WO2020125401A1 - 非授权频段信息传输方法、终端及网络设备 - Google Patents

非授权频段信息传输方法、终端及网络设备 Download PDF

Info

Publication number
WO2020125401A1
WO2020125401A1 PCT/CN2019/122638 CN2019122638W WO2020125401A1 WO 2020125401 A1 WO2020125401 A1 WO 2020125401A1 CN 2019122638 W CN2019122638 W CN 2019122638W WO 2020125401 A1 WO2020125401 A1 WO 2020125401A1
Authority
WO
WIPO (PCT)
Prior art keywords
end position
time domain
domain symbol
actual end
indication
Prior art date
Application number
PCT/CN2019/122638
Other languages
English (en)
French (fr)
Inventor
姜蕾
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP19898767.9A priority Critical patent/EP3902347A4/en
Priority to KR1020217021139A priority patent/KR20210091340A/ko
Publication of WO2020125401A1 publication Critical patent/WO2020125401A1/zh
Priority to US17/348,025 priority patent/US20210314778A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to an unauthorized frequency band information transmission method, terminal, and network equipment.
  • unlicensed bands can be used as supplements to licensed bands to help operators expand their services.
  • the unlicensed frequency band can work in the 5GHz, 37GHz and 60GHz frequency bands.
  • the large bandwidth (80 or 100MHz) of the unlicensed frequency band can reduce the implementation complexity of network equipment and terminals.
  • unlicensed frequency bands are shared by multiple technologies (Radio Access Technology, RATs), such as WiFi, radar, Long-Term Evolution-Licensed Assisted Access (LTE-LAA), etc.
  • RATs Radio Access Technology
  • LTE-LAA Long-Term Evolution-Licensed Assisted Access
  • the preset rules include: Listen before talk (Listen Before Talk, LBT), Maximum channel occupation time (Maximum Channel Occupancy Time, MCOT) Other rules.
  • LBT Listen Before Talk
  • MCOT Maximum Channel occupation time
  • ED Energy Detection
  • the transmission node mentioned here may be a network device (such as a base station), a terminal, a WiFi access point (Access Point, AP), and so on. After the transmission node starts transmission, the channel occupancy time (Channel Occupancy Time, COT) cannot exceed MCOT.
  • LBT or channel access can be divided into Cat 1, Cat 2, and Cat 4.
  • the LBT or channel access mechanism of Cat 1 is that the sending node does not do LBT, ie no LBT or immediate transmission.
  • the LBT of Cat 2 is one-shot LBT, that is, the node performs LBT once before transmission, and transmits if the channel is empty, and does not transmit if the channel is busy.
  • Cat 4's LBT is based on a back-off channel listening mechanism. When the transmission node detects that the channel is busy, it performs back-off and continues to listen until the channel is empty.
  • LBT of Cat 2 is used for Discovery Signal (DS) does not carry a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH), LBT of Cat 4 is used for PDSCH/Physical Downlink Control Channel (Physical Downlink Control Channel) , PDCCH) / enhanced PDCCH (enhance PDCCH, ePDCCH).
  • the LBT of Cat 4 corresponds to the UL channel access procedure (type 1)
  • the LBT of Cat 2 corresponds to the UL channel access procedure of type 2 (type 2).
  • the network device within the channel occupied time (initiated COT) initiated by the network device, that is, the network device does LBT to obtain the COT, when the gap between the end of the downlink transmission and the start of the uplink transmission (gap) is less than 16us ,
  • the terminal can do LBT of Category 1, when two consecutive transmissions of the terminal in the COT have gaps smaller than 25us, or when there is no downlink transmission (DL transmission) behind the uplink transmission (UL transmission), you can use Cat 2 LBT.
  • the two consecutive transmissions of the terminal may be scheduled (scheduled) or unscheduled (granted).
  • LBT of Cat 1 can be used. If the gap is greater than 16us but less than 25us, Cat LBT 2 can be used.
  • the network equipment uses 1 bit in the downlink control information (Downlink Control Information, DCI) to indicate the channel access type (Channel Access Type), that is, type 1 or type 2 UL channel access access procedure.
  • DCI Downlink Control Information
  • the network device will indicate the starting position and duration of scheduling in the time domain resource allocation (Time domain resource assignment) field in DCI. The start position and duration determine the end position of the transmission.
  • the time-domain granularity of LBT is in the order of microsecond us.
  • the gap of the above-mentioned LBT that can adopt Cat 1 is 16us at the maximum.
  • the scheduling granularity of the network equipment is 1 time domain symbol (OFDM), and the minimum granularity of all signals is 1 OS, so the existing scheme cannot match the granularity of LBT.
  • the LBT is Cat 2
  • the terminal does one-shot LBT and then starts transmission.
  • the duration of an OS is> 25us.
  • the spacing for other subcarriers is similar, corresponding to 2OS>25us, or multiple OS. Because the size of the OS is not a multiple of 25us or 16us, there is no guarantee that the end time of the gap/LBT between the two transmissions will be the same as the starting position of the next transmission.
  • Embodiments of the present disclosure provide an unlicensed frequency band information transmission method, terminal, and network equipment to solve the problem that the end time of gap/LBT between adjacent transmissions in the unlicensed frequency band and the starting position of the next transmission are inconsistent.
  • an embodiment of the present disclosure provides an unlicensed frequency band information transmission method, which is applied to the terminal side and includes:
  • the actual end position of the transmission is obtained; wherein, the actual end position is located at the end position of the reference time domain symbol, or the actual end position is located inside the reference time domain symbol.
  • an embodiment of the present disclosure provides a terminal, including:
  • the first receiving module is used to receive the indication information
  • the determining module is used to obtain the actual end position of the transmission according to the instruction information; wherein, the actual end position is located at the end position of the reference time domain symbol, or the actual end position is located inside the reference time domain symbol.
  • an embodiment of the present disclosure provides a terminal.
  • the terminal includes a processor, a memory, and a program stored on the memory and executable on the processor.
  • the program is executed by the processor, the above-mentioned unlicensed frequency band information transmission is realized.
  • an embodiment of the present disclosure provides an unlicensed frequency band information transmission method, which is applied to the network device side and includes:
  • Indication information is sent to the terminal.
  • the indication information is used to indicate the actual end position of the transmission.
  • the actual end position is located at the end position of the reference time domain symbol, or the actual end position is located inside the reference time domain symbol.
  • an embodiment of the present disclosure provides a network device, including:
  • the first sending module is used to send indication information to the terminal.
  • the indication information is used to indicate the actual end position of the transmission.
  • the actual end position is located at the end position of the reference time domain symbol, or the actual end position is located inside the reference time domain symbol.
  • an embodiment of the present disclosure also provides a network device.
  • the network device includes a processor, a memory, and a program stored on the memory and executable on the processor.
  • the processor executes the program, the above-mentioned unlicensed frequency band is implemented Information transmission method steps.
  • an embodiment of the present disclosure provides a computer-readable storage medium that stores a program on the computer-readable storage medium, and when the program is executed by a processor, implements the steps of the above-mentioned unlicensed band information transmission method.
  • the actual end position of the uplink transmission of the terminal or the downlink transmission of the network device may be located at the end position of a certain time domain symbol or inside a certain time domain symbol, the transmission end position is more flexible, and information can be resolved
  • the problem of granularity matching between scheduling and unlicensed frequency band transmission further ensures normal uplink and downlink transmission in unlicensed frequency bands.
  • FIG. 1 shows a block diagram of a mobile communication system to which embodiments of the present disclosure can be applied;
  • FIG. 2 is a schematic flowchart of a method for transmitting unlicensed band information of a terminal according to an embodiment of the present disclosure
  • FIG. 3 shows a schematic diagram 1 of the resource mapping relationship transmitted in the embodiment of the present disclosure
  • FIG. 5 shows a schematic structural diagram of a module of a terminal according to an embodiment of the present disclosure
  • FIG. 6 shows a block diagram of a terminal according to an embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart of an unauthorized frequency band information transmission method on a network device side according to an embodiment of the present disclosure
  • FIG. 8 shows a schematic diagram of a module structure of a network device according to an embodiment of the present disclosure
  • FIG. 9 shows a block diagram of a network device according to an embodiment of the present disclosure.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA single carrier frequency Multiple access
  • SC-FDMA single-carrier Frequency-Division Multiple Access
  • the wireless communication system includes a terminal 11 and a network device 12.
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), a personal digital assistant (Personal Digital Assistant) , PDA), mobile Internet device (Mobile Internet Device (MID), wearable device (Wearable Device) or vehicle-mounted device and other terminal side devices, it should be noted that the specific type of terminal 11 is not limited in the embodiments of the present disclosure .
  • the network device 12 may be a base station or a core network, where the above base station may be a base station of 5G and later versions (for example: gNB, 5G, NR, NB, etc.), or a base station in other communication systems (for example: eNB, WLAN access point, Or other access points, etc.), where the base station may be called Node B, evolved Node B, access point, base transceiver station (Base Transceiver Station, BTS), radio base station, radio transceiver, basic service set (Basic Service Set (BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolution Node B, WLAN Access Point, WiFi Node or in the field
  • BTS base transceiver station
  • BTS base transceiver station
  • BTS base transceiver station
  • BTS base station
  • radio transceiver basic service set
  • BSS Basic Service Set
  • ESS Extended Service Set
  • the base station may communicate with the terminal 11 under the control of the base station controller.
  • the base station controller may be part of the core network or some base stations. Some base stations can communicate control information or user data with the core network through the backhaul. In some examples, some of these base stations may directly or indirectly communicate with each other through a backhaul link, which may be a wired or wireless communication link.
  • the wireless communication system can support operation on multiple carriers (waveform signals of different frequencies). Multi-carrier transmitters can transmit modulated signals on these multiple carriers simultaneously. For example, each communication link may be a multi-carrier signal modulated according to various radio technologies. Each modulated signal can be sent on a different carrier and can carry control information (eg, reference signals, control channels, etc.), overhead information, data, etc.
  • the base station can wirelessly communicate with the terminal 11 via one or more access point antennas. Each base station can provide communication coverage for its respective coverage area. The coverage area of an access point may be divided into sectors that only constitute a part of the coverage area.
  • the wireless communication system may include different types of base stations (eg, macro base stations, micro base stations, or pico base stations). The base station can also utilize different radio technologies, such as cellular or WLAN radio access technologies. Base stations can be associated with the same or different access networks or operator deployments. The coverage areas of different base stations (including the coverage areas of the same or different types of base stations, the coverage areas using the same or different radio technologies, or the coverage areas belonging to the same or different access networks) may overlap.
  • the communication link in the wireless communication system may include an uplink for carrying uplink (Uplink, UL) transmission (for example, from the terminal 11 to the network device 12), or a downlink for carrying downlink (Downlink, DL)
  • the downlink of the transmission (eg, from the network device 12 to the terminal 11).
  • UL transmission may also be referred to as reverse link transmission
  • DL transmission may also be referred to as forward link transmission.
  • Downlink transmission can be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • uplink transmissions can be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • the unlicensed frequency band information transmission method of an embodiment of the present disclosure is applied to a terminal. As shown in FIG. 2, the method includes steps 21 to 22.
  • Step 21 Receive instruction information.
  • the indication information is used to indicate the actual end position of the transmission.
  • the indication information may directly indicate the actual end position of the transmission through one indication field, or may indirectly indicate the actual end position of the transmission through multiple indication fields.
  • the indication information may be carried in downlink control information (Downlink Control Information, DCI), or the indication information may also be carried in radio resource control (Radio Resource Control, RRC).
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • Step 22 Obtain the actual end position of the transmission according to the instruction information; wherein, the actual end position is located at the end position of the reference time domain symbol, or the actual end position is located inside the reference time domain symbol.
  • the transmission (transmission) or transmission burst (transmission burst) may be uplink (UL) transmission of the terminal or downlink (DL) transmission of the network device.
  • the transmission after the transmission may be UL transmission or DL transmission of the network device.
  • the transmission after the transmission may be a UL transmission.
  • the interval between two transmissions can be used for Transmit/Receive (Rx/Tx) conversion, or Rx/Tx conversion plus LBT.
  • the determination of the actual end position of the transmission may also be the determination of the end position of the previous one of the two upstream transmissions.
  • the reference time domain symbol in the embodiment of the present disclosure may refer to any time domain symbol (such as OFDM symbol, OS for short), that is to say, the actual end position of transmission may be located at the end position of a certain time domain symbol (or called edge, end Edge), it can also be located inside the time-domain symbol.
  • the inside refers to a position other than the end position. In this way, the end position of transmission is more flexible, which can solve the problem of granularity matching between transmission scheduling and unlicensed frequency band transmission, and ensure normal uplink and downlink transmission in unlicensed frequency band.
  • the indication methods of the indication information include but are not limited to:
  • Method 1 Joint indication of multiple indication fields in the indication information
