WO2020134222A1 - 信息传输方法、终端及网络设备 - Google Patents

信息传输方法、终端及网络设备 Download PDF

Info

Publication number
WO2020134222A1
WO2020134222A1 PCT/CN2019/106942 CN2019106942W WO2020134222A1 WO 2020134222 A1 WO2020134222 A1 WO 2020134222A1 CN 2019106942 W CN2019106942 W CN 2019106942W WO 2020134222 A1 WO2020134222 A1 WO 2020134222A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
identification signal
downlink
pdcch
terminal
Prior art date
Application number
PCT/CN2019/106942
Other languages
English (en)
French (fr)
Inventor
沈晓冬
潘学明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP19905365.3A priority Critical patent/EP3905751A4/en
Priority to KR1020217023289A priority patent/KR102650921B1/ko
Publication of WO2020134222A1 publication Critical patent/WO2020134222A1/zh
Priority to US17/360,397 priority patent/US12052579B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0052Realisations of complexity reduction techniques, e.g. pipelining or use of look-up tables
    • H04L1/0053Realisations of complexity reduction techniques, e.g. pipelining or use of look-up tables specially adapted for power saving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to an information transmission method, terminal, and network equipment.
  • a terminal that needs to receive data, regardless of whether the network device sends data, it performs physical downlink control channel (PDCCH) blind detection for each subframe/slot, This causes a lot of unnecessary power consumption.
  • PDCCH physical downlink control channel
  • 4G fourth generation
  • 4G mobile communication unlicensed band transmission system
  • LTE-LAA secondary access authorization
  • a cell pilot signal Cell Reference Signal, CRS determines whether the network device has downlink transmission, that is, the terminal detects the existence of CRS in the subframe before starting blind PDCCH detection.
  • CRS Cell Reference Signal
  • a low complexity signal or channel can be used to identify the downlink transmission mode. Only when the downlink transmission is confirmed, the terminal performs blind PDCCH detection. For example, as shown in Figure 1, the network device can also send the transmission identification signal in each subframe/slot that sends downlink data, which will cause excessive system overhead.
  • Embodiments of the present disclosure provide an information transmission method, terminal, and network equipment to solve the problem of large system overhead in a scheme for reducing the number of blind PDCCH detections in unlicensed band transmission.
  • an embodiment of the present disclosure provides an information transmission method, which is applied to a terminal side and includes:
  • the downlink transmission identification signal is detected.
  • an embodiment of the present disclosure also provides a terminal, including:
  • a first receiving module configured to receive configuration information of a downlink transmission identification signal; wherein, the configuration information includes: detection period and/or detection position;
  • the detection module is configured to detect the downlink transmission identification signal on the first time-domain transmission unit according to the detection period and/or detection position indicated by the configuration information.
  • an embodiment of the present disclosure provides a terminal.
  • the terminal includes a processor, a memory, and a computer program stored on the memory and running on the processor.
  • the computer program is executed by the processor, the steps of the foregoing information transmission method are implemented .
  • an embodiment of the present disclosure provides an information transmission method, which is applied to the network device side and includes:
  • Configure the configuration information of the downlink transmission identification signal for the terminal where the configuration information includes: detection period and/or detection position;
  • the downlink transmission identification signal is sent on the time domain transmission unit of the detection period.
  • an embodiment of the present disclosure provides a network device, including:
  • the configuration module is used to configure the terminal with the configuration information of the downlink transmission identification signal; wherein, the configuration information includes: the detection period and/or the detection location;
  • the sending module is configured to send a downlink transmission identification signal according to the detection period and/or detection position indicated by the configuration information when downlink data is scheduled for the terminal.
  • an embodiment of the present disclosure also provides a network device.
  • the network device includes a processor, a memory, and a computer program stored on the memory and running on the processor.
  • the processor implements the computer program to implement the foregoing information transmission method A step of.
  • an embodiment of the present disclosure provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the steps of the foregoing information transmission method are implemented.
  • the terminal of the embodiment of the present disclosure detects the downlink transmission identification signal on the first time-domain transmission unit according to the indication of the configuration information, and accordingly, the network device does not need to send the downlink transmission on each time-domain transmission unit that has downlink transmission Identification signal can reduce system overhead and improve system throughput.
  • FIG. 1 shows a schematic diagram 1 of transmission mapping of a transmission identification signal in the related art
  • FIG. 2 shows a block diagram of a mobile communication system to which the embodiments of the present disclosure can be applied;
  • FIG. 3 is a schematic flowchart of an information transmission method on a terminal side according to an embodiment of the present disclosure
  • FIG. 4 shows a second schematic diagram of transmission mapping of a downlink transmission identification signal
  • FIG. 9 is a schematic diagram of a module structure of a terminal according to an embodiment of the present disclosure.
  • FIG. 10 shows a block diagram of a terminal according to an embodiment of the present disclosure
  • FIG. 11 is a schematic flowchart of an information transmission method of a network device according to an embodiment of the present disclosure
  • FIG. 12 shows a schematic diagram of a module structure of a network device according to an embodiment of the present disclosure
  • FIG. 13 shows a block diagram of a network device according to an embodiment of the present disclosure.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA single carrier frequency Multiple access
  • SC-FDMA single-carrier Frequency-Division Multiple Access
  • the wireless communication system includes a terminal 21 and a network device 22.
  • the terminal 21 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 21 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), a personal digital assistant (Personal Digital Assistant) , PDA), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device and other terminal side devices, it should be noted that the specific type of terminal 21 is not limited in the embodiments of the present disclosure .
  • the network device 22 may be a base station or a core network, where the above base station may be a base station of 5G and later versions (for example: gNB, 5G, NR, etc.), or a base station in other communication systems (for example: eNB, WLAN access point, Or other access points, etc.), where the base station may be called Node B, evolved Node B, access point, base transceiver station (Base Transceiver Station, BTS), radio base station, radio transceiver, basic service set (Basic Service Set (BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolution Node B, WLAN Access Point, WiFi Node or in the field
  • the base station is not limited to a specific technical vocabulary. It should be noted that in the embodiments of the present disclosure, only the base station in the NR system is used as an example, but the base station is not limited. Specific types
  • the base station may communicate with the terminal 21 under the control of the base station controller.
  • the base station controller may be part of the core network or some base stations. Some base stations can communicate control information or user data with the core network through the backhaul. In some examples, some of these base stations may directly or indirectly communicate with each other through a backhaul link, which may be a wired or wireless communication link.
  • the wireless communication system can support operation on multiple carriers (waveform signals of different frequencies). Multi-carrier transmitters can transmit modulated signals on these multiple carriers simultaneously. For example, each communication link may be a multi-carrier signal modulated according to various radio technologies. Each modulated signal can be sent on a different carrier and can carry control information (eg, reference signals, control channels, etc.), overhead information, data, etc.
  • the base station can wirelessly communicate with the terminal 21 via one or more access point antennas. Each base station can provide communication coverage for its respective coverage area. The coverage area of an access point may be divided into sectors that only constitute a part of the coverage area.
  • the wireless communication system may include different types of base stations (eg, macro base stations, micro base stations, or pico base stations). The base station may also utilize different radio technologies, such as cellular or WLAN radio access technologies. The base station may be associated with the same or different access network or operator deployment. The coverage areas of different base stations (including the coverage areas of the same or different types of base stations, the coverage areas using the same or different radio technologies, or the coverage areas belonging to the same or different access networks) may overlap.
  • the communication link in the wireless communication system may include an uplink for carrying uplink (Uplink, UL) transmission (for example, from the terminal 21 to the network device 22), or a bearer for downlink (Downlink, DL)
  • the downlink of the transmission (eg, from the network device 22 to the terminal 21).
  • UL transmission may also be referred to as reverse link transmission
  • DL transmission may also be referred to as forward link transmission.
  • Downlink transmission can be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • uplink transmissions can be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • the information transmission method of the embodiment of the present disclosure is applied to the terminal side. As shown in FIG. 4, the method includes the following steps:
  • Step 31 Receive configuration information of the downlink transmission identification signal; where the configuration information includes: detection period and/or detection position.
  • the detection period is used to indicate the size of the resource that the terminal needs to buffer
  • the detection position is used to instruct the terminal to detect the position of the downlink transmission identification signal.
  • the configuration information may include the detection period, the detection position, or both the detection period and the detection position.
  • the detection period or the detection position may also be predefined or pre-configured, for example, the agreement stipulates that the detection period is T, then the configuration information only needs to include the detection position.
  • Step 32 Detect the downlink transmission identification signal on the first time domain transmission unit according to the detection period and/or detection position indicated by the configuration information.
  • the time-domain transmission unit in the embodiment of the present disclosure may be a time-domain resource in units of granularity such as frames, subframes, slots, and time-domain symbols (such as OFDM symbols).
  • the first time domain transmission unit is one or more time domain resources in a detection period of the terminal.
  • the downlink transmission identification signal is used to indicate that the network device has downlink transmission. When there is downlink transmission, the network device sends one or more downlink transmission identification signals to indicate that the terminal has downlink transmission.
  • the transmission identification signal is located at the beginning of the downlink data burst.
  • the terminal triggers the PDCCH according to the transmission identification signal. Blind detection, but when the terminal fails to detect the transmission identification signal or the discontinuous reception (DRX) configuration activation period (Onduration) after the network device obtains the channel occupation time (Channel Occupancy Time, COT), the terminal The data in the entire COT of the network equipment will be lost. It is worth noting that before or after step 32 in the embodiment of the present disclosure, it may further include: buffering the received signal of the detection period where the first time-domain transmission unit is located to obtain cached data of the detection period.
  • the terminal After the terminal detects the downlink transmission identification signal in the first time domain transmission unit, it may determine that the network device may have downlink transmission before and after the first time domain transmission unit, because the terminal caches the data of the detection period where the first time domain transmission unit is located , Which can avoid data loss caused by missing the starting position of downlink transmission.
  • the data caching step may occur before or after step 32.
  • the terminal may also be on the first time domain transmission unit When detecting the downlink transmission identification signal, the data on the first time-domain transmission unit is cached.
  • the first time-domain transmission unit is a detection position, and the detection position is located at a specific position in the detection period, or the first time-domain transmission unit is an arbitrary position in the detection period.
  • the network device configures the configuration information of the downlink transmission identification signal for the terminal.
  • the following two methods may be adopted:
  • the configuration information configured by the network device includes the detection period T and the detection position of the downlink transmission identification signal, that is, the network device informs the terminal of an absolute candidate position where the downlink transmission identification signal may appear.
  • the terminal since the detection position is known, the terminal only needs to detect the downlink transmission identification signal at the detection position, that is, the first time domain transmission unit is the detection position of the downlink transmission identification signal, and the detection position is the downlink The specific position in the detection period of the transmission identification signal.
  • the network device expects to avoid the detection position when scheduling resources for other information to ensure the transmission of the necessary downlink transmission identification signal.
  • the terminal since the sending position of the downlink transmission identification signal in this manner is not fixed, the terminal needs to detect the downlink transmission identification signal on each time-domain transmission unit within the detection period, that is, the first time-domain transmission unit is At any position in the detection period, the terminal detects the downlink transmission identification signal on each time-domain transmission unit in the detection period.
  • the above describes the implementation of the terminal to obtain the configuration information of the downlink transmission identification signal.
  • the following embodiments of the present disclosure will further introduce the terminal behavior performed by the terminal after detecting the downlink transmission identification signal.
  • Scenario 1 No downlink transmission identification signal is detected on the first time-domain transmission unit.
  • the terminal considers that there is no downlink transmission on the first time-domain transmission unit. Specifically, after step 32, it further includes: in the case where the downlink transmission identification signal is not detected, blind detection of the physical downlink control channel PDCCH is not performed. Further, in order to avoid data loss, the terminal buffers the reception signal of the detection period where the first time domain transmission unit is located, and obtains the buffered data of the detection period. When the terminal does not detect the downlink transmission identification signal, it can be determined that there is no downlink transmission Therefore, the blind detection of the physical downlink control channel PDCCH may not be performed, and the buffered data corresponding to the detection period may be released.
  • the detection position of the terminal for the next detection of the downlink transmission identification signal may be determined according to the above two methods. Among them, it is worth noting that the release of the cached data here may release all the cached data or part of the cached data.
  • the terminal performs downlink transmission identification signal detection on the first time domain transmission unit according to the configuration information in the state of receiving data, and the terminal buffers the received signal in the detection period T where the first time domain transmission unit is located to obtain The cache data of the detection period T. If the terminal does not detect the downlink transmission identification signal on the first time-domain transmission unit, it considers that there is no downlink transmission in the detection period T, does not perform blind detection of the PDCCH, and continues the process of detecting the downlink transmission identification signal and buffering data.
  • the detection position may be located at the last position of a detection cycle, that is, the terminal detects the downlink transmission identification signal on the first time domain transmission unit, and buffers the first time domain transmission unit and the previous T-1 Data on the time domain transmission unit.
  • the terminal performs the downlink transmission identification signal detection on each time-domain transmission unit in the detection period T according to the configuration information in the state of receiving data.
  • the first time-domain transmission unit is the current detection position
  • the terminal cache includes the The current detection position and the received signals on the T-1 time-domain transmission units obtained buffer data corresponding to the detection period T (the detection period T can be understood as a time window with a fixed length and a sliding position). If the terminal does not detect the downlink transmission identification signal on the first time-domain transmission unit, it considers that there is no downlink transmission and does not perform blind detection of the PDCCH, and continues the process of detecting the downlink transmission identification signal and buffering data. In order to ensure that data is not lost, after the data on the first time-domain transmission unit is cached, the previously cached data on the T-th time-domain transmission unit may be released.
  • the network device may adjust the position of the downlink transmission identification signal when it feels necessary, for example, during the first DRX activation period When uplink data needs to be scheduled on the time domain transmission unit, etc.
  • the network device may obtain the COT information, it is necessary to schedule the uplink data.
  • the scheduled slot#0 must send a downlink transmission identification signal, so that the terminal receives the uplink scheduling information before the uplink data transmission.
  • the terminal due to the flexibility of the downlink transmission identification signal, the terminal needs to detect each slot and buffer the data of the sliding window.
  • the terminal buffers the cached data on slot#15, slot#16, slot#17, and slot#18 in the previous subframe before detecting on slot#19 in the previous subframe. If the terminal does not detect the downlink transmission identification signal on slot#19 of the previous subframe, the terminal will buffer the data on slot#19 and release the buffered data on slot#15, that is, the terminal slides the buffered data according to the length of the detection period .
