WO2021017885A1 - 镜片和头戴式显示装置 - Google Patents

镜片和头戴式显示装置 Download PDF

Info

Publication number
WO2021017885A1
WO2021017885A1 PCT/CN2020/102526 CN2020102526W WO2021017885A1 WO 2021017885 A1 WO2021017885 A1 WO 2021017885A1 CN 2020102526 W CN2020102526 W CN 2020102526W WO 2021017885 A1 WO2021017885 A1 WO 2021017885A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
semi
film
head
Prior art date
Application number
PCT/CN2020/102526
Other languages
English (en)
French (fr)
Inventor
毛春静
罗诚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20848240.6A priority Critical patent/EP3985427A4/en
Priority to US17/629,705 priority patent/US20220283437A1/en
Publication of WO2021017885A1 publication Critical patent/WO2021017885A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • G02B27/126The splitting element being a prism or prismatic array, including systems based on total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/086Auxiliary lenses located directly on a main spectacle lens or in the immediate vicinity of main spectacles
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/105Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses having inhomogeneously distributed colouring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • This application relates to the field of display technology, in particular to a lens and a head-mounted display device.
  • Augmented reality is a kind of application of virtual information to the real world, so that real environments and virtual objects appear in the same picture or the same space.
  • ar Augmented reality
  • Traditional head-mounted display devices include lenses.
  • the lens is a key component used to transmit display light and ambient light to the human eye.
  • the picture displayed by the traditional head-mounted display device is of poor quality, which affects the recognition comfort of the human eye.
  • the embodiment of the application provides a lens and a head-mounted display device.
  • the quality of the picture presented by the head-mounted display device needs to be improved.
  • the head-mounted display device includes a frame, a lens, and a display module.
  • the lens and the display module are both arranged on the frame.
  • the lens includes a first part and a second part.
  • the first part is arranged adjacent to the second part. It can be understood that the arrangement of the first part and the second part adjacent to each other means that the second part is located at the periphery of the first part.
  • the first part is used to transmit ambient light.
  • the second part is used to transmit the ambient light.
  • the first part is also used to transmit the display light emitted by the display module.
  • the ratio of the light transmittance of the second part to the light transmittance of the first part is within a threshold range.
  • the threshold range is between 0.5 and 1.5.
  • the ratio of the light transmittance of the second part to the light transmittance of the first part is between 0.5 and 1.5
  • the light transmittance of the second part is equal to that of the first part.
  • the light transmittance is relatively close.
  • the light transmittance of the second part is closer to the light transmittance of the first part, the brightness of the real world seen by the user from the second part is the same as the brightness of the real world seen from the first part. Same or similar. Therefore, when the user's eyes rotate and the user's eyes change from looking at the first part directly to looking at the second part obliquely, the user will not feel uncomfortable due to the large difference in the brightness of the received ambient light.
  • the user experience of the head-mounted display device of this embodiment is better.
  • the first part includes a free-form surface prism, a semi-reflective semi-transparent film and a compensation mirror stacked in sequence.
  • the semi-reflective and semi-transparent film is arranged between the free-form surface prism and the compensation mirror.
  • the free-form surface prism includes a first light-incident surface, a first light-emitting surface, and a second light-incident surface.
  • the first light incident surface is arranged adjacent to the semi-reflective and semi-transparent film.
  • the first part is used to transmit ambient light, including: the compensation mirror is used to receive the ambient light, the ambient light passes through the semi-reflective semi-transparent film, and the first light incident from the free-form surface prism Surface incident, through the first light-emitting surface.
  • the first part is also used to transmit the display light emitted by the display module, and includes: the second light-incident surface of the free-form surface prism is used to receive the display light emitted by the display module, and the half mirror
  • the transparent film is used for reflecting the display light received by the second light-incident surface to the first light-emitting surface.
  • the free-form surface prism, the semi-reflective film, and the compensation mirror are stacked in sequence by setting the first part to use the free-form surface prism, the semi-reflective half
  • the transparent film and the compensation mirror transmit the display light and the ambient light emitted by the display module to the user's eyes, thereby realizing that the image combined with the virtual image in the real world can be viewed through the head-mounted display device, thereby Improve the user experience of the head-mounted display device.
  • the second part includes a lens and an anti-reflection film.
  • the anti-reflection film is used to reduce the transmittance of ambient light, thereby reducing the transmittance of the second part.
  • the lens includes a first light entrance surface and a second light exit surface arranged opposite to each other.
  • the anti-reflection film is located between the first light entrance surface and the second light exit surface. Ambient light passes through the first light entrance surface and the anti-reflection film in sequence, and then exits through the second light exit surface.
  • the light transmittance of the second part is reduced, and the light transmittance of the second part is reduced.
  • the light rate is similar to the light transmittance of the first part.
  • the edge of the anti-reflection membrane is connected to the edge of the semi-reflective membrane.
  • the first side surface of the first part is adjacent to the second side surface of the second part.
  • the shape of the semi-reflective semi-permeable membrane on the first side surface is the first shape.
  • the shape of the anti-reflection membrane on the second side surface is a second shape.
  • the first shape matches the second shape. It is understandable that when the first shape matches the second shape, the semi-reflective semi-permeable membrane and the anti-reflection membrane are connected to each other, and face to face.
  • the ambient light entering the second part through the first light entrance surface or the ambient light entering the first part through the compensation mirror can only pass through the anti-reflection film or the semi-reflective and semi-transparent one time
  • the film, that is, the ambient light will not pass through the anti-reflection film and the semi-reflective semi-transparent film at the same time, thereby ensuring that the brightness of the entire lens area is more consistent, that is, the light transmission uniformity of the entire lens is better , Thereby ensuring that the user will not feel uncomfortable due to the large difference in the brightness of the received ambient light.
  • the lens includes a first light-transmitting portion and a second light-transmitting portion that are arranged oppositely.
  • the surface of the first light-transmitting portion away from the second light-transmitting portion is a first light-inlet surface.
  • the surface of the second light transmitting portion away from the first light transmitting portion is a second light emitting surface.
  • the anti-reflection film is fixed between the first light-transmitting portion and the second light-transmitting portion.
  • the lens by arranging the lens as the first light-transmitting part and the second light-transmitting part, it is convenient to arrange the anti-reflection film in the lens, that is, to simplify the reduction Installation process of transmembrane.
  • the anti-reflection film is formed on the surface of the first light-transmitting part facing the second light-transmitting part or the second light-transmitting part facing the first light-transmitting part by a magnetron sputtering or evaporation process.
  • the plating layer formed on the surface of the light-transmitting part.
  • the formation process of the anti-reflection film is simple and easy to operate.
  • the anti-reflection film includes one or more of a semi-reflective semi-permeable film, an absorbing film or a polarizing film.
  • the cost of the transflective film, the absorption film or the polarizing film is lower, the cost of the formed lens is also lower, that is, the cost of the head-mounted display device is also lower.
  • the compensation mirror has a third light incident surface.
  • the third light incident surface is arranged away from the free-form surface prism, and the third light incident surface is smoothly connected with the first light incident surface.
  • connection of the first light entrance surface and the third light entrance surface of the compensating mirror does not have any more abrupt protrusions or depressions, so the first light entrance surface of the lens It is smoother with the third light incident surface, that is, the appearance of the lens is more beautiful.
  • the connection between the first light entrance surface and the third light entrance surface does not have any more abrupt protrusions or depressions, the first light entrance surface and the third light entrance surface
  • the propagation direction of the ambient light entering the lens at the junction of the surface and the propagation direction of the ambient light passing through the first light entrance surface and the third light entrance surface will not change abruptly.
  • the second part includes a base material and a masterbatch mixed inside the base material.
  • the color masterbatch is provided in the base material of the second part to reduce the light transmittance of the second part through the color masterbatch. At this time, when the user's eyes turn and turn from looking at the first part to looking at the second part, the user will not feel uncomfortable due to the large difference in the brightness of the received ambient light, so the head of this embodiment
  • the wearable display device has better user experience.
  • the preparation method of the second part is simple and easy to operate.
  • the light transmittance of each area of the second part is relatively uniform.
  • the second part includes a first body part and a second body part.
  • the first body portion and the second body portion are respectively located on both sides of the first part.
  • the second part is arranged as the first body part and the second body part to facilitate the assembly of the first part on the second part.
  • the second part further includes a third main body part, the third main body part is disposed between the first main body part and the second main body part, and the third main body part is connected to the The first light-emitting surfaces of the first part are adjacently arranged.
  • the integrity of the lens is stronger, and the structural strength is also better.
  • the free-form surface prism is surrounded by the second part, thereby avoiding damage to the free-form surface prism.
  • the method of mounting the first part on the second part is relatively simple.
  • the second part is a ring structure.
  • the second part has an accommodation space.
  • the first part is arranged in the containing space.
  • the second part by setting the second part into a ring structure, on the one hand, it is convenient to assemble the first part and the second part, and on the other hand, the first part and the second part are The connection area is larger, so that the first part and the second part are connected more firmly, that is, the first part is not easy to fall off from the second part.
  • the first part or the field of view (field of view, fov) the smaller first part by assembling the first part on the second part of the ring structure, so that the area of the first part in all directions can be significantly increased, and then Significantly increase the area of the lens. At this time, the user's viewing field is wider and the viewing comfort is better.
  • a small optical index for example, the exit pupil area (also called eyebox)
  • an embodiment of the present application provides a lens set on a head-mounted display device.
  • the lens includes a first part and a second part.
  • the first part is arranged adjacent to the second part.
  • the ratio of the light transmittance of the second part to the light transmittance of the first part is within a threshold range.
  • the threshold range is between 0.5 and 1.5.
  • the first part includes a free-form surface prism, a semi-reflective film, and a compensation mirror stacked in sequence.
  • the semi-reflective and semi-transparent film is arranged between the free-form surface prism and the compensation mirror.
  • the free-form surface prism includes a first light-incident surface, a first light-emitting surface, and a second light-incident surface.
  • the first light incident surface is arranged adjacent to the semi-reflective and semi-transparent film.
  • the compensation mirror is used to receive the ambient light, the ambient light passes through the semi-reflective film, is incident from the first light-incident surface of the free-form surface prism, and passes through the first light-emitting surface.
  • the second light-incident surface of the free-form surface prism is used to receive the display light emitted by the display module, and the semi-reflective film is used to reflect the display light received by the second light-incident surface to the The first light-emitting surface.
  • the second part is used to transmit the ambient light.
  • the light transmittance of the second part is closer to the light transmittance of the first part, the brightness of the real world seen by the user from the second part is different from that of the first part.
  • the brightness of the real world is the same or similar. Therefore, when the user's eyes rotate and the user's eyes change from looking at the first part directly to looking at the second part obliquely, the user will not feel uncomfortable due to the large difference in the brightness of the received ambient light.
  • the user experience of the lens of this embodiment is better.
  • the second part includes a lens and an anti-reflection film.
  • the anti-reflection film is used to reduce the transmittance of ambient light, thereby reducing the transmittance of the second part.
  • the lens includes a first light entrance surface and a second light exit surface arranged opposite to each other.
  • the anti-reflection film is located between the first light entrance surface and the second light exit surface. Ambient light passes through the first light entrance surface and the anti-reflection film in sequence, and then exits through the second light exit surface.
  • the anti-reflection film between the first light entrance surface and the second light exit surface, the light transmittance of the second part is reduced, and the light transmittance of the second part is reduced.
  • the light rate is similar to the light transmittance of the first part.
  • the first side surface of the first part is adjacent to the second side surface of the second part; the shape of the semi-reflective membrane on the first side is the first shape; the shape of the anti-reflection membrane on the second side is the first shape Two shapes; the first shape matches the second shape. It is understandable that when the first shape matches the second shape, the semi-reflective semi-permeable membrane and the anti-reflection membrane are connected to each other, and face to face.
  • the ambient light entering the second part through the first light entrance surface or the ambient light entering the first part through the compensation mirror can only pass through the anti-reflection film or the semi-reflective and semi-transparent one time
  • the film, that is, the ambient light will not pass through the anti-reflection film and the semi-reflective semi-transparent film at the same time, thereby ensuring that the brightness of the entire lens area is more consistent, that is, the light transmission uniformity of the entire lens is better , Thereby ensuring that the user will not feel uncomfortable due to the large difference in the brightness of the received ambient light.
  • the anti-reflection film is a plating layer formed between the first light-intake surface and the second light-exit surface by a magnetron sputtering or evaporation process.
  • the formation process of the anti-reflection film is simple and easy to operate.
  • the anti-reflection film includes one or more of a semi-reflective semi-permeable film, an absorbing film or a polarizing film.
  • the cost of the transflective film, the absorption film or the polarizing film is lower, the cost of the formed lens is also lower, that is, the cost of the head-mounted display device is also lower.
  • the second part includes a base material and a masterbatch mixed inside the base material.
  • the preparation method of the second part is simple and easy to operate.
  • the light transmittance of each area of the second part is relatively uniform.
  • the second part has a ring structure
  • the second part has an accommodation space
  • the first part is disposed in the accommodation space.
  • FIG. 1 is a schematic structural diagram of an implementation manner of a head-mounted display device provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of the optical path of the display module and the lens of the head-mounted display device shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of an embodiment of the lens of the head-mounted display device shown in FIG. 1;
  • Fig. 4 is an exploded schematic diagram of the lens shown in Fig. 3 at an angle;
  • FIG. 5 is a schematic diagram of the light path of the lens and the display module shown in FIG. 3;
  • Fig. 6 is an exploded schematic diagram of the lens shown in Fig. 3 at another angle;
  • FIG. 7 is a schematic structural diagram of another embodiment of the lens of the head-mounted display device shown in FIG. 1;
  • Figure 8 (a) is a partial exploded schematic diagram of the lens shown in Figure 7, in which (a1) is an exploded schematic diagram at one angle, (a2) is an exploded schematic diagram at another angle;
  • Figure 8(b) is an exploded schematic diagram of the lens shown in Figure 7;
  • Fig. 9 is a schematic sectional view of the lens shown in Fig. 7 at the line A-A;
  • FIG. 10 is a schematic structural diagram of still another embodiment of the lens of the head-mounted display device shown in FIG. 1;
  • Fig. 11 is a schematic cross-sectional view of the lens shown in Fig. 10 at B-B;
  • FIG. 12 is a schematic structural diagram of still another embodiment of the lens of the head-mounted display device shown in FIG. 1;
  • Fig. 13 is a schematic cross-sectional view of the lens shown in Fig. 12 at the line C-C;
  • FIG. 14 is a schematic structural diagram of still another embodiment of the lens of the head-mounted display device shown in FIG. 1;
  • FIG. 15 is a schematic structural diagram of another embodiment of the lens of the head-mounted display device shown in FIG. 1, wherein (a) in FIG. 15 is a schematic diagram of the lens at an angle, and (b) in FIG. 15 Is a schematic diagram of the lens at another angle;
  • Figure 16 is a partial exploded schematic view of the lens shown in Figure 15;
  • FIG. 17 is a diagram of the light propagation path of the lens shown in FIG. 15 in cooperation with the display module;
  • FIG. 18 is a schematic structural diagram of another implementation manner of a head-mounted display device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an implementation manner of a head-mounted display device provided by an embodiment of the present application.
