide a stable support for the metal sheet 21.
  • the feeding layer 30 includes two feeding lines 31, and the two feeding lines 31 are attached to the side of the third dielectric layer 25 away from the aperture coupling layer 20, and respectively Corresponding to the first power feeding slot 22 and the second power feeding slot 23, and the two feeding lines 31 extend to the edge of the third dielectric layer 25, both of which are provided with a power feeding port 32.
  • two feeders 31 are provided at positions corresponding to the first feeding slot 22 and the second feeding slot 23 to achieve the dual polarization performance of the antenna.
  • the two feeders 31 are arranged perpendicular to each other. Specifically, the main body portions 33 of the two feeders 31 are vertically arranged. In the direction perpendicular to the feed layer 30, the two feeders 31 are symmetrically distributed based on the middle slot 24, and the first and second feed slots 22 and 23 are based on the middle slot. The 24 is symmetrically distributed, and the feed ports 32 of the two feed lines 31 remain parallel, thereby realizing horizontal/vertical dual polarization or plus or minus 45° dual polarization.
  • the feeding layer 30 further includes a fourth dielectric layer 34, and the two feeding lines 31 are both disposed on the fourth dielectric layer 34.
  • a metal floor 35 is attached to the side of the layer 34 away from the feeder 31.
  • the first dielectric layer 11, the third dielectric layer 25, and the fourth dielectric layer 34 are all PCB layers.
  • the antenna can be grounded as a whole, and the static electricity charged by the various components on the antenna can be effectively eliminated.
  • the antenna is a millimeter wave antenna or a submillimeter wave antenna.
  • the three intermediate slits 24 correspond to a first area 213 and two
  • the second area 214 and the total area of the three middle slits 24 cover most of the area along the length of the diagonal line 212 of the metal sheet, in the frequency band of 25.7GHz-30.7GHz, the feedback at the two feed ports 32
  • the wave loss is less than -10dB
  • the isolation is greater than 28dB
  • the horizontal polarization cross polarization level and the vertical polarization cross polarization level are less than 35dB on average.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种具有高隔离度和低交叉极化电平的天线、基站和终端,包括至少一层辐射层、馈电层以及设置于所述辐射层和所述馈电层之间的孔径耦合层,所述孔径耦合层包括金属片,所述金属片开设有第一馈电缝隙、第二馈电缝隙和中间缝隙,所述中间缝隙位于所述第一馈电缝隙和所述第二馈电缝隙之间,并位于所述金属片的弱电场区域内。通过在金属片的第一馈电缝隙和第二馈电缝隙之间开设中间缝隙,这样中间缝隙的存在即可在不改变天线的辐射电场条件下,改变了天线的边界条件,一方面使得在天线上产生交叉极化方向的电流变弱,从而降低了交叉极化电平,另一方面也有效减弱了天线的能量耦合现象,从而显著提升了天线的隔离度。

