WO2020119320A1 - 显示光机及其方法和近眼显示设备 - Google Patents

显示光机及其方法和近眼显示设备 Download PDF

Info

Publication number
WO2020119320A1
WO2020119320A1 PCT/CN2019/114928 CN2019114928W WO2020119320A1 WO 2020119320 A1 WO2020119320 A1 WO 2020119320A1 CN 2019114928 W CN2019114928 W CN 2019114928W WO 2020119320 A1 WO2020119320 A1 WO 2020119320A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
polarization
reflection
see
Prior art date
Application number
PCT/CN2019/114928
Other languages
English (en)
French (fr)
Inventor
郝希应
陈杭
胡增新
Original Assignee
舜宇光学(浙江)研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811523682.9A external-priority patent/CN111323905A/zh
Priority claimed from CN201910132683.9A external-priority patent/CN111610630A/zh
Priority claimed from CN201910489112.0A external-priority patent/CN112051671B/zh
Priority claimed from CN201910489195.3A external-priority patent/CN112051672A/zh
Application filed by 舜宇光学(浙江)研究院有限公司 filed Critical 舜宇光学(浙江)研究院有限公司
Publication of WO2020119320A1 publication Critical patent/WO2020119320A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the invention relates to the technical field of augmented reality, in particular to a display optical machine and a manufacturing method thereof, an anti-aliasing display optical machine and a method thereof, and a near-eye display device.
  • Augmented Reality also known as augmented reality or mixed reality
  • AugmentedReality is a technology that superimposes virtual objects into the real environment and interacts with them.
  • near-eye display devices capable of realizing augmented reality, such as AR glasses, appear on the market.
  • the conventional display light machine 10P generally includes a display unit 11P, a half mirror half lens 12P and a curved mirror 13P.
  • Image light emitted through the display unit 11P passes through the half mirror half lens 12P and the curved surface
  • the reflection mirror 13P reflects into human eyes.
  • the curved mirror 13P is a partial mirror, that is, it reflects and transmits light according to a certain ratio (such as reflecting 50% of the light and transmitting 50% of the light), so that the curved mirror 13P can not only reflect part of the image light back In the human eye, the person sees the corresponding image, and the light of the real environment is allowed to pass through the curved mirror 13P to enter the human eye, so that the person sees the real environment, thereby achieving the purpose of augmented reality.
  • a certain ratio such as reflecting 50% of the light and transmitting 50% of the light
  • the curved mirror 13P of the existing display light machine 10P can only reflect a part of the image light, the other part of the image light will pass through the curved mirror 13P to escape from the front of the display light machine 10P , So that the escaped image light can enter other people's eyes, so that others can also see the displayed image. As shown in FIG.
  • the near-eye display device 1P equipped with the display light machine 10P, since part of the image light will escape from the front of the display light machine 10P of the near-eye display device 1P, other people
  • the displayed image can be seen from the front of the near-eye display device 1P, that is, other people can clearly see the image viewed by the user from the outside of the near-eye display device 1P, which is not conducive to the privacy protection of the user.
  • the near-eye display device 1P is used in a dim or dark environment, the escaped image light will cause the near-eye display device 1P to appear conspicuous due to light emission, which will embarrass the user himself, and may even cause Dislike of others.
  • the half mirror half lens 12P In addition, only half of the image light emitted by the display unit 11P (such as the image source unit) is reflected by the half mirror half lens 12P to the curved mirror 13P, and the other half of the image light will pass through the half mirror The half lens 12P escapes; then, the curved mirror 13P can only reflect nearly half of the image light to the half mirror half lens 12P, and the other half of the image light escapes through the curved mirror 13P; finally, through the curved surface Only half of the image light reflected by the mirror 13P can reach the human eye through the half mirror lens 12P, and the other half of the image light will escape due to the reflection of the half mirror lens 12P.
  • the ambient light from below the half mirror half 12P will reach the half mirror half 12P as interference light, and part of the interference light will be reflected to the half mirror half 12P
  • the user will see the virtual image of the object located under the half mirror half 12P, causing visual interference, thereby seriously affecting the user's perception experience.
  • the existing display optical machine 10P' may also include a display unit 11P', a polarizing beam splitter 12P' curved mirror 13P' and a quarter wave plate 14P', where the polarizing beam splitter 12P' is located On the light-emitting side of the display unit 11P', the curved mirror 13P' is located on the reflective side of the polarization beam splitter 12P', and the quarter-wave plate 14P' is located between the polarization beam splitter 12P' and the curved mirror 13P'.
  • ambient light can sequentially pass through the curved mirror 13P', the 1/4 wave plate 14P', and the polarization beam splitter 12P' to be incident into the human eye, so that the user can pass through the existing display light machine 10P' get an augmented reality experience.
  • the ambient light from below the existing display light machine 10P' will reach the polarization beam splitter 12P' as interference light, although the P* polarized light in the interference light It can pass through the polarizing beam splitter 12P', but the polarizing beam splitter 12P' will reflect the S* polarized light in the interference light to the human eye, so that the user will see the existing display light machine 10P' below Virtual images (ie, artifacts) of objects cause visual interference, which seriously affects the user's perception experience.
  • An object of the present invention is to provide a display optical machine, a method thereof, and a near-eye display device, which can realize enhanced display while protecting user privacy.
  • Another object of the present invention is to provide a display light machine, a method thereof, and a near-eye display device, which can reduce the amount of escape of image light and help improve the light utilization rate of image light.
  • Another object of the present invention is to provide a display optical machine, a method thereof, and a near-eye display device, which can reduce leakage of displayed images to protect user privacy.
  • Another object of the present invention is to provide a display light machine, a method thereof and a near-eye display device, wherein, in an embodiment of the present invention, the reflection spectrum of the reflective film system of the display light machine and the display light machine The light emission spectrum of the display unit remains basically the same to minimize the escape of the image light emitted by the display unit.
  • Another object of the present invention is to provide a display optical machine, a method thereof, and a near-eye display device, wherein, in an embodiment of the present invention, without changing the structure of the existing display optical machine, only the setting is required
  • the reflective film system can achieve the effect of protecting privacy.
  • Another object of the present invention is to provide a display light machine, a method thereof, and a near-eye display device, wherein in order to achieve the above-mentioned object, it is not necessary to use expensive materials or complicated structures in the present invention. Therefore, the present invention successfully and effectively provides a solution that not only provides a display optical machine and its method and near-eye display device, but also increases the practicality and reliability of the display optical machine and its method and near-eye display device .
  • An object of the present invention is to provide a near-eye display light machine, a method thereof, and a near-eye display device, which can improve the light energy utilization rate of image light of the near-eye display light machine.
  • Another object of the present invention is to provide a near-eye display optical machine, a method thereof, and a near-eye display device, which help to adapt to the current trend of thinning and miniaturization of near-eye display devices.
  • Another object of the present invention is to provide a near-eye display optical machine, a method thereof, and a near-eye display device, wherein, in an embodiment of the present invention, the angle between the polarization beam splitting component of the near-eye display optical machine and the optical viewing axis The range is 50° to 70°, which helps to improve the overall compactness of the near-eye display optical machine.
  • Another object of the present invention is to provide a near-eye display optical machine, a method and a near-eye display device, wherein, in an embodiment of the present invention, the near-eye display optical machine utilizes the characteristics of polarized light through a reasonable optical design To reduce the loss of light energy of the image light, and thereby improve the utilization of light energy of the image light.
  • Another object of the present invention is to provide a near-eye display light machine, a method thereof, and a near-eye display device, wherein, in an embodiment of the present invention, the near-eye display light machine can reduce the amount of escape of image light and reduce The leakage of the displayed image not only helps to further improve the utilization of light energy of the image light, but also helps protect the privacy of the user.
  • Another object of the present invention is to provide a near-eye display optical machine, a method and a near-eye display device, wherein, in an embodiment of the present invention, the anti-interference unit of the near-eye display optical machine uses a linear polarizer to eliminate the lower part
  • the artifact interference caused by ambient light helps to improve the user's comfortable experience.
  • Another object of the present invention is to provide a near-eye display optical machine, a method thereof, and a near-eye display device.
  • the anti-interference unit of the near-eye display optical machine has a simple structure and low cost. And has a good effect of eliminating artifacts.
  • Another object of the present invention is to provide a near-eye display optical machine, a method thereof, and a near-eye display device, wherein in order to achieve the above-mentioned object, it is not necessary to use expensive materials or complicated structures in the present invention. Therefore, the present invention successfully and effectively provides a solution that not only provides a near-eye display optical machine and its method and near-eye display device, but also increases the practicality of the near-eye display optical machine and its method and near-eye display device. reliability.
  • An object of the present invention is to provide a display optical machine, a method thereof, and a near-eye display device, which can effectively prevent interference light below from being reflected into the eyes of a user to prevent visual interference.
  • Another object of the present invention is to provide a display optical machine, a method thereof and a near-eye display device, wherein, in an embodiment of the present invention, the relay system of the display optical machine uses a linear polarizer and 1/4 wave
  • Another object of the present invention is to provide a display optical machine, a method thereof, and a near-eye display device, wherein, in an embodiment of the present invention, the protection substrate of the relay system of the display optical machine is provided with antireflection In order to protect the polarizer, the film can also prevent visual interference caused by interference light reflected by the protective substrate into the user's eyes.
  • Another object of the present invention is to provide a display light machine, a method thereof, and a near-eye display device, wherein, in an embodiment of the present invention, the display light machine can protect users' privacy while implementing augmented reality functions .
  • Another object of the present invention is to provide a display light machine, a method thereof, and a near-eye display device, wherein, in an embodiment of the present invention, the display light machine can reduce leakage of displayed images to protect the user’s privacy.
  • Another object of the present invention is to provide a display light machine, a method thereof and a near-eye display device, wherein, in an embodiment of the present invention, the reflection spectrum of the reflective film system of the display light machine and the display light machine The light emission spectrum of the display unit remains basically the same to minimize the escape of the image light emitted by the display unit.
  • An object of the present invention is to provide an anti-artifact type display optical machine, a method thereof, and a near-eye display device, which can effectively prevent the interference light below from being reflected into the user's eyes, and help eliminate artifact interference.
  • Another object of the present invention is to provide an anti-aliasing type display optical machine, a method thereof and a near-eye display device, wherein, in an embodiment of the present invention, the relay system of the anti-aliasing type display optical machine adopts The combination of polarizing beam splitting element and polarizing filter element can eliminate the interference of ambient light below, which helps to improve the user's comfortable experience.
  • Another object of the present invention is to provide an anti-aliasing type display optical machine, a method thereof and a near-eye display device, wherein, in an embodiment of the present invention, the relay of the anti-aliasing type display optical machine The system will not reduce the utilization rate of the light energy of the image light while increasing the anti-aliasing function.
  • Another object of the present invention is to provide an anti-aliasing display optical machine, a method thereof and a near-eye display device, wherein, in an embodiment of the present invention, the anti-aliasing display optical machine can reduce the displayed Images leaked to protect users' privacy.
  • Another object of the present invention is to provide an anti-aliasing display optical machine, a method thereof and a near-eye display device, wherein, in an embodiment of the present invention, the anti-aliasing display optical machine has a reflective film
  • the predetermined reflection spectrum and the spectrum of the image light emitted by the display unit remain substantially the same to minimize the escape of the image light emitted by the display unit.
  • Another object of the present invention is to provide an anti-aliasing type display optical machine, a method thereof and a near-eye display device, wherein, in an embodiment of the present invention, the relay of the anti-aliasing type display optical machine
  • the protection substrate of the system is provided with an antireflection film, so that while protecting the linear polarizer, it can also avoid the interference of light rays caused by the protection substrate being reflected into the user's eyes and causing artifacts.
  • Another object of the present invention is to provide an anti-aliasing type display optical machine, a method thereof, and a near-eye display device, wherein in order to achieve the above-mentioned object, it is not necessary to use expensive materials or complicated structures in the present invention. Therefore, the present invention successfully and effectively provides a solution that not only provides an anti-aliasing display optical machine and its method and near-eye display device, but also adds the anti-aliasing display optical machine and its method and near-eye display Display the practicality and reliability of the device.
  • the present invention provides a display light machine, including:
  • a relay component wherein the relay component is disposed on the transmission path of the display unit;
  • a see-through reflection assembly wherein the see-through reflection assembly is disposed on a reflection path of the relay assembly, and a reflection spectrum of the see-through reflection assembly remains substantially consistent with the predetermined spectrum for use by the relay assembly
  • the reflected image light is reflected back to the relay component to reduce the escape of the image light through the see-through reflective component.
  • the see-through reflection component includes a reflection film system, wherein the reflection film system is made by a film system design according to the predetermined spectrum, so that the reflection film system has the reflection spectrum.
  • the see-through reflective assembly further includes a curved base layer, wherein the reflective film is disposed on the inner surface of the curved base layer.
  • the see-through reflective assembly further includes a curved base layer, wherein the reflective film is disposed on the outer surface of the curved base layer.
  • the see-through reflective assembly further includes a protective film, wherein the protective film is disposed outside the reflective film system.
  • the curved base layer is made of transparent material or translucent material.
  • the curved base layer is a curved lens or a curved mirror.
  • the transmissive reflection component has a transmittance of 0-10% for light in the wavelength bands of 420-480 nm, 510-570 nm, and 605-660 nm, and a transmittance of light in other wavelength bands of 90- 100%.
  • the thickness of the reflective film system is 0.05-0.15 mm.
  • the relay component is a half-inverted half lens.
  • the relay component is a polarization beam splitter.
  • the display optical machine further includes a 1/4 wave plate, wherein the 1/4 wave plate is disposed between the polarization beam splitter and the see-through reflection component .
  • the display optical machine further includes a lens assembly, wherein the lens assembly is disposed between the display unit and the relay assembly.
  • the present invention also provides a display light machine, including:
  • a relay component wherein the relay component is disposed on the transmission path of the display unit
  • a transmissive film system wherein the transmissive film system is disposed between the display unit and the relay assembly, and the transmissive film system has a transmissive spectrum for allowing image light having the transmissive spectrum to pass through Past;
  • a see-through reflection assembly wherein the see-through reflection assembly is provided in the reflection path of the relay assembly, and the reflection spectrum of the see-through reflection assembly is kept opposite to the transmission spectrum of the transmission film system for The image light with the transmission spectrum reflected by the relay component is reflected back to the relay component to reduce the escape of the image light through the see-through reflection component.
  • the present invention also provides a near-eye display device, including:
  • a device body A device body
  • the display optical machine according to any one of the above, wherein the display optical machine is provided on the device body so that the near-eye display device has a function of protecting privacy.
  • the present invention also provides a display method of a display light machine, including the steps of:
  • a relay component reflecting image light having a predetermined spectrum emitted through a display unit to a see-through reflective component, wherein the see-through reflective component has a reflection spectrum consistent with the predetermined spectrum
  • the image light is reflected, so that the image light can be projected into the human eye through the relay component to display the image.
  • the present invention also provides a manufacturing method of a display light machine, including the steps of:
  • a perspective reflection component is provided in the reflection path of the relay component, wherein the relay component is used to reflect the image light to the perspective reflection component, wherein the perspective reflection component has a basic level maintained with the predetermined spectrum
  • a uniform reflection spectrum is used to reflect the image light.
  • the manufacturing method of the display optical machine further includes the steps before the step of disposing a see-through reflective component on the reflection path of the relay component:
  • a reflective film is disposed on a curved base layer to make the see-through reflective component, wherein the reflective film is made by film design according to the predetermined spectrum.
  • the reflective film is plated on the surface of the curved base layer.
  • the present invention further provides a near-eye display optical machine, including:
  • An image source unit for emitting image light along the emission path
  • a lens group unit wherein the lens group unit is provided in the emission path of the image source unit for modulating the image light emitted through the image source;
  • a polarization beam splitting unit wherein the polarization beam splitting unit is disposed on the emission path of the image source unit, and the lens group unit is located between the image source unit and the polarization beam splitting unit, wherein the polarization
  • the angle between the beam splitting unit and the optical viewing axis of the near-eye display optical machine is greater than 45°, used to reflect the first polarized image light among the image light modulated by the lens group unit and transmitted through the lens The second polarized image light in the image light modulated by the group unit;
  • a see-through reflection unit wherein the see-through reflection unit is provided on the reflection side of the polarization beam splitting unit, and the see-through reflection unit corresponds to the optical viewing axis of the near-eye display optical machine for passing the polarization Part or all of the first polarized image light reflected by the beam splitting unit is reflected back to the polarizing beam splitting unit and allows part of the ambient light to pass through;
  • a polarization conversion unit wherein the polarization conversion unit is disposed between the polarization beam splitting unit and the see-through reflection unit, for converting the first polarized image light into the second polarized image light after passing through twice , And then transmitted through the polarization beam splitting unit to enter the human eye.
  • the angle between the polarization beam splitting unit and the optical viewing axis of the near-eye display optical machine is between 50° and 70°.
  • the polarization beam splitting unit includes a light-transmitting substrate and a polarization beam splitting film, wherein the polarization beam splitting film is disposed on the first optical surface of the light-transmitting substrate, and the The polarization beam splitting film is located between the light-transmitting substrate and the image source unit.
  • the first optical surface of the light-transmitting substrate has a free-form surface.
  • the see-through reflection unit includes a curved substrate and a part of reflective film, wherein the partial reflective film is disposed on the second optical surface of the curved substrate, and the partial reflective film Located between the curved substrate and the polarization beam splitting unit.
  • the second optical surface of the curved substrate has a free-form surface.
  • the near-eye display optical machine further includes an anti-interference unit, wherein the anti-interference unit is located on the side of the polarization beam splitter unit 12 away from the image source unit, Prevent visual interference from interfering light from below.
  • the anti-interference unit includes a polarizing filter element, wherein the polarizing filter element is disposed on a side of the polarization beam splitting unit away from the image source unit, for absorbing the first Polarized light and transmits second polarized light, wherein the polarization state of the first polarized light and the polarization state of the first polarized image light remain the same, and the polarization state of the second polarized light and the polarization of the second polarized image light The state remains consistent.
  • the polarizing filter element is a linear polarizer.
  • the anti-interference unit further includes a protective substrate and an antireflection film, wherein the protective substrate is located outside the polarizing filter element, so that the polarizing filter element is in the protection Between the substrate and the polarization beam splitting unit, the antireflection film is provided on the outer surface of the protective substrate.
  • the polarization conversion unit is a 1/4 wave plate.
  • the lens group unit includes at least one lens, wherein the surface type of each lens is one of a standard spherical surface, an aspheric surface, a free-form surface, and a diffraction surface.
  • the image source unit is one of LCD type, OLED type, DLP type and LCOS type micro display devices.
  • the present invention also provides a near-eye display device, including:
  • a device body A device body
  • At least one near-eye display light machine according to any one of the above, wherein the near-eye display light machine is disposed on the device body to assemble a compact near-eye display device.
  • the present invention also provides a method for manufacturing a near-eye display light machine, including the steps of:
  • a lens group unit is disposed between an image source unit and a polarization beam splitting unit, and the lens group unit and the polarization beam splitting unit are both located in the emission path of the image source unit, wherein the lens group unit is used for The image light emitted via the image source is modulated, wherein the polarization beam splitting unit is used to reflect the first polarized image light in the modulated image light and transmit the second modulated light in the image light Polarized image light;
  • a see-through reflection unit is disposed on the reflection side of the polarization beam splitting unit to define an optical viewing axis through the see-through reflection unit and the polarization beam splitting unit, wherein the sandwich between the polarization beam splitting unit and the optical viewing axis The angle is greater than 45°, wherein the see-through reflection unit is used to reflect a part or all of the first polarized image light reflected by the polarization beam splitting unit back to the polarization beam splitting unit, and allow some of the ambient light to pass through ;as well as
  • a polarization conversion unit is provided between the polarization beam splitting unit and the see-through reflection unit to convert the first polarized image light into the second polarized image light after passing through the polarization conversion unit twice, and further Along the optical viewing axis, it is incident into the human eye.
  • the manufacturing method of the near-eye display light machine further includes the steps of:
  • An anti-interference unit is disposed on a side of the polarization beam splitting unit away from the image source unit, wherein the anti-interference unit includes a polarization filter element for absorbing the first polarized light and transmitting the second polarized light, wherein The polarization state of the first polarized light is consistent with the polarization state of the first polarized image light; and the polarization state of the second polarized light is consistent with the polarization state of the second polarized image light.
  • the present invention further provides a display light machine, including:
  • a relay system wherein the relay system is provided in a transmission path of the display unit, and the relay system includes:
  • a retroreflective element used to reflect a part of light and transmit another part of light
  • a polarization conversion element for converting the first polarized light into the first circularly polarized light to form a second circularly polarized light after being reflected by the retroreflective element, and also for converting the second circularly polarized light into the second polarized light ;as well as
  • a polarized light filter element for absorbing the second polarized light and transmitting the first polarized light; wherein the retroreflective element, the polarized light conversion element and the polarized light filter element are sequentially along the emission path of the display unit Arranged such that the disturbing light passes through the polarizing filter element, the polarizing conversion element and the retroreflective element in sequence;
  • a see-through reflection unit wherein the transflective unit is provided in the reflection path of the retroreflective element of the relay system, for reflecting the image light reflected through the retroreflective element back to the relay system .
  • the polarization conversion element is a 1/4 wave plate; wherein the polarization filter element is a linear polarizer.
  • the predetermined angle between the fast axis of the quarter-wave plate and the transmission axis of the linear polarizer is 45°.
  • the retroreflective element is a half-reverse half lens.
  • the relay system further includes a protective substrate, wherein the protective substrate is located outside the polarizing filter element, so that the polarizing conversion element and the polarizing filter element are located at the Between the protection substrate and the anti-reflection element.
  • the relay system further includes an anti-reflection film, wherein the anti-reflection film is disposed on the outer surface of the protective substrate to reduce interference of light on the protective substrate The visual disturbance caused by the reflection of the outer surface.
  • the display optical machine further includes a lens unit, wherein the lens unit is disposed between the display unit and the relay system for The image light is modulated.
  • the see-through reflection unit is a curved mirror, which is used to shape the image light while reflecting the image light from the relay system back to the relay system .
  • the reflection spectrum of the see-through reflection unit keeps substantially the same as the predetermined spectrum of the image light emitted through the display unit, and is used to reflect the image light reflected through the relay system back
  • the relay system reduces the amount of escape of the image light through the see-through reflection unit.
  • the see-through reflection unit includes a reflective film system and a curved base layer, wherein the reflective film system is disposed on the surface of the curved base layer, and the reflective film system is based on the predetermined
  • the spectrum is made by a film design so that the see-through reflection unit has the reflection spectrum.
  • the present invention further provides a near-eye display device, including:
  • a device body A device body
  • At least one of the above-mentioned display light machines wherein the display light machine is disposed on the device body, so that the near-eye display device has a function of eliminating visual interference.
  • the present invention further provides a method for manufacturing a display light machine, including the steps of:
  • a relay system is provided in a transmission path of a display unit, wherein the relay system includes a reverse transmission element, a polarization conversion element and a polarization filter element arranged in sequence along the transmission path of the display unit, wherein The retroreflective element is used to reflect the image light emitted through the display unit, and is used to reflect the first polarized light from the polarization filter element; wherein the polarization conversion element is used to pass the first Polarized light is converted into second polarized light; the polarizing filter element is used to absorb the second polarized light and transmit the first polarized light; and
  • a perspective reflection unit is provided in the reflection path of the relay system, wherein the perspective reflection unit is used to reflect the image light reflected by the retroreflective element back to the relay system.
  • the present invention further provides a visual interference cancellation method for a display optical machine, including the steps of:
  • a polarizing filter element absorbs the second polarized light in the interference light and transmits the first polarized light in the interference light;
  • a retroreflective element reflecting the first circularly polarized light converted by the polarization conversion element to form a second circularly polarized light reflected back to the polarization conversion element;
  • the polarization filter element absorbs the second polarized light converted by the polarization conversion element to eliminate visual interference caused by the interference light.
  • the polarization conversion element is a 1/4 wave plate; wherein the polarization filter element is a linear polarizer.
  • the present invention provides an anti-aliasing type display optical machine, including
  • a see-through reflective unit
  • a relay system wherein the relay system includes:
  • a polarization beam splitting element wherein the incident side of the polarization beam splitting element corresponds to the lens group unit, and the reflection side of the polarization beam splitting element corresponds to the see-through reflection unit, wherein the polarization beam splitting element is used for reflection to be modulated After the image light rays having the first polarization state, and transmitting the modulated light rays having the second polarization state in the image light;
  • a polarization conversion element wherein the polarization conversion element is disposed between the polarization splitting element and the see-through reflection unit, wherein the see-through reflection unit is used to reflect the light reflected by the polarization splitting element with the first polarization
  • the light of the state is reflected back to the polarization beam splitting element to pass through the polarization conversion element twice, wherein the polarization conversion element is used to convert the light with the first polarization state passing through twice into the second Polarized light;
  • a polarizing filter element wherein the polarizing filter element is disposed on the transmission side of the polarization beam splitter element, for absorbing the light with the first polarization state and transmitting the light with the second polarization state, so that the interference light
  • the light with the first polarization state can be absorbed by the polarization filter element, and the light with the second polarization state in the interference light can sequentially pass through the polarization filter element and the polarization beam splitting element.
  • the polarizing filter element is a linear polarizer.
  • the polarizing beam splitting element includes a transparent substrate and a polarizing beam splitting film, wherein the polarizing beam splitting film is disposed on the upper surface of the transparent substrate, and the polarizing beam splitting The film is located between the light-transmitting substrate and the lens group unit.
  • the polarization conversion element is a 1/4 wave plate.
  • the see-through reflective unit includes a curved substrate and a part of reflective film, wherein the partial reflective film is disposed on the inner surface of the curved substrate, and the partial reflective film is located on the Between the curved substrate and the polarization conversion element.
  • the relay system further includes a protective substrate, wherein the protective substrate is located outside the polarizing filter element, so that the polarizing filter element is between the protective substrate and the polarization Between splitting elements.
  • the relay system further includes an antireflection film, wherein the antireflection film is disposed on the outer surface of the protective substrate.
  • the lens group unit includes at least one lens, wherein the surface type of each lens is one of a standard spherical surface, an aspheric surface, a free-form surface, and a diffraction surface.
  • the display unit is one of LCD type, OLED type, DLP type and LCOS type micro display devices.
  • the present invention further provides a near-eye display device, including:
  • a device body A device body
  • At least one anti-artifact display optical machine according to any one of the above, wherein the anti-artifact display optical machine is provided on the device body to be assembled into a near-eye display device having an anti-artifact function.
  • the present invention further provides a method for manufacturing an anti-artifact display optical machine, including the steps of:
  • a polarization conversion element and a polarization filter element are respectively provided on the reflection side and the transmission side of a polarization beam splitting element to form a relay system, wherein the polarization beam splitting element is used to reflect light with a first polarization state and transmit Light with a second polarization state, wherein the polarization filter element is used to absorb the light with the first polarization state and transmit the light with the second polarization state;
  • a perspective reflection unit is provided on the reflection side of the polarization conversion element of the relay system, and the polarization conversion element is positioned between the polarization splitting element and the perspective reflection unit to form the Artifact display optical machine.
  • the manufacturing method of the anti-aliasing display optical machine further includes the steps of:
  • An antireflection film is provided on the outer side of the protective substrate, so that the protective substrate is located between the antireflection film and the polarizing filter element.
  • the present invention further provides an anti-aliasing method for an anti-artifact display optical machine, including the steps of:
  • a polarizing filter element of the anti-aliasing type display optical machine absorbing the light having the first polarization state among the disturbing rays and transmitting the light having the second polarization state among the disturbing rays;
  • a polarization beam splitter element on the transmission side of the polarization filter element transmits the light having the second polarization state among the interference rays transmitted through the polarization filter element to eliminate the reflection of the interference light rays Artifacts in the eyes of the user.
  • FIG. 1 shows a schematic structural diagram of a prior art display optical machine.
  • FIG. 2 shows an example of a prior art near-eye display device equipped with the display light machine.
  • FIG. 3 is a schematic structural diagram of a display optical machine according to an embodiment of the present invention.
  • FIG. 4 shows an example of a predetermined spectrum of image light emitted by the display unit of the display light machine according to the above-described embodiment of the present invention.
  • FIG. 5 shows an example of the reflection spectrum of the see-through reflection component of the display light machine according to the above-described embodiment of the present invention.
  • FIG. 6 shows a first modified embodiment of the display light machine according to the above-mentioned embodiment of the present invention.
  • FIG. 7 shows a second modified embodiment of the display light machine according to the above-described embodiment of the present invention.
  • FIG. 8 shows a third modified embodiment of the display light machine according to the above-mentioned embodiment of the present invention.
  • FIG. 9 shows an example of the transmission spectrum of the transmission film system of the display optical machine according to the above-described fourth modified embodiment of the present invention.
  • FIG. 10 shows an example of a near-eye display device according to an embodiment of the present invention.
  • FIG. 11 is a schematic flowchart of a display method of a display optical machine according to an embodiment of the present invention.
  • FIG. 12 is a schematic flowchart of a method for manufacturing a display optical machine according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a near-eye display optical machine according to a first embodiment of the present invention.
  • FIG. 14 shows a schematic diagram of the optical path of the near-eye display optical machine according to the above-described first embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a near-eye display optical machine according to a second embodiment of the present invention.
  • FIG. 16 shows a partially enlarged schematic view of the near-eye display optical machine according to the second embodiment of the present invention.
  • FIG. 17 shows an example of a near-eye display device according to an embodiment of the present invention.
  • FIG. 18 is a schematic flowchart of a method for manufacturing a near-eye display optical machine according to an embodiment of the present invention.
  • FIG. 19 is a schematic structural diagram of a display optical machine according to an embodiment of the present invention.
  • FIG. 20 shows a schematic diagram of the principle of eliminating interference light by the display optical machine according to the above embodiment of the present invention.
  • FIG. 21 shows an exploded schematic diagram of the relay system of the display optical machine according to the above embodiment of the present invention.
  • FIG. 22 shows a modified embodiment of the display light machine according to the above-mentioned embodiment of the present invention.
  • FIG. 23 shows an example of a near-eye display device according to an embodiment of the present invention.
  • 24 is a schematic flowchart of a method for manufacturing a display optical machine according to an embodiment of the invention.
  • FIG. 25 is a schematic flowchart of a visual interference cancellation method for a display optical machine according to an embodiment of the present invention.
  • FIG. 26 shows a schematic structural diagram of a conventional display optical machine.
  • FIG. 27 is a schematic structural diagram of an anti-artifact display optical machine according to an embodiment of the present invention.
  • FIG. 28 shows a partially enlarged schematic diagram of the relay system of the anti-aliasing type display optical machine according to the above embodiment of the present invention.
  • FIG. 29 shows an exploded schematic view of the relay system of the anti-aliasing type display optical machine according to the above embodiment of the present invention.
  • FIG. 30 shows a modified embodiment of the anti-aliasing type display optical machine according to the above embodiment of the present invention.
  • FIG. 31 shows an example of a near-eye display device according to an embodiment of the present invention.
  • FIG. 32 is a schematic flowchart of a method for manufacturing an anti-aliasing display optical machine according to an embodiment of the present invention.
  • 33 is a schematic flowchart of an anti-aliasing method for an anti-artifact display optical machine according to an embodiment of the present invention.
  • the term “a” in the claims and the specification should be understood as “one or more”, that is, in one embodiment, the number of an element may be one, and in other embodiments, the number of the element Can be multiple. Unless it is explicitly indicated in the disclosure of the present invention that the number of the element is only one, the term “one” cannot be understood as unique or single, and the term “one” cannot be understood as a limitation on the number.
  • near-eye display devices capable of implementing augmented reality have become more and more popular and used by people.
  • part of the image light inevitably escapes from the front of the existing display optical machine, resulting in others being able to The image viewed by the user is clearly seen from the outside, and the privacy of the user cannot be protected.
  • the light utilization rate of the image light of the display light machine of the near-eye display device is very low, resulting in the existing display light machine.
  • the quality of the displayed image is poor, and it cannot meet people's demand for viewing high-quality images.
  • the present invention provides a new display light machine, which can greatly reduce the escape of image light from the front of the display light machine, so that the outside can not see
  • the image displayed by the display optical machine is described to achieve the purpose of protecting privacy.
  • an embodiment of the present invention provides a display optical machine 10, which includes a display unit 11, a relay assembly 12, and a see-through reflection assembly 13.
  • the display unit 11 is used to emit image light having a predetermined spectrum.
  • the relay component 12 is provided on the transmission path of the display unit 11.
  • the see-through reflection component 13 is provided in the reflection path of the relay component 12, and the reflection spectrum of the see-through reflection component 13 is substantially consistent with the predetermined spectrum of the image light, and is used to pass the relay component 12
