WO2020088101A1 - 非周期信道状态信息参考信号配置方法、网络设备及终端 - Google Patents

非周期信道状态信息参考信号配置方法、网络设备及终端 Download PDF

Info

Publication number
WO2020088101A1
WO2020088101A1 PCT/CN2019/104903 CN2019104903W WO2020088101A1 WO 2020088101 A1 WO2020088101 A1 WO 2020088101A1 CN 2019104903 W CN2019104903 W CN 2019104903W WO 2020088101 A1 WO2020088101 A1 WO 2020088101A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
terminal
aperiodic csi
measurement
csi
Prior art date
Application number
PCT/CN2019/104903
Other languages
English (en)
French (fr)
Inventor
杨宇
孙鹏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020088101A1 publication Critical patent/WO2020088101A1/zh
Priority to US17/234,839 priority Critical patent/US11979217B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a method for configuring aperiodic channel state information reference signals, network equipment, and terminals.
  • the working frequency band supported by the system is increased to above 6GHz, up to 100GHz.
  • the high frequency band has rich idle frequency resources, which can provide greater throughput for data transmission, and the high-frequency signal has a short wavelength More antenna array elements are arranged on the same size panel, and beam forming technology can form a beam with stronger directivity and narrower lobes.
  • the network device configures a transmission configuration indication (Transmission Configuration Indication, TCI) state for the terminal through Radio Resource Control (RRC) signaling to indicate quasi co-location (QCL) information.
  • TCI Transmission Configuration Indication
  • RRC Radio Resource Control
  • the network device For aperiodic channel state information (Channel State Information, CSI) reference signals (Reference Signal, RS), the network device configures QCL information of aperiodic CSI-RS resources through RRC signaling.
  • the network device uses Downlink Control Information (DCI) to trigger, carrying the triggering state (triggering) state corresponding to the aperiodic CSI-RS resource on the DCI to trigger Aperiodic CSI-RS reports and aperiodic CSI-RS resources, including QCL information of aperiodic CSI-RS resources.
  • DCI Downlink Control Information
  • the terminal can determine the receive beam required to receive the aperiodic CSI-RS according to the spatial reception parameter (QCL type D parameter) in the QCL information, thereby realizing the beam indication of the aperiodic CSI-RS.
  • the trigger offset is indicated in the DCI.
  • the terminal reports capability parameters to the network device, that is, when reporting terminal capability, it includes: aperiodic CSI-RS beam switching time .
  • the aperiodic CSI-RS beam switching time reported by the terminal exceeds the maximum value that the trigger offset can take, the terminal cannot measure the designated beam indicated by DCI.
  • Some embodiments of the present disclosure provide an aperiodic channel state information reference signal configuration method, network equipment, and terminal to solve the problem that the terminal cannot measure the designated beam indicated by DCI based on aperiodic CSI-RS in some scenarios.
  • some embodiments of the present disclosure provide an aperiodic channel state information reference signal configuration method, which is applied to the network device side and includes:
  • some embodiments of the present disclosure also provide a network device, including:
  • the first obtaining module is used to obtain terminal capability information
  • the first processing module is used to determine the threshold value of the aperiodic CSI-RS according to the measurement behavior of the aperiodic channel state information reference signal CSI-RS and the terminal capability information;
  • the first sending module is used to send the threshold value to the terminal.
  • some embodiments of the present disclosure provide a network device.
  • the network device includes a processor, a memory, and a computer program stored on the memory and running on the processor. The steps of the periodic channel state information reference signal configuration method.
  • some embodiments of the present disclosure provide an aperiodic channel state information reference signal configuration method, which is applied to the terminal side and includes:
  • the threshold value for receiving the aperiodic channel state information reference signal CSI-RS where the threshold value is determined according to the aperiodic CSI-RS measurement behavior and terminal capability information;
  • the aperiodic CSI-RS receive beam is determined.
  • some embodiments of the present disclosure provide a terminal, including:
  • the fourth sending module is used to send terminal capability information to the network device
  • the first receiving module is configured to receive a threshold value of the aperiodic channel state information reference signal CSI-RS, where the threshold value is determined according to the aperiodic CSI-RS measurement behavior and terminal capability information;
  • the third processing module is used to determine the aperiodic CSI-RS receive beam according to the threshold value.
  • some embodiments of the present disclosure also provide a terminal.
  • the terminal includes a processor, a memory, and a computer program stored on the memory and running on the processor.
  • the computer program is executed by the processor to implement the acyclic The steps of the channel state information reference signal configuration method.
  • some embodiments of the present disclosure provide a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and the computer program is executed by a processor to implement the above-mentioned aperiodic channel state information reference signal configuration method A step of.
  • the scheduling offset threshold of aperiodic CSI-RS may be determined according to terminal capability information and aperiodic CSI-RS measurement behavior, thereby determining aperiodic CSI -The beam information of the RS ensures the normal transmission and measurement of the signal, thereby improving the reliability of the communication.
  • FIG. 1 shows a block diagram of a mobile communication system to which some embodiments of the present disclosure can be applied;
  • FIG. 2 shows a schematic flowchart of a method for configuring aperiodic channel state information reference signals on a network device side according to some embodiments of the present disclosure
  • FIG. 3 shows a schematic structural diagram of a module of a network device according to some embodiments of the present disclosure
  • FIG. 4 shows a block diagram of a network device of some embodiments of the present disclosure
  • FIG. 5 is a schematic flowchart of a method for configuring aperiodic channel state information reference signals on a terminal side according to some embodiments of the present disclosure
  • FIG. 6 shows a schematic diagram of a module structure of a terminal according to some embodiments of the present disclosure
  • FIG. 7 shows a terminal block diagram of some embodiments of the present disclosure.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA single carrier frequency Multiple access
  • SC-FDMA single-carrier Frequency-Division Multiple Access
  • the wireless communication system includes a terminal 11 and a network device 12.
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), a personal digital assistant (Personal Digital Assistant) , PDA), mobile Internet device (Mobile Internet Device (MID), wearable device (Wearable Device) or vehicle-mounted device and other terminal side devices, it should be noted that, in some embodiments of the present disclosure, the terminal 11 is not limited The specific type.
  • the network device 12 may be a base station or a core network, where the above-mentioned base station may be a base station of 5G and later versions (for example: gNB, 5G, NR, etc.), or a base station in other communication systems (for example: eNB, WLAN access point, Or other access points, etc.), where the base station may be referred to as Node B, Evolved Node B, access point, Base Transceiver Station (BTS), radio base station, radio transceiver, basic service set (Basic Service Set, BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolution Node B, WLAN Access Point, WiFi Node, or in the field
  • BSS Base Transceiver Station
  • ESS Extended Service Set
  • Node B Evolved Node B
  • eNB Evolved Node B
  • the base station is not limited to a specific technical vocabulary. It should be noted that in some embodiments of the present disclosure
  • the base station may communicate with the terminal 11 under the control of the base station controller.
  • the base station controller may be part of the core network or some base stations. Some base stations can communicate control information or user data with the core network through the backhaul. In some examples, some of these base stations may communicate with each other directly or indirectly through a backhaul link, which may be a wired or wireless communication link.
  • the wireless communication system can support operation on multiple carriers (waveform signals of different frequencies). Multi-carrier transmitters can transmit modulated signals on these multiple carriers simultaneously. For example, each communication link may be a multi-carrier signal modulated according to various radio technologies. Each modulated signal can be sent on a different carrier and can carry control information (eg, reference signals, control channels, etc.), overhead information, data, etc.
  • the base station can wirelessly communicate with the terminal 11 via one or more access point antennas. Each base station can provide communication coverage for its respective coverage area. The coverage area of an access point may be divided into sectors that only constitute a part of the coverage area.
  • the wireless communication system may include different types of base stations (eg, macro base stations, micro base stations, or pico base stations). The base station may also utilize different radio technologies, such as cellular or WLAN radio access technologies. The base station may be associated with the same or different access network or operator deployment. The coverage areas of different base stations (including the coverage areas of the same or different types of base stations, the coverage areas using the same or different radio technologies, or the coverage areas belonging to the same or different access networks) may overlap.
  • Some embodiments of the present disclosure provide an aperiodic channel state information reference signal configuration method, which is applied to the network device side. As shown in FIG. 2, the method may include the following steps:
  • Step 21 Obtain terminal capability information.
  • terminal capability information is used to indicate the data processing capabilities (such as upload rate and download rate) supported by the terminal, and the maximum space division multiplexing (such as the number of supported antenna ports) Etc.), modulation and coding capabilities, etc.
  • the terminal capability information may be sent by the terminal to the network device.
  • the terminal capability information includes a plurality of parameters used to characterize different performance types, and the value of the parameter indicates the support capability of the terminal in the corresponding performance type.
  • Terminal capability information includes: aperiodic CSI-RS beam switching time (aperiodic CSI-RS beam switching timing, or AP-CSI-RS beam switching timing, or A-CSI-RS beam switching switching timing) and other parameters .
  • This parameter refers to the minimum length of time between the DCI that triggers the aperiodic CSI-RS and the transmission of the aperiodic CSI-RS, such as the time between the last symbol of the DCI and the first symbol of the aperiodic CSI-RS Length or number of symbols.
  • the value of this parameter (ability parameter) is related to the subcarrier spacing, and the value of this parameter includes ⁇ 14, 28, 48, 224, 336 ⁇ .
  • Step 22 Determine the threshold value of the aperiodic CSI-RS according to the measurement behavior of the aperiodic channel state information reference signal CSI-RS and the terminal capability information.
  • the measurement behavior of aperiodic CSI-RS refers to what kind of measurement is used for aperiodic CSI-RS, and the measurement behavior includes but is not limited to: beam measurement and CSI measurement.
  • aperiodic CSI-RS can be used for beam measurement and CSI measurement.
  • the threshold value of the aperiodic CSI-RS is jointly determined according to the measurement behavior of the aperiodic CSI-RS and the terminal capability information of the terminal.
  • the threshold value refers to the value of the acyclic CSI-RS scheduling offset threshold.
  • the scheduling offset refers to the length of time between the DCI triggering the aperiodic CSI-RS and the transmission of the aperiodic CSI-RS.
  • Step 23 Send the threshold to the terminal.
  • the network device After determining the threshold value of the scheduling offset threshold of the aperiodic CSI-RS, the network device indicates the value to the terminal, so that the terminal determines the spatial information (eg, beam) of the aperiodic CSI-RS according to the threshold, so that For aperiodic CSI-RS reception and subsequent measurement.
  • the spatial information eg, beam
  • step 22 in combination with different scenarios.
  • Scenario 1 When the aperiodic CSI-RS measurement behavior is beam measurement, that is, the aperiodic CSI-RS is used for beam measurement.
  • Step 22 includes: determining the value indicated by the specific parameter in the terminal capability information as the threshold value. That is to say, in the scenario where aperiodic CSI-RS is used for beam measurement, the network device may determine the value of the specific parameter reported by the terminal as the value of the scheduling offset threshold of the aperiodic CSI-RS.
  • the specific parameter is the aperiodic CSI-RS beam switching time. Assuming that the aperiodic CSI-RS beam switching time reported by the terminal is one of ⁇ 14, 28, 48, 224, 336 ⁇ , then the terminal reports The specific value of the beam switching time is determined as the value of the scheduling offset threshold of the aperiodic CSI-RS. For example, if the beam switching time reported by the terminal is 14, then 14 is determined as the threshold; if the reported beam switching time is 224, then 224 is determined as the threshold.
  • Scenario 2 When the aperiodic CSI-RS measurement behavior is CSI measurement, that is, the aperiodic CSI-RS is used for CSI measurement.
  • step 22 includes: if the value indicated by the specific parameter in the terminal capability information is greater than the preset value, determine one of the following values as the threshold value; wherein, the value is:
  • the minimum value of the optional value of the specific parameter is less than the preset value
  • the specified value is less than the preset value.
  • the specified value may be indicated by the network device, or may be pre-defined (such as protocol agreement, vendor pre-configuration, etc.).
  • the preset value may be the maximum value that the trigger offset of the aperiodic CSI-RS may take, or the preset value may be a value within the range from the Mth optional value to the Nth optional value of a specific parameter .
  • the specific parameter may be the beam switching time of aperiodic CSI-RS.
  • the optional value of the specific parameter is ⁇ 14, 28, 48, 224, 336 ⁇ , then the preset value may be the third to fourth optional value A certain value in the range, that is, a preset value greater than 48 and less than 224.
  • the preset value is a value greater than or equal to 48 and less than 224
  • the value indicated by the aperiodic CSI-RS beam switching time in the terminal capability information is greater than the preset value, the following values are used One of them is determined as the threshold; where, the value is:
  • the maximum value in the set ⁇ 14, 28, 48 ⁇ of optional values ⁇ 14, 28, 48, 224, 336 ⁇ of specific parameters is less than the preset value, that is, 48,
  • the minimum value in the set ⁇ 14, 28, 48 ⁇ of the optional values ⁇ 14, 28, 48, 224, 336 ⁇ of the specific parameter is less than the preset value, namely 14,
  • the specified value less than the preset value assuming that the preset value is 180, the specified value may be 80.
  • the specified value may be indicated by the network device, or may be pre-defined (such as protocol agreement, vendor pre-configuration, etc.).