Description

具有高隔离度和低交叉极化电平的天线、基站和终端
本申请要求于2020年1月22日提交国家知识产权局、申请号为2020100743762、申请名称为“具有高隔离度和低交叉极化电平的天线、基站和终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种具有高隔离度和低交叉极化电平的天线、基站和终端。
背景技术
作为通讯***中最前端的器件,天线性能的好坏直接影响通信***性能。近年来,双极化天线得益于其呼损和干扰小,架设安装要求不高,无需征地建塔等诸多优势而成为研究热点。然而,双极化天线在使用时会产生交叉极化现象,如此会对通信***的发射功率和接收信躁比产生消极影响。同时,双极化天线的隔离度常会出现恶化现象,如此会降低天线的辐射能量,不利于信号的传播。
发明内容
本申请实施例的目的在于提供一种具有高隔离度和低交叉极化电平的天线,该天线能够有效降低交叉极化电平,同时能够显著提升其隔离度。
为实现上述目的,本申请采用的技术方案是:
第一方面:提供一种具有高隔离度和低交叉极化电平的天线,包括至少一层辐射层、馈电层以及设置于辐射层和馈电层之间的孔径耦合层,孔径耦合层包括有金属片,金属片开设有第一馈电缝隙、第二馈电缝隙和中间缝隙,中间缝隙位于第一馈电缝隙和第二馈电缝隙之间,并位于金属片的弱电场区域内。
本申请实施例通过在金属片的第一馈电缝隙和第二馈电缝隙之间开设中间缝隙,这样中间缝隙的存在即可在不改变天线的辐射电场条件下,改变了天线的边界条件,一方面使得在天线上产生交叉极化方向的电流变弱,从而降低了交叉极化电平,另一方面也有效减弱了天线的能量耦合现象,从而显著提升了天线的隔离度。
可选地,金属片的形状为多边形,具有对角线,第一馈电缝隙和第二馈电缝隙分别形成于对角线的相对两侧,中间缝隙沿对角线分布。其中,第一馈电缝隙和第二馈电缝隙相对于对角线呈对称设置。
可选地,中间缝隙的数量为多个,且间隔设置,各中间缝隙均沿对角线分布,且均位于弱电场区域内。其中,各中间缝隙的长度保持一致或不一致。
可选地,弱电场区域包括电场强度相对较高的第一区域和电场强度相对较低的第二区域,第一区域和第二区域沿对角线分布,中间缝隙位于第一区域和/或第二区域内。其中,第一区域和第二区域内中间缝隙的数量可以一致或不一致。
可选地,中间缝隙的开设方向可以是沿对角线方向开设;或者,中间缝隙的开设 方向沿第一区域或第二区域的长度方向开设;或者,中间缝隙的开设方向沿第一区域或第二区域的宽度方向开设;或者,中间缝隙在第一区域或第二区域内不规则开设。
可选地,中间缝隙包括第一缝隙和第二缝隙,第一缝隙和第二缝隙间隔分布于第一区域和/或第二区域内。其中,第一区域和第二区域内可均分布有第一缝隙和第二缝隙,也可以是第一区域或第二区域内单独分布有第一缝隙和第二缝隙。
可选地,中间缝隙的轮廓为矩形、圆形、椭圆形或不规则形状。其中,中间缝隙的轮廓可与第一区域和/或第二区域的轮廓相匹配。
可选地,辐射层的数量为两个,两个辐射层均包括第一介电层和辐射贴片,两第一介电层和两辐射贴片交叠设置,且下一层的第一介电层设置于金属片上。其中,第一介电层为PCB板层,对应的辐射贴片贴设于第一介电层上。
可选地,远离孔径耦合层的辐射层的上部还设置有寄生贴片,寄生贴片和辐射贴片之间形成有第二介电层。其中,寄生贴片和对应的辐射贴片间隔设置,第二寄生贴片和对应的辐射贴片之间填充有第二介电层。
可选地,孔径耦合层还包括第三介电层,金属片设置于第三介电层上。
可选地,馈电层包括两馈线,两馈线贴设于第三介电层远离孔径耦合层的一侧并分别对应第一馈电缝隙和第二馈电缝隙设置,且两馈线延伸至第三介电层的边缘处的位置均开设有馈电端口。其中,两馈线相对于对角线呈对称设置。
可选地,两馈线相互垂直设置,在垂直于馈电层的方向上,两馈线基于中间缝隙对称分布,第一馈电缝隙和第二馈电缝隙基于中间缝隙对称分布。具体地,两馈线的主体部分呈垂直设置,而两馈线的馈电端口部则保持相互平行。
