WO2020119744A1 - 金属材料用作锌离子水系超级电容器负极及锌离子水系混合超级电容器 - Google Patents

金属材料用作锌离子水系超级电容器负极及锌离子水系混合超级电容器 Download PDF

Info

Publication number
WO2020119744A1
WO2020119744A1 PCT/CN2019/124739 CN2019124739W WO2020119744A1 WO 2020119744 A1 WO2020119744 A1 WO 2020119744A1 CN 2019124739 W CN2019124739 W CN 2019124739W WO 2020119744 A1 WO2020119744 A1 WO 2020119744A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
positive electrode
negative electrode
metal
alloy
Prior art date
Application number
PCT/CN2019/124739
Other languages
English (en)
French (fr)
Inventor
唐永炳
周小燕
张苗
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2020119744A1 publication Critical patent/WO2020119744A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention belongs to the field of new energy, and specifically relates to a metal material used as a negative electrode of a zinc ion water-based supercapacitor and a zinc ion water-based hybrid supercapacitor.
  • the hybrid supercapacitor is a new energy storage system that combines the high energy density of the secondary battery, the high power density of the capacitor, the long cycle life and its excellent fast charging performance. It includes a capacitor electrode, a secondary battery electrode, and an organic electrolyte And diaphragm. Thanks to the role of the electrodes of the battery and the capacitor, the hybrid supercapacitor inherits the advantages of high power density of the supercapacitor, long cycle life, high specific capacity of the active material of the secondary battery, and a wide voltage window of the organic electrolyte. Conventional supercapacitors and hybrid supercapacitors have higher energy density.
  • the anode material is a zinc metal foil
  • the cathode is a carbon material capable of reversible ion adsorption
  • the electrolyte is a zinc salt and an organic solvent; although the organic electrolyte has a higher decomposition voltage, it is more toxic Large, high cost, flammable, and high requirements for assembly process.
  • the positive electrode active material is a composite metal oxide
  • the negative electrode active material is a carbon material capable of reversible ion adsorption
  • the electrolyte is composed of zinc salt and deionized water.
  • the first positive electrode active material is carbon material (C)
  • the second positive electrode active material is composite metal oxide ZnM x O y
  • the negative electrode active material is Two kinds, the first negative electrode active material is zinc (Zn), the second negative electrode active material is carbon material (C); the electrolyte is composed of zinc salt and deionized water; the positive electrode active material (C+ZnM x O y ) And the conductive agent adhere to the current collector to make a positive electrode sheet, and the negative electrode active material (C+Zn) and the conductive agent adhere to the current collector to make a negative electrode sheet.
  • the zinc ion supercapacitors proposed in the above two patents use aqueous electrolytes, so the working voltage is low; both the positive and negative electrodes use current collectors, so the preparation process is cumbersome.
  • the first object of the present invention is to provide a metal, alloy or metal composite material capable of depositing zinc ions as an anode active material and an anode current collector in a zinc ion aqueous hybrid supercapacitor.
  • the above-mentioned metals, alloys or metal composites as both negative electrode active materials and negative electrode current collectors can greatly reduce the self-weight of zinc-ion water-based hybrid supercapacitors, further improve the energy density and theoretical specific capacity of zinc-ion water-based hybrid supercapacitors, and simplify the production of capacitors Process, lower production costs and more environmentally friendly; in addition, because the metal, alloy or metal composite material is porous, it can effectively avoid the generation of dendrites compared to non-porous anodes, and further improve the cycle performance.
  • the second object of the present invention is to provide a zinc ion water-based hybrid supercapacitor.
  • the negative electrode of the zinc ion water-based hybrid supercapacitor is a metal, alloy or metal composite material capable of depositing zinc ions.
  • the electrolyte includes zinc salt and water.
  • the mixture Supercapacitors have the advantages of high energy density and theoretical specific capacity, low production cost, high safety and good environmental protection.
  • the third object of the present invention is to provide a method for preparing the above zinc ion water-based hybrid supercapacitor.
  • the method is simple in process and low in manufacturing cost.
  • the zinc ion water-based hybrid supercapacitor prepared by this method has high energy density and high specific capacity And the advantages of good safety performance.
  • the fourth object of the present invention is to provide an energy storage system including the above-mentioned zinc ion water-based hybrid supercapacitor, and therefore has at least the same advantages as the above hybrid supercapacitor, with high energy density, high specific capacity and safety performance Good advantage, the advantage of storing electrical energy is obvious.
  • the fifth object of the present invention is to provide an electric device including the above zinc ion water-based hybrid supercapacitor, and therefore has at least the same advantages as the above hybrid supercapacitor, with high energy density, high specific capacity and safety performance Good advantage, the electricity-consuming equipment can effectively reduce its own weight under the condition of the same amount of electricity, so it is more portable and energy-saving.
  • the present invention provides a metal, alloy, or metal composite material capable of depositing zinc ions as a negative electrode active material and a negative electrode collector in a zinc ion aqueous hybrid supercapacitor. Zinc ions are present in the hybrid supercapacitor.
  • a metal, alloy, or metal composite material capable of depositing zinc ions as a negative electrode active material and a negative electrode collector in a zinc ion aqueous hybrid supercapacitor.
  • Zinc ions are present in the hybrid supercapacitor.
  • the metal, alloy or metal composite material is porous.
  • the metal is any one of tin, aluminum, copper, iron, zinc, nickel, titanium, magnesium, antimony, lithium, sodium, or potassium;
  • the alloy is an alloy including at least any one of tin, aluminum, copper, iron, zinc, nickel, titanium, magnesium, antimony, lithium, sodium, or potassium;
  • the metal composite material is a composite material including at least any one of tin, aluminum, copper, iron, zinc, nickel, titanium, magnesium, antimony, lithium, sodium, or potassium;
  • the pore diameter of the metal, alloy or metal composite is independently 100nm-200 ⁇ m.
  • the present invention provides a zinc ion aqueous hybrid supercapacitor, including a negative electrode, a separator, a positive electrode, and an electrolyte;
  • the negative electrode is a metal, alloy or metal composite material capable of depositing zinc ions; the metal, alloy or metal composite material is porous;
  • the electrolyte includes zinc salt and water.
  • the metal is any one of tin, aluminum, copper, iron, zinc, nickel, titanium, magnesium, antimony, lithium, sodium, or potassium;
  • the alloy is an alloy including at least any one of tin, aluminum, copper, iron, zinc, nickel, titanium, magnesium, antimony, lithium, sodium, or potassium;
  • the metal composite material is a composite material including at least any one of tin, aluminum, copper, iron, zinc, nickel, titanium, magnesium, antimony, lithium, sodium, or potassium;
  • the pore diameter of the metal, alloy or metal composite is independently 100nm-200 ⁇ m.
  • the positive electrode includes a positive electrode material and a positive electrode current collector, the positive electrode material includes a positive electrode active material, a conductive agent, and a binder; the positive electrode active material is an electrolyte that can be reversibly adsorbed and desorbed Anionic carbon materials;
  • the mass content of the positive electrode active material is 60%-95%
  • the mass content of the conductive agent is 5%-30%
  • the mass content of the binder is 5%-10%.
  • the concentration of the zinc salt in the electrolyte is 0.1-10 mol/L, preferably 1-5 mol/L, further preferably 2-5 mol/L;
  • the zinc salt includes zinc triflate, zinc sulfate, zinc chloride, zinc carbonate, zinc nitrate, zinc acetate, zinc manganate, (trifluoromethylsulfonyl)imide zinc, perchloric acid At least one of zinc, zinc tetrafluoroborate, zinc hexafluorophosphate, zinc hexafluoroarsenate, or zinc dioxalate borate;
  • the electrolyte further includes yttrium salt, and the concentration of the yttrium salt in the electrolyte is 0.01-0.5mol/L;
  • the yttrium salt includes yttrium trifluoromethanesulfonate, yttrium hexafluoroborate, yttrium chloride, yttrium carbonate, yttrium sulfate, yttrium nitrate, yttrium iodate, yttrium fluoride, (trifluoromethylsulfonyl) sulfite At least one of yttrium amine or yttrium perchlorate.
  • the present invention provides a method for preparing the above-mentioned zinc ion water-based hybrid supercapacitor, in which the negative electrode, the electrolyte, the separator, and the positive electrode can be assembled.
  • the positive electrode active material, conductive agent and binder are made into positive electrode slurry or positive electrode sheet material; then the positive electrode slurry is coated on the surface of the positive electrode current collector or the positive electrode sheet material is pressed on the positive electrode current collector Surface, dry to get the positive electrode of the required size;
  • the negative electrode obtained in step a), the electrolyte obtained in step b), the separator obtained in step c), and the positive electrode obtained in step d) are assembled to obtain a zinc ion aqueous hybrid supercapacitor.
  • the present invention provides an energy storage system including the above-mentioned zinc ion water-based hybrid supercapacitor.
  • the present invention provides an electric device including the above-mentioned zinc ion water-based hybrid supercapacitor.
  • the invention provides a metal, alloy or metal composite material capable of depositing zinc ions as an anode active material and an anode current collector in a zinc ion water-based hybrid supercapacitor.
  • the above metal, alloy or metal composite material simultaneously serves as a zinc ion
  • the negative electrode active material and negative electrode current collector of the water-based hybrid supercapacitor have omitted the two elements (negative electrode active material and negative electrode current collector) that constitute the negative electrode of the existing supercapacitor, thereby reducing the volume and weight of one component.
  • the integrated design of the negative electrode active material and the negative electrode current collector is conducive to shortening the transmission distance of zinc ions and is conducive to more effective mass transfer and/or charge transfer;
  • the proportion of active materials can further increase the energy density of the hybrid supercapacitor, and use the deposition/dedeposition of metals and zinc ions to realize the negative reaction of the hybrid supercapacitor and increase the specific capacity; since no organic binder is required, etc.
  • Bonding which greatly simplifies the production process of the capacitor, the preparation method is simple, and the phenomenon of shedding does not occur, reducing labor and equipment costs, and more environmentally friendly; in addition, because the metal, alloy or metal composite material is porous, it is relatively For the non-porous negative electrode, it can effectively avoid the generation of dendrites and further improve the cycle performance.
  • the zinc ion water-based hybrid supercapacitor provided by the invention has the characteristics of a secondary battery and a supercapacitor, and has higher energy density and specific capacity; its negative electrode is an integrated design, and the negative electrode is a metal, alloy or metal capable of depositing zinc Composite materials, the above metals, alloys or metal composite materials play the dual role of negative electrode active materials and negative electrode current collectors, which can greatly reduce the weight of the hybrid supercapacitor, further improve the energy density and theoretical specific capacity of the hybrid supercapacitor, and simplify the hybrid supercapacitor
  • the production process of the capacitor reduces the production cost and is more environmentally friendly; the integrated design of the negative electrode active material and the negative electrode current collector is conducive to shortening the transmission distance of zinc ions and is conducive to more effective mass transfer and/or charge transfer; in addition, the capacitor In the electrolyte, the traditional lithium ions are replaced by zinc ions, and divalent zinc ions are used as active carriers.
  • Each mole of zinc ion reaction can provide twice the capacity of lithium ions, which solves the limited lithium resource reserves and safety performance.
  • the problem of poor and high price makes its application no longer restricted by lithium resources, high safety, and can further reduce production costs; hybrid supercapacitors using aqueous electrolytes are more toxic and flammable than organic electrolytes
  • hybrid supercapacitors using aqueous electrolytes are more toxic and flammable than organic electrolytes
  • the water-based electrolyte is not easy to burn, has good safety, and is environmentally friendly, which is conducive to improving the safety of the battery. It is environmentally friendly and pollution-free.
  • the inclusion of yttrium salt in the electrolyte can further increase the working voltage of the capacitor, thereby improving the energy density and specific capacity of the battery, and enhancing the safety of the capacitor.
  • the preparation method of the zinc ion aqueous hybrid supercapacitor provided by the invention is simple in process and low in manufacturing cost.
  • the zinc ion aqueous hybrid supercapacitor prepared by the method has the advantages of high energy density, high specific capacity and good safety performance.
  • the energy storage system provided by the present invention includes the above-mentioned zinc-ion water-based hybrid supercapacitor, and therefore has at least the same advantages as the above-mentioned hybrid supercapacitor, has the advantages of high energy density, high specific capacity, and good safety performance, and has obvious advantages in storing electrical energy.
  • the electric equipment provided by the present invention includes the above-mentioned zinc ion water-based hybrid supercapacitor, and therefore has at least the same advantages as the above hybrid supercapacitor, with high energy density, high specific capacity and good safety performance.
  • the electric equipment has the same amount of electricity Under the circumstances, it can effectively reduce its own weight, so it is more lightweight and energy-saving.
  • FIG. 1 is a schematic structural diagram of a zinc ion water-based hybrid supercapacitor provided by the present invention
  • Example 2 is a charge-discharge curve diagram of a zinc ion aqueous hybrid supercapacitor in Example 1;
  • FIG. 3 is a graph showing the cycle performance of the zinc ion aqueous hybrid supercapacitor in Example 1.
  • Icons 1-negative electrode; 2-electrolyte; 3-separator; 4-positive electrode; 5-positive electrode active material; 6-positive electrode current collector.
  • the percentage (%) or part refers to the weight percentage or part by weight relative to the composition.