  • the head-mounted display device 100 may be augmented reality (ar) glasses or an AR helmet.
  • the head-mounted display device 100 of the embodiment shown in FIG. 1 takes ar glasses as an example for illustration.
  • the head-mounted display device 100 includes a frame 10, a display module 20 and a lens 30.
  • the spectacle frame 10 includes a spectacle frame 11 and temples 12.
  • the spectacle frame 11 may include a nose pad for wearing on the nose of the user.
  • the temple 12 is used to be worn on the user's ear. At this time, when the user wears the head-mounted display device 100 on the head, the head-mounted display device 100 can be fixed on the user's head through the temple 13 and the nose pad.
  • the number of lenses 30 is two. Both lenses 30 are mounted on the frame 10. Specifically, two mounting holes are provided on the mirror frame 11. The shape of the mounting hole is adapted to the shape of the lens 30. The two lenses 30 are installed in the two mounting holes in one-to-one correspondence. At this time, the user can see the real world through the two lenses 30.
  • the number of lenses 30 is not limited. For example, there may be one lens 30, but the size of the lens 30 can cover both eyes of the user.
  • a mounting hole is provided on the mirror frame 11. The lens 30 is directly installed in the mounting hole. The user's eyes can directly view the real world through the lens 30.
  • the number of display modules 20 is two.
  • the display module 20 can be installed on the frame 10.
  • the display module 20 may be arranged inside the mirror frame 11 to effectively protect the display module 20 through the mirror frame 11 to prevent the display module 20 from being damaged due to collision with external objects.
  • Each display module 20 is arranged corresponding to a lens 30.
  • the two display modules 20 provide virtual images for the two lenses 30 respectively.
  • the virtual image can be, but is not limited to, a three-dimensional virtual image.
  • the display module 20 may be, but is not limited to, a display screen or a projector.
  • the display module 20 may be a miniature display module.
  • a miniature display screen or a miniature projector the number of display modules 20 can also be one.
  • the display module 20 provides virtual images for the two lenses 30 through partitions.
  • the display module 20 can be wirelessly connected to an external device. At this time, the display module 20 can receive the virtual image provided by the external device, and provide the received virtual image to the user through the lens 30.
  • the lens 30 can transmit the display light emitted by the display module 20 to the user's eyes, so that the user can see the virtual image displayed by the display module 20 through the lens 30.
  • the lens 30 can also transmit ambient light to the user's eyes, so that the user can receive the real world ambient light through the lens 30 to view the real world. Therefore, the head-mounted display device 100 of this embodiment can allow the user to see an image in which a real image and a virtual image are combined.
  • the user can use the head-mounted display device 100 to play a three-dimensional virtual reality game.
  • the lens 30 transmits the real world as a background image to the user's eyes, for example, the real world is a forest.
  • the user sees an image of a forest.
  • the display module 20 can provide a three-dimensional virtual image with virtual objects and virtual objects.
  • the virtual object is a weapon
  • the virtual object is a character.
  • the lens 30 transmits the virtual objects and virtual objects provided by the display module 20 to the eyes of the user.
  • the image that the user sees is that there are virtual weapons and virtual characters in a forest.
  • FIG. 2 is a schematic diagram of the optical path between the display module 20 and the lens 30 of the head-mounted display device 100 shown in FIG. 1.
  • the lens 30 includes a first part 31 and a second part 32.
  • the first part 31 and the second part 32 are arranged adjacently. That is, the second part 32 is located on the periphery of the first part 31.
  • the periphery of the first part 31 refers to the area around the first part 31.
  • the first part 31 can be effectively protected by the second part 32 to avoid damage to the first part 31.
  • FIG. 2 shows that the second part 32 includes a first body portion 326 and a second body portion 327.
  • the first body portion 326 and the second body portion 327 are respectively located on two sides of the first portion 31.
  • the first body part 326, the first part 31 and the second body part 327 are spliced into a continuous lens 30.
  • the structure of the second part 32 is not limited to the structure shown in FIG. 2.
  • the structure of the second part 32 may also be the structure shown in FIG. 12, FIG. 14 and FIG. 15, and the detailed description can be referred to the following.
  • the assembly method of the lens 30 is relatively simple and convenient to operate.
  • the display light emitted by the display module 20 enters the eyes of the user after passing through/through the first part 31.
  • the ambient light can also enter the user's eyes after passing through/through the first part 31.
  • the ambient light can enter the user's eyes after passing through/through the second part 32, so that the user can see the real world through the second part 32. Therefore, the user cooperates with the second part 32 and the first part 31 to enable the user to see a larger area of the real world, thereby increasing the user's comfort in viewing the outside world.
  • the real world seen by the user through the first part 31 and the real world seen through the second part 32 may partially overlap.
  • FIG. 3 is a schematic structural diagram of an embodiment of the lens 30 of the head-mounted display device 100 shown in FIG. 1.
  • FIG. 4 is an exploded schematic diagram of the lens 30 shown in FIG. 3 at an angle.
  • FIG. 5 is a schematic diagram of the light path of the first part of the lens shown in FIG. 3.
  • the first part 31 includes a free-form surface prism 311, a transflective film 312, and a compensation mirror 313 stacked in sequence.
  • the semi-reflective film 312 is located between the free-form surface prism 311 and the compensation mirror 313. It can be understood that when light (including ambient light and display light) travels to the semi-reflective film 312, the semi-reflective film 312 can reflect half of the light and transmit half of the light.
  • the free-form surface prism 311, the semi-reflective film 312 and the compensation mirror 313 are located between the first body portion 326 and the second body portion 327.
  • the free-form surface prism 311 includes a first light-incident surface 3112, a second light-incident surface 3111 (FIG. 3 illustrates the second light-incident surface 3111 at different angles) and a first The light-emitting surface 3113 (FIG. 3 illustrates the first light-emitting surface 3113 at different angles). It can be understood that the first light-incident surface 3112 and the first light-emitting surface 3113 are disposed opposite to each other.
  • the second light incident surface 3111 is located between the first light incident surface 3112 and the first light exit surface 3113.
  • the first light incident surface 3112 is adjacent to the semi-reflective semi-transparent film 312, that is, the semi-reflective semi-transparent film 312 is located between the first light incident surface 3112 and the compensation mirror 313. It can be understood that when the user wears the head-mounted display device 100, the first light-emitting surface 3113 faces the user's eyes, that is, the user's eyes receive light emitted through the first light-emitting surface 3113. It can be understood that the semi-reflective and semi-transparent film 312 is used to reflect the display light received by the second light-incident surface 3111 to the first light-emitting surface 3113. The semi-reflective film 312 is also used to transmit the ambient light incident through the compensation mirror 313 to the first light incident surface 3112.
  • the compensation mirror 313 has a third light incident surface 3131.
  • the third light incident surface 3131 is the surface of the compensation mirror 313 facing away from the semi-reflective film 312.
  • the ambient light enters the compensation mirror 313 through the third light incident surface 3131.
  • the first light incident surface 3112 is used to allow ambient light entering the compensation mirror 313 to enter the free-form surface prism 311.
  • the second light incident surface 3111 is used for receiving the display light emitted by the display module 20 (see FIG. 2), even if the display light emitted by the display module 20 (see FIG. 2) enters the free-form surface prism 311.
  • the first light-emitting surface 3113 is used to make the display light and ambient light entering the free-form surface prism 311 pass through the free-form surface prism 311. Specifically, the light transmission path of the first part 31 is described in detail below and FIG. 5.
  • the display module 20 emits display light.
  • the display light enters the free-form surface prism 311 through the second light-incident surface 3111.
  • part of the display light is transmitted to the semi-reflective and semi-transparent film 312 under the total reflection of the first light-emitting surface 3113.
  • This part of the display light is reflected by the semi-reflective and semi-transparent film 312, exits through the first light-emitting surface 3113, and is projected to the user's eyes.
  • the user can receive the virtual image sent by the display module 20.
  • the ambient light enters the compensation mirror 313 through the third light incident surface 3131 of the compensation mirror 313.
  • the ambient light sequentially passes through the compensation mirror 313 and the semi-reflective film 312 to propagate to the first light incident surface 3112, and enters the free-form surface prism 311 through the first light incident surface 3112.
  • the ambient light entering the free-form surface prism 311 is emitted through the first light-emitting surface 3113 and projected to the eyes of the user.
  • the user can receive ambient light, that is, the user can see the real world. Therefore, the user can see the image combined with the real image and the virtual image through the first part 31.
  • FIG. 6 is an exploded schematic diagram of the lens 30 shown in FIG. 3 at another angle.
  • the shapes of the third light-incident surface 3131 and the first light-emitting surface 3113 may be the same. It is understandable that because the shapes of the first light incident surface 3112 and the first light output surface 3113 of the free-form surface prism 311 are not the same, when the ambient light enters the free-form surface prism 311 from the first light incident surface 3112, When the surface 3113 is emitted, the ambient light will be distorted.
  • the compensation mirror 313 is provided on the first light incident surface 3112, and the shape of the third light incident surface 3131 of the compensation mirror 313 and the first light output surface 3113 of the free-form surface prism 311 can be the same, so that the third light incident The surface 3131 enters the ambient light of the compensating mirror 313 and exits the free-form surface prism 311 from the first light-emitting surface 3113 without distortion.
  • the shapes of the third light-incident surface 3131 and the first light-emitting surface 3113 may slightly deviate, that is, approximately the same.
  • the refractive index of the compensation mirror 313 is the same as the refractive index of the free-form surface prism 311.
  • the refractive index of the compensation mirror 313 is the same as that of the free-form surface prism 311
  • the refraction of the ambient light on the compensation mirror 313 and the free-form surface prism 311 changes It is uniform.
  • the ambient light is projected to the user's eyes, the real world presented by the user's eyes will not appear to be shifted. Therefore, the user has better comfort in viewing the real world through the lens 30.
  • the semi-reflective and semi-transparent film 312 is stacked on the first light incident surface 3112.
  • the compensation mirror 313 is fixed on the transflective film 312 by transparent optical glue.
  • the transparent optical glue can fill the gap between the compensation mirror 313 and the semi-reflective film 312, that is, the transparent optical glue can absorb the compensation mirror 313 and the semi-reflective film 312 during the production or fixing process.
  • the existing tolerances result in better integrity of the first part 31, which in turn makes the appearance of the first part 31 better, that is, the user will not see a gap inside the first part 31.
  • the semi-reflective film 312 is stacked on the compensation mirror 313. At this time, the free-form surface prism 311 is fixed to the transflective film 312 through transparent optical glue.
  • the refractive index of the transparent optical glue is the same as the refractive index of the compensation mirror 313.
  • the refractive index of the transparent optical glue is the same as that of the compensation mirror 313.
  • the transparent optical glue and the compensation mirror 313 form a whole. At this time, no obvious connecting surface or connecting line will appear at the connection between the transparent optical glue and the compensation mirror 313, so as to ensure that the first part 31 has a better appearance, that is, when the user is looking at the first part 31, the first part There will be no obvious connecting surfaces or connecting lines inside the 31.
  • the compensation mirror 313 includes a third light-emitting surface 3132.
  • the third light-emitting surface 3132 is the surface of the compensation mirror 313 facing the free-form surface prism 311.
  • the third light exit surface 3132 and the third light entrance surface 3131 are arranged opposite to each other.
  • the shape of the third light-emitting surface 3132 and the first light-incident surface 3112 (FIG. 4 illustrates the first light-incident surface 3112 at different angles) may be the same.
  • the third light-emitting surface 3132 of the compensation mirror 313 is directly attached to the first light-incident surface 3112 of the free-form surface prism 311, there will be no comparison between the third light-emitting surface 3132 and the first light-incident surface 3112.
  • the large gap, that is, the third light-emitting surface 3132 and the first light-incident surface 3112 can fit well.
  • the semi-reflective film 312 when the semi-reflective film 312 is provided between the free-form surface prism 311 and the compensation mirror 313, because there will be no large gap between the third light-emitting surface 3132 and the first light-incident surface 3112, the semi-reflection The permeable membrane 312 does not need to increase the thickness at a large gap to fill the gap. Therefore, the thickness of the semi-reflective film 312 of this embodiment is relatively uniform. At this time, the brightness of the ambient light passing through the semi-reflective film 312 is also relatively uniform, that is, the brightness of the first portion 31 is also relatively uniform. Of course, considering the error of the processing technology, the shapes of the third light-emitting surface 3132 and the first light-incident surface 3112 may have a slight deviation, that is, approximately the same.
  • the propagation direction of the ambient light will not change greatly due to the gap, so that the user’s eyes will change from When viewing the real world in the first part 31, the image that the user sees will not change significantly or suddenly. At this time, the user's viewing comfort is better.
  • the ratio of the light transmittance of the second portion 32 to the light transmittance of the first portion 31 is set within the threshold range, and the threshold range is between 0.5 to 1.5, so that the transmittance of the second portion 32 The light rate is close to the light transmittance of the first part 31.
  • the threshold range is a preset range.
  • the quality of the picture displayed by the head-mounted display device 100 is better.
  • the threshold range is between 0.9 and 1.1.
  • the light transmittance of the entire lens 30 is almost the same. At this time, the brightness of the entire area of the lens 30 seen by the user is almost the same, so that when the user's eyes turn from the position of the first part 31 to the position of the second part 32, the user will not have a large difference in the brightness of the received ambient light. And feel uncomfortable.
  • the anti-reflection film 322 can be formed in two embodiments.
  • the second embodiment: the anti-reflection film 322 is one or more of a semi-reflective semi-permeable film, an absorption film or a polarizing film.
  • the second embodiment the light transmittance of the second part 32 is reduced by arranging a masterbatch 324 inside the substrate 323 of the second part 32.
  • FIG. 7 is a schematic structural diagram of another embodiment of the lens 30 of the head-mounted display device 100 shown in FIG. 1.
  • Fig. 8(a) is a partial exploded schematic view of the lens 30 shown in Fig. 7. Among them, (a1) is the exploded schematic diagram at one angle; (a2) is the exploded schematic diagram at another angle.
  • FIG. 8(b) is an exploded schematic diagram of the lens 30 shown in FIG. 7.
  • Fig. 9 is a schematic cross-sectional view of the lens 30 shown in Fig. 7 at the line A-A.