可选地,馈电层还包括第四介电层,两馈线均设置于第四介电层上,第四介电层的底部贴设有金属地板。
可选地,天线为毫米波天线或者亚毫米波天线。
第二方面:提供一种基站,包括有上述的具有高隔离度和低交叉极化电平的天线。
本申请实施例提供的基站,由于包括有上述的具有高隔离度和低交叉极化电平的天线,而上述的天线能够在保证其较佳隔离度的同时,也显著降低了交叉极化电平,这样便保证了基站的发射功率,有效提升了接收信噪比,同时也提高了天线的辐射能量,保证了信号的稳定传播。
第三方面:提供一种终端,包括有上述的具有高隔离度和低交叉极化电平的天线。
本申请实施例提供的终端,由于包括有上述的具有高隔离度和低交叉极化电平的天线,上述的天线能够在保证其较佳隔离度的同时,也显著降低了交叉极化电平,这样便保证了终端的信号接收强度,进而保证了终端和外界设备通讯连接的稳定性,提升了用户的产品体验。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的具有高隔离度和低交叉极化电平的天线的一种剖切视图;
图2为本申请实施例提供的具有高隔离度和低交叉极化电平的天线的另一剖切视图;
图3为本申请实施例提供的具有高隔离度和低交叉极化电平的天线的寄生贴片、辐射贴片、金属片和馈线的***结构示意图;
图4为本申请实施例提供的具有高隔离度和低交叉极化电平的天线的金属片的一种结构示意图;
图5为本申请实施例提供的具有高隔离度和低交叉极化电平的天线的金属片的结构示意图一;
图6为本申请实施例提供的具有高隔离度和低交叉极化电平的天线的金属片的结构示意图二;
图7为本申请实施例提供的具有高隔离度和低交叉极化电平的天线的金属片的结构示意图三;
图8为本申请实施例提供的具有高隔离度和低交叉极化电平的天线的馈电端口的回波损耗和隔离度随频率变化的关系图;
图9为本申请实施例提供的具有高隔离度和低交叉极化电平的天线的馈电端口在水平极化时的极化方向和交叉极化电平的关系图;
图10为本申请实施例提供的具有高隔离度和低交叉极化电平的天线的馈电端口在垂直极化时的极化方向和交叉极化电平的关系图。
其中,图中各附图标记:
10—辐射层                  11—第一介电层             12—辐射贴片
13—寄生贴片                14—第二介电层             20—孔径耦合层
21—金属片                  22—第一馈电缝隙           23—第二馈电缝隙
24—中间缝隙                25—第三介电层             30—馈电层
31—馈线                    32—馈电端口               33—主体部分
34—第四介电层              35—金属地板               211—弱电场区域
212—对角线                 213—第一区域              214—第二区域
241—第一缝隙               242—第二缝隙。
具体实施方式
下面详细描述本申请的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图1~10描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语““垂直”、“水平”、“远离”、等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”、“第三”、“第四”仅用于描述目的,而不能理解为指示 或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”、“第四”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“设置”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