  • the numerical range “a-b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range “0.1-10” means that all real numbers between “0.1-10” have been listed in this article, and "0.1-10” is just an abbreviated representation of these numerical combinations.
  • the form of the lower limit and upper limit of the "range" disclosed in the present invention may be one or more lower limits and one or more upper limits, respectively.
  • each reaction or operation step may be performed sequentially or in order.
  • the reaction methods herein are performed sequentially.
  • a metal, alloy, or metal composite material capable of depositing zinc ions is provided as an anode active material and an anode current collector in a zinc ion aqueous hybrid supercapacitor.
  • Zinc ions are present in In the electrolyte of the hybrid supercapacitor;
  • the metal, alloy or metal composite material is porous.
  • Metal, alloy, or metal composite material capable of depositing zinc ions refers to a metal capable of depositing zinc ions, an alloy material capable of depositing zinc ions, or a metal composite conductive material capable of depositing zinc ions.
  • Alloy refers to a substance with metallic properties synthesized by two or more metals and metals or non-metals through a certain method.
  • Metal composite material refers to a metal-based composite conductive material formed by combining metals with other non-metallic materials.
  • Typical but non-limiting metal composite materials include graphene-metal composite materials, carbon fiber-metal composite materials and ceramic-metal composite materials.
  • Porous refers to the distribution of interpenetrating or closed pores in the material and forming a network structure.
  • Zero ion water-based hybrid supercapacitor refers to a zinc ion hybrid supercapacitor mainly using an aqueous solution of zinc salt as an electrolyte.
  • the above metals, alloys or metal composite materials capable of depositing zinc ions are simultaneously used as negative electrode active materials and negative electrode current collectors in zinc ion aqueous hybrid supercapacitors, and the above metals, alloys or metal composite materials are simultaneously used as zinc ion aqueous hybrid supercapacitors
  • Negative electrode active material and negative electrode current collector omitting the two elements (negative electrode active material and negative electrode current collector) that constitute the negative electrode of the existing supercapacitor into one, thereby reducing the volume and weight of a component, simplifying the structure, and significantly reducing Capacitor weight, volume, and material cost;
  • the integrated design of negative electrode active material and negative electrode current collector is conducive to shortening the transmission distance of zinc ions, and is conducive to more effective mass transfer and/or charge transfer; due to the increased proportion of active materials Therefore, the energy density of the hybrid supercapacitor can be further improved, and the negative reaction of the hybrid supercapacitor can be realized by the deposition/dedeposition of metals and
  • the negative electrode active material and negative electrode current collector using the above-mentioned metal, alloy or metal composite material as zinc ion water-based hybrid supercapacitor not only have higher energy density and specific capacity, It also significantly simplifies the production process, reduces costs and is more environmentally friendly.
  • the metal is any one of tin, aluminum, copper, iron, zinc, nickel, titanium, magnesium, antimony, lithium, sodium or potassium;
  • the alloy is an alloy including at least any one of tin, aluminum, copper, iron, zinc, nickel, titanium, magnesium, antimony, lithium, sodium, or potassium;
  • the metal composite material is a composite material including at least any one of tin, aluminum, copper, iron, zinc, nickel, titanium, magnesium, antimony, lithium, sodium, or potassium.
  • the above-mentioned metals, alloys and metal composite materials all have the advantages of abundant reserves, low price, easy availability, and environmental friendliness.
  • a negative electrode of a zinc ion water-based hybrid supercapacitor the cost of the hybrid supercapacitor can be significantly reduced, and its conductivity is better and easy.
  • the capture of more zinc ions in the electrolyte enables zinc ions to be deposited on the negative electrode, thereby increasing the specific capacity and energy density of the hybrid supercapacitor.
  • typical but non-limiting alloys are: tin zinc alloy, tin lead alloy, tin aluminum alloy, aluminum iron alloy, lithium sodium alloy, titanium magnesium alloy, magnesium potassium alloy, zinc copper alloy, zinc sodium alloy, tin aluminum Copper alloy, zinc nickel titanium alloy or magnesium antimony lithium alloy, etc.
  • Typical but non-limiting metal composite materials are: zinc/graphene composite foil or tin/graphene composite foil.
  • the pore diameter of the metal, alloy or metal composite is independently 100nm-200 ⁇ m, preferably 200nm.
  • Typical but non-limiting pore diameters are 100 nm, 200 nm, 300 nm, 400 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1 ⁇ m, 20 ⁇ m, 40 ⁇ m, 60 ⁇ m, 80 ⁇ m, 100 ⁇ m, 120 ⁇ m, 140 ⁇ m, 160 ⁇ m, 180 ⁇ m or 200 ⁇ m.
  • the pore diameter is 100nm-200 ⁇ m, the generation of dendrites can be suppressed to the greatest extent, and the energy density of the capacitor is guaranteed. If the pore size is too large, the conductivity will be reduced. If the pore size is too small, the generation of dendrites cannot be effectively suppressed.
  • a zinc ion aqueous hybrid supercapacitor including a negative electrode 1, a separator 3, a positive electrode 4, and an electrolyte 2;
  • the negative electrode 1 is a metal, alloy or metal composite material capable of depositing zinc ions; the metal, alloy or metal composite material is porous;
  • the electrolyte 2 includes zinc salt and water.
  • Metal, alloy, or metal composite material capable of depositing zinc ions refers to a metal capable of depositing zinc ions, an alloy material capable of depositing zinc ions, or a metal composite conductive material capable of depositing zinc ions.
  • Alloy refers to a substance with metallic properties synthesized by two or more metals and metals or non-metals through a certain method.
  • Metal composite material refers to a metal-based composite conductive material formed by combining metals with other non-metallic materials.
  • Typical but non-limiting metal composite materials include graphene-metal composite materials, carbon fiber-metal composite materials and ceramic-metal composite materials.
  • Porous refers to the distribution of interpenetrating or closed pores in the material and forming a network structure.
  • the above zinc ion aqueous hybrid supercapacitor has the characteristics of secondary battery and supercapacitor, and has high energy density and specific capacity; its negative electrode is an integrated design, and the negative electrode is a metal, alloy or metal composite material capable of depositing zinc.
  • the above-mentioned metal, alloy or metal composite material plays the dual role of negative electrode active material and negative electrode current collector, which can greatly reduce the weight of the hybrid supercapacitor, further improve the energy density and theoretical specific capacity of the hybrid supercapacitor, and simplify the production of the hybrid supercapacitor Process, lower production cost and more environmentally friendly;
  • the integrated design of negative electrode active material and negative electrode current collector is conducive to shortening the transmission distance of zinc ions and is conducive to more effective mass transfer and/or charge transfer; in addition, the electrolytic solution of the capacitor Replacing traditional lithium ions with zinc ions, using divalent zinc ions as active carriers, each mole of zinc ion reaction can provide twice the capacity of lithium ions, solving the limited lithium resource reserves, poor safety performance and price
  • the high problems make its application no longer restricted by lithium resources, high safety, and can further reduce production costs; hybrid supercapacitors using aqueous electrolytes are more toxic and flammable than organic electrolytes. The liquid is not easy to burn, has good safety,
  • the working principle of the above zinc ion water-based hybrid supercapacitor is: when charging, zinc ions (Zn 2+ ) in the electrolyte are deposited at the negative electrode, and the anions in the electrolyte are adsorbed by the positive electrode material to complete the charging process; when discharging, the negative electrode A de-deposition reaction occurs, and zinc ions (Zn 2+ ) are deplated from the negative electrode and returned to the electrolyte. At the same time, the anions are also desorbed from the positive electrode and return to the electrolyte to complete the discharge process.
  • the metal is any one of tin, aluminum, copper, iron, zinc, nickel, titanium, magnesium, antimony, lithium, sodium or potassium;
  • the alloy is an alloy including at least any one of tin, aluminum, copper, iron, zinc, nickel, titanium, magnesium, antimony, lithium, sodium, or potassium;
  • the metal composite material is a composite material including at least any one of tin, aluminum, copper, iron, zinc, nickel, titanium, magnesium, antimony, lithium, sodium, or potassium.
  • the above-mentioned metals, alloys and metal composite materials all have the advantages of abundant reserves, low price, easy availability, and environmental friendliness.
  • a negative electrode of a zinc ion water-based hybrid supercapacitor the cost of the hybrid supercapacitor can be significantly reduced, and its conductivity is better and easy.
  • the capture of more zinc ions in the electrolyte enables zinc ions to be deposited on the negative electrode, thereby increasing the specific capacity and energy density of the hybrid supercapacitor.
  • typical but non-limiting alloys are: tin zinc alloy, tin lead alloy, tin aluminum alloy, aluminum iron alloy, lithium sodium alloy, titanium magnesium alloy, magnesium potassium alloy, zinc copper alloy, zinc sodium alloy, tin aluminum Copper alloy, zinc nickel titanium alloy or magnesium antimony lithium alloy, etc.
  • Typical but non-limiting metal composite materials are: zinc/graphene composite foil or tin/graphene composite foil.
  • the pore diameter of the metal, alloy or metal composite is independently 100nm-200 ⁇ m, preferably 200nm.
  • Typical but non-limiting pore diameters are 100 nm, 200 nm, 300 nm, 400 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1 ⁇ m, 20 ⁇ m, 40 ⁇ m, 60 ⁇ m, 80 ⁇ m, 100 ⁇ m, 120 ⁇ m, 140 ⁇ m, 160 ⁇ m, 180 ⁇ m or 200 ⁇ m.
  • the pore diameter is 100nm-200 ⁇ m, the generation of dendrites can be suppressed to the greatest extent, and the energy density of the capacitor is guaranteed. If the pore size is too large, the conductivity will be reduced. If the pore size is too small, the generation of dendrites cannot be effectively suppressed.
  • the cathode 4 includes a cathode material and a cathode current collector 6, the cathode material includes a cathode active material 5, a conductive agent, and a binder; the cathode active material 5 is reversible Carbon material that adsorbs and desorbs anions in the electrolyte.
  • the mass content of the positive electrode active material is 60%-95%
  • the mass content of the conductive agent is 5%-30%
  • the mass content of the binder is 5%-10%.
  • Typical but non-limiting mass contents of the above positive electrode active materials are 60%, 62%, 64%, 66%, 68%, 70%, 72%, 74%, 76%, 78%, 80%, 82%, 84%, 86%, 88%, 90%, 92%, 94% or 95%
  • the mass content of the above conductive agent is typically but not limited to 5%, 6%, 8%, 10%, 12%, 14 %, 16%, 18%, 20%, 22%, 24%, 26%, 28% or 30%.
  • the content of the above-mentioned binder is typically, but not limited to, 5%, 6%, 7%, 8%, 9% or 10%.
  • the conductive agent is used to ensure that the electrode has good charge and discharge performance.
  • a certain amount of conductive substance is usually added when the pole piece is made, which plays a role in collecting micro currents between the active material, the active material and the current collector to reduce
  • the contact resistance of the electrode accelerates the moving rate of electrons, and can also effectively increase the migration rate of zinc ions in the electrode material, thereby improving the charge and discharge efficiency of the electrode.
  • the main role of the binder is to bind and maintain the active material, enhance the electronic contact between the positive electrode active material (carbon material) and the conductive agent, and the positive electrode active material and the current collector, to better stabilize the electrode structure, and mix super
  • the capacitor plays a certain role in buffering during charging and discharging.
  • the cathode material mainly prepared by the above-mentioned weight content of the cathode active material, the conductive agent and the binder is not only stable in shape, not easy to fall off, but also has better conductivity.
  • the positive electrode active material includes activated carbon, carbon nanotubes, graphene, mesophase carbon microspheres, three-dimensional ordered mesoporous carbon spheres, template framework carbon, carbide-derived carbon, carbon aerogel, glassy carbon, At least one of nano-charcoal or carbon foam.
  • typical but non-limiting carbon materials are: activated carbon, carbon nanotubes, graphene, mesophase carbon microspheres, three-dimensional ordered mesoporous carbon spheres, template framework carbon, carbide-derived carbon, carbon aerogel , A combination of glassy carbon, nano-charcoal, carbon foam, activated carbon and carbon nanotubes, a combination of graphene and mesophase carbon microspheres, a combination of three-dimensional ordered mesoporous carbon spheres and template framework carbon, carbide-derived carbon and carbon Combination of aerogel, glassy carbon and nano-charcoal, activated carbon, carbon nanotubes and graphene, mesophase carbon microspheres, three-dimensional ordered mesoporous carbon spheres and template framework carbon, carbide-derived carbon , A combination of carbon aerogel and glassy carbon, or a combination of glassy carbon, nano-charcoal and carbon foam.
  • the activated carbon includes at least one of powdered activated carbon, activated carbon fiber, activated carbon felt or activated carbon cloth.
  • Typical but non-limiting examples of the above activated carbon are: powdered activated carbon, activated carbon fiber, activated carbon felt, activated carbon cloth, powder activated carbon and activated carbon fiber combination, activated carbon felt and activated carbon cloth combination, powder activated carbon, activated carbon fiber and activated carbon felt combination, or , Combination of activated carbon fiber, activated carbon felt and activated carbon cloth, etc.
  • the conductive agent includes at least one of conductive carbon black, conductive carbon spheres, conductive graphite, carbon nanotubes, conductive carbon fiber, graphene, or reduced graphene oxide.
  • Typical but non-limiting conductive agents are: conductive carbon black, conductive carbon spheres, conductive graphite, carbon nanotubes, conductive carbon fibers, graphene, reduced graphene oxide, a combination of conductive carbon black and conductive carbon spheres, conductive graphite and The combination of carbon nanotubes, the combination of conductive carbon fibers and graphene, the combination of graphene and reduced graphene oxide, the combination of conductive carbon black, conductive carbon spheres and conductive graphite, the combination of carbon nanotubes, conductive carbon fibers and graphene, or , A combination of conductive carbon fiber, graphene, and reduced graphene oxide.
  • the binder includes at least one of polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl alcohol, carboxymethyl cellulose, SBR rubber, or polyolefin.