  • Scenario 2 A downlink transmission identification signal is detected on the first time-domain transmission unit.
  • the terminal includes two behaviors, one is: processing the detection period where the first time domain transmission unit is located, and the second is: processing after the first time domain transmission unit.
  • the following further describes the terminal behavior of these two aspects.
  • the first aspect the processing of the detection period where the first time domain unit is located
  • the network device may carry the indication information related to the downlink transmission in the downlink transmission identification signal, for example, the downlink transmission identification signal carries: first indication information used to indicate the starting position of the channel occupation time COT of the network device, And/or, second indication information used to indicate whether there is downlink data in the detection period.
  • the downlink transmission identification signal carries different indication information, and the terminal PDCCH blind detection behavior may be different.
  • the downlink transmission identification signal carrying the first indication information refers to: the network device indicates the start position of the COT in the downlink transmission identification signal.
  • the terminal detects the downlink transmission identification signal from the starting position indicated by the first indication information Initially, blind detection of the PDCCH is performed on the detection period.
  • the downlink transmission identification signal carrying the first indication information refers to: the network device indicates the starting position of the COT in the downlink transmission identification signal. Accordingly, after acquiring the start position of the COT, the terminal performs blind PDCCH detection from the indicated start position in the detection period.
  • the network device obtains the channel in Slot#0 and starts downlink transmission to Slot#6.
  • the network device can send the downlink transmission identification signal in Slot#2 and Slot#6.
  • the terminal will first detect whether there is a downlink transmission identification signal in Slot#18, and find that there is no downlink transmission identification signal in Slot#18, and further detect in Slot#2 and find that there is a downlink transmission identification signal.
  • the terminal has already cached the data of Slot#19, Slot#0, Slot#1 and Slot#2.
  • the terminal knows that the downlink transmission starts from Slot#0 through the first indication information, so the terminal only performs blind PDCCH detection on the buffered Slot#0, Slot#1, and Slot#2 data, and does not need to check the data of Slot19. Perform PDCCH blind detection.
  • the downlink transmission identification signal carries second indication information indicating whether there is downlink data in the detection period
  • the second indication information indicates that there is downlink data in the detection period
  • the blind detection of the PDCCH is performed on the detection period
  • the terminal buffers the received signal of the detection period to obtain corresponding buffered data
  • the second indication information indicates that there is no downlink data in the detection period
  • the blind detection of the PDCCH is not performed on the detection period, and the Cache data for the detection cycle.
  • the network device may carry the second indication information in the currently sent downlink transmission identification signal to indicate whether there is data for scheduling the terminal in the previous detection period.
  • the indication manner of the second indication information includes but is not limited to: one indication bit is used to indicate whether there is terminal scheduling data in the detection period, for example, when the value of the indication bit is 1, it indicates that there is terminal scheduling data in the detection period, When the value of the indication bit is 0, it means that there is no scheduling data of the terminal in the detection period; or vice versa.
  • the terminal detects the downlink transmission identification signal, and the second indication information indicates that there is downlink data in the detection period, the terminal performs blind detection of the PDCCH from the start position of the detection period; in the second indication information When no downlink data exists in the detection period, blind detection of the PDCCH is not performed on the detection period, and all buffered data is released.
  • the indication manner of the second indication information may further include: an indication bitmap used to indicate whether downlink scheduling data exists on each time-domain transmission unit in the detection period. For example, when the value of the bit in the indicator bitmap is 1, it indicates that there is terminal scheduling data on the corresponding time domain transmission unit. When the value of the bit bit in the indicator bitmap is 0, it indicates that there is no terminal scheduling on the corresponding time domain transmission unit. Data; or vice versa.
  • the step of blindly detecting the PDCCH on the buffered data includes: performing blind detection of the PDCCH on the time-domain transmission unit indicating the presence of downlink data in the bitmap indicated by the bitmap.
  • the network device obtains a channel in Slot#0 and starts downlink transmission to Slot#6.
  • the network device can send a downlink transmission identification signal in Slot#2 and Slot#6.
  • terminal 1 and terminal 2 will first detect whether there is a downlink transmission identification signal in Slot#18, and find that there is no downlink transmission identification signal in Slot#18, and further detect in Slot#2 and find that there is a downlink
  • the identification signal is transmitted, and the terminals 1 and 2 have already buffered the data of Slot#19, Slot#0, Slot#1, and Slot#2. If the second indication information detected by the terminal 1 in the downlink transmission identification signal indicates that there is only scheduling data on Slot#0, the terminal 1 only performs blind PDCCH detection on Slot#0. If the second indication information detected by the terminal 2 in the downlink transmission identification signal indicates that the data of the terminal 2 is not previously scheduled, the terminal does not perform blind PDCCH detection on the buffered Slot#19, Slot#0, and Slot#1.
  • the downlink transmission identifier of the embodiment of the present disclosure may not carry any information, and its function is only to prompt the terminal to transmit by downlink.
  • the terminal after detecting the downlink transmission identifier signal, the terminal performs blind PDCCH from the start position of the buffered data Check. That is, when the first indication information or the second indication information is not detected, the blind detection of the PDCCH is performed from the start position of the buffered data.
  • the network device obtains a channel in Slot#0 and starts downlink transmission to Slot#6.
  • the network device can send a downlink transmission identification signal in Slot#2 and Slot#6.
  • terminal 3 first detects whether there is a downlink transmission identification signal in Slot#18, and finds that there is no downlink transmission identification signal in Slot#18, and further detects in Slot#2 and finds a downlink transmission identification signal, At this time, the terminal 3 has cached the data of Slot#19, Slot#0, Slot#1, and Slot#2. If the terminal 3 does not detect the first indication information and the second indication information in the downlink transmission identification signal, the buffered Slot#19, Slot#0, and Slot#1 are all subjected to PDCCH blind detection.
  • the above describes the processing method of the buffered data after the terminal detects the downlink transmission identification signal.
  • the following embodiment will further introduce the PDCCH blind detection method after detecting the downlink transmission identification signal.
  • the method further includes: in the case of detecting the downlink transmission identification signal, performing blind detection of the PDCCH on the time domain transmission unit after the first time domain transmission unit. After detecting the downlink transmission identification signal, the terminal considers that there is downlink transmission. At this time, the terminal performs blind PDCCH detection on the subsequent time-domain transmission unit.
  • the terminal when a downlink transmission identification signal is detected, the terminal triggers PDCCH blind detection on the configured search space for the subsequent time-domain transmission unit.
  • the end conditions for blind PDCCH detection include but are not limited to the following methods:
  • the terminal stops blind detection of the PDCCH from the end position of the COT and resumes to detect only the downlink transmission identification signal. Specifically, after the end position of the network device COT, the blind detection of the PDCCH is stopped, and detection of the downlink transmission identification signal is performed.
  • the end position of the COT is determined according to the downlink transmission identification signal.
  • the downlink transmission identification signal may also carry third indication information indicating the end position of the network device channel occupation time COT; or the downlink transmission identification signal carries The first indication information indicating the starting position of the COT, and the fourth indication information of the duration of the COT; or the first indication information is carried in the downlink transmission identification signal, and the duration of the COT is predefined (as agreed in the protocol).
  • the network device obtains the channel in Slot#0 and starts downlink transmission to Slot#6.
  • the network device can send the downlink transmission identification signal in Slot#2 and Slot#6.
  • the terminal will first detect whether there is a downlink transmission identification signal in Slot#18, and find that there is no downlink transmission identification signal in Slot#18, and further detect in Slot#2 and find that there is a downlink transmission identification signal.
  • the terminal has already cached the data of Slot#19, Slot#0, Slot#1 and Slot#2. If the third indication information carried in the downlink transmission identification signal indicates that the start position of the COT is Slot#6. Then, the terminal knows that the downlink transmission ends at Slot#6 through the third instruction information, so the terminal starts the Slot#7, stops the PDCCH blind detection, and resumes the process of detecting the downlink transmission identification signal.
  • the terminal may start a counter (such as a PDCCH blind detection counter) after starting the PDCCH blind detection, and the counter increases or decreases by 1 for each PDCCH blind detection.
  • the terminal starts the PDCCH blind detection counter; wherein, the PDCCH blind detection counter is used to count the number of blind detections of the PDCCH; when the PDCCH blind detection counter reaches a preset threshold or returns to zero, the blind detection of the PDCCH is stopped and the detection is performed Downlink transmission identification signal.
  • the network device obtains the channel in Slot#0 and starts downlink transmission to Slot#6.
  • the network device can send the downlink transmission identification signal in Slot#2 and Slot#6.
  • the terminal first detects whether there is a downlink transmission identification signal in Slot#18, and finds that there is no downlink transmission identification signal in Slot#18, and further detects in Slot#2 and finds a downlink transmission identification signal. At this time, the terminal starts blind PDCCH detection for subsequent Slots (ie, Slot#3, Slot#4, ).
  • the downlink transmission identification signal mentioned in the embodiments of the present disclosure may include a channel state indication reference signal (Channel State Information Reference (CSI-RS), a demodulation reference signal (De-Modulation Reference Signal, DMRS ), primary synchronization signal (Primary Synchronization Signal, PSS), secondary synchronization signal (Secondary Synchronization Signal, SSS) and multicast downlink physical control channel (Group Common Common Physical Downlink Control Channel, GC-PDCCH) and other possible signals One or more.
  • CSI-RS Channel State Information Reference
  • DMRS demodulation reference signal
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • multicast downlink physical control channel Group Common Common Physical Downlink Control Channel, GC-PDCCH
  • the detection complexity of these signals is lower than the blind detection complexity of PDCCH, which can effectively reduce the power consumption of the terminal.
  • the indication information carried in the downlink transmission identification signal in the embodiment of the present disclosure may be Downlink Control Information (DCI), and different indication information may be implemented through different indication fields in the DCI.
  • DCI Downlink Control Information
  • the terminal detects the downlink transmission identification signal on the first time-domain transmission unit in the detection period, and buffers the buffered data in the detection period, so that when the downlink transmission identification signal is detected,
  • the buffered data in the detection period is cached, and the downlink data in the detection period is obtained by detecting the buffered data, and the downlink data will not be lost due to missing the starting position of the COT.
  • the terminal 900 of the embodiment of the present disclosure can implement the configuration information of receiving the downlink transmission identification signal in the above embodiments; wherein, the configuration information includes: a detection period and/or a detection position; a detection period indicated according to the configuration information And/or detection location, on the first time-domain transmission unit, to detect the details of the downlink transmission identification signal method and achieve the same effect, the terminal 900 specifically includes the following functional modules:
  • the first receiving module 910 is configured to receive configuration information of the downlink transmission identification signal; wherein, the configuration information includes: detection period and/or detection position;
  • the detection module 920 is configured to detect the downlink transmission identification signal on the first time-domain transmission unit according to the detection period and/or detection position indicated by the configuration information.
  • the first time-domain transmission unit is a detection position, and the detection position is located at a specific position in the detection period, or the first time-domain transmission unit is an arbitrary position in the detection period.
  • the terminal 900 also includes:
  • the first processing module is configured to not perform blind detection of the physical downlink control channel PDCCH when no downlink transmission identification signal is detected.
  • the downlink transmission identification signal carries: first indication information used to indicate the starting position of the network device channel occupation time COT, and/or second indication information used to indicate whether there is downlink data in the detection period.
  • the terminal 900 also includes:
  • the second processing module is configured to perform at least one of the following operations when the downlink transmission identification signal is detected:
  • blind detection of the PDCCH is performed from the start position of the detection period.
  • the second indication information includes an indication bitmap used to indicate whether there is downlink scheduling data on each time-domain transmission unit in the detection period;
  • the second processing module includes:
  • the first processing sub-module is configured to perform blind PDCCH detection on the time-domain transmission unit in which downlink data exists in the detection period on the time-domain transmission unit indicated by the presence of downlink data indicated by the bitmap.
  • the terminal 900 also includes:
  • the third processing module is configured to perform blind detection of the PDCCH on the time-domain transmission unit after the first time-domain transmission unit when the downlink transmission identification signal is detected.
  • the terminal 900 also includes:
  • the fourth processing module is configured to stop the blind detection of the PDCCH after the end position of the COT of the network device and perform detection of the downlink transmission identification signal.
  • the end position is determined according to the downlink transmission identification signal.
  • the terminal 900 also includes:
  • the starting module is used to start a PDCCH blind detection counter; wherein, the PDCCH blind detection counter is used to count the number of blind detections of the PDCCH;
  • the fifth processing module is configured to stop the blind detection of the PDCCH and perform detection of the downlink transmission identification signal when the PDCCH blind detection counter reaches a preset threshold or returns to zero.
  • the terminal of the embodiment of the present disclosure detects the downlink transmission identification signal on the first time-domain transmission unit in the detection period and buffers the buffered data in the detection period, so that when the downlink transmission identification signal is detected, The buffered data in the detection period is cached, and the downlink data in the detection period is obtained by detecting the buffered data, and the downlink data will not be lost due to missing the starting position of the COT.
  • FIG. 10 is a schematic diagram of a hardware structure of a terminal for implementing various embodiments of the present disclosure.
  • the terminal 100 includes but is not limited to: a radio frequency unit 101, a network module 102, an audio output unit 103, The input unit 104, sensor 105, display unit 106, user input unit 107, interface unit 108, memory 109, processor 1010, power supply 1011 and other components.
  • the terminal structure shown in FIG. 10 does not constitute a limitation on the terminal, and the terminal may include more or less components than those illustrated, or combine certain components, or arrange different components.
  • the terminal includes but is not limited to a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle terminal, a wearable device, and a pedometer.
  • the radio frequency unit 101 is used to send and receive data under the control of the processor 1010;
  • the processor 1010 is configured to detect the downlink transmission identification signal on the first time-domain transmission unit; and cache the buffered data of the detection period where the first time-domain transmission unit is located;
  • the terminal of the embodiment of the present disclosure detects the downlink transmission identification signal on the first time-domain transmission unit in the detection period and buffers the buffered data in the detection period, so that when the downlink transmission identification signal is detected, the detection period is cached In the buffered data within, the downlink data in the detection period is obtained by detecting the buffered data, and the downlink data will not be lost due to missing the starting position of the COT.
  • the radio frequency unit 101 may be used to receive and send signals during sending and receiving information or during a call. Specifically, after receiving the downlink data from the base station, it is processed by the processor 1010; The uplink data is sent to the base station.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 101 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 102, such as helping users to send and receive e-mail, browse web pages, and access streaming media.
  • the audio output unit 103 may convert the audio data received by the radio frequency unit 101 or the network module 102 or stored in the memory 109 into an audio signal and output as sound. Furthermore, the audio output unit 103 may also provide audio output related to a specific function performed by the terminal 100 (e.g., call signal reception sound, message reception sound, etc.).