  • the reflected image light reflects back to the relay assembly 12 and allows ambient light to pass through the see-through reflective assembly 13 to enter the relay assembly 12, so that the image light and the ambient light can pass through
  • the relay component 12 is shot into the human eye, so that the human eye can simultaneously view the image to be displayed and the real environment, so as to achieve the purpose of augmented reality. It can be understood that, in this embodiment of the present invention, the error between the reflection spectrum and the predetermined spectrum within 20% can be regarded as that the reflection spectrum and the predetermined spectrum remain substantially consistent.
  • the reflection spectrum of the see-through reflection component 13 and the predetermined spectrum of the image light emitted by the display unit 11 remain substantially the same, so that the see-through reflection component 13 reflects only light having the predetermined spectrum, And allow light of other spectrum (such as ambient light with unpredetermined spectrum) to pass through. Therefore, when the image light is reflected by the relay assembly 12 to the see-through reflection assembly 13, most of the image light will be reflected back to the relay assembly 12 by the see-through reflection assembly 13 to block The image light passes through the see-through reflection component 13 to reduce the escape of the image light, so that people cannot view the displayed image from the outside of the display light machine 10 to protect the privacy of the user.
  • the ambient light in the real environment usually has a full spectrum
  • only ambient light with the predetermined spectrum cannot pass through the see-through reflection component 13, while ambient light with other spectrums can pass through the perspective
  • the reflection component 13, that is, a part of the ambient light that has the same spectrum as the image light cannot be transmitted through the perspective reflection component 13 because it is reflected by the perspective reflection component 13, while other ambient light can
  • the projection and reflection component 13 passes through the relay component 12 to enter the human eye smoothly, so that the human eye can see the real environment.
  • the see-through reflection component 13 can not only improve the light utilization rate of the image light, but also improve the contrast between the displayed image and the image of the real environment, so as to enhance the user's viewing experience.
  • the image light emitted by the display unit 11 of the display light machine 10 is usually synthesized by three colors of red, green, and blue, that is, the predetermined spectrum of the image light Including three colors of red, green and blue.
  • the reflection spectrum of the see-through reflection component 13 is substantially consistent with the predetermined spectrum, that is to say, the reflection spectrum of the see-through reflection component 13 also includes the spectra of the three colors of red, green and blue .
  • FIGS. 3 to 9 and the following description take the predetermined spectrum of the image light including the spectra of three colors of red, green, and blue as an example, the characteristics of the display optical machine 10 of the present invention are explained. And advantages, those skilled in the art can understand that the predetermined spectra disclosed in FIGS.
  • the predetermined spectrum of the image light may also include spectrums of other colors such as the spectrum of two colors of red and blue, or the spectrum of three colors of red, yellow and blue, as long as the perspective reflection is ensured It is sufficient that the reflection spectrum of the component 13 and the predetermined spectrum of the image light are substantially the same, which will not be repeated in the present invention.
  • FIG. 4 shows an example of the predetermined spectrum of the image light according to the present invention, wherein the image light includes blue light with a wavelength band of 420-480 nm, green light with a wavelength band of 510-570 nm, and a wavelength band of Red light of 605 ⁇ 660nm.
  • the see-through reflective component 13 has the reflection spectrum (as shown in FIG. 5 ), wherein the see-through reflective component 13 is directed to blue light in the wavelength band of 420-480 nm, green light in the wavelength band of 510-570 nm, and wavelength band 605
  • the transmittance of red light at -660 nm is 0 to 10%, and the transmittance of light in other wavelength bands is 90 to 100%.
  • the see-through reflective component 13 reflects most of the image light back to the relay component 12
  • only a small part of the image light can escape through the see-through reflective component 13, so that others cannot see the image light from outside the see-through reflective component 13, which can effectively protect the privacy of the user.
  • the see-through reflective component 13 includes a reflective film system 131 and a curved base layer 132, wherein the reflective film system 131 is based on the predetermined spectrum of the image light Made by film design, so that the reflection spectrum of the reflective film system 131 is the same as the predetermined spectrum of the image light; the reflective film system 131 is disposed on the curved base layer 132 to make the reflection
  • the film system 131 has a curved shape, thereby forming the see-through reflection component 13 with a curved structure, so that the see-through reflection component 13 can modulate the image light while reflecting the image light, so as to improve the Displays the quality of the image displayed by the optical machine.
  • the curved base layer 132 may be made of a transparent material, such as glass, plastic, resin, polymer materials, and other transparent materials, to allow light to pass through the curved base layer 132, which helps to avoid the curved base layer 132 Blocks ambient light from passing through the see-through reflective component 13.
  • the curved base layer 132 may also be made of translucent materials, such as glass, plastic, resin, polymer materials, and other translucent materials, to allow light to partially pass through the curved base layer 132, which can appropriately reduce the ambient light from passing through the see-through reflection component 13 to meet different scene requirements.
  • the curved base layer 132 may be implemented as a curved lens, but the reflective film 131 is attached to the inner surface 1321 of the curved base layer 132 so that the shape of the reflective film 131
  • the shape of the inner surface 1321 of the curved base layer 132 remains substantially the same to form the reflective film system 131 having a curved shape.
  • the image light when the image light is incident on the see-through reflection component 13 via the relay component 12, the image light first reaches the reflective film system 131 to be reflected back to the middle by the reflective film system 131 Following the component 12, there is no need to pass through the curved base layer 132 first, to avoid the curved base layer 132 absorbing the image light and reducing the light energy of the image light.
  • the curved base layer 132 can also be implemented as a curved mirror, which can reflect a part of light and allow another part of light to pass through. In this way, there is no need to change the original structure of the display optical machine of the prior art, and only the reflective film system 131 needs to be provided on the curved mirror to enable the display optical machine to have a privacy protection function.
  • the curved base layer 132 since the reflective film system 131 is attached to the inner surface 1321 of the curved base layer 132, the curved base layer 132 naturally acts as a protective barrier for the reflective film system 131 to prevent other objects from contacting The reflective film system 131 helps to protect the reflective film system 131 from damage, so as to extend the service life of the reflective film system 131.
  • the reflective film system 131 may be plated on the inner surface 1321 of the curved base layer 132, which helps to strengthen the relationship between the reflective film system 131 and the curved base layer 132 The bonding strength prevents the reflective film 131 from falling off the curved base layer 132.
  • the reflective film system 131 is plated on the inner surface 1321 of the curved base layer 132, and the smoothness of the inner surface 1321 of the curved base layer 132 is high, the reflective film system 131 can It is in close contact with the inner surface 1321 of the curved base layer 132 to ensure that the reflective film system 131 has a high smoothness, which helps to improve the modulation effect of the reflective film system 131 on the image light.
  • the thickness of the reflective film system 131 is preferably implemented as 0.05 to 0.15 mm, that is, the reflective film system 131 does not increase the display light machine 10
  • the overall size and weight are particularly suitable for the current trend of miniaturization and thinness.
  • the relay assembly 12 of the display optical machine 10 may be, but not limited to, implemented as a half mirror lens 121 for reflecting a part of light and transmitting another Part of the light.
  • the half mirror lens 121 can be transmitted through.
  • the half-reflective lens 121 may be, but not limited to, a lens that is coated with a half-reflective film, which is used to allow half of the light to pass through and reflect the other half of the light.
  • the light utilization rate of the image light of the display light machine 10 according to this embodiment of the present invention is greatly improved, which helps to improve the quality of the displayed image.
  • the image light that can finally reach the human eye through the display light machine 10 only accounts for 1/8 of the image light emitted by the display unit 11P (that is, the display of the prior art
  • the light utilization rate of the image light of the optical machine 10P is 12.5%
  • the image light that can finally reach the human eye through the display optical machine 10 accounts for nearly the light emitted by the display unit 11P 1/4 of the image light (that is, the light utilization rate of the image light of the display optical machine 10 of this embodiment of the present invention is 25%).
  • the display optical machine 10 may further include a lens assembly 14, wherein the lens assembly 14 is disposed between the display unit 11 and the relay assembly 12, After the image light emitted by the display unit 11 passes through the lens assembly 14 to be modulated by the lens assembly 14, it then enters the relay assembly 12 to be reflected by the relay assembly 12 to the Perspective reflection assembly 13. It can be understood that providing the lens assembly 14 between the display unit 11 and the relay assembly 12 can improve the imaging quality of the image light.
  • FIG. 6 shows a first modified embodiment of the display light machine 10 according to the above example of the present invention, wherein the reflective film system 131 of the see-through reflection assembly 13 of the display light machine 10 is provided On the outer surface 1322 of the curved base layer 132, the image light reflected by the relay component 12 first passes through the curved base layer 132, and then is reflected back to the curved base layer 132 by the reflective film system 131, Furthermore, the relay component 12 reaches the eyes of the person so as to view the corresponding image.
  • the see-through reflection assembly 13 of the display optical machine 10 further includes a protective film 133, wherein the protective film 133 is provided on The outside of the reflective film system 131 is used to protect the reflective film system 131 to prevent the reflective film system 131 from being scratched or damaged.
  • the protective film 133 may be implemented as a transparent film, but may also be implemented as other types of protective films such as an ultraviolet protection film, a radiation protection film, and the like.
  • FIG. 7 shows a second modified embodiment of the display optical machine 10 according to the above embodiment of the present invention, wherein the relay assembly 12 of the display optical machine 10 is implemented as a polarization beam splitter 122 , Used to allow P polarized light to pass through and reflect S polarized light.
  • the relay assembly 12 of the display optical machine 10 is implemented as a polarization beam splitter 122 , Used to allow P polarized light to pass through and reflect S polarized light.
  • the S polarized light that is, the image light with an S polarization state
  • the polarizing beam splitter 122 may be, but not limited to, a lens implemented with a polarizing beam splitting film (ie, PBS film), which is used to allow P polarized light to pass through and reflect S polarized light .
  • PBS film polarizing beam splitting film
  • the see-through reflective component 13 and the polarization beam splitter 122 change the polarization state of the image light, so that the image light having the S polarization state reflected by the polarization beam splitter 122 is converted into the image light having the P polarization state.
  • the display optical machine 10 may further include a 1/4 wave plate 15, wherein the 1/4 wave plate 15 is disposed on the polarization beam splitter 122 and the perspective Between the reflection components 13, the image light with the S polarization state reflected by the polarization beam splitter 122 first passes through the 1/4 wave plate and is converted into the image light with the circular polarization state (ie, circularly polarized light) Then, the image light with circular polarization state is reflected by the see-through reflection component 13 to pass through the 1/4 wave plate again and is converted into image light with P polarization state, after which the light with P polarization state The light of the image will pass through the polarization beam splitter 122 for receiving by the human eye, so that the user can view the corresponding image.
  • the 1/4 wave plate 15 is disposed on the polarization beam splitter 122 and the perspective
  • the image light with the S polarization state reflected by the polarization beam splitter 122 first passes through the 1/4 wave plate and is converted into the image light with the circular polarization state (
  • the quarter-wave plate 15 is provided between the polarization beam splitter 122 and the see-through reflection assembly 13, the image with the S polarization state reflected by the polarization beam splitter 122 The light will be reflected by the see-through reflection component 13 to pass through the 1/4 wave plate 15 twice, and converted into image light with P polarization state, so that the image light can smoothly pass through the polarization beam splitter 122 is seen by reaching the human eye.
  • the light utilization rate of the image light of the display light machine 10 of the second modified embodiment of the present invention is further improved.
  • the image light that can finally reach the human eye through the display light machine 10 accounts for almost half of the image light emitted by the display unit 11 (that is, the The light utilization rate of the image light of the display light machine 10 of the second modified embodiment has reached 50%), which is nearly one more than the light utilization rate of the image light of the display light machine 10 according to the above-mentioned embodiment of the present invention. Times, which helps to further improve the quality of the image displayed by the display light machine 10.
  • FIG. 8 shows a third modified embodiment of the display light machine 10 according to the above example of the present invention, wherein the display light machine 10 further includes a transmission film system 17, wherein the transmission film system 17 is It is provided between the display unit 11 and the relay assembly 12, and the transmission spectrum of the transmission film system 17 remains opposite to the reflection spectrum of the reflection film system 131 in the see-through reflection component 13 (inverse ) Is used to allow the transmission of image light with the transmission spectrum and block the transmission of image light with other spectrum.
  • the image light emitted by the display unit 11 will have the transmission spectrum after passing through the transmission film system 17, that is, the image light transmitted through the transmission film system 17 will have the transmission spectrum.
  • the image light transmitted through the transmission film system 17 also has the reflection spectrum, so that the image light transmitted through the transmission film system 17 can It is totally reflected by the see-through reflection component 13 to avoid the escape of image light and effectively protect the privacy of the user.
  • the transmissive film system 17 is attached to the emission surface of the display unit 11, and the transmissive film system 17 has a transmission spectrum as shown in FIG. 9, and the see-through reflective component 13 has a 5 shows the reflection spectrum. Since the transmission spectrum and the reflection spectrum are exactly opposite, the image light that can pass through the transmission film system 17 can be exactly reflected by the reflection film system 131 of the see-through reflection component 13 in order to minimize The escape of image light.
  • the display unit 11 does not need to emit image light having the predetermined spectrum. That is to say, the display unit 11 can emit image light with a full spectrum or other continuous spectrum to process the image light through the transmission film system 17 to allow image light with the transmission spectrum to pass through, Thereby, the reflection film system 131 of the see-through reflection component 13 reflects the image light with the transmission spectrum into the human eye to prevent the image light from escaping from the front of the display optical machine 10 , And then achieve the effect of protecting privacy.
  • the present invention further provides a near-eye display device equipped with a display light machine to reduce the escape of image light from the front of the near-eye display device and help protect Privacy security of users using the near-eye display device.
  • the near-eye display device 1 may include the display light machine 10 and a device body 20, wherein the display light machine 10 is disposed on the device body 20 so that the The near-eye display device 1 has a function of protecting privacy.
  • the device body 20 may be, but not limited to, implemented as a glasses body, so that the near-eye display device 1 is implemented as AR glasses with a privacy protection function, which helps protect user privacy. It can be understood that, in other examples of the present invention, the near-eye display device 1 may also be implemented as other types of AR devices such as AR helmets.
  • the present invention further provides a display method of a display light machine.
  • the display method of the display optical machine 10 includes the steps of:
  • S320 Reflect the image light through the see-through reflection component 13, so that the image light can be projected into the human eye through the relay component 12 to display an image.
  • the present invention further provides a manufacturing method of a display light machine.
  • the manufacturing method of the display light machine 10 includes the steps of:
  • S410 Set a relay component 12 on the emission path of a display unit 11, wherein the display unit 11 is used to emit image light having a predetermined spectrum;
  • S420 Set a perspective reflection component 13 on the reflection path of the relay component 12, wherein the relay component 12 is used to reflect the image light to the perspective reflection component 13, wherein the perspective reflection component 13 has A reflection spectrum substantially consistent with the predetermined spectrum is used to reflect the image light.
  • the manufacturing method of the display optical machine 10 further includes steps:
  • a reflective film system 131 is disposed on a curved base layer 132 to make the see-through reflective component 13, wherein the reflective film system 131 is made by film system design according to the predetermined spectrum.
  • the reflective film system 131 is plated on the surface of the curved base layer 132.
  • near-eye display devices capable of implementing augmented reality have become more and more popular and used by people.
  • the light energy utilization rate of the existing display light machine for image light is extremely low (usually about 12.5%), and the existing The large size of the display light machine not only results in poor image quality displayed by the existing display light machine, but also does not conform to the current trend of miniaturization and thinning of head-mounted display devices.
  • the near-eye display light machine 10A includes an image source unit 11A, a polarization beam splitter unit 12A, a see-through reflection unit 13A, a polarization conversion unit 14A, and a lens group unit 15A.
  • the image source unit 11A has an emission path 110A for emitting image light 1100A along the emission path 110A.
  • the lens group unit 15A is provided in the emission path 110A of the image source unit 11A, and is used to modulate the image light 1100A emitted via the image source unit 11A.
  • the polarization beam splitting unit 12A is disposed on the emission path 110A of the image source unit 11A, and is used to reflect the first polarized image light 1101A and transmit the second polarized image light 1102A.
  • the polarization beam splitting unit 12A and the image source unit 11A are located on both sides of the lens group unit 15A (that is, the lens group unit 15A is located between the polarization beam splitting unit 12A and the image source unit 11A), And the angle ⁇ between the polarizing beam splitting unit 12A and the optical viewing axis 100A of the near-eye display optical machine 10A is greater than 45°, so that the polarizing beam splitting unit 12A is used to reflect the light modulated by the lens group unit 15A The first polarized image light 1101A in the image light 1100A, and transmits the second polarized image light 1102A in the image light 1100A modulated by the lens group unit 15A.
  • the see-through reflection unit 13A is provided on the reflection side of the polarization beam splitter unit 12A, and the see-through reflection unit 13A corresponds to the optical viewing axis 100A of the near-eye display optical machine 10A for Part or all of the first polarized image light 1101A reflected by the beam splitting unit 12A is reflected back to the polarizing beam splitting unit 12A, and a part of ambient light is allowed to pass through to propagate to the polarizing beam splitting unit 12A.
  • the polarization conversion unit 14A is disposed between the polarization beam splitting unit 12A and the see-through reflection unit 13A, and is used to convert the first polarized image light 1101A into the polarization conversion unit 14A after passing through the polarization conversion unit 14A twice The second polarized image ray 1102A.
  • the second polarized image light 1102A converted by the polarization conversion unit 14A and the ambient light passing through the see-through reflection unit 13A will first pass through the polarization splitting unit 12A and then enter the human eye to be Viewing, so that the user can simultaneously see the virtual image corresponding to the image light 1100A and the real image corresponding to the ambient light by using the near-eye display light machine 10A to achieve an augmented reality experience.
  • the optical viewing axis 100A of the near-eye display optical machine 10A may be a main viewing axis defined jointly by the polarization beam splitting unit 12A and the see-through reflecting unit 13A, so that the user may follow the optical viewing axis 100A can not only see the image light emitted by the image source unit 11A, but also see the external ambient light, so as to obtain an augmented reality experience that integrates virtual and real. It can be understood that the see-through reflection unit 13A can be optimally adjusted according to the specific system design.
  • the second polarized image light 1102A converted by the polarization conversion unit 14A can pass through the polarization splitting unit 12A, and there is no loss due to the reflection of the polarization splitting unit 12A, so there is It helps to improve the light energy utilization ratio of the near-eye display optical machine 10A to the image light.
  • the see-through reflection unit 13A of the near-eye display optical machine 10A is a partial mirror (ie, reflects 50% of light and transmits 50% of light)
  • the image light only reaches the polarization for the first time
  • the splitting unit 12A and the see-through reflection unit 13A respectively lose half, that is, the near-eye display optical machine 10A has a light energy utilization rate of 25% for image light, which is higher than the conventional display optical machine 10P for image light.
  • the utilization rate of light energy has doubled.
  • the angle ⁇ between the polarization beam splitting unit 12A and the optical viewing axis 100A of the near-eye display optical machine 10A is greater than 45°, the eye-relief of the near-eye display optical machine 10A (i.e.
  • the distance between the eye points is increased, so that users who are near-sighted or far-sighted can increase the adapter to improve the user's wearing experience and comfort.
  • this configuration also contributes to the design adjustment of the entire system, making the near-eye display optical machine 10A more compact than existing optical machines, and suitable for meeting the current trend of miniaturization and thinning.
  • the included angle ⁇ between the polarization beam splitting unit 12A and the optical viewing axis 100A of the near-eye display optical machine 10A is between 50° and 70°, that is, 50° ⁇ ⁇ 70°.
  • the first polarized image ray 1101A can be implemented as polarized light having a first polarization state
  • the second polarized image ray 1102A can be implemented as a second polarization state Polarized light, wherein the polarization direction of the first polarized image ray 1101A is preferably perpendicular to the polarization direction of the second polarized image ray 1102A.
  • the first polarized image ray 1101A may be implemented as S-polarized light or P-polarized light, but not limited to, the second polarized image ray 1102A may be implemented as P-polarized light or S-polarized light.
  • the polarization conversion unit 14A may be, but not limited to, implemented as a first 1/4 wave plate 141A for The first or second polarized image light rays 1101A, 1102A passing through the first quarter wave plate 141A are converted into the second or first polarized image light rays 1102A, 1101A.
  • the first 1/4 wave plate 141A is disposed between the polarization beam splitting unit 12A and the see-through reflection unit 13A, so that the first polarized image light reflected through the polarization beam splitting unit 12A 1101A first passes through the first quarter wave plate 141A for the first time to be converted into the first circularly polarized light, and after being reflected by the see-through reflection unit 13A to be converted into the second circularly polarized light, then passes through the second time
  • the first 1/4 wave plate 141A is converted into the second polarized image light 1102A, so that the first polarized image light 1101A is converted into all the light after passing through the first 1/4 wave plate 141A twice
  • the second polarized image light 1102A so that most of the reflected image light can pass through the polarization beam splitting unit 12A to enter the human eye, which helps to improve the image light of the near-eye display optical machine 10A Light energy utilization.
  • the polarization beam splitting unit 12A of the near-eye display optical machine 10A of the first embodiment of the present invention may include a light-transmitting substrate 121A and a polarization beam splitting film 122A
  • the transparent substrate 121A has a first optical surface 120A, and the first optical surface 120A of the transparent substrate 121A faces the image source unit 11A (that is, the first optical surface 120A is The upper surface of the light-transmitting substrate 121A), wherein the polarizing beam splitting film 122A is disposed on the first optical surface 120A of the light-transmitting substrate 121A, so that the polarizing beam splitting film 122A is located on the light-transmitting base Between the sheet 121A and the image source unit 11A, for reflecting the first polarized image light 1101A in the image light 1100A.
  • the polarization beam splitting film 122A may be, but not limited to, attached or plated on the first optical surface 120A of the light-transmitting substrate 121A.
  • the light-transmitting substrate 121A may be, but not limited to, made of a light-transmitting material such as optical plastic or optical glass, etc., to ensure that light can pass through the light-transmitting substrate 121A.
  • the shape of the first optical surface 120A of the light-transmitting substrate 121A of the polarization beam splitting unit 12A may be, but not limited to, implemented as a free-form surface, so that image light or ambient light can be split in the polarization beam splitting
  • the unit 12A is shaped when reflecting or transmitting, which helps to improve the imaging quality of the near-eye display optical machine 10A.
  • the see-through reflection unit 13A of the near-eye display optical machine 10A of the first embodiment of the present invention may include a curved substrate 131A and a part of the reflective film 132A, wherein the curved substrate
  • the sheet 131A has a second optical surface 130A, and the second optical surface 130A of the curved substrate 131A faces the polarization beam splitter unit 12A (ie, the second optical surface 130A is inside the curved substrate 131A Surface), wherein the partially reflective film 132A is disposed on the second optical surface 130A of the curved substrate 131A, so that the partially reflective film 132A is located between the polarization splitting unit 12A and the curved substrate 131A
  • it is used to reflect the first polarized image light 1101A so that the first polarized image light 1101A passes through the first quarter wave plate 141A twice to be converted into the second polarized image light 1102A.
  • the partially reflective film 132A may be, but not limited to, attached or plated on the second optical surface 130A of the curved substrate 131A.
  • the curved substrate 131A may be made of a light-transmitting material such as optical plastic or optical glass to ensure that ambient light can pass through the see-through reflection unit 13A.
  • the surface shape of the second optical surface 130A of the curved substrate 131A of the see-through reflection unit 13A may also be implemented as a free-form surface, so that image light and ambient light can be reflected in the see-through
  • the unit 13A is shaped when the second optical surface 130A is reflected or transmitted.
  • the first optical surface 130 of the curved substrate 131A may also face the opposite direction of the polarization beam splitter unit 12A (that is, the second optical surface 130A is The outer surface of the curved substrate 131A), so that the curved substrate 131A is located between the partial reflection film 132A and the polarization beam splitter unit 12A, so that image light will first pass through the curved substrate 131A, and then It is emitted by the partial reflection film 132A to pass through the curved substrate 131A again to reach the polarization splitting unit 12A.
  • the lens group unit 15A of the near-eye display optical machine 10A may include, but is not limited to, at least one lens 151A, wherein each of the lenses 151A
  • the surface type of may be, but not limited to, implemented as a standard spherical surface, aspherical surface, free-form surface or diffraction surface for modulating and shaping the image light 1100A from the image source unit 11A.
  • the surface type of the at least one lens 151A may be, but not limited to, one or more selected from the group consisting of a standard spherical surface, aspherical surface, free-form surface, and diffraction surface.
  • the free-form surface mentioned in the present invention may be, but not limited to, implemented as an XY polynomial free-form surface, a Zernike polynomial free-form surface, or a toric surface.
  • the image source unit 11A may be, but not limited to, implemented as one of LCD, OLED, DLP, and LCOS type micro display devices for providing The image light 1100A is described.
  • the image source unit 11A is implemented as an LCOS type micro display device
  • the LCOS type micro display device can emit image light having a specific polarization state so as to cooperate with the polarization beam splitting unit 12A so that The image light emitted by the image source unit 11A is not lost at the polarization beam splitter unit 12A, which helps to further improve the light energy utilization rate of the image light by the near-eye display optical machine 10A.
  • the image source unit 11A of the near-eye display optical machine 10A is implemented as an LCOS type micro display device for emitting the first polarized image light ray 1101A along the emission path 110A.
  • Most of the first polarized image light rays 1101A emitted by the LCOS type micro display device are reflected by the polarizing beam splitting unit 12A to the see-through reflecting unit 13A without being transmitted through the polarizing beam splitting unit 12A Loss occurs, so that the light energy utilization rate of the image light by the near-eye display optical machine 10A can be greatly improved.
  • the image light is only lost at the see-through reflection unit 13A due to transmission, and no loss is caused at the polarization splitting unit 12A due to reflection or transmission, so that the near-eye display optical machine 10A emits light to the image light
  • the energy utilization rate is close to 50%.
  • the near-eye display optical machine 10A has a low light energy utilization rate for image light and cannot provide high-quality images; and it also allows others to see the image being viewed by the user from outside the near-eye display optical machine 10A. Protect user privacy.
  • some embodiments of the present invention provide a near-eye display light machine
  • the image source unit of the near-eye display light machine is used to emit image light having a predetermined spectrum
  • the near-eye display light The see-through reflection unit of the camera includes a reflective film system for reflecting the predetermined spectrum, thereby greatly reducing the escape of image light from the front of the near-eye display optical machine, so that the outside cannot see the near-eye display optical machine
  • the displayed image can achieve the purpose of improving the utilization rate of light energy and protecting privacy.
  • the ambient light (hereinafter referred to as interference light) below the near-eye display optical machine 10A will inevitably be inevitably It will be reflected into the human eye by the polarization beam splitter unit 12A, causing the user to see the virtual image of the object under the near-eye display optical machine 10A while viewing the scene in front of the near-eye display optical machine 10A, thereby causing vision Interference (ie, artifact interference). Therefore, in order to solve the above-mentioned problems, as shown in FIGS.
  • the second embodiment of the present invention provides a near-eye display optical machine 10A', which can effectively prevent the disturbing light below from being reflected into the user's eyes to prevent Visual disturbances have occurred.
  • the near-eye display optical machine 10A′ according to the second embodiment of the present invention differs from the above-described first embodiment of the present invention in that the near-eye display
  • the optical machine 10A' further includes an anti-interference unit 16A', wherein the anti-interference unit 16A' is located on the side of the polarization beam splitter unit 12A away from the image source unit 11A, and is used to prevent from the near-eye display optical machine
  • the interference light 100A' below 10A' produces visual interference.
  • the anti-interference unit 16A′ includes a polarization filter element 161A′, wherein the polarization filter element 161A′ is disposed on the polarization beam splitter unit 12A away from the image
  • One side of the source unit 11A is used to absorb the first polarized light 101A and transmit the second polarized light 102A, wherein the first polarized light 101A is implemented as polarized light having a first polarization state, the second polarized light 102A is implemented as polarized light having a second polarization state.
  • the polarization state of the first polarized light 101A is consistent with the polarization state of the first polarized image ray 1101A; and the polarization state of the second polarized light 102A and the second polarized image
  • the polarization state of the light 1102A remains the same (for example, the first polarized light 101A and the first polarized image light 1101A have the same polarization state, and the second polarized light 102A and the second polarized image light 1102A have the same polarization state) .
  • both the first polarized light 101A and the first polarized image ray 1101A are implemented as polarized light with an S-polarized state (abbreviated as S-polarized light); the second polarized light Both 102A and the second polarized image ray 1102A are implemented as polarized light having a P polarization state (referred to as P polarized light for short).
  • the interference light 100A is absorbed by the polarization filter element 161A' of the anti-interference unit 16A', so that the interference light 100A' is filtered into the second polarized light 102A from unpolarized light; second, through The second polarized light 102A passing through the polarization filter element 161A' propagates upward to the polarization beam splitter unit 12A to escape through the polarization beam splitter unit 12A without being reflected into human eyes, thereby preventing
  • the interference light 100A' from below the near-eye display optical machine 10A' has the purpose of visual interference.
  • the polarization beam splitting unit 12A is used to reflect polarized light having a first polarization state and transmit polarized light having a second polarization state, the second light transmitted through the polarization filter element 161A′ The polarized light 102A will only pass through the polarization splitting unit 12A, and will not be reflected by the polarization splitting unit 12A.
  • the polarizing filter element 161A' allows the second polarized light 102A to pass, that is, the polarized light having the second polarization state is allowed to pass, the image light and the ambient light propagating along the optical viewing axis are After passing through the polarization beam splitting unit 12A, it must be able to pass through the polarizing filter element 161A' to propagate into the human eye, so that the anti-interference unit 16A' plays an anti-artifact effect, and will not affect all
  • the original effects of the near-eye display optical machine 10A' (such as image contrast, light energy utilization, etc.) help greatly improve the user's comfortable experience.
  • the polarizing filter element 161A' may be, but not limited to, implemented as a linear polarizer to allow only the second polarized light to pass through and absorb the first polarized light.
  • the polarizing filter element 161A' is implemented as a P polarizing plate for allowing only P polarized light to pass through and absorb S polarized light, so as to interact with the polarizing beam splitting film (such as PBS film, reflect S polarized light, and transmit P polarized light) to match.
  • the polarizing beam splitting film such as PBS film, reflect S polarized light, and transmit P polarized light
  • the anti-interference unit 16A′ may further include a protective substrate 162A′, wherein the protective substrate 162A′ is located outside the polarizing filter element 161A′, so that the polarizing filter element 161A' is located between the protection substrate 162A' and the polarization beam splitting unit 12A to protect and support the polarization filter element 161A' through the protection substrate 162A'.
  • the protective substrate 162A' may be, but not limited to, made of a light-transmitting material such as glass, transparent plastic, etc. to allow light to pass through the protective substrate 162A'.
  • the anti-interference unit 16A′ may further include an antireflection film 163A′, wherein the antireflection film 163A′ is disposed on the outer surface of the protective substrate 162A′ for reducing The reflection of the disturbing light 100A' on the outer surface of the protective substrate 162A' helps prevent visual interference.
  • the antireflection film 163A′ may be, but not limited to, plated on the outer surface of the protective substrate 162A′.
  • the antireflection film 163A' may be directly attached to the outer surface of the protective substrate 162A'.
  • the structure of the display light machine 10A is the same, and the near-eye display light machine 10A′ also has similar or the same modified embodiments as the various modified embodiments of the near-eye display light machine 10A of the first embodiment, here No longer.
  • the present invention further provides a near-eye display device equipped with a near-eye display optical machine.
  • the near-eye display device 1A may include the above-mentioned at least one near-eye display light machine 10A (10A′) and a device body 20A, wherein the near-eye display light machine 10A (10A′) is provided
  • the device main body 20A is assembled into the compact near-eye display device 1A, which makes the near-eye display device small in size and light in weight, which helps to meet the current trend of miniaturization and thinning.
  • the device body 20A can be implemented as, but not limited to, a glasses body, so that the near-eye display device 1A is implemented as AR glasses, which helps to improve the user experience. It can be understood that, in other examples of the present invention, the near-eye display device 1A may also be implemented as other types of AR devices such as AR helmets.
  • the present invention further provides a method for manufacturing a near-eye display light machine.
  • the manufacturing method of the near-eye display optical machine 10A includes the steps of:
  • S310A setting a lens group unit 15A between an image source unit 11A and a polarization beam splitting unit 12A, and the lens group unit 15A and the polarization beam splitting unit 12A are both located in the emission path of the image source unit 11A, wherein The lens group unit 15A is used to modulate the image light 1100A emitted through the image source unit 11A, wherein the polarization beam splitting unit 12A is used to reflect the first polarized image light in the modulated image light 1100A 1101A, and transmits the second polarized image light 1102A in the modulated image light 1100A;
  • S320A setting a see-through reflection unit 13A on the reflection side of the polarization beam splitting unit 12A to define an optical viewing axis 100A through the see-through reflection unit 13A and the polarization beam splitting unit 12A, wherein the polarization beam splitting unit 12A and all The angle between the optical viewing axes 100A is greater than 45°, wherein the see-through reflection unit 13A is used to reflect part or all of the first polarized image light rays 1101A reflected through the polarization beam splitter unit 12A back to the A polarization beam splitting unit 12A, and allows a part of ambient light to pass through to propagate to the polarization beam splitting unit 12A; and
  • a polarization conversion unit 14A is provided between the polarization beam splitting unit 12A and the see-through reflection unit 13A, and is used to convert the first polarized image light 1101A into the polarization conversion unit 14A after passing through the polarization conversion unit 14A twice.
  • the second polarized image light ray 1102A is further incident on the human eye along the optical viewing axis 100A to be viewed.
  • the order between the step S310A, the step S320A, and the step S330A is in no particular order.
  • the polarization beam splitting unit 12A includes a light-transmitting substrate 121A and a polarization beam splitting film 122A, wherein the polarization beam splitting film 122A is disposed on the light-transmitting substrate 121A The first optical surface 120A, and the polarization beam splitting film 122A is located between the light-transmitting substrate 121A and the image source unit 11A.
  • the shape of the first optical surface of the light-transmitting substrate is a free-form surface.
  • the see-through reflection unit 13A includes a curved substrate 131A and a part of the reflective film 132A, wherein the partial reflective film 132A is disposed on the second optical surface 130A of the curved substrate 131A, with The first polarized image light 1101A is reflected so that the first polarized image light 1101A passes through the first quarter wave plate 141A twice to be converted into the second polarized image light 1102A.
  • the surface shape of the second optical surface of the curved substrate is a free-form surface.
  • the manufacturing method of the near-eye display optical machine 10A may further include steps:
  • S340A setting an anti-interference unit 16A' on the side of the polarization beam splitting unit 12A away from the image source unit 11A, wherein the anti-interference unit 16A' includes a polarization filter element 161A' for absorbing the first polarization Light 101A, and transmits second polarized light 102A, wherein the polarization state of the first polarized light 101A is consistent with the polarization state of the first polarized image light 1101A; and the polarization state of the second polarized light 102A is The polarization state of the second polarized image ray 1102A remains the same.
  • near-eye display devices capable of implementing augmented reality have become more and more popular and used by people.
  • the ambient light hereinafter referred to as interference light
  • the interference light below the existing display light machine will inevitably be reflected into the user's eyes, causing the user to While viewing the scene in front of the display light machine, you will also see a virtual image of the object below the display light machine, which can cause visual interference.
  • an embodiment of the present invention provides a display optical machine, which can effectively prevent the disturbing light below from being reflected into the eyes of users to prevent visual interference.
  • the display optical machine 10B includes a display unit 11B, a relay system 12B, and a see-through reflection unit 13B.
  • the display unit 11B is used to emit image light.
  • the relay system 12B is provided in the transmission path of the display unit 11B.
  • the see-through reflection unit 13B is provided in the reflection path of the relay system 12B, and is used to reflect the image light reflected by the relay system 12B back to the relay system 12B and allow ambient light to pass through the
  • the perspective reflection unit 13B enters the relay system 12B, so that the image light and the ambient light can pass through the relay system 12B and enter the user's eyes, so that the user can simultaneously view the image to be displayed and Real environment to achieve the purpose of augmented reality.
  • the relay system 12B of the display optical machine 10B includes a retroreflective element 121B, a polarization conversion element 122B, and a polarization filter element 123B, and the retroreflective element 121B, the polarization conversion element 122B, and the polarization filter element 123B are sequentially arranged along the emission path of the display unit 11B, that is, the retroreflective element 121B and the polarization conversion element 122B are located in the The polarization filter element 123B is between the display unit 11B, and the polarization conversion element 122B is located between the retroreflective element 121B and the polarization filter element 123B.
  • the retroreflective element 121B, the polarization conversion element 122B, and the polarization filter element 123B of the relay system 12B are sequentially arranged from top to bottom, and the display unit 11B is located on the retroreflective element Above 121B, the disturbing light 100B from below the display light machine 10B passes through the polarizing filter element 123B, the polarizing conversion element 122B, and the retroreflective element 121B in sequence.
  • the see-through reflection unit 13B is provided on the reflection path of the retroreflective element 121B for The image light reflected through the retroreflective element 121B is reflected back to the relay system 12B.
  • the polarization filter element 123B is used to transmit the first polarized light 101B and absorb the second polarized light 102B.
  • the polarization conversion element 122B is used to convert the first polarized light 101B into the first circularly polarized light 103B, and also used to convert the second circularly polarized light 104B into the second polarized light 102B.
  • the retroreflective element 121B is used to reflect a part of light and transmit another part of light.
  • the polarization direction of the first polarized light 101B is preferably perpendicular to the polarization direction of the second polarized light 102B.
  • the first polarized light may be implemented as S or P polarized light; accordingly, the second polarized light may be implemented as P or S polarized light, but not limited to .
  • the first and second polarized lights may also be implemented as polarized lights in other directions perpendicular to each other.
  • the polarizing filter element 123B of the relay system 12B may be, but not limited to, implemented as a linear polarizer 1231B for allowing only The first polarized light 101B transmits and absorbs the second polarized light 102B.
  • the linear polarizer 1231B first absorbs the interference The second polarized light 102B in the light 100B, and transmits the first polarized light 101B in the interference light 100B to filter out the second polarized light 102B in the interference light 100B, so that the The disturbing light 100B is converted into the first polarized light 101B from unpolarized light; secondly, the first polarized light 101B from the polarizing filter element 123B is converted into the first circularly polarized light 103B by the polarization conversion element 122B; A part of the first circularly polarized light 103B from the polarization conversion element 122B is reflected back to the polarization conversion element 122B by the retroreflective element 121B, and converted into the second circularly polarized light 104B; finally,
  • the retroreflective element 121B of the relay system 12B may be, but not limited to, implemented as a half-reverse half lens 1211B for Reflect a part of the light and transmit another part of the light.
  • the half mirror lens 1211B may be, but not limited to, a lens that is coated with a half mirror film to allow half of the light to pass through and reflect the other half of the light.
  • the retroreflective element 121B may also be implemented as other types of elements, as long as the effects of partial reflection and partial transmission of light can be achieved.
  • the polarization conversion element 122B of the relay system 12B may be, but not limited to, implemented as a 1/4 wave plate 1221B for The first or second polarized light 101B, 102B that passes through the quarter wave plate 1221B twice is converted into the second or first polarized light 102B, 101B.
  • the 1/4 wave plate 1221B is located between the half mirror half lens 1211B and the linear polarizer 1231B, so that when the interference light passes
  • the linear polarizer 1231B only allows the first polarized light 101B in the interference light 100B to pass through, and absorbs the second polarized light 102B in the interference light 100B;
  • a polarized light 101B passes through the 1/4 wave plate 1221B for the first time to be converted into the first circularly polarized light 103B, and then is reflected back to the 1/4 wave plate 1221B by the half mirror half lens 1211B to be converted into the first Two circularly polarized light 104B, and then passes through the quarter wave plate 1221B for the second time to be converted into the second polarized light 102B, so that the first polarized light 101B passes through the quarter wave plate twice After 1221B, it is converted into the second polarized light 102B, so that the second
  • the transmission axis of the linear polarizer 1231B of the relay system 12B of the present invention can be in any direction, as long as the fast axis of the 1/4 wave plate 1221B and the linear polarizer 1231B are guaranteed There is only a predetermined angle ⁇ (as shown in FIG. 21) in the transmission axis of, where the predetermined angle ⁇ takes a value of about 45°, for example, 40° ⁇ 50°.
  • the predetermined angle ⁇ between the fast axis of the 1/4 wave plate 1221B and the transmission axis of the linear polarizer 1231B is implemented as 45°, so that the 1/4 wave is passed twice
  • the polarization state of the polarized light after the sheet 1221B is perpendicular to the polarization state before passing through, so that the interference light 100B cannot be prevented from passing through the linear polarizer 1231B, so as to eliminate the visual interference caused by the interference light 100B.
  • the relay system 12B may further include a protective substrate 124B, wherein the protective substrate 124B is located outside the polarizing filter element 123B, so that the polarizing filter element 123B
  • the polarization conversion element 122B is between the protection substrate 124B and the half mirror half lens 1211B to protect and support the polarization filter element 123B and the polarization conversion element 122B through the protection substrate 124B.
  • the protective substrate 124B may be, but not limited to, made of a light-transmitting material such as glass, transparent plastic, etc. to allow light to pass through the protective substrate 124B.
  • the relay system 12B may further include an anti-reflection film 125B, wherein the anti-reflection film 125B is disposed on the outer surface of the protective substrate 124B for reducing interference
  • the reflection of the light 100B on the outer surface of the protective substrate 124B helps to prevent visual interference.
  • the antireflection film 125B may be, but not limited to, plated on the outer surface of the protection substrate 124B.
  • the antireflection film 125B may be directly attached to the outer surface of the protective substrate 124B.
  • the display optical machine 10B may further include a lens unit 14B, wherein the lens unit 14B is disposed on the display unit 11B and the The relay system 12B is used to modulate the image light from the display unit 11B, which helps to improve the image quality displayed by the display light machine 10B.
  • the lens unit 14B of the display optical machine 10B may include, but is not limited to, at least one lens for modulating image light emitted through the display unit 11B.
  • the see-through reflection unit 13B of the display light machine 10B may be, but not limited to, implemented as a curved mirror 131B, wherein the curved mirror 131B
  • the reflection path provided in the relay system 12B is used to shape the image light while reflecting the image light transmitted through the relay system 12B back to the relay system 12B. It helps to improve the imaging quality of the display light machine 10B.
  • the curved mirror 131B is a partial mirror, that is, it reflects and transmits light according to a certain ratio, so that the curved mirror 131B can not only reflect a part of the image light back into the human eye and allow the user to view the corresponding The image, and also allows ambient light to pass through the curved mirror 131B to enter the user's eyes to allow people to see the real environment, so as to achieve the purpose of augmented reality.
  • the retroreflective element 121B of the relay system 12B may also be directly implemented as a semi-transparent semi-transparent membrane (not shown in the figure), wherein the semi-transparent
  • the transflective film is directly disposed on the upper surface of the 1/4 wave plate 1221B, and is used to directly reflect a part of the first polarized light passing through the 1/4 wave plate 1221B back to the 1/4 wave plate 1221B, so that the first polarized light passes through the quarter wave plate 1221B twice to be converted into second polarized light, so as to be absorbed by the linear polarizer 1231B to avoid visual interference.
  • the transflective film can be, but is not limited to, directly coated on the upper surface of the 1/4 wave plate 1221B, so that the relay system 12B can ensure the elimination of interference light on the display light
  • the volume and weight of the display light machine 10B can also be reduced, which helps to meet the development needs of the display light machine 10B to be smaller, lighter and thinner.
  • the transflective film can also be provided on the surface of the quarter wave plate 1221B by attaching or the like.
  • FIG. 22 shows a first modified embodiment of the display light machine 10B according to the above-mentioned embodiment of the present invention.
  • the display light machine 10B according to the first modified embodiment of the present invention is different in that the display unit 11B is used to emit image light having a predetermined spectrum, And the reflection spectrum of the see-through reflection unit 13B' is basically consistent with the predetermined spectrum of the image light, and is used to reflect the image light reflected through the relay system 12B back to the relay system 12B and allow ambient light Through the see-through reflective element 13A to enter the relay system 12B, so that the image light and the ambient light can pass through the relay system 12B and enter the user's eyes, so that the user can view the desired The displayed image and the real environment, thus achieving the purpose of augmented reality.
  • the error between the reflection spectrum and the predetermined spectrum within 20% can be regarded as that the reflection spectrum and the predetermined spectrum remain substantially consistent.
  • the see-through reflection unit 13B' reflects only those with the predetermined spectrum Light, and allows light of other spectrums (such as ambient light with unpredetermined spectrum) to pass through.
  • the display optical machine 10B in this modified embodiment of the present invention can not only eliminate the visual interference caused by the interference light, but also protect the privacy of the user, which helps greatly improve the user experience.
  • the see-through reflection unit 13B' includes a reflective film system 131B' and a curved base layer 132B', wherein the reflective film system 131B' is made by film design according to the predetermined spectrum of the image light, so that the reflection spectrum of the reflective film system 131B' is the same as the predetermined spectrum of the image light; the reflective film system 131B' It is disposed on the curved base layer 132B′, so that the reflective film system 131B′ has a curved shape, thereby forming the perspective reflection unit 13B′ having a curved structure, so that the perspective reflection unit 13B′ reflects the image At the same time as the light, the image light can also be modulated to improve the image quality displayed by the display light machine.
  • the curved base layer 132B' may be made of a transparent material, such as glass, plastic, resin, polymer material, and other transparent materials, to allow light to pass through the curved base layer 132B', which helps to avoid the The curved base layer 132B' blocks ambient light from passing through the see-through reflection unit 13B'.
  • the curved base layer 132B' may also be made of translucent materials, such as glass, plastic, resin, polymer materials, and other translucent materials, to allow light to partially pass through the curved surface
  • the base layer 132B′ can appropriately reduce the ambient light from passing through the see-through reflection unit 13B′ to meet different scene requirements.
  • the curved base layer 132B′ may be implemented as a curved lens, but the reflective film 131B′ is attached to the inner surface of the curved base layer 132B′, so that the reflective film 131B
  • the shape of ' keeps substantially the same as the shape of the inner surface of the curved base layer 132B' to form the reflective film system 131B' having a curved shape.
  • the image light when the image light is incident on the see-through reflection unit 13B' via the relay system 12B, the image light first reaches the reflective film system 131B' to be reflected back by the reflective film system 131B'
  • the relay system 12B does not need to pass through the curved base layer 132B' first, so as to prevent the curved base layer 132B' from absorbing the image light and reducing the light energy of the image light.
  • the present invention further provides a near-eye display device equipped with a display light machine to eliminate visual interference caused by disturbing light from below the near-eye display device to users, which is helpful To improve the user experience.
  • the near-eye display device 1B may include at least one display light machine 10B and a device body 20B, wherein the display light machine 10B is disposed on the device body 20B, so that the The near-eye display device 1B has a function to eliminate visual interference.
  • the interfering light from below the near-eye display device 1B will not be reflected by the display light machine 10B of the near-eye display device 1B to In the eyes of the user, to prevent the user from viewing the image below the near-eye display device 1B, thereby effectively eliminating visual interference.
  • the device body 20B may be implemented as, but not limited to, a glasses body, so that the near-eye display device 1B is implemented as AR glasses with a function of eliminating visual interference, which helps to improve the user experience. It can be understood that, in other examples of the present invention, the near-eye display device 1B may also be implemented as other types of AR devices such as AR helmets.
  • the present invention further provides a manufacturing method of a display light machine.
  • the manufacturing method of the display light machine 10B includes the steps of:
  • S310B setting a relay system 12B to the transmission path of a display unit 11B, wherein the relay system 12B includes a retro-reflective element 121B and a polarization conversion element arranged in sequence along the transmission path of the display unit 11B 122B and a polarizing filter element 123B, wherein the retroreflective element 121B is used to reflect the image light emitted through the display unit 11B, and is used to reflect the first polarized light 101B from the polarizing filter element 123B; the polarization conversion The element 122B is used to convert the first polarized light 101B passing through the second time into the second polarized light 102B; the polarizing filter element 123B is used to absorb the second polarized light 102B and transmit the first polarized light 101B; with a retro-reflective element 121B and a polarization conversion element arranged in sequence along the transmission path of the display unit 11B 122B and a polarizing filter element 123B, wherein the retro
  • S320B Set a see-through reflection unit 13B on the reflection path of the relay system 12B, wherein the see-through reflection unit 13B is used to reflect the image light reflected through the retroreflective element 121B back to the relay system 12B.
  • the retroreflective element 121B is implemented as a half reverse half lens 1211B.
  • the polarization conversion element 122B is implemented as a 1/4 wave plate 1221B.
  • the polarizing filter element 123B may be implemented as a linear polarizer 1231B.
  • the present invention further provides a visual interference cancellation method for a display light machine.
  • the visual interference cancellation method includes the steps of:
  • a polarizing filter element 123B absorbs the second polarized light 102B in the interference light 100B, and transmits the first polarized light 101B in the interference light 100B;
  • S420B Convert the first polarized light 101B from the polarized light filter element 123B into a first circularly polarized light 103B by a polarized light conversion element 122B;
  • S430B Reflect the first circularly polarized light 103B converted by the polarization conversion element 122B by a retroreflective element 121B to form a second circularly polarized light 104B;
  • the polarized light filter element 123B absorbs the second polarized light 102B converted by the polarized light conversion element 122B to eliminate visual interference caused by the interfering light 100B.
  • the retroreflective element 121B is implemented as a half reverse half lens 1211B.
  • the polarization conversion element 122B is implemented as a 1/4 wave plate 1221B.
  • the polarizing filter element 123B may be implemented as a linear polarizer 1231B.
  • an embodiment of the present invention further provides a method for preventing the downward interference light reflected by the near-eye display device from reflecting to the user's eyes.
  • the method for preventing near-interference light reflected by a near-eye display device from reflecting to a user's eyes includes the steps of:
  • (A) absorb the second polarized light in the interfering light from below the near-eye display device, and transmit the first polarized light in the interfering light from below the near-eye display device;
  • (C) Absorb the second polarized light propagating toward the user's eyes to prevent the interfering light rays from below the near-eye display device from being reflected to the user's eyes.
  • the step (B) of the method for preventing the reflection of the lower interference light from the near-eye display device to the user's eyes includes the steps of:
  • (B.2) Reflect the first circularly polarized light to form a second circularly polarized light propagating toward the user's eyes;
  • (B.3) Convert the second circularly polarized light propagating toward the user's eyes into the second polarized light propagating toward the user's eyes.
  • the method for preventing downward interference light reflected by a near-eye display device from reflecting to a user's eyes further includes the step before the step (A):
  • the transmission of the disturbing light from below the near-eye display device in the near-eye display device is enhanced to reduce the reflection of the disturbing light by the near-eye display device and prevent the disturbing light from being directly reflected to the user's eyes.
  • an embodiment of the present invention provides an anti-aliasing type display optical machine, which can effectively prevent the disturbing light below from being reflected into the user’s eyes to Prevent the occurrence of artifact interference.
  • the display optical machine 10C includes a display unit 11C, a relay system 12C, a see-through reflection unit 13C, and a lens group unit 14C.
  • the display unit 11C is used to emit image light.
  • the lens group unit 14C is provided between the display unit 11C and the relay system 12C, and is used to modulate the image light emitted via the display unit 11C.
  • the relay system 12C is used to transmit the image light modulated by the lens group unit 14C to the see-through reflection unit 13C.
  • the perspective reflection unit 13C is used to reflect the image light transmitted through the relay system 12C back to the relay system 12C, and allow ambient light to pass through the perspective reflection unit 13C to enter the relay system 12C , So that the image light and the ambient light can penetrate the eyes of the user through the relay system 12C, so that the user can view the image to be displayed and the real environment at the same time, thereby achieving the purpose of augmented reality.
  • the relay system 12C of the display optical machine 10C includes a polarization beam splitter element 121C, a polarization conversion element 122C, and a polarization filter element 123C, wherein the polarization beam splitter
  • the element 121C is used to reflect light with a first polarization state and transmit light with a second polarization state, wherein the polarization direction of the light with the first polarization state is perpendicular to the polarization direction of the light with the second polarization state ;
  • the polarization conversion element 122C is used to convert the second-pass light having the first polarization state into the light having the second polarization state; wherein the polarization filter element 123C is used to absorb the The light with the first polarization state transmits the light with the second polarization state.
  • the light having the first polarization state may be, but not limited to, implemented as polarized light having an S polarization state (referred to as S polarized light for short); accordingly, the The light of the second polarization state may be, but not limited to, implemented as polarized light having a P polarization state (referred to as P polarized light for short).
  • the polarizing beam splitting element 121C and the polarizing filter element 123C are sequentially arranged along the emission path of the display unit 11C from top to bottom, and the display unit 11C is located at the Above the polarizing beam splitting element 121C, the light having the second polarization state among the image rays emitted through the display unit 11C first passes through the polarizing beam splitting element 121C, and then passes through the polarizing filter element 123C.
  • the disturbing light from below the anti-aliasing display optical machine 10C is first filtered by the polarization filter element 123C, and then propagated to the polarization beam splitter element 121C.
  • the light with the first polarization state in the interference light will be absorbed by the polarizing filter element 123C without being reflected by the polarization beam splitter element 121C into the user's eyes;
  • the light of the two polarization states can pass through the polarization filter element 123C to propagate to the polarization beam splitter element 121C, it can pass through the polarization beam splitter element 121C without being reflected by the polarization beam splitter element 121C, so that Among the disturbing rays, the rays with the first and second polarization states will not be reflected into the user's eyes, so as to eliminate the artifact interference caused by the disturbing rays from below the anti-aliasing display optical machine 10C, Therefore, the anti-aliasing type display optical machine 10C is provided with an anti-artifact function, improving user experience.
  • the image light and the interference light are generally both unpolarized light, that is, the image light and the interference light include both P-polarized light and S-polarized light. It is worth noting that, in order to distinguish the image light and the interference light in the figure, the P polarized light in the interference light is recorded as P* polarized light, and the S polarized light in the interference light is recorded as S* polarized light.
  • the polarization conversion element 122C is disposed between the polarization beam splitter element 121C and the see-through reflection unit 13C, so that the image light emitted via the display unit 11C has the first polarization state
  • the light is first reflected by the polarization beam splitter element 121C, passes through the polarization conversion element 122C for the first time and reaches the see-through reflection unit 13C, and then is reflected back by the see-through reflection unit 13C for a second pass Pass the polarization conversion element 122C to reach the polarization beam splitter element 121C, so that the light having the first polarization state in the image light passes through the polarization conversion element 122C twice to be converted to have the second polarization
  • the light in the state of light then passes through the polarization beam splitter 121C to be incident on the eyes of the user, so that the user can obtain a good augmented reality experience.
  • the polarization beam splitter element 121C of the relay system 12C has an incident side, a reflection side, and a transmission side, wherein the display unit 11C corresponds to the incident side of the polarization beam splitter element 121C;
  • the polarization conversion element 122C corresponds to the reflection side of the polarization beam splitter element 121C;
  • the polarization filter element 123C corresponds to the transmission side of the polarization beam splitter element 121C.
  • the light having the first polarization state in the image light emitted through the display unit 11C in this way is reflected by the polarization beam splitter element 121C to propagate toward the reflection side of the polarization beam splitter element 121C to the polarization conversion element 122C; the light having the second polarization state in the image light emitted from the display unit 11C is transmitted by the polarizing beam splitter element 121C to propagate toward the polarizing filter toward the transmission side of the polarizing beam splitter element 121C Element 123C.
  • ambient light ie, interference light
  • the polarization filter element 123C to absorb the light with the first polarization state among the interference light rays, and Allow the light with the second polarization state among the disturbing light to pass through; the light with the second polarization state among the disturbing light will also escape through the polarization beam splitter 121C and will not be reflected into the user's eyes , To eliminate artifact interference caused by interference with light, which helps to improve the user experience.
  • the polarization beam splitter element 121C is also located on the transmission side of the polarization filter element 123C, so that the light with the second polarization state among the interfering rays passes through the After the polarizing filter element 123C, it can also pass through the polarizing beam splitter element 121C to eliminate artifacts caused by the interference light being reflected into the user's eyes.
  • the polarization beam splitter element 121C of the relay system 12C may be, but not limited to, implemented by including a light-transmitting base A sheet 1211C and a polarizing beam splitting film 1212C, wherein the polarizing beam splitting film 1212C is disposed on the upper surface of the light-transmitting substrate 1211C, so that the polarizing beam splitting film 1212C is located on the light-transmitting substrate 1211C and the lens group Between the units 14C, so that the polarizing beam splitter 121C is implemented as a polarizing beam splitter for reflecting the light having the first polarization state among the image light emitted through the display unit 11C and allowing the image light The light in the second polarization state passes through.
  • the polarization beam splitting film 1212C may be, but not limited to, attached or plated on the upper surface of the light-transmitting substrate 1211C.
  • the light-transmitting substrate 1211C may be made of, but not limited to, light-transmitting materials such as optical plastic or optical glass, etc., to ensure that light can pass through the light-transmitting substrate 1211C.
  • the see-through reflection unit 13C may include, but is not limited to, a curved substrate 131C and a part of reflective film 132C, wherein the partial reflection film 132C is disposed on the curved substrate
  • the inner surface of the sheet 131C, so that the partially reflective film 132C is located between the relay system 12C and the curved substrate 131C, is used to reflect the polarized beam splitter element 121C having the first polarization state At least a part of the light is reflected back to the polarization beam splitter element 121C, so that the light with the first polarization state passes through the polarization conversion element 122C twice to be converted into the light with the second polarization state, and then passes through After passing through the polarization beam splitter 121C, it is incident on the user's eyes.
  • the partial reflection film 132C may be, but not limited to, attached or plated on the inner surface of the curved substrate 131C, and may also be disposed on the outer surface of the curved substrate 131C.
  • the curved substrate 131C may be made of a light-transmitting material such as optical plastic or optical glass to ensure that ambient light can pass through the see-through reflection unit 13C.
  • the partial reflective film 132C may be, but not limited to, implemented as a semi-transparent semi-transparent film.
  • the partial reflection film 132C may also be implemented as a reflection film system having a predetermined reflection spectrum, wherein the predetermined reflection spectrum of the reflection film system and the display unit 11C emit The spectrum of the image light remains consistent, which is used to reflect all the light reflected through the polarizing beam splitter 121C back to the polarizing beam splitter 121C, and also allows the inconsistent part of the ambient light spectrum to pass through the reflective film system for incident In the eyes of users, to ensure that the anti-artifact display optical machine 10C can prevent image leakage on the basis of eliminating the bottom reflection artifacts, improve the system's light energy utilization rate, improve image contrast, and has excellent augmented reality effect.
  • the polarization conversion element 122C may be, but not limited to, implemented as a 1/4 wave plate 1221C for passing through the 1/4 wave plate 1221C twice The light having the first or second polarization state is converted into the light having the second or first polarization state.
  • the first quarter wave plate 1221C is disposed between the polarization beam splitter element 121C and the see-through reflection unit 13C, so that the image light reflected by the polarization beam splitter element 121C has the first
  • the light of a polarization state first passes through the first 1/4 wave plate 1221C to be converted into first circularly polarized light, after being reflected by the see-through reflection unit 13C to be converted into second circularly polarized light, and then second Passes through the first 1/4 wave plate 1221C to be converted into the light with the second polarization state so that the light with the first polarization state passes through the 1/4 wave plate 1221C twice It is converted into the light with the second polarization state, so that most of the image light reflected back can pass through the polarization beam splitter 121C.
  • the light having the second polarization state transmitted through the polarizing beam splitter element 121C can also pass through the polarizing filter element 123C to be incident into the eyes of the user, and will not be disturbed by the provision of the polarizing filter element 123C Losing the energy of the light with the second polarization state helps to ensure that the anti-aliasing display optical machine 10C has a higher light energy utilization rate for the image light.
  • the lens group unit 14C of the anti-aliasing display optical machine 10C may include, but is not limited to, at least one lens 141C, in which the surface of each lens 141C
  • the type may be, but not limited to, implemented as a standard spherical surface, aspherical surface, free-form surface, or diffraction surface for modulating and shaping the image light from the display unit 11C.
  • the surface type of the at least one lens 141C may be, but not limited to, one or more selected from the group consisting of a standard spherical surface, aspherical surface, free-form surface, and diffraction surface.
  • the free-form surface mentioned in the present invention may be, but not limited to, implemented as an XY polynomial free-form surface, a Zernike polynomial free-form surface, or a toric surface.
  • the display unit 11C may be, but not limited to, implemented as one of LCD, OLED, DLP, and LCOS type micro display devices for providing the image light.
  • the display unit 11C when the display unit 11C is implemented as an LCOS type micro display device, the LCOS type micro display device can emit image light having a first polarization state so as to cooperate with the polarization beam splitter element 121C so that The image light emitted by the display unit 11C is not lost at the polarization beam splitter 121C, which helps to further improve the light energy utilization rate of the image light by the near-eye display optical machine 10C.
  • the polarizing filter element 123C of the relay system 12C may be, but not limited to, implemented as a linear polarizer 1231C, using Because only light with the second polarization state is allowed to pass through and absorb light with the first polarization state. Exemplarily, as shown in FIG. 27 and FIG.
  • the linear polarizer 1231C of the polarizing filter element 123C is implemented as a P polarizer to allow only P polarized light to pass through and absorb S polarized light in order to Match with the polarization beam splitting film 1212C of the polarization beam splitting element 121C (such as PBS film, which reflects S polarized light and transmits P polarized light).
  • the relay system 12C may further include a protective substrate 124C, wherein the protective substrate 124C is located outside the polarizing filter element 123C, so that the polarizing filter element 123C Between the protection substrate 124C and the polarization beam splitter element 121C, to protect and support the polarization filter element 123C through the protection substrate 124C.
  • the protective substrate 124C may be, but not limited to, made of a light-transmitting material such as glass, transparent plastic, etc. to allow light to pass through the protective substrate 124C.
  • the relay system 12C may further include an anti-reflection film 125C, wherein the anti-reflection film 125C is disposed on the outer surface of the protective substrate 124C to reduce The reflection of the interference light on the outer surface of the protection substrate 124C helps to avoid visual interference.
  • the antireflection film 125C may be, but not limited to, plated on the outer surface of the protective substrate 124C.
  • the antireflection film 125C may be directly attached to the outer surface of the protective substrate 124C.
  • the display optical axis 110C of the display unit 11C is generally perpendicular to the anti-aliasing Viewing axis 100C of the type display optical machine 10C, that is, the angle between the display optical axis 110C of the display unit 11C and the optical viewing axis 100C of the anti-aliasing type display optical machine 10C ⁇ is 90°, that is, the angle between the polarization beam splitter 121C of the relay system 12C and the optical viewing axis 100C is usually 45°.
  • the normal of the display surface of the display unit 11C can be defined as the display optical axis 110C of the display unit 11C; the optical viewing axis 100C of the anti-aliasing display optical machine 10C It can be implemented as a main viewing axis defined jointly by the polarization splitting element 121C and the polarization conversion element 122C of the relay system 12C, and the see-through reflection unit 13C, so that the user follows the optical viewing axis 100C It is possible to see both the virtual image displayed via the display unit 11C and the real image of the external environment, so as to obtain an augmented reality experience in which the virtual and real are integrated. It can be understood that the see-through reflection unit 13C can be optimally adjusted according to the specific system design.
  • the angle between the polarizing beam splitter 121C and the optical viewing axis 100C is equal to 45°, the eye-relief (ie, the eye-point distance, such as the lens to the forehead) of the anti-aliasing display optical machine 10C The distance) is small, which is not conducive to adding adapters to nearsighted or farsighted users, resulting in poor user experience and comfort.
  • this configuration is not conducive to the design adjustment of the entire system to make the anti-aliasing display optical machine 10C compact in structure, and cannot meet the current trend of miniaturization and thinning.
  • FIG. 30 shows a modified embodiment of the anti-aliasing type display optical machine 10C according to the above-mentioned embodiment of the present invention.
  • the anti-aliasing type display optical machine 10C according to the modified embodiment of the present invention is different in that the display optical axis 110C of the display unit 11C is The included angle ⁇ between the optical viewing axis 100C is less than 90°, that is, the included angle between the polarizing beam splitting element 121C of the relay system 12C and the optical viewing axis 100C is greater than 45°, thereby increasing the The eye-point distance of the anti-aliasing type display optical machine 10C, so that near-sighted or far-sighted users increase the adapter, improve the user's wearing experience and comfort.
  • an angle ⁇ between the display optical axis 110C of the display unit 11C and the optical viewing axis 100C is between 40° and 80°, that is, 40° ⁇ 80°.
  • the configuration of the anti-aliasing type display optical machine 10C will facilitate the design adjustment of the entire system to make the anti-aliasing type display optical machine 10C compact in order to meet the current development of miniaturization and thinness trend.
  • the present invention further provides a near-eye display device 1C equipped with an anti-aliasing type display optical machine 10C to eliminate interference light generated from below the near-eye display device 1C Artifacts, to avoid visual interference to users, help to improve the user experience.
  • the near-eye display device 1C may include at least one anti-aliasing type display optical machine 10C and a device body 20C, wherein the anti-aliasing type display optical machine 10C is provided in the The device main body 20C, so that the near-eye display device 1C has a function to eliminate artifact interference.
  • the interference light from below the near-eye display device 1C will not be displayed by the anti-aliasing-type display light of the near-eye display device 1C
  • the camera 10C is reflected into the user's eyes to prevent the user from viewing the image below the near-eye display device 1C, thereby effectively eliminating visual interference.
  • the device body 20C may be, but is not limited to, implemented as a glasses body, so that the near-eye display device 1C is implemented as AR glasses with the function of eliminating artifact interference, which helps to improve the user experience. It can be understood that, in other examples of the present invention, the near-eye display device 1C may also be implemented as other types of AR devices such as AR helmets.
  • the present invention further provides a manufacturing method of a display light machine.
  • the manufacturing method of the anti-aliasing display optical machine 10C includes the steps of:
  • a polarization conversion element 122C and a polarization filter element 123C are respectively disposed on the reflection side and the transmission side of a polarization beam splitter element 121C to form a relay system 12C, wherein the polarization beam splitter element 121C is used to reflect the first polarization Light with a second polarization state, and transmits light with a second polarization state, wherein the polarizing filter element 123C is used to absorb the light with a first polarization state and transmit the light with a second polarization state;
  • a display unit 11C and a lens group unit 14C are sequentially arranged on the incident side of the polarization conversion element 122C of the relay system 12C, so that the lens group unit 14C is located between the display unit 11C and the polarized light Between the conversion elements 122C;
  • S330C setting a see-through reflection unit 13C on the reflection side of the polarization conversion element 122C of the relay system 12C, and positioning the polarization conversion element 122C between the polarization splitting element 121C and the see-through reflection unit 13C In order to form the anti-aliasing type display optical machine 10C.
  • the polarization beam splitter element 121C is implemented as a polarization beam splitter.
  • the polarization conversion element 122C is implemented as a 1/4 wave plate 1221C.
  • the polarizing filter element 123C may be implemented as a linear polarizer 1231C.
  • the manufacturing method of the anti-aliasing type display optical machine 10C may further include steps:
  • S340C providing a protective substrate 124C outside the polarizing filter element 123C, so that the polarizing filter element 123C is located between the protective substrate 124C and the polarizing beam splitter element 121C;
  • An anti-reflection coating 125C is provided on the outer side of the protective substrate 124C, so that the protective substrate 124C is located between the anti-reflection coating 125C and the polarizing filter element 123C.
  • the present invention further provides an anti-aliasing method for an anti-artifact display optical machine.
  • the anti-aliasing method for an anti-artifact display optical machine includes the steps of:
  • a polarizing filter element 123C absorbs the light having the first polarization state among the disturbing light rays, and transmits the light having the second polarization state among the disturbing light rays;
  • the polarization beam splitter element 121C is implemented as a polarization beam splitter.
  • the present invention further provides a method for preventing near-end interference light from being reflected to a user's eye for a near-eye display device.
  • the method for preventing near-interference light reflected by a near-eye display device from reflecting to a user's eyes includes the steps of:
  • the step (b) of the method for preventing downward interference light reflected by the near-eye display device from reflecting to the user's eyes includes the steps of:
  • the method for preventing downward interference light reflected by a near-eye display device from reflecting to a user's eyes further includes the step before the step (a):
  • the transmission of the disturbing light from below the near-eye display device in the near-eye display device is enhanced to reduce the reflection of the disturbing light by the near-eye display device and prevent the disturbing light from being directly reflected to the user's eyes.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种显示光机及其方法和近眼显示设备。该显示光机包括一显示单元、一中继组件以及一透视反射组件。该显示单元用于发射具有预定光谱的图像光线。该中继组件被设置于该显示单元的发射路径上。该透视反射组件被设置于该中继组件的反射路径,并且该透视反射组件的反射光谱与该预定光谱保持基本一致,用于将经由该中继组件反射的图像光线反射回该中继组件,以减小该图像光线透过该透视反射组件而逸出。