  • the indication information includes: a first indication field used to indicate whether the actual end position is the end position allocated by the time domain resource; and a first indication field used to indicate the actual end position and the end position of the reference time domain symbol The second indication field of the offset.
  • the network device uses a 1 bit first indication field in the DCI to indicate whether the transmission starts from the end position or edge of a certain time-domain symbol (such as the time-domain symbol for time-domain resource allocation) ( boundary) ends. For example, when the value of 1 bit of the first indication field is 1, it indicates that the actual end position is the end position of scheduling indicated by the "Time domain resource" assignment field in DCI.
  • the first indication field indicates whether the next gap/LBT starts from the starting position of a time domain symbol, or whether the gap/LBT starts from the middle position of a time domain symbol and ends at the end position of the time domain symbol.
  • the former corresponds to the end of transmission at the edge of the OS
  • the latter corresponds to the end of transmission from within the OS.
  • the network device may also use a second indication field of 1 bit or 2 bits in the DCI to indicate the first offset between the actual end position of the transmission and the end position of the reference time domain symbol to achieve the indication of the actual end of the transmission
  • the reference time-domain symbol includes: the last time-domain symbol of time-domain resource allocation, or the Mth time-domain symbol before the end position of the time-domain resource allocation, or the N-th symbol after the end position of the time-domain resource allocation
  • Time domain symbols, M and N are integers greater than or equal to 1.
  • the first offset includes: 16us or 25us.
  • the second indication domain includes 1 bit
  • the indication information further includes: a third indication field used to indicate whether to advance Timing Advance (TA).
  • TA Timing Advance
  • the network device uses 1 bit as the third indication field in DCI.
  • the value of 1 bit in the third indication field is 1, it means that the transmission delay is considered; when the value of 1 bit in the third indication field is 0, it means that transmission is not considered. Delay effects. Without considering the influence of transmission delay, the TA in the actual transmission position can be ignored.
  • step 22 includes the following scenarios:
  • Scenario 1 When the first indication field indicates that the actual end position is not the end position allocated to the time domain resource, the actual end position of the transmission is obtained according to the second indication field.
  • the network device adds a 1-bit first indication field to the DCI to indicate whether the actual end position of UL transmission or DL transmission is the end position of time domain resource allocation, that is, to indicate the UL transmission of the terminal or the DL transmission of the network device Whether to end from the edge of the time domain symbol where the end position indicated by the DCI "Time domain resource” assignment field.
  • the value of 1bit in the first indication field is 1, indicating that the actual end position of the transmission is the end position (or scheduling end position) indicated in the "Time Domain Resource Assignment" field in DCI.
  • the terminal can pass the start position And the end position of the duration launch.
  • the value of 1 bit in the first indication field is 0, indicating that the actual end position is within the time domain symbol where the scheduling end position is located or within the time domain symbol before and after the time domain symbol where the scheduling end position is located. If the terminal uses category 1 of LBT, the gap between the two transmissions should not exceed 16us; if the terminal uses category 2 of LBT, it needs to do LBT of 25us. When the next transmission starts from the edge of the time domain symbol, in order to meet the gap or LBT requirements, the end position of the previous transmission must be within the time domain symbol.
  • the network device can indicate the actual end position of the transmission for the terminal through the second indication field of 1 bit or 2 bits, and the terminal or network device starts after the actual end position Tx/Rx conversion, or Tx/Rx conversion and LBT.
  • This scenario is a scenario where the transmission ends inside a certain time-domain symbol.
  • the upstream to downstream transmission is used as an example.
  • UL transmission is before DL transmission.
  • the actual end position of the UL transmission should be within the time domain symbol where the end position of the time domain resource allocation (indicated time domain resource) is located, that is, the first indication domain indicates the actual
  • the end position is not the end position of time domain resource allocation
  • the value of 1 bit of the second indication field is 0, it means that the actual end position is: refer to the end position of the time domain symbol -16us, and the value of 1 bit of the second indication field When it is 1, it means that the actual end position is: refer to the end position of the time domain symbol -25us.
  • the reference time domain symbol is the last time domain symbol of time domain resource scheduling
  • the value of 1 bit of the second indication domain is 0, it indicates that the actual end position is: end position of time domain resource scheduling -16us
  • the second When the value of 1 bit in the indication domain is 1, it means that the actual end position is: the end position of time domain resource scheduling -25us. It is worth noting that the above embodiment is also applicable to the scenario where the downlink is transferred to the uplink and two consecutive uplink transmissions are performed.
  • the reference time-domain symbol is the Nth time-domain symbol after the end position of the time-domain resource scheduling, and N ⁇ 1.
  • the actual end position of the UL transmission should be within a certain time domain symbol, when the first indication field indicates that the actual end position is not a time domain resource
  • the value of 1 bit of the second indication field is 0, it means that the actual end position is: refer to the end position of the time domain symbol -16us, and the value of 1 bit of the second indication field is 1, which means the actual The end position is: refer to the end position of the time domain symbol -25us.
  • the reference time domain symbol is the first time domain symbol after the end location of time domain resource scheduling, and the value of 1 bit in the second indication domain is 0, it indicates that the actual end location is: the end location of time domain resource scheduling +1OS-16us, when the value of 1 bit in the second indication field is 1, it means that the actual end position is: the end position of time domain resource scheduling +1OS-25us. It is worth noting that the above embodiment is also applicable to the scenario where the downlink is transferred to the uplink and two consecutive uplink transmissions are performed.
  • the above calculation of the actual end position may also be extended by multiple time-domain symbols, that is, the reference time-domain symbol is the Nth time-domain symbol after the end location of the time-domain resource scheduling.
  • the actual end position is: the end position of time domain resource scheduling +N*OS-16us
  • the value of 1 bit of the second indication field is 1, indicating that The actual end position is: the end position of time domain resource scheduling + N*OS-25us.
  • the number of extended time-domain symbols depends on the number of time-domain symbols reserved for Tx/Rx conversion and LBT. This value may be greater than 1.
  • the value of N can be indicated in RRC, DCI, or predefined (such as directly agreed by the protocol).
  • a plurality of time domain symbols may be advanced in advance, that is, the reference time domain symbol is the Mth time domain symbol before the end position of the time domain resource scheduling, M ⁇ 1.
  • the actual end position of the UL transmission must be within a certain time domain symbol, when the first indication field indicates that the actual end position is not the end position of the time domain resource allocation
  • the value of 1 bit in the second indication field is 0, it indicates that the actual end position is: the end position of the reference time domain symbol is -16us, and the value of 1 bit in the second indication field is 1, indicating that the actual end position is: reference time
  • the end position of the domain symbol is -25us.
  • the reference time domain symbol is the Mth time domain symbol before the end location of the time domain resource scheduling
  • the value of 1 bit of the second indication domain when the value of 1 bit of the second indication domain is 0, it indicates that the actual end location is: the end location of the time domain resource scheduling -M*OS-16us
  • the value of 1 bit in the second indication field when the value of 1 bit in the second indication field is 1, it means that the actual end position is: the end position of time domain resource scheduling -M*OS-25us.
  • the number of advanced time-domain symbols depends on the number of time-domain symbols reserved for Tx/Rx conversion and LBT. This value may be greater than 1.
  • the value of M can be indicated in RRC, DCI, or predefined (such as directly agreed by the protocol). It is worth noting that the above embodiment is also applicable to the scenario where the downlink is transferred to the uplink and two consecutive uplink transmissions are performed.
  • Scenario 2 When the actual end position of the first indication field indicates the end position of time domain resource allocation, the second indication field is ignored.
  • the second indication field is no longer interpreted, that is, the content indicated by the second indication field is invalid.
  • whether the second indication field is valid needs to first check whether the actual end position indicated by the first indication field is the end position of time domain resource allocation, if the actual end position indicated by the first indication field is not the time domain resource allocation At the end position, the content indicated by the second indication field will take effect; if the first indication field indicates that the actual end position is the end position allocated by the time domain resource, the content indicated by the second indication field is invalid.
  • Method 2 Directly indicate an indication field in the indication information
  • the indication information includes: a fourth indication field for indicating a second offset between the actual end position and the end position of the reference time domain symbol.
  • the second offset includes: 0us, 16us, 25us or 25us+TA.
  • the network device uses a fourth indication field of 2 bits in the DCI to indicate the actual end position of the transmission. Wherein, 2 bits in the fourth indication field are used to indicate the second offset between the actual end position and the reference time domain symbol.
  • the reference time domain symbol is related to time domain resource scheduling, where the reference time domain symbol includes: the last time domain symbol of time domain resource allocation, or the Nth time domain symbol after the end position of time domain resource allocation, where N is Integer greater than or equal to 1.
  • the value of 2bits in the fourth indication field is 00, indicating that the actual end position is the end position indicated in the "Time Domain Resource Assignment" field in DCI; the value of 2bits in the fourth indication field is 01, indicating that the actual end position is the reference Domain symbol -16us; the value of 2 bits in the fourth indication field is 10, indicating that the actual transmission end position is the reference time domain symbol -25us; the value of 2 bits in the fourth indication field is 11, indicating that the actual transmission end position is the reference time domain symbol -25us-TA.
  • the value of 2bits in the fourth indication domain is 00, indicating that the actual end position is the end position indicated by the "Time domain resource” assignment field in DCI; fourth The value of 2bits in the indication domain is 01, indicating that the actual end position is: the end position indicated by the "Time domain resource” assignment in the DCI-16us; the value of 2bits in the fourth indication domain is 10, indicating the actual end position of transmission is: DCI The end position indicated by the "Time domain resource” assignment field in the -25us; the value of 2bits in the fourth indication field is 11, indicating that the actual transmission end position is: the end position indicated by the "Time domain resource” assignment field in the DCI-25us-TA .
  • the calculation of the actual end position may also be extended by multiple time-domain symbols, that is, the reference time-domain symbol is the Nth time-domain symbol after the end location of the time-domain resource scheduling.
  • the value of 2bits in the fourth indication field is 01, indicating that the actual end position is: the end position indicated in the "Time domain resource” assignment field in DCI + N*OS-16us; the value of 2bits in the fourth indication field Is 10, indicating that the actual transmission end position is: the end position indicated by the "Time domain resource” assignment in the DCI + N*OS-25us; the value of 2 bits in the fourth indication field is 11, indicating that the actual transmission end position is: DCI The end position indicated by the "Time domain resource” assignment +N*OS-25us-TA.
  • the number of extended time-domain symbols depends on the number of time-domain symbols reserved for Tx/Rx conversion and LBT. This value may be greater than 1.
  • the value of N may be indicated in RRC, may also be indicated in DCI, or pre-defined (such as directly agreed by the protocol).
  • the reference time-domain symbol is the Mth time-domain symbol before the end position of the time-domain resource scheduling.
  • the value of 2bits in the fourth indication field is 01, indicating that the actual end position is: the end position indicated by the "Time Domain Resource Assignment" field in DCI-M*OS-16us; the value of 2bits in the fourth indication field Is 10, indicating that the actual transmission end position is: the end position indicated by the "Time domain resource” assignment in the DCI-M*OS-25us; the value of 2 bits in the fourth indication field is 11, indicating that the actual transmission end position is: DCI The end position indicated by the "Time domain resource” assignment-M*OS-25us-TA.
  • the number of advanced time-domain symbols depends on the number of time-domain symbols reserved for Tx/Rx conversion and LBT. This value may be greater than 1.
  • the value of M can be indicated in RRC, DCI, or predefined (such as directly agreed by the protocol).
  • step 22 it also includes: sending preset information in the time domain resource before the actual end position in the reference time domain symbol; where the preset information includes: placeholder signals, (useful) data, reference signals (reference signals) and At least one of extended cyclic prefix (extended Cyclic Prefix, extended CP).
  • the terminal may transmit information in part of the time-domain symbol where the transmission ends, such as uplink-to-downlink transmission or two consecutive uplink transmission scenarios.
  • the actual end position of the uplink transmission of the terminal may be located at the end position of a certain time-domain symbol or inside a certain time-domain symbol.
  • the transmission end position is more flexible and can solve information
  • the problem of granularity matching between scheduling and unlicensed frequency band transmission further ensures normal uplink transmission in unlicensed frequency bands.