  • the audio output unit 103 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 104 is used to receive audio or video signals.
  • the input unit 104 may include a graphics processor (Graphics, Processing, Unit, GPU) 1041 and a microphone 1042.
  • the graphics processor 1041 pairs images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode
  • the data is processed.
  • the processed image frame may be displayed on the display unit 106.
  • the image frame processed by the graphics processor 1041 may be stored in the memory 109 (or other storage medium) or sent via the radio frequency unit 101 or the network module 102.
  • the microphone 1042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 101 in the case of a telephone call mode and output.
  • the terminal 100 further includes at least one sensor 105, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 1061 according to the brightness of the ambient light, and the proximity sensor can close the display panel 1061 and/or when the terminal 100 moves to the ear Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (generally three axes), and can detect the magnitude and direction of gravity when at rest, and can be used to identify the posture of the terminal (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc.; sensor 105 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be repeated here.
  • the display unit 106 is used to display information input by the user or information provided to the user.
  • the display unit 106 may include a display panel 1061, and the display panel 1061 may be configured in the form of a liquid crystal display (Liquid Crystal) (LCD), an organic light emitting diode (Organic Light-Emitting Diode, OLED), or the like.
  • LCD Liquid Crystal
  • OLED Organic Light-Emitting Diode
  • the user input unit 107 may be used to receive input numeric or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 107 includes a touch panel 1071 and other input devices 1072.
  • the touch panel 1071 also known as a touch screen, can collect user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc. on or near the touch panel 1071 operating).
  • the touch panel 1071 may include a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device and converts it into contact coordinates, and then sends To the processor 1010, the command sent by the processor 1010 is received and executed.
  • the touch panel 1071 may be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 107 may also include other input devices 1072.
  • other input devices 1072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the touch panel 1071 may be overlaid on the display panel 1061.
  • the touch panel 1071 detects a touch operation on or near it, it is transmitted to the processor 1010 to determine the type of touch event, and then the processor 1010 according to the touch The type of event provides a corresponding visual output on the display panel 1061.
  • the touch panel 1071 and the display panel 1061 are implemented as two independent components to realize the input and output functions of the terminal, in some embodiments, the touch panel 1071 and the display panel 1061 may be integrated to The input and output functions of the terminal are implemented, which is not limited here.
  • the interface unit 108 is an interface for connecting an external device to the terminal 100.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 108 may be used to receive input (eg, data information, power, etc.) from an external device and transmit the received input to one or more elements within the terminal 100 or may be used between the terminal 100 and an external device Transfer data between.
  • the memory 109 may be used to store software programs and various data.
  • the memory 109 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, application programs required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; the storage data area may store Data created by the use of mobile phones (such as audio data, phone books, etc.), etc.
  • the memory 109 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 1010 is the control center of the terminal, and uses various interfaces and lines to connect the various parts of the entire terminal, executes or executes the software programs and/or modules stored in the memory 109, and calls the data stored in the memory 109 to execute Various functions and processing data of the terminal, so as to monitor the terminal as a whole.
  • the processor 1010 may include one or more processing units; preferably, the processor 1010 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and application programs, etc.
  • the processor mainly deals with wireless communication. It can be understood that, the foregoing modem processor may not be integrated into the processor 1010.
  • the terminal 100 may further include a power supply 1011 (such as a battery) that supplies power to various components.
  • a power supply 1011 (such as a battery) that supplies power to various components.
  • the power supply 1011 may be logically connected to the processor 1010 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system.
  • the terminal 100 includes some function modules not shown, which will not be repeated here.
  • an embodiment of the present disclosure further provides a terminal, including a processor 1010, a memory 109, and a computer program stored on the memory 109 and executable on the processor 1010, which is implemented when the processor 1010 executes
  • the terminal may be a wireless terminal or a wired terminal.
  • the wireless terminal may be a device that provides users with voice and/or other service data connectivity, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem .
  • a wireless terminal can communicate with one or more core networks via a radio access network (Radio Access Network, RAN).
  • Radio Access Network Radio Access Network
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal
  • a mobile terminal such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal
  • it may be a portable, pocket-sized, handheld, computer built-in or vehicle-mounted mobile device that exchanges language and/or data with the wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the wireless terminal can also be called a system, a subscriber unit (Subscriber Unit), a subscriber station (Subscriber Station), a mobile station (Mobile Station), a mobile station (Mobile), a remote station (Remote Station), a remote terminal (Remote Terminal), an access terminal Access terminal (Access Terminal), user terminal (User Terminal), user agent (User Agent), user equipment (User Device or User Equipment), not limited here.
  • Embodiments of the present disclosure also provide a computer-readable storage medium that stores a computer program on the computer-readable storage medium.
  • the computer program When the computer program is executed by a processor, the processes of the foregoing information transmission method embodiments are implemented, and the same technology can be achieved. In order to avoid repetition, I will not repeat them here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the information transmission method of the embodiment of the present disclosure is applied to the network device side.
  • the method includes the following steps:
  • Step 111 Configure configuration information of the downlink transmission identification signal for the terminal; where the configuration information includes: detection period and/or detection position.
  • the configuration information includes: a detection period and/or a detection position, the detection position is located at a specific position in the detection period, or the detection position is located at any position in the detection period.
  • the configuration information of the network device configuration may include a detection period T and a detection position of the downlink transmission identification signal, that is, the network device informs the terminal of an absolute candidate position where the downlink transmission identification signal may appear. In this way, since the detection position is known, the terminal only needs to detect the downlink transmission identification signal at the detection position.
  • Step 112 When downlink data is scheduled for the terminal, send a downlink transmission identification signal according to the detection period and/or detection position indicated by the configuration information.
  • the downlink data scheduled at a time corresponds to one or more downlink transmission identification signals, and the corresponding relationship of the specific number can be determined according to the attributes of the downlink data.
  • a downstream transmission identification signal is a downstream transmission identification signal.
  • the network device may carry the indication information related to the downlink transmission in the downlink transmission identification signal, for example, the downlink transmission identification signal carries: first indication information used to indicate the starting position of the channel occupation time COT of the network device, And/or, second indication information used to indicate whether there is downlink data in the detection period.
  • the downlink transmission identification signal may also carry: third indication information used to indicate the end position of the channel occupation time COT of the network device.
  • the indication manner of the second indication information includes but is not limited to: one indication bit is used to indicate whether there is scheduling data of the terminal in the cache data, for example, when the value of the indication bit is 1, it indicates that the scheduling data of the terminal exists in the cache data, When the value of the indication bit is 0, it means that there is no scheduling data of the terminal in the cache data; or vice versa.
  • the indication manner of the second indication information may further include: an indication bitmap used to indicate whether there is downlink scheduling data on each time-domain transmission unit in the detection period. For example, when the value of the bit in the indicator bitmap is 1, it indicates that there is terminal scheduling data on the corresponding time domain transmission unit. When the value of the bit bit in the indicator bitmap is 0, it indicates that there is no terminal scheduling on the corresponding time domain transmission unit. Data; or vice versa.
  • an indication bitmap used to indicate whether there is downlink scheduling data on each time-domain transmission unit in the detection period. For example, when the value of the bit in the indicator bitmap is 1, it indicates that there is terminal scheduling data on the corresponding time domain transmission unit. When the value of the bit bit in the indicator bitmap is 0, it indicates that there is no terminal scheduling on the corresponding time domain transmission unit. Data; or vice versa.
  • the downlink transmission identification signal mentioned in the embodiments of the present disclosure may include one or more of various possible signals such as CSI-RS, DMRS, PSS, SSS, and GC-PDCCH.
  • the indication information carried in the downlink transmission identification signal may be DCI, and different indication information may be implemented through different indication fields in the DCI.
  • the network device may send downlink transmission identification information on a time-domain transmission unit within the detection period without sending downlink on each time-domain transmission unit Transmitting identification information can reduce system overhead and increase system throughput.
  • the network device 1200 of the embodiment of the present disclosure can implement the configuration information of configuring the downlink transmission identification signal for the terminal in the foregoing embodiment; wherein, the configuration information includes: detection period and/or detection position; In the case of downlink data, according to the detection period and/or detection position indicated by the configuration information, the details of the method for sending the downlink transmission identification signal are achieved, and the same effect is achieved.
  • the network device 1200 specifically includes the following functional modules:
  • the configuration module 1210 is configured to configure configuration information of the downlink transmission identification signal for the terminal; wherein, the configuration information includes: a detection period and/or a detection position;
  • the sending module 1220 is configured to send a downlink transmission identification signal according to the detection period and/or detection position indicated by the configuration information when downlink data is scheduled for the terminal.
  • the detection position is located at a specific position in the detection cycle, or the detection position is located at any position in the detection cycle.
  • the downlink transmission identification signal carries: first indication information for indicating the starting position of the channel occupation time COT of the network device, and/or second indication information for indicating whether there is downlink data in the detection period.
  • the second indication information includes an indication bitmap used to indicate whether there is downlink scheduling data on each time-domain transmission unit in the detection period.
  • the network device of the embodiment of the present disclosure can send downlink transmission identification information on a time-domain transmission unit within the detection period without sending downlink on each time-domain transmission unit Transmitting identification information can reduce system overhead and increase system throughput.
  • the above division of the network device and the various modules of the terminal is only a division of logical functions, and may be integrated into a physical entity in whole or in part or may be physically separated in actual implementation.
  • these modules can all be implemented in the form of software invoking through processing elements; they can also be implemented in the form of hardware; some modules can also be implemented in the form of invoking software through processing elements, and some modules can be implemented in the form of hardware.
  • the determination module may be a separately established processing element, or it may be implemented by being integrated in a chip of the above-mentioned device, or it may be stored in the memory of the above-mentioned device in the form of a program code, and a processing element of the above-mentioned device Call and execute the function of the above determination module.
  • the implementation of other modules is similar.
  • all or part of these modules can be integrated together or can be implemented independently.
  • the processing element described here may be an integrated circuit with signal processing capabilities. In the implementation process, each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in a processor element or instructions in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (Application Specific Integrated Circuit, ASIC), or, one or more microprocessors (digital signal processor (DSP), or, one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processor that can call program code.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • an embodiment of the present disclosure also provides a network device, the network device includes a processor, a memory, and a computer program stored on the memory and executable on the processor, and the processor executes the computer program To realize the steps in the information transmission method as described above.
  • Embodiments of the invention also provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the information transmission method described above are implemented.
  • the embodiments of the present disclosure also provide a network device.
  • the network device 1300 includes an antenna 131, a radio frequency device 132, and a baseband device 133.
  • the antenna 131 is connected to the radio frequency device 132.
  • the radio frequency device 132 receives information through the antenna 131, and sends the received information to the baseband device 133 for processing.
  • the baseband device 133 processes the information to be sent and sends it to the radio frequency device 132, and the radio frequency device 132 processes the received information and sends it out through the antenna 131.
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 133.
  • the method performed by the network device in the above embodiments may be implemented in the baseband apparatus 133.
  • the baseband apparatus 133 includes a processor 134 and a memory 135.
  • the baseband device 133 may include, for example, at least one baseband board, and a plurality of chips are provided on the baseband board, as shown in FIG. 13, one of the chips is, for example, the processor 134, connected to the memory 135 to call the program in the memory 135 and execute The network device operations shown in the above method embodiments.
  • the baseband device 133 may further include a network interface 136 for exchanging information with the radio frequency device 132.
  • the interface is, for example, a common public radio interface (common public radio interface, CPRI).
  • the processor here may be a processor or a collective term for multiple processing elements, for example, the processor may be a CPU, or an ASIC, or one or more configured to implement the method performed by the above network device
  • An integrated circuit for example: one or more microprocessor DSPs, or one or more field programmable gate array FPGAs.
  • the storage element may be a memory or a collective term for multiple storage elements.
  • the memory 135 may be volatile memory or nonvolatile memory, or may include both volatile and nonvolatile memory.
  • the non-volatile memory may be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically Erasable programmable read only memory (Electrically, EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDRSDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory 135 described in this application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the network device of the embodiment of the present disclosure further includes: a computer program stored on the memory 135 and executable on the processor 134, and the processor 134 calls the computer program in the memory 135 to execute the method performed by each module shown in FIG. .
  • the computer program when called by the processor 134, it can be used to execute: when downlink data is scheduled for the terminal, a downlink transmission identification signal is sent on the time-domain transmission unit of the detection period.
  • the network device in the embodiment of the present disclosure can send downlink transmission identification information on a time domain transmission unit in the detection period when there is a downlink transmission requirement, without having to send downlink transmission identification information on each time domain transmission unit , Can reduce system overhead and improve system throughput.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure essentially or part of the contribution to the related technology or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium, including several
  • the instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present disclosure.
  • the foregoing storage media include various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • each component or each step can be decomposed and/or recombined.
  • These decompositions and/or recombinations should be regarded as equivalent solutions of the present disclosure.
  • the steps for performing the above-mentioned series of processing can naturally be executed in chronological order in the order described, but it does not necessarily need to be executed in chronological order, and some steps can be executed in parallel or independently of each other.
  • the purpose of the present disclosure can also be achieved by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the object of the present disclosure can also be achieved only by providing a program product containing program code for implementing the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure. Obviously, the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be noted that, in the device and method of the present disclosure, obviously, each component or each step can be decomposed and/or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种信息传输方法、终端及网络设备,该方法包括:接收下行传输标识信号的配置信息;其中,配置信息包括:检测周期和/或检测位置;根据配置信息指示的检测周期和/或检测位置,在第一时域传输单元上,检测下行传输标识信号。