如图1~3所示,本申请实施例提供了一种具有高隔离度和低交叉极化电平的天线,应用于基站,尤其是移动通信基站内,具有高隔离度和低交叉极化电平的天线包括但不限于是双极化天线或单极化天线,孔径耦合天线或探针馈电天线等,且上述的天线包括但不限于是毫米波天线或亚毫米波天线等。
首先,对本申请实施例中设计到的技术术语进行说明:
孔径耦合,是指在两个彼此不接触,但之间具有一定的小距离的缝隙利用馈线形成与天线的电磁耦合。
交叉极化,是指与主极化正交的极化分量。
隔离度,是指收发信天线在间隔距离上产生的空间损耗。
容差性能,是指在加工中所允许的误差或偏差范围。
具体地,上述的天线包括至少一层辐射层10、馈电层30以及设置于辐射层10和馈电层30之间的孔径耦合层20,其中,辐射层10的数量优选为两个,以提升天线的辐射能量,保证信号的稳定传播。参考图3和图4,孔径耦合层20包括有金属片21,其中,金属片21为敷铜金属片,金属片21开设有第一馈电缝隙22、第二馈电缝隙23和中间缝隙24,该第一馈电缝隙22、第二馈电缝隙23和中间缝隙24可以但不限于通过蚀刻的方式形成,中间缝隙24位于第一馈电缝隙22和第二馈电缝隙23之间,并位于金属片21的弱电场区域211内。可以理解的是,图4中虚线所示的区域仅为示意弱电场所在的大致区域,图中虚线边界并不构成对弱电场区域的严格限制。
第一馈电缝隙22和第二馈电缝隙23之间通过无接触馈电来形成与天线间的电磁耦合,如此可使得天线具有宽频带的驻波比特性。而通过在金属片21的第一馈电缝隙22和第二馈电缝隙23之间开设中间缝隙24,这样中间缝隙24的存在即可在不改变天线的辐射电场条件下,改变了天线的边界条件,实现了对第一馈电缝隙22和第二馈电缝隙23的隔离,一方面使得在天线上产生交叉极化方向的电流变弱,从而降低了交叉极化电平,另一方面也有效减弱了天线的能量耦合现象,从而显著提升了天线的隔离度。
本申请实施例提供的基站,由于包括有上述的具有高隔离度和低交叉极化电平的天线,而上述的天线能够在具有较佳隔离度的同时,也显著降低了交叉极化电平,这样便提高了基站的发射功率,有效提升了接收信噪比,同时也提高了天线的辐射能量,保证了信号的稳定传播。
本申请实施例还提供了一种终端,同样包括有上述的具有高隔离度和低交叉极化电平的天线,本申请实施例所称的终端包括但不限于摄像机、手机、平板电脑、可穿 戴设备、车载设备、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、或个人数字助理(personal digital assistant,PDA)等,本申请实施例对终端的具体类型不作任何限制。为了方便描述,在本申请实施例中的终端设备以手机为例进行说明,应理解,不能解释为对本申请的限制。
本申请实施例提供的终端,以手机为例,由于包括有上述的具有高隔离度和低交叉极化电平的天线,上述的天线能够在具有较佳隔离度的同时,也显著降低了交叉极化电平,这样便提高了手机的信号接收强度,进而提升了手机和外界设备通讯连接的稳定性,从用户体验来讲,则提升了其通话质量和数据传输的稳定性,提升了用户的产品体验。
在本申请的另一些实施例中,如图2~4所示,金属片21的形状为多边形,具有对角线212,第一馈电缝隙22和第二馈电缝隙23分别形成于对角线212的相对两侧,中间缝隙24沿对角线212分布。具体地,通过使得中间缝隙24沿对角线212设置,这样便相当于第一馈电缝隙22和第二馈电缝隙23相对于中间缝隙24能够实现一定的对称性,如此可进一步实现对天线边界条件的优化,从而进一步降低了在天线上产生交叉极化方向的电流强度,进一步降低了天线的交叉极化电平。
可选地,第一馈电缝隙22和第二馈电缝隙23相对于对角线212呈对称设置。如此,第一馈电缝隙22和第二馈电缝隙23的任一组对称点相对于对角线212的距离均相等,这样便也使得第一馈电缝隙22和第二馈电缝隙23的边界条件趋于一致,进而可更进一步降低在天线上产生交叉极化方向的电流强度。