  • the second part 32 includes a lens 321 and an anti-reflection film 322.
  • the lens 321 can transmit most of the ambient light.
  • the first portion 31 is located between the first body portion 326 and the second body portion 327.
  • the first main body portion 326 includes a lens 321 and an anti-reflection film 322.
  • the anti-reflection film 322 is used to reduce the transmittance of ambient light, thereby reducing the transmittance of the second portion 32.
  • the second body portion 327 may also include a lens and an anti-reflection film.
  • the lens and anti-reflection film of the second body portion 327 please refer to the first body portion 326, which will not be repeated hereafter.
  • the lens 321 includes a first light entrance surface 3211 and a second light exit surface 3212 disposed opposite to each other (FIG. 7 shows the second light exit surface 3212 at another angle).
  • the first light entrance surface 3211 is used to allow ambient light to enter the lens 321.
  • the second light-emitting surface 3212 is used for allowing ambient light entering the lens 321 to pass through. It can be understood that when the user wears the head-mounted display device 100, the second light-emitting surface 3212 faces the eyes of the user. At this time, when the ambient light enters the lens 321 through the first light entrance surface 3211, the ambient light passes through the anti-reflection film 322 and exits the lens 321 through the second light exit surface 3212. The ambient light passing through the lens 321 is projected to the user's eyes.
  • the light transmittance of the first body portion 326 is reduced, and the light transmittance of the first body portion 326 is reduced.
  • the rate is similar to the light transmittance of the first part 31.
  • the refractive index of the lens 321 is the same as the refractive index of the compensation mirror 313.
  • the material of the lens 321 is the same as the material of the compensation mirror 313.
  • the refractive change of the ambient light in the first part 31 and the second part 32 is uniform
  • the ambient light is projected to the user's eyes, the real world presented by the user's eyes will not appear to be shifted. Therefore, the user has better comfort in viewing the real world through the lens 30.
  • the lens 321 includes a first transparent portion 3213 and a second transparent portion 3214 that are oppositely disposed.
  • the first main body 326 is taken as an example for description.
  • the first body portion 326 includes a first light-transmitting portion 3213 and a second light-transmitting portion 3214 that are disposed oppositely.
  • the anti-reflection film 322 is disposed between the first light-transmitting portion 3213 and the second light-transmitting portion 3214.
  • the second body portion 327 can refer to the structure of the first body portion 326, which will not be repeated here.
  • the surface of the first light-transmitting portion 3213 that faces away from the second light-transmitting portion 3214 is the first light-entering surface 3211.
  • the surface of the second light transmitting portion 3214 facing away from the first light transmitting portion 3213 is a second light emitting surface 3212.
  • the anti-reflection film 322 can be set on the lens 321 first. On one of the first light-transmitting portion 3213 or the second light-transmitting portion 3214, the other is fixed on the anti-reflection film 322.
  • the installation process of the anti-reflection film 322 of this embodiment is relatively simple and easy to operate.
  • the lens 321 may also be an integral structure.
  • the anti-reflection film 322 is provided inside the lens 321.
  • the lens 321 is formed through an injection molding process. Specifically, a part of the lens 321 is formed first, and after cooling and molding, the anti-reflection film 322 is fixed on the part. Finally, another part of the lens 321 is formed through an injection molding process. After the other part of the lens 321 is cooled and formed, the second part 32 is formed. At this time, the anti-reflection film 322 and the lens 321 form a whole, that is, the integrity of the second part 32 is better.
  • the first side surface 319 of the first part 31 and the second side surface 329 of the second part 32 are adjacent.
  • the shape of the semi-reflective membrane 312 on the first side surface 319 is the first shape.
  • the shape of the anti-reflection film 322 on the second side surface 329 is the second shape.
  • the first shape matches the second shape. It can be understood that when the first shape matches the second shape, the semi-reflective semi-permeable membrane 312 and the anti-reflection membrane 322 are connected to each other and face to face.
  • the ambient light entering the second part 32 through the first light entrance surface 3211 or the ambient light entering the first part 31 through the third light entrance surface 3131 can only pass through the anti-reflection film 322 or the semi-reflective film 312 once. That is, the ambient light will not pass through the anti-reflection film 322 and the semi-reflective semi-transparent film 312 at the same time, so as to ensure that the brightness of the entire lens 30 area is more consistent (it is understandable that when the ambient light passes through the anti-reflection film 322 or semi-reflection semi-transparent When one position in the film 312 exceeds one time, the brightness at that position will also decrease more than one time. At this time, the brightness of the first part 31 or the second part 32 is not uniform). Therefore, the light transmission uniformity of the entire lens 30 of this embodiment is better, thereby ensuring that the user will not feel uncomfortable due to the large difference in the brightness of the received ambient light.
  • the edge of the anti-reflection film 322 is connected to the edge of the semi-reflective film 312.
  • the first light transmitting portion 3213 is connected to the compensation mirror 313, and the second light transmitting portion 3214 is connected to the free-form surface prism 311.
  • the anti-reflection film 322 and the semi-reflective semi-permeable film 312 are spliced to form a continuous film layer.
  • the ambient light entering the second part 32 through the first light entrance surface 3211 or the ambient light entering the first part 31 through the third light entrance surface 3131 can only pass through the anti-reflection film 322 or the semi-reflective film 312 once. That is, the ambient light will not pass through the anti-reflection film 322 and the semi-reflective semi-permeable film 312 at the same time, thereby ensuring that the brightness of the entire lens 30 area is relatively consistent. Therefore, the light transmission uniformity of the entire lens 30 of this embodiment is better, thereby ensuring that the user will not feel discomfort due to the large difference in the brightness of the received ambient light.
  • the anti-reflection membrane 322 and the semi-reflective semi-permeable membrane 312 are smoothly connected.
  • the connection between the anti-reflection film 322 and the semi-reflective semi-permeable film 312 does not have any abrupt protrusions or depressions, so the ambient light passing through the connection between the anti-reflection film 322 and the semi-reflection semi-permeable film 312
  • the propagation direction of the ambient light passing through the anti-reflection film 322 or the semi-reflective semi-permeable film 312 will not change abruptly, so that when the user's eyes turn from the position of the first part 31 to the position of the second part 32 When the user sees the real world, there will be no major changes or sudden changes. At this time, the user’s viewing comfort is better.
  • the first light entrance surface 3211 and the third light entrance surface 3131 of the compensation mirror 313 are smoothly connected. At this time, the connection between the first light entrance surface 3211 and the third light entrance surface 3131 of the compensating lens 313 does not have any more abrupt protrusions or depressions. Therefore, the first light entrance surface 3211 of the lens 30 and the third light entrance surface 3131
  • the smooth surface 3131 is smoother, that is, the appearance of the lens 30 is more beautiful.
  • connection between the first light-incident surface 3211 and the third light-incident surface 3131 does not have any more abrupt protrusions or depressions, the connection between the first light-incident surface 3211 and the third light-incident surface 3131
  • the propagation direction of the ambient light entering the lens 30 and the propagation direction of the ambient light passing through the first light entrance surface 3211 and the third light entrance surface 3131 will not change suddenly, so that when the user's eyes are rotated from the position of the first part 31
  • the position of the second part 32 is reached, the real world that the user sees will not show large changes or sudden changes. At this time, the user's viewing comfort is better.
  • the anti-reflection film 322 is a plating layer formed between the first light entrance surface 3211 and the second light exit surface 3212 by a magnetron sputtering or evaporation process.
  • a plating layer is formed on the surface of the first light-transmitting portion 3213 facing the second light-transmitting portion 3214 by means of magnetron sputtering or vapor deposition. Then, the second light-transmitting portion 3214 is bonded to the plating layer through a transparent optical glue. At this time, the plating layer formed between the first transparent portion 3213 and the second transparent portion 3214 is the anti-reflection film 322.
  • the formed plating layer can reduce the ambient light passing through the lens 321, that is, reduce the light transmittance of the second portion 32.
  • a plating layer may also be formed on the surface of the second light-transmitting portion 3214 facing the first light-transmitting portion 3213 by means of magnetron sputtering or evaporation.
  • the plating layer includes a first sub plating layer and a second sub plating layer laminated on the first sub plating layer.
  • the material of the first sub-plating layer includes one of silicon dioxide or magnesium fluoride.
  • the material of the second sub-plating layer includes one of titanium oxide, neodymium oxide or zirconium oxide. Since the sub-plating layers of different materials have different light transmittances, the light transmittance of the anti-reflection film 322 can be accurately controlled by forming the anti-reflection film 322 by stacking multiple sub-plating layers.
  • the thickness of the first sub-plating layer ranges from 70 nanometers to 100 nanometers.
  • the thickness of the second sub-plating layer ranges from 2.5 to 60 nanometers. At this time, the thickness of the plating layer is relatively thin, which facilitates the thinning of the lens 30.
  • the plating layer is flat. At this time, the thickness uniformity of the plating layer is better, and the processing difficulty of the plating layer is lower. In other embodiments, the plating layer may also be curved. At this time, when the plating layer is connected to the semi-reflective and semi-permeable film 312, the plating layer and the semi-reflective and semi-permeable film 312 can be spliced into a continuous curved surface.
  • the anti-reflection film 322 includes one or more of a semi-reflective semi-permeable film, an absorption film, or a polarizing film.
  • one or more of the semi-reflective film, the absorption film, or the polarizing film is directly fixed between the first light-transmitting portion 3213 and the second light-transmitting portion 3214. Because the cost of the transflective film, the absorbing film or the polarizing film is lower, the cost of the formed lens 30 is also lower, that is, the cost of the head-mounted display device 100 is also lower.
  • one or more of the transflective film, the absorbing film, or the polarizing film is fixed between the first light transmitting portion 3213 and the second light transmitting portion 3214 by a transparent optical glue.
  • the material of the anti-reflection membrane 322 of the second part 32 and the semi-reflection and semi-permeable membrane 312 of the first part 31 are the same.
  • the light intensity of the ambient light passing through the anti-reflection film 322 is close to the light intensity of the ambient light passing through the semi-reflective film 312.
  • the light transmittance of the first part 31 is the same as that of the second part 32.
  • the rate is relatively close.
  • the thickness of the anti-reflection film 322 is the same as the thickness of the semi-reflective film 312 of the first portion 31. At this time, the illumination intensity of the ambient light passing through the anti-reflection film 322 is consistent with the illumination intensity of the ambient light passing through the semi-reflective film 312.
  • absorption film refers to a film that can absorb part of the ambient light.
  • the anti-reflection film 322 is an absorbing film, the absorbing film can absorb part of the ambient light entering the lens 321, thereby reducing the light intensity of the second part 32.
  • a light-absorbing film with a specific absorbance can be selected according to the transmittance of the first part 31. For example, the light transmittance of the first portion 31 is 50%.
  • the anti-reflection film 322 adopts an absorption film with an absorption rate of 50%.
  • the polarizing film refers to a film that can pass partially polarized light.
  • the anti-reflection film 322 is a polarizing film
  • the polarizing film can allow part of the ambient light entering the lens 321 to pass through, thereby reducing the intensity of the second part 32.
  • the polarizing film of this embodiment can also be selected according to the light transmittance of the first part 31.
  • the anti-reflection film 322 is a single-layer film.
  • the anti-reflection film 322 is one of a semi-reflective film, an absorption film, or a polarizing film.
  • the anti-reflection film 322 may also be a multilayer film.
  • the anti-reflection film 322 is a stacked semi-reflective semi-permeable film and an absorption film, or a stacked absorption film or a polarizing film. Because different types of films have different light transmittances, by setting the anti-reflection film 322 as a multilayer film, the light transmittance of the second part 32 can be more flexibly controlled, thereby making the light transmittance of the second part 32 more flexible. The light rate is closer to the light transmittance of the first part 31.
  • FIG. 10 is a schematic structural diagram of still another embodiment of the lens 30 of the head-mounted display device 100 shown in FIG. 1.
  • Fig. 11 is a schematic cross-sectional view of the lens 30 shown in Fig. 10 at B-B.
  • the second part 32 includes a base material 323 and a masterbatch 324 mixed inside the base material 323.
  • the first main body 326 includes a base material 323 and a masterbatch 324 mixed inside the base material 323.
  • the configuration of the second main body 327 can refer to the configuration of the first main body 326.
  • the color masterbatch 324 is a plastic colorant formed by a good dispersion of pigment and thermoplastic resin.
  • the pigment can be but not limited to titanium dioxide, carbon black or iron oxide red.
  • color master powder or other pigment toners can also be mixed in the interior of the substrate 323.
  • the color masterbatch 324 is provided in the base material 323 of the second part 32 to reduce the light transmittance of the second part 32 through the color masterbatch 324.
  • the user's eyes turn and turn from looking at the first part 31 to looking at the second part 32, the user will not feel uncomfortable due to the large difference in the brightness of the received ambient light, so the head-mounted type of this embodiment
  • the user experience of the display device 100 is better.
  • the preparation method of the second part 32 is simple and easy to operate.
  • the light transmittance of each area of the second portion 32 is relatively uniform.
  • the second part 32 is formed by a dyeing process.
  • the color masterbatch 324 is uniformly mixed in a resin (for example, polyamide (PA) or polycarbonate (PC)). Then, by injection molding the uniformly mixed resin, the shape of the second part 32 is initially formed. For example, by injecting the resin melted by heating and added with the color masterbatch 324 into the mold, the molded lens 30 is obtained after cooling.
  • a resin for example, polyamide (PA) or polycarbonate (PC)
  • composition ratio of the color masterbatch 324 in the resin can be adjusted according to the light transmittance of the first part 31, so as to make the light transmittance of the second part 32 equal to the light transmittance of the first part 31 as much as possible.
  • the material of the base material 323 is the same as the material of the compensation mirror 313.
  • the refractive index of the base 323 and the refractive index of the compensation mirror 313 are the same. Therefore, the real world seen by the user from the first part 31 and the real world seen from the second part 32 can be spliced into a whole real world. At this time, the user's viewing comfort is better.
  • the refractive index of the substrate 323 and the compensation mirror 313 are different, the real world seen by the user through the first part 31 and the real world seen from the second part 32 cannot be spliced due to different imaging angles or different imaging multiples. Into a whole real world. At this time, when the user's eyes turn from the position of the first part 31 to the position of the second part 32, the image that the user sees will show a large change or abrupt change, and at this time, the user's viewing comfort is poor .
  • FIG. 12 is a schematic structural diagram of still another embodiment of the lens 30 of the head-mounted display device 100 shown in FIG. 1.
  • Fig. 13 is a schematic cross-sectional view of the lens 30 shown in Fig. 12 at the line C-C.
  • FIG. 14 is a schematic structural diagram of still another embodiment of the lens 30 of the head-mounted display device 100 shown in FIG. 1.