  • the value of the specific parameter reported by the terminal is determined as the value of the acyclic CSI-RS scheduling offset threshold.
  • the specific parameter is the aperiodic CSI-RS beam switching time. Assuming that the aperiodic CSI-RS beam switching time reported by the terminal is one of ⁇ 14, 28, 48 ⁇ , then the beam switching time reported by the terminal The specific value is determined as the value of the scheduling offset threshold of the aperiodic CSI-RS. For example, the beam switching time reported by the terminal is 14, then 14 is determined as the threshold; if the reported beam switching time is 48, 48 is determined as the threshold.
  • the method further includes: determining the transmission beam of the aperiodic CSI-RS according to the threshold value, so as to ensure the normal transmission of the aperiodic CSI-RS.
  • the step of determining the aperiodic CSI-RS transmission beam according to the threshold includes:
  • the transmit beam is determined according to the default quasi-co-location QCL information; that is, when the trigger offset is less than the determined threshold, the network device uses the default QCL assumption To determine the aperiodic CSI-RS transmit beam.
  • the transmit beam is determined according to the QCL information corresponding to the transmission configuration indication (Transmission Configuration Indication, TCI) state in the DCI; That is, when the trigger offset is greater than or equal to the determined threshold value, the network device determines the transmission beam of the aperiodic CSI-RS according to the QCL information corresponding to the TCI state in the DCI.
  • TCI Transmission Configuration Indication
  • the step of determining the transmission beam of the aperiodic CSI-RS according to the threshold value includes: transmitting the aperiodic CSI-RS on the transmission beam, so that the terminal completes the corresponding measurement.
  • the network device further includes: sending measurement behavior information to the terminal, where the measurement behavior information is used to indicate the measurement behavior of the aperiodic CSI-RS, so that the terminal receives the aperiodic measurement behavior
  • the network device After CSI-RS, beam measurement or CSI measurement can be performed based on aperiodic CSI-RS according to the indication of measurement behavior information.
  • the aperiodic CSI-RS measurement behavior information may be explicitly or implicitly sent to the terminal by the network device.
  • the network device configures the parameters of the aperiodic CSI-RS resource set
  • the parameter includes repetition (field)
  • the parameter does not include repetition it means that the aperiodic CSI-RS resource set is used for CSI measurement.
  • the network device may determine the aperiodic CSI- according to the terminal capability information and the aperiodic CSI-RS measurement behavior
  • the RS scheduling offset threshold determines the aperiodic CSI-RS beam information to ensure the normal transmission and measurement of signals, thereby improving the reliability and effectiveness of communication.
  • the network device 300 of some embodiments of the present disclosure can achieve the terminal capability information obtained in the above embodiments; the aperiodic channel state information reference signal CSI-RS measurement behavior and terminal capability information are used to determine the aperiodic CSI-RS threshold value; details of the threshold value method sent to the terminal, and achieve the same effect, the network device 300 specifically includes the following functional modules:
  • the first obtaining module 310 is used to obtain terminal capability information
  • the first processing module 320 is configured to determine the threshold value of the aperiodic CSI-RS according to the measurement behavior of the aperiodic channel state information reference signal CSI-RS and the terminal capability information;
  • the first sending module 330 is configured to send the threshold value to the terminal.
  • the first processing module 320 includes:
  • the first determining submodule is used to determine the value indicated by the specific parameter in the terminal capability information as the threshold value when the measurement behavior is beam measurement.
  • the first processing module 320 further includes:
  • the second determination submodule is used to determine one of the following values as the threshold value if the value indicated by the specific parameter in the terminal capability information is greater than the preset value when the measurement behavior is CSI measurement;
  • the minimum value of the optional value of the specific parameter is less than the preset value
  • the specified value is less than the preset value.
  • the specific parameter is: aperiodic CSI-RS beam switching time.
  • the network device 300 further includes:
  • the second processing module is used to determine the aperiodic CSI-RS transmission beam according to the threshold value.
  • the second processing module includes:
  • the third determining submodule is used to determine the transmission beam according to the default quasi-co-location QCL information when the trigger offset of the aperiodic CSI-RS is less than the threshold value;
  • the fourth determining submodule is used to determine the transmit beam according to the QCL information corresponding to the transmission configuration indication TCI state in the downlink control information DCI when the trigger offset of the aperiodic CSI-RS is greater than or equal to the threshold value.
  • the network device 300 further includes:
  • the second sending module is used to send aperiodic CSI-RS on the sending beam.
  • the network device 300 further includes:
  • the third sending module is configured to send measurement behavior information to the terminal, where the measurement behavior information is used to indicate the measurement behavior of the aperiodic CSI-RS.
  • the network device of some embodiments of the present disclosure may determine the scheduling offset threshold of aperiodic CSI-RS according to terminal capability information and aperiodic CSI-RS measurement behavior In order to determine the aperiodic CSI-RS beam information, to ensure the normal transmission and measurement of the signal, which can improve the reliability and effectiveness of communication.
  • the embodiments of the present disclosure also provide a network device, the network device includes a processor, a memory, and a computer program stored on the memory and executable on the processor, and the processor executes the computer program To implement the steps in the aperiodic channel state information reference signal configuration method as described above.
  • Embodiments of the invention also provide a computer-readable storage medium that stores a computer program on the computer-readable storage medium. When the computer program is executed by a processor, the steps of the aperiodic channel state information reference signal configuration method described above are implemented.
  • the embodiments of the present disclosure also provide a network device.
  • the network device 400 includes an antenna 41, a radio frequency device 42, and a baseband device 43.
  • the antenna 41 is connected to the radio frequency device 42.
  • the radio frequency device 42 receives information through the antenna 41 and sends the received information to the baseband device 43 for processing.
  • the baseband device 43 processes the information to be sent and sends it to the radio frequency device 42, and the radio frequency device 42 processes the received information and sends it out through the antenna 41.
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 43.
  • the method performed by the network device in the above embodiment may be implemented in the baseband apparatus 43.
  • the baseband apparatus 43 includes a processor 44 and a memory 45.
  • the baseband device 43 may include, for example, at least one baseband board, and the baseband board is provided with a plurality of chips, as shown in FIG.
  • the baseband device 43 may further include a network interface 46 for exchanging information with the radio frequency device 42.
  • the interface is, for example, a common public radio interface (common public radio interface, CPRI).
  • the processor here may be a processor, or a collective term for multiple processing elements, for example, the processor may be a CPU, or an ASIC, or one or more configured to implement the method performed by the above network device
  • An integrated circuit for example: one or more microprocessor DSPs, or one or more field programmable gate array FPGAs.
  • the storage element may be a memory or a collective term for multiple storage elements.
  • the memory 45 may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically Erasable programmable read only memory (Electrically, EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDRSDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the network device of some embodiments of the present disclosure further includes: a computer program stored on the memory 45 and executable on the processor 44, and the processor 44 calls the computer program in the memory 45 to execute each module shown in FIG. 3 Methods.
  • the computer program when called by the processor 44, it can be used to execute: acquiring terminal capability information;
  • the network device when triggering aperiodic CSI-RS, may determine the scheduling offset threshold of aperiodic CSI-RS according to terminal capability information and aperiodic CSI-RS measurement behavior, thereby determining The aperiodic CSI-RS beam information ensures the normal transmission and measurement of signals, thereby improving the reliability and effectiveness of communication.
  • the above embodiment introduces the aperiodic channel state information reference signal configuration method of the present disclosure from the network device side.
  • the following embodiment will further introduce the aperiodic channel state information reference signal configuration method on the terminal side with reference to the drawings.
  • the aperiodic channel state information reference signal configuration method of some embodiments of the present disclosure is applied to the terminal side and includes the following steps:
  • Step 51 Send terminal capability information to the network device.
  • terminal capability information is used to indicate the data processing capability, maximum space division multiplexing, modulation and coding capability supported by the terminal.
  • the terminal capability information includes a plurality of parameters used to characterize different performance types, and the value of the parameter indicates the support capability of the terminal in the corresponding performance type.
  • the terminal capability information includes parameters such as the beam switching time of the aperiodic channel state information reference signal CSI-RS. This parameter refers to the minimum length of time between the DCI that triggers the aperiodic CSI-RS and the transmission of the aperiodic CSI-RS, such as the time between the last symbol of the DCI and the first symbol of the aperiodic CSI-RS Length or number of symbols.
  • the value of this parameter is related to the subcarrier spacing, and the value of this parameter includes ⁇ 14, 28, 48, 224, 336 ⁇ .
  • Step 52 Receive a threshold value of the aperiodic channel state information reference signal CSI-RS, where the threshold value is determined according to aperiodic CSI-RS measurement behavior and terminal capability information.
  • the threshold value refers to the value of the acyclic CSI-RS scheduling offset threshold.
  • Measurement behaviors include but are not limited to: beam measurement and CSI measurement.
  • aperiodic CSI-RS can be used for beam measurement and CSI measurement.
  • Step 53 Determine the aperiodic CSI-RS receive beam according to the threshold value.
  • the terminal determines the spatial information (such as beam) of the aperiodic CSI-RS according to the threshold value, so as to facilitate the aperiodic CSI-RS reception and subsequent measurement.
  • the threshold value is the value indicated by the specific parameter in the terminal capability information. Corresponding to the first scenario of the foregoing embodiment of the network device side, it will not be repeated here.
  • the threshold value is one of the following values; where the value is:
  • the minimum value of the optional value of the specific parameter is less than the preset value
  • the specified value is less than the preset value.
  • the determination of the threshold value corresponds to the second scenario of the foregoing embodiment of the network device side, which will not be repeated here.
  • the threshold value may be received by the terminal from the network device side, or may be determined by the terminal according to a preset rule, and the determination method may be the same as the method of determining the threshold value by the network device side.
  • the value of the specific parameter reported by the terminal may be determined as the value of the scheduling offset threshold of the aperiodic CSI-RS.
  • the above specific parameter may be the beam switching time of the aperiodic CSI-RS, and its optional value may be ⁇ 14, 28, 48, 224, 336 ⁇ .
  • the specific value of the beam switching time reported by the terminal is determined to be the value of the aperiodic CSI-RS
  • the value of the scheduling offset threshold For example, if the beam switching time reported by the terminal is 14, then 14 is determined as the threshold; if the reported beam switching time is 224, then 224 is determined as the threshold.
  • the aperiodic CSI-RS measurement behavior is CSI measurement
  • the value of the specific parameter reported by the terminal is greater than the preset value
  • one of the following values is determined as the threshold value
  • the minimum value of the optional value of the specific parameter is less than the preset value
  • the specified value is less than the preset value.
  • the specified value may be indicated by the network device, or may be pre-defined (such as protocol agreement, vendor pre-configuration, etc.).
  • the preset value may be the maximum value that the trigger offset of the aperiodic CSI-RS may take, or the preset value may be a value within the range from the Mth optional value to the Nth optional value of a specific parameter .
  • the measurement behavior of aperiodic CSI-RS is CSI measurement
  • the value of the specific parameter reported by the terminal is less than or equal to the preset value, the value of the specific parameter reported by the terminal is determined to be aperiodic CSI-RS RS scheduling offset threshold value.
  • step 53 includes:
  • the receive beam is determined according to the default quasi-co-location QCL information; that is, when the trigger offset is less than the determined threshold, the terminal uses the default QCL assumption to Determine the aperiodic CSI-RS receive beam.
  • the receive beam is determined according to the QCL information corresponding to the transmission configuration indication TCI state in the downlink control information DCI. That is, when the trigger offset is greater than or equal to the determined threshold value, the terminal determines the aperiodic CSI-RS receive beam according to the QCL information corresponding to the TCI state indicated by the DCI.
  • step 53 it also includes: receiving and measuring aperiodic CSI-RS on the receive beam to obtain a measurement result corresponding to the measurement behavior.
  • the terminal receives aperiodic CSI-RS on the receiving beam, and performs beam measurement based on the aperiodic CSI-RS to obtain corresponding measurement results.
  • the terminal receives aperiodic CSI-RS on the receive beam, and performs CSI measurement based on the aperiodic CSI-RS to obtain the corresponding measurement result.
  • the measurement behavior in this embodiment may be indicated by the measurement behavior information configured by the network device.
  • the method further includes : Receive measurement behavior information indicating aperiodic CSI-RS measurement behavior; measurement behavior information is used to indicate beam measurement or CSI measurement.
  • the terminal when the terminal triggers the aperiodic CSI-RS, the terminal receives the threshold of the aperiodic CSI-RS sent by the network device, because the threshold is based on The terminal capability information and aperiodic CSI-RS measurement behavior are determined.