在本申请的另一些实施例中,如图4所示,中间缝隙24的数量为多个,且间隔设置,各中间缝隙24均沿对角线212分布,且均位于弱电场区域211内。具体地,中间缝隙24的数量可以为多个,以便于各个中间缝隙24能够有针对性地在沿对角线212分布的弱电场区域211布设,比如在弱电场区域211较为集中的位置,参考图4,中间缝隙24即可对应各个弱电场区域211布设多个,而在弱电场区域211较为稀少的位置,中间缝隙24的数量即可对应弱电场区域211布设一个或两个。这样便实现了中间缝隙24相对于弱电场区域211的针对性分布,一方面实现了第一馈电缝隙22和第二馈电缝隙23的边界条件的趋同性,另一方面也进一步减弱了天线的能量耦合现象,从而提升了天线的隔离度。
在本申请的另一些实施例中,如图4和图5所示,弱电场区域211包括电场强度相对较高的第一区域213和电场强度相对较低的第二区域214,第一区域213和第二区域214沿对角线212分布。中间缝隙24可以位于第一区域213内,也可以位于第二区域214内,也可以在第一区域213和第二区域214内均设置中间缝隙24。
具体地,一个或多个中间缝隙24可位于第一区域213内或第二区域214内,当多个中间缝隙24位于电场强度相对较高的第一区域213内,这样可实现对能量耦合现象的充分减弱,进而实现对天线的隔离度的显著提升和对交叉极化电平的有效降低。而当多个中间缝隙24位于电场强度相对较弱的第二区域214内时,则能够实现对交叉极化电平的有效降低。
如图6所示,可选地,第一区域213和/或第二区域214内的中间缝隙24的开设 方向可以是沿对角线212方向开设,亦可以是沿第一区域213或第二区域214的长度方向开设,亦可以是沿第一区域213或第二区域214的宽度方向开设,还可以是在第一区域213或第二区域214内不规则开设等。而中间缝隙24的开设方可选为沿能够覆盖第一区域213和/或第二区域214的面积较多的方向开设。
可选地,一个或多个中间缝隙24可同时位于第一区域213和第二区域214内,这样中间缝隙24便实现了对弱电场的电场强度相对较低和相对较高的区域的兼顾覆盖,进而进一步有效兼顾了对天线的隔离度的提升和对交叉极化电平的抑制。
可选地,当中间缝隙24的数量为一个时,中间缝隙24的长度接近于对角线212的长度,通过使得中间缝隙24的长度接近于对角线212的长度,这样中间缝隙24即可覆盖于沿对角线212分布的弱电场的大部分区域,如此便进一步提升了天线的隔离度,同时也进一步有效抑制了交叉极化电平。
如图7所示,可选地,中间缝隙24包括第一缝隙241和第二缝隙242,第一缝隙241和第二缝隙242间隔分布于第一区域213和/或第二区域214内。具体地,为尽可能多地覆盖于对应的第一区域213或对应的第二区域214,第一缝隙241和第二缝隙242间隔分布于第一区域213和/或第二区域214内,这样便可进一步实现对天线的隔离度的显著提升和对交叉极化电平的有效降低,当然,根据实际需要,中间缝隙24还可进一步分解为三个或三个以上的缝隙。
可选地,中间缝隙24的轮廓为矩形、圆形、椭圆形或不规则形状。其中,中间缝隙24的轮廓是指其相对于馈电层30的投影轮廓,且中间缝隙24的轮廓可与第一区域213和/或第二区域214的轮廓相匹配。
在本申请的另一些实施例中,如图1所示,辐射层10的数量为两个,两个辐射层均包括第一介电层11和辐射贴片12,两第一介电层11和两辐射贴片12交叠设置,且下一层的第一介电层11设置于金属片21上。具体地,辐射贴片12可实现天线信号的辐射传播,而多个辐射贴片12则可实现对天线辐射能量的增强处理,进而提升天线的增益。同时,通过将辐射贴片12设置于第一介电层11上,这样第一介电层11一方面能够保证辐射贴片12的结构强度,另一方面也为辐射贴片12提供了绝缘保护。