  • the second part 32 further includes a third body part 328.
  • the third body portion 328 is connected between the first body portion 326 and the second body portion 327, and the third body portion 328 is arranged adjacent to the first light-emitting surface 3113 of the first portion 31.
  • the first light-emitting surface 3113 of the first part 31 refers to the surface on which the display light and ambient light exit the first part 31.
  • one end of the third body portion 328 is connected to the surface of the first body portion 326 facing the first portion 31, and the other end is connected to the surface of the second body portion 327 facing the first portion 31.
  • the connection relationship between the third body portion 328 and the first body portion 326 and the second body portion 327 is not limited to that shown in FIG. 13, and the connection relationship between the third body portion 328 and the first body portion 326 and the second body portion 327 may also be Figure 14 shows the structure. See the description below.
  • the first body portion 326 and the second body portion 327 are fixed on both sides of the first portion 31, and the third body portion 328 is located on the light emitting side of the first portion 31, the first body portion 326 and the second body portion 327
  • the main body 327 and the third main body 328 surround the periphery of the first part 31.
  • the first body portion 326, the second body portion 327, and the third body portion 328 can effectively protect the first portion 31 to prevent the first portion 31 and other devices from being damaged due to contact.
  • the structural strength of the lens 30 is also stronger.
  • the third body portion 327 is fixedly connected to the first body portion 326 and the second body portion 327 by transparent optical glue.
  • the third body portion 327 is fixedly connected to the first portion 31 by transparent optical glue.
  • the material of the third body part 327 is the same as the materials of the first body part 326 and the second body part 327.
  • the third body portion 328 is fixedly connected to the first light-emitting surface 3113 of the free-form surface prism 311 ( Please refer to the first light-emitting surface 3113 in FIG. 3 in combination).
  • the first body portion 326, the second body portion 327, and the third body portion 328 are located around the free-form surface prism 311, the transflective film 312, and the compensation mirror 313 that are stacked.
  • the third body portion 328, the first body portion 326 and the second body portion 327 are integrally formed. At this time, the integrity of the second part 32 is strong.
  • the third main body portion 328, the first main body portion 326 and the second main body portion 327 are integrally formed, thereby simplifying the preparation process of the second portion 32, thereby saving the cost input of the second portion 32.
  • first main body portion 326 and the second main body portion 327 of this embodiment can refer to the structural arrangement of the first main body portion 326 and the second main body portion 327 of the above embodiment (for example, by An anti-reflection film 322 is provided in the main body portion 326 to reduce the light transmittance of the second portion 32.
  • the light transmittance of the second portion 32 can be reduced by providing a masterbatch 324 inside the base 323 of the first main body portion 326 .). The specifics are not repeated here.
  • one end of the third body portion 328 is connected to the second light-emitting surface 3212 of the first body portion 326, and the other end is connected to the second body portion 327 The second light-emitting surface 3212.
  • the free-form surface prism 311, the semi-reflective semi-transparent film 312 and the compensation mirror 313 of the first part 31 may be stacked on the third body part 328 in sequence.
  • the first body part 326 and the second body part 327 are spliced around the first part 31 and fixedly connected to the surface of the third body part 328 facing the first part 31.
  • FIG. 15 is a schematic structural diagram of another embodiment of the lens 30 of the head-mounted display device 100 shown in FIG. 1, wherein (a) in FIG. 15 is a schematic diagram of the lens 30 at an angle; (b) is a schematic diagram of the lens 30 at another angle.
  • Fig. 16 is a partial exploded schematic view of the lens shown in Fig. 15.
  • FIG. 17 is a diagram of the light propagation path of the lens 30 and the display module 20 shown in FIG. 15.
  • the second part 32 is a ring structure.
  • the second part 32 has an accommodation space 325.
  • the first part 31 is provided in the accommodation space 325.
  • FIG. 16 shows that the receiving space 325 is formed by splicing the first space 3251, the second space 3252, and the third space 3253, respectively.
  • the accommodating space 325 may also be composed of a whole space.
  • the second portion 32 includes a first light entrance surface 3211 and a second light exit surface 3212 disposed opposite to each other.
  • the accommodating space 325 penetrates from the first light entrance surface 3211 to the second light exit surface 3212.
  • the second part 32 when the first part 31 is provided in the accommodating space 325, the second part 32 surrounds the peripheral side of the first part 31. At this time, the second part 32 can effectively protect the first part 31 to prevent the first part 31 and other devices from being damaged due to contact.
  • the integrity of the second part 32 and the first part 31 is better. At this time, the structural strength of the lens 30 is also stronger.
  • the connection area between the first part 31 and the second part 32 is larger, thereby making The first part 31 and the second part 32 are connected more firmly, that is, the first part 31 is not easy to fall off from the second part 32.
  • the first part 31 with a small optical index for example, the exit pupil area (also called eyebox), the first part 31 or the field of view (field of view, fov) The smaller first part
  • the area of the first part 31 in all directions can be significantly increased, thereby significantly increasing the lens 30 The area.
  • the user's viewing field is wider and the viewing comfort is better.
  • the second part 32 for the optical index determined by the free-form surface prism 311, by setting the second part 32 to the above-mentioned structure, it is also possible to make, that is, when the volume of the free-form surface prism 311 is determined, The curved prism 311 is assembled on the second part 32 of the ring structure, so that the area of the free-form prism 311 in all directions can be significantly increased, thereby significantly increasing the area of the lens 30. At this time, the user's viewing field is wider and the viewing comfort is better.
  • the ambient light enters the second part 32 through the first light entrance surface 3211 and exits the second part 32 through the second light exit surface 3212, that is, the user can see the real world through the second part 32.
  • the second portion 32 includes a second light entrance surface 3219.
  • the second light entrance surface 3219 is connected between the first light entrance surface 3211 and the second light exit surface 312.
  • the second light entrance surface 3219 is used to allow the display light emitted by the display module 20 (please refer to FIG. 17) to enter the second part 32 and enter the first part 31 through the second part 32.
  • the display module 20 when the display module 20 emits display light.
  • the display light enters the second portion 32 through the second light entrance surface 3219.
  • the display light entering the second portion 32 exits the second portion 32 and enters the interior of the free-form prism 311 through the second light incident surface 3111 of the free-form prism 311.
  • part of the display light is transmitted to the semi-reflective and semi-transparent film 312 under the total reflection of the first light-emitting surface 3113.
  • This part of the display light is reflected by the semi-reflective and semi-transparent film 312, exits through the first light-emitting surface 3113, and is projected to the user's eyes.
  • the user can receive the virtual image sent by the display module 20.
  • the ambient light enters the compensation mirror 313 through the third light incident surface 3131 of the compensation mirror 313.
  • the ambient light sequentially passes through the compensation mirror 313 and the semi-reflective film 312 to propagate to the first light incident surface 3112, and enters the free-form surface prism 311 through the first light incident surface 3112.
  • the ambient light entering the free-form surface prism 311 is emitted through the first light-emitting surface 3113 and projected to the eyes of the user.
  • the user can receive ambient light, that is, the user can see the real world. Therefore, the user can see the image combined with the real image and the virtual image through the first part 31.
  • the first part 31 includes a free-form surface prism 311, a semi-reflective film 312 and a compensation mirror 313 stacked in sequence.
  • the free-form surface prism 311, the transflective film 312, and the compensation mirror 313 are contained in the accommodation space 325.
  • the arrangement of the free-form surface prism 311, the semi-reflective film 312, and the compensation mirror 313 is the same as that of the free-form surface prism 311, the semi-reflective film 312 and the compensation mirror of the embodiment where the second part 32 of the first structure is located.
  • the setting of the mirror 313 is the same. I won't repeat it here.
  • the second part 32 includes a lens 321 and an anti-reflection film 322.
  • the shapes of the lens 321 and the anti-reflection film 322 are both annular.
  • the arrangement of the lens 321 and the anti-reflection film 322 can refer to the arrangement of the lens 321 and the anti-reflection film 322 of the second part 32 of the first structure.
  • the lens 321 includes a first light transmitting portion 3213 and a second light transmitting portion 3214 that are disposed oppositely.
  • the anti-reflection film 322 is disposed between the first light transmission portion 3213 and the second light transmission portion 3214.
  • the first light-transmitting portion 3213, the second light-transmitting portion 3214, and the anti-reflection film 322 are all annular structures.
  • the first transparent portion 3213 is provided with a first space 3251.
  • the anti-reflection membrane 322 is provided with a second space 3252.
  • the second light transmitting portion 3214 is provided with a third space 3253.
  • the first space 3251, the second space 3252 and the third space 3253 are joined together to form an accommodation space 325.
  • the second part 32 can also refer to the first structure in which a masterbatch 324 is arranged inside the substrate 323 of the second part 32 to reduce the light transmittance of the second part 32.
  • FIG. 18 is a schematic structural diagram of another implementation manner of the head-mounted display device 100 provided by an embodiment of the present application.
  • the head-mounted display device 100 may further include an iris camera 40.
  • the iris camera 40 is installed on the frame 10.
  • the iris camera 40 is installed on the mirror frame 11.
  • the iris camera 40 may be, but is not limited to, an infrared camera.
  • the iris camera 40 can obtain the change information of the iris position of the user, and convert the change information of the iris into the coordinate information of the display module 20.
  • the number of the iris camera 40 may be one, which is used to detect the change information of the iris position of one eye of the user.
  • the iris position data collected by the two iris cameras 40 can supplement or correct each other. It is understandable that the iris camera 40 collects the change information of the user's iris position, so that the user can see different virtual images in different areas. For example, when the user looks directly at the lens 30 at the first moment, the user can see a weapon and a character in the first area. When the user's eyes rotate, the iris camera 40 collects the change information of the iris position of the eye, and converts it into the coordinate change information of the display module 20. At this time, when the user looks to the left of the lens 30 at the second moment, the user can see another weapon or another character in the second area.
  • the head-mounted display device 100 may further include a structured light module 50.
  • the structured light module 50 is installed in the frame 10.
  • the structured light module 50 can be used to scan the user's face and obtain feature information of the user's face. At this time, the acquired facial feature information is compared with the preset facial information. When the comparison results match, the head-mounted display device 100 is turned on. When the comparison result does not match, the head-mounted display device 100 does not start.
  • the structured light module 50 can also be used to cooperate with the display module 20 to realize virtual shopping. For example, when the user needs to purchase a new weapon, the display module 20 provides the user with a shopping list of virtual objects. At this time, the facial information obtained through the structured light module 50 can be used to confirm whether the user purchases a weapon.
  • the head-mounted display device 100 may further include a receiver, a microphone, and a wireless charging device.
  • the earpiece and the microphone are installed in the frame 10.
  • the user can listen to other users' voice messages through the handset. For example, to receive combat information from teammates.
  • the input of voice information can be entered through the microphone.
  • the user can manipulate the virtual interface of the display module 20 through voice information.