  • the terminal can correctly determine the aperiodic CSI-RS beam information according to the threshold to ensure the normal transmission and measurement of the signal, thereby improving the reliability and effectiveness of communication Sex.
  • the terminal 600 of some embodiments of the present disclosure can implement the terminal capability information sent to the network device in the above embodiments; the threshold of receiving the acyclic channel state information reference signal CSI-RS, where the threshold The value is determined according to the aperiodic CSI-RS measurement behavior and terminal capability information; according to the threshold value, the details of the aperiodic CSI-RS receive beam method are determined, and the same effect is achieved. :
  • the fourth sending module 610 is used to send terminal capability information to the network device
  • the first receiving module 620 is configured to receive a threshold value of the aperiodic channel state information reference signal CSI-RS, where the threshold value is determined according to aperiodic CSI-RS measurement behavior and terminal capability information;
  • the third processing module 630 is configured to determine the aperiodic CSI-RS receive beam according to the threshold value.
  • the threshold value is the value indicated by the specific parameter in the terminal capability information.
  • the threshold value is one of the following values
  • the minimum value of the optional value of the specific parameter is less than the preset value
  • the specified value is less than the preset value.
  • the specific parameter is: aperiodic CSI-RS beam switching time.
  • the third processing module 630 includes:
  • the fifth determining submodule is used to determine the receiving beam according to the default quasi-co-location QCL information when the trigger offset of the aperiodic CSI-RS is less than the threshold value;
  • the sixth determining submodule is used to determine the receiving beam according to the QCL information corresponding to the transmission configuration indication TCI state in the downlink control information DCI when the trigger offset of the aperiodic CSI-RS is greater than or equal to the threshold value.
  • the terminal 600 further includes:
  • the measurement module is used for receiving and measuring aperiodic CSI-RS on the receiving beam to obtain the measurement result corresponding to the measurement behavior.
  • the terminal 600 further includes:
  • the second receiving module is configured to receive measurement behavior information indicating aperiodic CSI-RS measurement behavior; the measurement behavior information is used to indicate beam measurement or CSI measurement.
  • the terminal of some embodiments of the present disclosure receives the threshold value of the aperiodic CSI-RS sent by the network device, because the threshold value is based on terminal capability information and aperiodic If the measurement behavior of the CSI-RS is determined, the terminal can correctly determine the aperiodic CSI-RS beam information according to the threshold value to ensure the normal transmission and measurement of the signal, thereby improving the reliability and effectiveness of communication.
  • each module of the terminal is only a division of logical functions, and in actual implementation, it may be integrated into a physical entity in whole or in part, or may be physically separated.
  • these modules can all be implemented in the form of software calling through processing elements; they can also be implemented in the form of hardware; some modules can also be implemented through processing elements calling software, and some modules can be implemented in hardware.
  • the determination module may be a separately established processing element, or may be implemented by being integrated in a chip of the above-mentioned device, and may also be stored in the memory of the above-mentioned device in the form of a program code, by a processing element of the above-mentioned device Call and execute the function of the above determination module.
  • the implementation of other modules is similar.
  • all or part of these modules can be integrated together or can be implemented independently.
  • the processing element described here may be an integrated circuit with signal processing capabilities. In the implementation process, each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in the processor element or instructions in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above method, for example, one or more specific integrated circuits (Application Specific Integrated Circuit, ASIC), or one or more microprocessors (digital signal processor (DSP), or, one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processor that can call program code.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 7 is a schematic diagram of a hardware structure of a terminal for implementing various embodiments of the present disclosure.
  • the terminal 70 includes but is not limited to: a radio frequency unit 71, a network module 72, an audio output unit 73,
  • the input unit 74, the sensor 75, the display unit 76, the user input unit 77, the interface unit 78, the memory 79, the processor 710, and the power supply 711 are components.
  • the terminal structure shown in FIG. 7 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown, or combine certain components, or arrange different components.
  • terminals include but are not limited to mobile phones, tablet computers, notebook computers, palmtop computers, in-vehicle terminals, wearable devices, and pedometers.
  • the radio frequency unit 71 is used to send terminal capability information to network devices;
  • the threshold value for receiving the aperiodic channel state information reference signal CSI-RS where the threshold value is determined according to the aperiodic CSI-RS measurement behavior and terminal capability information;
  • the processor 710 is configured to determine an aperiodic CSI-RS receive beam according to the threshold
  • the terminal of some embodiments of the present disclosure receives the threshold value of the aperiodic CSI-RS sent by the network device when triggering the aperiodic CSI-RS, because the threshold value is based on terminal capability information and aperiodic CSI-RS measurement If the behavior is determined, the terminal can correctly determine the aperiodic CSI-RS beam information according to the threshold value to ensure the normal transmission and measurement of the signal, thereby improving the reliability and effectiveness of the communication.
  • the radio frequency unit 71 may be used to receive and send signals during sending and receiving information or during a call. Specifically, after receiving the downlink data from the base station, it is processed by the processor 710; To send the uplink data to the base station.
  • the radio frequency unit 71 includes but is not limited to an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 71 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 72, such as helping users to send and receive e-mail, browse web pages, and access streaming media.
  • the audio output unit 73 may convert the audio data received by the radio frequency unit 71 or the network module 72 or stored in the memory 79 into an audio signal and output as sound. Moreover, the audio output unit 73 may also provide audio output related to a specific function performed by the terminal 70 (e.g., call signal reception sound, message reception sound, etc.).
  • the audio output unit 73 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 74 is used to receive audio or video signals.
  • the input unit 74 may include a graphics processor (Graphics Processing Unit, GPU) 741 and a microphone 742.
  • the graphics processor 741 pairs images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode
  • the data is processed.
  • the processed image frame may be displayed on the display unit 76.
  • the image frame processed by the graphics processor 741 may be stored in the memory 79 (or other storage medium) or sent via the radio frequency unit 71 or the network module 72.
  • the microphone 742 can receive sound and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 71 in the case of the telephone call mode and output.
  • the terminal 70 further includes at least one sensor 75, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 761 according to the brightness of the ambient light, and the proximity sensor can close the display panel 761 and / or when the terminal 70 moves to the ear Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (generally three axes), and can detect the magnitude and direction of gravity when at rest, and can be used to identify terminal postures (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc .; sensor 75 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be repeated here.
  • the display unit 76 is used to display information input by the user or information provided to the user.
  • the display unit 76 may include a display panel 761, and the display panel 761 may be configured in the form of a liquid crystal display (Liquid Crystal) (LCD), an organic light emitting diode (Organic Light-Emitting Diode, OLED), or the like.
  • LCD Liquid Crystal
  • OLED Organic Light-Emitting Diode
  • the user input unit 77 may be used to receive input numeric or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 77 includes a touch panel 771 and other input devices 772.
  • the touch panel 771 also known as a touch screen, can collect user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc. on or near the touch panel 771 operating).
  • the touch panel 771 may include a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device and converts it into contact coordinates, and then To the processor 710, the command sent by the processor 710 is received and executed.
  • the touch panel 771 may be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 77 may also include other input devices 772.
  • other input devices 772 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, and details are not described herein again.
  • the touch panel 771 may be overlaid on the display panel 761.
  • the touch panel 771 detects a touch operation on or near it, it is transmitted to the processor 710 to determine the type of touch event, and then the processor 710 according to the touch The type of event provides corresponding visual output on the display panel 761.
  • the touch panel 771 and the display panel 761 are implemented as two independent components to realize the input and output functions of the terminal, in some embodiments, the touch panel 771 and the display panel 761 may be integrated to The input and output functions of the terminal are implemented, which is not limited here.
  • the interface unit 78 is an interface for connecting an external device to the terminal 70.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input / output (I / O) port, video I / O port, headphone port, etc.
  • the interface unit 78 may be used to receive input from external devices (eg, data information, power, etc.) and transmit the received input to one or more elements within the terminal 70 or may be used between the terminal 70 and external devices Transfer data between.
  • the memory 79 can be used to store software programs and various data.
  • the memory 79 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, application programs required for at least one function (such as a sound playback function, an image playback function, etc.), etc .; the storage data area may store Data created by the use of mobile phones (such as audio data, phone books, etc.), etc.
  • the memory 79 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 710 is the control center of the terminal, and uses various interfaces and lines to connect the various parts of the entire terminal, executes or executes the software programs and / or modules stored in the memory 79, and calls the data stored in the memory 79 to execute Various functions and processing data of the terminal, so as to monitor the terminal as a whole.
  • the processor 710 may include one or more processing units; optionally, the processor 710 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and application programs, etc.
  • the modulation processor mainly handles wireless communication. It can be understood that the above-mentioned modem processor may not be integrated into the processor 710.
  • the terminal 70 may further include a power supply 711 (such as a battery) that supplies power to various components.
  • a power supply 711 (such as a battery) that supplies power to various components.
  • the power supply 711 may be logically connected to the processor 710 through a power management system, thereby managing charge, discharge, and power consumption management through the power management system And other functions.
  • the terminal 70 includes some functional modules not shown, which will not be repeated here.
  • some embodiments of the present disclosure also provide a terminal, including a processor 710, a memory 79, and a computer program stored on the memory 79 and executable on the processor 710.
  • the computer program is used by the processor 710 During execution, each process of the foregoing aperiodic channel state information reference signal configuration method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, details are not described here.
  • the terminal may be a wireless terminal or a wired terminal.
  • the wireless terminal may be a device that provides users with voice and / or other service data connectivity, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem .
  • the wireless terminal can communicate with one or more core networks via a radio access network (Radio Access Network, RAN).
  • Radio Access Network Radio Access Network
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal
  • a mobile terminal such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal
  • it may be a portable, pocket-sized, handheld, computer built-in or vehicle-mounted mobile device that exchanges language and / or data with the wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the wireless terminal may also be called a system, a subscriber unit (Subscriber Unit), a subscriber station (Subscriber Station), a mobile station (Mobile Station), a mobile station (Mobile), a remote station (Remote Station), a remote terminal (Remote Terminal), an access terminal Access terminal (Access Terminal), user terminal (User Terminal), user agent (User Agent), user equipment (User Device or User Equipment), not limited here.
  • Some embodiments of the present disclosure also provide a computer-readable storage medium that stores a computer program on the computer-readable storage medium.
  • the computer program is executed by a processor, each of the foregoing embodiments of the aperiodic channel state information reference signal configuration method embodiments Process, and can achieve the same technical effect, in order to avoid repetition, no more details here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure essentially or part of the contribution to the related technology or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium, including several
  • the instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage media include various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • each component or each step can be decomposed and / or recombined.
  • These decompositions and / or recombinations should be regarded as equivalent solutions of the present disclosure.
  • the steps for performing the above-mentioned series of processing can naturally be executed in chronological order in the order described, but it does not necessarily need to be executed in chronological order, and some steps can be executed in parallel or independently of each other.
  • the purpose of the present disclosure can also be achieved by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the object of the present disclosure can also be achieved only by providing a program product containing program code for implementing the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any known storage medium or any storage medium developed in the future. It should also be noted that, in the device and method of the present disclosure, obviously, each component or each step can be decomposed and / or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种非周期信道状态信息参考信号配置方法、网络设备及终端,该方法包括:获取终端能力信息;根据非周期信道状态信息参考信号CSI-RS的测量行为以及终端能力信息,确定非周期CSI-RS的门限值;向终端发送门限值。