  • the terminal 500 of the embodiment of the present disclosure can achieve the reception of the indication information in the above embodiments; determine the actual end position of the transmission according to the indication information; where the actual end position is at the end position of the reference time domain symbol, or The actual end position is in the details of the internal method of referring to the time domain symbol and achieves the same effect.
  • the terminal 500 specifically includes the following functional modules:
  • the first receiving module 510 is configured to receive indication information
  • the determining module 520 is configured to obtain the actual end position of the transmission according to the indication information; wherein, the actual end position is located at the end position of the reference time domain symbol, or the actual end position is located inside the reference time domain symbol.
  • the instructions include:
  • a first indication field for indicating whether the actual end position is the end position of time domain resource allocation
  • a second indication field for indicating a first offset between the actual end position and the end position of the reference time domain symbol.
  • the determination module 520 includes one of the following:
  • the first determining submodule is configured to obtain the actual end position of the transmission according to the second indication field when the first indication field indicates that the actual end position is not the end position allocated to the time domain resource;
  • the second determination submodule is configured to ignore the second indication field when the first indication field indicates that the actual end position is the end position of time domain resource allocation.
  • the instructions also include:
  • the third indication field is used to indicate whether to advance the TA ahead of time.
  • the first offset includes: 16us or 25us.
  • the instructions include:
  • a fourth indication field for indicating a second offset between the actual end position and the end position of the reference time domain symbol.
  • the second offset includes: 0us, 16us, 25us or 25us+TA.
  • the reference time-domain symbol includes: the last time-domain symbol of time-domain resource allocation, or the Mth time-domain symbol before the end position of the time-domain resource allocation, or the N-th symbol after the end position of the time-domain resource allocation
  • Time domain symbols, M and N are integers greater than or equal to 1.
  • the indication information is carried in the downlink control information DCI, or the indication information is carried in the radio resource control RRC signaling.
  • the terminal 500 further includes:
  • the first transmission module is used to send preset information in the time domain resource before the actual end position in the reference time domain symbol; where the preset information includes: at least one of the occupation signal, data, reference signal and extended cyclic prefix One item.
  • the actual end position of the uplink transmission of the terminal of the embodiment of the present disclosure may be located at the end position of a certain time-domain symbol or inside a certain time-domain symbol, and the transmission end position is more flexible, which can solve the problem of information scheduling and non-transmission.
  • the problem of matching the granularity of transmission in authorized frequency bands further ensures normal uplink transmission in unlicensed frequency bands.
  • FIG. 6 is a schematic diagram of a hardware structure of a terminal for implementing various embodiments of the present disclosure.
  • the terminal 60 includes but is not limited to: a radio frequency unit 61, a network module 62, an audio output unit 63, The input unit 64, sensor 65, display unit 66, user input unit 67, interface unit 68, memory 69, processor 610, power supply 611 and other components.
  • the terminal structure shown in FIG. 6 does not constitute a limitation on the terminal, and the terminal may include more or less components than those illustrated, or combine certain components, or arrange different components.
  • the terminal includes but is not limited to a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle terminal, a wearable device, and a pedometer.
  • the radio frequency unit 61 is used to receive indication information
  • the processor 610 is configured to obtain the actual end position of the transmission according to the instruction information; wherein the actual end position is located at the end position of the reference time domain symbol, or the actual end position is located inside the reference time domain symbol;
  • the actual end position of the uplink transmission of the terminal of the embodiment of the present disclosure may be located at the end position of a certain time-domain symbol or inside a certain time-domain symbol, the transmission end position is more flexible, and can solve the problem of information scheduling and unlicensed frequency band transmission particles Degree matching problem to further ensure normal uplink transmission in unlicensed bands.
  • the radio frequency unit 61 may be used to receive and send signals during sending and receiving information or during a call. Specifically, after receiving the downlink data from the base station, it is processed by the processor 610; The uplink data is sent to the base station.
  • the radio frequency unit 61 includes but is not limited to an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 61 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 62, such as helping users send and receive e-mail, browse web pages, and access streaming media.
  • the audio output unit 63 may convert the audio data received by the radio frequency unit 61 or the network module 62 or stored in the memory 69 into an audio signal and output as sound. Moreover, the audio output unit 63 may also provide audio output related to a specific function performed by the terminal 60 (eg, call signal reception sound, message reception sound, etc.).
  • the audio output unit 63 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 64 is used to receive audio or video signals.
  • the input unit 64 may include a graphics processor (Graphics, Processing, Unit, GPU) 641 and a microphone 642, and the graphics processor 641 may image a still picture or video obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode
  • the data is processed.
  • the processed image frame may be displayed on the display unit 66.
  • the image frame processed by the graphics processor 641 may be stored in the memory 69 (or other storage medium) or sent via the radio frequency unit 61 or the network module 62.
  • the microphone 642 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 61 in the case of a telephone call mode and output.
  • the terminal 60 also includes at least one sensor 65, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 661 according to the brightness of the ambient light, and the proximity sensor can close the display panel 661 and/or when the terminal 60 moves to the ear Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (generally three axes), and can detect the magnitude and direction of gravity when at rest, and can be used to identify the posture of the terminal (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc.; sensor 65 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be repeated here.
  • the display unit 66 is used to display information input by the user or information provided to the user.
  • the display unit 66 may include a display panel 661, and the display panel 661 may be configured in the form of a liquid crystal display (Liquid Crystal) (LCD), an organic light-emitting diode (Organic Light-Emitting Diode, OLED), or the like.
  • LCD Liquid Crystal
  • OLED Organic Light-Emitting Diode
  • the user input unit 67 may be used to receive input numeric or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 67 includes a touch panel 671 and other input devices 672.
  • the touch panel 671 also known as a touch screen, can collect user's touch operations on or near it (such as the user using any finger, stylus, or any other suitable object or accessory on or near the touch panel 671 operating).
  • the touch panel 671 may include a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device and converts it into contact coordinates, and then sends To the processor 610, the command sent by the processor 610 is received and executed.
  • the touch panel 671 may be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 67 may also include other input devices 672.
  • other input devices 672 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the touch panel 671 may be overlaid on the display panel 661, and when the touch panel 671 detects a touch operation on or near it, it is transmitted to the processor 610 to determine the type of touch event, and then the processor 610 according to the touch The type of event provides a corresponding visual output on the display panel 661.
  • the touch panel 671 and the display panel 661 are implemented as two independent components to realize the input and output functions of the terminal, in some embodiments, the touch panel 671 and the display panel 661 may be integrated to The input and output functions of the terminal are implemented, which is not limited here.
  • the interface unit 68 is an interface for connecting an external device to the terminal 60.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 68 may be used to receive input from external devices (eg, data information, power, etc.) and transmit the received input to one or more elements within the terminal 60 or may be used between the terminal 60 and external devices Transfer data between.
  • the memory 69 can be used to store software programs and various data.
  • the memory 69 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, application programs required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; the storage data area may store Data created by the use of mobile phones (such as audio data, phonebooks, etc.), etc.
  • the memory 69 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • the processor 610 is the control center of the terminal, and uses various interfaces and lines to connect the various parts of the entire terminal, executes or executes the software programs and/or modules stored in the memory 69, and calls the data stored in the memory 69 to execute Various functions and processing data of the terminal, so as to monitor the terminal as a whole.
  • the processor 610 may include one or more processing units; optionally, the processor 610 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and application programs, etc.
  • the modulation processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 610.
  • the terminal 60 may also include a power supply 611 (such as a battery) that supplies power to various components.
  • a power supply 611 (such as a battery) that supplies power to various components.
  • the power supply 611 may be logically connected to the processor 610 through a power management system, thereby managing charge, discharge, and power consumption management through the power management system And other functions.
  • the terminal 60 includes some function modules not shown, which will not be repeated here.
  • an embodiment of the present disclosure further provides a terminal, including a processor 610, a memory 69, and a computer program stored on the memory 69 and executable on the processor 610, when the computer program is executed by the processor 610
  • the terminal may be a wireless terminal or a wired terminal.
  • the wireless terminal may be a device that provides users with voice and/or other service data connectivity, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem .
  • a wireless terminal can communicate with one or more core networks via a radio access network (Radio Access Network, RAN).
  • Radio Access Network Radio Access Network
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal
  • a mobile terminal such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal
  • it may be a portable, pocket-sized, handheld, computer built-in or vehicle-mounted mobile device that exchanges language and/or data with the wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the wireless terminal can also be called a system, a subscriber unit (Subscriber Unit), a subscriber station (Subscriber Station), a mobile station (Mobile Station), a mobile station (Mobile), a remote station (Remote Station), a remote terminal (Remote Terminal), an access terminal Access terminal (Access Terminal), user terminal (User Terminal), user agent (User Agent), user equipment (User Device or User Equipment), not limited here.
  • Embodiments of the present disclosure also provide a computer-readable storage medium that stores a computer program on the computer-readable storage medium.
  • the computer program is executed by a processor, the processes of the above-mentioned unlicensed band information transmission method embodiments are implemented, and can be achieved The same technical effect will not be repeated here to avoid repetition.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the above embodiment introduces the unlicensed frequency band information transmission method of the present disclosure from the terminal side.
  • the following embodiment will further introduce the unlicensed frequency band information transmission method of the network device with reference to the drawings.
  • the unlicensed frequency band information transmission method of the embodiment of the present disclosure is applied to network equipment.
  • the method includes the following steps:
  • Step 71 Send indication information to the terminal.
  • the indication information is used to indicate the actual end position of the transmission.
  • the actual end position is located at the end position of the reference time domain symbol, or the actual end position is located inside the reference time domain symbol.
  • the indication information is used to indicate the actual end position of the transmission.
  • the indication information may directly indicate the actual end position of the transmission through one indication field, or may indirectly indicate the actual end position of the transmission through multiple indication fields. Further, the indication information may be carried in DCI, or the indication information may also be carried in RRC.
  • the reference time domain symbol in the embodiment of the present disclosure may refer to any time domain symbol (such as an OFDM symbol), that is, the actual end position of transmission may be located at the end position of a certain time domain symbol, or the actual end position may be located at a certain Edge or end edge of a time domain symbol.
  • the actual end position of the transmission may also be located inside a certain time-domain symbol, and the inside mentioned here refers to other positions than the end position. In this way, the end position of the transmission is more flexible, which can solve the problem of granularity matching between transmission scheduling and unlicensed frequency band transmission, and ensure normal uplink and downlink transmission in the unlicensed frequency band.
  • the indication manners of the indication information include but are not limited to: a first indication domain used to indicate whether the actual end position is the end position allocated by time domain resources; and, A second indication field indicating a first offset between the actual end position and the end position of the reference time domain symbol.
  • the network device uses a 1 bit first indication field in the DCI to indicate whether the transmission starts from the end position or end edge of a certain time domain symbol (such as the time domain symbol of time domain resource allocation) (boundary) ends.
  • the first indication field indicates whether the next gap/LBT starts from the starting position of a time domain symbol, or whether the gap/LBT starts from the middle position of a time domain symbol and ends at the end position of the time domain symbol.
  • the former corresponds to ending transmission at the end edge of the OS
  • the latter corresponds to ending transmission within the OS.
  • the network device may also use a second indication field of 1 bit or 2 bits in the DCI to indicate the first offset between the actual end position of the transmission and the end position of the reference time domain symbol to achieve the indication of the actual end position of the transmission the goal of.