Description

信息传输方法、终端及网络设备
相关申请的交叉引用
本申请主张在2018年12月28日在中国提交的中国专利申请号No.201811626877.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种信息传输方法、终端及网络设备。
背景技术
在移动通信***中,由于非授权频段(unlicensed spectrum)是多种技术或多个传输节点共享,因此这种基于竞争的接入方式导致信道可用时间的不确定性。在发送信息之前,终端或网络设备需要做信道空闲估计(Clear Channel Assess,CCA)/扩展信道空闲估计(extended Clear Channel Assess,eCCA)来侦听信道,即进行能量检测(Energy Detection,ED),当能量低于一定门限时,信道被判断为空方可开始传输。
但是对于需要接收数据的终端来说,无论网络设备是否发送数据,它对每一个子帧(subframe)/时隙(slot)都要进行物理下行控制信道(Physical Downlink Control Channel,PDCCH)盲检,从而造成很多不必要的功率消耗。在***(4 th Generation,4G)移动通信***的非授权频段传输,或称为长期演进型授权辅助接入(Long Term Evolution-Licensed Assisted Access,LTE-LAA),终端可通过检测发送的小区导频信号(Cell Reference Signal,CRS)来判断网络设备是否有下行传输,即终端检测到该子帧存在CRS才开始进行PDCCH盲检。但是对于第五代(5 th Generation,5G)通信***,或称为新空口(New Radio,NR),不存在CRS,若终端需要对每一个子帧/时隙进行PDCCH盲检,则造成终端功耗较大。
为降低终端功耗,可采用低复杂度信号或信道来标识下行传输的方式,只有确认有下行传输时,终端才进行PDCCH盲检。例如如图1所示,网络设 备还可将传输标识信号在每个发送下行数据的子帧/时隙均发送,这样将导致***开销过大。
发明内容
本公开实施例提供了一种信息传输方法、终端及网络设备,以解决非授权频段传输中为减少PDCCH盲检次数的方案中***开销大的问题。
第一方面,本公开实施例提供了一种信息传输方法,应用于终端侧,包括:
接收下行传输标识信号的配置信息;其中,配置信息包括:检测周期和/或检测位置;
根据配置信息指示的检测周期和/或检测位置,在第一时域传输单元上,检测下行传输标识信号。
第二方面,本公开实施例还提供了一种终端,包括:
第一接收模块,用于接收下行传输标识信号的配置信息;其中,配置信息包括:检测周期和/或检测位置;
检测模块,用于根据所述配置信息指示的检测周期和/或检测位置,在第一时域传输单元上,检测下行传输标识信号。
第三方面,本公开实施例提供了一种终端,终端包括处理器、存储器以及存储于存储器上并在处理器上运行的计算机程序,计算机程序被处理器执行时实现上述的信息传输方法的步骤。
第四方面,本公开实施例提供了一种信息传输方法,应用于网络设备侧,包括:
为终端配置下行传输标识信号的配置信息;其中,配置信息包括:检测周期和/或检测位置;
在为终端调度了下行数据的情况下,在检测周期的时域传输单元上发送下行传输标识信号。
第五方面,本公开实施例提供了一种网络设备,包括:
配置模块,用于为终端配置下行传输标识信号的配置信息;其中,配置信息包括:检测周期和/或检测位置;
发送模块,用于在为终端调度了下行数据的情况下,根据配置信息指示的检测周期和/或检测位置,发送下行传输标识信号。
第六方面,本公开实施例还提供了一种网络设备,网络设备包括处理器、存储器以及存储于存储器上并在处理器上运行的计算机程序,处理器执行计算机程序时实现上述的信息传输方法的步骤。
第七方面,本公开实施例提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述的信息传输方法的步骤。
这样,本公开实施例的终端根据配置信息的指示,在第一时域传输单元上检测下行传输标识信号,相应地,网络设备无需在有下行传输的每个时域传输单元上都发送下行传输标识信号,可降低***开销,提高***吞吐量。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示相关技术中传输标识信号的传输映射示意图一;
图2表示本公开实施例可应用的一种移动通信***框图;
图3表示本公开实施例终端侧的信息传输方法的流程示意图;
图4表示下行传输标识信号的传输映射示意图二;
图5-8表示本公开实施例不同场景中的下行传输标识信号的传输映射示意图;
图9表示本公开实施例终端的模块结构示意图;
图10表示本公开实施例的终端框图;
图11表示本公开实施例网络设备的信息传输方法的流程示意图;
图12表示本公开实施例网络设备的模块结构示意图;
图13表示本公开实施例的网络设备框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
本文所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,并且也可用于各种无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他***。术语“***”和“网络”常被可互换地使用。本文所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。然而,以下描述出于示例目的描述了NR***,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR***应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步 骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图2,图2示出本公开实施例可应用的一种无线通信***的框图。无线通信***包括终端21和网络设备22。其中,终端21也可以称作终端设备或者用户终端(User Equipment,UE),终端21可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本公开实施例中并不限定终端21的具体类型。网络设备22可以是基站或核心网,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信***中的基站(例如:eNB、WLAN接入点、或其他接入点等),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开实施例中仅以NR***中的基站为例,但是并不限定基站的具体类型。
基站可在基站控制器的控制下与终端21通信,在各种示例中,基站控制器可以是核心网或某些基站的一部分。一些基站可通过回程与核心网进行控制信息或用户数据的通信。在一些示例中,这些基站中的一些可以通过回程链路直接或间接地彼此通信,回程链路可以是有线或无线通信链路。无线通信***可支持多个载波(不同频率的波形信号)上的操作。多载波发射机能同时在这多个载波上传送经调制信号。例如,每条通信链路可以是根据各种无线电技术来调制的多载波信号。每个已调信号可在不同的载波上发送并且可携带控制信息(例如,参考信号、控制信道等)、开销信息、数据等。
基站可经由一个或多个接入点天线与终端21进行无线通信。每个基站可以为各自相应的覆盖区域提供通信覆盖。接入点的覆盖区域可被划分成仅构成该覆盖区域的一部分的扇区。无线通信***可包括不同类型的基站(例如宏基站、微基站、或微微基站)。基站也可利用不同的无线电技术,诸如蜂窝 或WLAN无线电接入技术。基站可以与相同或不同的接入网或运营商部署相关联。不同基站的覆盖区域(包括相同或不同类型的基站的覆盖区域、利用相同或不同无线电技术的覆盖区域、或属于相同或不同接入网的覆盖区域)可以交叠。
无线通信***中的通信链路可包括用于承载上行链路(Uplink,UL)传输(例如,从终端21到网络设备22)的上行链路,或用于承载下行链路(Downlink,DL)传输(例如,从网络设备22到终端21)的下行链路。UL传输还可被称为反向链路传输,而DL传输还可被称为前向链路传输。下行链路传输可以使用授权频段、非授权频段或这两者来进行。类似地,上行链路传输可以使用有授权频段、非授权频段或这两者来进行。
本公开实施例的信息传输方法,应用于终端侧,如图4所示,该方法包括以下步骤:
步骤31:接收下行传输标识信号的配置信息;其中,配置信息包括:检测周期和/或检测位置。
其中,检测周期用于指示终端需要缓存的资源大小,检测位置用于指示终端检测下行传输标识信号的位置。配置信息中可包括检测周期,也可以包括检测位置,也可以同时包括检测周期和检测位置。其中,检测周期或检测位置还可以是预定义或预配置的,例如协议约定检测周期为T,那么配置信息中仅需包括检测位置即可。
步骤32:根据配置信息指示的检测周期和/或检测位置,在第一时域传输单元上,检测下行传输标识信号。
其中,本公开实施例中时域传输单元可以是以帧(frame)、子帧、时隙(slot)、时域符号(如OFDM符号)等粒度为单位的时域资源。第一时域传输单元是终端的一个检测周期内的一个或多个时域资源。下行传输标识信号用于指示网络设备有下行传输,在有下行传输时,网络设备发送一个或多个下行传输标识信号来指示终端有下行传输。
在下行传输数据的起始位置增加传输标识信号,如图3所示,在网络设备获得信道时,传输标识信号位于下行数据突发(burst)的开始位置,终端根据该传输标识信号来触发PDCCH盲检,但是当终端未成功检测到传输标识 信号或终端配置的非连续接收(Discontinuous Reception,DRX)的激活期(On duration)位于网络设备获得信道占用时间(Channel Occupancy Time,COT)之后,终端会丢失网络设备整个COT内的数据。值得指出的是,本公开实施例步骤32之前或之后,还可包括:缓存第一时域传输单元所在检测周期的接收信号,得到该检测周期的缓存数据。终端在第一时域传输单元检测到下行传输标识信号后,可确定网络设备在第一时域传输单元前后可能有下行传输,由于终端将第一时域传输单元所在检测周期的数据进行了缓存,这样可避免因错过下行传输的起始位置导致的数据丢失。
其中,值得说明的是,上述步骤32和数据缓存步骤不存在严格的时序关系,具体实现时,数据缓存步骤可发生在步骤32之前或之后,此外,终端还可在第一时域传输单元上检测下行传输标识信号时,将第一时域传输单元上的数据进行缓存。
其中,第一时域传输单元为检测位置,检测位置位于检测周期中的特定位置,或者,第一时域传输单元为检测周期的任意位置。
具体地,网络设备为终端配置下行传输标识信号的配置信息时,可采用以下两种方式:
方式一、网络设备配置的配置信息包括下行传输标识信号的检测周期T和检测位置,即网络设备告知终端可能出现下行传输标识信号的绝对候选位置。在该方式下,由于检测位置是已知的,终端仅需要在检测位置上检测下行传输标识信号即可,即上述第一时域传输单元为下行传输标识信号的检测位置,该检测位置为下行传输标识信号检测周期中的特定位置。其中,值得指出的是,网络设备在有下行传输标识信号的发送需求时,在为其他信息调度资源时,期望避开检测位置,以保证必要的下行传输标识信号的传输。例如下行传输标识信号的检测周期为T=4slots,检测位置(如时隙号N_slot)满足N_slot mod T=2。
方式二、网络设备配置的配置信息仅包括下行传输标识信号的检测周期,例如下行传输标识信号的检测周期为T=4slots。具体地通过配置检测周期T,告知终端每T个连续时域传输单元的下行数据包含至少一个下行传输标识信号,其中值得指出的是,如果连续下行数据slot数小于T,也必须发送一个 下行传输标识信号。该方式下,下行传输标识信号的发送位置是灵活的,有利于网络设备的资源配置灵活性。对于终端而言,由于该方式下行传输标识信号的发送位置不固定,终端需要在检测周期内的每个时域传输单元上均进行下行传输标识信号的检测,即上述第一时域传输单元为检测周期的任意位置,终端在检测周期内的每个时域传输单元上均检测下行传输标识信号。
以上介绍了终端获取下行传输标识信号的配置信息的可实现方式,下面本公开实施例将进一步介绍终端在检测下行传输标识信号之后所执行的终端行为。
在步骤32之后还包括以下场景:
场景一、在第一时域传输单元上未检测到下行传输标识信号。
在该场景下终端认为第一时域传输单元上没有下行传输。具体地,步骤32之后,还包括:在未检测到下行传输标识信号的情况下,不进行物理下行控制信道PDCCH的盲检。进一步地,由于为避免数据丢失,终端缓存了第一时域传输单元所在检测周期的接收信号,得到了该检测周期的缓存数据,在终端未检测到下行传输标识信号时,可确定无下行传输,故可不进行物理下行控制信道PDCCH的盲检,并释放对应检测周期的缓存数据。这里是说,终端在第一时域传输单元上未检测到下行传输标识信号时,终端在第一时域传输单元上不进行PDCCH的盲检。终端对下行传输标识信号的下一次检测的检测位置可根据上述两种方式确定。其中,值得指出的是,这里所说的释放缓存数据,可以是释放全部缓存数据,也可以是释放部分缓存数据。
对于上述方式一,终端在接收数据状态下按照配置信息,在第一时域传输单元上进行下行传输标识信号检测,终端缓存了该第一时域传输单元所在检测周期T内的接收信号,得到检测周期T的缓存数据。终端在第一时域传输单元上未检测到下行传输标识信号,则认为该检测周期T内没有下行传输,不进行PDCCH的盲检,而继续下行传输标识信号的检测以及缓存数据的过程。其中,为了保证数据不发生丢失,检测位置可位于一个检测周期的最后位置,即终端在第一时域传输单元上检测下行传输标识信号,并缓存第一时域传输单元以及之前T-1个时域传输单元上的数据。
对于方式二、终端在接收数据状态下按照配置信息,在检测周期T内的 每个时域传输单元上进行下行传输标识信号检测,第一时域传输单元为当前检测位置,终端缓存了包括该当前检测位置以及之前T-1个时域传输单元上的接收信号,得到了对应检测周期T(该检测周期T可理解为长度固定、位置滑动的时间窗)的缓存数据。终端在第一时域传输单元上未检测到下行传输标识信号,则认为没有下行传输,不进行PDCCH的盲检,而继续下行传输标识信号的检测以及缓存数据的过程。其中,为了保证数据不发生丢失,在缓存第一时域传输单元上的数据之后,可释放之前第T个时域传输单元上的缓存数据。