  • the head-mounted display device 100 is wirelessly charged by a wireless charging device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)

Abstract

一种头戴式显示装置(100),包括镜架(10)、镜片(30)及显示模组(20)。镜片(30)及显示模组(20)均设置于镜架(10)。镜片(30)包括第一部分(31)和第二部分(32)。第一部分(31)与第二部分(32)相邻设置。第一部分(31)用于透过环境光线。第二部分(32)用于透过环境光线。第一部分(31)还用于透过显示模组(20)发出的显示光线。第二部分(32)的透光率与第一部分(31)的透光率的比值在阈值范围内。阈值范围在0.5至1.5之间。该头戴式显示装置(100)所显示的画面的质量较佳。

Description

镜片和头戴式显示装置
本申请要求于2019年07月31日提交中国专利局、申请号为201910703281.X、申请名称为“镜片和头戴式显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种镜片和头戴式显示装置。
背景技术
增强现实(augmented reality,ar)是一种将虚拟的信息应用到真实世界中,从而在同一个画面或同一个空间中出现真实的环境以及虚拟物体。随着ar技术的不断发展,用户能够利用头戴式显示装置直观地看到真实环境中叠加虚拟物体的画面。传统的头戴式显示装置包括镜片。镜片是用于将显示光线与环境光线传输至人眼的关键部件。然而,由于头戴式显示装置的镜片的结构设置不合理,使得传统的头戴式显示装置所显示的画面出现质量不佳的问题,进而影响人眼的辨识舒适性。
发明内容
本申请实施例提供一种镜片和头戴式显示装置。所述头戴式显示装置所呈现画面的质量有待提升。
第一方面,本申请实施例提供的头戴式显示装置包括镜架、镜片及显示模组。所述镜片及所述显示模组均设置于所述镜架。所述镜片包括第一部分和第二部分。所述第一部分与所述第二部分相邻设置。可以理解的是,所述第一部分与所述第二部分相邻设置表示,所述第二部分位于所述第一部分的周边。所述第一部分用于透过环境光线。所述第二部分用于透过所述环境光线。所述第一部分还用于透过所述显示模组发出的显示光线。所述第二部分的透光率与所述第一部分的透光率的比值在阈值范围内。所述阈值范围在0.5至1.5之间。
在本实施例中,当所述第二部分的透光率与所述第一部分的透光率的比值在0.5至1.5之间时,所述第二部分的透光率与所述第一部分的透光率较接近。此时,当用户佩戴上所述头戴式显示装置时,所述镜片的不同区域的亮度较均匀,从而使得所述头戴式显示装置所显示画面的质量较佳。
此外,因为所述第二部分的透光率与所述第一部分的透光率较接近,所以用户从所述第二部分看到真实世界的亮度与从所述第一部分看到真实世界的亮度相同或相近。故而,当用户的眼睛发生转动时,用户的眼睛从正视所述第一部分转向斜视所述第二部分时,用户不会因接收的环境光线的亮度差异大而感到不舒适感。本实施例的所述头戴式显示装置的用户体验性更佳。
一种实施例中,所述第一部分包括依次堆叠设置的自由曲面棱镜、半反半透膜及补偿镜。所述半反半透膜设置于所述自由曲面棱镜和所述补偿镜之间。所述自由曲面棱镜包括 第一入光面、第一出光面及第二入光面。所述第一入光面与所述半反半透膜相邻设置。所述第一部分用于透过环境光线,包括:所述补偿镜用于接收所述环境光线,所述环境光线透过所述半反半透膜,由所述自由曲面棱镜的第一入光面入射,透过所述第一出光面。所述第一部分还用于透过所述显示模组发出的显示光线,包括:所述自由曲面棱镜的第二入光面用于接收所述显示模组发出的显示光线,所述半反半透膜用于将所述第二入光面接收的所述显示光线反射至所述第一出光面。
在本实施例中,通过所述将第一部分设置成依次堆叠设置的所述自由曲面棱镜、所述半反半透膜及所述补偿镜,从而利用所述自由曲面棱镜、所述半反半透膜及所述补偿镜将所述显示模组发出的显示光线以及环境光线传递至用户的眼睛,进而实现通过所述头戴式显示装置观看到真实世界中与虚拟图像相互结合的图像,从而提高所述头戴式显示装置的用户体验性。
一种实施例中,所述第二部分包括透镜及减透膜。可以理解的是,所述减透膜用于减少环境光线的透过率,从而降低所述第二部分的透光率。所述透镜包括相背设置的第一进光面与第二出光面。所述减透膜位于所述第一进光面与所述第二出光面之间。环境光线依次经过所述第一进光面及所述减透膜后经所述第二出光面射出。
在本实施例中,通过在所述第一进光面与所述第二出光面之间设置所述减透膜,从而降低所述第二部分的透光率,所述第二部分的透光率与所述第一部分的透光率相近。此时,当用户佩戴上所述头戴式显示装置时,所述镜片的所述第一部分与所述第二部分不会出现亮度差异大的问题,也即用户从所述第二部分看到真实世界的亮度与从所述第一部分看到真实世界的亮度大致相同。因此,当用户的眼睛发生转动,并从正视所述第一部分转向斜视所述第二部分时,用户不会因接收的环境光线的亮度差异大而感到不舒适感,从而本实施例的所述头戴式显示装置的用户体验性更佳。
一种实施例中,所述减透膜的边缘连接于所述半反半透膜的边缘。此时,经所述第一进光面进入所述第二部分的环境光线或者经所述补偿镜进入所述第一部分的环境光线只能够一次经过所述减透膜或者所述半反半透膜,也即环境光线不会同时穿过所述减透膜与所述半反半透膜,从而保证整个所述镜片区域的亮度较为一致,也即整个所述镜片的透光均匀性较佳,进而保证用户不会因接收的环境光线的亮度差异大而感到不舒适感。
一种实施例中,所述第一部分的第一侧面和所述第二部分的第二侧面相邻。所述半反半透膜位于所述第一侧面的形状为第一形状。所述减透膜位于所述第二侧面的形状为第二形状。所述第一形状与所述第二形状匹配。可以理解的是,当所述第一形状与所述第二形状匹配时,所述半反半透膜与所述减透膜彼此连接,且面面贴合。此时,经所述第一进光面进入所述第二部分的环境光线或者经所述补偿镜进入所述第一部分的环境光线只能够一次经过所述减透膜或者所述半反半透膜,也即环境光线不会同时穿过所述减透膜与所述半反半透膜,从而保证整个所述镜片区域的亮度较为一致,也即整个所述镜片的透光均匀性较佳,进而保证用户不会因接收的环境光线的亮度差异大而感到不舒适感。
一种实施例中,所述透镜包括相对设置的第一透光部及第二透光部。所述第一透光部背离所述第二透光部的表面为第一进光面。所述第二透光部背离所述第一透光部的表面为第二出光面。所述减透膜固定于所述第一透光部与所述第二透光部之间。
在本实施例中,通过将所述透镜设置成所述第一透光部与所述第二透光部,从而方便将所述减透膜设置在所述透镜中,也即简化所述减透膜的安装工艺。
一种实施例中,所述减透膜为通过磁控溅射或者蒸镀工艺在所述第一透光部朝向第二透光部的表面或者所述第二透光部朝向所述第一透光部的表面形成的镀层。
在本实施例中,所述减透膜的形成工艺简单,且方便操作。
一种实施例中,所述减透膜包括半反半透膜、吸收膜或者偏振膜中的一种或者多种。此时,因为半反半透膜、吸收膜或者偏振膜的成本较低,所以所形成的所述镜片的成本也较低,也即头戴式显示装置的成本也较低。
一种实施例中,所述补偿镜具有第三入光面。所述第三入光面背离所述自由曲面棱镜设置,所述第三入光面与所述第一进光面平滑连接。
在本实施例中,所述第一进光面与所述补偿镜的第三入光面的连接处并不会出现较突兀的凸起或者凹陷区,因此所述镜片的第一进光面与所述第三入光面较平滑,也即所述镜片的外观更加美观。此外,因为所述第一进光面与所述第三入光面的连接处并不会出现较突兀的凸起或者凹陷区,所以经所述第一进光面与所述第三入光面的连接处进入所述镜片的环境光线的传播方向与经所述第一进光面和所述第三入光面的环境光线的传播方向不会出现较突兀的变化,从而当用户的眼睛从所述第一部分的位置转至所述第二部分的位置时,用户所看到的真实世界不会出现较大的变化或者突兀的变化,此时,用户观看的舒适度较佳。
一种实施例中,所述第二部分包括基材和混合于所述基材内部的色母粒。
在本实施例中,通过在所述第二部分的所述基材中设置所述色母粒,以通过所述色母粒降低所述第二部分的透光率。此时,当用户的眼睛发生转动,并从正视所述第一部分转向正视所述第二部分时,用户不会因接收的环境光线的亮度差异大而感到不舒适感,从而本实施例的头戴式显示装置的用户体验性更佳。
此外,所述第二部分的制备方式简单,易操作。此外,所述第二部分的各个区域的透光率较均匀。
一种实施例中,所述第二部分包括第一主体部及第二主体部。所述第一主体部及所述第二主体部分别位于所述第一部分的两侧。
在本实施例中,通过将所述第二部分设置成所述第一主体部与所述第二主体部,以方便将所述第一部分组装在所述第二部分上。
一种实施例中,所述第二部分还包括第三主体部,所述第三主体部设置于所述第一主体部与所述第二主体部之间,且所述第三主体部与所述第一部分的第一出光面相邻设置。
在本实施例中,所述镜片的整体性较强,结构强度也较佳。此外,所述自由曲面棱镜被所述第二部分所包围,从而避免所述自由曲面棱镜发生损坏。此外,所述第一部分安装于所述第二部分上的方式也较简单。
一种实施例中,所述第二部分为环状结构。所述第二部分具有容纳空间。所述第一部分设置于所述容纳空间。
在本实施例中,通过将所述第二部分设置成环状结构,一方面方便所述第一部分与所述第二部分的组装,另一方面,所述第一部分与所述第二部分的连接面积较大,从而使得 所述第一部分与所述第二部分连接更加牢靠,也即所述第一部分不容易从所述第二部分中脱落。
此外,在一些情况下,对于部分光学指标较小的所述第一部分(例如:出瞳区域(exit pupil area,又称为eyebox)的面积较小的所述第一部分或者视场角(field of view,fov)较小的第一部分),通过将所述第一部分装配在环状结构的所述第二部分上,从而使得所述第一部分在各个方向上的面积均能够得到显著地增加,进而显著地增加所述镜片的面积。此时,用户观看的视野较宽阔,且观看舒适度较佳。
第二方面,本申请实施例提供一种设置于头戴式显示装置的镜片。所述镜片包括第一部分和第二部分。所述第一部分与所述第二部分相邻设置。所述第二部分的透光率与所述第一部分的透光率的比值在阈值范围内。所述阈值范围在0.5至1.5之间。所述第一部分包括依次堆叠设置的自由曲面棱镜、半反半透膜及补偿镜。所述半反半透膜设置于所述自由曲面棱镜和所述补偿镜之间。所述自由曲面棱镜包括第一入光面、第一出光面及第二入光面。所述第一入光面与所述半反半透膜相邻设置。所述补偿镜用于接收所述环境光线,所述环境光线透过所述半反半透膜,由所述自由曲面棱镜的第一入光面入射,透过所述第一出光面。所述自由曲面棱镜的第二入光面用于接收所述显示模组发出的显示光线,所述半反半透膜用于将所述第二入光面接收的所述显示光线反射至所述第一出光面。所述第二部分用于透过所述环境光线。
在本实施例中,因为所述第二部分的透光率与所述第一部分的透光率较接近,所以用户从所述第二部分看到真实世界的亮度与从所述第一部分看到真实世界的亮度相同或相近。故而,当用户的眼睛发生转动时,用户的眼睛从正视所述第一部分转向斜视所述第二部分时,用户不会因接收的环境光线的亮度差异大而感到不舒适感。本实施例的所述镜片的用户体验性更佳。
一种实施例中,所述第二部分包括透镜及减透膜。可以理解的是,所述减透膜用于减少环境光线的透过率,从而降低所述第二部分的透光率。所述透镜包括相背设置的第一进光面与第二出光面。所述减透膜位于所述第一进光面与所述第二出光面之间。环境光线依次经过所述第一进光面及所述减透膜后经所述第二出光面射出。
在本实施例中,通过在所述第一进光面与所述第二出光面之间设置所述减透膜,从而降低所述第二部分的透光率,所述第二部分的透光率与所述第一部分的透光率相近。此时,当用户佩戴上所述头戴式显示装置时,所述镜片的所述第一部分与所述第二部分不会出现亮度差异大的问题。
一种实施例中,第一部分的第一侧面和第二部分的第二侧面相邻;半反半透膜位于第一侧面的形状为第一形状;减透膜位于第二侧面的形状为第二形状;第一形状与第二形状匹配。可以理解的是,当所述第一形状与所述第二形状匹配时,所述半反半透膜与所述减透膜彼此连接,且面面贴合。此时,经所述第一进光面进入所述第二部分的环境光线或者经所述补偿镜进入所述第一部分的环境光线只能够一次经过所述减透膜或者所述半反半透膜,也即环境光线不会同时穿过所述减透膜与所述半反半透膜,从而保证整个所述镜片区域的亮度较为一致,也即整个所述镜片的透光均匀性较佳,进而保证用户不会因接收的环境光线的亮度差异大而感到不舒适感。
一种实施例中,所述减透膜为通过磁控溅射或者蒸镀工艺在所述第一进光面与所述第二出光面之间形成的镀层。在本实施例中,所述减透膜的形成工艺简单,且方便操作。
一种实施例中,所述减透膜包括半反半透膜、吸收膜或者偏振膜中的一种或者多种。
因为半反半透膜、吸收膜或者偏振膜的成本较低,所以所形成的所述镜片的成本也较低,也即头戴式显示装置的成本也较低。
一种实施例中,所述第二部分包括基材和混合于所述基材内部的色母粒。
在本实施例中,所述第二部分的制备方式简单,易操作。此外,所述第二部分的各个区域的透光率较均匀。
一种实施例中,第二部分为环状结构,第二部分具有容纳空间,第一部分设置于该容纳空间。通过将所述第二部分设置成环状结构,一方面方便第一部分与第二部分的组装,另一方面,第一部分与第二部分的连接面积较大,从而使得第一部分与第二部分连接更加牢靠,也即第一部分不容易从第二部分中脱落。
附图说明
为了说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图进行说明。
图1是本申请实施例提供的头戴式显示装置的一种实施方式的结构示意图;
图2是图1所示的头戴式显示装置的显示模组与镜片的光路示意图;
图3是图1所示的头戴式显示装置的镜片的一种实施方式的结构示意图;
图4是图3所示的镜片在一种角度的***示意图;
图5是图3所示的镜片与显示模组配合的光线路径示意图;
图6是图3所示的镜片在另一种角度的***示意图;
图7是图1所示的头戴式显示装置的镜片的另一种实施方式的结构示意图;
图8(a)是图7所示的镜片的部分***示意图,其中,(a1)是在一种角度的***示意图,(a2)是在另一种角度的***示意图;
图8(b)是图7所示的镜片的***示意图;
图9是图7所示的镜片在A-A线处的剖面示意图;
图10是图1所示的头戴式显示装置的镜片的再一种实施方式的结构示意图;
图11是图10所示的镜片在B-B处的剖面示意图;
图12是图1所示的头戴式显示装置的镜片的再一种实施方式的结构示意图;
图13是图12所示的镜片在C-C线处的剖面示意图;
图14是图1所示的头戴式显示装置的镜片的再一种实施方式的结构示意图;
图15是图1所示的头戴式显示装置的镜片的再一种实施方式的结构示意图,其中,图15中的(a)为镜片在一种角度的示意图,图15中的(b)为镜片在另一种角度的示意图;
图16是图15所示的镜片的部分***示意图;
图17是图15所示的镜片与显示模组配合的光线传播路径图;
图18是本申请实施例提供的头戴式显示装置的另一种实施方式的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
请参阅图1,图1是本申请实施例提供的头戴式显示装置的一种实施方式的结构示意图。头戴式显示装置100可以为增强现实(augmented reality,ar)眼镜或ar头盔。图1所示实施例的头戴式显示装置100以ar眼镜为例进行阐述。