  • the reference time-domain symbol includes: the last time-domain symbol of time-domain resource allocation, or the Mth time-domain symbol before the end position of the time-domain resource allocation, or the N-th symbol after the end position of the time-domain resource allocation Time domain symbols, M and N are integers greater than or equal to 1.
  • the first offset includes: 16us or 25us.
  • the second indication domain includes 1 bit
  • the indication information further includes: a third indication field used to indicate whether to advance the TA and end the TA ahead of time.
  • a third indication field used to indicate whether to advance the TA and end the TA ahead of time.
  • the network device uses 1 bit as the third indication field in DCI.
  • the value of 1 bit in the third indication field is 1, it means that the transmission delay is considered; when the value of 1 bit in the third indication field is 0, it means that transmission is not considered. Delay effects. Without considering the influence of transmission delay, the TA in the actual transmission position can be ignored.
  • the indication information includes: a fourth indication field for indicating a second offset between the actual end position and the end position of the reference time domain symbol.
  • the second offset includes: 0us, 16us, 25us or 25us+TA.
  • the network device uses a fourth indication field of 2 bits in the DCI to indicate the actual end position of the transmission. Wherein, 2 bits in the fourth indication field are used to indicate the second offset between the actual end position and the reference time domain symbol.
  • the reference time domain symbol is related to time domain resource scheduling, where the reference time domain symbol includes: the last time domain symbol of time domain resource allocation, or the Nth time domain symbol after the end position of time domain resource allocation, where N is Integer greater than or equal to 1.
  • the value of 2bits in the fourth indication field is 00, indicating that the actual end position is the end position indicated in the "Time Domain Resource Assignment" field in DCI; the value of 2bits in the fourth indication field is 01, indicating that the actual end position is the reference Domain symbol -16us; the value of 2 bits in the fourth indication field is 10, indicating that the actual transmission end position is the reference time domain symbol -25us; the value of 2 bits in the fourth indication field is 11, indicating that the actual transmission end position is the reference time domain symbol -25us-TA.
  • the value of 2bits in the fourth indication domain is 00, indicating that the actual end position is the end position indicated by the "Time domain resource” assignment field in DCI; fourth The value of 2bits in the indication domain is 01, indicating that the actual end position is: the end position indicated by the "Time domain resource” assignment in the DCI-16us; the value of 2bits in the fourth indication domain is 10, indicating the actual end position of transmission is: DCI The end position indicated by the "Time domain resource” assignment field in the -25us; the value of 2bits in the fourth indication field is 11, indicating that the actual transmission end position is: the end position indicated by the "Time domain resource” assignment field in the DCI-25us-TA .
  • the calculation of the actual end position may also be extended by multiple time-domain symbols, that is, the reference time-domain symbol is the Nth time-domain symbol after the end location of the time-domain resource scheduling.
  • the value of 2bits in the fourth indication field is 01, indicating that the actual end position is: the end position indicated in the "Time domain resource” assignment field in DCI + N*OS-16us; the value of 2bits in the fourth indication field Is 10, indicating that the actual transmission end position is: the end position indicated by the "Time domain resource” assignment in the DCI + N*OS-25us; the value of 2 bits in the fourth indication field is 11, indicating that the actual transmission end position is: DCI The end position indicated by the "Time domain resource” assignment +N*OS-25us-TA.
  • the number of extended time-domain symbols depends on the number of time-domain symbols reserved for Tx/Rx conversion and LBT. This value may be greater than 1.
  • the value of N may be indicated in RRC, may also be indicated in DCI, or pre-defined (such as directly agreed by the protocol).
  • the reference time-domain symbol is the Mth time-domain symbol before the end position of the time-domain resource scheduling.
  • the value of 2bits in the fourth indication field is 01, indicating that the actual end position is: the end position indicated by the "Time domain resource” assignment in the DCI-M*OS-16us; the value of 2bits in the fourth indication field Is 10, indicating that the actual transmission end position is: the end position indicated by the "Time domain resource” assignment in the DCI-M*OS-25us; the value of 2 bits in the fourth indication field is 11, indicating that the actual transmission end position is: DCI The end position indicated by the "Time domain resource” assignment-M*OS-25us-TA.
  • the number of advanced time-domain symbols depends on the number of time-domain symbols reserved for Tx/Rx conversion and LBT. This value may be greater than 1.
  • the value of M can be indicated in RRC, DCI, or predefined (such as directly agreed by the protocol).
  • the embodiment of the present disclosure further includes after step 71: sending preset information in the time domain resource before the actual end position in the reference time domain symbol ;
  • the preset information includes: at least one of a placeholder signal, data, a reference signal, and an extended cyclic prefix. That is to say, the network device can transmit information in part of the time-domain symbol where the transmission ends, for example, a downlink to uplink transmission scenario.
  • the actual end position of the downlink transmission of the network device may be located at the end position of a certain time domain symbol or inside a certain time domain symbol, and the transmission end position is more flexible and can be solved
  • the problem of granularity matching between information scheduling and unlicensed frequency band transmission further ensures normal downlink transmission in unlicensed frequency bands.
  • the network device 800 of the embodiment of the present disclosure can implement the above embodiment to send instruction information to the terminal, where the instruction information is used to indicate the actual end position of the transmission, and the actual end position is located in the referenced time domain The end position of the symbol, or the details of the internal method where the actual end position is located in the reference time domain symbol, and achieves the same effect.
  • the network device 800 specifically includes the following functional modules:
  • the first sending module 810 is used to send indication information to the terminal, where the indication information is used to indicate the actual end position of the transmission.
  • the actual end position is located at the end position of the reference time domain symbol, or the actual end position is located inside the reference time domain symbol.
  • the instructions include:
  • a first indication field for indicating whether the actual end position is the end position of time domain resource allocation
  • a second indication field for indicating a first offset between the actual end position and the end position of the reference time domain symbol.
  • the instructions also include:
  • the third indication field is used to indicate whether to advance the TA ahead of time.
  • the first offset includes: 16us or 25us.
  • the instructions include:
  • a fourth indication field for indicating a second offset between the actual end position and the end position of the reference time domain symbol.
  • the second offset includes: 0us, 16us, 25us or 25us+TA.
  • the reference time-domain symbol includes: the last time-domain symbol of time-domain resource allocation, or the Mth time-domain symbol before the end position of the time-domain resource allocation, or the N-th symbol after the end position of the time-domain resource allocation
  • Time domain symbols, M and N are integers greater than or equal to 1.
  • the indication information is carried in the downlink control information DCI, or the indication information is carried in the radio resource control RRC signaling.
  • the network device 800 also includes:
  • the second transmission module is used to send preset information in the time domain resource before the actual end position in the reference time domain symbol; where the preset information includes: at least one of the occupation signal, data, reference signal and extended cyclic prefix One item.
  • the actual end position of the downlink transmission of the network device of the embodiment of the present disclosure may be located at the end position of a certain time-domain symbol or inside a certain time-domain symbol, and the transmission end position is more flexible and can solve information scheduling
  • the problem of matching the granularity of transmission with unlicensed frequency bands further ensures normal uplink and downlink transmissions in unlicensed frequency bands.
  • the above division of the network device and the various modules of the terminal is only a division of logical functions, and may be integrated into a physical entity in whole or in part or may be physically separated in actual implementation.
  • these modules can all be implemented in the form of software invoking through processing elements; they can also be implemented in the form of hardware; some modules can also be implemented in the form of invoking software through processing elements, and some modules can be implemented in the form of hardware.
  • the determination module may be a separately established processing element, or it may be implemented by being integrated in a chip of the above-mentioned device, or it may be stored in the memory of the above-mentioned device in the form of a program code, and a processing element of the above-mentioned device Call and execute the function of the above determination module.
  • the implementation of other modules is similar.
  • all or part of these modules can be integrated together or can be implemented independently.
  • the processing element described here may be an integrated circuit with signal processing capabilities. In the implementation process, each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in a processor element or instructions in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (Application Specific Integrated Circuit, ASIC), or one or more microprocessors (digital signal processor (DSP), or, one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processor that can call program code.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • an embodiment of the present disclosure also provides a network device, the network device includes a processor, a memory, and a computer program stored on the memory and executable on the processor, and the processor executes the computer program To implement the steps in the unlicensed band information transmission method as described above.
  • Embodiments of the invention also provide a computer-readable storage medium that stores a computer program on the computer-readable storage medium. When the computer program is executed by a processor, the steps of the unlicensed band information transmission method described above are implemented.
  • the embodiments of the present disclosure also provide a network device.
  • the network device 900 includes an antenna 91, a radio frequency device 92, and a baseband device 93.
  • the antenna 91 is connected to the radio frequency device 92.
  • the radio frequency device 92 receives information through the antenna 91 and sends the received information to the baseband device 93 for processing.
  • the baseband device 93 processes the information to be sent and sends it to the radio frequency device 92, and the radio frequency device 92 processes the received information and sends it out through the antenna 91.
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 93.
  • the method executed by the network device in the above embodiment may be implemented in the baseband apparatus 93.
  • the baseband apparatus 93 includes a processor 94 and a memory 95.
  • the baseband device 93 may include, for example, at least one baseband board, and a plurality of chips are provided on the baseband board, as shown in FIG. 9, one of the chips is, for example, a processor 94, connected to the memory 95, to call a program in the memory 95 and execute The network device operations shown in the above method embodiments.
  • the baseband device 93 may further include a network interface 96 for exchanging information with the radio frequency device 92.
  • the interface is, for example, a common public radio interface (common public radio interface, CPRI).
  • the processor here may be a processor or a collective term for multiple processing elements, for example, the processor may be a CPU, or an ASIC, or one or more configured to implement the method performed by the above network device
  • An integrated circuit for example: one or more microprocessor DSPs, or one or more field programmable gate array FPGAs.
  • the storage element may be a memory or a collective term for multiple storage elements.
  • the memory 95 may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memory.
  • the non-volatile memory may be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically Erasable programmable read only memory (Electrically, EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDRSDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the network device of the embodiment of the present disclosure further includes: a computer program stored on the memory 95 and executable on the processor 94, and the processor 94 calls the computer program in the memory 95 to execute the method performed by each module shown in FIG. 8 .
  • the computer program when called by the processor 94, it can be used to execute: sending instruction information to the terminal, where the instruction information is used to indicate the actual end position of the transmission, and the actual end position is located at the end position of the referenced time domain symbol, or The actual end position is located inside the reference time domain symbol.
  • the actual end position of the downlink transmission can be located at the end position of a certain time domain symbol or inside a certain time domain symbol, and the transmission end position is more flexible, which can solve information scheduling and unauthorized
  • the granularity matching problem of frequency band transmission further ensures normal uplink and downlink transmission in unlicensed frequency bands.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage media include various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • each component or each step can be decomposed and/or recombined.
  • These decompositions and/or recombinations should be regarded as equivalent solutions of the present disclosure.
  • the steps for performing the above-mentioned series of processing can naturally be executed in chronological order in the order described, but it does not necessarily need to be executed in chronological order, and some steps can be executed in parallel or independently of each other.
  • the purpose of the present disclosure can also be achieved by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the object of the present disclosure can also be achieved only by providing a program product containing program code for implementing the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure. Obviously, the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be noted that, in the device and method of the present disclosure, obviously, each component or each step can be decomposed and/or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种非授权频段信息传输方法、终端及网络设备,该方法包括:接收指示信息;根据指示信息,得到传输的实际结束位置;其中,实际结束位置位于参考时域符号的结束位置,或实际结束位置位于参考时域符号的内部。