Description

显示光机及其方法和近眼显示设备 技术领域
本发明涉及增强现实技术领域,特别是涉及一显示光机及其制造方法、消伪影式显示光机及其方法和近眼显示设备。
背景技术
增强现实(Augmented Reality,简称AR)又称扩增现实或混合现实,是一种将虚拟物体叠加到真实环境并进行互动的技术,通过将虚拟物体的图像以及真实环境的图像投射到用户眼中,使用户获得虚拟与现实融合的体验。目前,市场上出现了能够实现增强现实的近眼显示设备,例如AR眼镜等等。
如图1所示,现有的显示光机10P通常包括显示单元11P、半反半透镜12P以及曲面反射镜13P,通过该显示单元11P发射的图像光线,经由该半反半透镜12P和该曲面反射镜13P反射至人眼中。通常该曲面反射镜13P为部分反射镜,即按照一定比例反射和透射光线(比如反射50%的光线,并透射50%的光线),这样该曲面反射镜13P不仅能够将图像光线的一部分反射回人眼中而使人看到相应的图像,而且允许真实环境的光线透过该曲面反射镜13P以射入人眼中而使人看到真实环境,从而实现增强现实的目的。
然而,由于现有的显示光机10P的该曲面反射镜13P仅能够反射图像光线的一部分,而图像光线的另一部分将透过该曲面反射镜13P以从该显示光机10P的前部逸出,使得逸出的图像光线能够射入其他人的眼中,导致其他人也能够看到所显示的图像。如图2所示,当用户佩戴着配置有显示光机10P的近眼显示设备1P时,由于一部分图像光线会从该近眼显示设备1P的该显示光机10P的前部逸出,因此其他人就能够从该近眼显示设备1P的前面看到所显示的图像,也就是说,其他人能够从该近眼显示设备1P的外部清楚地看到用户观看的图像,这不利于用户的隐私保护。特别地,在昏暗或黑暗的环境中使用该近眼显示设备1P时,逸出的图像光线会导致该近眼显示设备1P因发光而看起来比较显眼,这会使用户本人感到尴尬,甚至还会引起他人的反感。
此外,经由显示单元11P(如图像源单元)发射的图像光线中仅有一半的图像光线被该半反半透镜12P反射至该曲面反射镜13P,而另一半的图像光线将透过该半反半透镜12P逃逸;接着,该曲面反射镜13P也只能将接近一半的图像光线反射至该半反半透镜12P,另一半的图像光线则透过该曲面反射镜13P逃逸;最后,经由该曲面反射镜13P反射的图像光线仍然只有一半的图像光线能够透过该半反半透镜12P到达人眼,另一半的图像光线将因该半反半透镜12P的反射而逃逸。换言之,经由该显示单元11P发射的图像光线中只有1/8的光线能够入射到人眼,其余7/8的光线都被浪费掉,极大地降低了图像光线的光利用率,即现有的显示光机10P的图像光线的光利用效率极低,仅为12.5%左右,这就导致到达人眼的图像光线的强度不足,使得进入人眼的环境光线或干扰光线将严重降低增强显示图像的对比度,从而降低用户的增强显示体验。
另外,对于现有的显示光机10P而言,来自该半反半透镜12P下方的环境光将作为干扰光线到达该半反半透镜12P,并且部分干扰光线将经由该半反半透镜12P反射至人眼中,使得用户将看到位于半反半透镜12P下方的物体的虚像,造成视觉干扰,从而严重地影响用户的观感体验。
当然,如图26所示,现有的显示光机10P'也可以包括显示单元11P'、偏振分光镜12P'曲面反射镜13P'以及1/4波片14P',其中偏振分光镜12P'位于显示单元11P'的发光侧,曲面反射镜13P'位于该偏振分光镜12P'的反射侧,并且该1/4波片14P'位于该偏振分光镜12P'和该曲面反射镜13P'之间。这样当该显示单元11P'发出图像光线时,该图像光线中的P偏振光透过该偏振分光镜12P'而逃逸,而该图像光线中的S偏振光被反射至该曲面反射镜13P',之后再被该曲面反射镜13P'反射回该偏振分光镜12P',使得该S偏振光二次穿过该1/4波片14P'而被转换成P偏振光,进而穿过该偏振分光镜12P' 以入射至人眼中。与此同时,环境光线能够依次穿过该曲面反射镜13P'、该1/4波片14P'以及该偏振分光镜12P'以入射至人眼中,从而使得用户能够通过该现有的显示光机10P'获得增强现实的体验。
然而,对于现有的显示光机10P'而言,来自该现有的显示光机10P'下方的环境光将作为干扰光线到达该偏振分光镜12P',虽然该干扰光线中的P*偏振光能够透过该偏振分光镜12P',但该偏振分光镜12P'会将该干扰光线中的S*偏振光反射至人眼中,使得用户将看到位于该现有的显示光机10P'下方的物体的虚像(即伪影),造成视觉干扰,从而严重地影响用户的观感体验。
发明内容
本发明的一目的在于提供一种显示光机及其方法和近眼显示设备,其能够在实现增强显示的同时,保护用户的隐私。
本发明的另一目的在于提供一种显示光机及其方法和近眼显示设备,其能够减少图像光线的逸出量,有利于提高图像光线的光利用率。
本发明的另一目的在于提供一种显示光机及其方法和近眼显示设备,其能够减少所显示的图像外泄,以保护用户的隐私。
本发明的另一目的在于提供一种显示光机及其方法和近眼显示设备,其中,在本发明的一实施例中,所述显示光机的反射膜系的反射光谱与所述显示光机的显示单元的发光光谱保持基本一致,以最大程度地减少所述显示单元发射的图像光线的逸出量。
本发明的另一目的在于提供一种显示光机及其方法和近眼显示设备,其中,在本发明的一实施例中,在不改变现有的显示光机的结构的情况下,仅需要设置所述反射膜系就能够实现保护隐私的效果。
本发明的另一目的在于提供一种显示光机及其方法和近眼显示设备,其中为了达到上述目的,在本发明中不需要采用昂贵的材料或复杂的结构。因此,本发明成功和有效地提供一解决方案,不只提供一种显示光机及其方法和近眼显示设备,同时还增加了所述显示光机及其方法和近眼显示设备的实用性和可靠性。
本发明的一目的在于提供一种近眼显示光机及其方法和近眼显示设备,其能够提高所述近眼显示光机的图像光线的光能利用率。
本发明的另一目的在于提供一种近眼显示光机及其方法和近眼显示设备,其有助于适应当下近眼显示设备的轻薄化、小型化的发展趋势。
本发明的另一目的在于提供一种近眼显示光机及其方法和近眼显示设备,其中,在本发明的一实施例中,所述近眼显示光机的偏振分光组件与光学观看轴的夹角范围为50°至70°,有助于提升所述近眼显示光机的整体紧凑度。
本发明的另一目的在于提供一种近眼显示光机及其方法和近眼显示设备,其中,在本发明的一实施例中,所述近眼显示光机通过合理的光学设计,利用偏振光的特性来降低图像光线的光能损失,进而提高图像光线的光能利用率。
本发明的另一目的在于提供一种近眼显示光机及其方法和近眼显示设备,其中,在本发明的一实施例中,所述近眼显示光机能够减少图像光线的逸出量,减少所显示的图像外泄,不仅有利于进一步提高图像光线的光能利用率,而且还有助于保护用户的隐私。
本发明的另一目的在于提供一种近眼显示光机及其方法和近眼显示设备,其中,在本发明的一实施例中,所述近眼显示光机的防干扰单元采用线偏振片来消除下方环境光线所引起的伪影干扰,有助于提升用户的舒适体验。
本发明的另一目的在于提供一种近眼显示光机及其方法和近眼显示设备,其中,在本发明的一实施例中,所述近眼显示光机的防干扰单元结构简单、成本较低,且具有较好的消伪影效果。
本发明的另一目的在于提供一种近眼显示光机及其方法和近眼显示设备,其中为了达到上述目的,在本发明中不需要采用昂贵的材料或复杂的结构。因此,本发明成功和有效地提供一解决方案,不只提供一种近眼显示光机及其方法和近眼显示设备,同时还增加了所述近眼显示光机及其方法和近眼显示设备的实用性和可靠性。
本发明的一目的在于提供一种显示光机及其方法和近眼显示设备,其能够有效地避免下方的干扰光线被反射至用户眼中,以防发生视觉干扰。
本发明的另一目的在于提供一种显示光机及其方法和近眼显示设备,其中,在本发明的一实施例中,所述显示光机的中继***采用线偏振片和1/4波片相结合的方式来消除下方的环境光线的干扰,有助于提升用户的舒适体验。
本发明的另一目的在于提供一种显示光机及其方法和近眼显示设备,其中,在本发明的一实施例中,所述显示光机的所述中继***的保护基板设置有增透膜,以便在保护所述偏振片的同时,也能够避免干扰光线因被所述保护基板反射至用户眼中而造成视觉干扰。
本发明的另一目的在于提供一种显示光机及其方法和近眼显示设备,其中,在本发明的一实施例中,所述显示光机能够在实现增强现实功能的同时,保护用户的隐私。
本发明的另一目的在于提供一种显示光机及其方法和近眼显示设备,其中,在本发明的一实施例中,所述显示光机能够减少所显示的图像外泄,以保护用户的隐私。
本发明的另一目的在于提供一种显示光机及其方法和近眼显示设备,其中,在本发明的一实施例中,所述显示光机的反射膜系的反射光谱与所述显示光机的显示单元的发光光谱保持基本一致,以最大程度地减少所述显示单元发射的图像光线的逸出量。
本发明的一目的在于提供一种消伪影式显示光机及其方法和近眼显示设备,其能够有效地避免下方的干扰光线被反射至用户眼中,有助于消除伪影干扰。
本发明的另一目的在于提供一种消伪影式显示光机及其方法和近眼显示设备,其中,在本发明的一实施例中,所述消伪影式显示光机的中继***采用偏振分光元件和偏光过滤元件相结合的方式来消除下方的环境光线的干扰,有助于提升用户的舒适体验。
本发明的另一目的在于提供一种消伪影式显示光机及其方法和近眼显示设备,其中,在本发明的一实施例中,所述消伪影式显示光机的所述中继***在增加消伪影功能的同时,还不会降低图像光线的光能利用率。
本发明的另一目的在于提供一种消伪影式显示光机及其方法和近眼显示设备,其中,在本发明的一实施例中,所述消伪影式显示光机能够减少所显示的图像外泄,以保护用户的隐私。
本发明的另一目的在于提供一种消伪影式显示光机及其方法和近眼显示设备,其中,在本发明的一实施例中,所述消伪影式显示光机的反射膜系的预定反射光谱与所述显示单元发出的图像光线的光谱保持基本一致,以最大程度地减少所述显示单元发射的图像光线的逸出量。
本发明的另一目的在于提供一种消伪影式显示光机及其方法和近眼显示设备,其中,在本发明的一实施例中,所述消伪影式显示光机的所述中继***的保护基板设置有增透膜,以便在保护所述线偏振片的同时,也能够避免干扰光线因被所述保护基板反射至用户眼中而造成伪影干扰。
本发明的另一目的在于提供一种消伪影式显示光机及其方法和近眼显示设备,其中为了达到上述目的,在本发明中不需要采用昂贵的材料或复杂的结构。因此,本发明成功和有效地提供一解决方案,不只提供一种消伪影式显示光机及其方法和近眼显示设备,同时还增加了所述消伪影式显示光机及其方法和近眼显示设备的实用性和可靠性。
为了实现上述至少一发明目的或其他目的和优点,本发明提供了一种显示光机,包括:
一显示单元,用于发射具有预定光谱的图像光线;
一中继组件,其中所述中继组件被设置于所述显示单元的发射路径上;以及
一透视反射组件,其中所述透视反射组件被设置于所述中继组件的反射路径,并且所述透视反射组件的反射光谱与所述预定光谱保持基本一致,用于将经由所述中继组件反射的图像光线反射回所述中继组件,以减小所述图像光线透过所述透视反射组件而逸出。
在本发明的一实施例中,所述透视反射组件包括一反射膜系,其中所述反射膜系根据所述预定光谱通过膜系设计而制成,以使所述反射膜系具有所述反射光谱。
在本发明的一实施例中,所述透视反射组件还包括一曲面基层,其中所述反射膜系被设置于所述曲面基层的内表面。
在本发明的一实施例中,所述透视反射组件还包括一曲面基层,其中所述反射膜系被设置于所述曲 面基层的外表面。
在本发明的一实施例中,所述透视反射组件还包括一保护膜,其中所述保护膜被设置于所述反射膜系的外侧。
在本发明的一实施例中,所述曲面基层由透明材料或半透明材料制成。
在本发明的一实施例中,所述曲面基层为一曲面透镜或一曲面反射镜。
在本发明的一实施例中,所述透视反射组件针对波段为420~480nm、510~570nm、605~660nm的光的透射率为0~10%,以及其他波段的光的透射率为90~100%。
在本发明的一实施例中,所述反射膜系的厚度为0.05~0.15mm。
在本发明的一实施例中,所述中继组件为半反半透镜。
在本发明的一实施例中,所述中继组件为偏振分束镜。
在本发明的一实施例中,所述的显示光机,还包括一1/4波片,其中所述1/4波片被设置于所述偏振分束镜和所述透视反射组件之间。
在本发明的一实施例中,所述的显示光机,还包括一透镜组件,其中所述透镜组件被设置于所述显示单元和所述中继组件之间。
根据本发明的另一方面,本发明还提供了一种显示光机,包括:
一显示单元,用于发射图像光线;
一中继组件,其中所述中继组件被设置于所述显示单元的发射路径上;
一透射膜系,其中所述透射膜系被设置于所述显示单元和所述中继组件之间,并且所述透射膜系具有一透射光谱,用于允许具有所述透射光谱的图像光线透过;以及
一透视反射组件,其中所述透视反射组件被设置于所述中继组件的反射路径,并且所述透视反射组件的反射光谱与所述透射膜系的所述透射光谱保持相对,用于将经由所述中继组件反射的所述具有所述透射光谱的图像光线反射回所述中继组件,以减小所述图像光线透过所述透视反射组件而逸出。
根据本发明的另一方面,本发明还提供了一种近眼显示设备,包括:
一设备主体;和
上述任一所述的显示光机,其中所述显示光机被设置于所述设备主体,以使所述近眼显示设备具有保护隐私的功能。
根据本发明的另一方面,本发明还提供了一种显示光机的显示方法,包括步骤:
藉由一中继组件,反射通过一显示单元发射的具有预定光谱的图像光线至一透视反射组件,其中所述透视反射组件具有与所述预定光谱相一致的反射光谱;和
藉由所述透视反射组件,反射所述图像光线,以使所述图像光线透过所述中继组件能够被投射至人眼中而显示图像。
根据本发明的另一方面,本发明还提供了一种显示光机的制造方法,包括步骤:
设置一中继组件于一显示单元的发射路径,其中所述显示单元用于发射具有预定光谱的图像光线;和
设置一透视反射组件于所述中继组件的反射路径,其中所述中继组件用于将所述图像光线反射至所述透视反射组件,其中所述透视反射组件具有与所述预定光谱保持基本一致的反射光谱,用于反射所述图像光线。
在本发明的一实施例中,所述的显示光机的制造方法,在所述设置一透视反射组件于所述中继组件的反射路径的步骤之前,还包括步骤:
将一反射膜系设置于一曲面基层,以制成所述透视反射组件,其中所述反射膜系根据所述预定光谱通过膜系设计而制成。
在本发明的一实施例中,所述反射膜系被镀于所述曲面基层的表面。
根据本发明的另一方面,本发明进一步提供了一种近眼显示光机,包括:
一图像源单元,用于沿着发射路径发射图像光线;
一透镜组单元,其中所述透镜组单元被设置于所述图像源单元的所述发射路径,用于对经由所述图像源发射的该图像光线进行调制;
一偏振分光单元,其中所述偏振分光单元被设置于所述图像源单元的所述发射路径,并且所述透镜组单元位于所述图像源单元和所述偏振分光单元之间,其中所述偏振分光单元与所述近眼显示光机的光学观看轴之间的夹角大于45°,用于反射经由所述透镜组单元调制的该图像光线中的第一偏振图像光线,并透射经由所述透镜组单元调制的该图像光线中的第二偏振图像光线;
一透视反射单元,其中所述透视反射单元被设置于所述偏振分光单元的反射侧,并且所述透视反射单元对应于所述近眼显示光机的该光学观看轴,用于将经由所述偏振分光单元反射的该第一偏振图像光线中的一部分或全部反射回所述偏振分光单元,并允许环境光线的一部分透过;以及
一偏振转换单元,其中所述偏振转换单元被设置于所述偏振分光单元和所述透视反射单元之间,用于使该第一偏振图像光线在两次穿过后转换成该第二偏振图像光线,进而透过所述偏振分光单元以入射至人眼中。
在本发明的一实施例中,所述偏振分光单元与所述近眼显示光机的该光学观看轴之间的夹角在50°至70°之间。
在本发明的一实施例中,所述偏振分光单元包括一透光基片和一偏振分光膜,其中所述偏振分光膜被设置于所述透光基片的第一光学面,并且所述偏振分光膜位于所述透光基片和所述图像源单元之间。
在本发明的一实施例中,所述透光基片的所述第一光学面的面型为自由曲面。
在本发明的一实施例中,所述透视反射单元包括一曲面基片和一部分反射膜,其中所述部分反射膜被设置于所述曲面基片的第二光学面,并且所述部分反射膜位于所述曲面基片和所述偏振分光单元之间。
在本发明的一实施例中,所述曲面基片的第二光学面的面型为自由曲面。
在本发明的一实施例中,所述的近眼显示光机,还包括一防干扰单元,其中所述防干扰单元位于所述偏振分光单元12上远离所述图像源单元的一侧,用于防止来自下方的干扰光线产生视觉干扰。
在本发明的一实施例中,所述防干扰单元包括一偏光过滤元件,其中所述偏光过滤元件被设置于所述偏振分光单元上远离所述图像源单元的一侧,用于吸收第一偏振光,并透射第二偏振光,其中该第一偏振光的偏振态和该第一偏振图像光线的偏振态保持一致,并且该第二偏振光的偏振态和该第二偏振图像光线的偏振态保持一致。
在本发明的一实施例中,所述偏光过滤元件为一线偏振片。
在本发明的一实施例中,所述防干扰单元还包括一保护基板和一增透膜,其中所述保护基板位于所述偏光过滤元件的外侧,以使所述偏光过滤元件处于所述保护基板和所述偏振分光单元之间,其中所述增透膜被设置于所述保护基板的外表面。
在本发明的一实施例中,所述偏振转换单元为一1/4波片。
在本发明的一实施例中,所述透镜组单元包括至少一片透镜,其中每片所述透镜的面型为标准球面、非球面、自由曲面和衍射面中的一种。
在本发明的一实施例中,所述图像源单元为LCD型、OLED型、DLP型和LCOS型微型显示器件中的一种。
根据本发明的另一方面,本发明还提供了一种近眼显示设备,包括:
一设备主体;以及
至少一上述任一所述的近眼显示光机,其中所述近眼显示光机被设置于所述设备主体,以组装成结构紧凑的近眼显示设备。
根据本发明的另一方面,本发明还提供了一种近眼显示光机的制造方法,包括步骤:
设置一透镜组单元于一图像源单元和一偏振分光单元之间,并且所述透镜组单元和所述偏振分光单元均位于所述图像源单元的发射路径,其中所述透镜组单元用于对经由所述图像源发射的该图像光线进行调制,其中所述偏振分光单元用于反射被调制后的该图像光线中的第一偏振图像光线,并透射被调制后的该图像光线中的第二偏振图像光线;
设置一透视反射单元于所述偏振分光单元的反射侧,以通过所述透视反射单元和所述偏振分光单元定义一光学观看轴,其中所述偏振分光单元与所述光学观看轴之间的夹角大于45°,其中所述透视反射单元用于将经由所述偏振分光单元反射的该第一偏振图像光线中的一部分或全部反射回所述偏振分 光单元,并允许环境光线中的一部分透过;以及
设置一偏振转换单元于所述偏振分光单元和所述透视反射单元之间,用于使该第一偏振图像光线在两次穿过所述偏振转换单元后转换成该第二偏振图像光线,进而沿着该光学观看轴入射至人眼中。
在本发明的一实施例中,所述的近眼显示光机的制造方法,还包括步骤:
设置一防干扰单元于所述偏振分光单元上远离所述图像源单元的一侧,其中所述防干扰单元包括一偏光过滤元件,用于吸收第一偏振光,并透射第二偏振光,其中该第一偏振光的偏振态与该第一偏振图像光线的偏振态保持一致;并且该第二偏振光的偏振态与该第二偏振图像光线的偏振态保持一致。
根据本发明的另一方面,本发明进一步提供了一种显示光机,包括:
一显示单元,用于发射图像光线;
一中继***,其中所述中继***被设置于所述显示单元的发射路径,并且所述中继***包括:
一反透元件,用于反射光线的一部分,并透射光线的另一部分;
一偏光转换元件,用于将第一偏振光转换成第一圆偏光,以在被所述反透元件反射之后形成第二圆偏光,还用于将该第二圆偏光转换成第二偏振光;以及
一偏光过滤元件,用于吸收该第二偏振光,并透射该第一偏振光;其中所述反透元件、所述偏光转换元件以及所述偏光过滤元件沿着所述显示单元的发射路径依次布置,使得干扰光线依次通过所述偏光过滤元件、所述偏光转换元件以及所述反透元件;以及
一透视反射单元,其中所述透射反射单元被设置于所述中继***的所述反透元件的反射路径,用于将经由所述反透元件反射的该图像光线反射回所述中继***。
在本发明的一实施例中,所述偏光转换元件为一1/4波片;其中所述偏光过滤元件为一线偏振片。
在本发明的一实施例中,所述1/4波片的快轴与所述线偏振片的透过轴之间的预定夹角为45°。
在本发明的一实施例中,所述反透元件为一半反半透镜。
在本发明的一实施例中,所述中继***还包括一保护基板,其中所述保护基板位于所述偏光过滤元件的外侧,以使所述偏光转换元件和所述偏光过滤元件位于所述保护基板和所述反透元件之间。
在本发明的一实施例中,所述中继***还包括一增透膜,其中所述增透膜被设置于所述保护基板的外表面,用于减少干扰光线在所述保护基板的所述外表面的反射所引起的视觉干扰。
在本发明的一实施例中,所述的显示光机还包括一透镜单元,其中所述透镜单元被设置于所述显示单元和所述中继***之间,用于对来自所述显示单元的图像光线进行调制。
在本发明的一实施例中,所述透视反射单元为一曲面反射镜,用于在将来自所述中继***的图像光线反射回所述中继***的同时,还对该图像光线进行整形。
在本发明的一实施例中,所述透视反射单元的反射光谱与经由所述显示单元发射的图像光线的预定光谱保持基本一致,用于将经由所述中继***反射的该图像光线反射回所述中继***,以减小该图像光线透过所述透视反射单元的逸出量。
在本发明的一实施例中,所述透视反射单元包括一反射膜系和一曲面基层,其中所述反射膜系被设置于所述曲面基层的表面,并且所述反射膜系根据所述预定光谱通过膜系设计而制成,以使所述透视反射单元具有所述反射光谱。
根据本发明的另一方面,本发明进一步提供了一种近眼显示设备,包括:
一设备主体;和
至少一上述任一所述的显示光机,其中所述显示光机被设置于所述设备主体,以使所述近眼显示设备具有消除视觉干扰的功能。
根据本发明的另一方面,本发明进一步提供了一种显示光机的制造方法,包括步骤:
设置一中继***于一显示单元的发射路径,其中所述中继***包括沿着所述显示单元的所述发射路径依次布置的一反透元件、一偏光转换元件以及一偏光过滤元件,其中所述反透元件用于反射经由所述显示单元发射的图像光线,并用于反射来自所述偏光过滤元件的第一偏振光;其中所述偏光转换元件用于将二次穿过的该第一偏振光转换成第二偏振光;所述偏光过滤元件用于吸收该第二偏振光,并透射该第一偏振光;和
设置一透视反射单元于所述中继***的反射路径,其中所述透视反射单元用于将经由所述反透元件 反射的该图像光线反射回所述中继***。
根据本发明的另一方面,本发明进一步提供了一种用于显示光机的视觉干扰消除方法,包括步骤:
藉由一偏光过滤元件,吸收干扰光线中第二偏振光,并透射该干扰光线中第一偏振光;
藉由一偏光转换元件,将来自所述偏光过滤元件的该第一偏振光转换成第一圆偏光;
藉由一反透元件,反射经由所述偏光转换元件转换的该第一圆偏光,以形成被反射回所述偏光转换元件的第二圆偏光;
藉由所述偏光转换元件,将经由所述反透元件反射回的该第二圆偏光转换成该第二偏振光;以及
藉由所述偏光过滤元件,吸收经由所述偏光转换元件转换成的该第二偏振光,以消除该干扰光线引起的视觉干扰。
在本发明的一实施例中,所述偏光转换元件为一1/4波片;其中所述偏光过滤元件为一线偏振片。
为了实现上述至少一发明目的或其他目的和优点,本发明提供了一种消伪影式显示光机,包括:
一显示单元,用于发射图像光线;
一透镜组单元,用于对经由所述显示单元发射的该图像光线进行调制;
一透视反射单元;以及
一中继***,其中所述中继***包括:
一偏振分光元件,其中所述偏振分光元件的入射侧对应于所述透镜组单元,并且所述偏振分光元件的反射侧对应于所述透视反射单元,其中所述偏振分光元件用于反射被调制后的该图像光线中具有第一偏振态的光线,并透射被调制后的该图像光线中具有第二偏振态的光线;
一偏光转换元件,其中所述偏光转换元件被设置于所述偏振分光元件和所述透视反射单元之间,其中所述透视反射单元用于将经由所述偏振分光元件反射的该具有第一偏振态的光线反射回所述偏振分光元件,以两次穿过所述偏光转换元件,其中所述偏光转换元件用于将两次穿过的该具有第一偏振态的光线转换成该具有第二偏振态的光线;以及
一偏光过滤元件,其中所述偏光过滤元件被设置于所述偏振分光元件的透射侧,用于吸收该具有第一偏振态的光线,并透射该具有第二偏振态的光线,使得干扰光线中的具有第一偏振态的光线能够被所述偏光过滤元件吸收,而该干扰光线中的具有第二偏振态的光线能够依次透过该偏光过滤元件和该偏振分光元件。
在本发明的一实施例中,所述偏光过滤元件为一线偏振片。
在本发明的一实施例中,所述偏振分光元件包括一透光基片和一偏振分光膜,其中所述偏振分光膜被设置于所述透光基片的上表面,并且所述偏振分光膜位于所述透光基片和所述透镜组单元之间。
在本发明的一实施例中,所述偏光转换元件为一1/4波片。
在本发明的一实施例中,所述透视反射单元包括一曲面基片和一部分反射膜,其中所述部分反射膜被设置于所述曲面基片的内表面,并且所述部分反射膜位于所述曲面基片和所述偏光转换元件之间。
在本发明的一实施例中,所述中继***还包括一保护基板,其中所述保护基板位于所述偏光过滤元件的外侧,以使所述偏光过滤元件处于所述保护基板和所述偏振分光元件之间。
在本发明的一实施例中,所述中继***还包括一增透膜,其中所述增透膜被设置于所述保护基板的外表面。
在本发明的一实施例中,所述透镜组单元包括至少一片透镜,其中每片所述透镜的面型为标准球面、非球面、自由曲面和衍射面中的一种。
在本发明的一实施例中,所述显示单元为LCD型、OLED型、DLP型和LCOS型微型显示器件中的一种。
根据本发明的另一方面,本发明进一步提供了一种近眼显示设备,包括:
一设备主体;以及
至少一上述任一所述的消伪影式显示光机,其中所述消伪影式显示光机被设置于所述设备主体,以组装成具有消伪影功能的近眼显示设备。
根据本发明的另一方面,本发明进一步提供了一种消伪影式显示光机的制造方法,包括步骤:
分别设置一偏光转换元件和一偏光过滤元件于一偏振分光元件的反射侧和透射侧,以形成一中继系 统,其中所述偏振分光元件用于反射具有第一偏振态的光线,并透射具有第二偏振态的光线,其中所述偏光过滤元件用于吸收该具有第一偏振态的光线,并透射该具有第二偏振态的光线;
依次设置一显示单元和一透镜组单元于所述中继***的所述偏光转换元件的入射侧,以使所述透镜组单元位于所述显示单元和所述偏光转换元件之间;以及
设置一透视反射单元于所述中继***的所述偏光转换元件的所述反射侧,并使所述偏光转换元件位于所述偏振分光元件和所述透视反射单元之间,以形成所述消伪影式显示光机。
在本发明的一实施例中,所述的消伪影式显示光机的制造方法,还包括步骤:
设置一保护基板于所述偏振过滤元件的外侧,以使所述偏光过滤元件位于所述保护基板和所述偏振分光元件之间;和
设置一增透膜于所述保护基板的外侧面,以使所述保护基板位于所述增透膜和所述偏光过滤元件之间。
根据本发明的另一方面,本发明进一步提供了一种用于消伪影式显示光机的消伪影方法,包括步骤:
藉由所述消伪影式显示光机的一偏光过滤元件,吸收干扰光线中的具有第一偏振态的光线,并透射该干扰光线中具有第二偏振态的光线;和
藉由处于所述偏振过滤元件的透射侧的一偏振分光元件,透射经由所述偏光过滤元件透射的所述干扰光线中的所述具有第二偏振态的光线,以消除因该干扰光线被反射至用户眼中而产生的伪影。
通过对随后的描述和附图的理解,本发明进一步的目的和优势将得以充分体现。
本发明的这些和其它目的、特点和优势,通过下述的详细说明,附图和权利要求得以充分体现。
附图说明
图1示出了现有技术的显示光机的结构示意图。
图2示出了现有技术的配置有所述显示光机的近眼显示设备的一个示例。
图3是根据本发明的一实施例的显示光机的结构示意图。
图4示出了根据本发明的上述实施例的所述显示光机的显示单元所发射的图像光线的预定光谱的一个示例。
图5示出了根据本发明的上述实施例的所述显示光机的透视反射组件的反射光谱的一个示例。
图6示出了根据本发明的上述实施例的所述显示光机的第一变形实施方式。
图7示出了根据本发明的上述实施例的所述显示光机的第二变形实施方式。
图8示出了根据本发明的上述实施例的所述显示光机的第三变形实施方式。
图9示出了根据本发明的上述第四变形实施方式的所述显示光机的透射膜系的透射光谱的一个示例。
图10示出了根据本发明的一实施例的近眼显示设备的一个示例。
图11是根据本发明的一实施例的显示光机的显示方法的流程示意图。
图12是根据本发明的一实施例的显示光机的制造方法的流程示意图。
图13是根据本发明的一第一实施例的一种近眼显示光机的结构示意图。
图14示出了根据本发明的上述第一实施例的所述近眼显示光机的光路示意图。
图15是根据本发明的一第二实施例的一种近眼显示光机的结构示意图。
图16示出了根据本发明的上述第二实施例的所述近眼显示光机的局部放大示意图。
图17示出了根据本发明的一实施例的一种近眼显示设备的一个示例。
图18是根据本发明的一实施例的一种近眼显示光机的制造方法的流程示意图。
图19是根据本发明的一实施例的一种显示光机的结构示意图。
图20示出了根据本发明的上述实施例的所述显示光机消除干扰光线的原理示意图。
图21示出了根据本发明的上述实施例的所述显示光机的中继***的***示意图。
图22示出了根据本发明的上述实施例的所述显示光机的一个变形实施方式。
图23示出了根据本发明的一实施例的一种近眼显示设备的一个示例。
图24是根据本发明的一实施例的一种显示光机的制造方法的流程示意图。
图25是根据本发明的一实施例的一种用于显示光机的视觉干扰消除方法的流程示意图。
图26示出了一现有的显示光机的结构示意图。
图27是根据本发明的一实施例的一种消伪影式显示光机的结构示意图。
图28示出了根据本发明的上述实施例的所述消伪影式显示光机的中继***的局部放大示意图。
图29示出了根据本发明的上述实施例的所述消伪影式显示光机的所述中继***的分解示意图。
图30示出了根据本发明的上述实施例的所述消伪影式显示光机的一个变形实施方式。
图31示出了根据本发明的一实施例的一种近眼显示设备的一个示例。
图32是根据本发明的一实施例的一种消伪影式显示光机的制造方法的流程示意图。
图33是根据本发明的一实施例的一种用于消伪影式显示光机的消伪影方法的流程示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
在本发明中,权利要求和说明书中术语“一”应理解为“一个或多个”,即在一个实施例,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个。除非在本发明的揭露中明确示意该元件的数量只有一个,否则术语“一”并不能理解为唯一或单一,术语“一”不能理解为对数量的限制。
在本发明的描述中,需要理解的是,属于“第一”、“第二”等仅用于描述目的,而不能理解为指示或者暗示相对重要性。本发明的描述中,需要说明的是,除非另有明确的规定和限定,属于“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接或者一体地连接;可以是机械连接,也可以是电连接;可以是直接连接,也可以是通过媒介间接连结。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
近年来,随着增强现实技术的飞速发展,能够实现增强现实的近眼显示设备越来越受到人们的欢迎和使用。但受限于现有的近眼显示设备中显示光机的自身结构的限制,该现有的显示光机的前部不可避免地会逸出部分图像光线,导致其他人能够从该近眼显示设备的外部清楚地看到用户观看的图像,无法保护用户的隐私。此外,由于将近一半的图像光线从所述显示光机的前部逸出而浪费掉,因此该近眼显示设备的显示光机的图像光线的光利用率很低,导致现有的显示光机所显示的图像质量较差,无法满足人们观看高质量图像的需求。
为了解决上述问题,参考附图3至图5所示,本发明提供了一种新的显示光机,能够大幅减少图像光线从所述显示光机的前部逸出,使得外界不能看到所述显示光机所显示的图像,从而达到保护隐私的目的。具体地,如图3所示,本发明的一实施例提供了一种显示光机10,其包括一显示单元11、一中继组件12以及一透视反射组件13。所述显示单元11用于发射具有预定光谱的图像光线。所述中继组件12被设置于所述显示单元11的发射路径。所述透视反射组件13被设置于所述中继组件12的反射路 径,并且所述透视反射组件13的反射光谱与所述图像光线的预定光谱保持基本一致,用于将经由所述中继组件12反射的图像光线反射回所述中继组件12,并允许环境光线透过所述透视反射组件13以射入所述中继组件12,使得所述图像光线和所述环境光线能够透过所述中继组件12而射入人眼中,以便人眼能够同时观看到所要显示的图像和真实环境,从而实现增强现实的目的。可以理解的是,在本发明的这个实施例中,所述反射光谱与所述预定光谱之间的误差在20%以内均可以被认定为所述反射光谱与所述预定光谱保持基本一致。
值得注意的是,由于所述透视反射组件13的反射光谱与所述显示单元11所发射的图像光线的预定光谱保持基本一致,使得所述透视反射组件13仅反射具有所述预定光谱的光线,并允许其他光谱的光线(如环境光线中具有非预定光谱的光线)透过。因此,当所述图像光线被所述中继组件12反射至所述透视反射组件13时,大部分的所述图像光线将被所述透视反射组件13反射回所述中继组件12,以阻挡所述图像光线透过所述透视反射组件13而减小所述图像光线的逸出,从而使得人们无法从所述显示光机10的外部观看到所显示的图像,以保护用户的隐私。与此同时,由于真实环境中环境光线通常具有全光谱,因此,仅具有所述预定光谱的环境光线无法透过所述透视反射组件13,而具有其他光谱的环境光线则能够透过所述透视反射组件13,也就是说,所述环境光线中与所述图像光线的光谱相同的一部分因被所述透视反射组件13反射而无法透过所述透视反射组件13,而其他的环境光线则能够顺利地透过所述投射反射组件13,以经由所述中继组件12射入人眼中,使得人眼能够观看到真实环境。
这样,由于大部分的所述图像光线被所述透视反射组件13反射至人眼中,使得所述显示光机10的图像光线的光利用率得以大幅提高,因此,用户能够看到高质量的图像。此外,由于所述预定光谱仅占全光谱中的一小部分,因此大部分的环境光线能够透过所述投射反射组件13以射入人眼中,使得用户能够透过所述显示光机10看到清晰的真实环境。换句话说,所述透视反射组件13不仅能够提高图像光线的光利用率,而且还能够提高所显示的图像与真实环境的图像之间的对比度,以提升用户的观看体验。
在本发明的这个实施例中,所述显示光机10的所述显示单元11所发射的图像光线通常由红绿蓝三种颜色的光合成,也就是说,所述图像光线的所述预定光谱包括红绿蓝三种颜色的光谱。相应地,所述透视反射组件13的所述反射光谱与所述预定光谱保持基本一致,也就是说,所述透视反射组件13的所述反射光谱也包括所述红绿蓝三种颜色的光谱。
值得一提的是,尽管附图3至图9以及接下来的描述以所述图像光线的预定光谱包括红绿蓝三种颜色的光谱为例,阐述本发明的所述显示光机10的特征和优势,本领域的技术人员可以理解的是,附图3至图9以及接下来的描述中揭露的所述预定光谱仅为举例,其并不构成对本发明的内容和范围的限制,例如,在所述显示光机10的其他示例中,所述图像光线的预定光谱也可以包括诸如红蓝两种颜色的光谱或者红黄青三种颜色的光谱等等其他颜色的光谱,只要确保所述透视反射组件13的所述反射光谱与所述图像光线的所述预定光谱保持基本一致即可,本发明对此不再赘述。