Description

非周期信道状态信息参考信号配置方法、网络设备及终端
相关申请的交叉引用
本申请主张在2018年10月30日在中国提交的中国专利申请号No.201811280946.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种非周期信道状态信息参考信号配置方法、网络设备及终端。
背景技术
移动通信***中,***支持的工作频段提升至6GHz以上,最高可达100GHz,高频段具有较为丰富的空闲频率资源,可以为数据传输提供更大的吞吐量,且高频信号的波长短,能够在同样大小的面板上布置更多的天线阵元,利用波束赋形技术可形成指向性更强、波瓣更窄的波束。网络设备通过无线资源控制(Radio Resource Control,RRC)信令为终端配置传输配置指示(Transmission Configuration Indication,TCI)状态(state),以指示准共址(Quasi co-location,QCL)信息。
对于非周期信道状态信息(Channel State Information,CSI)参考信号(Reference Signal,RS),网络设备通过RRC信令配置非周期CSI-RS资源的QCL信息。当网络设备需要传输非周期CSI-RS时,使用下行控制信息(Downlink Control Information,DCI)来触发,在该DCI上携带与非周期CSI-RS资源相对应的触发状态(triggering state),以触发非周期CSI-RS报告和非周期CSI-RS资源,其中包括非周期CSI-RS资源的QCL信息。终端根据QCL信息中的空间接收参数(QCL type D参数),可以确定接收非周期CSI-RS所需使用的接收波束,从而实现了对非周期CSI-RS的波束指示。
在调度非周期CSI-RS时,DCI中会指示触发偏移(triggering offset),终端在向网络设备上报能力参数时,即上报终端性能(capability)时,包括:非周期CSI-RS波束切换时间。在终端上报的非周期CSI-RS波束切换时间超 过了触发偏移可取的最大值时,终端无法测量DCI指示的指定波束。
发明内容
本公开的一些实施例提供了一种非周期信道状态信息参考信号配置方法、网络设备及终端,以解决某些场景下终端无法基于非周期CSI-RS对DCI指示的指定波束进行测量的问题。
第一方面,本公开的一些实施例提供了一种非周期信道状态信息参考信号配置方法,应用于网络设备侧,包括:
获取终端能力信息;
根据非周期信道状态信息参考信号CSI-RS的测量行为以及终端能力信息,确定非周期CSI-RS的门限值;
向终端发送门限值。
第二方面,本公开的一些实施例还提供了一种网络设备,包括:
第一获取模块,用于获取终端能力信息;
第一处理模块,用于根据非周期信道状态信息参考信号CSI-RS的测量行为以及终端能力信息,确定非周期CSI-RS的门限值;
第一发送模块,用于向终端发送门限值。
第三方面,本公开的一些实施例提供了一种网络设备,网络设备包括处理器、存储器以及存储于存储器上并在处理器上运行的计算机程序,计算机程序被处理器执行时实现上述的非周期信道状态信息参考信号配置方法的步骤。
第四方面,本公开的一些实施例提供了一种非周期信道状态信息参考信号配置方法,应用于终端侧,包括:
向网络设备发送终端能力信息;
接收非周期信道状态信息参考信号CSI-RS的门限值,其中,门限值是根据非周期CSI-RS的测量行为和终端能力信息确定的;
根据门限值,确定非周期CSI-RS的接收波束。
第五方面,本公开的一些实施例提供了一种终端,包括:
第四发送模块,用于向网络设备发送终端能力信息;
第一接收模块,用于接收非周期信道状态信息参考信号CSI-RS的门限值,其中,门限值是根据非周期CSI-RS的测量行为和终端能力信息确定的;
第三处理模块,用于根据门限值,确定非周期CSI-RS的接收波束。
第六方面,本公开的一些实施例还提供了一种终端,终端包括处理器、存储器以及存储于存储器上并在处理器上运行的计算机程序,计算机程序被处理器执行时实现上述的非周期信道状态信息参考信号配置方法的步骤。
第七方面,本公开的一些实施例提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述的非周期信道状态信息参考信号配置方法的步骤。
这样,本公开的一些实施例在触发非周期CSI-RS时,可根据终端能力信息以及非周期CSI-RS的测量行为,来确定非周期CSI-RS的调度偏移门限,从而确定非周期CSI-RS的波束信息,保证信号的正常传输和测量,从而可以提高通信的可靠性。
附图说明
为了更清楚地说明本公开的一些实施例的技术方案,下面将对本公开的一些实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示本公开的一些实施例可应用的一种移动通信***框图;
图2表示本公开的一些实施例网络设备侧的非周期信道状态信息参考信号配置方法的流程示意图;
图3表示本公开的一些实施例网络设备的模块结构示意图;
图4表示本公开的一些实施例的网络设备框图;
图5表示本公开的一些实施例终端侧的非周期信道状态信息参考信号配置方法的流程示意图;
图6表示本公开的一些实施例终端的模块结构示意图;
图7表示本公开的一些实施例的终端框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
本文所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,并且也可用于各种无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他***。术语“***”和“网络”常被可互换地使用。本文所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。然而,以下描述出于示例目的描述了NR***,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR***应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步 骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图1,图1示出本公开的一些实施例可应用的一种无线通信***的框图。无线通信***包括终端11和网络设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本公开的一些实施例中并不限定终端11的具体类型。网络设备12可以是基站或核心网,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信***中的基站(例如:eNB、WLAN接入点、或其他接入点等),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开的一些实施例中仅以NR***中的基站为例,但是并不限定基站的具体类型。
基站可在基站控制器的控制下与终端11通信,在各种示例中,基站控制器可以是核心网或某些基站的一部分。一些基站可通过回程与核心网进行控制信息或用户数据的通信。在一些示例中,这些基站中的一些可以通过回程链路直接或间接地彼此通信,回程链路可以是有线或无线通信链路。无线通信***可支持多个载波(不同频率的波形信号)上的操作。多载波发射机能同时在这多个载波上传送经调制信号。例如,每条通信链路可以是根据各种无线电技术来调制的多载波信号。每个已调信号可在不同的载波上发送并且可携带控制信息(例如,参考信号、控制信道等)、开销信息、数据等。
基站可经由一个或多个接入点天线与终端11进行无线通信。每个基站可以为各自相应的覆盖区域提供通信覆盖。接入点的覆盖区域可被划分成仅构成该覆盖区域的一部分的扇区。无线通信***可包括不同类型的基站(例如宏基站、微基站、或微微基站)。基站也可利用不同的无线电技术,诸如蜂窝 或WLAN无线电接入技术。基站可以与相同或不同的接入网或运营商部署相关联。不同基站的覆盖区域(包括相同或不同类型的基站的覆盖区域、利用相同或不同无线电技术的覆盖区域、或属于相同或不同接入网的覆盖区域)可以交叠。
本公开的一些实施例提供了一种非周期信道状态信息参考信号配置方法,应用于网络设备侧,如图2所示,该方法可以包括以下步骤:
步骤21:获取终端能力信息。
其中,终端能力信息,或称为终端性能(UE capability)信息,用于指示终端所支持的数据处理能力(如上传速率、下载速率等)、最大空分复用(如所支持的天线端口数等)、调制编码能力等。该终端能力信息可以是终端发送给网络设备的。终端能力信息中包括多个用于表征不同性能类型的参数,参数的取值表示终端在相应性能类型的支持能力。终端能力信息包括:非周期信道状态信息参考信号CSI-RS的波束切换时间(aperiodic CSI-RS beam switching timing,或AP-CSI-RS beam switching timing,或A-CSI-RS beam switching timing)等参数。该参数指的是在触发非周期CSI-RS的DCI与发送该非周期CSI-RS之间的最小时间长度,例如DCI的最后一个符号与非周期CSI-RS的第一个符号之间的时间长度或符号数。其中,该参数的取值(能力参数)与子载波间隔有关,该参数的取值包括{14,28,48,224,336}。
步骤22:根据非周期信道状态信息参考信号CSI-RS的测量行为以及终端能力信息,确定非周期CSI-RS的门限值。
其中,非周期CSI-RS的测量行为指的是将非周期CSI-RS用于何种测量,测量行为包括但不限于:波束测量和CSI测量。也就是说,非周期CSI-RS可以用于波束测量,也可以用于CSI测量。根据非周期CSI-RS的测量行为以及终端的终端能力信息联合确定非周期CSI-RS的门限值。该门限值指的是非周期CSI-RS的调度偏移门限的值。所述调度偏移指的是在触发非周期CSI-RS的DCI与发送该非周期CSI-RS之间的时间长度。
步骤23:向终端发送门限值。
网络设备在确定非周期CSI-RS的调度偏移门限的门限值后,将该值指示给终端,以使终端根据该门限值确定非周期CSI-RS的空间信息(如波束), 以便于非周期CSI-RS的接收和后续的测量。
下面本实施例将结合不同场景,对步骤22的实现做进一步说明。
场景一、在非周期CSI-RS的测量行为为波束测量的情况下,即非周期CSI-RS用于波束测量的情况。
步骤22包括:将终端能力信息中特定参数指示的值确定为门限值。也就是说,在非周期CSI-RS用于波束测量的场景下,网络设备可将终端上报的特定参数的取值确定为非周期CSI-RS的调度偏移门限的值。
其中,特定参数为非周期CSI-RS的波束切换时间,假设终端上报的非周期CSI-RS的波束切换时间为{14,28,48,224,336}中的一项,那么将终端上报的波束切换时间的具体取值确定为非周期CSI-RS的调度偏移门限的值。例如终端上报的波束切换时间为14,则将14确定为门限值;若上报的波束切换时间为224,则将224确定为门限值。
场景二、在非周期CSI-RS的测量行为为CSI测量的情况下,即非周期CSI-RS用于CSI测量的情况。
当终端上报的非周期CSI-RS波束切换时间的取值较大时,若采用较大取值作为调度偏移门限时,对于CSI测量的非周期CSI-RS,终端不需要过长的时间来实现接收非周期CSI-RS的波束切换,将导致终端测量DCI指示的指定波束上的CSI的延迟过大,甚至无法测量到DCI指示的指定波束上的CSI。因此,步骤22包括:若终端能力信息中特定参数指示的值大于预设值时,将以下取值中的一个确定为门限值;其中,该取值为:
特定参数的可选值中小于预设值的最大值,
特定参数的可选值中小于预设值的最小值,
小于预设值的指定值。该指定值可以是网络设备指示的,也可以是预定义的(如协议约定、厂商预配置等)。