  • Typical but non-limiting binders are: polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl alcohol, carboxymethyl cellulose, SBR rubber (Styrene Butadiene Rubber), polyolefin, polyvinylidene fluoride Combination of ethylene and polytetrafluoroethylene, combination of polyvinyl alcohol and carboxymethyl cellulose, combination of SBR rubber and polyolefin, combination of polyvinylidene fluoride, polytetrafluoroethylene and polyvinyl alcohol, or, carboxymethyl fiber The combination of element, SBR rubber and polyolefin, etc.
  • the positive electrode current collector is any one of aluminum, copper, iron, tin, zinc, nickel or titanium;
  • the positive electrode current collector is an alloy including at least any one of aluminum, copper, iron, tin, zinc, nickel, or titanium;
  • the positive electrode current collector is a composite material including at least any one of aluminum, copper, iron, tin, zinc, nickel, or titanium.
  • the concentration of the zinc salt in the electrolyte is 0.1-10 mol/L, preferably 1-5 mol/L, and more preferably 2-5 mol/L.
  • Ion concentration affects the ion transport performance of the electrolyte.
  • the zinc salt concentration in the electrolyte is too low, the ion transport performance is poor, and the conductivity is low; the zinc salt concentration in the electrolyte is too high, too many ions, the viscosity of the electrolyte and the association of ions The degree will also increase as the zinc salt concentration increases, which in turn will reduce the conductivity.
  • thermodynamic stable potential of water is only 1.23V, so in theory, the output voltage of the water-based supercapacitor is difficult to exceed this potential under the premise of ensuring that the electrolyte is not decomposed.
  • the preferred embodiment provides the zinc salt at a specific concentration with the best conductivity at which the voltage of the hybrid supercapacitor can reach 1.8V.
  • typical but non-limiting concentrations of zinc salt are: 0.1mol/L, 0.2mol/L, 0.3mol/L, 0.4mol/L, 0.5mol/L, 0.6mol/L, 0.7mol/L, 0.8mol/L, 0.9mol/L, 1.0mol/L, 2mol/L, 3mol/L, 4mol/L, 5mol/L, 6mol/L, 7mol/L, 8mol/L, 9mol/L or 10mol/L .
  • the zinc salt includes zinc triflate, zinc sulfate, zinc chloride, zinc carbonate, zinc nitrate, zinc acetate, zinc manganate, (trifluoromethylsulfonyl)imide zinc, perchloric acid At least one of zinc, zinc tetrafluoroborate, zinc hexafluorophosphate, zinc hexafluoroarsenate, or zinc bisoxalate borate.
  • Typical but non-limiting zinc salts are: zinc triflate, zinc sulfate, zinc chloride, zinc carbonate, zinc nitrate, zinc acetate, zinc manganate, (trifluoromethylsulfonyl)imide zinc, Zinc perchlorate, zinc tetrafluoroborate, zinc hexafluorophosphate, zinc hexafluoroarsenate, zinc dioxodiborate, combination of zinc triflate and zinc sulfate, combination of zinc chloride and zinc carbonate, nitric acid
  • the electrolyte further includes yttrium salt, and the concentration of the yttrium salt in the electrolyte is 0.01-0.5 mol/L.
  • concentration of the above yttrium salt is typically but not limited to 0.01mol/L, 0.05mol/L, 0.1mol/L, 0.2mol/L, 0.3mol/L, 0.4mol/L or 0.5mol/L.
  • the yttrium salt includes yttrium trifluoromethanesulfonate, yttrium hexafluoroborate, yttrium chloride, yttrium carbonate, yttrium sulfate, yttrium nitrate, yttrium iodate, yttrium fluoride, (trifluoromethylsulfonyl) sulfite At least one of yttrium amine or yttrium perchlorate.
  • Typical but non-limiting yttrium salts are yttrium trifluoromethanesulfonate, yttrium hexafluoroborate, yttrium chloride, yttrium carbonate, yttrium sulfate, yttrium nitrate, yttrium iodate, yttrium fluoride, (trifluoromethylsulfonyl ) Yttrium imide, yttrium perchlorate, yttrium trifluoromethanesulfonate and yttrium hexafluoroborate, yttrium chloride and yttrium carbonate, yttrium sulfate and yttrium nitrate, yttrium iodate and yttrium fluoride , A combination of (trifluoromethylsulfonyl) yttrium imide and yttrium perchlorate
  • the separator includes at least one of a porous polymer film, an inorganic porous film, or an organic/inorganic composite film.
  • a porous polymer film an inorganic porous film, or an organic/inorganic composite film.
  • organic/inorganic composite film refers to a film formed by compounding an organic substance and an inorganic substance.
  • the separator includes at least one of porous polypropylene film, porous polyethylene film, porous composite polymer film, glass fiber paper, or porous ceramic separator.
  • a method for preparing the above zinc ion water-based hybrid supercapacitor is provided.
  • the negative electrode, the electrolyte, the separator, and the positive electrode can be assembled.
  • the above preparation method has a simple process and low manufacturing cost.
  • the zinc ion aqueous hybrid supercapacitor prepared by this method has the advantages of high energy density, high specific capacity and good safety performance.
  • the positive electrode active material, conductive agent and binder are made into positive electrode slurry or positive electrode sheet material; then the positive electrode slurry is coated on the surface of the positive electrode current collector or the positive electrode sheet material is pressed on the positive electrode current collector Surface, dry to get the positive electrode of the required size;
  • the negative electrode obtained in step a), the electrolyte obtained in step b), the separator obtained in step c), and the positive electrode obtained in step d) are assembled to obtain a zinc ion aqueous hybrid supercapacitor.
  • the assembly specifically includes: in an air environment, the prepared negative electrode, separator, and positive electrode are closely stacked or wound in sequence, and the electrolyte is added dropwise to completely infiltrate the separator, and then encapsulated into the casing to complete the zinc ion water system mixing super Capacitor assembly.
  • the form of the zinc ion water-based hybrid supercapacitor of the present invention is not limited to the button capacitor, but can also be designed into a flat plate type or a cylindrical type according to the core component.
  • the present invention provides an energy storage system including the above-mentioned zinc ion water-based hybrid supercapacitor.
  • the zinc-ion water-based hybrid supercapacitor includes the above-mentioned zinc-ion water-based hybrid supercapacitor, and therefore has at least the same advantages as the above-mentioned hybrid supercapacitor, has the advantages of high energy density, high specific capacity, and good safety performance, and has obvious advantages in storing electrical energy.
  • the above energy storage system refers to a power storage system that mainly uses a zinc ion water-based hybrid supercapacitor as a power storage source, including but not limited to a home energy storage system or a distributed energy storage system.
  • a home energy storage system electricity is stored in a zinc-ion water-based hybrid supercapacitor used as a power storage source, and the electricity stored in the zinc-ion water-based hybrid supercapacitor is consumed as necessary to be able to use such as household electronic products Various devices.
  • the present invention provides an electric device including the above-mentioned zinc ion water-based hybrid supercapacitor.
  • the electrical equipment includes the above-mentioned zinc-ion water-based hybrid supercapacitor, so it has at least the same advantages as the above hybrid supercapacitor, and has the advantages of high energy density, high specific capacity and good safety performance.
  • the electrical equipment has the same amount of electricity , Can effectively reduce its own weight, and thus more portable and energy-saving.
  • the above electrical equipment includes but is not limited to electronic devices, power tools, or electric vehicles.
  • the electronic device is an electronic device that uses a zinc ion water-based hybrid supercapacitor as an operation power source to perform various functions (for example, playing music).
  • the power tool is a power tool that uses a zinc ion water-based hybrid supercapacitor as a driving power moving part (for example, a drill).
  • Electric vehicles are electric vehicles (including electric bicycles and electric vehicles) that rely on zinc ion water-based hybrid supercapacitors as the driving power source, and may be vehicles equipped with other driving sources (including hybrid power) in addition to zinc-ion water-based hybrid supercapacitors. car).
  • a zinc ion water-based hybrid supercapacitor includes a positive electrode, a negative electrode, an electrolyte, a diaphragm and a casing.
  • Example 2-8 The preparation process of the zinc ion aqueous hybrid supercapacitor of Example 2-8 and Example 1 except for the pore diameter of the porous zinc foil is different, all other steps and materials used are the same, and the energy of the hybrid supercapacitor of Example 2-8
  • the storage performance was tested and compared with the performance of Example 1 of the present invention.
  • Example 1 For the negative electrode materials used in Examples 2-8 and their energy storage performance, see Table 1 for details.
  • Table 1 Performance parameter table of hybrid supercapacitors of Examples 2-8 of the present invention
  • Example 8 the energy density and specific capacitance of Example 8 are lower than those of Examples 1-7, indicating that the preferred aperture of the present invention can further improve the electrochemical performance of the capacitor.
  • Example 2 is a charging and discharging curve diagram of Example 1.
  • the charging voltage of the hybrid supercapacitor of Embodiment 1 can reach 1.8V, which is higher than the charging voltage of the existing zinc ion water-based hybrid supercapacitor .
  • Fig. 3 is a cycle performance diagram of Example 1. It can be seen from the figure that the hybrid supercapacitor of Example 1 has a coulombic efficiency of more than 40%, and the capacitor has no charge and discharge capacity and specific capacitance after 18,000 cycles. The obvious attenuation indicates that it has good cycle stability and long service life.
  • Example 9-20 The preparation process of the zinc ion water-based hybrid supercapacitor of Example 9-20 and Example 1 except for the metal foil used in the preparation of the negative electrode, all other steps and materials used are the same.
  • the energy storage performance of the capacitor was tested and compared with the performance of Example 1 of the present invention.
  • Table 2 For the negative electrode materials used in Examples 9-20 and their energy storage performance, see Table 2 for details.
  • Table 2 Performance parameter table of hybrid supercapacitors of Examples 9-20 of the present invention
  • the preparation process of the zinc ion aqueous hybrid supercapacitor of Examples 21-32 and Example 1 is the same as that of the materials used for the preparation of the positive electrode active material. All other steps and materials used are the same.
  • the energy storage performance of the capacitor was tested and compared with the performance of Example 1 of the present invention.
  • Example 1 The preparation process of the zinc ion water-based hybrid supercapacitor of Examples 33-36 and Example 1 is different, except for the material used in the diaphragm, all other steps and materials used are the same, and the energy of the hybrid supercapacitor of Examples 33-36
  • the storage performance was tested and compared with the performance of Example 1 of the present invention.
  • the preparation process of the zinc ion aqueous hybrid supercapacitor of Examples 37-49 and Example 1 is the same as that of the materials used in the electrolyte except for the different materials used in the electrolyte, and the energy of the hybrid supercapacitor of Examples 37-49
  • the storage performance was tested and compared with the performance of Example 1 of the present invention.
  • Example 44-49 the energy density and specific capacitance of Examples 44-49 are higher than that of Example 1, indicating that the addition of yttrium salt in the electrolyte can further improve the electrochemical performance of the capacitor; the energy density and specific capacitance of Examples 46-48 are higher than Example 49 illustrates that the capacitor using the yttrium salt in the preferred concentration range of the present invention has better electrochemical performance.
  • Example 1 and Examples 53-55 are higher than that of Examples 50-52 and Examples 56-57, indicating that the use of the zinc concentration of the present invention can further improve the electrochemical performance of the capacitor.
  • the preparation process of the zinc ion water-based hybrid supercapacitors of Examples 58-64 and Example 1 is the same as that of the conductive agent and the binder material and their content in the positive electrode, and all other steps and materials used are the same.
  • the energy storage performance of the hybrid supercapacitors of Examples 58-64 was tested and compared with the performance of Example 1 of the present invention.
  • Table 7 Performance parameter table of hybrid supercapacitors of Examples 58-64 of the present invention
  • the preparation process of the hybrid supercapacitor of Comparative Example 1-14 and Example 1 is the same as that of the electrolyte solvent material and its ratio, all other steps and materials used are the same, and the energy of the hybrid supercapacitor of Comparative Example 1-14
  • the storage performance was tested and compared with the performance of Example 1 of the present invention.
  • Comparative Example 15-18 is different from the preparation process of the zinc ion aqueous hybrid supercapacitor of Example 1 except that the metal foil used in the preparation of the negative electrode is the same. All other steps and materials used are the same. The energy storage performance of the capacitor was tested and compared with the performance in the examples of the present invention.
  • the negative electrode materials used in the examples and comparative examples 15-18 and their energy storage performance are specifically shown in Table 9.
  • the energy density and specific capacitance of the metal foil of the planar structure are lower than those of the metal foil of the porous structure, which shows that the use of the porous foil provided by the present invention as a negative electrode can effectively improve the electrochemical performance of the capacitor.
  • the negative electrode includes a negative electrode active material and a negative electrode current collector.
  • the negative electrode active material is activated carbon.
  • the negative electrode current collector is a 16mm stainless steel mesh disc.
  • the negative electrode active material, VGCF, and PTFE are 80:10:10. The mass ratio is made into a slurry in deionized water or ethanol water, rolled into a film, pressed on the above stainless steel mesh disc, and dried to be used as a negative electrode; except for the negative electrode, the remaining materials and preparation steps of this comparative example are the same as in Example 1.
  • the negative electrode includes a negative electrode active material and a negative electrode current collector.
  • the negative electrode active material is zinc and activated carbon with a mass ratio of 40:60.
  • the negative electrode current collector is a 16mm stainless steel mesh disc.
  • VGCF and PTFE are made into slurry in deionized water or ethanol water according to a mass ratio of 80:10:10, rolled into a film, pressed on the above stainless steel mesh disc, and dried to be used as a negative electrode; except for the negative electrode, the remaining materials and The preparation steps are the same as in Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种金属材料用作锌离子水系超级电容器负极及锌离子水系混合超级电容器。锌离子水系混合超级电容器包括负极(1)、隔膜(3)、正极(4)和电解液(2);所述负极(1)为能够沉积锌离子的金属、合金或金属复合材料;所述金属、合金或金属复合材料呈多孔状;所述电解液(2)包括锌盐和水。该锌离子水系混合超级电容器的负极(1)为能够沉积锌离子的金属、合金或金属复合材料,电解液(2)为锌盐的水溶液。