示例性地,附图4示出了根据本发明的所述图像光线的预定光谱的一个示例,其中所述图像光线包括波段为420~480nm的蓝光、波段为510~570nm的绿光以及波段为605~660nm的红光。相应的,所述透视反射组件13具有所述反射光谱(如图5所示),其中所述透视反射组件13针对波段为420~480nm的蓝光、波段为510~570nm的绿光以及波段为605~660nm的红光的透射率为0~10%,其他波段的光的透射率为90~100%。
这样,当所述显示单元11发射的图像光线经由所述中继组件12射到所述透视反射组件13时,所述透视反射组件13将绝大多数的图像光线反射回所述中继组件12,而只有很少的一部分图像光线能够透过所述透视反射组件13而逸出,使得他人无法从所述透视反射组件13的外部看到所述图像光线,能够有效地保护用户的隐私。与此同时,虽然真实环境中波段为420~480nm、510~570nm以及605~660nm的环境光被所述透视反射组件13反射而无法透过所述透视反射组件13,但是所述真实环境中其他波段的环境光则可以透过所述透视反射组件13以被人眼接收,使得用户能够透过所述显示光机10清晰地观看到真实环境。
在本发明的这个实施例中,如图3所示,所述透视反射组件13包括一反射膜系131和一曲面基层132,其中所述反射膜系131根据所述图像光线的所述预定光谱通过膜系设计制成,以使所述反射膜系 131的反射光谱与所述图像光线的所述预定光谱相同;所述反射膜系131被设置于所述曲面基层132,以使所述反射膜系131具有曲面形状,从而形成具有曲面结构的所述透视反射组件13,使得所述透视反射组件13在反射所述图像光线的同时,还能够对所述图像光线进行调制,以提高所述显示光机所显示的图像的质量。
具体地,所述曲面基层132可以由透明材料制成,例如玻璃、塑料、树脂以及高分子材料等等透明材料,以允许光线全部透过所述曲面基层132,有助于避免所述曲面基层132阻挡环境光线透过所述透视反射组件13。当然,在本发明的其他示例中,所述曲面基层132也可以由半透明材料制成,例如玻璃、塑料、树脂以及高分子材料等等半透明材料,以允许光线部分透过所述曲面基层132,这样可以适当地减少环境光线透过所述透视反射组件13,以满足不同的情景需求。
示例性地,所述曲面基层132可以但不限于被实施为一曲面透镜,并且所述反射膜系131被贴附于所述曲面基层132的内表面1321,使得所述反射膜系131的形状与所述曲面基层132的所述内表面1321的形状保持基本一致,以形成具有曲面形状的所述反射膜系131。这样,当所述图像光线经由所述中继组件12射向所述透视反射组件13时,所述图像光线首先到达所述反射膜系131,以被所述反射膜系131反射回所述中继组件12,而不需要先透过所述曲面基层132,以避免所述曲面基层132吸收所述图像光线而导致所述图像光线的光能降低。
值得注意的是,在本发明的其他示例中,所述曲面基层132也可以被实施为曲面反射镜,能够反射一部分光线,而允许另一部分光线透过。这样,就不需要改变现有技术的显示光机的原有结构,仅需要在所述曲面反射镜上设置所述反射膜系131,就能够使该显示光机具有隐私保护的功能。
此外,由于所述反射膜系131被贴附于所述曲面基层132的所述内表面1321,因此所述曲面基层132自然地充当了所述反射膜系131的保护屏障,以防其他物体接触所述反射膜系131,有助于保护所述反射膜系131不受损坏,以延长所述反射膜系131的使用寿命。
特别地,在本发明的一示例中,所述反射膜系131可以被镀于所述曲面基层132的所述内表面1321,有助于增强所述反射膜系131与所述曲面基层132的结合强度,以防所述反射膜系131自所述曲面基层132上脱落。此外,由于所述反射膜系131被镀于所述曲面基层132的所述内表面1321,而所述曲面基层132的所述内表面1321的光滑度较高,因此所述反射膜系131能够与所述曲面基层132的所述内表面1321紧密地接触,以保证所述反射膜系131具有较高的光滑度,有助于提高所述反射膜系131对所述图像光线的调制效果。
进一步地,在本发明的这个实施例中,所述反射膜系131的厚度优选地被实施为0.05~0.15mm,也就是说,所述反射膜系131不会增大所述显示光机10的整体尺寸和重量,特别适合当下小型化、轻薄化发展潮流的需求。
在本发明的这个实施例中,如图3所示,所述显示光机10的所述中继组件12可以但不限于被实施为一半反半透镜121,用于反射一部分光线,并透射另一部分光线。这样,当所述图像光线射向所述半反半透镜121时,所述图像光线的一部分被所述半反半透镜121反射至所述透视反射组件13,并所述图像光线的另一部分则可以透过所述半反半透镜121。例如,所述半反半透镜121可以但不限于被实施为镀有半反半透膜的透镜,所述半反半透膜用于允许一半的光线透过,并反射另一半的光线。
值得注意的是,相比于现有技术,根据本发明的这个实施例的所述显示光机10的图像光线的光利用率得到较大的提升,有助于提高所显示图像的质量。示例性地,在现有技术中,最终透过所述显示光机10能够到达人眼的图像光线仅占所述显示单元11P发射的图像光线的1/8(即现有技术的所述显示光机10P的图像光线的光利用率为12.5%);而在本发明的这个实施例中,最终透过所述显示光机10能够到达人眼的图像光线将近占所述显示单元11P发射的图像光线的1/4(即本发明的这个实施例的所述显示光机10的图像光线的光利用率为25%)。
值得一提的是,如图3所示,所述显示光机10还可以包括一透镜组件14,其中所述透镜组件14被设置于所述显示单元11和所述中继组件12之间,使得所述显示单元11所发射的图像光线先透过所述透镜组件14以被所述透镜组件14调制之后,再射入所述中继组件12以被所述中继组件12反射至所述透视反射组件13。可以理解的是,在所述显示单元11和所述中继组件12之间设置所述透镜组件14能够提高所述图像光线的成像质量。
附图6示出了根据本发明的上述实施例的所述显示光机10的第一变形实施方式,其中所述显示光机10的所述透视反射组件13的所述反射膜系131被设置于所述曲面基层132的外表面1322,使得被所述中继组件12反射后的图像光线先穿过所述曲面基层132之后,再被所述反射膜系131反射回所述曲面基层132,进而透过所述中继组件12到达人眼中,以便观看到相应的图像。
进一步地,在本发明的这个第一变形实施方式中,如图6所示,所述显示光机10的所述透视反射组件13还包括一保护膜133,其中所述保护膜133被设置于所述反射膜系131的外侧,用于保护所述反射膜系131,以防所述反射膜系131被刮擦或损坏。可以理解的是,所述保护膜133可以但不限于被实施为一透明膜,还可以被实施为诸如防紫外线膜、防辐射膜等等其他类型的保护膜。
附图7示出了根据本发明的上述实施例的所述显示光机10的第二变形实施方式,其中所述显示光机10的所述中继组件12被实施为一偏振分束镜122,用于允许P偏振光透过,并反射S偏振光。这样,当所述图像光线射向所述偏振分束镜122时,所述图像光线中的S偏振光(即具有S偏振态的图像光线)被所述偏振分束镜122反射至所述透视反射组件13,而所述图像光线中的P偏振光(即具有P偏振态的图像光线)则透过所述偏振分束镜122。例如,所述偏振分束镜122可以但不限于被实施为镀有偏振分束膜(即PBS膜)的透镜,所述偏振分束膜用于允许P偏振光透过,并反射S偏振光。
值得注意的是,在本发明的这个第二变形实施方式中,为了确保被所述透视反射组件13反射回的图像光线顺利透过所述偏振分束镜122,还需要在所述透视反射组件13和所述偏振分束镜122之间改变所述图像光线的偏振态,以使被所述偏振分束镜122反射的具有S偏振态的图像光线转变成具有P偏振态的图像光线。
示例性地,如图7所示,所述显示光机10还可以包括一1/4波片15,其中所述1/4波片15被设置于所述偏振分束镜122和所述透视反射组件13之间,使得被所述偏振分束镜122反射的具有S偏振态的图像光线先穿过所述1/4波片被转换成具有圆偏振态的图像光线(即圆偏振光),接着所述具有圆偏振态的图像光线被所述透视反射组件13反射以再次穿过所述1/4波片而被转换成具有P偏振态的图像光线,之后,所述具有P偏振态的图像光线将透过所述偏振分束镜122,用于被人眼接收,使得用户能够观看到相应的图像。换句话说,由于在所述偏振分束镜122和所述透视反射组件13之间设置有所述1/4波片15,使得被所述偏振分束镜122反射的具有S偏振态的图像光线将被所述透视反射组件13反射以二次穿过所述1/4波片15,而转换成具有P偏振态的图像光线,从而使得图像光线能够顺利地穿过所述偏振分束镜122以到达人眼而被观看到。
值得一提的是,相比于本发明的上述实施例,本发明的第二变形实施方式的所述显示光机10的图像光线的光利用率得到进一步提高。具体地,在本发明的第二变形实施方式中,最终透过所述显示光机10能够到达人眼的图像光线几乎占所述显示单元11发射的图像光线的1/2(即本发明的第二变形实施方式的所述显示光机10的图像光线的光利用率达到了50%),这比根据本发明的上述实施例的显示光机10的图像光线的光利用率提高了将近一倍,有助于进一步提高所述显示光机10所显示图像的质量。
附图8示出了根据本发明的上述实施例的所述显示光机10的第三变形实施方式,其中所述显示光机10还包括一透射膜系17,其中所述透射膜系17被设置于所述显示单元11与所述中继组件12之间,并且所述透射膜系17的透射光谱与所述透视反射组件13中所述反射膜系131的所述反射光谱保持相对(相反),用于允许具有所述透射光谱的图像光线透过,而阻挡具有其他光谱的图像光线透过。这样,所述显示单元11发射的图像光线在通过所述透射膜系17之后将具有所述透射光谱,也就是说,透过所述透射膜系17的图像光线具有所述透射光谱。由于所述透射光谱与所述反射光谱保持相对(相反),因此透过所述透射膜系17的图像光线也就具有所述反射光谱,从而使得透过所述透射膜系17的图像光线能够被所述透视反射组件13全部反射,以避免图像光线逸出,有效地保护用户的隐私安全。
示例性地,所述透射膜系17被贴附于所述显示单元11的发射面,并且所述透射膜系17具有如图9所示的透射光谱,而所述透视反射组件13具有如图5所示的反射光谱。由于所述透射光谱与所述反射光谱恰好相反,因此能够透过所述透射膜系17的图像光线恰好能够被所述透视反射组件13的所述反射膜系131完全反射,以便最大限度地减少图像光线的逸出。
这样,由于所述透射膜系17的存在,所述显示单元11就不需要发射具有所述预定光谱的图像光线。也就是说,所述显示单元11能够发射具有全光谱或者其他连续光谱的图像光线,以通过所述透射膜系 17对这些图像光线进行处理,以允许具有所述透射光谱的图像光线透过,从而实现通过所述透视反射组件13的所述反射膜系131将所述具有所述透射光谱的图像光线反射至人眼中,以防所述图像光线从所述显示光机10的前部逸出,进而达到保护隐私的效果。
根据本发明的另一方面,如图10所示,本发明进一步提供了配置有显示光机的近眼显示设备,以减小图像光线自所述近眼显示设备的前部逸出,有助于保护使用所述近眼显示设备的用户的隐私安全。示例性地,如图10所示,所述近眼显示设备1可以包括所述显示光机10和一设备主体20,其中所述显示光机10被设置于所述设备主体20,以使所述近眼显示设备1具有保护隐私的功能。这样,当用户佩戴所述近眼显示设备1以进行增强现实体验时,图像光线将不会从所述近眼显示设备1的所述显示光机10的前部逸出,使得他人无法从所述近眼显示设备1的外部观看到用户所看的图像。
值得注意的是,所述设备主体20可以但不限于被实施为一眼镜主体,使得所述近眼显示设备1被实施为具有隐私保护功能的AR眼镜,有助于保护用户的隐私。可以理解的是,在本发明的其他示例中,所述近眼显示设备1也可以被实施为诸如AR头盔等等其他类型的AR设备。
根据本发明的另一方面,本发明进一步提供了显示光机的显示方法。具体地,如图11所示,所述显示光机10的显示方法,包括步骤:
S310:藉由一中继组件12,反射通过一显示单元11发射的具有预定光谱的图像光线至一透视反射组件13,其中所述透视反射组件13具有与所述预定光谱保持基本一致的反射光谱;和
S320:藉由所述透视反射组件13,反射所述图像光线,以使所述图像光线透过所述中继组件12能够被投射至人眼中而显示图像。
根据本发明的另一方面,本发明进一步提供了显示光机的制造方法。具体地,如图12所示,所述显示光机10的制造方法,包括步骤:
S410:设置一中继组件12于一显示单元11的发射路径,其中所述显示单元11用于发射具有预定光谱的图像光线;和
S420:设置一透视反射组件13于所述中继组件12的反射路径,其中所述中继组件12用于将所述图像光线反射至所述透视反射组件13,其中所述透视反射组件13具有与所述预定光谱保持基本一致的反射光谱,用于反射所述图像光线。
值得注意的是,在本发明的一示例中,在所述步骤S420之前,所述显示光机10的制造方法还包括步骤:
将一反射膜系131设置于一曲面基层132,以制成所述透视反射组件13,其中所述反射膜系131根据所述预定光谱通过膜系设计而制成。
优选地,在本发明的一示例中,所述反射膜系131被镀于所述曲面基层132的表面。
值得一提的是,近年来,随着增强现实技术的飞速发展,能够实现增强现实的近眼显示设备越来越受到人们的欢迎和使用。但受限于现有的近眼显示设备中显示光机的自身结构的限制,该现有的显示光机对图像光线的光能利用率极低(通常在12.5%左右),并且该现有的显示光机的尺寸偏大,不仅造成该现有的显示光机所显示的图像质量较差,而且也不符合当下头戴式显示设备的小型化、轻薄化的发展趋势。
为了解决上述问题,参考附图13和图14所示,本发明的一第一实施例提供了一种新的近眼显示光机,其不仅能够大幅地提高图像光线的光能利用率,而且还有助于使得所述近眼显示光机的结构紧凑。具体地,如图13所示,所述近眼显示光机10A包括一图像源单元11A、一偏振分光单元12A、一透视反射单元13A、一偏振转换单元14A以及一透镜组单元15A。
所述图像源单元11A具有一发射路径110A,用于沿着所述发射路径110A发射图像光线1100A。所述透镜组单元15A被设置于所述图像源单元11A的所述发射路径110A,用于对经由所述图像源单元11A发射的所述图像光线1100A进行调制。
所述偏振分光单元12A被设置于所述图像源单元11A的所述发射路径110A,用于反射第一偏振图像光线1101A,并且透射第二偏振图像光线1102A。所述偏振分光单元12A和所述图像源单元11A分别位于所述透镜组单元15A的两侧(即所述透镜组单元15A位于所述偏振分光单元12A和所述图像源单元11A之间),并且所述偏振分光单元12A与所述近眼显示光机10A的光学观看轴100A之间的夹角θ大于 45°,使得所述偏振分光单元12A用于反射经由所述透镜组单元15A调制的所述图像光线1100A中的所述第一偏振图像光线1101A,并且透射经由透镜组单元15A调制的所述图像光线1100A中的所述第二偏振图像光线1102A。
所述透视反射单元13A被设置于所述偏振分光单元12A的反射侧,并且所述透视反射单元13A对应于所述近眼显示光机10A的所述光学观看轴100A,用于将经由所述偏振分光单元12A反射的所述第一偏振图像光线1101A中的一部分或全部反射回所述偏振分光单元12A,并且允许环境光线的一部分透过以传播至所述偏振分光单元12A。所述偏振转换单元14A被设置于所述偏振分光单元12A和所述透视反射单元13A之间,用于使所述第一偏振图像光线1101A在两次穿过所述偏振转换单元14A后转换成所述第二偏振图像光线1102A。
这样,经由所述偏振转换单元14A转换成的所述第二偏振图像光线1102A和透过所述透视反射单元13A的环境光线将先透过所述偏振分光单元12A,再入射至人眼中而被观看到,使得用户能够借助所述近眼显示光机10A同时看到与所述图像光线1100A对应的虚像和与所述环境光线对应的实像,以实现增强现实的体验。可以理解的是,所述近眼显示光机10A的所述光学观看轴100A可以由所述偏振分光单元12A和所述透视反射单元13A共同定义的主观看轴,使得用户沿着所述光学观看轴100A既能够看到所述图像源单元11A发射的图像光线,又能够看到外部的环境光线,以获得虚实融合的增强现实体验。可以理解的是,所述透视反射单元13A可以根据具体***设计做相应位置优化调整。
换言之,正是由于经由所述偏振转换单元14A转换成的所述第二偏振图像光线1102A能够透过所述偏振分光单元12A,不会因所述偏振分光单元12A的反射而发生损耗,因此有助于提高所述近眼显示光机10A对图像光线的光能利用率。举例地,当所述近眼显示光机10A的所述透视反射单元13A为部分反射镜(即反射50%的光线,并透射50%的光线)时,图像光线仅在第一次到达所述偏振分光单元12A和经由所述透视反射单元13A时分别损耗一半,即所述近眼显示光机10A对图像光线的光能利用率达到25%,这比所述现有的显示光机10P对图像光线的光能利用率提高了一倍。与此同时,由于所述偏振分光单元12A与所述近眼显示光机10A的所述光学观看轴100A之间的夹角θ大于45°,使得所述近眼显示光机10A的eye-relief(即眼点距,如镜片到额头的距离)增大,以便近视或远视用户增加适配器,提高用户佩戴的体验感和舒适度。此外,这种配置也有助于通过整个***的设计调整,使得所述近眼显示光机10A比现有光机的尺寸更加紧凑,适于满足当下小型化、轻薄化的发展趋势。
优选地,如图14所示,所述偏振分光单元12A与所述近眼显示光机10A的所述光学观看轴100A之间的夹角θ在50°至70°之间,即50°≤θ≤70°。
值得注意的是,在本发明中,所述第一偏振图像光线1101A可以被实施为具有第一偏振态的偏振光,而所述第二偏振图像光线1102A可以被实施为具有第二偏振态的偏振光,其中所述第一偏振图像光线1101A的偏振方向优选地垂直于所述第二偏振图像光线1102A的偏振方向。例如,所述第一偏振图像光线1101A可以但不限于被实施为S偏振光或P偏振光,相应地所述第二偏振图像光线1102A可以但不限于被实施为P偏振光或S偏振光。
此外,在本发明的这个第一实施例中,如图13和图14所示,所述偏振转换单元14A可以但不限于被实施为一第一1/4波片141A,用于将两次穿过所述第一1/4波片141A的所述第一或第二偏振图像光线1101A、1102A转换成所述第二或第一偏振图像光线1102A、1101A。也就是说,所述第一1/4波片141A被设置于所述偏振分光单元12A和所述透视反射单元13A之间,这样经由所述偏振分光单元12A反射的所述第一偏振图像光线1101A先第一次穿过所述第一1/4波片141A以转换成第一圆偏光,在被所述透视反射单元13A反射以转换成第二圆偏光之后,再第两次穿过所述第一1/4波片141A以转换成所述第二偏振图像光线1102A,使得所述第一偏振图像光线1101A在两次穿过所述第一1/4波片141A后被转换成所述第二偏振图像光线1102A,从而使得被反射回的图像光线中绝大部分能够穿过所述偏振分光单元12A以入射至人眼,有助于提高所述近眼显示光机10A对图像光线的光能利用率。
值得一提的是,如图14所示,本发明的上述第一实施例的所述近眼显示光机10A的所述偏振分光单元12A可以包括一透光基片121A和一偏振分光膜122A,其中所述透光基片121A具有一第一光学面120A,并且所述透光基片121A的所述第一光学面120A面向所述图像源单元11A(即所述第一光学面120A 为所述透光基片121A的上表面),其中所述偏振分光膜122A被设置于所述透光基片121A的所述第一光学面120A,使得所述偏振分光膜122A位于所述透光基片121A和所述图像源单元11A之间,用于反射所述图像光线1100A中的所述第一偏振图像光线1101A。
特别地,所述偏振分光膜122A可以但不限于被贴附或镀于所述透光基片121A的所述第一光学面120A。可以理解的是,所述透光基片121A可以但不限于由诸如光学塑料或光学玻璃等等之类的透光材料制成,以保证光线能够透过所述透光基片121A。
优选地,所述偏振分光单元12A的所述透光基片121A的所述第一光学面120A的面型可以但不限于被实施为自由曲面,以便图像光线或环境光线能够在所述偏振分光单元12A处发生反射或透射时被整形,有助于提升所述近眼显示光机10A的成像质量。
同样地,如图14所示,本发明的上述第一实施例的所述近眼显示光机10A的所述透视反射单元13A可以包括一曲面基片131A和一部分反射膜132A,其中所述曲面基片131A具有一第二光学面130A,并且所述曲面基片131A的所述第二光学面130A面向所述偏振分光单元12A(即所述第二光学面130A为所述曲面基片131A的内表面),其中所述部分反射膜132A被设置于所述曲面基片131A的所述第二光学面130A,使得所述部分反射膜132A位于所述偏振分光单元12A和所述曲面基片131A之间,用于反射所述第一偏振图像光线1101A以使所述第一偏振图像光线1101A两次穿过所述第一1/4波片141A而被转换成所述第二偏振图像光线1102A。
特别地,所述部分反射膜132A可以但不限于被贴附或镀于所述曲面基片131A的所述第二光学面130A。可以理解的是,所述曲面基片131A可以由诸如光学塑料或光学玻璃等等之类的透光材料制成,以确保环境光线能够透过所述透视反射单元13A。
优选地,所述透视反射单元13A的所述曲面基片131A的所述第二光学面130A的面型也可以但不限于被实施为自由曲面,以便图像光线和环境光线能够在所述透视反射单元13A的所述第二光学面130A处发生反射或透射时被整形。
值得注意的是,在本发明的其他示例中,所述曲面基片131A的所述第一光学面130也可以面向所述偏振分光单元12A的反方向(即所述第二光学面130A为所述曲面基片131A的外表面),使得所述曲面基片131A位于所述部分反射膜132A和所述偏振分光单元12A之间,这样图像光线将先透过所述曲面基片131A之后,再被所述部分反射膜132A发射以再次透过所述曲面基片131A而到达所述偏振分光单元12A。
根据本发明的上述第一实施例,如图13和图14所示,所述近眼显示光机10A的所述透镜组单元15A可以但不限于包括至少一片透镜151A,其中每片所述透镜151A的面型可以但不限于被实施为诸如标准球面、非球面、自由曲面或衍射面,用于对来自所述图像源单元11A的所述图像光线1100A进行调制整形。换言之,所述至少一片透镜151A的面型可以但不限于选自由标准球面、非球面、自由曲面和衍射面组成的组中的一种或多种。可以理解的是,本发明所提及的自由曲面可以但不限于被实施为XY多项式自由曲面、Zernike多项式自由曲面、或复曲面等等面型。
值得一提的是,在本发明的上述第一实施例中,所述图像源单元11A可以但不限于被实施为LCD、OLED、DLP、LCOS型微型显示器件中的一种,用于提供所述图像光线1100A。特别地,当所述图像源单元11A被实施为LCOS型微型显示器件时,所述LCOS型微型显示器件能够出射具有特定偏振态的图像光线,以便与所述偏振分光单元12A相配合,使得经由所述图像源单元11A发射的图像光线在所述偏振分光单元12A处不发生损耗,有助于进一步提升所述近眼显示光机10A对图像光线的光能利用率。
可以理解的是,所述近眼显示光机10A的所述图像源单元11A被实施为一LCOS型微型显示器件,用于沿着所述发射路径110A发射所述第一偏振图像光线1101A,这样经由所述LCOS型微型显示器件发射的所述第一偏振图像光线1101A的绝大部分被所述偏振分光单元12A反射至所述透视反射单元13A,而不会因透过所述偏振分光单元12A而发生损耗,使得所述近眼显示光机10A对图像光线的光能利用率得以大幅提高。换言之,图像光线仅在所述透视反射单元13A处因透射而发生损耗,不会在所述偏振分光单元12A处因反射或透射而发生损耗,使得所述近眼显示光机10A对图像光线的光能利用率接近50%。
然而,正是由于图像光线将在所述透视反射单元13A处发生透射,即图像光线会从所述近眼显示光机10A的前部逃逸,因此这不仅会造成图像光线的光能损失,使得所述近眼显示光机10A对图像光线的 光能利用率较低,无法提供高质量的图像;而且还会使得其他人能够从所述近眼显示光机10A的外部看到用户正在观看的图像,无法保护用户的隐私。
因此,为了解决这些问题,本发明的一些实施例提供了一种近眼显示光机,所述近眼显示光机的所述图像源单元用于发射具有预定光谱的图像光线,并且所述近眼显示光机的所述透视反射单元包括用于反射所述预定光谱的反射膜系,从而能够大幅减少图像光线从所述近眼显示光机的前部逸出,使得外界不能看到所述近眼显示光机所显示的图像,从而达到提高光能利用率和保护隐私的目的。
值得注意的是,在本发明的这些实施例中,所述近眼显示光机的所述透视反射单元的详细描述和各种变形可以参考本申请人已申请的专利申请号为201811523682.9、名称为“一种显示光机及其制造方法和近眼显示设备”的中国发明专利,本发明对此不再赘述。
值得一提的是,受限于本发明的上述第一实施例的所述近眼显示光机10A的自身结构,所述近眼显示光机10A下方的环境光线(以下简称干扰光线)将不可避免地会被所述偏振分光单元12A反射至人眼中,导致用户在观看所述近眼显示光机10A前方的景物的同时,也会看到所述近眼显示光机10A下方的物体的虚像,从而造成视觉干扰(即伪影干扰)。因此为了解决上述问题,如图15和图16所示,本发明的第二实施例提供了一种近眼显示光机10A',其能够有效地避免下方的干扰光线被反射至用户眼中,以防发生视觉干扰。具体地,如图15所示,相比于本发明的上述第一实施例,根据本发明的所述第二实施例的所述近眼显示光机10A'的区别之处在于:所述近眼显示光机10A'还包括一防干扰单元16A',其中所述防干扰单元16A'位于所述偏振分光单元12A上远离所述图像源单元11A的一侧,用于防止来自所述近眼显示光机10A'下方的干扰光线100A'产生视觉干扰。
更具体地,如图15和图16所示,所述防干扰单元16A'包括一偏光过滤元件161A',其中所述偏光过滤元件161A'被设置于所述偏振分光单元12A上远离所述图像源单元11A的一侧,用于吸收第一偏振光101A,并透射第二偏振光102A,其中所述第一偏振光101A被实施为具有第一偏振态的偏振光,所述第二偏振光102A被实施为具有第二偏振态的偏振光。换言之,在本发明中,所述第一偏振光101A的偏振态与所述第一偏振图像光线1101A的偏振态保持一致;并且所述第二偏振光102A的偏振态与所述第二偏振图像光线1102A的偏振态保持一致(如该第一偏振光101A和该第一偏振图像光线1101A具有相同的偏振态,并且该第二偏振光102A和该第二偏振图像光线1102A具有相同的偏振态)。例如,在本发明的一示例中,所述第一偏振光101A和所述第一偏振图像光线1101A均被实施为具有S偏振态的偏振光(简称S偏振光);所述第二偏振光102A和所述第二偏振图像光线1102A均被实施为具有P偏振态的偏振光(简称P偏振光)。
因此,当来自所述近眼显示光机10A'下方的干扰光线通过所述防干扰单元16A'的所述偏光过滤元件161A'时,首先,通过所述偏光过滤元件161A'吸收所述干扰光线100A'中的第一偏振光101A,并透射所述干扰光线100A'中的第二偏振光102A,使得所述干扰光线100A'由非偏振光被过滤成所述第二偏振光102A;其次,透过所述偏光过滤元件161A'的所述第二偏振光102A向上传播至所述偏振分光单元12A,以透过所述偏振分光单元12A而逃逸,而不会被反射至人眼中,从而实现防止来自所述近眼显示光机10A'下方的干扰光线100A'产生视觉干扰的目的。
可以理解的是,由于所述偏振分光单元12A用于反射具有第一偏振态的偏振光,并透射具有第二偏振态的偏振光,因此透过所述偏光过滤元件161A'的所述第二偏振光102A只会透过所述偏振分光单元12A,而不会被所述偏振分光单元12A反射。此外,由于所述偏光过滤元件161A'允许所述第二偏振光102A透过,即允许具有第二偏振态的偏振光透过,因此沿着所述光学观看轴传播的图像光线和环境光线在透过所述偏振分光单元12A之后,必然能够透过所述偏光过滤元件161A'以传播至人眼中,使得所述防干扰单元16A'在起到消伪影作用的同时,还不会影响所述近眼显示光机10A'的原有效果(如图像对比度、光能利用率等等),有助于大幅提升用户的舒适体验。
示例性地,在本发明的这个实施例中,所述偏光过滤元件161A'可以但不限于被实施为一线偏振片,用于仅允许第二偏振光透过,并吸收第一偏振光。优选地,所述偏光过滤元件161A'被实施为P偏振片,用于仅允许P偏振光透过,并吸收S偏振光,以便与所述偏振分光单元12A中的所述偏振分光膜(如PBS膜,反射S偏振光,并透射P偏振光)相匹配。
进一步地,如图16所示,所述防干扰单元16A'还可以包括一保护基板162A',其中所述保护基板 162A'位于所述偏光过滤元件161A'的外侧,以使所述偏光过滤元件161A'处于所述保护基板162A'和所述偏振分光单元12A之间,以通过所述保护基板162A'保护和支持所述偏光过滤元件161A'。可以理解的是,所述保护基板162A'可以但不限于由诸如玻璃、透明塑料等等透光材料制成,以允许光线透过所述保护基板162A'。
优选地,如图16所示,所述防干扰单元16A'还可以包括一增透膜163A',其中所述增透膜163A'被设置于所述保护基板162A'的外表面,用于减少所述干扰光线100A'在所述保护基板162A'的外表面的反射,有助于避免造成视觉干扰。可以理解的是,所述增透膜163A'可以但不限于被镀于所述保护基板162A'的外表面。例如,在本发明的其他示例中,所述增透膜163A'也可以直接被贴附于所述保护基板162A'的外表面。
值得注意的是,在本发明的所述第二实施例中,除了上述结构不同之外,所述近眼显示光机10A'的其他结构与根据本发明的所述第一实施例的所述近眼显示光机10A的结构相同,并且所述近眼显示光机10A'也具有与所述第一实施例的所述近眼显示光机10A的各种变形实施方式相似或相同的变形实施方式,在此不再赘述。
根据本发明的另一方面,本发明进一步提供了配置有近眼显示光机的近眼显示设备。示例性地,如图17所示,所述近眼显示设备1A可以包括上述至少一近眼显示光机10A(10A')和一设备主体20A,其中所述近眼显示光机10A(10A')被设置于所述设备主体20A,以组装成结构紧凑的所述近眼显示设备1A,使得所述近眼显示设备的体积较小、重量较轻,有助于满足当下小型化、轻薄化的发展潮流。
值得注意的是,所述设备主体20A可以但不限于被实施为一眼镜主体,使得所述近眼显示设备1A被实施为AR眼镜,有助于提升用户的使用体验。可以理解的是,在本发明的其他示例中,所述近眼显示设备1A也可以被实施为诸如AR头盔等等其他类型的AR设备。
根据本发明的另一方面,本发明进一步提供了一种近眼显示光机的制造方法。具体地,如图18所示,所述近眼显示光机10A的制造方法,包括步骤:
S310A:设置一透镜组单元15A于一图像源单元11A和一偏振分光单元12A之间,并且所述透镜组单元15A和所述偏振分光单元12A均位于所述图像源单元11A的发射路径,其中所述透镜组单元15A用于对经由所述图像源单元11A发射的该图像光线1100A进行调制,其中所述偏振分光单元12A用于反射被调制后的该图像光线1100A中的第一偏振图像光线1101A,并透射被调制后的该图像光线1100A中的第二偏振图像光线1102A;
S320A:设置一透视反射单元13A于所述偏振分光单元12A的反射侧,以通过所述透视反射单元13A和所述偏振分光单元12A定义一光学观看轴100A,其中所述偏振分光单元12A与所述光学观看轴100A之间的夹角大于45°,其中所述透视反射单元13A用于将经由所述偏振分光单元12A反射的所述第一偏振图像光线1101A中的一部分或全部反射回所述偏振分光单元12A,并且允许环境光线的一部分透过以传播至所述偏振分光单元12A;以及
S330A:设置一偏振转换单元14A于所述偏振分光单元12A和所述透视反射单元13A之间,用于使所述第一偏振图像光线1101A在两次穿过所述偏振转换单元14A后转换成所述第二偏振图像光线1102A,进而沿着所述光学观看轴100A入射至人眼中而被观看到。
可以理解的是,本发明的所述近眼显示光机10A的制造方法中所述步骤S310A、所述步骤S320A以及所述步骤S330A之间的顺序不分先后。
值得注意的是,在本发明的一示例中,所述偏振分光单元12A包括一透光基片121A和一偏振分光膜122A,其中所述偏振分光膜122A被设置于所述透光基片121A的第一光学面120A,并且所述偏振分光膜122A位于所述透光基片121A和所述图像源单元11A之间。
在本发明的一示例中,所述透光基片的所述第一光学面的面型为自由曲面。
在本发明的一示例中,所述透视反射单元13A包括一曲面基片131A和一部分反射膜132A,其中所述部分反射膜132A被设置于所述曲面基片131A的第二光学面130A,用于反射所述第一偏振图像光线1101A以使所述第一偏振图像光线1101A两次穿过所述第一1/4波片141A而被转换成所述第二偏振图像光线1102A。
在本发明的一示例中,所述曲面基片的所述第二光学面的面型为自由曲面。
值得一提的是,如图18所示,所述近眼显示光机10A的制造方法,还可以包括步骤:
S340A:设置一防干扰单元16A'于所述偏振分光单元12A上远离所述图像源单元11A的一侧,其中所述防干扰单元16A'包括一偏光过滤元件161A',用于吸收第一偏振光101A,并透射第二偏振光102A,其中所述第一偏振光101A的偏振态与所述第一偏振图像光线1101A的偏振态保持一致;并且所述第二偏振光102A的偏振态与所述第二偏振图像光线1102A的偏振态保持一致。
值得注意的是,近年来,随着增强现实技术的飞速发展,能够实现增强现实的近眼显示设备越来越受到人们的欢迎和使用。但受限于现有的近眼显示设备中显示光机自身结构的限制,该现有的显示光机下方的环境光线(以下简称干扰光线)将不可避免地会被反射至用户眼中,导致用户在观看显示光机前方景物的同时,也会看到显示光机下方物体的虚像,从而会造成视觉干扰。
为了解决上述问题,参考附图19至图21所示,本发明的一实施例提供了一种显示光机,其能够有效地避免下方的干扰光线被反射至用户眼中,以防发生视觉干扰。具体地,如图19所示,所述显示光机10B包括一显示单元11B、一中继***12B以及一透视反射单元13B。所述显示单元11B用于发射图像光线。所述中继***12B被设置于所述显示单元11B的发射路径。所述透视反射单元13B被设置于所述中继***12B的反射路径,用于将经由所述中继***12B反射的图像光线反射回所述中继***12B,并允许环境光线透过所述透视反射单元13B以射入所述中继***12B,使得所述图像光线和所述环境光线能够透过所述中继***12B而射入用户眼中,以便用户能够同时观看到所要显示的图像和真实环境,从而实现增强现实的目的。
特别地,如图19和图20所示,所述显示光机10B的所述中继***12B包括一反透元件121B、一偏光转换元件122B以及一偏光过滤元件123B,并且所述反透元件121B、所述偏光转换元件122B以及所述偏光过滤元件123B沿着所述显示单元11B的所述发射路径依次布置,也就是说,所述反透元件121B和所述偏光转换元件122B位于所述偏光过滤元件123B和所述显示单元11B之间,并且所述偏光转换元件122B位于所述反透元件121B和所述偏光过滤元件123B之间。换句话说,所述中继***12B的所述反透元件121B、所述偏光转换元件122B以及所述偏光过滤元件123B自上至下依次布置,并且所述显示单元11B位于所述反透元件121B的上方,使得来自所述显示光机10B下方的干扰光线100B依次通过所述偏光过滤元件123B、所述偏光转换元件122B以及所述反透元件121B。可以理解的是,由于所述反透元件121B的反射路径被实施为所述中继***12B的反射路径,因此所述透视反射单元13B被设置于所述反透元件121B的反射路径,用于将经由所述反透元件121B反射的图像光线反射回所述中继***12B。