其中,预设值可以为非周期CSI-RS的触发偏移可取的最大值,或者,预设值可以为特定参数的第M个可选值至第N个可选值范围内的某个值。其中,特定参数可以是非周期CSI-RS的波束切换时间,特定参数的可选值为{14,28,48,224,336},那么预设值可以是第3个至第4个可选值范围内的某个值,即预设值为大于48小于224的某个值。
进一步地,当预设值为大于或等于48且小于224的某个值时,若终端能力信息中非周期CSI-RS的波束切换时间指示的值大于该预设值时,将以下取值中的一个确定为门限值;其中,该取值为:
特定参数的可选值{14,28,48,224,336}中小于预设值的集合{14,28,48}中的最大值,即48,
特定参数的可选值{14,28,48,224,336}中小于预设值的集合{14,28,48}中的最小值,即14,
小于预设值的指定值,假设预设值为180,指定值可以为80。该指定值可以是网络设备指示的,也可以是预定义的(如协议约定、厂商预配置等)。
此外,在场景二下,若终端能力信息中特定参数指示的值小于或等于预设值时,将终端上报的特定参数的取值确定为非周期CSI-RS的调度偏移门限的值。
其中,特定参数为非周期CSI-RS的波束切换时间,假设终端上报的非周期CSI-RS的波束切换时间为{14,28,48}中的一项,那么将终端上报的波束切换时间的具体取值确定为非周期CSI-RS的调度偏移门限的值。例如终端上报的波束切换时间为14,则将14确定为门限值;若上报的波束切换时间为48,则将48确定为门限值。
在步骤22之后,该方法还进一步包括:根据门限值,确定非周期CSI-RS的发送波束,这样可保证非周期CSI-RS的正常发送。
进一步地,根据门限值,确定非周期CSI-RS的发送波束的步骤包括:
在非周期CSI-RS的触发偏移小于门限值时,根据默认准共址QCL信息,确定发送波束;也就是说,当触发偏移小于确定的门限值时,网络设备使用默认QCL假设来确定非周期CSI-RS的发送波束。
或者,在非周期CSI-RS的触发偏移大于或等于门限值时,根据下行控制信息DCI中传输配置指示(Transmission Configuration Indication,TCI)状态(state)所对应的QCL信息,确定发送波束;也就是说,当触发偏移大于或等于确定的门限值时,网络设备根据DCI中TCI状态对应的QCL信息来确定非周期CSI-RS的发送波束。
进一步地,在根据门限值,确定非周期CSI-RS的发送波束的步骤之后, 包括:在发送波束上,发送非周期CSI-RS,以使终端完成相应的测量。
进一步地,网络设备在确定非周期CSI-RS的测量行为后,还包括:向终端发送测量行为信息,该测量行为信息用于指示非周期CSI-RS的测量行为,这样终端在接收到非周期CSI-RS之后,可按照测量行为信息的指示,基于非周期CSI-RS进行波束测量或CSI测量。非周期CSI-RS的测量行为信息可以是由网络设备显式或者隐式发送给终端。例如,网络设备在配置非周期CSI-RS资源集的参数时,如果参数中包括repetition(字段),则表示所述非周期CSI-RS资源集是用于波束测量;如果参数中不包括repetition(字段),则表示非周期CSI-RS资源集是用于CSI测量。
本公开的一些实施例的非周期信道状态信息参考信号配置方法中,网络设备在触发非周期CSI-RS时,可根据终端能力信息以及非周期CSI-RS的测量行为,来确定非周期CSI-RS的调度偏移门限,从而确定非周期CSI-RS的波束信息,保证信号的正常传输和测量,从而可以提高通信的可靠性和有效性。
以上实施例分别详细介绍了不同场景下的非周期信道状态信息参考信号配置方法,下面本实施例将结合附图对其对应的网络设备做进一步介绍。
如图3所示,本公开的一些实施例的网络设备300,能实现上述实施例中获取终端能力信息;根据非周期信道状态信息参考信号CSI-RS的测量行为以及终端能力信息,确定非周期CSI-RS的门限值;向终端发送门限值方法的细节,并达到相同的效果,该网络设备300具体包括以下功能模块:
第一获取模块310,用于获取终端能力信息;
第一处理模块320,用于根据非周期信道状态信息参考信号CSI-RS的测量行为以及终端能力信息,确定非周期CSI-RS的门限值;
第一发送模块330,用于向终端发送门限值。
其中,第一处理模块320包括:
第一确定子模块,用于在测量行为为波束测量的情况下,将终端能力信息中特定参数指示的值确定为门限值。
其中,第一处理模块320还包括:
第二确定子模块,用于在测量行为为CSI测量的情况下,若终端能力信 息中特定参数指示的值大于预设值时,将以下取值中的一个确定为门限值;
其中,取值为:
特定参数的可选值中小于预设值的最大值,
特定参数的可选值中小于预设值的最小值,
小于预设值的指定值。
其中,特定参数为:非周期CSI-RS的波束切换时间。
其中,网络设备300还包括:
第二处理模块,用于根据门限值,确定非周期CSI-RS的发送波束。
其中,第二处理模块包括:
第三确定子模块,用于在非周期CSI-RS的触发偏移小于门限值时,根据默认准共址QCL信息,确定发送波束;
第四确定子模块,用于在非周期CSI-RS的触发偏移大于或等于门限值时,根据下行控制信息DCI中传输配置指示TCI状态所对应的QCL信息,确定发送波束。
其中,网络设备300还包括:
第二发送模块,用于在发送波束上,发送非周期CSI-RS。
其中,网络设备300还包括:
第三发送模块,用于向终端发送测量行为信息,该测量行为信息用于指示非周期CSI-RS的测量行为。
值得指出的是,本公开的一些实施例的网络设备在触发非周期CSI-RS时,可根据终端能力信息以及非周期CSI-RS的测量行为,来确定非周期CSI-RS的调度偏移门限,从而确定非周期CSI-RS的波束信息,保证信号的正常传输和测量,从而可以提高通信的可靠性和有效性。
为了更好的实现上述目的,本公开的实施例还提供了一种网络设备,该网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上所述的非周期信道状态信息参考信号配置方法中的步骤。发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上所述的非周期信道状态信息参考信号配置方法的步骤。
具体地,本公开的实施例还提供了一种网络设备。如图4所示,该网络设备400包括:天线41、射频装置42、基带装置43。天线41与射频装置42连接。在上行方向上,射频装置42通过天线41接收信息,将接收的信息发送给基带装置43进行处理。在下行方向上,基带装置43对要发送的信息进行处理,并发送给射频装置42,射频装置42对收到的信息进行处理后经过天线41发送出去。
上述频带处理装置可以位于基带装置43中,以上实施例中网络设备执行的方法可以在基带装置43中实现,该基带装置43包括处理器44和存储器45。
基带装置43例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图4所示,其中一个芯片例如为处理器44,与存储器45连接,以调用存储器45中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置43还可以包括网络接口46,用于与射频装置42交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,也可以是ASIC,或者是被配置成实施以上网络设备所执行方法的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个现场可编程门阵列FPGA等。存储元件可以是一个存储器,也可以是多个存储元件的统称。
存储器45可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储 器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请描述的存储器45旨在包括但不限于这些和任意其它适合类型的存储器。
具体地,本公开的一些实施例的网络设备还包括:存储在存储器45上并可在处理器44上运行的计算机程序,处理器44调用存储器45中的计算机程序执行图3所示各模块执行的方法。
具体地,计算机程序被处理器44调用时可用于执行:获取终端能力信息;
根据非周期信道状态信息参考信号CSI-RS的测量行为以及终端能力信息,确定非周期CSI-RS的门限值;
向终端发送门限值。
本公开的一些实施例中的网络设备,在触发非周期CSI-RS时,可根据终端能力信息以及非周期CSI-RS的测量行为,来确定非周期CSI-RS的调度偏移门限,从而确定非周期CSI-RS的波束信息,保证信号的正常传输和测量,从而可以提高通信的可靠性和有效性。
以上实施例从网络设备侧介绍了本公开的非周期信道状态信息参考信号配置方法,下面本实施例将结合附图对终端侧的非周期信道状态信息参考信号配置方法做进一步介绍。
如图5所示,本公开的一些实施例的非周期信道状态信息参考信号配置方法,应用于终端侧,包括以下步骤:
步骤51:向网络设备发送终端能力信息。
其中,终端能力信息,或称为终端性能(UE capability)信息,用于指示终端所支持的数据处理能力、最大空分复用、调制编码能力等。终端能力信息中包括多个用于表征不同性能类型的参数,参数的取值表示终端在相应性能类型的支持能力。终端能力信息包括:非周期信道状态信息参考信号CSI-RS的波束切换时间等参数。该参数指的是在触发非周期CSI-RS的DCI与发送该非周期CSI-RS之间的最小时间长度,例如DCI的最后一个符号与非周期CSI-RS的第一个符号之间的时间长度或符号数。其中,该参数的取值(能力参数)与子载波间隔有关,该参数的取值包括{14,28,48,224,336}。
步骤52:接收非周期信道状态信息参考信号CSI-RS的门限值,其中,门限值是根据非周期CSI-RS的测量行为和终端能力信息确定的。
其中,该门限值指的是非周期CSI-RS的调度偏移门限的值。测量行为包括但不限于:波束测量和CSI测量。也就是说,非周期CSI-RS可以用于波束测量,也可以用于CSI测量。
步骤53:根据门限值,确定非周期CSI-RS的接收波束。
终端根据该门限值确定非周期CSI-RS的空间信息(如波束),以便于非周期CSI-RS的接收和后续的测量。
其中,在测量行为为波束测量的情况下,门限值为终端能力信息中特定参数指示的值。对应于上述网络设备侧实施例的场景一,在此不再赘述。
进一步地,在测量行为为CSI测量,终端能力信息中特定参数指示的值大于预设值的情况下,门限值为以下取值中的一个;其中,取值为:
特定参数的可选值中小于预设值的最大值,
特定参数的可选值中小于预设值的最小值,
小于预设值的指定值。
其中,该门限值的确定对应与于上述网络设备侧实施例的场景二,在此不再赘述。
值得指出的是,门限值可以是终端从网络设备侧接收到的,也可以是终端按照预设规则确定的,其确定方式可以与网络设备侧确定门限值的方式相同。
例如,在非周期CSI-RS的测量行为为波束测量的情况下,可将终端上报的特定参数的取值确定为非周期CSI-RS的调度偏移门限的值。上述特定参数可以为非周期CSI-RS的波束切换时间,其可选值可以为{14,28,48,224,336}。假设终端上报的非周期CSI-RS的波束切换时间为{14,28,48,224,336}中的一项,那么将终端上报的波束切换时间的具体取值确定为非周期CSI-RS的调度偏移门限的值。例如终端上报的波束切换时间为14,则将14确定为门限值;若上报的波束切换时间为224,则将224确定为门限值。
又例如,在非周期CSI-RS的测量行为为CSI测量的情况下,若终端上报的特定参数的值大于预设值时,将以下取值中的一个确定为门限值;其中, 该取值为:
特定参数的可选值中小于预设值的最大值,
特定参数的可选值中小于预设值的最小值,
小于预设值的指定值。该指定值可以是网络设备指示的,也可以是预定义的(如协议约定、厂商预配置等)。
其中,预设值可以为非周期CSI-RS的触发偏移可取的最大值,或者,预设值可以为特定参数的第M个可选值至第N个可选值范围内的某个值。又例如,在非周期CSI-RS的测量行为为CSI测量的情况下,若终端上报的特定参数的值小于或等于预设值时,将终端上报的特定参数的取值确定为非周期CSI-RS的调度偏移门限的值。