在本申请的另一些实施例中,如图1~3所示,背离孔径耦合层20的辐射层10的上部还设置有寄生贴片13,寄生贴片13和辐射贴片12之间形成有第二介电层14。具体地,通过在辐射贴片12的基础上设置寄生贴片13,这样寄生贴片13可在天线中形成谐振回路,那么当寄生贴片13的谐振频率接近于天线本身的谐振频率时,天线的阻抗带宽便能够得到显著扩宽。可选地,寄生贴片13的数量可为多个,通过设置多个寄生贴片13,可实现逐次递归的拓宽天线的阻抗带宽。
在本申请的另一些实施例中,第二介电层14为泡沫层或空气层。具体地,通过将第二介电层14设定为泡沫层或空气层,这样得益于泡沫层和空气层均具有较高的介电常数和击穿场强,如此便相当于在寄生贴片13和辐射贴片12之间设置了绝缘保护层,避免了寄生贴片13和辐射贴片12之间发生相互干扰。
可选地,第二介电层14为泡沫层,这样一方面泡沫层可以为寄生贴片13提供有效支撑,另一方面还可对寄生贴片13和相应的辐射贴片12实现良好的绝缘保护。
在本申请的另一些实施例中,如图1和图2所示,孔径耦合层20还包括第三介电 层25,金属片21形成于第三介电层25上。具体地,金属片21可焊接固定于第三介电层25上,通过设置第三介电层25,这样便为金属片21提供了稳定支撑。
在本申请的另一些实施例中,如图1~3所示,馈电层30包括两馈线31,两馈线31贴设于第三介电层25远离孔径耦合层20的一侧,并分别对应第一馈电缝隙22和第二馈电缝隙23设置,且两馈线31延伸至第三介电层25的边缘处的位置均开设有馈电端口32。具体地,通过在对应第一馈电缝隙22和第二馈电缝隙23的位置处设置两馈线31,以实现天线的双极化性能。
在本申请的另一些实施例中,如图3所示,两馈线31相互垂直设置。具体地,两馈线31的主体部分33垂直设置,在垂直于馈电层30的方向上,两馈线31基于中间缝隙24对称分布,第一馈电缝隙22和第二馈电缝隙23基于中间缝隙24对称分布,两馈线31的馈电端口32则保持平行,进而实现水平/垂直双极化或正负45°角双极化。
在本申请的另一些实施例中,如图1和图2所示,馈电层30还包括第四介电层34,两馈线31均设置于第四介电层34上,第四介电层34远离馈线31的一侧贴设有金属地板35。具体地,第一介电层11、第三介电层25和第四介电层34均为PCB板层。而通过在第四介电层34的底部贴设金属地板35,这样可实现天线整体的接地,进而可实现对天线上各个部件所带静电的有效消除。可选地,天线为毫米波天线或者亚毫米波天线。
如图8~10所示,在本申请实施例中,当对角线212的角度取45°,且中间缝隙24的数量为三个,三个中间缝隙24分别对应一个第一区域213和两个第二区域214,且三个中间缝隙24的总面积覆盖于金属片沿对角线212长度方向的大部分区域时,在25.7GHz-30.7GHz的频段内,两馈电端口32处的回波损耗小于-10dB,隔离度则均大于28dB,水平极化的交叉极化电平和垂直极化的交叉极化电平均低于35dB。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种具有高隔离度和低交叉极化电平的天线,其特征在于:包括至少一层辐射层、馈电层以及设置于所述辐射层和所述馈电层之间的孔径耦合层,所述孔径耦合层包括金属片,所述金属片开设有第一馈电缝隙、第二馈电缝隙和中间缝隙,所述中间缝隙位于所述第一馈电缝隙和所述第二馈电缝隙之间,并位于所述金属片的弱电场区域内。
  2. 根据权利要求1所述的具有高隔离度和低交叉极化电平的天线,其特征在于:所述金属片的形状为多边形,具有对角线,所述第一馈电缝隙和所述第二馈电缝隙分别形成于所述对角线的相对两侧,所述中间缝隙沿所述对角线分布。
  3. 根据权利要求2所述的具有高隔离度和低交叉极化电平的天线,其特征在于:所述中间缝隙的数量为多个,且间隔设置,各所述中间缝隙均沿所述对角线分布,且均位于所述弱电场区域内。
  4. 根据权利要求2所述的具有高隔离度和低交叉极化电平的天线,其特征在于:所述弱电场区域包括电场强度相对较高的第一区域和电场强度相对较低的第二区域,所述第一区域和所述第二区域沿所述对角线分布,所述中间缝隙位于所述第一区域和/或所述第二区域内。