如图5所示,假设采用上述方式二的配置信息,即下行传输标识信号的位置灵活,则网络设备在觉得必要的时候可以调整下行传输标识信号位置,例如在终端DRX激活期的第一个时域传输单元上需要调度上行数据时等等。以时隙slot为例,在网络设备获得COT信息后需要调度上行数据,则在调度的slot#0一定需要发送下行传输标识信号,使得终端在上行数据传输之前收到上行调度信息。对于终端来说,由于下行传输标识信号的灵活性,终端需要每个slot来进行检测,并进行滑动窗的数据缓存。假设检测周期T为4个slot,终端在上一个子帧的slot#19上检测之前,缓存了上一个子帧中slot#15、slot#16、slot#17和slot#18上的缓存数据。若终端在上一个子帧的slot#19上未检测到下行传输标识信号,则终端将缓存slot#19上的数据并释放slot#15上的缓存数据,即终端按照检测周期的长度滑动缓存数据。
场景二、在第一时域传输单元上检测到下行传输标识信号。
在该场景下,终端包括两方面的行为,一是:对第一时域传输单元所在检测周期的处理,二是:对第一时域传输单元之后的处理。下面分别对这两方面的终端行为作进一步说明。
第一方面:对第一时域单元所在检测周期的处理
本公开实施例中网络设备可在下行传输标识信号中携带与下行传输相关的指示信息,例如下行传输标识信号携带有:用于指示网络设备信道占用时间COT的起始位置的第一指示信息,和/或,用于指示检测周期中是否存在下行数据的第二指示信息。下行传输标识信号携带的指示信息不同,终端PDCCH盲检的行为可能不同。其中,下行传输标识信号携带有第一指示信息指的是: 网络设备在下行传输标识信号中指示COT的开始位置。
下面将结合不同的指示信息,对在第一时域传输单元之后的时域传输单元上,进行PDCCH的盲检的行为作进一步说明。
其中,在下行传输标识信号中携带有指示网络设备信道占用时间COT的起始位置的第一指示信息时,终端在检测到下行传输标识信号的情况下,从第一指示信息指示的起始位置开始,对检测周期进行PDCCH的盲检。其中,下行传输标识信号携带有第一指示信息指的是:网络设备在下行传输标识信号中指示COT的开始位置。相应地,终端获取到COT的开始位置后,在检测周期中从指示的开始位置进行PDCCH盲检。
假设采用方式一,下行传输标识信号的检测周期为T=4slots,检测位置N_slot满足N_slot mod T=2。如图6所示,网络设备在Slot#0获得信道并开始下行传输到Slot#6,根据配置信息的指示,网络设备可在Slot#2和Slot#6发送下行传输标识信号。终端按照该配置信息,首先会在Slot#18中检测有没有下行传输标识信号,并发现在Slot#18中没有下行传输标识信号,进一步在Slot#2中进行检测并发现有下行传输标识信号,这时该终端已经缓存了Slot#19、Slot#0、Slot#1和Slot#2的数据。若下行传输标识信号中携带的第一指示信息指示COT的开始位置为Slot#0。那么终端通过第一指示信息得知下行传输是从Slot#0开始的,因此终端只对缓存的Slot#0、Slot#1和Slot#2的数据进行PDCCH盲检,而无需在对Slot19的数据进行PDCCH盲检。
其中,在下行传输标识信号中携带有指示检测周期中是否存在下行数据的第二指示信息时,终端在检测到下行传输标识信号的情况下,在第二指示信息指示检测周期中存在下行数据的情况下,对检测周期进行PDCCH的盲检;在第二指示信息指示检测周期中不存在下行数据的情况下,不对检测周期进行PDCCH的盲检。进一步地,在终端缓存了检测周期的接收信号得到相应的缓存数据的情况下,在第二指示信息指示检测周期中不存在下行数据的情况下,不对检测周期进行PDCCH的盲检,并释放该检测周期的缓存数据。这里指的是网络设备可在当前发送下行传输标识信号中携带第二指示信息,以指示前面检测周期中是否有调度该终端的数据。
第二指示信息的指示方式包括但不限于:采用1个指示bit用来指示检测周期中是否有终端的调度数据,例如该指示bit的值为1时,表示检测周期中存在终端的调度数据,该指示bit的值为0时,表示检测周期中不存在终端的调度数据;或者反之。在该情况下,终端在检测到下行传输标识信号的情况下,在第二指示信息指示检测周期中存在下行数据的情况下,从检测周期的开始位置进行PDCCH的盲检;在第二指示信息指示检测周期中不存在下行数据的情况下,不对检测周期进行PDCCH的盲检,并释放全部缓存数据。
另外,第二指示信息的指示方式还可以是:包括用于指示检测周期内每一时域传输单元上是否存在下行调度数据的指示位图。例如该指示位图中bit位的值为1时,表示对应时域传输单元上有终端调度数据,该指示位图中bit位的值为0时,表示对应时域传输单元上没有终端的调度数据;或者反之。相应地,对缓存数据进行PDCCH的盲检的步骤包括:在指示位图指示的存在下行数据的时域传输单元上,对检测周期中存在下行数据的时域传输单元进行PDCCH的盲检。
进一步地,假设采用方式一,下行传输标识信号的检测周期为T=4slots,检测位置N_slot满足N_slot mod T=2。如图7所示,网络设备在Slot#0获得信道并开始下行传输到Slot#6,根据配置信息的指示,网络设备可在Slot#2和Slot#6发送下行传输标识信号。终端1和终端2分别按照该配置信息,首先会在Slot#18中检测有没有下行传输标识信号,并发现在Slot#18中没有下行传输标识信号,进一步在Slot#2中进行检测并发现有下行传输标识信号,这时该终端1和2已经缓存了Slot#19、Slot#0、Slot#1和Slot#2的数据。若终端1在下行传输标识信号中检测到的第二指示信息指示仅Slot#0上有调度数据,则终端1只对Slot#0进行PDCCH盲检。若终端2在下行传输标识信号中检测到的第二指示信息指示前面没有调度终端2的数据,则终端在不对缓存的Slot#19、Slot#0和Slot#1进行PDCCH盲检。
此外,本公开实施例的下行传输标识中还可不携带任何信息,其作用仅为提示终端由下行传输,该情况下终端在检测到下行传输标识信号后,从缓存数据的开始位置进行PDCCH的盲检。即在未检测到第一指示信息或第二指示信息的情况下,从缓存数据的开始位置进行PDCCH的盲检。假设采用方式 一,下行传输标识信号的检测周期为T=4slots,检测位置N_slot满足N_slot mod T=2。如图7所示,网络设备在Slot#0获得信道并开始下行传输到Slot#6,根据配置信息的指示,网络设备可在Slot#2和Slot#6发送下行传输标识信号。终端3按照该配置信息,首先会在Slot#18中检测有没有下行传输标识信号,并发现在Slot#18中没有下行传输标识信号,进一步在Slot#2中进行检测并发现有下行传输标识信号,这时该终端3已经缓存了Slot#19、Slot#0、Slot#1和Slot#2的数据。若终端3在下行传输标识信号中未检测到第一指示信息和第二指示信息,则对缓存的Slot#19、Slot#0和Slot#1都要进行PDCCH盲检。
以上介绍了终端在检测到下行传输标识信号之后,对缓存数据的处理方式,下面本实施例将进一步介绍在检测到下行传输标识信号之后的PDCCH盲检方式。
第二方面、对第一时域传输单元之后的处理
其中,步骤32之后还包括:在检测到下行传输标识信号的情况下,在第一时域传输单元之后的时域传输单元上,进行PDCCH的盲检。终端在检测到下行传输标识信号后,认为有下行传输,这时终端在后续的时域传输单元上进行PDCCH盲检。
其中,在检测到下行传输标识信号的情况下,终端对于后续时域传输单元,触发对配置的搜索空间进行PDCCH盲检。而对于PDCCH盲检的结束条件,包括但不限于以下方式:
在终端获得网络设备COT结束位置的情况下,终端从COT的结束位置之后停止PDCCH的盲检,并恢复只检测下行传输标识信号。具体地,在网络设备COT的结束位置之后,停止PDCCH的盲检,并执行检测下行传输标识信号。
其中,COT的结束位置是根据下行传输标识信号确定的,例如下行传输标识信号中还可携带用于指示网络设备信道占用时间COT的结束位置的第三指示信息;或者下行传输标识信号中携带用于指示COT的起始位置的第一指示信息,以及COT持续时长的第四指示信息;或者下行传输标识信号中携带第一指示信息,COT持续时长为预定义的(如协议约定)。假设采用方式一,下行传输标识信号的检测周期为T=4slots,检测位置N_slot满足N_slot mod  T=2。如图6所示,网络设备在Slot#0获得信道并开始下行传输到Slot#6,根据配置信息的指示,网络设备可在Slot#2和Slot#6发送下行传输标识信号。终端按照该配置信息,首先会在Slot#18中检测有没有下行传输标识信号,并发现在Slot#18中没有下行传输标识信号,进一步在Slot#2中进行检测并发现有下行传输标识信号,这时该终端已经缓存了Slot#19、Slot#0、Slot#1和Slot#2的数据。若下行传输标识信号中携带的第三指示信息指示COT的开始位置为Slot#6。那么终端通过第三指示信息得知下行传输是从Slot#6处结束的,因此终端从Slot#7开始,停止PDCCH盲检,恢复进行下行传输标识信号检测的流程。
若终端未获得网络设备COT结束位置,终端可在开始PDCCH盲检之后启动一个计数器(如PDCCH盲检计数器),每对一个时域传输单元进行PDCCH盲检后,该计数器加1或减1。具体地,终端启动PDCCH盲检计数器;其中,PDCCH盲检计数器用于对PDCCH的盲检次数进行计数;在PDCCH盲检计数器达到预设阈值或归零时,停止PDCCH的盲检,并执行检测下行传输标识信号。假设采用方式一,下行传输标识信号的检测周期为T=4slots,检测位置N_slot满足N_slot mod T=2。如图8所示,网络设备在Slot#0获得信道并开始下行传输到Slot#6,根据配置信息的指示,网络设备可在Slot#2和Slot#6发送下行传输标识信号。终端按照该配置信息,首先会在Slot#18中检测有没有下行传输标识信号,并发现在Slot#18中没有下行传输标识信号,进一步在Slot#2中进行检测并发现有下行传输标识信号。这时终端对后续的Slot(即Slot#3,Slot#4,…)启动PDCCH盲检。这时候终端不知道该COT的结束位置,可启动PDCCH盲检计数器,counter=8,终端每对一个Slot进行PDCCH盲检,该计数器减一,终端在Slot#10停止PDCCH盲检,并恢复进行下行标识信号检测的流程。
其中值得指出的是,本公开实施例中所提及的下行传输标识信号可以包含信道状态指示参考信号(Channel State Information Reference Signal,CSI-RS)、解调参考信号(De-Modulation Reference Signal,DMRS)、主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)和组播下行物理控制信道(Group Common  Physical Downlink Control Channel,GC-PDCCH)等各种可能的信号中的一种或多种。这些信号的检测复杂度低于PDCCH的盲检复杂度,可有效降低终端的耗电情况。
进一步地,本公开实施例中下行传输标识信号中携带的指示信息可以是下行控制信息(Downlink Control Information,DCI),不同指示信息可通过DCI中的不同指示域实现。
本公开实施例的信息传输方法中,终端在检测周期内的第一时域传输单元上检测下行传输标识信号,并缓存该检测周期内的缓存数据,这样在检测到下行传输标识信号时,由于缓存了该检测周期内的缓存数据,通过对缓存数据的检测获得检测周期内的下行数据,不会因错过COT的起始位置而丢失下行数据。
以上实施例介绍了不同场景下的信息传输方法,下面将结合附图对与其对应的终端做进一步介绍。
如图9所示,本公开实施例的终端900,能实现上述实施例中接收下行传输标识信号的配置信息;其中,配置信息包括:检测周期和/或检测位置;根据配置信息指示的检测周期和/或检测位置,在第一时域传输单元上,检测下行传输标识信号方法的细节,并达到相同的效果,该终端900具体包括以下功能模块:
第一接收模块910,用于接收下行传输标识信号的配置信息;其中,配置信息包括:检测周期和/或检测位置;
检测模块920,用于根据所述配置信息指示的检测周期和/或检测位置,在第一时域传输单元上,检测下行传输标识信号。
其中,第一时域传输单元为检测位置,检测位置位于检测周期中的特定位置,或者,第一时域传输单元为检测周期的任意位置。
其中,终端900还包括:
第一处理模块,用于在未检测到下行传输标识信号的情况下,不进行物理下行控制信道PDCCH的盲检。
其中,下行传输标识信号携带有:用于指示网络设备信道占用时间COT的起始位置的第一指示信息,和/或,用于指示检测周期中是否存在下行数据 的第二指示信息。
其中,终端900还包括:
第二处理模块,用于在检测到下行传输标识信号的情况下,执行以下操作中的至少一项:
从第一指示信息指示的起始位置开始,对检测周期进行PDCCH的盲检;
在第二指示信息指示检测周期中存在下行数据的情况下,对检测周期进行PDCCH的盲检;
在第二指示信息指示检测周期中不存在下行数据的情况下,不对缓存数据进行PDCCH的盲检;
在未检测到第一指示信息和第二指示信息的情况下,从检测周期的开始位置进行PDCCH的盲检。
其中,第二指示信息包括用于指示检测周期内每一时域传输单元上是否存在下行调度数据的指示位图;
其中,第二处理模块包括:
第一处理子模块,用于在指示位图指示的存在下行数据的时域传输单元上,对检测周期中存在下行数据的时域传输单元进行PDCCH的盲检。
其中,终端900还包括:
第三处理模块,用于在检测到下行传输标识信号的情况下,在第一时域传输单元之后的时域传输单元上,进行PDCCH的盲检。
其中,终端900还包括:
第四处理模块,用于在网络设备COT的结束位置之后,停止PDCCH的盲检,并执行检测下行传输标识信号。
其中,结束位置是根据下行传输标识信号确定的。
其中,终端900还包括:
启动模块,用于启动PDCCH盲检计数器;其中,PDCCH盲检计数器用于对PDCCH的盲检次数进行计数;
第五处理模块,用于在PDCCH盲检计数器达到预设阈值或归零时,停止PDCCH的盲检,并执行检测下行传输标识信号。
值得指出的是,本公开实施例的终端在检测周期内的第一时域传输单元 上检测下行传输标识信号,并缓存该检测周期内的缓存数据,这样在检测到下行传输标识信号时,由于缓存了该检测周期内的缓存数据,通过对缓存数据的检测获得检测周期内的下行数据,不会因错过COT的起始位置而丢失下行数据。