更具体地,如图20和图21所示,所述偏光过滤元件123B用于透射第一偏振光101B,并吸收第二偏振光102B。所述偏光转换元件122B用于将第一偏振光101B转换成第一圆偏光103B,还用于将第二圆偏光104B转换成第二偏振光102B。所述反透元件121B用于反射光线的一部分,并透射光线的另一部分。
值得注意的是,所述第一偏振光101B的偏振方向优选地垂直于所述第二偏振光102B的偏振方向。例如,在本发明的一示例中,所述第一偏振光可以但不限于被实施为S或P偏振光;相应地所述第二偏振光则可以但不限于被实施为P或S偏振光。当然,在本发明的其他示例中,所述第一和第二偏振光也可以被实施为相互垂直的其他方向的偏振光。
示例性地,如图20和图21所示,根据本发明的上述实施例,所述中继***12B的所述偏光过滤元件123B可以但不限于被实施为一线偏振片1231B,用于仅允许所述第一偏振光101B透过,并吸收所述第二偏振光102B。这样当来自所述显示光机10B下方的干扰光线100B依次通过所述线偏振片1231B、所述偏光转换元件122B以及所述反透元件121B时,首先通过所述线偏振片1231B吸收所述干扰光线100B中的所述第二偏振光102B,并透射所述干扰光线100B中的所述第一偏振光101B,以滤除所述干扰光线100B中的所述第二偏振光102B,使得所述干扰光线100B由非偏振光转换成所述第一偏振光101B;其次通过所述偏光转换元件122B将来自所述偏光过滤元件123B的所述第一偏振光101B转换成第一圆偏光103B;之后通过所述反透元件121B将来自所述偏光转换元件122B的所述第一圆偏光103B的一部分反射回所述偏光转换元件122B,并转变成所述第二圆偏光104B;最后通过所述偏光转换元件122B将来自所述反透元件121B的所述第二圆偏光104B转换成所述第二偏振光102B,以被所述线偏振 片1231B吸收,从而使得来自所述显示光机10B下方的干扰光线100B无法通过所述中继***12B到达用户眼中,以消除因来自所述显示光机10B下方的干扰光线100B而引起的视觉干扰,有助于提升所述显示光机10B的用户体验。
值得一提的是,在本发明的所述实施例中,如图20所示,所述中继***12B的所述反透元件121B可以但不限于被实施为一半反半透镜1211B,用于反射一部分光线,并透射另一部分光线。例如,所述半反半透镜1211B可以但不限于被实施为镀有半反半透膜的透镜,用于允许一半的光线透过,并反射另一半的光线。当然,在本发明的其他示例中,所述反透元件121B也可以被实施为其他类型的元件,只要能够实现光线的部分反射且部分透射的效果即可。
此外,在本发明的上述实施例中,如图20和图21所示,所述中继***12B的所述偏光转换元件122B可以但不限于被实施为一1/4波片1221B,用于将二次穿过所述1/4波片1221B的所述第一或第二偏振光101B、102B转换成所述第二或第一偏振光102B、101B。在本发明的所述显示光机10B的所述中继***12B中,所述1/4波片1221B位于所述半反半透镜1211B和所述线偏振片1231B之间,这样当干扰光线通过所述线偏振片1231B时,所述线偏振片1231B仅允许所述干扰光线100B中的第一偏振光101B透过,而吸收所述干扰光线100B中的第二偏振光102B;在所述第一偏振光101B第一次穿过所述1/4波片1221B以转换成第一圆偏光103B之后,再被所述半反半透镜1211B反射回所述1/4波片1221B以转换成第二圆偏光104B,进而第二次穿过所述1/4波片1221B以转换成所述第二偏振光102B,使得所述第一偏振光101B在两次穿过所述1/4波片1221B后被转换成所述第二偏振光102B,从而通过所述线偏振片1231B吸收经由所述1/4波片1221B转换成的所述第二偏振光102B,以消除因所述干扰光线100B而引起的视觉干扰。
值得注意的是,本发明的所述中继***12B的所述线偏振片1231B的透过轴可以为任意方向,只要保证所述1/4波片1221B的快轴与所述线偏振片1231B的透过轴存在一预定夹角θ(如图21所示)即可,其中所述预定夹角θ取值为45°左右,例如40°≤θ≤50°。
优选地,所述1/4波片1221B的快轴与所述线偏振片1231B的透过轴之间的所述预定夹角θ被实施为45°,这样两次通过所述1/4波片1221B后的偏振光的偏振态与通过之前的偏振态相互垂直,使得干扰光线100B无法通过所述线偏振片1231B而被阻止,以消除所述干扰光线100B产生的视觉干扰。
进一步地,如图20和图21所示,所述中继***12B还可以包括一保护基板124B,其中所述保护基板124B位于所述偏光过滤元件123B的外侧,以使所述偏光过滤元件123B和所述偏光转换元件122B处于所述保护基板124B和所述半反半透镜1211B之间,以通过所述保护基板124B保护和支持所述偏光过滤元件123B和所述偏光转换元件122B。可以理解的是,所述保护基板124B可以但不限于由诸如玻璃、透明塑料等等透光材料制成,以允许光线透过所述保护基板124B。
优选地,如图20和图21所示,所述中继***12B还可以包括一增透膜125B,其中所述增透膜125B被设置于所述保护基板124B的外表面,用于减少干扰光线100B在所述保护基板124B的外表面的反射,有助于避免造成视觉干扰。可以理解的是,所述增透膜125B可以但不限于被镀于所述保护基板124B的外表面。例如,在本发明的其他示例中,所述增透膜125B也可以直接被贴附于所述保护基板124B的外表面。
值得一提的是,如图19所示,根据本发明的上述实施例的所述显示光机10B还可以包括一透镜单元14B,其中所述透镜单元14B被设置于所述显示单元11B和所述中继***12B之间,用于对来自所述显示单元11B的图像光线进行调制,有助于提高所述显示光机10B所显示的图像质量。值得注意的是,所述显示光机10B的所述透镜单元14B可以但不限于包括至少一透镜,用于对经由所述显示单元11B发射的图像光线进行调制。
此外,在本发明的上述实施例中,如图19所示,所述显示光机10B的所述透视反射单元13B可以但不限于被实施为一曲面反射镜131B,其中所述曲面反射镜131B被设置于所述中继***12B的反射路径,用于在将通过所述中继***12B传送过来的图像光线反射回所述中继***12B的同时,还对所述图像光线进行整形,有助于提升所述显示光机10B的成像质量。可以理解的是,所述曲面反射镜131B为部分反射镜,即按照一定比例反射和透射光线,这样所述曲面反射镜131B不仅能够将图像光线的一部分反射回人眼中而使用户观看到相应的图像,而且还允许环境光线透过所述曲面反射镜131B以射入用 户眼中而使人看到真实环境,从而实现增强现实的目的。
值得一提的是,在本发明的其他示例中,所述中继***12B的所述反透元件121B还可以直接被实施为一半反半透膜(图中未示出),其中所述半反半透膜直接被设置于所述1/4波片1221B的上表面,用于将穿过所述1/4波片1221B的第一偏振光的一部分直接反射回所述1/4波片1221B,使得该第一偏振光二次穿过所述1/4波片1221B以转换成第二偏振光,从而被所述线偏振片1231B吸收以避免产生视觉干扰。
值得注意的是,所述半反半透膜可以但不限于直接被镀于所述1/4波片1221B的上表面,这样所述中继***12B能够在确保消除干扰光线对所述显示光机10B产生的视觉干扰的前提下,还能够减小所述显示光机10B的体积和重量,有助于满足所述显示光机10B的小型化、轻薄化的发展需求。当然,在本发明的又一示例中,所述半反半透膜也可以通过贴附等方式被设置于所述1/4波片1221B的表面。
附图22示出了根据本发明的上述实施例的所述显示光机10B的第一变形实施方式。与根据本发明的上述实施例相比,根据本发明的所述第一变形实施方式的所述显示光机10B的不同之处在于:所述显示单元11B用于发射具有预定光谱的图像光线,并且所述透视反射单元13B'的反射光谱与所述图像光线的预定光谱保持基本一致,用于将经由所述中继***12B反射的图像光线反射回所述中继***12B,并允许环境光线透过所述透视反射元件13A以射入所述中继***12B,使得所述图像光线和所述环境光线能够透过所述中继***12B而射入用户眼中,以便用户能够同时观看到所要显示的图像和真实环境,从而实现增强现实的目的。可以理解的是,在本发明的这个实施例中,所述反射光谱与所述预定光谱之间的误差在20%以内均可以被认定为所述反射光谱与所述预定光谱保持基本一致。
值得注意的是,由于所述透视反射单元13B'的反射光谱与所述显示单元11B所发射的图像光线的预定光谱保持基本一致,使得所述透视反射单元13B'仅反射具有所述预定光谱的光线,并允许其他光谱的光线(如环境光线中具有非预定光谱的光线)透过。因此,当所述图像光线被所述中继***12B反射至所述透视反射单元13B'时,大部分的所述图像光线将被所述透视反射单元13B'反射回所述中继***12B,以阻挡所述图像光线透过所述透视反射单元13B'而减小所述图像光线的逸出,使得人们无法从所述显示光机10B的外部观看到所显示的图像,以保护用户的隐私,从而本发明的这个变形实施方式中的所述显示光机10B不仅能够消除干扰光线所引起的视觉干扰,而且还能够保护用户的隐私,有助于大幅提升用户的使用体验。
示例性地,在本发明的所述第一变形实施方式中,如图22所示,所述透视反射单元13B'包括一反射膜系131B'和一曲面基层132B',其中所述反射膜系131B'根据所述图像光线的所述预定光谱通过膜系设计制成,以使所述反射膜系131B'的反射光谱与所述图像光线的所述预定光谱相同;所述反射膜系131B'被设置于所述曲面基层132B',以使所述反射膜系131B'具有曲面形状,从而形成具有曲面结构的所述透视反射单元13B',使得所述透视反射单元13B'在反射所述图像光线的同时,还能够对所述图像光线进行调制,以提高所述显示光机所显示的图像质量。
具体地,所述曲面基层132B'可以由透明材料制成,例如玻璃、塑料、树脂以及高分子材料等等透明材料,以允许光线全部透过所述曲面基层132B',有助于避免所述曲面基层132B'阻挡环境光线透过所述透视反射单元13B'。当然,在本发明的其他示例中,所述曲面基层132B'也可以由半透明材料制成,例如玻璃、塑料、树脂以及高分子材料等等半透明材料,以允许光线部分透过所述曲面基层132B',这样可以适当地减少环境光线透过所述透视反射单元13B',以满足不同的情景需求。
示例性地,所述曲面基层132B'可以但不限于被实施为一曲面透镜,并且所述反射膜系131B'被贴附于所述曲面基层132B'的内表面,使得所述反射膜系131B'的形状与所述曲面基层132B'的所述内表面的形状保持基本一致,以形成具有曲面形状的所述反射膜系131B'。这样,当所述图像光线经由所述中继***12B射向所述透视反射单元13B'时,所述图像光线首先到达所述反射膜系131B',以被所述反射膜系131B'反射回所述中继***12B,而不需要先透过所述曲面基层132B',以避免所述曲面基层132B'吸收所述图像光线而导致所述图像光线的光能降低。
值得注意的是,在本发明的这个变形实施方式中,所述显示光机10B的所述透视反射单元13B'的详细描述和各种变形可以参考本申请人已申请的专利申请号为201811523682.9、名称为“一种显示光机及其方法和近眼显示设备”的中国发明专利,本发明对此不再赘述。
根据本发明的另一方面,如图23所示,本发明进一步提供了配置有显示光机的近眼显示设备,以消除来自所述近眼显示设备下方的干扰光线对用户产生的视觉干扰,有助于提高用户的使用体验。示例性地,如图23所示,所述近眼显示设备1B可以包括至少一显示光机10B和一设备主体20B,其中所述显示光机10B被设置于所述设备主体20B,以使所述近眼显示设备1B具备消除视觉干扰的功能。换句话说,当用户佩戴所述近眼显示设备1B以进行增强现实体验时,来自所述近眼显示设备1B下方的干扰光线将不会被所述近眼显示设备1B的所述显示光机10B反射至用户眼中,以防用户观看到位于所述近眼显示设备1B下方的图像,从而有效地消除视觉干扰。
值得注意的是,所述设备主体20B可以但不限于被实施为一眼镜主体,使得所述近眼显示设备1B被实施为具有消除视觉干扰功能的AR眼镜,有助于提升用户的使用体验。可以理解的是,在本发明的其他示例中,所述近眼显示设备1B也可以被实施为诸如AR头盔等等其他类型的AR设备。
根据本发明的另一方面,本发明进一步提供了一种显示光机的制造方法。具体地,如图24所示,所述显示光机10B的制造方法,包括步骤:
S310B:设置一中继***12B于一显示单元11B的发射路径,其中所述中继***12B包括沿着所述显示单元11B的所述发射路径依次布置的一反透元件121B、一偏光转换元件122B以及一偏光过滤元件123B,其中所述反透元件121B用于反射经由所述显示单元11B发射的图像光线,并用于反射来自所述偏光过滤元件123B的第一偏振光101B;所述偏光转换元件122B用于将二次穿过的第一偏振光101B转换成第二偏振光102B;所述偏光过滤元件123B用于吸收所述第二偏振光102B,并透射所述第一偏振光101B;和
S320B:设置一透视反射单元13B于所述中继***12B的反射路径,其中所述透视反射单元13B用于将经由所述反透元件121B反射的图像光线反射回所述中继***12B。
值得注意的是,在本发明的一示例中,所述反透元件121B被实施为一半反半透镜1211B。
在本发明的一示例中,所述偏光转换元件122B被实施为一1/4波片1221B。
在本发明的一示例中,所述偏光过滤元件123B可以被实施为一线偏振片1231B。
根据本发明的另一方面,本发明进一步提供了一种用于显示光机的视觉干扰消除方法。具体地,如图25所示,所述视觉干扰消除方法,包括步骤:
S410B:藉由一偏光过滤元件123B,吸收干扰光线100B中的第二偏振光102B,并透射所述干扰光线100B中第一偏振光101B;
S420B:藉由一偏光转换元件122B,将来自所述偏光过滤元件123B的所述第一偏振光101B转换成第一圆偏光103B;
S430B:藉由一反透元件121B,反射经由所述偏光转换元件122B转换的所述第一圆偏光103B,以形成第二圆偏光104B;
S440B:藉由所述偏光转换元件122B,将来自所述反透元件121B反射的所述第二圆偏振光104转换成第二偏振光102B;以及
S450B:藉由所述偏光过滤元件123B,吸收经由所述偏光转换元件122B转换的所述第二偏振光102B,以消除所述干扰光线100B引起的视觉干扰。
值得注意的是,在本发明的一示例中,所述反透元件121B被实施为一半反半透镜1211B。
在本发明的一示例中,所述偏光转换元件122B被实施为一1/4波片1221B。
在本发明的一示例中,所述偏光过滤元件123B可以被实施为一线偏振片1231B。
根据本发明的另一方面,本发明的一实施例进一步提供了一用于近眼显示设备的防下方干扰光线反射到用户眼睛的方法。具体地,所述用于近眼显示设备的防下方干扰光线反射到用户眼睛的方法,包括步骤:
(A)吸收来自该近眼显示设备下方的干扰光线中的第二偏振光,并透射来自该近眼显示设备下方的该干扰光线中的第一偏振光;
(B)将来自该近眼显示设备下方的干扰光线中的该第一偏振光转换成朝向该用户眼睛传播的该第二偏振光;以及
(C)吸收朝向该用户眼睛传播的该第二偏振光,以防来自该近眼显示设备下方的该干扰光线被反 射到该用户眼睛。
进一步地,在本发明的一示例中,所述用于近眼显示设备的防下方干扰光线反射到用户眼睛的方法的所述步骤(B),包括步骤:
(B.1)将来自该近眼显示设备下方的干扰光线中的该第一偏振光转换成第一圆偏光;
(B.2)反射该第一圆偏光,以形成朝向该用户眼睛传播的第二圆偏光;
(B.3)将朝向该用户眼睛传播的该第二圆偏光转换成朝向该用户眼睛传播的该第二偏振光。
在本发明的一示例中,所述用于近眼显示设备的防下方干扰光线反射到用户眼睛的方法,在所述步骤(A)之前,进一步包括步骤:
增强来自该近眼显示设备下方的干扰光线在该近眼显示设备中的透射,以减少该近眼显示设备对该干扰光线的反射,防止该干扰光线直接被反射至该用户眼睛。
值得一提的是,参考附图27至图29所示,本发明的一实施例提供了一种消伪影式显示光机,其能够有效地避免下方的干扰光线被反射至用户眼中,以防发生伪影干扰。具体地,如图27所示,所述显示光机10C包括一显示单元11C、一中继***12C、一透视反射单元13C以及一透镜组单元14C。所述显示单元11C用于发射图像光线。所述透镜组单元14C被设置于所述显示单元11C和所述中继***12C之间,用于对经由所述显示单元11C发出的图像光线进行调制。所述中继***12C用于将经由所述透镜组单元14C调制后的图像光线传输至所述透视反射单元13C。所述透视反射单元13C用于将经由所述中继***12C传输的图像光线反射回所述中继***12C,并允许环境光线透过所述透视反射单元13C以射入所述中继***12C,使得所述图像光线和所述环境光线能够透过所述中继***12C而射入用户眼中,以便用户能够同时观看到所要显示的图像和真实环境,从而实现增强现实的目的。
更具体地,如图27和图28所示,所述显示光机10C的所述中继***12C包括一偏振分光元件121C、一偏光转换元件122C以及一偏光过滤元件123C,其中所述偏振分光元件121C用于反射具有第一偏振态的光线,且透射具有第二偏振态的光线,其中所述具有第一偏振态的光线的偏振方向垂直于所述具有第二偏振态的光线的偏振方向;其中所述偏光转换元件122C用于将二次穿过的所述具有第一偏振态的光线转换成所述具有第二偏振态的光线;其中所述偏光过滤元件123C用于吸收所述具有第一偏振态的光线,且透射所述具有第二偏振态的光线。可以理解的是,在本发明的上述实施例中,所述具有第一偏振态的光线可以但不限于被实施为具有S偏振态的偏振光(简称S偏振光);相应地,所述具有第二偏振态的光线可以但不限于被实施为具有P偏振态的偏振光(简称P偏振光)。
特别地,如图27所示,所述偏振分光元件121C和所述偏光过滤元件123C沿着所述显示单元11C的所述发射路径自上至下依次布置,并且所述显示单元11C位于所述偏振分光元件121C的上方,使得经由所述显示单元11C发出的图像光线中具有第二偏振态的光线先透过所述偏振分光元件121C后,再透过所述偏光过滤元件123C。与此同时,如图27和图28所示,来自所述消伪影式显示光机10C下方的干扰光线先通过所述偏光过滤元件123C的过滤后,再传播至所述偏振分光元件121C。这样所述干扰光线中的所述具有第一偏振态的光线将被所述偏光过滤元件123C吸收而不会被所述偏振分光元件121C反射至用户眼中;所述干扰光线中的所述具有第二偏振态的光线虽然能够透过所述偏光过滤元件123C以传播至所述偏振分光元件121C,但其能够透过所述偏振分光元件121C而不会被所述偏振分光元件121C反射,使得所述干扰光线中的所述具有第一和第二偏振态的光线均不会被反射至用户眼中,以消除来自所述消伪影式显示光机10C下方的干扰光线所引起的伪影干扰,从而使得所述消伪影式显示光机10C具备消伪影功能,提升用户的使用体验。可以理解的是,示例性地,所述图像光线和所述干扰光线通常均为非偏振光,也就是说,所述图像光线和所述干扰光线既包括P偏振光,又包括S偏振光。值得注意的是,为了在图中区分所述图像光线和所述干扰光线,将所述干扰光线中的P偏振光记为P*偏振光,并将所述干扰光线中的S偏振光记为S*偏振光。
此外,如图27所示,所述偏光转换元件122C被设置于所述偏振分光元件121C和所述透视反射单元13C之间,这样经由所述显示单元11C发出的图像光线中具有第一偏振态的光线先被所述偏振分光元件121C反射,以第一次穿过所述偏光转换元件122C而到达所述透视反射单元13C后,再被所述透视反射单元13C反射回,以第二次穿过所述偏光转换元件122C而到达所述偏振分光元件121C,使得所述图像光线中的所述具有第一偏振态的光线两次穿过所述偏光转换元件122C,以转换成具有第二偏振态的 光线,进而穿过所述偏振分光元件121C以入射至用户眼中,从而使用户获得良好的增强现实体验。
换言之,所述中继***12C的所述偏振分光元件121C具有一入射侧、一反射侧以及一透射侧,其中所述显示单元11C对应于所述偏振分光元件121C的所述入射侧;所述偏光转换元件122C对应于所述偏振分光元件121C的所述反射侧;所述偏光过滤元件123C对应于所述偏振分光元件121C的所述透射侧。这样经由所述显示单元11C发出的图像光线中的所述具有第一偏振态的光线被所述偏振分光元件121C反射以朝向所述偏振分光元件121C的所述反射侧传播至所述偏光转换元件122C;经由所述显示单元11C发出的图像光线中的所述具有第二偏振态的光线被所述偏振分光元件121C透射以朝向所述偏振分光元件121C的所述透射侧传播至所述偏光过滤元件123C。与此同时,来自所述偏振分光元件121C的所述透射侧的环境光线(即干扰光线)将先被所述偏光过滤元件123C过滤,以吸收干扰光线中的具有第一偏振态的光线,并允许干扰光线中的具有第二偏振态的光线透过;之后所述干扰光线中的具有第二偏振态的光线也将透过所述偏振分光元件121C而逃逸,并不会被反射至用户眼中,以消除因干扰光线而引起的伪影干扰,有助于提升用户体验。可以理解的是,在所述中继***12C中,所述偏振分光元件121C同样位于所述偏光过滤元件123C的透射侧,使得该干扰光线中的具有第二偏振态的光线在透过所述偏光过滤元件123C之后,也能够透过所述偏振分光元件121C,以消除因该干扰光线被反射至用户眼中而产生的伪影。
值得一提的是,在本发明的所述实施例中,如图27和图28所示,所述中继***12C的所述偏振分光元件121C可以但不限于被实施为包括一透光基片1211C和一偏振分光膜1212C,其中所述偏振分光膜1212C被设置于所述透光基片1211C的上表面,使得所述偏振分光膜1212C位于所述透光基片1211C和所述透镜组单元14C之间,以使所述偏振分光元件121C被实施为一偏振分光镜,用于反射经由所述显示单元11C发出的图像光线中的具有第一偏振态的光线,并允许所述图像光线中的具有第二偏振态的光线透过。可以理解的是,所述偏振分光膜1212C可以但不限于被贴附或镀于所述透光基片1211C的所述上表面。此外,所述透光基片1211C可以但不限于由诸如光学塑料或光学玻璃等等之类的透光材料制成,以保证光线能够透过所述透光基片1211C。
在本发明上述实施例中,如图27所示,所述透视反射单元13C可以但不限于包括一曲面基片131C和一部分反射膜132C,其中所述部分反射膜132C被设置于所述曲面基片131C的内表面,使得所述部分反射膜132C位于所述中继***12C和所述曲面基片131C之间,用于将经由所述偏振分光元件121C反射的所述具有第一偏振态的光线中的至少一部分反射回所述偏振分光元件121C,使得所述具有第一偏振态的光线两次穿过所述偏光转换元件122C而被转换成所述具有第二偏振态的光线,进而穿过所述偏振分光元件121C以入射至用户眼中。可以理解的是,所述部分反射膜132C可以但不限于被贴附或镀于所述曲面基片131C的所述内表面,还可以被设置于所述曲面基片131C的外表面。此外,所述曲面基片131C可以由诸如光学塑料或光学玻璃等等之类的透光材料制成,以确保环境光线能够透过所述透视反射单元13C。
值得注意的是,在本发明的上述实施例中,所述部分反射膜132C可以但不限于被实施为一半反半透膜。当然,在本发明的其他示例中,所述部分反射膜132C还可以被实施为具有预定反射光谱的反射膜系,其中所述反射膜系的所述预定反射光谱与所述显示单元11C发出的图像光线的光谱保持一致,用于将经由所述偏振分光元件121C反射的光线全部反射回所述偏振分光元件121C,同时还允许环境光线中光谱不一致的部分透过所述反射膜系,以入射至用户眼中,保证所述消伪影式显示光机10C在实现消除下方反射伪影的基础上,还可以防止图像外泄,提升***的光能利用率,提高图像对比度,具有优异的增强现实效果。
根据本发明的上述实施例,如图27所示,所述偏光转换元件122C可以但不限于被实施为一1/4波片1221C,用于将两次穿过所述1/4波片1221C的所述具有第一或第二偏振态的光线转换成所述具有第二或第一偏振态的光线。换言之,所述第一1/4波片1221C被设置于所述偏振分光元件121C和所述透视反射单元13C之间,这样所述图像光线中经由所述偏振分光元件121C反射的所述具有第一偏振态的光线先第一次穿过所述第一1/4波片1221C以转换成第一圆偏光,在被所述透视反射单元13C反射以转换成第二圆偏光之后,再第二次穿过所述第一1/4波片1221C以转换成所述具有第二偏振态的光线,使得所述具有第一偏振态的光线在两次穿过所述1/4波片1221C后被转换成所述具有第二偏振态的光 线,从而使得被反射回的图像光线中绝大部分能够透过所述偏振分光元件121C。特别地,透过所述偏振分光元件121C的所述具有第二偏振态的光线也能够透过所述偏光过滤元件123C以入射至用户眼中,并不会因设有所述偏光过滤元件123C而损耗所述具有第二偏振态的光线的能量,有助于保证所述消伪影式显示光机10C对图像光线具有较高的光能利用率。
在本发明的上述实施例中,如图27所示,所述消伪影显示光机10C的所述透镜组单元14C可以但不限于包括至少一片透镜141C,其中每片所述透镜141C的面型可以但不限于被实施为诸如标准球面、非球面、自由曲面或衍射面,用于对来自所述显示单元11C的图像光线进行调制整形。换言之,所述至少一片透镜141C的面型可以但不限于选自由标准球面、非球面、自由曲面和衍射面组成的组中的一种或多种。可以理解的是,本发明所提及的自由曲面可以但不限于被实施为XY多项式自由曲面、Zernike多项式自由曲面、或复曲面等等面型。
此外,在本发明的上述实施例中,所述显示单元11C可以但不限于被实施为LCD、OLED、DLP、LCOS型微型显示器件中的一种,用于提供所述图像光线。特别地,当所述显示单元11C被实施为LCOS型微型显示器件时,所述LCOS型微型显示器件能够出射具有第一偏振态的图像光线,以便与所述偏振分光元件121C相配合,使得经由所述显示单元11C发射的图像光线在所述偏振分光元件121C处不发生损耗,有助于进一步提升所述近眼显示光机10C对图像光线的光能利用率。
值得一提的是,在本发明的这个实施例中,如图28和图29所示,所述中继***12C的所述偏光过滤元件123C可以但不限于被实施为一线偏振片1231C,用于仅允许具有第二偏振态的光线透过,并吸收具有第一偏振态的光线。示例性地,如图27和图28所示,所述偏光过滤元件123C的所述线偏振片1231C被实施为P偏振片,用于仅允许P偏振光透过,并吸收S偏振光,以便与所述偏振分光元件121C的所述偏振分光膜1212C(如PBS膜,反射S偏振光,并透射P偏振光)相匹配。
进一步地,如图27和图28所示,所述中继***12C还可以包括一保护基板124C,其中所述保护基板124C位于所述偏光过滤元件123C的外侧,以使所述偏光过滤元件123C处于所述保护基板124C和所述偏振分光元件121C之间,以通过所述保护基板124C保护和支持所述偏光过滤元件123C。可以理解的是,所述保护基板124C可以但不限于由诸如玻璃、透明塑料等等透光材料制成,以允许光线透过所述保护基板124C。
优选地,如图27和图28所示,所述中继***12C还可以包括一增透膜125C,其中所述增透膜125C被设置于所述保护基板124C的外表面,用于减少所述干扰光线在所述保护基板124C的外表面的反射,有助于避免造成视觉干扰。可以理解的是,所述增透膜125C可以但不限于被镀于所述保护基板124C的外表面。例如,在本发明的其他示例中,所述增透膜125C也可以直接被贴附于所述保护基板124C的外表面。
值得一提的是,如图27所示,在本发明的上述实施例的所述消伪影式显示光机10C中,所述显示单元11C的显示光轴110C通常垂直于所述消伪影式显示光机10C的光学查看轴100C,也就是说,所述显示单元11C的所述显示光轴110C与所述消伪影式显示光机10C的所述光学查看轴100C之间的夹角θ为90°,即所述中继***12C的所述偏振分光元件121C与所述光学查看轴100C之间的夹角通常为45°。可以理解的是,所述显示单元11C的显示面的法线可以被定义为所述显示单元11C的所述显示光轴110C;所述消伪影式显示光机10C的所述光学查看轴100C可以被实施为由所述中继***12C的所述偏振分光元件121C和所述偏光转换元件122C,以及所述透视反射单元13C共同定义的主查看轴,使得用户沿着所述光学查看轴100C既能够看到经由所述显示单元11C显示的虚像,又能够看到外部环境的实像,以获得虚实融合的增强现实体验。可以理解的是,所述透视反射单元13C可以根据具体***设计做相应位置优化调整。
然而,由于所述偏振分光元件121C与所述光学查看轴100C之间的夹角等于45°,使得所述消伪影式显示光机10C的eye-relief(即眼点距,如镜片到额头的距离)较小,不利于近视或远视用户增加适配器,导致用户佩戴的体验感和舒适度较差。此外,这种配置也不利于通过整个***的设计调整以使所述消伪影式显示光机10C结构紧凑,无法满足当下小型化、轻薄化的发展趋势。
附图30示出了根据本发明的上述实施例的所述消伪影式显示光机10C的一个变形实施方式。与根据本发明的上述实施例相比,根据本发明的所述变形实施方式的所述消伪影式显示光机10C的不同之处 在于:所述显示单元11C的所述显示光轴110C与所述光学查看轴100C之间的夹角θ小于90°,即所述中继***12C的所述偏振分光元件121C与所述光学查看轴100C之间的夹角大于45°,从而增大所述消伪影式显示光机10C的眼点距,以便近视或远视用户增加适配器,提高用户佩戴的体验感和舒适度。
优选地,所述显示单元11C的所述显示光轴110C与所述光学查看轴100C之间的夹角θ在40°至80°之间,即40°≤θ≤80°。这样,所述消伪影式显示光机10C的这种配置将有利于通过整个***的设计调整以使所述消伪影式显示光机10C结构紧凑,以便满足当下小型化、轻薄化的发展趋势。
根据本发明的另一方面,如图31所示,本发明进一步提供了配置有消伪影式显示光机10C的近眼显示设备1C,以消除来自所述近眼显示设备1C下方的干扰光线产生的伪影,避免对用户产生视觉干扰,有助于提高用户的使用体验。示例性地,如图31所示,所述近眼显示设备1C可以包括至少一消伪影式显示光机10C和一设备主体20C,其中所述消伪影式显示光机10C被设置于所述设备主体20C,以使所述近眼显示设备1C具备消除伪影干扰的功能。换句话说,当用户佩戴所述近眼显示设备1C以进行增强现实体验时,来自所述近眼显示设备1C下方的干扰光线将不会被所述近眼显示设备1C的所述消伪影式显示光机10C反射至用户眼中,以防用户观看到位于所述近眼显示设备1C下方的图像,从而有效地消除视觉干扰。
值得注意的是,所述设备主体20C可以但不限于被实施为一眼镜主体,使得所述近眼显示设备1C被实施为具有消除伪影干扰功能的AR眼镜,有助于提升用户的使用体验。可以理解的是,在本发明的其他示例中,所述近眼显示设备1C也可以被实施为诸如AR头盔等等其他类型的AR设备。
根据本发明的另一方面,本发明进一步提供了一种显示光机的制造方法。具体地,如图32所示,所述消伪影式显示光机10C的制造方法,包括步骤:
S310C:分别设置一偏光转换元件122C和一偏光过滤元件123C于一偏振分光元件121C的反射侧和透射侧,以形成一中继***12C,其中所述偏振分光元件121C用于反射具有第一偏振态的光线,并透射具有第二偏振态的光线,其中所述偏光过滤元件123C用于吸收所述具有第一偏振态的光线,并透射所述具有第二偏振态的光线;
S320C:依次设置一显示单元11C和一透镜组单元14C于所述中继***12C的所述偏光转换元件122C的入射侧,以使所述透镜组单元14C位于所述显示单元11C和所述偏光转换元件122C之间;以及
S330C:设置一透视反射单元13C于所述中继***12C的所述偏光转换元件122C的所述反射侧,并使所述偏光转换元件122C位于所述偏振分光元件121C和所述透视反射单元13C之间,以形成所述消伪影式显示光机10C。
值得注意的是,在本发明的一示例中,所述偏振分光元件121C被实施为一偏振分光镜。
在本发明的一示例中,所述偏光转换元件122C被实施为一1/4波片1221C。
在本发明的一示例中,所述偏光过滤元件123C可以被实施为一线偏振片1231C。
进一步地,在本发明的上述实施例中,如图32所示,所述消伪影式显示光机10C的制造方法还可以包括步骤:
S340C:设置一保护基板124C于所述偏光过滤元件123C的外侧,以使所述偏光过滤元件123C位于所述保护基板124C和所述偏振分光元件121C之间;和
S350C:设置一增透膜125C于所述保护基板124C的外侧面,以使所述保护基板124C位于所述增透膜125C和所述偏光过滤元件123C之间。
根据本发明的另一方面,本发明进一步提供了一种用于消伪影式显示光机的消伪影方法。具体地,如图33所示,所述用于消伪影式显示光机的消伪影方法,包括步骤:
S410C:藉由一偏光过滤元件123C,吸收干扰光线中的具有第一偏振态的光线,并透射所述干扰光线中具有第二偏振态的光线;和
S420C:藉由处于所述偏光过滤元件123C的透射侧的一偏振分光元件121C,透射经由所述偏光过滤元件123C透射的所述干扰光线中的所述具有第二偏振态的光线,以消除因所述干扰光线被反射至用户眼中而产生的伪影。
值得注意的是,在本发明的一示例中,所述偏振分光元件121C被实施为一偏振分光镜。
根据本发明的另一方面,本发明进一步提供了一用于近眼显示设备的防下方干扰光线反射到用户眼 睛的方法。具体地,所述用于近眼显示设备的防下方干扰光线反射到用户眼睛的方法,包括步骤:
(a)吸收来自该近眼显示设备下方的干扰光线中的具有第一偏振态的光线;和
(b)两次透射来自该近眼显示设备下方的该干扰光线中的具有第二偏振态的光线,以防来自该近眼显示设备下方的该干扰光线被反射到该用户眼睛。
进一步地,在本发明的一示例中,所述用于近眼显示设备的防下方干扰光线反射到用户眼睛的方法的所述步骤(b),包括步骤:
(b.1)藉由该近眼显示设备的一偏光过滤元件,透射来自该近眼显示设备下方的该干扰光线中的具有第二偏振态的光线;和
(b.2)藉由该近眼显示设备的一偏振分光单元,透射经由该偏光过滤元件透射的该具有第二偏振态的光线。
在本发明的一示例中,所述用于近眼显示设备的防下方干扰光线反射到用户眼睛的方法,在所述步骤(a)之前,进一步包括步骤:
增强来自该近眼显示设备下方的干扰光线在该近眼显示设备中的透射,以减少该近眼显示设备对该干扰光线的反射,防止该干扰光线直接被反射至该用户眼睛。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (68)