  5. 根据权利要求4所述的具有高隔离度和低交叉极化电平的天线,其特征在于:所述中间缝隙沿所述对角线方向开设;
    或者,所述中间缝隙的开设方向沿所述第一区域或所述第二区域的长度方向开设;
    或者,所述中间缝隙的开设方向沿所述第一区域或所述第二区域的宽度方向开设;
    或者,所述中间缝隙在所述第一区域或所述第二区域内不规则开设。
  6. 根据权利要求4所述的具有高隔离度和低交叉极化电平的天线,其特征在于:所述中间缝隙包括第一缝隙和第二缝隙,所述第一缝隙和所述第二缝隙间隔分布于所述第一区域和/或所述第二区域内。
  7. 根据权利要求1所述的具有高隔离度和低交叉极化电平的天线,其特征在于:所述中间缝隙的轮廓为矩形、圆形、椭圆形或不规则形状。
  8. 根据权利要求1~7任一项所述的具有高隔离度和低交叉极化电平的天线,其特征在于:所述辐射层的数量为两个,两个所述辐射层均包括第一介电层和辐射贴片,两所述第一介电层和两所述辐射贴片交叠设置,且下一层所述第一介电层设置于所述金属片上。
  9. 根据权利要求8所述的具有高隔离度和低交叉极化电平的天线,其特征在于:远离所述孔径耦合层的所述辐射贴片的一侧还设置有寄生贴片,所述寄生贴片和所述辐射贴片之间形成有第二介电层。
  10. 根据权利要求1~7任一项所述的具有高隔离度和低交叉极化电平的天线,其特征在于:所述孔径耦合层还包括第三介电层,所述金属片设置于所述第三介电层上。
  11. 根据权利要求10所述的具有高隔离度和低交叉极化电平的天线,其特征在于:所述馈电层包括两馈线,两所述馈线贴设于所述第三介电层远离所述孔径耦合层的一侧并分别对应所述第一馈电缝隙和所述第二馈电缝隙设置,且两所述馈线延伸至所述 第三介电层的边缘处的位置均开设有馈电端口。
  12. 根据权利要求11所述的具有高隔离度和低交叉极化电平的天线,其特征在于:两所述馈线相互垂直设置,在垂直于所述馈电层的方向上,两所述馈线基于所述中间缝隙对称分布,所述第一馈电缝隙和所述第二馈电缝隙基于所述中间缝隙对称分布。
  13. 根据权利要求11所述的具有高隔离度和低交叉极化电平的天线,其特征在于:所述馈电层还包括第四介电层,两所述馈线均设置于所述第四介电层上,所述第四介电层远离所述馈线的一侧贴设有金属地板。
  14. 根据权利要求1~7任一项所述的具有高隔离度和低交叉极化电平的天线,其特征在于:所述天线为毫米波天线或者亚毫米波天线。
  15. 一种基站,其特征在于:包括有权利要求1~14任一项所述的具有高隔离度和低交叉极化电平的天线。
  16. 一种终端,其特征在于:包括有权利要求1~14任一项所述的具有高隔离度和低交叉极化电平的天线。
PCT/CN2020/125207 2020-01-22 2020-10-30 具有高隔离度和低交叉极化电平的天线、基站和终端 WO2021147438A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/794,535 US20230084643A1 (en) 2020-01-22 2020-10-30 Antenna having high isolation and low cross-polarization level, base station, and terminal
EP20915214.9A EP4087058A4 (en) 2020-01-22 2020-10-30 HIGH ISOLATION AND LOW CROSS POLARIZATION LEVEL ANTENNA, BASE STATION AND TERMINAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010074376.2 2020-01-22
CN202010074376.2A CN113161720B (zh) 2020-01-22 2020-01-22 具有高隔离度和低交叉极化电平的天线、基站和终端