为了更好的实现上述目的,进一步地,图10为实现本公开各个实施例的一种终端的硬件结构示意图,该终端100包括但不限于:射频单元101、网络模块102、音频输出单元103、输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、处理器1010、以及电源1011等部件。本领域技术人员可以理解,图10中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元101,用于在处理器1010的控制下收发数据;
处理器1010,用于在第一时域传输单元上,检测下行传输标识信号;以及缓存第一时域传输单元所在检测周期的缓存数据;
本公开实施例的终端在检测周期内的第一时域传输单元上检测下行传输标识信号,并缓存该检测周期内的缓存数据,这样在检测到下行传输标识信号时,由于缓存了该检测周期内的缓存数据,通过对缓存数据的检测获得检测周期内的下行数据,不会因错过COT的起始位置而丢失下行数据。
应理解的是,本公开实施例中,射频单元101可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器1010处理;另外,将上行的数据发送给基站。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元101还可以通过无线通信***与网络和其他设备通信。
终端通过网络模块102为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元103可以将射频单元101或网络模块102接收的或者在存储器109中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元103还可以提供与终端100执行的特定功能相关的音频输出(例如,呼 叫信号接收声音、消息接收声音等等)。音频输出单元103包括扬声器、蜂鸣器以及受话器等。
输入单元104用于接收音频或视频信号。输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元106上。经图形处理器1041处理后的图像帧可以存储在存储器109(或其它存储介质)中或者经由射频单元101或网络模块102进行发送。麦克风1042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元101发送到移动通信基站的格式输出。
终端100还包括至少一种传感器105,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1061的亮度,接近传感器可在终端100移动到耳边时,关闭显示面板1061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器105还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元106用于显示由用户输入的信息或提供给用户的信息。显示单元106可包括显示面板1061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1061。
用户输入单元107可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元107包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1071上或在触控面板1071附近的操作)。触控面板 1071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1010,接收处理器1010发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1071。除了触控面板1071,用户输入单元107还可以包括其他输入设备1072。具体地,其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板1071可覆盖在显示面板1061上,当触控面板1071检测到在其上或附近的触摸操作后,传送给处理器1010以确定触摸事件的类型,随后处理器1010根据触摸事件的类型在显示面板1061上提供相应的视觉输出。虽然在图10中,触控面板1071与显示面板1061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板1071与显示面板1061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元108为外部装置与终端100连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元108可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端100内的一个或多个元件或者可以用于在终端100和外部装置之间传输数据。
存储器109可用于存储软件程序以及各种数据。存储器109可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器1010是终端的控制中心,利用各种接口和线路连接整个终端的各 个部分,通过运行或执行存储在存储器109内的软件程序和/或模块,以及调用存储在存储器109内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器1010可包括一个或多个处理单元;优选的,处理器1010可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
终端100还可以包括给各个部件供电的电源1011(比如电池),优选的,电源1011可以通过电源管理***与处理器1010逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。
另外,终端100包括一些未示出的功能模块,在此不再赘述。
优选的,本公开实施例还提供一种终端,包括处理器1010,存储器109,存储在存储器109上并可在所述处理器1010上运行的计算机程序,该计算机程序被处理器1010执行时实现上述信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为***、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
以上实施例从终端侧介绍了本公开的信息传输方法,下面本实施例将结合附图对网络设备侧的信息传输方法做进一步介绍。
如图11所示,本公开实施例的信息传输方法,应用于网络设备侧,该方法包括以下步骤:
步骤111:为终端配置下行传输标识信号的配置信息;其中,配置信息包括:检测周期和/或检测位置。
其中,配置信息包括:检测周期和/或检测位置,检测位置位于检测周期中的特定位置,或者,检测位置位于检测周期的任意位置。
网络设备配置的配置信息可以包括下行传输标识信号的检测周期T和检测位置,即网络设备告知终端可能出现下行传输标识信号的绝对候选位置。在该方式下,由于检测位置是已知的,终端仅需要在检测位置上检测下行传输标识信号即可。
步骤112:在为终端调度了下行数据的情况下,根据配置信息指示的检测周期和/或检测位置,发送下行传输标识信号。
其中,一次调度的下行数据对应一个或多个下行传输标识信号,具体数目对应关系可根据下行数据的属性确定,例如某次调度的下行数据重要性较高时,可针对这次调度下发多个下行传输标识信号。
此外,网络设备配置的配置信息还可仅包括下行传输标识信号的检测周期,例如下行传输标识信号的检测周期为T=4slots。具体地通过配置检测周期T,告知终端每T个连续时域传输单元的下行数据包含至少一个下行传输标识信号,其中值得指出的是,如果连续下行数据slot数小于T,也必须发送一个下行传输标识信号。该方式下,下行传输标识信号的发送位置是灵活的,有利于网络设备的资源配置灵活性。对于终端而言,由于该方式下行传输标识信号的发送位置不固定,终端需要在检测周期内的每个时域传输单 元上均进行下行传输标识信号的检测。
本公开实施例中网络设备可在下行传输标识信号中携带与下行传输相关的指示信息,例如下行传输标识信号携带有:用于指示网络设备信道占用时间COT的起始位置的第一指示信息,和/或,用于指示检测周期中是否存在下行数据的第二指示信息。此外,下行传输标识信号还可携带有:用于指示网络设备信道占用时间COT的结束位置的第三指示信息。
第二指示信息的指示方式包括但不限于:采用1个指示bit用来指示缓存数据中是否有终端的调度数据,例如该指示bit的值为1时,表示缓存数据中存在终端的调度数据,该指示bit的值为0时,表示缓存数据中不存在终端的调度数据;或者反之。
此外,第二指示信息的指示方式还可以是:包括用于指示检测周期内每一时域传输单元上是否存在下行调度数据的指示位图。例如该指示位图中bit位的值为1时,表示对应时域传输单元上有终端调度数据,该指示位图中bit位的值为0时,表示对应时域传输单元上没有终端的调度数据;或者反之。
其中值得指出的是,本公开实施例中所提及的下行传输标识信号可以包含CSI-RS、DMRS、PSS、SSS和GC-PDCCH等各种可能的信号中的一种或多种。下行传输标识信号中携带的指示信息可以是DCI,不同指示信息可通过DCI中的不同指示域实现。
本公开实施例的信息传输方法中,在有下行传输需求时,网络设备可在检测周期内的一个时域传输单元上发送下行传输标识信息,而无需在每个时域传输单元上均发送下行传输标识信息,可降低***开销,提高***吞吐量。
以上实施例分别详细介绍了不同场景下的信息传输方法,下面本实施例将结合附图对其对应的网络设备做进一步介绍。
如图12所示,本公开实施例的网络设备1200,能实现上述实施例中为终端配置下行传输标识信号的配置信息;其中,配置信息包括:检测周期和/或检测位置;在为终端调度了下行数据的情况下,根据配置信息指示的检测周期和/或检测位置,发送下行传输标识信号方法的细节,并达到相同的效果,该网络设备1200具体包括以下功能模块:
配置模块1210,用于为终端配置下行传输标识信号的配置信息;其中, 配置信息包括:检测周期和/或检测位置;
发送模块1220,用于在为终端调度了下行数据的情况下,根据配置信息指示的检测周期和/或检测位置,发送下行传输标识信号。
其中,检测位置位于检测周期中的特定位置,或者,检测位置位于检测周期的任意位置。
其中,下行传输标识信号携带有:用于指示网络设备信道占用时间COT的起始位置的第一指示信息,和/或,用于指示检测周期中是否存在下行数据的第二指示信息。
其中,第二指示信息包括用于指示检测周期内每一时域传输单元上是否存在下行调度数据的指示位图。
值得指出的是,本公开实施例的网络设备在有下行传输需求时,可在检测周期内的一个时域传输单元上发送下行传输标识信息,而无需在每个时域传输单元上均发送下行传输标识信息,可降低***开销,提高***吞吐量。
需要说明的是,应理解以上网络设备和终端的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array, FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上***(system-on-a-chip,SOC)的形式实现。
为了更好的实现上述目的,本公开的实施例还提供了一种网络设备,该网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上所述的信息传输方法中的步骤。发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上所述的信息传输方法的步骤。
具体地,本公开的实施例还提供了一种网络设备。如图13所示,该网络设备1300包括:天线131、射频装置132、基带装置133。天线131与射频装置132连接。在上行方向上,射频装置132通过天线131接收信息,将接收的信息发送给基带装置133进行处理。在下行方向上,基带装置133对要发送的信息进行处理,并发送给射频装置132,射频装置132对收到的信息进行处理后经过天线131发送出去。
上述频带处理装置可以位于基带装置133中,以上实施例中网络设备执行的方法可以在基带装置133中实现,该基带装置133包括处理器134和存储器135。
基带装置133例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图13所示,其中一个芯片例如为处理器134,与存储器135连接,以调用存储器135中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置133还可以包括网络接口136,用于与射频装置132交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,也可以是ASIC,或者是被配置成实施以上网络设备所执行方法的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个现场可编程门阵列FPGA等。存储元件可以是一个存储器,也可以是多个存储元件的统称。
存储器135可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请描述的存储器135旨在包括但不限于这些和任意其它适合类型的存储器。
具体地,本公开实施例的网络设备还包括:存储在存储器135上并可在处理器134上运行的计算机程序,处理器134调用存储器135中的计算机程序执行图12所示各模块执行的方法。
具体地,计算机程序被处理器134调用时可用于执行:在为终端调度了下行数据的情况下,在检测周期的时域传输单元上发送下行传输标识信号。
本公开实施例中的网络设备,在有下行传输需求时,可在检测周期内的一个时域传输单元上发送下行传输标识信息,而无需在每个时域传输单元上均发送下行传输标识信息,可降低***开销,提高***吞吐量。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实 现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述的是本公开的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (31)