  1. 一种显示光机,其特征在于,包括:
    一显示单元,用于发射具有预定光谱的图像光线;
    一中继组件,其中所述中继组件被设置于所述显示单元的发射路径上;以及
    一透视反射组件,其中所述透视反射组件被设置于所述中继组件的反射路径,并且所述透视反射组件的反射光谱与所述预定光谱保持基本一致,用于将经由所述中继组件反射的图像光线反射回所述中继组件,以减小所述图像光线透过所述透视反射组件而逸出。
  2. 如权利要求1所述的显示光机,其中,所述透视反射组件包括一反射膜系,其中所述反射膜系根据所述预定光谱通过膜系设计而制成,以使所述反射膜系具有所述反射光谱。
  3. 如权利要求2所述的显示光机,其中,所述透视反射组件还包括一曲面基层,其中所述反射膜系被设置于所述曲面基层的内表面。
  4. 如权利要求2所述的显示光机,其中,所述透视反射组件还包括一曲面基层,其中所述反射膜系被设置于所述曲面基层的外表面。
  5. 如权利要求4所述的显示光机,其中,所述透视反射组件还包括一保护膜,其中所述保护膜被设置于所述反射膜系的外侧。
  6. 如权利要求3至5中任一所述的显示光机,其中,所述曲面基层由透明材料或半透明材料制成。
  7. 如权利要求3至5中任一所述的显示光机,其中,所述曲面基层为一曲面透镜或一曲面反射镜。
  8. 如权利要求1至5中任一所述的显示光机,其中,所述透视反射组件针对波段为420~480nm、510~570nm、605~660nm的光的透射率为0~10%,以及其他波段的光的透射率为90~100%。
  9. 如权利要求2至5中任一所述的显示光机,其中,所述反射膜系的厚度为0.05~0.15mm。
  10. 如权利要求1至5中任一所述的显示光机,其中,所述中继组件为半反半透镜。
  11. 如权利要求1至5中任一所述的显示光机,其中,所述中继组件为偏振分束镜。
  12. 如权利要求11所述的显示光机,还包括一1/4波片,其中所述1/4波片被设置于所述偏振分束镜和所述透视反射组件之间。
  13. 如权利要求1至5中任一所述的显示光机,还包括一透镜组件,其中所述透镜组件被设置于所述显示单元和所述中继组件之间。
  14. 一种显示光机,其特征在于,包括:
    一显示单元,用于发射图像光线;
    一中继组件,其中所述中继组件被设置于所述显示单元的发射路径上;
    一透射膜系,其中所述透射膜系被设置于所述显示单元和所述中继组件之间,并且所述透射膜系具有一透射光谱,用于允许具有所述透射光谱的图像光线透过;以及
    一透视反射组件,其中所述透视反射组件被设置于所述中继组件的反射路径,并且所述透视反射组件的反射光谱与所述透射膜系的所述透射光谱保持相对,用于将经由所述中继组件反射的所述具有所述透射光谱的图像光线反射回所述中继组件,以减小所述图像光线透过所述透视反射组件而逸出。
  15. 一种近眼显示设备,其特征在于,包括:
    一设备主体;和
    至少一显示光机,其中所述显示光机被设置于所述设备主体,以使所述近眼显示设备具有保护隐私的功能,其中每所述显示光机包括:
    一显示单元,用于发射具有预定光谱的图像光线;
    一中继组件,其中所述中继组件被设置于所述显示单元的发射路径上;以及
    一透视反射组件,其中所述透视反射组件被设置于所述中继组件的反射路径,并且所述透视反射组件的反射光谱与所述预定光谱保持基本一致,用于将经由所述中继组件反射的图像光线反射回所述中继组件,以减小所述图像光线透过所述透视反射组件而逸出。
  16. 一种显示光机的显示方法,其特征在于,包括步骤:
    藉由一中继组件,反射通过一显示单元发射的具有预定光谱的图像光线至一透视反射组件,其中所述透视反射组件具有与所述预定光谱保持基本一致的反射光谱;和
    藉由所述透视反射组件,反射所述图像光线,以使所述图像光线透过所述中继组件能够被投射至人眼中而显示图像。
  17. 一种显示光机的制造方法,其特征在于,包括步骤:
    设置一中继组件于一显示单元的发射路径,其中所述显示单元用于发射具有预定光谱的图像光线;和
    设置一透视反射组件于所述中继组件的反射路径,其中所述中继组件用于将所述图像光线反射至所述透视反射组件,其中所述透视反射组件具有与所述预定光谱保持基本一致的反射光谱,用于反射所述图像光线。
  18. 如权利要求17所述的显示光机的制造方法,在所述设置一透视反射组件于所述中继组件的反射路径的步骤之前,还包括步骤:
    将一反射膜系设置一曲面基层,以制成所述透视反射组件,其中所述反射膜系根据所述预定光谱通过膜系设计而制成。
  19. 如权利要求18所述的显示光机的制造方法,其中,所述反射膜系被镀于所述曲面基层的表面。
  20. 一种近眼显示光机,其特征在于,包括:
    一图像源单元,用于沿着发射路径发射图像光线;
    一透镜组单元,其中所述透镜组单元被设置于所述图像源单元的所述发射路径,用于对经由所述图像源发射的该图像光线进行调制;
    一偏振分光单元,其中所述偏振分光单元被设置于所述图像源单元的所述发射路径,并且所述透镜组单元位于所述图像源单元和所述偏振分光单元之间,其中所述偏振分光单元与所述近眼显示光机的光学观看轴之间的夹角大于45°,用于反射经由所述透镜组单元调制的该图像光线中的第一偏振图像光线,并透射经由所述透镜组单元调制的该图像光线中的第二偏振图像光线;
    一透视反射单元,其中所述透视反射单元被设置于所述偏振分光单元的反射侧,并且所述透视反射单元对应于所述近眼显示光机的该光学观看轴,用于将经由所述偏振分光单元反射的该第一偏振图像光线中的一部分或全部反射回所述偏振分光单元,并允许环境光线的一部分透过;以及
    一偏振转换单元,其中所述偏振转换单元被设置于所述偏振分光单元和所述透视反射单元之间,用于使该第一偏振图像光线在两次穿过后转换成该第二偏振图像光线,进而透过所述偏振分光单元以入射至人眼中。
  21. 如权利要求20所述的近眼显示光机,其中,所述偏振分光单元与所述近眼显示光机的该光学观看轴之间的夹角在50°至70°之间。
  22. 如权利要求21所述的近眼显示光机,其中,所述偏振分光单元包括一透光基片和一偏振分光膜,其中所述偏振分光膜被设置于所述透光基片的第一光学面,并且所述偏振分光膜位于所述透光基片和所述图像源单元之间。
  23. 如权利要求22所述的近眼显示光机,其中,所述透光基片的所述第一光学面的面型为自由曲面。
  24. 如权利要求20至23中任一所述的近眼显示光机,其中,所述透视反射单元包括一曲面基片和一部分反射膜,其中所述部分反射膜被设置于所述曲面基片的第二光学面,并且所述部分反射膜位于所述曲面基片和所述偏振分光单元之间。
  25. 如权利要求24所述的近眼显示光机,其中,所述曲面基片的第二光学面的面型为自由曲面。
  26. 如权利要求20至23中任一所述的近眼显示光机,还包括一防干扰单元,其中所述防干扰单元位于所述偏振分光单元上远离所述图像源单元的一侧,用于防止来自下方的干扰光线产生视觉干扰。
  27. 如权利要求26所述的近眼显示光机,其中,所述防干扰单元包括一偏光过滤元件,其中所述偏光过滤元件被设置于所述偏振分光单元上远离所述图像源单元的一侧,用于吸收第一偏振光,并透射第二偏振光,其中该第一偏振光的偏振态和该第一偏振图像光线的偏振态保持一致,并且该第二偏振光 的偏振态和该第二偏振图像光线的偏振态保持一致。
  28. 如权利要求27所述的近眼显示光机,其中,所述偏光过滤元件为一线偏振片。
  29. 如权利要求28所述的近眼显示光机,其中,所述防干扰单元还包括一保护基板和一增透膜,其中所述保护基板位于所述偏光过滤元件的外侧,以使所述偏光过滤元件处于所述保护基板和所述偏振分光单元之间,其中所述增透膜被设置于所述保护基板的外表面。
  30. 如权利要求20至23中任一所述的近眼显示光机,其中,所述偏振转换单元为一1/4波片。
  31. 如权利要求20至23中任一所述的近眼显示光机,其中,所述透镜组单元包括至少一片透镜,其中每片所述透镜的面型为标准球面、非球面、自由曲面和衍射面中的一种。
  32. 如权利要求20至23中任一所述的近眼显示光机,其中,所述图像源单元为LCD型、OLED型、DLP型和LCOS型微型显示器件中的一种。
  33. 一近眼显示设备,其特征在于,包括:
    一设备主体;以及
    至少一近眼显示光机,其中所述近眼显示光机被设置于所述设备主体,以组装成结构紧凑的近眼显示设备,其中所述近眼显示光机包括:
    一图像源单元,用于沿着发射路径发射图像光线;
    一透镜组单元,其中所述透镜组单元被设置于所述图像源单元的所述发射路径,用于对经由所述图像源发射的该图像光线进行调制;
    一偏振分光单元,其中所述偏振分光单元被设置于所述图像源单元的所述发射路径,并且所述透镜组单元位于所述图像源单元和所述偏振分光单元之间,其中所述偏振分光单元与所述近眼显示光机的光学观看轴之间的夹角大于45°,用于反射经由所述透镜组单元调制的该图像光线中的第一偏振图像光线,并透射经由所述透镜组单元调制的该图像光线中的第二偏振图像光线;
    一透视反射单元,其中所述透视反射单元被设置于所述偏振分光单元的反射侧,并且所述透视反射单元对应于所述近眼显示光机的该光学观看轴,用于将经由所述偏振分光单元反射的该第一偏振图像光线中的一部分或全部反射回所述偏振分光单元,并允许环境光线的一部分透过;以及
    一偏振转换单元,其中所述偏振转换单元被设置于所述偏振分光单元和所述透视反射单元之间,用于使该第一偏振图像光线在两次穿过后转换成该第二偏振图像光线,进而透过所述偏振分光单元以入射至人眼中。
  34. 一种近眼显示光机的制造方法,其特征在于,包括步骤:
    设置一透镜组单元于一图像源单元和一偏振分光单元之间,并且所述透镜组单元和所述偏振分光单元均位于所述图像源单元的发射路径,其中所述透镜组单元用于对经由所述图像源发射的该图像光线进行调制,其中所述偏振分光单元用于反射被调制后的该图像光线中的第一偏振图像光线,并透射被调制后的该图像光线中的第二偏振图像光线;
    设置一透视反射单元于所述偏振分光单元的反射侧,以通过所述透视反射单元和所述偏振分光单元定义一光学观看轴,其中所述偏振分光单元与所述光学观看轴之间的夹角大于45°,其中所述透视反射单元用于将经由所述偏振分光单元反射的该第一偏振图像光线中的一部分或全部反射回所述偏振分光单元,并允许环境光线中的一部分透过;以及
    设置一偏振转换单元于所述偏振分光单元和所述透视反射单元之间,用于使该第一偏振图像光线在两次穿过所述偏振转换单元后转换成该第二偏振图像光线,进而沿着该光学观看轴入射至人眼中。
  35. 如权利要求34所述的近眼显示光机的制造方法,还包括步骤:
    设置一防干扰单元于所述偏振分光单元上远离所述图像源单元的一侧,其中所述防干扰单元包括一偏光过滤元件,用于吸收第一偏振光,并透射第二偏振光,其中该第一偏振光的偏振态与该第一偏振图像光线的偏振态保持一致;并且该第二偏振光的偏振态与该第二偏振图像光线的偏振态保持一致。
  36. 一种显示光机,其特征在于,包括:
    一显示单元,用于发射图像光线;
    一中继***,其中所述中继***被设置于所述显示单元的发射路径,并且所述中继***包括:
    一反透元件,用于反射光线的一部分,并透射光线的另一部分;
    一偏光转换元件,用于将第一偏振光转换成第一圆偏光,以在被所述反透元件反射之后形成第二圆偏光,还用于将该第二圆偏光转换成第二偏振光;以及
    一偏光过滤元件,用于吸收该第二偏振光,并透射该第一偏振光;其中所述反透元件、所述偏光转换元件以及所述偏光过滤元件沿着所述显示单元的发射路径依次布置,使得干扰光线依次通过所述偏光过滤元件、所述偏光转换元件以及所述反透元件;以及
    一透视反射单元,其中所述透射反射单元被设置于所述中继***的所述反透元件的反射路径,用于将经由所述反透元件反射的该图像光线反射回所述中继***。
  37. 如权利要求36所述的显示光机,其中,所述偏光转换元件为一1/4波片;其中所述偏光过滤元件为一线偏振片。
  38. 如权利要求37所述的显示光机,其中,所述1/4波片的快轴与所述线偏振片的透过轴之间的预定夹角为45°。
  39. 如权利要求38所述的显示光机,其中,所述反透元件为一半反半透镜。
  40. 如权利要求39所述的显示光机,其中,所述中继***还包括一保护基板,其中所述保护基板位于所述偏光过滤元件的外侧,以使所述偏光转换元件和所述偏光过滤元件位于所述保护基板和所述反透元件之间。
  41. 如权利要求40所述的显示光机,其中,所述中继***还包括一增透膜,其中所述增透膜被设置于所述保护基板的外表面,用于减少干扰光线在所述保护基板的所述外表面的反射所引起的视觉干扰。
  42. 如权利要求41所述的显示光机,还包括一透镜单元,其中所述透镜单元被设置于所述显示单元和所述中继***之间,用于对来自所述显示单元的图像光线进行调制。
  43. 如权利要求36至42中任一所述的显示光机,其中,所述透视反射单元为一曲面反射镜,用于在将来自所述中继***的图像光线反射回所述中继***的同时,还对该图像光线进行整形。
  44. 如权利要求36至42中任一所述的显示光机,其中,所述透视反射单元的反射光谱与经由所述显示单元发射的图像光线的预定光谱保持基本一致,用于将经由所述中继***反射的该图像光线反射回所述中继***,以减小该图像光线透过所述透视反射单元的逸出量。
  45. 如权利要求44所述的显示光机,其中,所述透视反射单元包括一反射膜系和一曲面基层,其中所述反射膜系被设置于所述曲面基层的表面,并且所述反射膜系根据所述预定光谱通过膜系设计而制成,以使所述透视反射单元具有所述反射光谱。
  46. 一种近眼显示设备,其特征在于,包括:
    一设备主体;和
    至少一显示光机,其中所述显示光机被设置于所述设备主体,以使所述近眼显示设备具有消除视觉干扰的功能,其中所述显示光机包括:
    一显示单元,用于发射图像光线;
    一中继***,其中所述中继***被设置于所述显示单元的发射路径,并且所述中继***包括:
    一反透元件,用于反射光线的一部分,并透射光线的另一部分;
    一偏光转换元件,用于将第一偏振光转换成第一圆偏光,以在被所述反透元件反射之后形成第二圆偏光,还用于将该第二圆偏光转换成第二偏振光;以及
    一偏光过滤元件,用于吸收该第二偏振光,并透射该第一偏振光;其中所述反透元件、所述偏光转换元件以及所述偏光过滤元件沿着所述显示单元的发射路径依次布置,使得干扰光线依次通过所述偏光过滤元件、所述偏光转换元件以及所述反透元件;以及
    一透视反射单元,其中所述透射反射单元被设置于所述中继***的所述反透元件的反射路径,用于将经由所述反透元件反射的该图像光线反射回所述中继***。
  47. 一种显示光机的制造方法,其特征在于,包括步骤:
    设置一中继***于一显示单元的发射路径,其中所述中继***包括沿着所述显示单元的所述发射路 径依次布置的一反透元件、一偏光转换元件以及一偏光过滤元件,其中所述反透元件用于反射经由所述显示单元发射的图像光线,并用于反射来自所述偏光过滤元件的第一偏振光;其中所述偏光转换元件用于将二次穿过的该第一偏振光转换成第二偏振光;所述偏光过滤元件用于吸收该第二偏振光,并透射该第一偏振光;和
    设置一透视反射单元于所述中继***的反射路径,其中所述透视反射单元用于将经由所述反透元件反射的该图像光线反射回所述中继***。
  48. 一种用于显示光机的视觉干扰消除方法,其特征在于,包括步骤:
    藉由一偏光过滤元件,吸收干扰光线中第二偏振光,并透射该干扰光线中第一偏振光;
    藉由一偏光转换元件,将来自所述偏光过滤元件的该第一偏振光转换成第一圆偏光;
    藉由一反透元件,反射经由所述偏光转换元件转换的该第一圆偏光,以形成被反射回所述偏光转换元件的第二圆偏光;
    藉由所述偏光转换元件,将经由所述反透元件反射回的该第二圆偏光转换成该第二偏振光;以及
    藉由所述偏光过滤元件,吸收经由所述偏光转换元件转换成的该第二偏振光,以消除该干扰光线引起的视觉干扰。
  49. 如权利要求48所述的视觉干扰消除方法,其中,所述偏光转换元件为一1/4波片;其中所述偏光过滤元件为一线偏振片。
  50. 一用于近眼显示设备的防下方干扰光线反射到用户眼睛的方法,其特征在于,包括步骤:
    (A)吸收来自该近眼显示设备下方的干扰光线中的第二偏振光,并透射来自该近眼显示设备下方的该干扰光线中的第一偏振光;
    (B)将来自该近眼显示设备下方的干扰光线中的该第一偏振光转换成朝向该用户眼睛传播的该第二偏振光;以及
    (C)吸收朝向该用户眼睛传播的该第二偏振光,以防来自该近眼显示设备下方的该干扰光线被反射到该用户眼睛。
  51. 如权利要求50所述的用于近眼显示设备的防下方干扰光线反射到用户眼睛的方法,其中,所述步骤(B)包括步骤:
    (B.1)将来自该近眼显示设备下方的干扰光线中的该第一偏振光转换成第一圆偏光;
    (B.2)反射该第一圆偏光,以形成朝向该用户眼睛传播的第二圆偏光;
    (B.3)将朝向该用户眼睛传播的该第二圆偏光转换成朝向该用户眼睛传播的该第二偏振光。
  52. 如权利要求50或51所述的用于近眼显示设备的防下方干扰光线反射到用户眼睛的方法,在所述步骤(A)之前,进一步包括步骤:
    增强来自该近眼显示设备下方的干扰光线在该近眼显示设备中的透射,以减少该近眼显示设备对该干扰光线的反射,防止该干扰光线直接被反射至该用户眼睛。
  53. 一种消伪影式显示光机,其特征在于,包括:
    一显示单元,用于发射图像光线;
    一透镜组单元,用于对经由所述显示单元发射的该图像光线进行调制;
    一透视反射单元;以及
    一中继***,其中所述中继***包括:
    一偏振分光元件,其中所述偏振分光元件的入射侧对应于所述透镜组单元,并且所述偏振分光元件的反射侧对应于所述透视反射单元,其中所述偏振分光元件用于反射被调制后的该图像光线中具有第一偏振态的光线,并透射被调制后的该图像光线中具有第二偏振态的光线;
    一偏光转换元件,其中所述偏光转换元件被设置于所述偏振分光元件和所述透视反射单元之间,其中所述透视反射单元用于将经由所述偏振分光元件反射的该具有第一偏振态的光线反射回所述偏振分光元件,以两次穿过所述偏光转换元件,其中所述偏光转换元件用于将两次穿过的该具有第一偏振态的光线转换成该具有第二偏振态的光线;以及
    一偏光过滤元件,其中所述偏光过滤元件被设置于所述偏振分光元件的透射侧,用于吸收该具有第 一偏振态的光线,并透射该具有第二偏振态的光线,使得干扰光线中的具有第一偏振态的光线能够被所述偏光过滤元件吸收,而该干扰光线中的具有第二偏振态的光线能够依次透过该偏光过滤元件和该偏振分光元件。
  54. 如权利要求53所述的消伪影式显示光机,其中,所述偏光过滤元件为一线偏振片。
  55. 如权利要求54所述的消伪影式显示光机,其中,所述偏振分光元件包括一透光基片和一偏振分光膜,其中所述偏振分光膜被设置于所述透光基片的上表面,并且所述偏振分光膜位于所述透光基片和所述透镜组单元之间。
  56. 如权利要求55所述的消伪影式显示光机,其中,所述偏光转换元件为一1/4波片。
  57. 如权利要求56所述的消伪影式显示光机,其中,所述透视反射单元包括一曲面基片和一部分反射膜,其中所述部分反射膜被设置于所述曲面基片的内表面,并且所述部分反射膜位于所述曲面基片和所述偏光转换元件之间。
  58. 如权利要求53至57中任一所述的消伪影式显示光机,其中,所述中继***还包括一保护基板,其中所述保护基板位于所述偏光过滤元件的外侧,以使所述偏光过滤元件处于所述保护基板和所述偏振分光元件之间。
  59. 如权利要求58所述的消伪影式显示光机,其中,所述中继***还包括一增透膜,其中所述增透膜被设置于所述保护基板的外表面。
  60. 如权利要求53至57中任一所述的消伪影式显示光机,其中,所述透镜组单元包括至少一片透镜,其中每片所述透镜的面型为标准球面、非球面、自由曲面和衍射面中的一种。
  61. 如权利要求53至57中任一所述的消伪影式显示光机,其中,所述显示单元为LCD型、OLED型、DLP型和LCOS型微型显示器件中的一种。
  62. 一种近眼显示设备,其特征在于,包括:
    一设备主体;以及
    至少一消伪影式显示光机,其中所述消伪影式显示光机被设置于所述设备主体,以组装成具有消伪影功能的近眼显示设备;其中所述消伪影式显示光机包括:
    一显示单元,用于发射图像光线;
    一透镜组单元,用于对经由所述显示单元发射的该图像光线进行调制;
    一透视反射单元;以及
    一中继***,其中所述中继***包括:
    一偏振分光元件,其中所述偏振分光元件的入射侧对应于所述透镜组单元,并且所述偏振分光元件的反射侧对应于所述透视反射单元,其中所述偏振分光元件用于反射被调制后的该图像光线中具有第一偏振态的光线,并透射被调制后的该图像光线中具有第二偏振态的光线;
    一偏光转换元件,其中所述偏光转换元件被设置于所述偏振分光元件和所述透视反射单元之间,其中所述透视反射单元用于将经由所述偏振分光元件反射的该具有第一偏振态的光线反射回所述偏振分光元件,以两次穿过所述偏光转换元件,其中所述偏光转换元件用于将两次穿过的该具有第一偏振态的光线转换成该具有第二偏振态的光线;以及
    一偏光过滤元件,其中所述偏光过滤元件被设置于所述偏振分光元件的透射侧,用于吸收该具有第一偏振态的光线,并透射该具有第二偏振态的光线,使得干扰光线中的具有第一偏振态的光线能够被所述偏光过滤元件吸收,而该干扰光线中的具有第二偏振态的光线能够依次透过该偏光过滤元件和该偏振分光元件。
  63. 一种消伪影式显示光机的制造方法,其特征在于,包括步骤:
    分别设置一偏光转换元件和一偏光过滤元件于一偏振分光元件的反射侧和透射侧,以形成一中继***,其中所述偏振分光元件用于反射具有第一偏振态的光线,并透射具有第二偏振态的光线,其中所述偏光过滤元件用于吸收该具有第一偏振态的光线,并透射该具有第二偏振态的光线;
    依次设置一显示单元和一透镜组单元于所述中继***的所述偏光转换元件的入射侧,以使所述透镜组单元位于所述显示单元和所述偏光转换元件之间;以及
    设置一透视反射单元于所述中继***的所述偏光转换元件的所述反射侧,并使所述偏光转换元件位于所述偏振分光元件和所述透视反射单元之间,以形成所述消伪影式显示光机。
  64. 如权利要求63所述的消伪影式显示光机的制造方法,还包括步骤:
    设置一保护基板于所述偏振过滤元件的外侧,以使所述偏光过滤元件位于所述保护基板和所述偏振分光元件之间;和
    设置一增透膜于所述保护基板的外侧面,以使所述保护基板位于所述增透膜和所述偏光过滤元件之间。
  65. 一种用于消伪影式显示光机的消伪影方法,其特征在于,包括步骤:
    藉由所述消伪影式显示光机的一偏光过滤元件,吸收干扰光线中的具有第一偏振态的光线,并透射该干扰光线中具有第二偏振态的光线;和
    藉由处于所述偏振过滤元件的透射侧的一偏振分光元件,透射经由所述偏光过滤元件透射的所述干扰光线中的所述具有第二偏振态的光线,以消除因该干扰光线被反射至用户眼中而产生的伪影。
  66. 一用于近眼显示设备的防下方干扰光线反射到用户眼睛的方法,其特征在于,包括步骤:
    (a)吸收来自该近眼显示设备下方的干扰光线中的具有第一偏振态的光线;和
    (b)两次透射来自该近眼显示设备下方的该干扰光线中的具有第二偏振态的光线,以防来自该近眼显示设备下方的该干扰光线被反射到该用户眼睛。
  67. 如权利要求66所述的用于近眼显示设备的防下方干扰光线反射到用户眼睛的方法,其中,所述步骤(b)包括步骤:
    (b.1)藉由该近眼显示设备的一偏光过滤元件,透射来自该近眼显示设备下方的该干扰光线中的具有第二偏振态的光线;和
    (b.2)藉由该近眼显示设备的一偏振分光单元,透射经由该偏光过滤元件透射的该具有第二偏振态的光线。
  68. 如权利要求66或67所述的用于近眼显示设备的防下方干扰光线反射到用户眼睛的方法,在所述步骤(a)之前,进一步包括步骤:
    增强来自该近眼显示设备下方的干扰光线在该近眼显示设备中的透射,以减少该近眼显示设备对该干扰光线的反射,防止该干扰光线直接被反射至该用户眼睛。
PCT/CN2019/114928 2018-12-13 2019-11-01 显示光机及其方法和近眼显示设备 WO2020119320A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201811523682.9A CN111323905A (zh) 2018-12-13 2018-12-13 一种显示光机及其方法和近眼显示设备
CN201811523682.9 2018-12-13
CN201910132683.9A CN111610630A (zh) 2019-02-22 2019-02-22 一种显示光机及其方法和近眼显示设备
CN201910132683.9 2019-02-22
CN201910489195.3 2019-06-06
CN201910489112.0 2019-06-06
CN201910489112.0A CN112051671B (zh) 2019-06-06 2019-06-06 一种近眼显示光机及其方法和近眼显示设备
CN201910489195.3A CN112051672A (zh) 2019-06-06 2019-06-06 一种消伪影式显示光机及其方法和近眼显示设备