Description

金属材料用作锌离子水系超级电容器负极及锌离子水系混合超级电容器 技术领域
本发明属于新能源领域,具体而言,涉及一种金属材料用作锌离子水系超级电容器负极及锌离子水系混合超级电容器。
背景技术
混合超级电容器是一种结合了二次电池高能量密度以及电容器高功率密度、长循环寿命及其优异快充性能的新型储能***,其包括一个电容器电极、一个二次电池电极、有机电解液以及隔膜。得益于电池及电容器双方电极的作用,混合超级电容器继承了超级电容器功率密度高、循环寿命长的优点以及二次电池活性材料比容量高、有机电解液电压窗口宽等优点,所以相较于常规超级电容器,混合超级电容器拥有更高的能量密度。
目前的电容器均是基于一价金属阳离子为电荷载体的电解质和电极体系,如Li +、Na +、K +,不能满足进一步对于能量密度提升的需求。近年来对于多价阳离子(如Zn 2+、Mg 2+、Al 3+)嵌脱的活性电极材料及相应电解质的发展非常迅速。
在公开号CN107369567A的中国发明专利中,负极材料是锌金属箔片,正极是能够进行离子可逆吸附的碳材料,电解液是锌盐及有机溶剂;有机电解液虽然分解电压较高,但毒性较大、成本高、易燃,且对装配工艺要求高。
在公开号CN103560019A的中国发明专利中,正极活性物质为复合金属氧化物,负极活性物质为能够进行离子可逆吸附的炭材料;电解液是由锌盐与去离子水组成。在公开号CN103545123A的中国发明专利中,正极活性物质有两种,第一种正极活性物质为碳材料(C),第二种正极活性物质为复合金属氧化物ZnM xO y,负极活性物质有两种,第一种负极活性物质为锌(Zn),第二种负极活性物质为碳材料(C);电解液是由锌盐与去离子水组成;正极活性物质(C+ZnM xO y)和导电剂粘附在集流体上制成正极片,负极活性物质(C+Zn)和导电剂粘附在集流体上制成负极片。以上两件专利提出的锌离子超级电容器都是使用水系电解液,因此工作电压较低;正负极都使用了集流体, 因此制备工艺较繁琐。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种能够沉积锌离子的金属、合金或金属复合材料同时作为负极活性材料和负极集流体在锌离子水系混合超级电容器中的应用。上述金属、合金或金属复合材料同时作为负极活性材料和负极集流体能够极大地降低锌离子水系混合超级电容器的自重,进一步提高锌离子水系混合超级电容器的能量密度和理论比容量,简化电容器的生产工艺、降低生产成本且更加环保;另外,由于金属、合金或金属复合材料呈多孔状,因此相对于非多孔状的负极来说能有效避免枝晶的产生,进一步提高循环性能。
本发明的第二目的在于提供一种锌离子水系混合超级电容器,该锌离子水系混合超级电容器的负极为能够沉积锌离子的金属、合金或金属复合材料,电解液包括锌盐和水,该混合超级电容器具有能量密度和理论比容量高、生产成本低、安全性高和环保性好的优点。
本发明的第三目的在于提供一种上述锌离子水系混合超级电容器的制备方法,该方法工艺简单,制造成本低,采用该方法制备得到的锌离子水系混合超级电容器具有能量密度高、比容量高和安全性能好的优点。
本发明的第四目的在于提供一种储能***,该储能***包括上述锌离子水系混合超级电容器,因而至少具有与上述混合超级电容器相同的优势,具有能量密度高、比容量高和安全性能好的优点,储存电能的优势明显。
本发明的第五目的在于提供一种用电设备,该用电设备包括上述锌离子水系混合超级电容器,因而至少具有与上述混合超级电容器相同的优势,具有能量密度高、比容量高和安全性能好的优点,该用电设备在电量相同的情况下,能够有效降低其自身重量,因而更加轻便节能。
为了实现本发明的上述目的,特采用以下技术方案:
第一方面,本发明提供了一种能够沉积锌离子的金属、合金或金属复合材料同时作为负极活性材料和负极集流体在锌离子水系混合超级电容器中的应 用,锌离子存在于混合超级电容器的电解液中;
所述金属、合金或金属复合材料呈多孔状。
作为进一步优选地技术方案,所述金属为锡、铝、铜、铁、锌、镍、钛、镁、锑、锂、钠或钾中的任意一种;
所述合金为至少包括锡、铝、铜、铁、锌、镍、钛、镁、锑、锂、钠或钾中任意一种的合金;
所述金属复合材料为至少包括锡、铝、铜、铁、锌、镍、钛、镁、锑、锂、钠或钾中任意一种的复合材料;
优选地,所述金属、合金或金属复合材料的孔径各自独立地为100nm-200μm。
第二方面,本发明提供了一种锌离子水系混合超级电容器,包括负极、隔膜、正极和电解液;
所述负极为能够沉积锌离子的金属、合金或金属复合材料;所述金属、合金或金属复合材料呈多孔状;
所述电解液包括锌盐和水。
作为进一步优选地技术方案,所述金属为锡、铝、铜、铁、锌、镍、钛、镁、锑、锂、钠或钾中的任意一种;
所述合金为至少包括锡、铝、铜、铁、锌、镍、钛、镁、锑、锂、钠或钾中任意一种的合金;
所述金属复合材料为至少包括锡、铝、铜、铁、锌、镍、钛、镁、锑、锂、钠或钾中任意一种的复合材料;
优选地,所述金属、合金或金属复合材料的孔径各自独立地为100nm-200μm。
作为进一步优选地技术方案,所述正极包括正极材料和正极集流体,所述正极材料包括正极活性材料、导电剂和粘结剂;所述正极活性材料为能够可逆地吸附、脱附电解液中阴离子的碳材料;
优选地,所述正极活性材料的质量含量为60%-95%,所述导电剂的质量含量为5%-30%,所述粘结剂的质量含量为5%-10%。
作为进一步优选地技术方案,电解液中锌盐的浓度为0.1-10mol/L,优选 为1-5mol/L,进一步优选为2-5mol/L;
优选地,所述锌盐包括三氟甲磺酸锌、硫酸锌、氯化锌、碳酸锌、硝酸锌、乙酸锌、锰酸锌、(三氟甲基磺酰基)亚胺锌、高氯酸锌、四氟硼酸锌、六氟磷酸锌、六氟砷酸锌或双乙二酸硼酸锌中的至少一种;
优选地,所述电解液还包括钇盐,电解液中钇盐的浓度为0.01-0.5mol/L;
优选地,所述钇盐包括三氟甲磺酸钇、六氟硼酸钇、氯化钇、碳酸钇、硫酸钇、硝酸钇、碘酸钇、氟化钇、(三氟甲基磺酰基)亚胺钇或高氯酸钇中的至少一种。
第三方面,本发明提供了一种上述锌离子水系混合超级电容器的制备方法,将负极、电解液、隔膜以及正极进行组装即可。
作为进一步优选地技术方案,包括以下步骤:
a)制备负极:将所需尺寸的金属、合金或金属复合材料经表面处理后作为负极备用;
b)配制电解液:将锌盐溶于水中,混合均匀得到电解液;
c)制备隔膜:将所需尺寸的多孔聚合物薄膜、无机多孔薄膜或有机/无机复合薄膜作为隔膜;
d)制备正极:将正极活性材料、导电剂和粘结剂制成正极浆料或正极片状材料;再将正极浆料涂覆于正极集流体表面或将正极片状材料压在正极集流体表面,干燥得到所需尺寸的正极;
将步骤a)得到的负极、步骤b)得到的电解液、步骤c)得到的隔膜以及步骤d)得到的正极进行组装,得到锌离子水系混合超级电容器。
第四方面,本发明提供了一种储能***,包括上述锌离子水系混合超级电容器。
第五方面,本发明提供了一种用电设备,包括上述锌离子水系混合超级电容器。
与现有技术相比,本发明的有益效果为:
本发明提供了一种能够沉积锌离子的金属、合金或金属复合材料同时作为负极活性材料和负极集流体在锌离子水系混合超级电容器中的应用,上述金属、 合金或金属复合材料同时作为锌离子水系混合超级电容器的负极活性材料和负极集流体,将构成现有超级电容器负极中的两个要素(负极活性材料和负极集流体)省略为一种,从而减少了一个部件的体积和重量,结构简化,能够显著降低电容器自重、体积和用料成本;负极活性材料和负极集流体一体化的设计有利于缩短锌离子的传输距离,有利于更有效的传质和/或传荷;由于增加了活性材料的占比,因此能够进一步提高混合超级电容器的能量密度,并利用金属和锌离子的沉积/去沉积实现混合超级电容器的负极反应,提高比容量;由于不需使用有机粘结剂等进行粘结,因此大大简化了电容器的生产工艺,制备方法简单,且不会发生脱落现象,减少了人工和设备成本,且更加环保;另外,由于金属、合金或金属复合材料呈多孔状,因此相对于非多孔状的负极来说能有效避免枝晶的产生,进一步提高循环性能。
本发明提供的锌离子水系混合超级电容器兼具二次电池和超级电容器的特点,同时具有较高的能量密度和比容量;其负极为一体化设计,负极为能够沉积锌的金属、合金或金属复合材料,上述金属、合金或金属复合材料起到负极活性材料和负极集流体的双重作用,能够极大地降低混合超级电容器的自重,进一步提高混合超级电容器的能量密度和理论比容量,简化混合超级电容器的生产工艺、降低生产成本且更加环保;负极活性材料和负极集流体一体化的设计有利于缩短锌离子的传输距离,有利于更有效的传质和/或传荷;此外,该电容器的电解液中将传统的锂离子替换为了锌离子,采用2价的锌离子为活性载流子,每摩尔的锌离子反应可以提供两倍于锂离子的容量,解决了锂资源储量有限、安全性能差和价格高昂的问题,使其应用不再受锂资源的制约,安全性高,且能进一步降低生产成本;采用水系电解液的混合超级电容器,相对于有机电解液的毒性大和易燃的特点,水系电解液不易燃烧,安全性好,绿色环保,因而有利于提高电池的安全性,绿色环保无污染。
进一步地,电解液中包括钇盐能够进一步提高电容器的工作电压,进而提高电池的能量密度和比容量,以及增强电容器的安全性。
本发明提供的锌离子水系混合超级电容器的制备方法工艺简单,制造成本低,采用该方法制备得到的锌离子水系混合超级电容器具有能量密度高、比容量高和安全性能好的优点。
本发明提供的储能***包括上述锌离子水系混合超级电容器,因而至少具有与上述混合超级电容器相同的优势,具有能量密度高、比容量高和安全性能好的优点,储存电能的优势明显。
本发明提供的用电设备包括上述锌离子水系混合超级电容器,因而至少具有与上述混合超级电容器相同的优势,具有能量密度高、比容量高和安全性能好的优点,该用电设备在电量相同的情况下,能够有效降低其自身重量,因而更加轻便节能。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的锌离子水系混合超级电容器的结构示意图;