  1. 一种信息传输方法,应用于终端侧,包括:
    接收下行传输标识信号的配置信息;其中,所述配置信息包括:检测周期和/或检测位置;
    根据所述配置信息指示的检测周期和/或检测位置,在第一时域传输单元上检测下行传输标识信号。
  2. 根据权利要求1所述的信息传输方法,其中,所述第一时域传输单元为所述检测位置,所述检测位置位于所述检测周期中的特定位置,或者,所述第一时域传输单元为所述检测周期的任意位置。
  3. 根据权利要求1所述的信息传输方法,其中,在第一时域传输单元上,检测下行传输标识信号的步骤之后,还包括:
    在未检测到所述下行传输标识信号的情况下,不进行物理下行控制信道PDCCH的盲检。
  4. 根据权利要求1所述的信息传输方法,其中,所述下行传输标识信号携带有:用于指示网络设备信道占用时间COT的起始位置的第一指示信息,和/或,用于指示所述检测周期中是否存在下行数据的第二指示信息。
  5. 根据权利要求4所述的信息传输方法,其中,在第一时域传输单元上,检测下行传输标识信号的步骤之后,还包括:
    在检测到所述下行传输标识信号的情况下,执行以下操作中的至少一项:
    从所述第一指示信息指示的起始位置开始,对所述检测周期进行PDCCH的盲检;
    在所述第二指示信息指示所述检测周期中存在下行数据的情况下,对所述检测周期进行PDCCH的盲检;
    在所述第二指示信息指示所述检测周期中不存在下行数据的情况下,不对所述检测周期进行PDCCH的盲检;
    在未检测到所述第一指示信息和所述第二指示信息的情况下,从所述检测周期的开始位置进行PDCCH的盲检。
  6. 根据权利要求5所述的信息传输方法,其中,所述第二指示信息包括 用于指示所述检测周期内每一时域传输单元上是否存在下行调度数据的指示位图;
    其中,对所述检测周期进行PDCCH的盲检的步骤,包括:
    在所述指示位图指示的存在下行数据的时域传输单元上,对所述检测周期中存在下行数据的时域传输单元进行PDCCH的盲检。
  7. 根据权利要求1所述的信息传输方法,其中,在第一时域传输单元上检测下行传输标识信号的步骤之后,还包括:
    在检测到所述下行传输标识信号的情况下,在所述第一时域传输单元之后的时域传输单元上,进行PDCCH的盲检。
  8. 根据权利要求7所述的信息传输方法,其中,进行PDCCH的盲检的步骤之后,还包括:
    在网络设备COT的结束位置之后,停止PDCCH的盲检,并执行检测下行传输标识信号。
  9. 根据权利要求8所述的信息传输方法,其中,所述结束位置是根据所述下行传输标识信号确定的。
  10. 根据权利要求7所述的信息传输方法,其中,进行PDCCH的盲检的步骤之后,还包括:
    启动PDCCH盲检计数器;其中,所述PDCCH盲检计数器用于对PDCCH的盲检次数进行计数;
    在所述PDCCH盲检计数器达到预设阈值或归零时,停止PDCCH的盲检,并执行检测下行传输标识信号。
  11. 一种终端,包括:
    第一接收模块,用于接收下行传输标识信号的配置信息;其中,配置信息包括:检测周期和/或检测位置;
    检测模块,用于根据所述配置信息指示的检测周期和/或检测位置,在第一时域传输单元上,检测下行传输标识信号。
  12. 根据权利要求11所述的终端,其中,所述第一时域传输单元为所述检测位置,所述检测位置位于所述检测周期中的特定位置,或者,所述第一时域传输单元为所述检测周期的任意位置。
  13. 根据权利要求11所述的终端,还包括:
    第一处理模块,用于在未检测到所述下行传输标识信号的情况下,不进行物理下行控制信道PDCCH的盲检。
  14. 根据权利要求11所述的终端,其中,所述下行传输标识信号携带有:用于指示网络设备信道占用时间COT的起始位置的第一指示信息,和/或,用于指示所述检测周期中是否存在下行数据的第二指示信息。
  15. 根据权利要求14所述的终端,还包括:
    第二处理模块,用于在检测到所述下行传输标识信号的情况下,执行以下操作中的至少一项:
    从所述第一指示信息指示的起始位置开始,对所述检测周期进行PDCCH的盲检;
    在所述第二指示信息指示所述检测周期中存在下行数据的情况下,对所述检测周期进行PDCCH的盲检;
    在所述第二指示信息指示所述检测周期中不存在下行数据的情况下,不对所述检测周期进行PDCCH的盲检;
    在未检测到所述第一指示信息和所述第二指示信息的情况下,从所述检测周期的开始位置进行PDCCH的盲检。
  16. 根据权利要求15所述的终端,其中,所述第二指示信息包括用于指示所述检测周期内每一时域传输单元上是否存在下行调度数据的指示位图;
    其中,所述第二处理模块包括:
    第一处理子模块,用于在所述指示位图指示的存在下行数据的时域传输单元上,对所述检测周期中存在下行数据的时域传输单元进行PDCCH的盲检。
  17. 根据权利要求11所述的终端,还包括:
    第三处理模块,用于在检测到所述下行传输标识信号的情况下,在所述第一时域传输单元之后的时域传输单元上,进行PDCCH的盲检。
  18. 根据权利要求17所述的终端,还包括:
    第四处理模块,用于在网络设备COT的结束位置之后,停止PDCCH的盲检,并执行检测下行传输标识信号。
  19. 根据权利要求18所述的终端,其中,所述结束位置是根据所述下行 传输标识信号确定的。
  20. 根据权利要求17所述的终端,还包括:
    启动模块,用于启动PDCCH盲检计数器;其中,所述PDCCH盲检计数器用于对PDCCH的盲检次数进行计数;
    第五处理模块,用于在所述PDCCH盲检计数器达到预设阈值或归零时,停止PDCCH的盲检,并执行检测下行传输标识信号。
  21. 一种终端,包括处理器、存储器以及存储于所述存储器上并在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至10中任一项所述的信息传输方法的步骤。
  22. 一种信息传输方法,应用于网络设备侧,包括:
    为终端配置下行传输标识信号的配置信息;其中,所述配置信息包括:检测周期和/或检测位置;
    在为终端调度了下行数据的情况下,根据所述配置信息指示的检测周期和/或检测位置,发送下行传输标识信号。
  23. 根据权利要求22所述的信息传输方法,其中,所述检测位置位于所述检测周期中的特定位置,或者,所述检测位置位于所述检测周期的任意位置。
  24. 根据权利要求22所述的信息传输方法,其中,所述下行传输标识信号携带有:用于指示网络设备信道占用时间COT的起始位置的第一指示信息,和/或,用于指示所述检测周期中是否存在下行数据的第二指示信息。
  25. 根据权利要求24所述的信息传输方法,其中,所述第二指示信息包括用于指示所述检测周期内每一时域传输单元上是否存在下行调度数据的指示位图。
  26. 一种网络设备,包括:
    配置模块,用于为终端配置下行传输标识信号的配置信息;其中,所述配置信息包括:检测周期和/或检测位置;
    发送模块,用于在为终端调度了下行数据的情况下,根据所述配置信息指示的检测周期和/或检测位置,发送下行传输标识信号。
  27. 根据权利要求26所述的网络设备,其中,所述检测位置位于所述检 测周期中的特定位置,或者,所述检测位置位于所述检测周期的任意位置。
  28. 根据权利要求26所述的网络设备,其中,所述下行传输标识信号携带有:用于指示网络设备信道占用时间COT的起始位置的第一指示信息,和/或,用于指示所述检测周期中是否存在下行数据的第二指示信息。
  29. 根据权利要求28所述的网络设备,其中,所述第二指示信息包括用于指示所述检测周期内每一时域传输单元上是否存在下行调度数据的指示位图。
  30. 一种网络设备,包括处理器、存储器以及存储于所述存储器上并在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求22至25任一项所述的信息传输方法的步骤。
  31. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至10、22至25中任一项所述的信息传输方法的步骤。
PCT/CN2019/106942 2018-12-28 2019-09-20 信息传输方法、终端及网络设备 WO2020134222A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19905365.3A EP3905751A4 (en) 2018-12-28 2019-09-20 INFORMATION TRANSMISSION METHOD, TERMINAL AND NETWORK DEVICE
KR1020217023289A KR102650921B1 (ko) 2018-12-28 2019-09-20 정보 전송 방법, 단말 및 네트워크 장치
US17/360,397 US12052579B2 (en) 2018-12-28 2021-06-28 Information transmission method, terminal and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811626877.6 2018-12-28
CN201811626877.6A CN111278026B (zh) 2018-12-28 2018-12-28 一种信息传输方法、终端及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/360,397 Continuation US12052579B2 (en) 2018-12-28 2021-06-28 Information transmission method, terminal and network device