如图1所示,头戴式显示装置100包括镜架10、显示模组20及镜片30。可选的,镜架10包括镜框11及镜腿12。镜框11可包括用于佩戴在用户鼻部的鼻托。此外,镜腿12用于佩戴在用户的耳部。此时,当用户将头戴式显示装置100佩戴于头部时,通过镜腿13与鼻托可以将头戴式显示装置100固定在用户的头部。
此外,镜片30的数量为两个。两个镜片30均安装于镜架10上。具体的,镜框11上设有两个安装孔。安装孔的形状与镜片30的形状相适配。两个镜片30一一对应地安装于两个安装孔中。此时,用户通过两个镜片30可以看到真实世界。当然,在其他实施例中,镜片30的数量不做限制。例如镜片30也可以为一个,但镜片30的大小能够覆盖用户的双眼。此时,镜框11上设有一个安装孔。镜片30直接安装在安装孔内。用户的双眼可以直接通过该镜片30观看真实世界。
此外,显示模组20的数量为两个。显示模组20可以安装于镜架10上。可选的,显示模组20可以设置在镜框11的内部,以通过镜框11有效地保护显示模组20,避免显示模组20与外部物件因碰撞而发生损坏。每个显示模组20均与一个镜片30对应设置。两个显示模组20分别为两个镜片30提供虚拟图像。虚拟图像可以为但不仅限于为三维虚拟图像。可选的,显示模组20可以为但不仅限于为显示屏或者投影仪。此外,显示模组20可以为微型显示模组。例如,微型显示屏或者微型投影仪。当然,在其他实施例中,显示模组20的数量也可以为一个。显示模组20通过分区为两个镜片30提供虚拟图像。此外,显示模组20可以与外部设备无线通信连接。此时,显示模组20能够接收外部设备所提供的虚拟图像,并将所接收的虚拟图像通过镜片30提供给用户。
在本实施例中,镜片30既能够将显示模组20发出的显示光线传递至用户的眼睛,以使用户能够通过镜片30看到显示模组20所显示的虚拟图像。镜片30还能够将环境光线传递至用户的眼睛,以使用户能够通过镜片30接收真实世界的环境光线来观看真实世界。因此,本实施例的头戴式显示装置100能够让用户看到真实图像与虚拟图像结合的图像。
举例而言,用户能够利用头戴式显示装置100玩三维的虚拟真实游戏。此时,当用户戴上头戴式显示装置100时,镜片30将真实世界作为背景图像传递至用户的眼睛,例如真实世界为一片森林。此时,用户看到一片森林的图像。此外,显示模组20能够提供具有虚拟物件以及虚拟对象的三维虚拟图像。例如,虚拟物件为武器,虚拟对象为人物。此时,镜片30将显示模组20提供的虚拟物件及虚拟对象传递至用户的眼睛。此时,用户所看到的图像是在一片森林里有虚拟武器和虚拟人物。
上文介绍了用户通过头戴式显示装置100能够看到真实图像与虚拟图像结合的图像。下文将通过附图2来具体描述镜片30的第一部分31与第二部分32的光线的传播路径。图2是图1所示的头戴式显示装置100的显示模组20与镜片30的光路示意图。
如图2所示,镜片30包括第一部分31和第二部分32。第一部分31与第二部分32相 邻设置。也即,第二部分32位于第一部分31的周边。第一部分31的周边指的是第一部分31周围的区域。此时,通过第二部分32可以有效地保护第一部分31,避免第一部分31发生损坏。可以理解的是,附图2示意了第二部分32包括第一主体部326及第二主体部327。第一主体部326及第二主体部327分别位于第一部分31的两侧。第一主体部326、第一部分31及第二主体部327拼接成一个连续的镜片30。但第二部分32的结构不仅限于附图2所示的结构。例如,第二部分32的结构还可以为图12、图14及图15所示的结构,具体描述可参阅下文。
在本实施例中,通过将第二部分32设置成分开的第一主体部326与第二主体部327,从而在将第二部分32安装于第一部分31时,分开的第一主体部326与第二主体部327可以从第一部分31的两侧安装于第一部分31。此时,镜片30的组装方式较为简单,且方便操作。
如图2所示,显示模组20发出的显示光线穿过/透过第一部分31之后进入用户的眼睛。环境光线也可以穿过/透过第一部分31之后进入用户的眼睛。此外,环境光线可以穿过/透过第二部分32之后进入用户的眼睛,从而使得用户能够通过第二部分32看到真实世界。因此,用户通过第二部分32与第一部分31的相互配合,以使用户看到更大区域的真实世界,进而增加用户观看外界的舒适感。当然,用户通过第一部分31看到的真实世界与通过第二部分32看到的真实世界可以部分重叠。
以下通过结合附图3至图5来具体描述镜片30的第一部分31的具体结构以及光线(光线包括显示光线和环境光线)在第一部分31的传播路径。图3是图1所示的头戴式显示装置100的镜片30的一种实施方式的结构示意图。图4是图3所示的镜片30在一种角度的***示意图。图5是图3所示的镜片的第一部分的光线路径示意图。
请参阅图3与图4,第一部分31包括依次堆叠设置的自由曲面棱镜311、半反半透膜312及补偿镜313。半反半透膜312位于自由曲面棱镜311与补偿镜313之间。可以理解的是,当光线(包括环境光线和显示光线)传播至半反半透膜312时,半反半透膜312能够将一半的光线进行反射以及使一半的光线透过。自由曲面棱镜311、半反半透膜312及补偿镜313位于第一主体部326与第二主体部327之间。
如图4所示,并结合附图3,自由曲面棱镜311包括第一入光面3112、第二入光面3111(图3示意出在不同角度下的第二入光面3111)及第一出光面3113(图3示意出在不同角度下的第一出光面3113)。可以理解的是,第一入光面3112与第一出光面3113相背设置。第二入光面3111位于第一入光面3112与第一出光面3113之间。第一入光面3112与半反半透膜312相邻,也即半反半透膜312位于第一入光面3112与补偿镜313之间。可以理解的是,当用户佩戴上头戴式显示装置100时,第一出光面3113朝向用户的眼睛,也即用户的眼睛接收经第一出光面3113射出的光线。可以理解的是,半反半透膜312用于将第二入光面3111接收的显示光线反射至第一出光面3113。半反半透膜312还用于使经补偿镜313射入的环境光线透射至第一入光面3112。
如图4所示,补偿镜313具有第三入光面3131。第三入光面3131为补偿镜313背向半反半透膜312的表面。环境光线经第三入光面3131进入补偿镜313。此外,第一入光面3112用于使进入补偿镜313的环境光线进入自由曲面棱镜311。第二入光面3111用于接收 显示模组20(请参阅图2)发出的显示光线,也即使显示模组20(请参阅图2)发出的显示光线进入自由曲面棱镜311内。第一出光面3113用于使进入自由曲面棱镜311的显示光线和环境光线穿出自由曲面棱镜311。具体的,第一部分31的光线传输路径通过下文和附图5具体介绍。
请参阅图5,当显示模组20发出显示光线后。显示光线经第二入光面3111进入自由曲面棱镜311的内部。此时,部分显示光线在第一出光面3113的全反射下,传播至半反半透膜312。该部分显示光线再经半反半透膜312的反射,经第一出光面3113射出,并投射至用户的眼睛。此时,用户能够接收到显示模组20发出的虚拟图像。此外,环境光线经补偿镜313的第三入光面3131进入补偿镜313。此时,环境光线依次透过补偿镜313以及半反半透膜312传播至第一入光面3112,并经第一入光面3112进入自由曲面棱镜311。进入自由曲面棱镜311的环境光线经第一出光面3113射出,并投射至用户的眼睛。此时,用户能够接收到环境光线,也即用户能够看到真实的世界。故而,用户通过第一部分31可以看到真实图像与虚拟图像结合的图像。
上文具体介绍了第一部分31的具体结构以及光线在第一部分31的传播路径。下文将通过附图4与附图6给出第一部分31各个结构的位置关系以及连接关系的几种实施方式。图6是图3所示的镜片30在另一种角度的***示意图。
如图4所示,第三入光面3131与第一出光面3113(图3示意出在不同角度下的第一出光面3113)的形状可以一致。可以理解的是,因为自由曲面棱镜311的第一入光面3112和第一出光面3113的形状不相同,所以当环境光线从第一入光面3112进入自由曲面棱镜311,并从第一出光面3113射出时,环境光线将出现失真现象。此时,通过在第一入光面3112设置补偿镜313,且补偿镜313的第三入光面3131与自由曲面棱镜311的第一出光面3113的形状可以一致,从而使得经第三入光面3131进入补偿镜313的环境光线,并从第一出光面3113射出自由曲面棱镜311的环境光线不会再出现失真现象。当然,在考虑加工工艺的误差,第三入光面3131与第一出光面3113的形状可以略微存在偏差,也即大致一致。
一种实施方式中,补偿镜313的折射率与自由曲面棱镜311的折射率相同。此时,当环境光线穿过补偿镜313与自由曲面棱镜311时,因为补偿镜313的折射率与自由曲面棱镜311的折射率相同,所以环境光线在补偿镜313与自由曲面棱镜311的折射变化是均匀的,此时,当环境光线投射至用户的眼睛时,用户眼睛所呈现的真实世界不会出现物像移位,因此,用户通过镜片30观看真实世界的舒适度较佳。
一种实施方式中,半反半透膜312堆叠于第一入光面3112。补偿镜313通过透明光学胶固定于半反半透膜312上。可以理解的是,透明光学胶能够填充在补偿镜313与半反半透膜312之间缝隙,也即透明光学胶能够吸收补偿镜313与半反半透膜312在生产或者固定的过程中所存在的公差,从而使得第一部分31的整体性较佳,进而使得第一部分31的外观较佳,也即用户不会看到第一部分31的内部具有缝隙。当然,在其他实施例中,半反半透膜312堆叠于补偿镜313。此时,自由曲面棱镜311通过透明光学胶固定于半反半透膜312。
此外,透明光学胶的折射率与补偿镜313的折射率相同。当环境光线穿过补偿镜313 与透明光学胶时,因为透明光学胶的折射率与补偿镜313的折射率相同,所以环境光线在补偿镜313与透明光学胶的折射变化是均匀的,此时,当环境光线投射至用户的眼睛时,用户眼睛所呈现的真实世界不会出现物像移位,因此,用户通过镜片30观看真实世界的舒适度较佳。
此外,因为透明光学胶的折射率与补偿镜313的折射率相同,所以透明光学胶与补偿镜313形成一个整体。此时,透明光学胶与补偿镜313之间的连接处不会出现明显的连接面或者连接线,从而保证第一部分31具有较佳的外观,也即当用户在看第一部分31时,第一部分31的内部不会出现明显的连接面或者连接线。
如图6所示,补偿镜313包括第三出光面3132。第三出光面3132为补偿镜313朝向自由曲面棱镜311的表面。第三出光面3132与第三进光面3131(请参阅图4)相背设置。第三出光面3132与第一入光面3112(图4示意出在不同角度下的第一入光面3112)的形状可以一致。可以理解的是,若补偿镜313的第三出光面3132直接贴合于自由曲面棱镜311的第一入光面3112时,第三出光面3132与第一入光面3112之间不会出现较大的缝隙,也即第三出光面3132与第一入光面3112能够较好的面面贴合。此时,当自由曲面棱镜311与补偿镜313之间设置半反半透膜312时,因为第三出光面3132与第一入光面3112之间不会出现较大的缝隙,所以半反半透膜312无需在较大缝隙处增大厚度来填充该缝隙。故而,本实施例的半反半透膜312的厚度较均匀,此时,穿过半反半透膜312的环境光线的亮度也较均匀,也即穿过第一部分31的亮度也较均匀。当然,在考虑加工工艺的误差,第三出光面3132与第一入光面3112的形状可以存在略微偏差,也即大致一致。
此外,因为第三出光面3132与第一入光面3112之间不会出现较大的缝隙,所以环境光线的传播方向不会因在该缝隙处发生较大的变化,从而使得用户的眼睛从第一部分31观看真实世界时,用户所看到的图像不会出现较大的变化或者突兀的变化,此时,用户观看的舒适度较佳。
上文具体描述了光线在第一部分31的传播路径,可以理解的是,当第一部分31设置有半反半透膜312时,半反半透膜312将部分环境光进行反射,此时,用户从第一部分31看到的真实世界的亮度较暗。而第二部分32能够使得大部分的环境光线通过,此时,用户从第二部分32看到的真实世界的亮度较亮。此时,当用户的眼睛从第一部分31的位置转至第二部分32的位置时,用户接收的环境光线的亮度差异大,从而导致用户产生不舒适感。在本实施例中,通过将第二部分32的透光率与第一部分31的透光率的比值设置在阈值范围内,且阈值范围在0.5至1.5之间,从而使得第二部分32的透光率与第一部分31的透光率较接近。此时,当用户的眼睛从第一部分31的位置转至第二部分32的位置时,用户不会因接收的环境光线的亮度差异大而感到不舒适感。因此,本实施例的头戴式显示装置100的用户体验性更佳。可以理解的是,阈值范围是预先设定的范围。
此外,由于镜片30的不同区域的亮度差异小,从而使得头戴式显示装置100所显示画面的质量较佳。
可选的,阈值范围在0.9至1.1之间。整个镜片30的透光率几乎一致。此时,用户看到的镜片30的整个区域的亮度几乎一致,从而当用户的眼睛从第一部分31的位置转至第二部分32的位置时,用户不会因接收的环境光线的亮度差异大而感到不舒适感。
下文将结合图7至图11来具体描述降低第二部分32的透光率的两种实施例。
第一种实施例:通过在第二部分32内设置减透膜322来降低第二部分32的透光率。在本实施例中,减透膜322可以通过两种实施方式来形成。第一种实施方式:减透膜322为通过磁控溅射或者蒸镀的方式在第一进光面3211与第二出光面3212之间形成镀层。第二种实施方式:减透膜322为半反半透膜、吸收膜或者偏振膜中的一种或者多种。
第二种实施例:通过在第二部分32的基材323的内部设置色母粒324来降低第二部分32的透光率。
首先,结合附图7至图9来具体描述第一种实施例,通过在第二部分32内设置减透膜322来降低第二部分32的透光率,从而提高头戴式显示装置100的显示图像的质量。图7是图1所示的头戴式显示装置100的镜片30的另一种实施方式的结构示意图。图8(a)是图7所示的镜片30的部分***示意图。其中,(a1)是在一种角度的***示意图;(a2)是在另一种角度的***示意图。图8(b)是图7所示的镜片30的***示意图。图9是图7所示的镜片30在A-A线处的剖面示意图。
如图7所示,第二部分32包括透镜321及减透膜322。透镜321可以使得大部分环境光线透过。
在本实施例中,如图8(a)和图8(b)所示,第一部分31位于第一主体部326与第二主体部327之间。此外,以第一主体部326为例进行描述,即第一主体部326包括透镜321及减透膜322。减透膜322用于减少环境光线的透过率,从而起到降低第二部分32的透光率。此外,第二主体部327也可包括透镜及减透膜。第二主体部327的透镜及减透膜的相关设置可参考第一主体部326,下文将不再赘述。
如图8(b)所示,透镜321包括相背设置的第一进光面3211与第二出光面3212(附图7示意了在另一个角度下的第二出光面3212)。第一进光面3211用于使环境光线进入透镜321。第二出光面3212用于使进入透镜321的环境光线穿出。可以理解的是,当用户佩戴上头戴式显示装置100时,第二出光面3212朝向用户的眼睛。此时,当环境光线经第一进光面3211进入透镜321时,环境光线穿过减透膜322,并经第二出光面3212穿出透镜321。穿出透镜321的环境光线投射至用户的眼睛。
在本实施例中,通过在第一进光面3211与第二出光面3212之间设置减透膜322,从而降低第一主体部326的透光率,进而使得第一主体部326的透光率与第一部分31的透光率相近。此时,当用户佩戴上头戴式显示装置100时,镜片30的第一部分31与第二部分32不会出现亮度差异大的问题,也即用户从第二部分32看到真实世界的亮度与从第一部分31看到真实世界的亮度大致相同。因此,当用户的眼睛从正视第一部分31转向斜视第二部分32时,用户不会因接收的环境光线的亮度差异大而感到不舒适感,从而本实施例的头戴式显示装置100的用户体验性更佳。