图2为实施例1中锌离子水系混合超级电容器的充放电曲线图;
图3为实施例1中锌离子水系混合超级电容器的循环性能图。
图标:1-负极;2-电解液;3-隔膜;4-正极;5-正极活性材料;6-正极集流体。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。
需要说明的是:
本发明中,如果没有特别的说明,本文所提到的所有实施方式以及优选实施方法可以相互组合形成新的技术方案。
本发明中,如果没有特别的说明,本文所提到的所有技术特征以及优选特征可以相互组合形成新的技术方案。
本发明中,如果没有特别的说明,百分数(%)或者份指的是相对于组合物的重量百分数或重量份。
本发明中,如果没有特别的说明,所涉及的各组分或其优选组分可以相互组合形成新的技术方案。
本发明中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0.1-10”表示本文中已经全部列出了“0.1-10”之间的全部实数,“0.1-10”只是这些数值组合的缩略表示。
本发明所公开的“范围”以下限和上限的形式,可以分别为一个或多个下限,和一个或多个上限。
本发明中,除非另有说明,各个反应或操作步骤可以顺序进行,也可以按照顺序进行。优选地,本文中的反应方法是顺序进行的。
除非另有说明,本文中所用的专业与科学术语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法或材料也可应用于本发明中。
第一方面,在至少一个实施例中提供了一种能够沉积锌离子的金属、合金或金属复合材料同时作为负极活性材料和负极集流体在锌离子水系混合超级电容器中的应用,锌离子存在于混合超级电容器的电解液中;
所述金属、合金或金属复合材料呈多孔状。
需要说明的是:
“能够沉积锌离子的金属、合金或金属复合材料”是指能够沉积锌离子的金属、能够沉积锌离子的合金材料或能够沉积锌离子的金属复合导电材料。
“合金”是指由两种或两种以上的金属与金属或非金属经一定方法所合成的具有金属特性的物质。
“金属复合材料”是指金属与其他非金属材料结合所形成的金属基复合导电材料。典型但非限制性的金属复合材料包括石墨烯-金属复合材料、碳纤维-金属复合材料和陶瓷-金属复合材料等。
负极活性材料和负极集流体共同构成混合超级电容器的负极。
“多孔状”是指材料中分布有相互贯通或封闭的孔洞,并构成网络结构。
“锌离子水系混合超级电容器”是指主要以锌盐的水溶液为电解液的锌离子混合超级电容器。
上述能够沉积锌离子的金属、合金或金属复合材料同时作为负极活性材料和负极集流体在锌离子水系混合超级电容器中的应用,上述金属、合金或金属复合材料同时作为锌离子水系混合超级电容器的负极活性材料和负极集流体,将构成现有超级电容器负极中的两个要素(负极活性材料和负极集流体)省略为一种,从而减少了一个部件的体积和重量,结构简化,能够显著降低电容器自重、体积和用料成本;负极活性材料和负极集流体一体化的设计有利于缩短锌离子的传输距离,有利于更有效的传质和/或传荷;由于增加了活性材料的占比,因此能够进一步提高混合超级电容器的能量密度,并利用金属和锌离子的沉积/去沉积实现混合超级电容器的负极反应,提高比容量;由于不需使用有机粘结剂等进行粘结,因此大大简化了电容器的生产工艺,制备方法简单,且不会发生脱落现象,减少了人工和设备成本,且更加环保;另外,由于金属、 合金或金属复合材料呈多孔状,因此相对于非多孔状的负极来说能有效避免枝晶的产生,进一步提高循环性能。
与现有的采用碳材料作为负极活性材料相比,采用上述金属、合金或金属复合材料同时作为锌离子水系混合超级电容器的负极活性材料和负极集流体不但具有更高的能量密度、比容量,还能显著简化生产工艺、降低成本且更加环保。
在一种优选地实施方式中,所述金属为锡、铝、铜、铁、锌、镍、钛、镁、锑、锂、钠或钾中的任意一种;
所述合金为至少包括锡、铝、铜、铁、锌、镍、钛、镁、锑、锂、钠或钾中任意一种的合金;
所述金属复合材料为至少包括锡、铝、铜、铁、锌、镍、钛、镁、锑、锂、钠或钾中任意一种的复合材料。
上述金属、合金和金属复合材料均具有储量丰富、价格低廉、易于获得、且环境友好的优点,作为锌离子水系混合超级电容器负极能够显著降低混合超级电容器的成本,且其导电性能更好,容易捕捉到更多的电解液中的锌离子使锌离子能够沉积在负极,由此提高混合超级电容器的比容量和能量密度。
本发明中,合金典型但非限制性的为:锡锌合金、锡铅合金、锡铝合金、铝铁合金、锂钠合金、钛镁合金、镁钾合金、锌铜合金、锌钠合金、锡铝铜合金、锌镍钛合金或镁锑锂合金等。金属复合材料典型但非限制性的为:锌/石墨烯复合箔片或锡/石墨烯复合箔片等。
优选地,所述金属、合金或金属复合材料的孔径各自独立地为100nm-200μm,优选为200nm。上述孔径典型但非限制性的为100nm、200nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1μm、20μm、40μm、 60μm、80μm、100μm、120μm、140μm、160μm、180μm或200μm。当孔径为100nm-200μm时,能够最大程度地抑制枝晶的产生,保证电容器的能量密度,孔径过大则会导致电导率降低,孔径过小则无法有效抑制枝晶的产生。
第二方面,如图1所示,在至少一个实施例中提供了一种锌离子水系混合超级电容器,包括负极1、隔膜3、正极4和电解液2;
负极1为能够沉积锌离子的金属、合金或金属复合材料;所述金属、合金或金属复合材料呈多孔状;
电解液2为包括锌盐和水。
需要说明的是:
“能够沉积锌离子的金属、合金或金属复合材料”是指能够沉积锌离子的金属、能够沉积锌离子的合金材料或能够沉积锌离子的金属复合导电材料。
“合金”是指由两种或两种以上的金属与金属或非金属经一定方法所合成的具有金属特性的物质。
“金属复合材料”是指金属与其他非金属材料结合所形成的金属基复合导电材料。典型但非限制性的金属复合材料包括石墨烯-金属复合材料、碳纤维-金属复合材料和陶瓷-金属复合材料等。
负极活性材料和负极集流体共同构成混合超级电容器的负极。
“多孔状”是指材料中分布有相互贯通或封闭的孔洞,并构成网络结构。
上述锌离子水系混合超级电容器兼具二次电池和超级电容器的特点,同时具有较高的能量密度和比容量;其负极为一体化设计,负极为能够沉积锌的金属、合金或金属复合材料,上述金属、合金或金属复合材料起到负极活性材料和负极集流体的双重作用,能够极大地降低混合超级电容器的自重,进一步提高混合超级电容器的能量密度和理论比容量,简化混合超级电容器的生产工 艺、降低生产成本且更加环保;负极活性材料和负极集流体一体化的设计有利于缩短锌离子的传输距离,有利于更有效的传质和/或传荷;此外,该电容器的电解液中将传统的锂离子替换为了锌离子,采用2价的锌离子为活性载流子,每摩尔的锌离子反应可以提供两倍于锂离子的容量,解决了锂资源储量有限、安全性能差和价格高昂的问题,使其应用不再受锂资源的制约,安全性高,且能进一步降低生产成本;采用水系电解液的混合超级电容器,相对于有机电解液的毒性大和易燃的特点,水系电解液不易燃烧,安全性好,绿色环保,因而有利于提高电池的安全性,绿色环保无污染。
上述锌离子水系混合超级电容器的工作原理为:充电时,电解液中锌离子(Zn 2+)在负极发生沉积反应,同时电解液中的阴离子被正极材料吸附,完成充电过程;放电时,负极发生去沉积反应,锌离子(Zn 2+)从负极退镀回归于电解液中,同时阴离子也从正极解吸附,回归到电解液中,完成放电过程。
在一种优选地实施方式中,所述金属为锡、铝、铜、铁、锌、镍、钛、镁、锑、锂、钠或钾中的任意一种;
所述合金为至少包括锡、铝、铜、铁、锌、镍、钛、镁、锑、锂、钠或钾中任意一种的合金;
所述金属复合材料为至少包括锡、铝、铜、铁、锌、镍、钛、镁、锑、锂、钠或钾中任意一种的复合材料。
上述金属、合金和金属复合材料均具有储量丰富、价格低廉、易于获得、且环境友好的优点,作为锌离子水系混合超级电容器负极能够显著降低混合超级电容器的成本,且其导电性能更好,容易捕捉到更多的电解液中的锌离子使锌离子能够沉积在负极,由此提高混合超级电容器的比容量和能量密度。
本发明中,合金典型但非限制性的为:锡锌合金、锡铅合金、锡铝合金、铝铁合金、锂钠合金、钛镁合金、镁钾合金、锌铜合金、锌钠合金、锡铝铜合金、锌镍钛合金或镁锑锂合金等。金属复合材料典型但非限制性的为:锌/石墨烯复合箔片或锡/石墨烯复合箔片等。
优选地,所述金属、合金或金属复合材料的孔径各自独立地为100nm-200μm,优选为200nm。上述孔径典型但非限制性的为100nm、200nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1μm、20μm、40μm、60μm、80μm、100μm、120μm、140μm、160μm、180μm或200μm。当孔径为100nm-200μm时,能够最大程度地抑制枝晶的产生,保证电容器的能量密度,孔径过大则会导致电导率降低,孔径过小则无法有效抑制枝晶的产生。
在一种优选地实施方式中,如图1所示,正极4包括正极材料和正极集流体6,所述正极材料包括正极活性材料5、导电剂和粘结剂;正极活性材料5为能够可逆地吸附、脱附电解液中阴离子的碳材料。
优选地,所述正极活性材料的质量含量为60%-95%,所述导电剂的质量含量为5%-30%,所述粘结剂的质量含量为5%-10%。上述正极活性材料的质量含量典型但非限制性的为60%、62%、64%、66%、68%、70%、72%、74%、76%、78%、80%、82%、84%、86%、88%、90%、92%、94%或95%;上述导电剂的质量含量典型但非限制性的为5%、6%、8%、10%、12%、14%、16%、18%、20%、22%、24%、26%、28%或30%。上述粘结剂的含量典型但非限制性的为5%、6%、7%、8%、9%或10%。