Description

非授权频段信息传输方法、终端及网络设备
相关申请的交叉引用
本申请主张在2018年12月21日在中国提交的中国专利申请号No.201811570532.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种非授权频段信息传输方法、终端及网络设备。
背景技术
在移动通信***中,非授权频段(unlicensed band)可以作为授权频段(licensed band)的补充帮助运营商对服务进行扩容。为了与新空口(New Radio,NR)部署保持一致,并尽可能的最大化基于NR的非授权接入,非授权频段可以工作在5GHz、37GHz和60GHz频段。非授权频段的大带宽(80或者100MHz)能够减小网络设备和终端的实施复杂度。由于非授权频段由多种技术(Radio Access Technology,RATs)共用,例如WiFi、雷达、长期演进型授权辅助接入(Long Term Evolution-Licensed Assisted Access,LTE-LAA)等,因此非授权频段在使用时必须符合预设规则(regulation)以保证所有设备可以公平的使用该资源,该预设规则包括:先听后说(Listen Before Talk,LBT)、最大信道占用时间(Maximum Channel Occupancy Time,MCOT)等规则。当传输节点需要发送信息时,需要先做LBT时,对周围的节点进行功率检测(Energy Detection,ED),当检测到的功率低于一个门限时,认为信道为空(idle),传输节点可以进行发送。反之,则认为信道为忙,传输节点不能进行发送。这里所说的传输节点可以是网络设备(如基站)、终端、WiFi接入点(Access Point,AP)等等。传输节点开始传输后,信道占用时间(Channel Occupancy Time,COT)不能超过MCOT。
其中,常用的LBT或者信道接入(channel access)的类型(category,Cat)可以分为Cat 1、Cat 2和Cat 4。Cat 1的LBT或者信道接入机制是发送 节点不做LBT,即no LBT或者立即传输(immediate transmission)。Cat 2的LBT是一次性侦听(one-shot LBT),即节点在传输前做一次LBT,若信道为空则进行传输,若信道为忙则不传输。Cat 4的LBT是基于回退(back-off)的信道侦听机制,当传输节点侦听到信道为忙时,进行回退继续做侦听,直到侦听到信道为空。对于网络设备,Cat 2的LBT应用于发现信号(Discovery Signal,DS)未携带物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、Cat 4的LBT应用于PDSCH/物理下行控制信道(Physical Downlink Control Channel,PDCCH)/增强PDCCH(enhance PDCCH,ePDCCH)。而对于终端,Cat 4的LBT对应于类型1(type1)的上行信道接入流程(UL channel access procedure),Cat 2的LBT对应于类型2(type2)的UL channel access procedure。
例如在非授权频段上,在网络设备发起的信道占用时间(initiated COT)内,即网络设备做LBT得到COT,当下行传输的结尾和上行传输的开始之间的间隔(gap)小于16us的时候,终端可以做Category 1的LBT,当终端的两个连续传输在COT内的gap比25us小的时候,或者上行传输(UL transmission)后面没有下行传输(DL transmission)的时候,可以用Cat 2的LBT。其中终端的两个连续传输可以是基于调度的(scheduled)或者非调度的(granted)。此外,在网络设备initiated COT内,若一个下行突发(burst)跟随在一个上行burst之后,如果调度的上行传输的结尾和上行burst开始之间的gap小于16us,则可以采用Cat 1的LBT,如果gap大于16us但是小于25us,则可以采用Cat 2的LBT。
在eLAA中,网络设备在下行控制信息(Downlink Control Information,DCI)中用1bit指示信道接入类型(Channel Access type),即type1或者type2UL channel access procedure。在NR中,网络设备会在DCI中时域资源分配(Time domain resource assignment)域指示调度的起始位置和持续时间(duration)。起始位置和duration决定了传输的结束位置。
在非授权频段上,LBT的时域颗粒度是微秒us级,例如上述能够采用Cat 1的LBT的gap最大为16us。网络设备的调度颗粒度为1个时域符号(OFDM symbol,OS),并且所有信号的最小颗粒度是1个OS,因此现有方 案无法匹配LBT的颗粒度。例如,当LBT为Cat 2时,终端做one-shot的LBT,然后开始传输。对于15kHz和30kHz子载波间隔,一个OS的duration>25us。对于其他子载波间隔情况也类似,对应于2OS>25us,或者多个OS。因为OS的大小和25us或者16us不是倍数关系,无法保证两个传输之间的gap/LBT的结束时间和下一个传输的起始位置一致。
发明内容
本公开实施例提供了一种非授权频段信息传输方法、终端及网络设备,以解决非授权频段中相邻传输之间的gap/LBT的结束时间和下一个传输的起始位置不一致的问题。
第一方面,本公开实施例提供了一种非授权频段信息传输方法,应用于终端侧,包括:
接收指示信息;
根据指示信息,得到传输的实际结束位置;其中,实际结束位置位于参考时域符号的结束位置,或实际结束位置位于参考时域符号的内部。
第二方面,本公开实施例提供了一种终端,包括:
第一接收模块,用于接收指示信息;
确定模块,用于根据指示信息,得到传输的实际结束位置;其中,实际结束位置位于参考时域符号的结束位置,或实际结束位置位于参考时域符号的内部。
第三方面,本公开实施例提供了一种终端,终端包括处理器、存储器以及存储于存储器上并可在处理器上运行的程序,该程序被处理器执行时实现上述的非授权频段信息传输方法的步骤。
第四方面,本公开实施例提供了一种非授权频段信息传输方法,应用于网络设备侧,包括:
向终端发送指示信息,指示信息用于指示传输的实际结束位置,实际结束位置位于所参考时域符号的结束位置,或实际结束位置位于参考时域符号的内部。
第五方面,本公开实施例提供了一种网络设备,包括:
第一发送模块,用于向终端发送指示信息,指示信息用于指示传输的实际结束位置,实际结束位置位于所参考时域符号的结束位置,或实际结束位置位于参考时域符号的内部。
第六方面,本公开实施例还提供了一种网络设备,网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的程序,处理器执行该程序时实现上述的非授权频段信息传输方法的步骤。
第七方面,本公开实施例提供了一种计算机可读存储介质,计算机可读存储介质上存储有程序,该程序被处理器执行时实现上述的非授权频段信息传输方法的步骤。
这样,本公开实施例中,终端上行传输或网络设备下行传输的实际结束位置可以位于某个时域符号的结束位置,或位于某个时域符号的内部,传输结束位置更加灵活,可解决信息调度和非授权频段传输的颗粒度匹配问题,进一步保证非授权频段下正常的上下行传输。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示本公开实施例可应用的一种移动通信***框图;
图2表示本公开实施例终端的非授权频段信息传输方法的流程示意图;
图3表示本公开实施例中传输的资源映射关系示意图一;
图4表示本公开实施例中传输的资源映射关系示意图二;
图5表示本公开实施例终端的模块结构示意图;
图6表示本公开实施例的终端框图;
图7表示本公开实施例网络设备侧的非授权频段信息传输方法的流程示意图;
图8表示本公开实施例网络设备的模块结构示意图;
图9表示本公开实施例的网络设备框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
本文所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,并且也可用于各种无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他***。术语“***”和“网络”常被可互换地使用。本文所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。然而,以下描述出于示例目的描述了NR***,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR***应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图1,图1示出本公开实施例可应用的一种无线通信***的框图。无线通信***包括终端11和网络设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本公开实施例中并不限定终端11的具体类型。网络设备12可以是基站或核心网,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信***中的基站(例如:eNB、WLAN接入点、或其他接入点等),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开实施例中仅以NR***中的基站为例,但是并不限定基站的具体类型。
基站可在基站控制器的控制下与终端11通信,在各种示例中,基站控制器可以是核心网或某些基站的一部分。一些基站可通过回程与核心网进行控制信息或用户数据的通信。在一些示例中,这些基站中的一些可以通过回程链路直接或间接地彼此通信,回程链路可以是有线或无线通信链路。无线通信***可支持多个载波(不同频率的波形信号)上的操作。多载波发射机能同时在这多个载波上传送经调制信号。例如,每条通信链路可以是根据各种无线电技术来调制的多载波信号。每个已调信号可在不同的载波上发送并且可携带控制信息(例如,参考信号、控制信道等)、开销信息、数据等。
基站可经由一个或多个接入点天线与终端11进行无线通信。每个基站可以为各自相应的覆盖区域提供通信覆盖。接入点的覆盖区域可被划分成仅构成该覆盖区域的一部分的扇区。无线通信***可包括不同类型的基站(例如宏基站、微基站、或微微基站)。基站也可利用不同的无线电技术,诸如蜂窝或WLAN无线电接入技术。基站可以与相同或不同的接入网或运营商部署相 关联。不同基站的覆盖区域(包括相同或不同类型的基站的覆盖区域、利用相同或不同无线电技术的覆盖区域、或属于相同或不同接入网的覆盖区域)可以交叠。
无线通信***中的通信链路可包括用于承载上行链路(Uplink,UL)传输(例如,从终端11到网络设备12)的上行链路,或用于承载下行链路(Downlink,DL)传输(例如,从网络设备12到终端11)的下行链路。UL传输还可被称为反向链路传输,而DL传输还可被称为前向链路传输。下行链路传输可以使用授权频段、非授权频段或这两者来进行。类似地,上行链路传输可以使用有授权频段、非授权频段或这两者来进行。
本公开实施例的非授权频段信息传输方法,应用于终端,如图2所示,该方法包括步骤21至22。
步骤21:接收指示信息。
其中,指示信息用于指示传输的实际结束位置,该指示信息可通过一个指示域直接指示传输的实际结束位置,也可以通过多个指示域间接指示传输的实际结束位置。
其中,指示信息可承载于下行控制信息(Downlink Control Information,DCI)中,或者,指示信息还可以承载于无线资源控制(Radio Resource Control,RRC)中。
步骤22:根据指示信息,得到传输的实际结束位置;其中,实际结束位置位于参考时域符号的结束位置,或实际结束位置位于参考时域符号的内部。
其中,这里所说的传输(transmission)或称为传输突发(transmission burst),可以是终端的上行(Uplink,UL)传输或网络设备的下行(Downlink,DL)传输。当传输是UL传输时,该传输之后的传输可以是UL传输,也可以是网络设备的DL传输。当传输是DL传输时,该传输之后的传输可以是UL传输。两个传输之间的间隔可以用来做发送/接收(Transmit/Receive,Rx/Tx)转换、或Rx/Tx转换加LBT。传输的实际结束位置的确定还可以是两个上行传输中前一个上行传输结束位置的确定。本公开实施例中参考时域符号可以指任一时域符号(如OFDM符号,简称OS),也就是说,传输的实际结束位置可以位于某个时域符号的结束位置(或称为边缘、结束边缘),也可以位于时 域符号的内部,这里所说的内部指的是除结束位置之外的其他位置。这样传输的结束位置更加灵活,可解决传输调度和非授权频段传输的颗粒度匹配问题,保证非授权频段下的正常上下行传输。
下面本公开实施例将进一步结合附图对指示信息以及终端如何确定传输的实际结束位置作出说明。其中,指示信息的指示方式包括但不限于:
方式一、指示信息中多个指示域联合指示
该方式下,指示信息包括:用于指示实际结束位置是否为时域资源分配的结束位置的第一指示域;以及,用于指示实际结束位置与参考时域符号的结束位置之间的第一偏移的第二指示域。
以指示信息承载于DCI中为例,假设网络设备在DCI中使用1bit的第一指示域来指示传输是否从某个时域符号(如时域资源分配的时域符号)的结束位置或边缘(boundary)结束。例如,第一指示域的1bit的值为1时,表示实际结束位置是DCI中“Time domain resource assignment”域指示调度的结束位置。第一指示域的1bit的值为0时,表示实际结束位置不在DCI中“Time domain resource assignment”域指示调度的结束位置,那么该实际结束位置可位于“Time domain resource assignment”域指示的结束位置所在时域符号内或者结束位置所在时域符号前后的时域符号内。或者说,第一指示域指示了下一个gap/LBT是从一个时域符号的起始位置开始,还是gap/LBT从一个时域符号的中间位置开始,结束于该时域符号的结束位置。其中,前者对应于在OS边缘结束传输,后者对应于从OS内结束传输。
可选地,网络设备还可以在DCI中使用1bit或2bits的第二指示域来指示传输的实际结束位置与参考时域符号的结束位置之间的第一偏移,以实现指示传输的实际结束位置的目的。其中,参考时域符号包括:时域资源分配的最后一个时域符号,或所述时域资源分配的结束位置之前的第M个时域符号,或时域资源分配的结束位置之后的第N个时域符号,M、N为大于或等于1的整数。
其中,第一偏移包括:16us或25us。以参考时域符号为时域资源分配的最后一个时域符号为例,假设第二指示域包括1bit,第二指示域的1bit的值为0时,表示实际结束位置为:参考时域符号的结束位置-16us;第二指示域 的1bit的值为1时,表示实际结束位置为:参考时域符号的结束位置-25us。
可选地,指示信息还包括:用于指示是否提前定时提前(Timing Advance,TA)结束的第三指示域。假设网络设备在DCI使用1bit作为第三指示域,在第三指示域的1bit的值为1时,表示考虑传输时延影响;在第三指示域的1bit的值为0时,表示不考虑传输时延影响。在不考虑传输时延影响的情况下,实际传输位置中的TA可以考虑不计,第二指示域的1bit的值为1时,表示实际结束位置为:参考时域符号的结束位置-25us;在考虑传输时延影响的情况下,第二指示域的1bit的值为1时,表示实际结束位置为:参考时域符号的结束位置-25us-TA。
在该方式下,步骤22包括以下场景:
场景一、在第一指示域指示实际结束位置不为时域资源分配的结束位置的情况下,根据第二指示域,得到传输的实际结束位置。