可选的,透镜321的折射率与补偿镜313的折射率相同。例如,通过将透镜321的材质设置成与补偿镜313的材质相同。此时,当环境光线穿过第一部分31与第二部分32时,因为透镜321的折射率与补偿镜313的折射率相同,所以环境光线在第一部分31与第二部分32的折射变化是均匀的,此时,当环境光线投射至用户的眼睛时,用户眼睛所呈现的真实世界不会出现物像移位,因此,用户通过镜片30观看真实世界的舒适度较佳。
请再次参阅图8(b),透镜321包括相对设置的第一透光部3213及第二透光部3214。在本实施例中,以第一主体部326为例进行说明。此时,第一主体部326包括相对设置的第一透光部3213与第二透光部3214。减透膜322设置在第一透光部3213与第二透光部3214之间。此外,第二主体部327可参考第一主体部326的结构设置,此处不再赘述。
此外,第一透光部3213背离第二透光部3214的表面为第一进光面3211。第二透光部3214背离第一透光部3213的表面为第二出光面3212。
在本实施例中,通过将透镜321设置成第一透光部3213与第二透光部3214,从而在将减透膜322设置在透镜321的过程中,可先将减透膜322设置在第一透光部3213或者第二透光部3214中的一者上,再将另一者固定于减透膜322上。本实施例的减透膜322的安装工艺较简单,容易操作。
在其他实施例中,透镜321也可以为整体结构。此时,减透膜322设置在透镜321的内部。例如,透镜321通过注塑工艺形成。具体的,先形成透镜321的一部分,待冷却成型后,将减透膜322固定在该部分上。最后在通过注塑工艺形成透镜321的另一部分。待透镜321的另一部分冷却成型后,形成第二部分32。此时,减透膜322与透镜321形成一个整体,也即第二部分32的整体性较佳。
一种实施例中,请参阅图8(a),第一部分31的第一侧面319和第二部分32的第二侧面329相邻。半反半透膜312位于第一侧面319的形状为第一形状。减透膜322位于第二侧面329的形状为第二形状。第一形状与第二形状匹配。可以理解的是,当第一形状与第二形状匹配时,半反半透膜312与减透膜322彼此连接,且面面贴合。此时,经第一进光面3211进入第二部分32的环境光线或者经第三入光面3131进入第一部分31的环境光线只能够一次经过减透膜322或者半反半透膜312,也即环境光线不会同时穿过减透膜322与半反半透膜312,从而保证整个镜片30区域的亮度较为一致(可以理解的是,当环境光线穿过减透膜322或者半反半透膜312中的一个位置超过一次时,在该位置处的亮度的减少也将超过一次,此时,第一部分31或者第二部分32的亮度是不均匀的)。故而,本实施例的整个镜片30的透光均匀性较佳,进而保证用户不会因接收的环境光线的亮度差异大而感到不舒适感。
一种实施例中,请参阅图9,减透膜322的边缘连接于半反半透膜312的边缘。此时,第一透光部3213连接于补偿镜313,第二透光部3214连接于自由曲面棱镜311。
可以理解的是,减透膜322与半反半透膜312拼接形成一个连续的膜层。此时,经第一进光面3211进入第二部分32的环境光线或者经第三入光面3131进入第一部分31的环境光线只能够一次经过减透膜322或者半反半透膜312,也即环境光线不会同时穿过减透膜322与半反半透膜312,从而保证整个镜片30区域的亮度较为一致。故而,本实施例的整个镜片30的透光均匀性较佳,进而保证用户不会因接收的环境光线的亮度差异大而感到不舒适感。
可选的,减透膜322与半反半透膜312平滑连接。此时,减透膜322与半反半透膜312的连接处并不会出现较突兀的凸起或者凹陷区,因此穿过减透膜322与半反半透膜312的连接处的环境光线的传播方向与穿过减透膜322或者半反半透膜312的环境光线的传播方向不会出现较突兀的变化,从而当用户的眼睛从第一部分31的位置转至第二部分32的位 置时,用户所看到的真实世界不会出现较大的变化或者突兀的变化,此时,用户观看的舒适度较佳。
可选的,第一进光面3211与补偿镜313的第三入光面3131平滑连接。此时,第一进光面3211与补偿镜313的第三入光面3131的连接处并不会出现较突兀的凸起或者凹陷区,因此镜片30的第一进光面3211与第三入光面3131较平滑,也即镜片30的外观更加美观。此外,因为第一进光面3211与第三入光面3131的连接处并不会出现较突兀的凸起或者凹陷区,所以经第一进光面3211与第三入光面3131的连接处进入镜片30的环境光线的传播方向与经第一进光面3211和第三入光面3131的环境光线的传播方向不会出现较突兀的变化,从而当用户的眼睛从第一部分31的位置转至第二部分32的位置时,用户所看到的真实世界不会出现较大的变化或者突兀的变化,此时,用户观看的舒适度较佳。
以下结合具体介绍减透膜322的两种实施方式的结构。
第一种实施方式,减透膜322为通过磁控溅射或者蒸镀工艺在第一进光面3211与第二出光面3212之间形成的镀层。
具体的,通过磁控溅射或者蒸镀的方式在第一透光部3213朝向第二透光部3214的表面形成镀层。再通过透明光学胶将第二透光部3214粘接于镀层上。此时,形成于第一透光部3213与第二透光部3214之间的镀层为减透膜322。所形成的镀层能够减少穿出透镜321的环境光线,即降低第二部分32的透光率。在其他实施例中,也可以通过磁控溅射或者蒸镀的方式在第二透光部3214朝向第一透光部3213的表面形成镀层。
可选的,镀层包括第一子镀层及层叠于第一子镀层的第二子镀层。第一子镀层的材质包括二氧化硅或氟化镁中的一者。第二子镀层的材质包括氧化钛、氧化钕或氧化锆中的一者。因为不同材质的子镀层具有不同的透光率,所以通过多层子镀层层叠形成减透膜322可以准确地控制减透膜322的透光率。
可选的,第一子镀层的厚度范围在70纳米至100纳米的范围内。第二子镀层的厚度范围在2.5至60纳米的范围内。此时,镀层的厚度较薄,有利于镜片30的薄型化设置。
可选的,镀层为平面状。此时,镀层的厚度均匀性更佳,且镀层的加工难度较低。其他实施方式中,镀层也可以为曲面状。此时,当镀层连接于半反半透膜312时,镀层可以与半反半透膜312拼接成连续的曲面。
第二种实施方式,减透膜322包括半反半透膜、吸收膜或者偏振膜中的一种或者多种。
在本实施方式中,半反半透膜、吸收膜或者偏振膜中的一种或者多种直接固定在第一透光部3213及第二透光部3214之间。因为半反半透膜、吸收膜或者偏振膜的成本较低,所以所形成的镜片30的成本也较低,也即头戴式显示装置100的成本也较低。
可选的,半反半透膜、吸收膜或者偏振膜中的一种或者多种通过透明光学胶固定在第一透光部3213及第二透光部3214之间。
此外,当减透膜322为半反半透膜时,第二部分32的减透膜322与第一部分31的半反半透膜312的材质相同。此时,穿过减透膜322的环境光线的光照强度与穿过半反半透膜312的环境光线的光照强度较接近,此时,第一部分31的透光率与第二部分32的透光率较大程度的接近。进一步的,减透膜322的厚度与第一部分31的半反半透膜312的厚度相同。此时,穿过减透膜322的环境光线的光照强度与穿过半反半透膜312的环境光线的 光照强度一致。
此外,吸收膜指的是可以吸收部分环境光线的膜片。当减透膜322为吸收膜时,吸收膜可以吸收部分进入透镜321的环境光线,从而降低第二部分32的光照强度。本实施例可以根据第一部分31的透光率的大小来选择具体吸收率大小的吸光膜。例如,第一部分31的透光率为50%。此时,减透膜322采用吸收率为50%的吸收膜。
此外,偏振膜指的是能够使得部分偏振光穿过的膜片。当减透膜322为偏振膜时,偏振膜可以使得部分进入透镜321的环境光线穿过,从而降低第二部分32的强度。本实施例的偏振膜也可以根据第一部分31的透光率的大小来选择相应的偏振膜。
可选的,减透膜322为单层膜。例如,减透膜322为半反半透膜、吸收膜或者偏振膜中的一种。
在一些情况下,减透膜322也可以为多层膜。例如:减透膜322为堆叠设置的半反半透膜与吸收膜或者堆叠设置的吸收膜或者偏振膜。因为不同类型的膜层具有不同的透光率,所以通过将减透膜322设置为多层膜,从而能够更佳灵活地控制第二部分32的透光率,进而使得第二部分32的透光率与第一部分31的透光率更容易接近。
以上具体地介绍了第一种实施例:通过在第二部分32内设置减透膜322来降低第二部分32的透光率。以下将结合附图10和图11来具体介绍第二种实施例:通过在第二部分32的基材323的内部设置色母粒324来降低第二部分32的透光率。第二种实施例与第一种实施例相同的技术内容不再赘述。图10是图1所示的头戴式显示装置100的镜片30的再一种实施方式的结构示意图。图11是图10所示的镜片30在B-B处的剖面示意图。
请参阅图10与图11,第二部分32包括基材323和混合于基材323内部的色母粒324。本实施例以第一主体部326包括基材323和混合于基材323内部的色母粒324。第二主体部327的结构设置可参阅第一主体部326的设置。可以理解的是,色母粒324为颜料与热塑性树脂经良好分散而成的塑料着色剂。例如:颜料可以为但不仅限于为钛白粉、炭黑或者氧化铁红。在其他实施例中,也可以在基材323的内部混合色母粉或者其他颜料色剂。
在本实施例中,通过在第二部分32的基材323中设置色母粒324,以通过色母粒324降低第二部分32的透光率。此时,当用户的眼睛发生转动,并从正视第一部分31转向正视第二部分32时,用户不会因接收的环境光线的亮度差异大而感到不舒适感,从而本实施例的头戴式显示装置100的用户体验性更佳。
此外,第二部分32的制备方式简单,易操作。此外,第二部分32的各个区域的透光率较均匀。
可选的,第二部分32通过染色工艺形成。具体的,将色母粒324均匀地混合在树脂(例如聚酰胺(Polyamide,PA)或聚碳酸酯(Polycarbonate,PC))中。再通过将混合均匀的树脂通过注塑成型,也即初步形成第二部分32的形态。例如,通过将加热熔融且添加有色母粒324的树脂注射入模具中,待冷却后得到成型的镜片30。
此外,色母粒324在树脂中的成分比例,可根据第一部分31的透光率进行调整,从而尽量使得第二部分32的透光率等于第一部分31的透光率。
可选的,基材323的材质与补偿镜313的材质一致。此时,基材323的折射率与补偿镜313的折射率相同。故而,用户从第一部分31看到的真实世界与从第二部分32看到的 真实世界能够拼接成一个整体的真实世界,此时,用户观看的舒适度较佳。换言之,当基材323和补偿镜313的折射率不同时,用户通过第一部分31看到的真实世界与从第二部分32看到的真实世界因成像的角度不同或者成像的倍数不同是无法拼接成一个整体的真实世界。此时,当用户的眼睛从第一部分31的位置转至第二部分32的位置时,用户所看到的图像会出现较大的变化或者突兀的变化,此时,用户观看的舒适度较差。
以上详细地介绍了第二部分32在第一种结构下的各个实施例。以下结合附图12、图13以及图14来具体描述第二部分32的第二种结构。第二部分32在第二种结构下的各个实施例与第二部分32在第一种结构下的各个实施例的大部分相同的技术内容不再赘述。图12是图1所示的头戴式显示装置100的镜片30的再一种实施方式的结构示意图。图13是图12所示的镜片30在C-C线处的剖面示意图。图14是图1所示的头戴式显示装置100的镜片30的再一种实施方式的结构示意图。
请参阅图12和图13,第二部分32还包括第三主体部328。第三主体部328连接于第一主体部326与第二主体部327之间,且第三主体部328与第一部分31的第一出光面3113相邻设置。可以理解的是,第一部分31的第一出光面3113指的是显示光线和环境光线射出第一部分31的表面。
请参阅图13,第三主体部328的一端连接于第一主体部326朝向第一部分31的表面,另一端连接于第二主体部327朝向第一部分31的表面。第三主体部328与第一主体部326及第二主体部327的连接关系不仅限于图13所示,第三主体部328与第一主体部326及第二主体部327的连接关系还可以为附图14所示的结构。可参阅下文描述。
在本实施例中,当第一主体部326及第二主体部327固定于第一部分31的两侧,且第三主体部328位于第一部分31的出光侧时,第一主体部326、第二主体部327与第三主体部328围在第一部分31的周边。此时,第一主体部326、第二主体部327与第三主体部328可以有效地保护第一部分31,以避免第一部分31与其他器件因发生触碰而损坏。
此外,当第一主体部326、第二主体部327与第三主体部328将第一部分31包围时,第一主体部326、第二主体部327、第三主体部328与第一部分31的整体性较佳,此时,镜片30的结构强度也较强。
可选的,第三主体部327通过透明光学胶固定连接于第一主体部326与第二主体部327。此外,第三主体部327通过透明光学胶固定连接于第一部分31。
可选的,第三主体部327的材质与第一主体部326和第二主体部327的材质一致。
如图13所示,第一部分31包括依次堆叠设置的自由曲面棱镜311、半反半透膜312及补偿镜313时,第三主体部328固定连接于自由曲面棱镜311的第一出光面3113(可结合参阅附图3的第一出光面3113)。此时,第一主体部326、第二主体部327与第三主体部328位于堆叠设置的自由曲面棱镜311、半反半透膜312及补偿镜313的周边。
可选的,第三主体部328、第一主体部326与第二主体部327一体成型。此时,第二部分32的整体性较强。此外,相较于分别制备第一主体部326、第二主体部327及第三主体部328,再将第一主体部326、第二主体部327及第三主体部328拼接成第二部分32的方法,本实施例的第三主体部328、第一主体部326与第二主体部327一体成型,从而简化了第二部分32的制备过程,进而节省了第二部分32的成本投入。
可以理解的是,本实施例的第一主体部326与第二主体部327的结构设置可参考上述实施例的第一主体部326与第二主体部327的结构设置(例如,通过在第一主体部326内设置减透膜322来降低第二部分32的透光率。或者,通过在第一主体部326的基材323的内部设置色母粒324来降低第二部分32的透光率。)。具体的这里不再赘述。
如图14所示,与上述实施例大部分相同的技术内容不再赘述:第三主体部328的一端连接于第一主体部326的第二出光面3212,另一端连接于第二主体部327的第二出光面3212。
可选的,在装配形成镜片30的过程中,可先将第一部分31的自由曲面棱镜311、半反半透膜312及补偿镜313依次堆叠在第三主体部328上。在将第一主体部326与第二主体部327拼接在第一部分31的周围,且固定连接于第三主体部328朝向第一部分31的表面。
上文介绍了第二部分32在第二种结构。下文将结合附图15至图17来具体描述第二部分32的第三种结构。图15是图1所示的头戴式显示装置100的镜片30的再一种实施方式的结构示意图,其中,图15中的(a)为镜片30在一种角度的示意图;图15中的(b)为镜片30在另一种角度的示意图。图16是图15所示的镜片的部分***示意图。图17是图15所示的镜片30与显示模组20配合的光线传播路径图。
请参阅图15和图16,第二部分32为环状结构。第二部分32具有容纳空间325。第一部分31设于容纳空间325。可以理解的是,附图16示意了容纳空间325分别由第一空间3251、第二空间3252以及第三空间3253拼接形成。但容纳空间325也可以为一个整体的空间组成。
此外,第二部分32包括相背设置的第一进光面3211与第二出光面3212。容纳空间325自第一进光面3211贯穿至第二出光面3212。当第一部分31设于容纳空间325内时,第一部分31固定连接于容纳空间325的侧壁,也即第二部分32将第一部分31的周侧面包围住。