导电剂是为了保证电极具有良好的充放电性能,在极片制作时通常加入一定量的导电物质,在活性材料之间、活性材料与集流体之间起到收集微电流的作用,以减小电极的接触电阻加速电子的移动速率,同时也能有效地提高锌离 子在电极材料中的迁移速率,从而提高电极的充放电效率。粘结剂的主要作用是粘结和保持活性材料,增强正极活性材料(碳材料)与导电剂以及正极活性材料与集流体之间的电子接触,更好地稳定电极的结构,并在混合超级电容器充放电过程中起到一定的缓冲作用。主要由上述重量含量的正极活性材料、导电剂和粘结剂制备而成的正极材料不但形态稳定、不易脱落,而且导电性能更好。
进一步地,所述正极活性材料包括活性炭、碳纳米管、石墨烯、中间相碳微球、三维有序介孔碳球、模板骨架碳、碳化物衍生碳、炭气凝胶、玻态炭、纳米木炭或炭泡沫中的至少一种。本发明中,碳材料典型但非限制性的为:活性炭,碳纳米管,石墨烯,中间相碳微球,三维有序介孔碳球,模板骨架碳,碳化物衍生碳,炭气凝胶,玻态炭,纳米木炭,炭泡沫,活性炭和碳纳米管的组合,石墨烯和中间相碳微球的组合,三维有序介孔碳球和模板骨架碳的组合,碳化物衍生碳和炭气凝胶的组合,玻态炭和纳米木炭的组合,活性炭、碳纳米管和石墨烯的组合,中间相碳微球、三维有序介孔碳球和模板骨架碳的组合,碳化物衍生碳、炭气凝胶和玻态炭的组合,或,玻态炭、纳米木炭和炭泡沫的组合等。
更进一步地,活性炭包括粉末活性炭、活性炭纤维、活性炭毡或活性炭布中的至少一种。上述活性炭典型但非限制性的为:粉末活性炭,活性炭纤维,活性炭毡,活性炭布,粉末活性炭和活性炭纤维的组合,活性炭毡和活性炭布的组合,粉末活性炭、活性炭纤维和活性炭毡的组合,或,活性炭纤维、活性炭毡和活性炭布的组合等。
进一步地,所述导电剂包括导电炭黑、导电碳球、导电石墨、碳纳米管、导电碳纤维、石墨烯或还原氧化石墨烯中的至少一种。上述导电剂典型但非限 制性的为:导电炭黑,导电碳球,导电石墨,碳纳米管,导电碳纤维,石墨烯,还原氧化石墨烯,导电炭黑和导电碳球的组合,导电石墨和碳纳米管的组合,导电碳纤维和石墨烯的组合,石墨烯和还原氧化石墨烯的组合,导电炭黑、导电碳球和导电石墨的组合,碳纳米管、导电碳纤维和石墨烯的组合,或,导电碳纤维、石墨烯和还原氧化石墨烯的组合等。
进一步地,所述粘结剂包括聚偏氟乙烯、聚四氟乙烯、聚乙烯醇、羧甲基纤维素、SBR橡胶或聚烯烃中的至少一种。上述粘结剂典型但非限制性的为:聚偏氟乙烯,聚四氟乙烯,聚乙烯醇,羧甲基纤维素,SBR橡胶(Styrene Butadiene Rubber,丁苯橡胶),聚烯烃,聚偏氟乙烯和聚四氟乙烯的组合,聚乙烯醇和羧甲基纤维素的组合,SBR橡胶和聚烯烃的组合,聚偏氟乙烯、聚四氟乙烯和聚乙烯醇的组合,或,羧甲基纤维素、SBR橡胶和聚烯烃的组合等。
进一步地,所述正极集流体为铝、铜、铁、锡、锌、镍或钛中的任意一种;
或,所述正极集流体为至少包括铝、铜、铁、锡、锌、镍或钛中任意一种的合金;
或,所述正极集流体为至少包括铝、铜、铁、锡、锌、镍或钛中任意一种的复合材料。
在一种优选地实施方式中,电解液中锌盐的浓度为0.1-10mol/L,优选为1-5mol/L,进一步优选为2-5mol/L。离子浓度影响电解液的离子传输性能,电解液中锌盐浓度过低,离子传输性能差,导电率低;电解液中锌盐浓度过高,离子过多,电解液的粘度和离子缔合的程度也会随锌盐浓度增加而增大,这又会降低电导率。水的热力学稳定电位仅为1.23V,故而理论上水系超级电容器的输出电压在保证电解质不分解的前提下难以超过此电位。本优选地实施方式 所提供的特定浓度的锌盐的导电性最佳,在该浓度下,混合超级电容器的电压能够达到1.8V。
本发明中,锌盐典型但非限制性的浓度为:0.1mol/L、0.2mol/L、0.3mol/L、0.4mol/L、0.5mol/L、0.6mol/L、0.7mol/L、0.8mol/L、0.9mol/L、1.0mol/L、2mol/L、3mol/L、4mol/L、5mol/L、6mol/L、7mol/L、8mol/L、9mol/L或10mol/L。
优选地,所述锌盐包括三氟甲磺酸锌、硫酸锌、氯化锌、碳酸锌、硝酸锌、乙酸锌、锰酸锌、(三氟甲基磺酰基)亚胺锌、高氯酸锌、四氟硼酸锌、六氟磷酸锌、六氟砷酸锌或双乙二酸硼酸锌中的至少一种。上述锌盐典型但非限制性的为:三氟甲磺酸锌,硫酸锌,氯化锌,碳酸锌,硝酸锌,乙酸锌,锰酸锌,(三氟甲基磺酰基)亚胺锌,高氯酸锌,四氟硼酸锌,六氟磷酸锌,六氟砷酸锌,双乙二酸硼酸锌,三氟甲磺酸锌和硫酸锌的组合,氯化锌和碳酸锌的组合,硝酸锌和乙酸锌的组合,锰酸锌和(三氟甲基磺酰基)亚胺锌的组合,高氯酸锌和四氟硼酸锌的组合,六氟磷酸锌和六氟砷酸锌的组合,三氟甲磺酸锌、硫酸锌和氯化锌的组合,碳酸锌、硝酸锌和乙酸锌的组合,锰酸锌、(三氟甲基磺酰基)亚胺锌和高氯酸锌的组合,高氯酸锌、四氟硼酸锌和六氟磷酸锌的组合,或,六氟磷酸锌、六氟砷酸锌和双乙二酸硼酸锌的组合等。
优选地,所述电解液还包括钇盐,电解液中钇盐的浓度为0.01-0.5mol/L。电解液中包括钇盐能够进一步提高电容器的工作电压,进而提高电池的能量密度和比容量,以及增强电容器的安全性。上述钇盐的浓度典型但非限制性的为0.01mol/L、0.05mol/L、0.1mol/L、0.2mol/L、0.3mol/L、0.4mol/L或0.5mol/L。
优选地,所述钇盐包括三氟甲磺酸钇、六氟硼酸钇、氯化钇、碳酸钇、硫酸钇、硝酸钇、碘酸钇、氟化钇、(三氟甲基磺酰基)亚胺钇或高氯酸钇中的至 少一种。上述钇盐典型但非限制性的为三氟甲磺酸钇,六氟硼酸钇,氯化钇,碳酸钇,硫酸钇,硝酸钇,碘酸钇,氟化钇,(三氟甲基磺酰基)亚胺钇,高氯酸钇,三氟甲磺酸钇和六氟硼酸钇的组合,氯化钇和碳酸钇的组合,硫酸钇和硝酸钇的组合,碘酸钇和氟化钇的组合,(三氟甲基磺酰基)亚胺钇和高氯酸钇的组合,三氟甲磺酸钇、六氟硼酸钇和氯化钇的组合,碳酸钇、硫酸钇和硝酸钇的组合,或,碘酸钇、氟化钇和(三氟甲基磺酰基)亚胺钇的组合等。
进一步地,所述隔膜包括多孔聚合物薄膜、无机多孔薄膜或有机/无机复合薄膜中的至少一种。上述“有机/无机复合薄膜”是指有机物和无机物复合而成薄膜。
更进一步地,所述隔膜包括多孔聚丙烯薄膜、多孔聚乙烯薄膜、多孔复合聚合物薄膜、玻璃纤维纸或多孔陶瓷隔膜中的至少一种。
第三方面,在至少一个实施例中提供了一种上述锌离子水系混合超级电容器的制备方法,将负极、电解液、隔膜以及正极进行组装即可。
上述制备方法工艺简单,制造成本低,采用该方法制备得到的锌离子水系混合超级电容器具有能量密度高、比容量高和安全性能好的优点。
在一种优选地实施方式中,包括以下步骤:
a)制备负极:将所需尺寸的金属、合金或金属复合材料经表面处理后作为负极备用;
b)配制电解液:将锌盐和任选的钇盐溶于水中,混合均匀得到电解液;
c)制备隔膜:将所需尺寸的多孔聚合物薄膜、无机多孔薄膜或有机/无机复合薄膜作为隔膜;
d)制备正极:将正极活性材料、导电剂和粘结剂制成正极浆料或正极片状材料;再将正极浆料涂覆于正极集流体表面或将正极片状材料压在正极集流体表面,干燥得到所需尺寸的正极;
将步骤a)得到的负极、步骤b)得到的电解液、步骤c)得到的隔膜以及步骤d)得到的正极进行组装,得到锌离子水系混合超级电容器。
优选地,组装时具体包括:在空气环境下,将制备好的负极、隔膜、正极依次紧密堆叠或卷绕,滴加电解液使隔膜完全浸润,然后封装入壳体,完成锌离子水系混合超级电容器组装。
本发明的锌离子水系混合超级电容器形态不局限于扣式电容器,也可根据核心成分设计成平板型、圆柱型等形态。
第四方面,本发明提供了一种储能***,包括上述锌离子水系混合超级电容器。该锌离子水系混合超级电容器包括上述锌离子水系混合超级电容器,因而至少具有与上述混合超级电容器相同的优势,具有能量密度高、比容量高和安全性能好的优点,储存电能的优势明显。
上述储能***是指主要使用锌离子水系混合超级电容器作为电力储存源的电力储存***,包括但不限于家用储能***或分布式储能***等。例如,在家用储能***中,使电力储存在用作电力储存源的锌离子水系混合超级电容器中,并且根据需要消耗储存在锌离子水系混合超级电容器中的电力以能够使用诸如家用电子产品的各种装置。
第五方面,本发明提供了一种用电设备,包括上述锌离子水系混合超级电容器。该用电设备包括上述锌离子水系混合超级电容器,因而至少具有与上述混合超级电容器相同的优势,具有能量密度高、比容量高和安全性能好的优点, 该用电设备在电量相同的情况下,能够有效降低其自身重量,因而更加轻便节能。
上述用电设备包括但不限于电子装置、电动工具或电动车辆等。电子装置是使用锌离子水系混合超级电容器作为操作电源执行各种功能(例如,演奏音乐)的电子装置。电动工具是使用锌离子水系混合超级电容器作为驱动电源移动部件(例如,钻头)的电动工具。电动车辆是依靠锌离子水系混合超级电容器作为驱动电源运行的电动车辆(包括电动自行车、电动汽车),并且可以是除了锌离子水系混合超级电容器之外还装备有其他驱动源的汽车(包括混合动力车)。
下面结合实施例和对比例对本发明做进一步详细的说明。
实施例1
一种锌离子水系混合超级电容器,包括正极、负极、电解液、隔膜和壳体。
制备混合超级电容器正极:将0.8g活性炭(AC)、0.1g导电碳黑、0.1g聚偏氟乙烯加入到2mL的N-甲基吡咯烷酮中,充分研磨获得均匀浆料;然后将浆料均匀涂覆于铝箔表面(即正极集流体),80℃真空干燥12小时;将干燥所得电极片裁切成直径10mm的圆片,用油压机压实(10MPa,10s)后作为混合超级电容器正极备用;