具体地,网络设备在DCI中增加1bit的第一指示域,用于指示UL传输或DL传输的实际结束位置是否为时域资源分配的结束位置,即指示终端的UL传输或网络设备的DL传输是否从DCI“Time domain resource assignment”域指示的结束位置所在时域符号的边缘结束。例如,第一指示域中的1bit的值为1,表示传输的实际结束位置是DCI中“Time domain resource assignment”域指示的结束位置(或称为调度结束位置),例如终端可通过起始位置和持续时间(duration)推出的结束位置。第一指示域中的1bit的值为0,表示实际结束位置在该调度结束位置所在时域符号内部或者调度结束位置所在时域符号前后的时域符号内。若终端采用LBT的category1,则两次传输之间的gap不超过16us;若终端采用LBT的category2,则需要做25us的LBT。当下一个传输从时域符号的边缘开始时,为了满足gap或LBT的要求,前一个传输的结束位置必须在时域符号内。当传输结束位置在时域符号内时,对于UL传输或者DL传输,网络设备可以通过1bit或者2bits的第二指示域,为终端指示传输的实际结束位置,终端或网络设备在实际结束位置后开始Tx/Rx转换,或者进行Tx/Rx转换和LBT。
该场景为传输从某个时域符号内部结束的场景,当传输的实际结束位置位于某个时域符号内时,以上行转下行传输为例,如图3所示,UL传输在DL 传输之前,在UL传输结束位置和指示的DL传输开始位置之间预留一个时域符号作为Tx/Rx转换或者Tx/Rx转换和LBT。为了使得两个传输之间的gap不大于16us或者25us,UL传输的实际结束位置要在时域资源分配(指示的时域资源)的结束位置所在时域符号内,即第一指示域指示实际结束位置不为时域资源分配的结束位置的场景,第二指示域的1bit的值为0时,表示实际结束位置为:参考时域符号的结束位置-16us,第二指示域的1bit的值为1时,表示实际结束位置为:参考时域符号的结束位置-25us。其中,当参考时域符号为时域资源调度的最后一个时域符号时,第二指示域的1bit的值为0时,表示实际结束位置为:时域资源调度的结束位置-16us,第二指示域的1bit的值为1时,表示实际结束位置为:时域资源调度的结束位置-25us。值得指出的是,上述实施例亦适用于下行转上行、两次连续上行传输的场景。
上述计算实际结束位置时还可顺延多个时域符号,即参考时域符号为时域资源调度的结束位置之后的第N个时域符号,N≥1。如图4所示,为了使得两个传输之间的gap不大于16us或者25us,UL传输的实际结束位置要在某个时域符号内,当第一指示域指示实际结束位置不为时域资源分配的结束位置的情况下,第二指示域的1bit的值为0时,表示实际结束位置为:参考时域符号的结束位置-16us,第二指示域的1bit的值为1时,表示实际结束位置为:参考时域符号的结束位置-25us。其中,当参考时域符号为时域资源调度的结束位置之后的第一个时域符号时,第二指示域的1bit的值为0时,表示实际结束位置为:时域资源调度的结束位置+1OS-16us,第二指示域的1bit的值为1时,表示实际结束位置为:时域资源调度的结束位置+1OS-25us。值得指出的是,上述实施例亦适用于下行转上行、两次连续上行传输的场景。
值得指出的是,对于SCS大于30kHz的情况,上述计算实际结束位置时还可顺延多个时域符号,即参考时域符号为时域资源调度的结束位置之后的第N个时域符号。在该场景下,第二指示域的1bit的值为0时,表示实际结束位置为:时域资源调度的结束位置+N*OS-16us,第二指示域的1bit的值为1时,表示实际结束位置为:时域资源调度的结束位置+N*OS-25us。其中,顺延的时域符号个数(即N的值),取决于留作Tx/Rx转换和LBT的时域符号个数,该值可能会大于1。其中,N的值可以在RRC中指示,也可以在DCI 中指示,或者预定义(如协议直接约定)。
上述计算实际结束位置时还可提前多个时域符号,即参考时域符号为时域资源调度的结束位置之前的第M个时域符号,M≥1。为了使得两个传输之间的gap不大于16us或者25us,UL传输的实际结束位置要在某个时域符号内,当第一指示域指示实际结束位置不为时域资源分配的结束位置的情况下,第二指示域的1bit的值为0时,表示实际结束位置为:参考时域符号的结束位置-16us,第二指示域的1bit的值为1时,表示实际结束位置为:参考时域符号的结束位置-25us。其中,当参考时域符号为时域资源调度的结束位置之前的第M个时域符号时,第二指示域的1bit的值为0时,表示实际结束位置为:时域资源调度的结束位置-M*OS-16us,第二指示域的1bit的值为1时,表示实际结束位置为:时域资源调度的结束位置-M*OS-25us。其中,提前的时域符号个数(即M的值),取决于留作Tx/Rx转换和LBT的时域符号个数,该值可能会大于1。其中,M的值可以在RRC中指示,也可以在DCI中指示,或者预定义(如协议直接约定)。值得指出的是,上述实施例亦适用于下行转上行、两次连续上行传输的场景。
场景二、在第一指示域指示实际结束位置为时域资源分配的结束位置的情况下,忽略第二指示域。
在指示信息的第一指示域指示传输的实际结束位置在时域资源分配(指示的时域资源)的结束位置时,不再解读第二指示域,即第二指示域指示的内容失效。
值得指出的是,第二指示域是否生效需要先检测第一指示域指示的实际结束位置是否为时域资源分配的结束位置,若第一指示域指示的实际结束位置不为时域资源分配的结束位置时,第二指示域指示的内容才会生效;若第一指示域指示实际结束位置为时域资源分配的结束位置时,第二指示域指示的内容失效。
方式二、指示信息中一个指示域直接指示
该方式下,指示信息包括:用于指示实际结束位置与参考时域符号的结束位置之间的第二偏移的第四指示域。
其中,第二偏移包括:0us、16us、25us或25us+TA。以指示信息承载于 DCI中为例,网络设备在DCI中使用2bits的第四指示域,来指示传输的实际结束位置。其中,第四指示域中的2bits用于指示实际结束位置与参考时域符号之间的第二偏移。该参考时域符号与时域资源调度相关,其中,参考时域符号包括:时域资源分配的最后一个时域符号,或时域资源分配的结束位置之后的第N个时域符号,N为大于或等于1的整数。例如,第四指示域的2bits的值为00,表示实际结束位置为DCI中“Time domain resource assignment”域指示的结束位置;第四指示域的2bits的值为01,表示实际结束位置为参考时域符号-16us;第四指示域的2bits的值为10,表示实际传输结束位置为参考时域符号-25us;第四指示域的2bits的值为11,表示实际传输结束位置为参考时域符号-25us-TA。
当参考时域符号为时域资源调度的最后一个时域符号时,第四指示域的2bits的值为00,表示实际结束位置为DCI中“Time domain resource assignment”域指示的结束位置;第四指示域的2bits的值为01,表示实际结束位置为:DCI中“Time domain resource assignment”域指示的结束位置-16us;第四指示域的2bits的值为10,表示实际传输结束位置为:DCI中“Time domain resource assignment”域指示的结束位置-25us;第四指示域的2bits的值为11,表示实际传输结束位置为:DCI中“Time domain resource assignment”域指示的结束位置-25us-TA。
对于SCS大于30kHz的情况,上述计算实际结束位置时还可顺延多个时域符号,即参考时域符号为时域资源调度的结束位置之后的第N个时域符号。在该场景下,第四指示域的2bits的值为01,表示实际结束位置为:DCI中“Time domain resource assignment”域指示的结束位置+N*OS-16us;第四指示域的2bits的值为10,表示实际传输结束位置为:DCI中“Time domain resource assignment”域指示的结束位置+N*OS-25us;第四指示域的2bits的值为11,表示实际传输结束位置为:DCI中“Time domain resource assignment”域指示的结束位置+N*OS-25us-TA。其中,顺延的时域符号个数(即N的值),取决于留作Tx/Rx转换和LBT的时域符号个数,该值可能会大于1。其中,N的值可以在RRC中指示,也可以在DCI中指示,或者预定义(如协议直接约定)。
对于SCS大于30kHz的情况,上述计算实际结束位置时还可提前多个时域符号,即参考时域符号为时域资源调度的结束位置之前的第M个时域符号。在该场景下,第四指示域的2bits的值为01,表示实际结束位置为:DCI中“Time domain resource assignment”域指示的结束位置-M*OS-16us;第四指示域的2bits的值为10,表示实际传输结束位置为:DCI中“Time domain resource assignment”域指示的结束位置-M*OS-25us;第四指示域的2bits的值为11,表示实际传输结束位置为:DCI中“Time domain resource assignment”域指示的结束位置-M*OS-25us-TA。其中,提前的时域符号个数(即M的值),取决于留作Tx/Rx转换和LBT的时域符号个数,该值可能会大于1。其中,M的值可以在RRC中指示,也可以在DCI中指示,或者预定义(如协议直接约定)。
其中,值得指出的是,当不考虑传输时延影响时,第四指示域中2bits的值为11时,视为无效。
以上介绍了指示信息如何指示传输的实际结束位置的不同实现方式,以及终端对于不同实际结束位置的不同处理方式,下面本公开实施例将进一步介绍终端在确定传输的实际结束位置后的行为。步骤22之后还包括:在参考时域符号中实际结束位置之前的时域资源内,发送预设信息;其中,预设信息包括:占位信号、(有用)数据、参考信号(reference signal)和扩展循环前缀(extended Cyclic Prefix,extended CP)中的至少一项。也就是说,终端可在传输结束所在的部分时域符号内传输信息,例如上行转下行传输或连续两次上行传输场景。
本公开实施例的非授权频段信息传输方法中,终端上行传输的实际结束位置可以位于某个时域符号的结束位置,或位于某个时域符号的内部,传输结束位置更加灵活,可解决信息调度和非授权频段传输的颗粒度匹配问题,进一步保证非授权频段下正常的上行传输。
以上实施例介绍了不同场景下的非授权频段信息传输方法,下面将结合附图对与其对应的终端做进一步介绍。
如图5所示,本公开实施例的终端500,能实现上述实施例中接收指示信息;根据指示信息,确定传输的实际结束位置;其中,实际结束位置位于参考 时域符号的结束位置,或实际结束位置位于参考时域符号的内部方法的细节,并达到相同的效果,该终端500具体包括以下功能模块:
第一接收模块510,用于接收指示信息;
确定模块520,用于根据指示信息,得到传输的实际结束位置;其中,实际结束位置位于参考时域符号的结束位置,或实际结束位置位于参考时域符号的内部。
其中,指示信息包括:
用于指示实际结束位置是否为时域资源分配的结束位置的第一指示域;以及,
用于指示实际结束位置与参考时域符号的结束位置之间的第一偏移的第二指示域。
其中,确定模块520包括以下中的一项:
第一确定子模块,用于在第一指示域指示实际结束位置不为时域资源分配的结束位置的情况下,根据第二指示域,得到传输的实际结束位置;
第二确定子模块,用于在第一指示域指示实际结束位置为时域资源分配的结束位置的情况下,忽略第二指示域。
其中,指示信息还包括:
用于指示是否提前定时提前TA结束的第三指示域。
其中,第一偏移包括:16us或25us。
其中,指示信息包括:
用于指示实际结束位置与参考时域符号的结束位置之间的第二偏移的第四指示域。
其中,第二偏移包括:0us、16us、25us或25us+TA。
其中,参考时域符号包括:时域资源分配的最后一个时域符号,或所述时域资源分配的结束位置之前的第M个时域符号,或时域资源分配的结束位置之后的第N个时域符号,M、N为大于或等于1的整数。
其中,指示信息承载于下行控制信息DCI中,或者,指示信息承载于无线资源控制RRC信令中。
其中,终端500还包括:
第一传输模块,用于在参考时域符号中实际结束位置之前的时域资源内,发送预设信息;其中,预设信息包括:占位信号、数据、参考信号和扩展循环前缀中的至少一项。
值得指出的是,本公开实施例的终端上行传输的实际结束位置可以位于某个时域符号的结束位置,或位于某个时域符号的内部,传输结束位置更加灵活,可解决信息调度和非授权频段传输的颗粒度匹配问题,进一步保证非授权频段下正常的上行传输。
为了更好的实现上述目的,进一步地,图6为实现本公开各个实施例的一种终端的硬件结构示意图,该终端60包括但不限于:射频单元61、网络模块62、音频输出单元63、输入单元64、传感器65、显示单元66、用户输入单元67、接口单元68、存储器69、处理器610、以及电源611等部件。本领域技术人员可以理解,图6中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元61,用于接收指示信息;
处理器610,用于根据指示信息,得到传输的实际结束位置;其中,实际结束位置位于参考时域符号的结束位置,或实际结束位置位于参考时域符号的内部;
本公开实施例的终端上行传输的实际结束位置可以位于某个时域符号的结束位置,或位于某个时域符号的内部,传输结束位置更加灵活,可解决信息调度和非授权频段传输的颗粒度匹配问题,进一步保证非授权频段下正常的上行传输。
应理解的是,本公开实施例中,射频单元61可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器610处理;另外,将上行的数据发送给基站。通常,射频单元61包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元61还可以通过无线通信***与网络和其他设备通信。
终端通过网络模块62为用户提供了无线的宽带互联网访问,如帮助用户 收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元63可以将射频单元61或网络模块62接收的或者在存储器69中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元63还可以提供与终端60执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元63包括扬声器、蜂鸣器以及受话器等。
输入单元64用于接收音频或视频信号。输入单元64可以包括图形处理器(Graphics Processing Unit,GPU)641和麦克风642,图形处理器641对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元66上。经图形处理器641处理后的图像帧可以存储在存储器69(或其它存储介质)中或者经由射频单元61或网络模块62进行发送。麦克风642可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元61发送到移动通信基站的格式输出。
终端60还包括至少一种传感器65,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板661的亮度,接近传感器可在终端60移动到耳边时,关闭显示面板661和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器65还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元66用于显示由用户输入的信息或提供给用户的信息。显示单元66可包括显示面板661,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板661。