Publications (1)

Publication Number Publication Date
WO2020119320A1 true WO2020119320A1 (zh) 2020-06-18

Family

ID=71077074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114928 WO2020119320A1 (zh) 2018-12-13 2019-11-01 显示光机及其方法和近眼显示设备

Country Status (1)

Country Link
WO (1) WO2020119320A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106133583A (zh) * 2014-03-26 2016-11-16 依视路国际集团(光学总公司) 用于增强现实的方法和***
CN108181709A (zh) * 2018-02-12 2018-06-19 杭州太若科技有限公司 Ar显示装置和穿戴式ar设备
CN108319019A (zh) * 2018-02-12 2018-07-24 杭州太若科技有限公司 Ar显示装置和穿戴式ar设备
CN108319018A (zh) * 2018-02-12 2018-07-24 杭州太若科技有限公司 一种增强现实装置、设备及实现增强现实的方法
CN108681068A (zh) * 2018-02-12 2018-10-19 杭州太若科技有限公司 Ar显示装置和穿戴式ar设备
CN108897136A (zh) * 2018-09-10 2018-11-27 太若科技(北京)有限公司 Ar光学装置和穿戴式ar设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106133583A (zh) * 2014-03-26 2016-11-16 依视路国际集团(光学总公司) 用于增强现实的方法和***
CN108181709A (zh) * 2018-02-12 2018-06-19 杭州太若科技有限公司 Ar显示装置和穿戴式ar设备
CN108319019A (zh) * 2018-02-12 2018-07-24 杭州太若科技有限公司 Ar显示装置和穿戴式ar设备
CN108319018A (zh) * 2018-02-12 2018-07-24 杭州太若科技有限公司 一种增强现实装置、设备及实现增强现实的方法
CN108681068A (zh) * 2018-02-12 2018-10-19 杭州太若科技有限公司 Ar显示装置和穿戴式ar设备
CN108897136A (zh) * 2018-09-10 2018-11-27 太若科技(北京)有限公司 Ar光学装置和穿戴式ar设备

Similar Documents

Publication Publication Date Title
CN210072209U (zh) 一种近眼显示光机和近眼显示设备
JP7418706B2 (ja) 拡張現実装置及びそのための光学システム
US6563648B2 (en) Compact wide field of view imaging system
US9091851B2 (en) Light control in head mounted displays
CN209842241U (zh) 一种消伪影式显示光机和近眼显示设备
US20070070859A1 (en) Optical elements and combiner optical systems and image-display units comprising same
JP2019512754A (ja) 表示結像システム及び方法、当該システム付き交通ツール
CN209400804U (zh) 增强现实光学模组及头戴式显示装置
WO2021017885A1 (zh) 镜片和头戴式显示装置
CN214751111U (zh) 超短距目镜***
CN210776039U (zh) 微型化短距离光学***
CN111399224A (zh) 显示光学***及头戴显示设备
CN111338086A (zh) 显示光学***及头戴显示设备
CN213069318U (zh) 折反式显示光机和近眼显示设备
WO2022199194A1 (zh) 光学***和穿戴式增强现实显示设备
CN112051671B (zh) 一种近眼显示光机及其方法和近眼显示设备
CN106526848A (zh) 近眼式显示设备及其显示装置和影像显示方法
CN115657305A (zh) Ar显示装置和穿戴式ar设备
CN117215072A (zh) 光学***及成像设备
WO2020119320A1 (zh) 显示光机及其方法和近眼显示设备
CN116449566A (zh) 近眼显示模组以及头戴显示设备
CN115657310A (zh) 近眼显示模组以及头戴显示设备
CN115291390A (zh) 光学模组以及头戴显示设备
CN115268069A (zh) 光学模组以及头戴显示设备
CN111323905A (zh) 一种显示光机及其方法和近眼显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897321

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19897321

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19897321

Country of ref document: EP

Kind code of ref document: A1