制备混合超级电容器负极:取厚度为0.2mm的多孔锌箔,孔径为200nm,裁切成直径12mm的圆片,用丙酮、乙醇清洗多孔锌箔表面,干燥后作为负极备用;
配制电解液:在空气中称取5.445g三氟甲磺酸锌(Zn(CF 3SO 3) 2)加入到5mL去离子水中,搅拌至三氟甲磺酸锌(Zn(CF 3SO 3) 2)完全溶解,作为电解液备用;
制备隔膜:将玻璃纤维纸裁切成直径为16mm的圆片,80℃真空干燥12h后作为隔膜备用;
混合超级电容器组装:在空气气氛中,将上述制备好的正极、隔膜、负极依次紧密堆叠,滴加电解液使隔膜完全浸润,然后将上述堆叠部分封装入外壳,完成电容器的组装。
实施例2-8
实施例2-8与实施例1的锌离子水系混合超级电容器制备过程除多孔锌箔的孔径不同以外,其他所有步骤及使用的材料都相同,同时对实施例2-8的混合超级电容器的能量存储性能进行测试,并与本发明实施例1的性能进行比较,实施例2-8所使用的负极材料及其能量存储性能具体参见表1。
表1:本发明实施例2-8的混合超级电容器的性能参数表
实施例编号 锌箔孔径 能量密度(Wh/kg) 比电容(F/g)
2 100nm 200 139
3 400nm 182 121
4 800nm 170 104
5 50μm 136 70
6 150μm 123 87
7 200μm 115 65
8 230μm 102 50
1 200nm 209 146
可见,实施例8的能量密度和比电容均低于实施例1-7,说明采用本发明优选的孔径能够进一步提高电容器的电化学性能。
图2是实施例1的充放电曲线图,从图中可以看出,实施例1的混合超级电容器的充电电压能够达到1.8V,该电压高于现有的锌离子水系混合超级电容 器的充电电压。图3是实施例1的循环性能图,从图中可以看出,实施例1的混合超级电容器的库仑效率在40%以上,该电容器在循环18000次后,其充放电容量和比电容均无明显的衰减,说明其循环稳定性好,使用寿命长。
实施例9-20
实施例9-20与实施例1的锌离子水系混合超级电容器制备过程除制备负极时使用的金属箔片不同以外,其他所有步骤及使用的材料都相同,同时对实施例9-20的混合超级电容器的能量存储性能进行测试,并与本发明实施例1的性能进行比较,实施例9-20所使用的负极材料及其能量存储性能具体参见表2。
表2:本发明实施例9-20的混合超级电容器的性能参数表
实施例编号 负极金属箔片 能量密度(Wh/kg) 比电容(F/g)
9 多孔铝箔 105 63
10 多孔锡箔 143 93
11 多孔铜箔 120 85
12 多孔铁箔 102 50
13 多孔镍箔 123 87
14 多孔钛箔 136 70
15 多孔锰箔 115 65
16 多孔锂箔 119 79
17 多孔钠箔 103 51
18 多孔钾箔 116 68
19 多孔锌铜合金 143 91
20 多孔铝钛合金 152 98
1 多孔锌箔 209 146
实施例21-32
实施例21-32与实施例1的锌离子水系混合超级电容器制备过程除制备正极活性物质所采用的材料不同以外,其他所有步骤及使用的材料都相同,同时对实施例21-32的混合超级电容器的能量存储性能进行测试,并与本发明实施例1的性能进行比较,实施例21-32所使用的正极活性物质及其能量存储性能具体参见表3。
表3:本发明实施例21-32的混合超级电容器的性能参数表
实施例编号 正极活性物质 能量密度(Wh/kg) 比电容(F/g)
21 石墨烯 160 102
22 中间相碳微球 137 90
23 三维有序介孔碳球 153 95
24 粉末活性炭 167 108
25 活性炭纤维 176 114
26 模板骨架碳 148 92
27 碳化物衍生炭 154 100
28 碳纳米管 156 101
29 炭气凝胶 121 73
30 玻态炭 116 70
31 甘草活性炭 146 94
32 炭泡沫 128 87
1 沥青活性炭 209 146
实施例33-36
实施例33-36与实施例1的锌离子水系混合超级电容器制备过程除隔膜所采用的材料不同以外,其他所有步骤及使用的材料都相同,同时对实施例33-36 的混合超级电容器的能量存储性能进行测试,并与本发明实施例1的性能进行比较,实施例33-36所使用的隔膜及其能量存储性能具体参见表4。
表4:本发明实施例33-36的混合超级电容器的性能参数表
Figure PCTCN2019124739-appb-000001
实施例37-49
实施例37-49与实施例1的锌离子水系混合超级电容器制备过程除电解质所采用的材料不同以外,其他所有步骤及使用的材料都相同,同时对实施例37-49的混合超级电容器的能量存储性能进行测试,并与本发明实施例1的性能进行比较,实施例37-49所使用的电解质及其能量存储性能具体参见表5。
表5:本发明实施例37-49的混合超级电容器的性能参数表
Figure PCTCN2019124739-appb-000002
Figure PCTCN2019124739-appb-000003
可见,实施例44-49的能量密度和比电容均高于实施例1,说明电解液中增加钇盐能够进一步提高电容器的电化学性能;实施例46-48的能量密度和比电容均高于实施例49,说明采用本发明优选浓度范围内的钇盐的电容器的电化学性能更好。
实施例50-57
实施例50-57与实施例1的锌离子水系混合超级电容器制备过程除所配电解液中锌盐浓度不同以外,其他所有步骤及使用的材料都相同,同时对实施例50-57的混合超级电容器的能量存储性能进行测试,并与本发明实施例1的性能进行比较,实施例50-57所使用的锌盐浓度及其能量存储性能具体参见表6。
表6:本发明实施例50-57的混合超级电容器的性能参数表
实施例编号 锌盐浓度 能量密度(Wh/kg) 比电容(F/g)
50 0.1mol/L 50 21
51 1mol/L 90 35
52 1.5mol/L 120 62
53 2mol/L 170 121
54 4mol/L 166 115
55 5mol/L 142 89
56 10mol/L 124 65
57 12mol/L 97 43
1 3mol/L 209 146
可见,实施例1和实施例53-55的能量密度和比电容均高于实施例50-52和实施例56-57,说明采用本发明进一步优选的锌盐浓度能够提高电容器的电化学性能。
实施例58-64
实施例58-64与实施例1的锌离子水系混合超级电容器制备过程除所配正极中导电剂以及粘结剂材料及其所占含量不同以外,其他所有步骤及使用的材料都相同,同时对实施例58-64的混合超级电容器的能量存储性能进行测试,并与本发明实施例1的性能进行比较,实施例58-64所使用的导电剂、粘结剂及其能量存储性能具体参见表7。
表7:本发明实施例58-64的混合超级电容器的性能参数表
Figure PCTCN2019124739-appb-000004
Figure PCTCN2019124739-appb-000005
对比例1-14
对比例1-14与实施例1的混合超级电容器制备过程除电解液溶剂材料及其配比不同以外,其他所有步骤及使用的材料都相同,同时对对比例1-14的混合超级电容器的能量存储性能进行测试,并与本发明实施例1的性能进行比较,对比例1-14所使用的溶剂及其能量存储性能具体参见表8。
表8:对比例1-14的混合超级电容器的性能参数表
Figure PCTCN2019124739-appb-000006
Figure PCTCN2019124739-appb-000007
对比例15-18
对比例15-18与实施例1的锌离子水系混合超级电容器制备过程除制备负极时使用的金属箔片不同以外,其他所有步骤及使用的材料都相同,同时对实施例15-18的混合超级电容器的能量存储性能进行测试,并与本发明实施例中的性能进行比较,实施例和对比例15-18所使用的负极材料及其能量存储性能具体参见表9。
表9:对比例15-18的混合超级电容器的性能参数表
编号 负极金属箔片 能量密度(Wh/kg) 比电容(F/g)
对比例15 平面锌箔 198 137
实施例1 多孔锌箔 209 146
对比例16 平面铝箔 96 54
实施例9 多孔铝箔 105 63
对比例17 平面钛箔 123 61
实施例14 多孔钛箔 136 70
对比例18 平面锌铜合金 132 67
实施例19 多孔锌铜合金 143 91
可见,平面结构的金属箔片的能量密度和比电容均低于多孔结构的金属箔片,由此说明采用本发明提供的多孔状的箔片作为负极能够有效提高电容器的电化学性能。
对比例19
一种锌离子水系混合超级电容器,负极包括负极活性材料和负极集流体,负极活性材料为活性炭,负极集流体为16mm的不锈钢网圆片,将负极活性物质、VGCF、PTFE按照80:10:10的质量比在去离子水或乙醇水中制成浆料,擀膜,压在上述不锈钢网圆片上,干燥后作为负极;除负极外,本对比例其余材料和制备步骤均与实施例1相同。
对比例20
一种锌离子水系混合超级电容器,负极包括负极活性材料和负极集流体,负极活性材料为质量比为40:60的锌与活性炭,负极集流体为16mm的不锈钢网圆片,将负极活性物质、VGCF、PTFE按照80:10:10的质量比在去离子水或乙醇水中制成浆料,擀膜,压在上述不锈钢网圆片上,干燥后作为负极;除负极外,本对比例其余材料和制备步骤均与实施例1相同。
表10:对比例19-20的电容器的性能参数表
编号 能量密度(Wh/kg) 比电容(F/g)
对比例19 128 67
对比例20 77 35
实施例1 209 146
尽管已用具体实施例来说明和描述了本发明,然而应意识到,在不背离本发明的精神和范围的情况下可以作出许多其它的更改和修改。因此,这意味着在所附权利要求中包括属于本发明范围内的所有这些变化和修改。