用户输入单元67可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元67包括触 控面板671以及其他输入设备672。触控面板671,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板671上或在触控面板671附近的操作)。触控面板671可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器610,接收处理器610发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板671。除了触控面板671,用户输入单元67还可以包括其他输入设备672。具体地,其他输入设备672可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板671可覆盖在显示面板661上,当触控面板671检测到在其上或附近的触摸操作后,传送给处理器610以确定触摸事件的类型,随后处理器610根据触摸事件的类型在显示面板661上提供相应的视觉输出。虽然在图6中,触控面板671与显示面板661是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板671与显示面板661集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元68为外部装置与终端60连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元68可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端60内的一个或多个元件或者可以用于在终端60和外部装置之间传输数据。
存储器69可用于存储软件程序以及各种数据。存储器69可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器69可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器610是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器69内的软件程序和/或模块,以及调用存储在存储器69内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器610可包括一个或多个处理单元;可选的,处理器610可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器610中。
终端60还可以包括给各个部件供电的电源611(比如电池),可选的,电源611可以通过电源管理***与处理器610逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。
另外,终端60包括一些未示出的功能模块,在此不再赘述。
可选的,本公开实施例还提供一种终端,包括处理器610,存储器69,存储在存储器69上并可在所述处理器610上运行的计算机程序,该计算机程序被处理器610执行时实现上述非授权频段信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为***、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述非授权频段信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
以上实施例从终端侧介绍了本公开的非授权频段信息传输方法,下面本实施例将结合附图对网络设备的非授权频段信息传输方法做进一步介绍。
如图7所示,本公开实施例的非授权频段信息传输方法,应用于网络设备,该方法包括以下步骤:
步骤71:向终端发送指示信息,指示信息用于指示传输的实际结束位置,实际结束位置位于参考时域符号的结束位置,或实际结束位置位于参考时域符号的内部。
其中,指示信息用于指示传输的实际结束位置,该指示信息可通过一个指示域直接指示传输的实际结束位置,也可以通过多个指示域间接指示传输的实际结束位置。进一步地,指示信息可承载于DCI中,或者,指示信息还可以承载于RRC中。
本公开实施例中参考时域符号可以指任一时域符号(如OFDM符号),也就是说,传输的实际结束位置可以位于某个时域符号的结束位置,或称为实际结束位置可以位于某个时域符号的边缘或结束边缘。另外,传输的实际结束位置也可以位于某个时域符号的内部,这里所说的内部指的是除结束位置之外的其他位置。这样传输的结束位置更加灵活,可解决传输调度和非授权频段传输的颗粒度匹配问题,保证非授权频段下的正常上下行传输。
其中,以指示信息通过多个指示域联合指示为例,指示信息的指示方式包括但不限于:用于指示实际结束位置是否为时域资源分配的结束位置的第一指示域;以及,用于指示实际结束位置与参考时域符号的结束位置之间的第一偏移的第二指示域。
以指示信息承载于DCI中为例,假设网络设备在DCI中使用1bit的第一指示域来指示传输是否从某个时域符号(如时域资源分配的时域符号)的结 束位置或结束边缘(boundary)结束。或者说,第一指示域指示了下一个gap/LBT是从一个时域符号的起始位置开始,还是gap/LBT从一个时域符号的中间位置开始,结束于该时域符号的结束位置。其中,前者对应于在OS的结束边缘结束传输,后者对应于在OS内结束传输。
进一步地,网络设备还可以在DCI中使用1bit或2bits的第二指示域来指示传输的实际结束位置与参考时域符号的结束位置之间的第一偏移,以实现指示传输的实际结束位置的目的。其中,参考时域符号包括:时域资源分配的最后一个时域符号,或所述时域资源分配的结束位置之前的第M个时域符号,或时域资源分配的结束位置之后的第N个时域符号,M、N为大于或等于1的整数。
其中,第一偏移包括:16us或25us。以参考时域符号为时域资源分配的最后一个时域符号为例,假设第二指示域包括1bit,第二指示域的1bit的值为0时,表示实际结束位置为:参考时域符号的结束位置-16us;第二指示域的1bit的值为1时,表示实际结束位置为:参考时域符号的结束位置-25us。
进一步地,指示信息还包括:用于指示是否提前定时提前TA结束的第三指示域。假设网络设备在DCI使用1bit作为第三指示域,在第三指示域的1bit的值为1时,表示考虑传输时延影响;在第三指示域的1bit的值为0时,表示不考虑传输时延影响。在不考虑传输时延影响的情况下,实际传输位置中的TA可以考虑不计,第二指示域的1bit的值为1时,表示实际结束位置为:参考时域符号的结束位置-25us;在考虑传输时延影响的情况下,第二指示域的1bit的值为1时,表示实际结束位置为:参考时域符号的结束位置-25us-TA。
其中,以指示信息通过一个指示域直接指示为例,指示信息包括:用于指示实际结束位置与参考时域符号的结束位置之间的第二偏移的第四指示域。
其中,第二偏移包括:0us、16us、25us或25us+TA。以指示信息承载于DCI中为例,网络设备在DCI中使用2bits的第四指示域,来指示传输的实际结束位置。其中,第四指示域中的2bits用于指示实际结束位置与参考时域符号之间的第二偏移。该参考时域符号与时域资源调度相关,其中,参考时域符号包括:时域资源分配的最后一个时域符号,或时域资源分配的结束位置 之后的第N个时域符号,N为大于或等于1的整数。
例如,第四指示域的2bits的值为00,表示实际结束位置为DCI中“Time domain resource assignment”域指示的结束位置;第四指示域的2bits的值为01,表示实际结束位置为参考时域符号-16us;第四指示域的2bits的值为10,表示实际传输结束位置为参考时域符号-25us;第四指示域的2bits的值为11,表示实际传输结束位置为参考时域符号-25us-TA。
当参考时域符号为时域资源调度的最后一个时域符号时,第四指示域的2bits的值为00,表示实际结束位置为DCI中“Time domain resource assignment”域指示的结束位置;第四指示域的2bits的值为01,表示实际结束位置为:DCI中“Time domain resource assignment”域指示的结束位置-16us;第四指示域的2bits的值为10,表示实际传输结束位置为:DCI中“Time domain resource assignment”域指示的结束位置-25us;第四指示域的2bits的值为11,表示实际传输结束位置为:DCI中“Time domain resource assignment”域指示的结束位置-25us-TA。
对于SCS大于30kHz的情况,上述计算实际结束位置时还可顺延多个时域符号,即参考时域符号为时域资源调度的结束位置之后的第N个时域符号。在该场景下,第四指示域的2bits的值为01,表示实际结束位置为:DCI中“Time domain resource assignment”域指示的结束位置+N*OS-16us;第四指示域的2bits的值为10,表示实际传输结束位置为:DCI中“Time domain resource assignment”域指示的结束位置+N*OS-25us;第四指示域的2bits的值为11,表示实际传输结束位置为:DCI中“Time domain resource assignment”域指示的结束位置+N*OS-25us-TA。其中,顺延的时域符号个数(即N的值),取决于留作Tx/Rx转换和LBT的时域符号个数,该值可能会大于1。其中,N的值可以在RRC中指示,也可以在DCI中指示,或者预定义(如协议直接约定)。
对于SCS大于30kHz的情况,上述计算实际结束位置时还可提前多个时域符号,即参考时域符号为时域资源调度的结束位置之前的第M个时域符号。在该场景下,第四指示域的2bits的值为01,表示实际结束位置为:DCI中“Time domain resource assignment”域指示的结束位置-M*OS-16us;第四指示 域的2bits的值为10,表示实际传输结束位置为:DCI中“Time domain resource assignment”域指示的结束位置-M*OS-25us;第四指示域的2bits的值为11,表示实际传输结束位置为:DCI中“Time domain resource assignment”域指示的结束位置-M*OS-25us-TA。其中,提前的时域符号个数(即M的值),取决于留作Tx/Rx转换和LBT的时域符号个数,该值可能会大于1。其中,M的值可以在RRC中指示,也可以在DCI中指示,或者预定义(如协议直接约定)。
其中,值得指出的是,当不考虑传输时延影响时,第四指示域中2bits的值为11时,视为无效。
以上介绍了指示信息如何指示传输的实际结束位置的不同实现方式,下面本公开实施例还进一步包括在步骤71之后:在参考时域符号中实际结束位置之前的时域资源内,发送预设信息;其中,预设信息包括:占位信号、数据、参考信号和扩展循环前缀中的至少一项。也就是说,网络设备可在传输结束所在的部分时域符号内传输信息,例如下行转上行传输场景。
本公开实施例的非授权频段信息传输方法中,网络设备下行传输的实际结束位置可以位于某个时域符号的结束位置,或位于某个时域符号的内部,传输结束位置更加灵活,可解决信息调度和非授权频段传输的颗粒度匹配问题,进一步保证非授权频段下正常的下行传输。
以上实施例分别详细介绍了不同场景下的非授权频段信息传输方法,下面本实施例将结合附图对其对应的网络设备做进一步介绍。
如图8所示,本公开实施例的网络设备800,能实现上述实施例中向终端发送指示信息,所述指示信息用于指示传输的实际结束位置,所述实际结束位置位于所参考时域符号的结束位置,或所述实际结束位置位于所述参考时域符号的内部方法的细节,并达到相同的效果,该网络设备800具体包括以下功能模块:
第一发送模块810,用于向终端发送指示信息,指示信息用于指示传输的实际结束位置,实际结束位置位于所参考时域符号的结束位置,或实际结束位置位于参考时域符号的内部。
其中,指示信息包括:
用于指示实际结束位置是否为时域资源分配的结束位置的第一指示域;以及,
用于指示实际结束位置与参考时域符号的结束位置之间的第一偏移的第二指示域。
其中,指示信息还包括:
用于指示是否提前定时提前TA结束的第三指示域。
其中,第一偏移包括:16us或25us。
其中,指示信息包括:
用于指示实际结束位置与参考时域符号的结束位置之间的第二偏移的第四指示域。
其中,第二偏移包括:0us、16us、25us或25us+TA。
其中,参考时域符号包括:时域资源分配的最后一个时域符号,或所述时域资源分配的结束位置之前的第M个时域符号,或时域资源分配的结束位置之后的第N个时域符号,M、N为大于或等于1的整数。
其中,指示信息承载于下行控制信息DCI中,或者,指示信息承载于无线资源控制RRC信令中。
其中,网络设备800还包括:
第二传输模块,用于在参考时域符号中实际结束位置之前的时域资源内,发送预设信息;其中,预设信息包括:占位信号、数据、参考信号和扩展循环前缀中的至少一项。
值得指出的是,本公开实施例的网络设备的下行传输的实际结束位置可以位于某个时域符号的结束位置,或位于某个时域符号的内部,传输结束位置更加灵活,可解决信息调度和非授权频段传输的颗粒度匹配问题,进一步保证非授权频段下正常的上下行传输。
需要说明的是,应理解以上网络设备和终端的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的 处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上***(system-on-a-chip,SOC)的形式实现。
为了更好的实现上述目的,本公开的实施例还提供了一种网络设备,该网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上所述的非授权频段信息传输方法中的步骤。发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上所述的非授权频段信息传输方法的步骤。
具体地,本公开的实施例还提供了一种网络设备。如图9所示,该网络设备900包括:天线91、射频装置92、基带装置93。天线91与射频装置92连接。在上行方向上,射频装置92通过天线91接收信息,将接收的信息发送给基带装置93进行处理。在下行方向上,基带装置93对要发送的信息进行处理,并发送给射频装置92,射频装置92对收到的信息进行处理后经过天线91发送出去。
上述频带处理装置可以位于基带装置93中,以上实施例中网络设备执行的方法可以在基带装置93中实现,该基带装置93包括处理器94和存储器 95。
基带装置93例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图9所示,其中一个芯片例如为处理器94,与存储器95连接,以调用存储器95中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置93还可以包括网络接口96,用于与射频装置92交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,也可以是ASIC,或者是被配置成实施以上网络设备所执行方法的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个现场可编程门阵列FPGA等。存储元件可以是一个存储器,也可以是多个存储元件的统称。
存储器95可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开描述的存储器95旨在包括但不限于这些和任意其它适合类型的存储器。
具体地,本公开实施例的网络设备还包括:存储在存储器95上并可在处理器94上运行的计算机程序,处理器94调用存储器95中的计算机程序执行图8所示各模块执行的方法。
具体地,计算机程序被处理器94调用时可用于执行:向终端发送指示信 息,所述指示信息用于指示传输的实际结束位置,所述实际结束位置位于所参考时域符号的结束位置,或所述实际结束位置位于所述参考时域符号的内部。
本公开实施例中的网络设备,其下行传输的实际结束位置可以位于某个时域符号的结束位置,或位于某个时域符号的内部,传输结束位置更加灵活,可解决信息调度和非授权频段传输的颗粒度匹配问题,进一步保证非授权频段下正常的上下行传输。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本公开所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰, 这些改进和润饰也在本公开的保护范围内。