进一步地,步骤53包括:
在非周期CSI-RS的触发偏移小于门限值时,根据默认准共址QCL信息,确定接收波束;也就是说,当触发偏移小于确定的门限值时,终端使用默认QCL假设来确定非周期CSI-RS的接收波束。
在非周期CSI-RS的触发偏移大于或等于门限值时,根据下行控制信息DCI中传输配置指示TCI状态所对应的QCL信息,确定接收波束。也就是说,当触发偏移大于或等于确定的门限值时,终端根据DCI指示的TCI状态对应的QCL信息来确定非周期CSI-RS的接收波束。
步骤53之后,还包括:在接收波束上,接收并测量非周期CSI-RS,以得到与测量行为对应的测量结果。假设测量行为为波束测量,终端在接收波束上接收非周期CSI-RS,并基于该非周期CSI-RS进行波束测量,得到相应的测量结果。假设测量行为为CSI测量,终端在接收波束上接收非周期CSI-RS,并基于该非周期CSI-RS进行CSI测量,得到相应的测量结果。
进一步地,本实施例中测量行为可以是网络设备配置的测量行为信息指示的,在接收波束上,接收并测量非周期CSI-RS,以得到与测量行为对应的测量结果的步骤之前,还包括:接收用于指示非周期CSI-RS的测量行为的测量行为信息;测量行为信息用于指示波束测量或CSI测量。
本公开的一些实施例的非周期信道状态信息参考信号配置方法中,终端在触发非周期CSI-RS时,接收网络设备发送的非周期CSI-RS的门限值,由 于该门限值是根据终端能力信息以及非周期CSI-RS的测量行为确定的,终端根据该门限值可正确确定非周期CSI-RS的波束信息,保证信号的正常传输和测量,从而可以提高通信的可靠性和有效性。
以上实施例介绍了不同场景下的非周期信道状态信息参考信号配置方法,下面将结合附图对与其对应的终端做进一步介绍。
如图6所示,本公开的一些实施例的终端600,能实现上述实施例中向网络设备发送终端能力信息;接收非周期信道状态信息参考信号CSI-RS的门限值,其中,门限值是根据非周期CSI-RS的测量行为和终端能力信息确定的;根据门限值,确定非周期CSI-RS的接收波束方法的细节,并达到相同的效果,该终端600具体包括以下功能模块:
第四发送模块610,用于向网络设备发送终端能力信息;
第一接收模块620,用于接收非周期信道状态信息参考信号CSI-RS的门限值,其中,门限值是根据非周期CSI-RS的测量行为和终端能力信息确定的;
第三处理模块630,用于根据门限值,确定非周期CSI-RS的接收波束。
其中,在测量行为为波束测量的情况下,门限值为终端能力信息中特定参数指示的值。
其中,在测量行为为CSI测量,终端能力信息中特定参数指示的值大于预设值的情况下,门限值为以下取值中的一个;
其中,取值为:
特定参数的可选值中小于预设值的最大值,
特定参数的可选值中小于预设值的最小值,
小于预设值的指定值。
其中,特定参数为:非周期CSI-RS的波束切换时间。
其中,第三处理模块630包括:
第五确定子模块,用于在非周期CSI-RS的触发偏移小于门限值时,根据默认准共址QCL信息,确定接收波束;
第六确定子模块,用于在非周期CSI-RS的触发偏移大于或等于门限值时,根据下行控制信息DCI中传输配置指示TCI状态所对应的QCL信息,确定接收波束。
其中,终端600还包括:
测量模块,用于在接收波束上,接收并测量非周期CSI-RS,以得到与测量行为对应的测量结果。
其中,终端600还包括:
第二接收模块,用于接收用于指示非周期CSI-RS的测量行为的测量行为信息;测量行为信息用于指示波束测量或CSI测量。
值得指出的是,本公开的一些实施例的终端在触发非周期CSI-RS时,接收网络设备发送的非周期CSI-RS的门限值,由于该门限值是根据终端能力信息以及非周期CSI-RS的测量行为确定的,终端根据该门限值可正确确定非周期CSI-RS的波束信息,保证信号的正常传输和测量,从而可以提高通信的可靠性和有效性。
需要说明的是,应理解以上网络设备和终端的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它 可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上***(system-on-a-chip,SOC)的形式实现。
为了更好的实现上述目的,进一步地,图7为实现本公开各个实施例的一种终端的硬件结构示意图,该终端70包括但不限于:射频单元71、网络模块72、音频输出单元73、输入单元74、传感器75、显示单元76、用户输入单元77、接口单元78、存储器79、处理器710、以及电源711等部件。本领域技术人员可以理解,图7中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开的一些实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元71,用于向网络设备发送终端能力信息;
接收非周期信道状态信息参考信号CSI-RS的门限值,其中,门限值是根据非周期CSI-RS的测量行为和终端能力信息确定的;
处理器710,用于根据门限值,确定非周期CSI-RS的接收波束;
本公开的一些实施例的终端在触发非周期CSI-RS时,接收网络设备发送的非周期CSI-RS的门限值,由于该门限值是根据终端能力信息以及非周期CSI-RS的测量行为确定的,终端根据该门限值可正确确定非周期CSI-RS的波束信息,保证信号的正常传输和测量,从而可以提高通信的可靠性和有效性。
应理解的是,本公开的一些实施例中,射频单元71可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器710处理;另外,将上行的数据发送给基站。通常,射频单元71包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元71还可以通过无线通信***与网络和其他设备通信。
终端通过网络模块72为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元73可以将射频单元71或网络模块72接收的或者在存储器79中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元73还可以提供与终端70执行的特定功能相关的音频输出(例如,呼叫信号接 收声音、消息接收声音等等)。音频输出单元73包括扬声器、蜂鸣器以及受话器等。
输入单元74用于接收音频或视频信号。输入单元74可以包括图形处理器(Graphics Processing Unit,GPU)741和麦克风742,图形处理器741对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元76上。经图形处理器741处理后的图像帧可以存储在存储器79(或其它存储介质)中或者经由射频单元71或网络模块72进行发送。麦克风742可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元71发送到移动通信基站的格式输出。
终端70还包括至少一种传感器75,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板761的亮度,接近传感器可在终端70移动到耳边时,关闭显示面板761和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器75还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元76用于显示由用户输入的信息或提供给用户的信息。显示单元76可包括显示面板761,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板761。
用户输入单元77可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元77包括触控面板771以及其他输入设备772。触控面板771,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板771上或在触控面板771附近的操作)。触控面板771可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸 方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器710,接收处理器710发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板771。除了触控面板771,用户输入单元77还可以包括其他输入设备772。具体地,其他输入设备772可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板771可覆盖在显示面板761上,当触控面板771检测到在其上或附近的触摸操作后,传送给处理器710以确定触摸事件的类型,随后处理器710根据触摸事件的类型在显示面板761上提供相应的视觉输出。虽然在图7中,触控面板771与显示面板761是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板771与显示面板761集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元78为外部装置与终端70连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元78可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端70内的一个或多个元件或者可以用于在终端70和外部装置之间传输数据。
存储器79可用于存储软件程序以及各种数据。存储器79可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器79可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器710是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器79内的软件程序和/或模块,以及调用存储在存储器79内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器710可包括一个或多个处理单元;可选的,处理器710 可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
终端70还可以包括给各个部件供电的电源711(比如电池),可选的,电源711可以通过电源管理***与处理器710逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。
另外,终端70包括一些未示出的功能模块,在此不再赘述。
可选的,本公开的一些实施例还提供一种终端,包括处理器710,存储器79,存储在存储器79上并可在所述处理器710上运行的计算机程序,该计算机程序被处理器710执行时实现上述非周期信道状态信息参考信号配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为***、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本公开的一些实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述非周期信道状态信息参考信号配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存 储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网 络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (33)