Claims (10)

  1. 一种能够沉积锌离子的金属、合金或金属复合材料同时作为负极活性材料和负极集流体在锌离子水系混合超级电容器中的应用,锌离子存在于混合超级电容器的电解液中;
    所述金属、合金或金属复合材料呈多孔状。
  2. 根据权利要求1所述的应用,其特征在于,所述金属为锡、铝、铜、铁、锌、镍、钛、镁、锑、锂、钠或钾中的任意一种;
    所述合金为至少包括锡、铝、铜、铁、锌、镍、钛、镁、锑、锂、钠或钾中任意一种的合金;
    所述金属复合材料为至少包括锡、铝、铜、铁、锌、镍、钛、镁、锑、锂、钠或钾中任意一种的复合材料;
    优选地,所述金属、合金或金属复合材料的孔径各自独立地为100nm-200μm。
  3. 一种锌离子水系混合超级电容器,其特征在于,包括负极、隔膜、正极和电解液;
    所述负极为能够沉积锌离子的金属、合金或金属复合材料;所述金属、合金或金属复合材料呈多孔状;
    所述电解液包括锌盐和水。
  4. 根据权利要求3所述的锌离子水系混合超级电容器,其特征在于,所述金属为锡、铝、铜、铁、锌、镍、钛、镁、锑、锂、钠或钾中的任意一种;
    所述合金为至少包括锡、铝、铜、铁、锌、镍、钛、镁、锑、锂、钠或钾中任意一种的合金;
    所述金属复合材料为至少包括锡、铝、铜、铁、锌、镍、钛、镁、锑、锂、 钠或钾中任意一种的复合材料;
    优选地,所述金属、合金或金属复合材料的孔径各自独立地为100nm-200μm。
  5. 根据权利要求3所述的锌离子水系混合超级电容器,其特征在于,所述正极包括正极材料和正极集流体,所述正极材料包括正极活性材料、导电剂和粘结剂;所述正极活性材料为能够可逆地吸附、脱附电解液中阴离子的碳材料;
    优选地,所述正极活性材料的质量含量为60%-95%,所述导电剂的质量含量为5%-30%,所述粘结剂的质量含量为5%-10%。
  6. 根据权利要求3-5任一项所述的锌离子水系混合超级电容器,其特征在于,电解液中锌盐的浓度为0.1-10mol/L,优选为1-5mol/L,进一步优选为2-5mol/L;
    优选地,所述锌盐包括三氟甲磺酸锌、硫酸锌、氯化锌、碳酸锌、硝酸锌、乙酸锌、锰酸锌、(三氟甲基磺酰基)亚胺锌、高氯酸锌、四氟硼酸锌、六氟磷酸锌、六氟砷酸锌或双乙二酸硼酸锌中的至少一种;
    优选地,所述电解液还包括钇盐,电解液中钇盐的浓度为0.01-0.5mol/L;
    优选地,所述钇盐包括三氟甲磺酸钇、六氟硼酸钇、氯化钇、碳酸钇、硫酸钇、硝酸钇、碘酸钇、氟化钇、(三氟甲基磺酰基)亚胺钇或高氯酸钇中的至少一种。
  7. 权利要求3-6任一项所述的锌离子水系混合超级电容器的制备方法,其特征在于,将负极、电解液、隔膜以及正极进行组装即可。
  8. 根据权利要求7所述的制备方法,其特征在于,包括以下步骤:
    a)制备负极:将所需尺寸的金属、合金或金属复合材料经表面处理后作为负极备用;
    b)配制电解液:将锌盐溶于水中,混合均匀得到电解液;
    c)制备隔膜:将所需尺寸的多孔聚合物薄膜、无机多孔薄膜或有机/无机复 合薄膜作为隔膜;
    d)制备正极:将正极活性材料、导电剂和粘结剂制成正极浆料或正极片状材料;再将正极浆料涂覆于正极集流体表面或将正极片状材料压在正极集流体表面,干燥得到所需尺寸的正极;
    将步骤a)得到的负极、步骤b)得到的电解液、步骤c)得到的隔膜以及步骤d)得到的正极进行组装,得到锌离子水系混合超级电容器。
  9. 一种储能***,其特征在于,包括权利要求3-6任一项所述的锌离子水系混合超级电容器。
  10. 一种用电设备,其特征在于,包括权利要求3-6任一项所述的锌离子水系混合超级电容器。
PCT/CN2019/124739 2018-12-14 2019-12-12 金属材料用作锌离子水系超级电容器负极及锌离子水系混合超级电容器 WO2020119744A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811536522.8A CN109637837B (zh) 2018-12-14 2018-12-14 金属材料用作锌离子水系超级电容器负极及锌离子水系混合超级电容器
CN201811536522.8 2018-12-14

Publications (1)

Publication Number Publication Date
WO2020119744A1 true WO2020119744A1 (zh) 2020-06-18

Family

ID=66074240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124739 WO2020119744A1 (zh) 2018-12-14 2019-12-12 金属材料用作锌离子水系超级电容器负极及锌离子水系混合超级电容器

Country Status (2)

Country Link
CN (1) CN109637837B (zh)
WO (1) WO2020119744A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109637837B (zh) * 2018-12-14 2021-01-19 深圳先进技术研究院 金属材料用作锌离子水系超级电容器负极及锌离子水系混合超级电容器
CN110060882B (zh) * 2019-05-24 2021-09-07 中国科学院理化技术研究所 一种水系电解液及其应用
CN110482523B (zh) * 2019-08-16 2021-09-10 中山大学 一种氮掺杂分级多孔碳材料及其超级电容器制备中的应用
CN112927949B (zh) * 2019-12-06 2022-05-31 中国科学院大连化学物理研究所 一种水系混合电解液和其在锌离子混合超级电容器应用
CN111508728B (zh) * 2020-04-29 2021-09-28 绍兴容辛能源技术有限公司 一种长寿命锰基水系混合锌离子电容器及其制备方法
CN112736238A (zh) * 2021-01-11 2021-04-30 哈尔滨工程大学 用于锌金属电池/电容器的锡-锌负极材料及其制备方法
CN114373895B (zh) * 2021-12-21 2024-01-30 国网内蒙古东部电力有限公司电力科学研究院 一种锑钠合金电极的制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401030A (zh) * 2013-07-09 2013-11-20 哈尔滨工程大学 一种水系可充镁或锌离子电容电池
CN107230555A (zh) * 2017-07-17 2017-10-03 深圳中科瑞能实业有限公司 锂离子混合超级电容器及其制备方法
CN107369567A (zh) * 2017-07-17 2017-11-21 深圳中科瑞能实业有限公司 锌离子混合超级电容器用电解液、锌离子混合超级电容器及其制备方法
WO2018201239A1 (en) * 2017-05-01 2018-11-08 Salient Energy Inc. Electrolyte additives for zinc metal electrodes
CN109637837A (zh) * 2018-12-14 2019-04-16 深圳先进技术研究院 金属材料用作锌离子水系超级电容器负极及锌离子水系混合超级电容器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543492B (zh) * 2012-02-16 2013-09-25 姜建国 一种高能量密度固体电容电池的制备方法
CN104616907A (zh) * 2015-01-27 2015-05-13 上海奥威科技开发有限公司 镁离子超级电容器及制作方法
DE102016202979A1 (de) * 2016-02-25 2017-08-31 Robert Bosch Gmbh Hybridsuperkondensator
CN107346709B (zh) * 2017-09-05 2018-12-25 天津巴莫科技股份有限公司 钴酸镍/三维多孔碳非对称超级电容器的制备方法及其产品
CN108172415B (zh) * 2017-12-26 2020-07-24 深圳先进技术研究院 铝离子混合超级电容器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401030A (zh) * 2013-07-09 2013-11-20 哈尔滨工程大学 一种水系可充镁或锌离子电容电池
WO2018201239A1 (en) * 2017-05-01 2018-11-08 Salient Energy Inc. Electrolyte additives for zinc metal electrodes
CN107230555A (zh) * 2017-07-17 2017-10-03 深圳中科瑞能实业有限公司 锂离子混合超级电容器及其制备方法
CN107369567A (zh) * 2017-07-17 2017-11-21 深圳中科瑞能实业有限公司 锌离子混合超级电容器用电解液、锌离子混合超级电容器及其制备方法
CN109637837A (zh) * 2018-12-14 2019-04-16 深圳先进技术研究院 金属材料用作锌离子水系超级电容器负极及锌离子水系混合超级电容器

Also Published As

Publication number Publication date
CN109637837B (zh) 2021-01-19
CN109637837A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2020119744A1 (zh) 金属材料用作锌离子水系超级电容器负极及锌离子水系混合超级电容器
CN107221716B (zh) 一种可充电水系锌离子电池
Wang et al. Stabilizing high sulfur loading Li–S batteries by chemisorption of polysulfide on three-dimensional current collector
Ma et al. Enhanced performance of lithium sulfur batteries with conductive polymer modified separators
Liu et al. Nb 2 O 5 quantum dots embedded in MOF derived nitrogen-doped porous carbon for advanced hybrid supercapacitor applications
CN107799699B (zh) 一种黏土矿物复合锂电池隔膜及其制备方法
Wang et al. Metal-organic-framework-derived NC-Co film as a shuttle-suppressing interlayer for lithium sulfur battery
CN102945947B (zh) 柔性无粘结剂自支撑复合电极的制备方法
CN101894940B (zh) 用于锂离子电池的多孔硅基负极的制备方法
CN109103399B (zh) 一种锂硫电池用功能性隔膜及其制备方法和在锂硫电池中的应用
WO2020006788A1 (zh) 一种金属有机框架碳纳米管复合材料的制备方法
CN107369567A (zh) 锌离子混合超级电容器用电解液、锌离子混合超级电容器及其制备方法
WO2017020860A1 (zh) 电池、电池组以及不间断电源
Xu et al. Status and prospects of Se x S y cathodes for lithium/sodium storage
WO2021208299A1 (zh) 一种水系钠基混合离子二次电池
CN108172415B (zh) 铝离子混合超级电容器及其制备方法
CN109671946B (zh) 锌离子电池正极活性材料、正极材料、锌离子电池正极、锌离子电池及其制备方法和应用
CN102290244B (zh) 非对称大动力电容电池的制备方法
CN111725002A (zh) 水系碱性电解质及其应用、锌基混合超级电容器及其制备方法
CN104269543A (zh) 一种石墨烯包覆硫/微孔碳球复合正极材料
Geng et al. A sandwich-structure composite carbon layer coated on separator to trap polysulfides for high-performance lithium sulfur batteries
CN106099064A (zh) 一种SnS2/CNTs复合纳米材料的制备方法及其作为钠离子电池负极材料的应用
CN109817980B (zh) 二次电池电极活性材料的制备方法及含该材料的二次电池
CN115360344B (zh) 一种钠离子电池用复合正极材料及其制备方法
CN108400292A (zh) 一种铋单质纳米片复合电极的制备方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19895413

Country of ref document: EP

Kind code of ref document: A1