Claims (41)

  1. 一种非授权频段信息传输方法,应用于终端侧,包括:
    接收指示信息;
    根据所述指示信息,得到传输的实际结束位置;其中,所述实际结束位置位于参考时域符号的结束位置,或所述实际结束位置位于所述参考时域符号的内部。
  2. 根据权利要求1所述的非授权频段信息传输方法,其中,所述指示信息包括:
    用于指示所述实际结束位置是否为时域资源分配的结束位置的第一指示域;以及,
    用于指示所述实际结束位置与所述参考时域符号的结束位置之间的第一偏移的第二指示域。
  3. 根据权利要求2所述的非授权频段信息传输方法,其中,根据所述指示信息,得到传输的实际结束位置的步骤,包括以下中的一项:
    在所述第一指示域指示所述实际结束位置不为时域资源分配的结束位置的情况下,根据所述第二指示域,得到传输的实际结束位置;
    在所述第一指示域指示所述实际结束位置为时域资源分配的结束位置的情况下,忽略所述第二指示域。
  4. 根据权利要求2所述的非授权频段信息传输方法,其中,所述指示信息还包括:
    用于指示是否提前定时提前TA结束的第三指示域。
  5. 根据权利要求2所述的非授权频段信息传输方法,其中,所述第一偏移包括:16us或25us。
  6. 根据权利要求1所述的非授权频段信息传输方法,其中,所述指示信息包括:
    用于指示所述实际结束位置与所述参考时域符号的结束位置之间的第二偏移的第四指示域。
  7. 根据权利要求6所述的非授权频段信息传输方法,其中,所述第二偏 移包括:0us、16us、25us或25us+TA。
  8. 根据权利要求1、2或6所述的非授权频段信息传输方法,其中,所述参考时域符号包括:时域资源分配的最后一个时域符号,或所述时域资源分配的结束位置之前的第M个时域符号,或所述时域资源分配的结束位置之后的第N个时域符号,M、N为大于或等于1的整数。
  9. 根据权利要求1、2或6所述的非授权频段信息传输方法,其中,所述指示信息承载于下行控制信息DCI中,或者,所述指示信息承载于无线资源控制RRC信令中。
  10. 根据权利要求1所述的非授权频段信息传输方法,还包括:
    在所述参考时域符号中所述实际结束位置之前的时域资源内,发送预设信息;其中,所述预设信息包括:占位信号、数据、参考信号和扩展循环前缀中的至少一项。
  11. 一种终端,包括:
    第一接收模块,用于接收指示信息;
    确定模块,用于根据所述指示信息,得到传输的实际结束位置;其中,所述实际结束位置位于参考时域符号的结束位置,或所述实际结束位置位于所述参考时域符号的内部。
  12. 根据权利要求11所述的终端,其中,所述指示信息包括:
    用于指示所述实际结束位置是否为时域资源分配的结束位置的第一指示域;以及,
    用于指示所述实际结束位置与所述参考时域符号的结束位置之间的第一偏移的第二指示域。
  13. 根据权利要求12所述的终端,其中,所述确定模块包括以下中的一项:
    第一确定子模块,用于在所述第一指示域指示所述实际结束位置不为时域资源分配的结束位置的情况下,根据所述第二指示域,得到传输的实际结束位置;
    第二确定子模块,用于在所述第一指示域指示所述实际结束位置为时域资源分配的结束位置的情况下,忽略所述第二指示域。
  14. 根据权利要求12所述的终端,其中,所述指示信息还包括:
    用于指示是否提前定时提前TA结束的第三指示域。
  15. 根据权利要求12所述的终端,其中,所述第一偏移包括:16us或25us。
  16. 根据权利要求11所述的终端,其中,所述指示信息包括:
    用于指示所述实际结束位置与所述参考时域符号的结束位置之间的第二偏移的第四指示域。
  17. 根据权利要求16所述的终端,其中,所述第二偏移包括:0us、16us、25us或25us+TA。
  18. 根据权利要求11、12或16所述的终端,其中,所述参考时域符号包括:时域资源分配的最后一个时域符号,或所述时域资源分配的结束位置之前的第M个时域符号,或所述时域资源分配的结束位置之后的第N个时域符号,M、N为大于或等于1的整数。
  19. 根据权利要求11、12或16所述的终端,其中,所述指示信息承载于下行控制信息DCI中,或者,所述指示信息承载于无线资源控制RRC信令中。
  20. 根据权利要求11所述的终端,还包括:
    第一传输模块,用于在所述参考时域符号中所述实际结束位置之前的时域资源内,发送预设信息;其中,所述预设信息包括:占位信号、数据、参考信号和扩展循环前缀中的至少一项。
  21. 一种终端,包括处理器、存储器以及存储于所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至10中任一项所述的非授权频段信息传输方法的步骤。
  22. 一种非授权频段信息传输方法,应用于网络设备侧,包括:
    向终端发送指示信息,所述指示信息用于指示传输的实际结束位置,所述实际结束位置位于参考时域符号的结束位置,或所述实际结束位置位于所述参考时域符号的内部。
  23. 根据权利要求22所述的非授权频段信息传输方法,其中,所述指示信息包括:
    用于指示所述实际结束位置是否为时域资源分配的结束位置的第一指示域;以及,
    用于指示所述实际结束位置与所述参考时域符号的结束位置之间的第一偏移的第二指示域。
  24. 根据权利要求23所述的非授权频段信息传输方法,其中,所述指示信息还包括:
    用于指示是否提前定时提前TA结束的第三指示域。
  25. 根据权利要求23所述的非授权频段信息传输方法,其中,所述第一偏移包括:16us或25us。
  26. 根据权利要求22所述的非授权频段信息传输方法,其中,所述指示信息包括:
    用于指示所述实际结束位置与所述参考时域符号的结束位置之间的第二偏移的第四指示域。
  27. 根据权利要求26所述的非授权频段信息传输方法,其中,所述第二偏移包括:0us、16us、25us或25us+TA。
  28. 根据权利要求22、23或26所述的非授权频段信息传输方法,其中,所述参考时域符号包括:时域资源分配的最后一个时域符号,或所述时域资源分配的结束位置之前的第M个时域符号,或所述时域资源分配的结束位置之后的第N个时域符号,M、N为大于或等于1的整数。
  29. 根据权利要求22、23或26所述的非授权频段信息传输方法,其中,所述指示信息承载于下行控制信息DCI中,或者,所述指示信息承载于无线资源控制RRC信令中。
  30. 根据权利要求22所述的非授权频段信息传输方法,还包括:
    在所述参考时域符号中所述实际结束位置之前的时域资源内,发送预设信息;其中,所述预设信息包括:占位信号、数据、参考信号和扩展循环前缀中的至少一项。
  31. 一种网络设备,包括:
    第一发送模块,用于向终端发送指示信息,所述指示信息用于指示传输的实际结束位置,所述实际结束位置位于参考时域符号的结束位置,或所述 实际结束位置位于所述参考时域符号的内部。
  32. 根据权利要求31所述的网络设备,其中,所述指示信息包括:
    用于指示所述实际结束位置是否为时域资源分配的结束位置的第一指示域;以及,
    用于指示所述实际结束位置与所述参考时域符号的结束位置之间的第一偏移的第二指示域。
  33. 根据权利要求32所述的网络设备,其中,所述指示信息还包括:
    用于指示是否提前定时提前TA结束的第三指示域。
  34. 根据权利要求32所述的网络设备,其中,所述第一偏移包括:16us或25us。
  35. 根据权利要求31所述的网络设备,其中,所述指示信息包括:
    用于指示所述实际结束位置与所述参考时域符号的结束位置之间的第二偏移的第四指示域。
  36. 根据权利要求35所述的网络设备,其中,所述第二偏移包括:0us、16us、25us或25us+TA。
  37. 根据权利要求31、32或35所述的网络设备,其中,所述参考时域符号包括:时域资源分配的最后一个时域符号,或所述时域资源分配的结束位置之前的第M个时域符号,或所述时域资源分配的结束位置之后的第N个时域符号,M、N为大于或等于1的整数。
  38. 根据权利要求31、32或35所述的网络设备,其中,所述指示信息承载于下行控制信息DCI中,或者,所述指示信息承载于无线资源控制RRC信令中。
  39. 根据权利要求31所述的网络设备,还包括:
    第二传输模块,用于在所述参考时域符号中所述实际结束位置之前的时域资源内,发送预设信息;其中,所述预设信息包括:占位信号、数据、参考信号和扩展循环前缀中的至少一项。
  40. 一种网络设备,包括处理器、存储器以及存储于所述存储器上并可在所述处理器上运行的程序,所述处理器执行所述程序时实现如权利要求22至30任一项所述的非授权频段信息传输方法的步骤。
  41. 一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如权利要求1至10、22至30中任一项所述的非授权频段信息传输方法的步骤。
PCT/CN2019/122638 2018-12-21 2019-12-03 非授权频段信息传输方法、终端及网络设备 WO2020125401A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19898767.9A EP3902347A4 (en) 2018-12-21 2019-12-03 LICENSE-FREE FREQUENCY BAND INFORMATION TRANSMISSION METHOD, TERMINAL AND NETWORK DEVICE
KR1020217021139A KR20210091340A (ko) 2018-12-21 2019-12-03 비허가 대역 정보 전송 방법, 단말 및 네트워크 장치
US17/348,025 US20210314778A1 (en) 2018-12-21 2021-06-15 Unlicensed band information transmission method, terminal and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811570532.3 2018-12-21
CN201811570532.3A CN111315015B (zh) 2018-12-21 2018-12-21 非授权频段信息传输方法、终端及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/348,025 Continuation US20210314778A1 (en) 2018-12-21 2021-06-15 Unlicensed band information transmission method, terminal and network device

Publications (1)

Publication Number Publication Date
WO2020125401A1 true WO2020125401A1 (zh) 2020-06-25

Family

ID=71102528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122638 WO2020125401A1 (zh) 2018-12-21 2019-12-03 非授权频段信息传输方法、终端及网络设备

Country Status (5)

Country Link
US (1) US20210314778A1 (zh)
EP (1) EP3902347A4 (zh)
KR (1) KR20210091340A (zh)
CN (1) CN111315015B (zh)
WO (1) WO2020125401A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105634669A (zh) * 2015-11-17 2016-06-01 东莞酷派软件技术有限公司 一种应用于非授权频谱的传输识别方法、装置和***
US20170223677A1 (en) * 2016-02-03 2017-08-03 Ofinno Technologies, Llc Signal transmissions in one or more subframes in a wireless network
CN107079333A (zh) * 2014-11-15 2017-08-18 松下电器(美国)知识产权公司 资源调度方法、资源确定方法、eNode B 和用户设备
CN108282288A (zh) * 2017-01-05 2018-07-13 华为技术有限公司 一种参考信号配置的方法、基站、用户设备和***
CN108633034A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 一种数据传输的方法、网络设备和终端设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100587310B1 (ko) * 2004-08-18 2006-06-08 엘지전자 주식회사 주파수 동기 장치 및 이를 적용한 dvb-h 수신 시스템
CN105515741B (zh) * 2014-09-26 2020-04-10 电信科学技术研究院 一种在非授权频段上的数据传输方法及装置
CN105743626B (zh) * 2014-12-30 2020-09-15 北京三星通信技术研究有限公司 一种下行信道和/或下行参考信号的接收方法和设备
WO2016182238A1 (ko) * 2015-05-12 2016-11-17 한국전자통신연구원 비면허 주파수 대역에서 적응적 부분 서브프레임을 전송하는 방법 및 장치, 프레임 구조를 구분하는 방법 및 장치, 그리고 신호를 전송하는 방법 및 장치
CN114221747A (zh) * 2016-02-05 2022-03-22 三星电子株式会社 移动通信***中的通信方法和设备
CN107371271B (zh) * 2016-05-12 2022-05-24 北京三星通信技术研究有限公司 一种上行信号的发送方法和用户设备
CN115250538A (zh) * 2016-05-12 2022-10-28 北京三星通信技术研究有限公司 一种上行信号的发送方法和用户设备
CN107370589B (zh) * 2016-05-13 2023-04-07 中兴通讯股份有限公司 信号传输方法、装置及用户设备
US10512106B2 (en) * 2016-08-12 2019-12-17 Electronics And Telecommunications Research Institute State transition method based on random access procedure in communication system
KR20240110112A (ko) * 2017-03-25 2024-07-12 주식회사 윌러스표준기술연구소 비면허 대역에서의 물리 채널 전송 방법, 장치 및 시스템
KR102315778B1 (ko) * 2017-05-04 2021-10-22 삼성전자 주식회사 무선 통신 시스템에서 상향링크 전송시간 식별 방법 및 장치
CN108882327B (zh) * 2017-05-15 2020-06-19 维沃移动通信有限公司 波束失败处理方法、辅基站失败处理方法及终端
CN108989004B (zh) * 2017-06-02 2021-01-08 维沃移动通信有限公司 非授权频段下的信息传输方法、网络设备及终端
CN110611948B (zh) * 2018-06-14 2021-01-08 维沃移动通信有限公司 同步信号块的传输方法、网络设备及终端
WO2020032746A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107079333A (zh) * 2014-11-15 2017-08-18 松下电器(美国)知识产权公司 资源调度方法、资源确定方法、eNode B 和用户设备
CN105634669A (zh) * 2015-11-17 2016-06-01 东莞酷派软件技术有限公司 一种应用于非授权频谱的传输识别方法、装置和***
US20170223677A1 (en) * 2016-02-03 2017-08-03 Ofinno Technologies, Llc Signal transmissions in one or more subframes in a wireless network
CN108282288A (zh) * 2017-01-05 2018-07-13 华为技术有限公司 一种参考信号配置的方法、基站、用户设备和***
CN108633034A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 一种数据传输的方法、网络设备和终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Discussion on Usage of Mini-slot in Unlicensed Band Below 6GHz", 3GPP TSG RAN WG1 NR ADHOC MEETING R1-1700420, 20 January 2017 (2017-01-20), XP051202541, DOI: 20200112144438A *

Also Published As

Publication number Publication date
EP3902347A1 (en) 2021-10-27
CN111315015A (zh) 2020-06-19
KR20210091340A (ko) 2021-07-21
CN111315015B (zh) 2023-10-20
US20210314778A1 (en) 2021-10-07
EP3902347A4 (en) 2022-02-16

Similar Documents

Publication Publication Date Title
WO2020164593A1 (zh) 混合自动重传请求harq反馈方法、终端及网络设备
CN109699084B (zh) 非授权频段下的信息传输方法、终端及网络设备
WO2020147817A1 (zh) 随机接入过程的信息传输方法及终端
WO2020011181A1 (zh) 信道检测指示方法、终端及网络设备
CN110971322B (zh) 一种信息传输方法、网络设备及终端
WO2020024811A1 (zh) 信息传输方法、终端及网络设备
WO2020147816A1 (zh) 随机接入传输方法及终端
WO2020125360A1 (zh) 非授权频段信息传输方法、终端及网络设备
WO2019214664A1 (zh) 传输资源指示方法、网络设备及终端
WO2020156073A1 (zh) 非授权频段的信息传输方法、终端及网络设备
WO2019238111A1 (zh) 同步信号块的传输方法、网络设备及终端
WO2020088315A1 (zh) 信息传输方法及通信设备
WO2021155763A1 (zh) 非授权频段的数据传输方法及装置、通信设备
WO2020125400A1 (zh) 信息传输方法、终端及网络设备
WO2020088101A1 (zh) 非周期信道状态信息参考信号配置方法、网络设备及终端
WO2020011096A1 (zh) 上行传输方法及终端
WO2019201144A1 (zh) 非授权频段的信息传输方法、网络设备及终端
WO2020147827A1 (zh) 随机接入传输方法及终端
WO2020011081A1 (zh) 信息传输方法、网络设备及终端
US11991756B2 (en) Random access transmission method and terminal
WO2020147826A1 (zh) 随机接入传输方法及终端
WO2019242568A1 (zh) 功率分配方法及终端
WO2020125401A1 (zh) 非授权频段信息传输方法、终端及网络设备
WO2019214459A1 (zh) 信息传输方法、网络设备及终端
WO2021204151A1 (zh) 监测数量的确定方法及装置、通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217021139

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019898767

Country of ref document: EP

Effective date: 20210721