Publications (1)

Publication Number Publication Date
WO2021147438A1 true WO2021147438A1 (zh) 2021-07-29

Family

ID=76881632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125207 WO2021147438A1 (zh) 2020-01-22 2020-10-30 具有高隔离度和低交叉极化电平的天线、基站和终端

Country Status (4)

Country Link
US (1) US20230084643A1 (zh)
EP (1) EP4087058A4 (zh)
CN (1) CN113161720B (zh)
WO (1) WO2021147438A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117413437A (zh) * 2022-05-13 2024-01-16 京东方科技集团股份有限公司 天线及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2124292A2 (en) * 2004-09-09 2009-11-25 Raytheon Company Reflect antenna
CN203406415U (zh) * 2013-05-14 2014-01-22 中国人民解放军空军工程大学 变极化平板天线单元
CN106898871A (zh) * 2017-01-22 2017-06-27 深圳市景程信息科技有限公司 具有双极化性能的孔径耦合馈电的宽带贴片天线
US20180034147A1 (en) * 2015-01-06 2018-02-01 Kabushiki Kaisha Toshiba Dual-polarized antenna
CN110137672A (zh) * 2019-04-01 2019-08-16 华为技术有限公司 一种集边射和端射于一体的波束扫描天线阵列

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19815003A1 (de) * 1998-04-03 1999-10-14 Bosch Gmbh Robert Dual polarisiertes Antennenelement
JP2009188895A (ja) * 2008-02-08 2009-08-20 Mitsubishi Electric Corp アンテナ装置
TWI533513B (zh) * 2014-03-04 2016-05-11 啟碁科技股份有限公司 平板雙極化天線
CN107039761A (zh) * 2017-04-28 2017-08-11 上海斐讯数据通信技术有限公司 一种双极化天线
CN207165756U (zh) * 2017-08-29 2018-03-30 罗森伯格技术(昆山)有限公司 一种双极化天线辐射单元
US11063344B2 (en) * 2018-02-20 2021-07-13 Samsung Electronics Co., Ltd. High gain and large bandwidth antenna incorporating a built-in differential feeding scheme
KR102049926B1 (ko) * 2018-12-07 2019-11-28 연세대학교 산학협력단 원형 편파 슬롯 안테나
CN110048224B (zh) * 2019-03-28 2021-05-11 Oppo广东移动通信有限公司 天线模组和电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2124292A2 (en) * 2004-09-09 2009-11-25 Raytheon Company Reflect antenna
CN203406415U (zh) * 2013-05-14 2014-01-22 中国人民解放军空军工程大学 变极化平板天线单元
US20180034147A1 (en) * 2015-01-06 2018-02-01 Kabushiki Kaisha Toshiba Dual-polarized antenna
CN106898871A (zh) * 2017-01-22 2017-06-27 深圳市景程信息科技有限公司 具有双极化性能的孔径耦合馈电的宽带贴片天线
CN110137672A (zh) * 2019-04-01 2019-08-16 华为技术有限公司 一种集边射和端射于一体的波束扫描天线阵列

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4087058A4

Also Published As

Publication number Publication date
EP4087058A1 (en) 2022-11-09
EP4087058A4 (en) 2023-06-21
CN113161720B (zh) 2024-01-30
CN113161720A (zh) 2021-07-23
US20230084643A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
EP3975337A1 (en) Antenna unit and terminal device
EP3098903B1 (en) Dual-polarized antenna and antenna array
WO2021104191A1 (zh) 天线单元及电子设备
US20220239004A1 (en) Antenna Apparatus and Mobile Terminal
WO2022179324A1 (zh) 天线装置、壳体及电子设备
US11962099B2 (en) Antenna structure and high-frequency multi-band wireless communication terminal
US11196143B2 (en) Antenna element, antenna array and base station
WO2021083214A1 (zh) 天线单元及电子设备
CN112290193B (zh) 毫米波模组、电子设备及毫米波模组的调节方法
WO2022083276A1 (zh) 天线阵列组件及电子设备
WO2021083223A1 (zh) 天线单元及电子设备
WO2023061128A1 (zh) 谐振腔天线及电子设备
US20220123470A1 (en) Compact patch and dipole interleaved array antenna
WO2021147438A1 (zh) 具有高隔离度和低交叉极化电平的天线、基站和终端
WO2021083055A1 (zh) 一种天线组件及通信设备
CN111987436A (zh) 一种5g频段宽波束双极化基站天线、移动通信***
WO2021083213A1 (zh) 天线单元及电子设备
WO2021083218A1 (zh) 天线单元及电子设备
US20240106119A1 (en) Antenna and Electronic Device
WO2021083220A1 (zh) 天线单元及电子设备
WO2021083212A1 (zh) 天线单元及电子设备
CN110600858A (zh) 一种天线单元及终端设备
CN113013595A (zh) 天线装置、壳体及电子设备
CN110600869A (zh) 一种微带天线及移动终端
WO2024021780A1 (zh) 一种天线和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020915214

Country of ref document: EP

Effective date: 20220801

NENP Non-entry into the national phase

Ref country code: DE