  1. 一种非周期信道状态信息参考信号配置方法,应用于网络设备侧,包括:
    获取终端能力信息;
    根据非周期信道状态信息参考信号CSI-RS的测量行为以及所述终端能力信息,确定所述非周期CSI-RS的门限值;
    向终端发送所述门限值。
  2. 根据权利要求1所述的非周期信道状态信息参考信号配置方法,其中,根据非周期信道状态信息参考信号CSI-RS的测量行为以及所述终端能力信息,确定所述非周期CSI-RS的门限值的步骤,包括:
    在所述测量行为为波束测量的情况下,将所述终端能力信息中特定参数指示的值确定为所述门限值。
  3. 根据权利要求1所述的非周期信道状态信息参考信号配置方法,其中,根据非周期信道状态信息参考信号CSI-RS的测量行为以及所述终端的终端能力信息,确定所述非周期CSI-RS的门限值的步骤,包括:
    在所述测量行为为CSI测量的情况下,若所述终端能力信息中特定参数指示的值大于预设值时,将以下取值中的一个确定为所述门限值;
    其中,所述取值为:
    所述特定参数的可选值中小于所述预设值的最大值,
    所述特定参数的可选值中小于所述预设值的最小值,
    小于所述预设值的指定值。
  4. 根据权利要求2或3所述的非周期信道状态信息参考信号配置方法,其中,所述特定参数为:所述非周期CSI-RS的波束切换时间。
  5. 根据权利要求1至3任一项所述的非周期信道状态信息参考信号配置方法,其中,确定所述非周期CSI-RS的门限值的步骤之后,还包括:
    根据所述门限值,确定所述非周期CSI-RS的发送波束。
  6. 根据权利要求5所述的非周期信道状态信息参考信号配置方法,其中,根据所述门限值,确定所述非周期CSI-RS的发送波束的步骤,包括:
    在所述非周期CSI-RS的触发偏移小于所述门限值时,根据默认准共址QCL信息,确定所述发送波束;
    在所述非周期CSI-RS的触发偏移大于或等于所述门限值时,根据下行控制信息DCI中传输配置指示TCI状态所对应的QCL信息,确定所述发送波束。
  7. 根据权利要求5所述的非周期信道状态信息参考信号配置方法,其中,根据所述门限值,确定所述非周期CSI-RS的发送波束的步骤之后,还包括:
    在所述发送波束上,发送所述非周期CSI-RS。
  8. 根据权利要求1所述的非周期信道状态信息参考信号配置方法,还包括:
    向所述终端发送测量行为信息,其中,所述测量行为信息为用于指示所述非周期CSI-RS。
  9. 一种网络设备,包括:
    第一获取模块,用于获取终端能力信息;
    第一处理模块,用于根据非周期信道状态信息参考信号CSI-RS的测量行为以及所述终端能力信息,确定所述非周期CSI-RS的门限值;
    第一发送模块,用于向终端发送所述门限值。
  10. 根据权利要求9所述的网络设备,其中,所述第一处理模块包括:
    第一确定子模块,用于在所述测量行为为波束测量的情况下,将所述终端能力信息中特定参数指示的值确定为所述门限值。
  11. 根据权利要求9所述的网络设备,其中,所述第一处理模块还包括:
    第二确定子模块,用于在所述测量行为为CSI测量的情况下,若所述终端能力信息中特定参数指示的值大于预设值时,将以下取值中的一个确定为所述门限值;
    其中,所述取值为:
    所述特定参数的可选值中小于所述预设值的最大值,
    所述特定参数的可选值中小于所述预设值的最小值,
    小于所述预设值的指定值。
  12. 根据权利要求10或11所述的网络设备,其中,所述特定参数为: 所述非周期CSI-RS的波束切换时间。
  13. 根据权利要求9至11任一项所述的网络设备,其中,所述网络设备还包括:
    第二处理模块,用于根据所述门限值,确定所述非周期CSI-RS的发送波束。
  14. 根据权利要求13所述的网络设备,其中,所述第二处理模块包括:
    第三确定子模块,用于在所述非周期CSI-RS的触发偏移小于所述门限值时,根据默认准共址QCL信息,确定所述发送波束;
    第四确定子模块,用于在所述非周期CSI-RS的触发偏移大于或等于所述门限值时,根据下行控制信息DCI中传输配置指示TCI状态所对应的QCL信息,确定所述发送波束。
  15. 根据权利要求13所述的网络设备,还包括:
    第二发送模块,用于在所述发送波束上,发送所述非周期CSI-RS。
  16. 根据权利要求9所述的网络设备,还包括:
    第三发送模块,用于向所述终端发送测量行为信息,其中,所述测量行为信息用于指示所述非周期CSI-RS的测量行为。
  17. 一种网络设备,所述网络设备包括处理器、存储器以及存储于所述存储器上并在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至8中任一项所述的非周期信道状态信息参考信号配置方法的步骤。
  18. 一种非周期信道状态信息参考信号配置方法,应用于终端侧,包括:
    向网络设备发送终端能力信息;
    接收非周期信道状态信息参考信号CSI-RS的门限值,其中,所述门限值是根据所述非周期CSI-RS的测量行为和所述终端能力信息确定的;
    根据所述门限值,确定所述非周期CSI-RS的接收波束。
  19. 根据权利要求18所述的非周期信道状态信息参考信号配置方法,其中,在所述测量行为为波束测量的情况下,所述门限值为所述终端能力信息中特定参数指示的值。
  20. 根据权利要求18所述的非周期信道状态信息参考信号配置方法,其 中,在所述测量行为为CSI测量,所述终端能力信息中特定参数指示的值大于预设值的情况下,所述门限值为以下取值中的一个;
    其中,所述取值为:
    所述特定参数的可选值中小于所述预设值的最大值,
    所述特定参数的可选值中小于所述预设值的最小值,
    小于所述预设值的指定值。
  21. 根据权利要求19或20所述的非周期信道状态信息参考信号配置方法,其中,所述特定参数为:所述非周期CSI-RS的波束切换时间。
  22. 根据权利要求18至20任一项所述的非周期信道状态信息参考信号配置方法,其中,根据所述门限值,确定所述非周期CSI-RS的接收波束的步骤,包括:
    在所述非周期CSI-RS的触发偏移小于所述门限值时,根据默认准共址QCL信息,确定所述接收波束;
    在所述非周期CSI-RS的触发偏移大于或等于所述门限值时,根据下行控制信息DCI中传输配置指示TCI状态所对应的QCL信息,确定所述接收波束。
  23. 根据权利要求18至20任一项所述的非周期信道状态信息参考信号配置方法,其中,根据所述门限值,确定所述非周期CSI-RS的接收波束的步骤之后,还包括:
    在所述接收波束上,接收并测量所述非周期CSI-RS,以得到与所述测量行为对应的测量结果。
  24. 根据权利要求23所述的非周期信道状态信息参考信号配置方法,其中,在所述接收波束上,接收并测量所述非周期CSI-RS,以得到与所述测量行为对应的测量结果的步骤之前,还包括:
    接收用于指示所述非周期CSI-RS的测量行为的测量行为信息;所述测量行为信息用于指示波束测量或CSI测量。
  25. 一种终端,包括:
    第四发送模块,用于向网络设备发送终端能力信息;
    第一接收模块,用于接收非周期信道状态信息参考信号CSI-RS的门限值, 其中,所述门限值是根据所述非周期CSI-RS的测量行为和所述终端能力信息确定的;
    第三处理模块,用于根据所述门限值,确定所述非周期CSI-RS的接收波束。
  26. 根据权利要求25所述的终端,其中,在所述测量行为为波束测量的情况下,所述门限值为所述终端能力信息中特定参数指示的值。
  27. 根据权利要求26所述的终端,其中,在所述测量行为为CSI测量,所述终端能力信息中特定参数指示的值大于预设值的情况下,所述门限值为以下取值中的一个;
    其中,所述取值为:
    所述特定参数的可选值中小于所述预设值的最大值,
    所述特定参数的可选值中小于所述预设值的最小值,
    小于所述预设值的指定值。
  28. 根据权利要求26或27所述的终端,其中,所述特定参数为:所述非周期CSI-RS的波束切换时间。
  29. 根据权利要求25至27任一项所述的终端,其中,所述第三处理模块包括:
    第五确定子模块,用于在所述非周期CSI-RS的触发偏移小于所述门限值时,根据默认准共址QCL信息,确定所述接收波束;
    第六确定子模块,用于在所述非周期CSI-RS的触发偏移大于或等于所述门限值时,根据下行控制信息DCI中传输配置指示TCI状态所对应的QCL信息,确定所述接收波束。
  30. 根据权利要求25至27任一项所述的终端,还包括:
    测量模块,用于在所述接收波束上,接收并测量所述非周期CSI-RS,以得到与所述测量行为对应的测量结果。
  31. 根据权利要求30所述的终端,还包括:
    第二接收模块,用于接收用于指示所述非周期CSI-RS的测量行为的测量行为信息;所述测量行为信息用于指示波束测量或CSI测量。
  32. 一种终端,所述终端包括处理器、存储器以及存储于所述存储器上 并在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求18至24中任一项所述的非周期信道状态信息参考信号配置方法的步骤。
  33. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至8、18至24中任一项所述的非周期信道状态信息参考信号配置方法的步骤。
PCT/CN2019/104903 2018-10-30 2019-09-09 非周期信道状态信息参考信号配置方法、网络设备及终端 WO2020088101A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/234,839 US11979217B2 (en) 2018-10-30 2021-04-20 Method for configuring aperiodic channel state information-reference signal, network device, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811280946.2 2018-10-30
CN201811280946.2A CN111132314B (zh) 2018-10-30 2018-10-30 非周期信道状态信息参考信号配置方法、网络设备及终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/234,839 Continuation US11979217B2 (en) 2018-10-30 2021-04-20 Method for configuring aperiodic channel state information-reference signal, network device, and terminal