Publications (1)

Publication Number Publication Date
WO2020134222A1 true WO2020134222A1 (zh) 2020-07-02

Family

ID=71003264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106942 WO2020134222A1 (zh) 2018-12-28 2019-09-20 信息传输方法、终端及网络设备

Country Status (4)

Country Link
EP (1) EP3905751A4 (zh)
KR (1) KR102650921B1 (zh)
CN (1) CN111278026B (zh)
WO (1) WO2020134222A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299871A (zh) * 2007-04-30 2008-11-05 大唐移动通信设备有限公司 发送上行探测导频的方法及***、基站和终端
CN102170703A (zh) * 2011-05-11 2011-08-31 电信科学技术研究院 一种物理下行控制信道上的信息收发方法及设备
WO2017193980A1 (zh) * 2016-05-13 2017-11-16 华为技术有限公司 传输下行控制信息的方法和装置
CN107666713A (zh) * 2016-07-27 2018-02-06 普天信息技术有限公司 一种sTTI中sPDCCH的传输方法以及装置
WO2018058453A1 (zh) * 2016-09-29 2018-04-05 华为技术有限公司 通信方法、终端设备和基站

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992376B (zh) * 2015-02-13 2019-01-22 中兴通讯股份有限公司 一种实现业务调度的方法、***、基站及用户设备
US11240835B2 (en) * 2017-01-17 2022-02-01 Huawei Technologies Co., Ltd. System and method for co-existence of low-latency and latency-tolerant communication resources
CN108737040B (zh) * 2017-04-14 2020-12-25 华为技术有限公司 传输方法、终端和网络设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299871A (zh) * 2007-04-30 2008-11-05 大唐移动通信设备有限公司 发送上行探测导频的方法及***、基站和终端
CN102170703A (zh) * 2011-05-11 2011-08-31 电信科学技术研究院 一种物理下行控制信道上的信息收发方法及设备
WO2017193980A1 (zh) * 2016-05-13 2017-11-16 华为技术有限公司 传输下行控制信息的方法和装置
CN107666713A (zh) * 2016-07-27 2018-02-06 普天信息技术有限公司 一种sTTI中sPDCCH的传输方法以及装置
WO2018058453A1 (zh) * 2016-09-29 2018-04-05 华为技术有限公司 通信方法、终端设备和基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3905751A4 *

Also Published As

Publication number Publication date
CN111278026B (zh) 2022-01-25
KR20210108437A (ko) 2021-09-02
US20210329470A1 (en) 2021-10-21
CN111278026A (zh) 2020-06-12
EP3905751A4 (en) 2022-03-09
KR102650921B1 (ko) 2024-03-22
EP3905751A1 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
US20220046541A1 (en) Channel monitoring method, terminal, and network device
WO2020164593A1 (zh) 混合自动重传请求harq反馈方法、终端及网络设备
WO2020011180A1 (zh) 信道检测指示方法、终端及网络设备
WO2020011181A1 (zh) 信道检测指示方法、终端及网络设备
WO2019076171A1 (zh) 非授权频段下的信息传输方法、终端及网络设备
AU2019270848A1 (en) Information transmission method, terminal, and network device
WO2020038181A1 (zh) 上行信息的发送方法及终端
WO2020156073A1 (zh) 非授权频段的信息传输方法、终端及网络设备
CN109286986B (zh) 半静态调度传输资源确定方法、终端及网络设备
CA3107136A1 (en) Determining method, terminal, and network device
WO2020088101A1 (zh) 非周期信道状态信息参考信号配置方法、网络设备及终端
WO2020057317A1 (zh) 传输指示信号的传输方法、网络设备及终端
EP3855662A1 (en) Resource configuration method, terminal and network device
WO2021155763A1 (zh) 非授权频段的数据传输方法及装置、通信设备
WO2020125360A1 (zh) 非授权频段信息传输方法、终端及网络设备
WO2020228529A1 (zh) 半静态调度配置的配置方法、设备及***
CN110875808B (zh) ***信息传输方法、网络设备及终端
WO2020011081A1 (zh) 信息传输方法、网络设备及终端
WO2021147794A1 (zh) 频域资源处理方法、频域资源配置方法及相关设备
WO2020151706A1 (zh) 随机接入传输方法及终端
WO2019242568A1 (zh) 功率分配方法及终端
WO2021088783A1 (zh) 物理下行控制信道的检测方法及装置
WO2021208953A1 (zh) 冲突资源判断方法、终端和网络设备
WO2020151708A1 (zh) 信息传输方法及终端
WO2020134222A1 (zh) 信息传输方法、终端及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217023289

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019905365

Country of ref document: EP

Effective date: 20210728