Publications (1)

Publication Number Publication Date
WO2020088101A1 true WO2020088101A1 (zh) 2020-05-07

Family

ID=70464533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104903 WO2020088101A1 (zh) 2018-10-30 2019-09-09 非周期信道状态信息参考信号配置方法、网络设备及终端

Country Status (3)

Country Link
US (1) US11979217B2 (zh)
CN (1) CN111132314B (zh)
WO (1) WO2020088101A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022154493A1 (en) * 2021-01-12 2022-07-21 Samsung Electronics Co., Ltd. Method and ue for beam behavior of csi-rs for femimo

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3072491A1 (en) * 2019-02-14 2020-08-14 Comcast Cable Communications, Llc Transmission/reception management in wireless communication
CA3130732A1 (en) * 2019-02-22 2020-08-27 Ntt Docomo, Inc. User terminal and radio communication method
US11700599B2 (en) * 2019-10-10 2023-07-11 Qualcomm Incorporated Beam switching gap
CN113950096A (zh) * 2020-07-17 2022-01-18 北京紫光展锐通信技术有限公司 触发非周期csi触发状态的方法及装置
CN115175106A (zh) * 2021-04-01 2022-10-11 北京紫光展锐通信技术有限公司 通信参数确定方法及相关产品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107466446A (zh) * 2015-04-10 2017-12-12 Lg 电子株式会社 在无线通信***中报告信道状态信息的方法及其设备
US20180227886A1 (en) * 2017-01-15 2018-08-09 Chie-Ming Chou Two-stage downlink control information configurations for beam operation
CN108696346A (zh) * 2017-11-25 2018-10-23 华为技术有限公司 一种参考信号的配置方法和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107135025A (zh) * 2016-02-29 2017-09-05 株式会社Ntt都科摩 信道状态信息参考信号发送方法及基站
WO2018030714A1 (ko) * 2016-08-11 2018-02-15 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
EP3454477A1 (en) * 2017-09-11 2019-03-13 Intel IP Corporation Interference measurements in new radio systems
EP4243325A3 (en) * 2017-11-15 2023-10-25 InterDigital Patent Holdings, Inc. Beam management in a wireless network
US11095482B2 (en) * 2018-04-30 2021-08-17 Apple Inc. Channel state information reference signal (CSI-RS) and sounding reference signal (SRS) triggering
WO2020053977A1 (ja) * 2018-09-11 2020-03-19 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN114189320B (zh) * 2018-09-28 2023-08-29 中兴通讯股份有限公司 信息的确定方法、信号的接收方法及装置
EP4133664A1 (en) * 2020-04-10 2023-02-15 Telefonaktiebolaget LM Ericsson (publ) Receiving time overlapping downlink reference signals and channels
US20230276450A1 (en) * 2022-02-25 2023-08-31 Qualcomm Incorporated Trp dormancy indication systems and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107466446A (zh) * 2015-04-10 2017-12-12 Lg 电子株式会社 在无线通信***中报告信道状态信息的方法及其设备
US20180227886A1 (en) * 2017-01-15 2018-08-09 Chie-Ming Chou Two-stage downlink control information configurations for beam operation
CN108696346A (zh) * 2017-11-25 2018-10-23 华为技术有限公司 一种参考信号的配置方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Maintenance for Beam Management", 3GPP DRAFT; R1-1810214, 12 October 2018 (2018-10-12), Chengdu, China, pages 1 - 11, XP051517630 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022154493A1 (en) * 2021-01-12 2022-07-21 Samsung Electronics Co., Ltd. Method and ue for beam behavior of csi-rs for femimo

Also Published As

Publication number Publication date
CN111132314A (zh) 2020-05-08
CN111132314B (zh) 2022-06-24
US20210242926A1 (en) 2021-08-05
US11979217B2 (en) 2024-05-07

Similar Documents

Publication Publication Date Title
JP7466462B2 (ja) 情報伝送方法、端末及びネットワーク機器
JP7090180B2 (ja) 疑似コロケーション設定方法、端末及びネットワーク機器
JP7369782B2 (ja) ハイブリッド自動再送要求harqフィードバック方法、端末及びネットワーク機器
CN111106907B (zh) 传输配置指示tci状态的指示方法及终端
WO2020088101A1 (zh) 非周期信道状态信息参考信号配置方法、网络设备及终端
CN109699084B (zh) 非授权频段下的信息传输方法、终端及网络设备
WO2019184692A1 (zh) 波束失败处理方法、终端及网络设备
WO2020151743A1 (zh) 随机接入方法及终端
WO2020088219A1 (zh) 随机接入资源确定方法、终端及网络设备
WO2019214664A1 (zh) 传输资源指示方法、网络设备及终端
WO2020088315A1 (zh) 信息传输方法及通信设备
CN111278123B (zh) 非授权频段的信息传输方法、终端及网络设备
WO2020057317A1 (zh) 传输指示信号的传输方法、网络设备及终端
WO2019076170A1 (zh) 非授权频段下的信息传输方法、网络设备及终端
WO2020125360A1 (zh) 非授权频段信息传输方法、终端及网络设备
WO2021155763A1 (zh) 非授权频段的数据传输方法及装置、通信设备
US11991756B2 (en) Random access transmission method and terminal
CN111263393B (zh) 无线链路监测方法、终端及网络设备
CN112825578B (zh) 收发能力上报方法及装置、通信设备
WO2020143382A1 (zh) 上行传输方法、终端及网络设备
WO2021088783A1 (zh) 物理下行控制信道的检测方法及装置
WO2021208938A1 (zh) 确定数据传输层数的方法及装置、通信设备
WO2020134222A1 (zh) 信息传输方法、终端及网络设备
WO2020125401A1 (zh) 非授权频段信息传输方法、终端及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878557

Country of ref document: EP

Kind code of ref document: A1