在本实施例中,当第一部分31设于容纳空间325内时,第二部分32包围在第一部分31的周侧面。此时,第二部分32可以有效地保护第一部分31,以避免第一部分31与其他器件因发生触碰而损坏。
此外,当第二部分32包围在第一部分31的周侧面时,第二部分32与第一部分31的整体性较佳,此时,镜片30的结构强度也较强。
可以理解的是,通过将第二部分32设置成环状结构,一方面方便第一部分31与第二部分32的组装,另一方面第一部分31与第二部分32的连接面积较大,从而使得第一部分31与第二部分32连接更加牢靠,也即第一部分31不容易从第二部分32中脱落。
此外,在一些情况下,对于部分光学指标较小的第一部分31(例如:出瞳区域(exit pupil area,又称为eyebox)的面积较小的第一部分31或者视场角(field of view,fov)较小的第一部分),通过将第一部分31装配在环状结构的第二部分32上,从而使得第一部分31在各个方向上的面积均能够得到显著地增加,进而显著地增加镜片30的面积。此时,用户观看的视野较宽阔,且观看舒适度较佳。
此外,在一些情况下,对于在自由曲面棱镜311确定的光学指标下,通过将第二部分32设置成上述结构,也可以使得,也即在确定自由曲面棱镜311的体积大小下,通过将自 由曲面棱镜311装配在环状结构的第二部分32上,从而使得自由曲面棱镜311在各个方向上的面积均能够得到显著地增加,进而显著地增加镜片30的面积。此时,用户观看的视野较宽阔,且观看舒适度较佳。
在本实施方式中,环境光线经第一进光面3211进入第二部分32,并经第二出光面3212射出第二部分32,也即用户可以通过第二部分32看到真实世界。
此外,如图15所示,第二部分32包括第二进光面3219。第二进光面3219连接在第一进光面3211与第二出光面312之间。第二进光面3219用于使显示模组20(请参阅图17)发出的显示光线进入第二部分32,并通过第二部分32进入第一部分31。
如图17所示,当显示模组20发出显示光线后。显示光线经第二进光面3219进入第二部分32。进入第二部分32的显示光线射出第二部分32,并经自由曲面棱镜311的第二入光面3111进入自由曲面棱镜311的内部。此时,部分显示光线在第一出光面3113的全反射下,传播至半反半透膜312。该部分显示光线再经半反半透膜312的反射,经第一出光面3113射出,并投射至用户的眼睛。此时,用户能够接收到显示模组20发出的虚拟图像。此外,环境光线经补偿镜313的第三入光面3131进入补偿镜313。此时,环境光线依次穿过补偿镜313以及半反半透膜312传播至第一入光面3112,并经第一入光面3112进入自由曲面棱镜311。进入自由曲面棱镜311的环境光线经第一出光面3113射出,并投射至用户的眼睛。此时,用户能够接收到环境光线,也即用户能够看到真实的世界。故而,用户通过第一部分31可以看到真实图像与虚拟图像结合的图像。
如图16所示,第一部分31包括依次堆叠设置的自由曲面棱镜311、半反半透膜312及补偿镜313。此时,自由曲面棱镜311、半反半透膜312及补偿镜313收容于容纳空间325。可以理解的是,自由曲面棱镜311、半反半透膜312及补偿镜313的设置方式与第一种结构的第二部分32所在实施例的自由曲面棱镜311、半反半透膜312及补偿镜313的设置方式一样。这里不再赘述。
如图16所示,第二部分32包括透镜321及减透膜322。可以理解的是,透镜321和减透膜322的形状均为环状。此外,透镜321与减透膜322的设置方式均可以参考第一种结构的第二部分32的透镜321与减透膜322的设置方式。例如,透镜321包括相对设置的第一透光部3213及第二透光部3214。减透膜322设置在第一透光部3213及第二透光部3214之间。与上述实施例不同的是,第一透光部3213、第二透光部3214以及减透膜322均为环状结构。此时,第一透光部3213设有第一空间3251。减透膜322设有第二空间3252。第二透光部3214设有第三空间3253。第一空间3251、第二空间3252以及第三空间3253拼接形成容纳空间325。此外,第二部分32也可以参考在第一种结构中在第二部分32的基材323的内部设置色母粒324以降低第二部分32的透光率。
上文具体介绍了一种头戴式显示装置100的结构,以下将结合附图18介绍另一种结构的头戴式显示装置100。与第一种结构的头戴式显示装置100相同的技术内容不再赘述。图18是本申请实施例提供的头戴式显示装置100的另一种实施方式的结构示意图。
具体的,头戴式显示装置100还可以包括虹膜摄像头40。虹膜摄像头40安装于镜架10上。可选的,虹膜摄像头40安装于镜框11上。例如,虹膜摄像头40可以为但不仅限于为红外摄像头。虹膜摄像头40可以获取用户的虹膜位置的变化信息,并将虹膜的变化信 息转化为显示模组20的坐标信息。虹膜摄像头40的数量可以为一个,用于检测用户一只眼睛的虹膜位置的变化信息。当然,虹膜摄像头40也可以为两个,用于同时检测两只眼睛的虹膜位置的变化信息。此时,两个虹膜摄像头40所采集的虹膜位置数据可以相互补充或相互修正。可以理解的是,通过虹膜摄像头40采集用户的虹膜位置的变化信息,可以使用户看到不同区域中具有不同的虚拟图像。例如,用户在第一时刻正视镜片30时,用户可以看到第一区域中有一把武器和一个人物。当用户的眼睛发生转动时,虹膜摄像头40采集眼睛的虹膜位置的变化信息,并转化为显示模组20的坐标的变化信息。此时,用户在第二时刻向左看向镜片30时,用户可以看到第二区域中有另一把武器或者另一个人物。
请再次参阅图18,头戴式显示装置100还可以包括结构光模组50。结构光模组50安装于镜架10内。结构光模组50可以用于扫描用户的脸部,并获取用户脸部的特征信息。此时,通过获取的脸部特征信息与预设的脸部信息来做比对。当比对结果相符合时,头戴式显示装置100开启。当比对结果不符合时,头戴式显示装置100不启动。此外,结构光模组50还可以用于与显示模组20相互配合,从而实现虚拟购物。例如,当用户需要购买新武器时,显示模组20向用户提供虚拟物件的购物清单。此时,通过结构光模组50所获取的脸部信息可以用来确认用户是否购买武器。
在其他实施方式中,头戴式显示装置100还可以包括听筒、话筒以及无线充电装置。听筒和话筒安装于镜架10内。此时,用户可以通过听筒接听其他用户的语音信息。例如,接听队友的作战信息。通过话筒可以进入语音信息的输入。此时,用户可以通过语音信息操控显示模组20的虚拟界面。此外,通过无线充电装置来对头戴式显示装置100进行无线充电。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种头戴式显示装置,其特征在于,包括镜架、镜片及显示模组,所述镜片及所述显示模组均设置于所述镜架;
    所述镜片包括第一部分和第二部分,所述第一部分与所述第二部分相邻设置;
    所述第一部分用于透过环境光线;
    所述第二部分用于透过所述环境光线;
    所述第一部分还用于透过所述显示模组发出的显示光线;
    所述第二部分的透光率与所述第一部分的透光率的比值在阈值范围内,所述阈值范围在0.5至1.5之间。
  2. 根据权利要求1所述的头戴式显示装置,其特征在于,所述第一部分包括依次堆叠设置的自由曲面棱镜、半反半透膜及补偿镜;
    所述半反半透膜设置于所述自由曲面棱镜和所述补偿镜之间;
    所述自由曲面棱镜包括第一入光面、第一出光面及第二入光面,所述第一入光面与所述半反半透膜相邻设置;
    所述第一部分用于透过环境光线,包括:
    所述补偿镜用于接收所述环境光线,所述环境光线透过所述半反半透膜,由所述自由曲面棱镜的第一入光面入射,透过所述第一出光面;
    所述第一部分还用于透过所述显示模组发出的显示光线,包括:
    所述自由曲面棱镜的第二入光面用于接收所述显示模组发出的显示光线,所述半反半透膜用于将所述第二入光面接收的所述显示光线反射至所述第一出光面。
  3. 根据权利要求2所述的头戴式显示装置,其特征在于,所述第二部分包括透镜及减透膜,所述透镜包括相背设置的第一进光面与第二出光面,所述减透膜位于所述第一进光面与所述第二出光面之间,环境光线依次经过所述第一进光面及所述减透膜后经所述第二出光面射出。
  4. 根据权利要求3所述的头戴式显示装置,其特征在于,
    所述第一部分的第一侧面和所述第二部分的第二侧面相邻;
    所述半反半透膜位于所述第一侧面的形状为第一形状;
    所述减透膜位于所述第二侧面的形状为第二形状;
    所述第一形状与所述第二形状匹配。
  5. 根据权利要求4所述的头戴式显示装置,其特征在于,所述透镜包括相对设置的第一透光部及第二透光部,所述第一透光部背离所述第二透光部的表面为第一进光面,所述第二透光部背离所述第一透光部的表面为第二出光面,所述减透膜固定于所述第一透光部与所述第二透光部之间。
  6. 根据权利要求5所述的头戴式显示装置,其特征在于,所述减透膜为通过磁控溅射或者蒸镀工艺在所述第一透光部朝向第二透光部的表面或者所述第二透光部朝向所述第一透光部的表面形成的镀层。
  7. 根据权利要求3至5中任一项所述的头戴式显示装置,其特征在于,所述减透膜包括半反半透膜、吸收膜或者偏振膜中的一种或者多种。
  8. 根据权利要求1或2所述的头戴式显示装置,其特征在于,所述第二部分包括基材和混合于所述基材内部的色母粒。
  9. 根据权利要求1至6中任一项所述的头戴式显示装置,其特征在于,所述第二部分包括第一主体部及第二主体部,所述第一主体部及所述第二主体部分别位于所述第一部分的两侧。
  10. 根据权利要求9所述的头戴式显示装置,其特征在于,所述第二部分还包括第三主体部,所述第三主体部设置于所述第一主体部与所述第二主体部之间,且所述第三主体部与所述第一部分的第一出光面相邻设置。
  11. 根据权利要求1至6中任一项所述的头戴式显示装置,其特征在于,所述第二部分为环状结构,所述第二部分具有容纳空间,所述第一部分设置于所述容纳空间。
  12. 一种设置于头戴式显示装置的镜片,其特征在于,所述镜片包括第一部分和第二部分,所述第一部分与所述第二部分相邻设置,所述第二部分的透光率与所述第一部分的透光率的比值在阈值范围内,所述阈值范围在0.5至1.5之间;
    所述第一部分包括依次堆叠设置的自由曲面棱镜、半反半透膜及补偿镜;
    所述半反半透膜设置于所述自由曲面棱镜和所述补偿镜之间;
    所述自由曲面棱镜包括第一入光面、第一出光面及第二入光面,所述第一入光面与所述半反半透膜相邻设置;
    所述补偿镜用于接收环境光线,所述环境光线透过所述半反半透膜,由所述自由曲面棱镜的第一入光面入射,透过所述第一出光面;
    所述自由曲面棱镜的第二入光面用于接收显示模组发出的显示光线,所述半反半透膜用于将所述第二入光面接收的所述显示光线反射至所述第一出光面;
    所述第二部分用于透过所述环境光线。
  13. 根据权利要求12所述的镜片,其特征在于,
    所述第二部分包括透镜及减透膜,所述透镜包括相背设置的第一进光面与第二出光面,所述减透膜位于所述第一进光面与所述第二出光面之间,环境光线依次经过所述第一进光面及所述减透膜后经所述第二出光面射出。
  14. 根据权利要求13所述的镜片,其特征在于,所述第一部分的第一侧面和所述第二部分的第二侧面相邻;
    所述半反半透膜位于所述第一侧面的形状为第一形状;
    所述减透膜位于所述第二侧面的形状为第二形状;
    所述第一形状与所述第二形状匹配。
  15. 根据权利要求12所述的镜片,其特征在于,所述第二部分包括基材和混合于所述基材内部的色母粒。
  16. 根据权利要求12至15任一项所述的镜片,其特征在于,所述第二部分为环状结构,所述第二部分具有容纳空间,所述第一部分设置于所述容纳空间。
PCT/CN2020/102526 2019-07-31 2020-07-17 镜片和头戴式显示装置 WO2021017885A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20848240.6A EP3985427A4 (en) 2019-07-31 2020-07-17 LENS AND HEAD MOUNT DISPLAY
US17/629,705 US20220283437A1 (en) 2019-07-31 2020-07-17 Lens and head-mounted display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910703281.X 2019-07-31
CN201910703281.XA CN110426853B (zh) 2019-07-31 2019-07-31 镜片和头戴式显示装置

Publications (1)

Publication Number Publication Date
WO2021017885A1 true WO2021017885A1 (zh) 2021-02-04

Family

ID=68413461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102526 WO2021017885A1 (zh) 2019-07-31 2020-07-17 镜片和头戴式显示装置

Country Status (4)

Country Link
US (1) US20220283437A1 (zh)
EP (1) EP3985427A4 (zh)
CN (1) CN110426853B (zh)
WO (1) WO2021017885A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110426853B (zh) * 2019-07-31 2020-10-16 华为技术有限公司 镜片和头戴式显示装置
US11662583B2 (en) * 2020-10-15 2023-05-30 Google Llc Optical combiner with integrated prescription optical correction and method of manufacturing the same
US20220397750A1 (en) * 2020-12-25 2022-12-15 Boe Technology Group Co., Ltd. Optical system and display apparatus
CN113204119A (zh) * 2021-04-30 2021-08-03 歌尔股份有限公司 胶合镜组和头戴显示设备
WO2024018322A1 (ja) * 2022-07-22 2024-01-25 株式会社半導体エネルギー研究所 電子機器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140098425A1 (en) * 2008-12-02 2014-04-10 Saab Ab Head-up display for night vision goggles
CN106164745A (zh) * 2014-04-09 2016-11-23 3M创新有限公司 头戴式显示器和低醒目性瞳孔照明器
CN108027507A (zh) * 2015-10-12 2018-05-11 英特尔公司 可调整瞳孔距离可穿戴显示器
CN207457609U (zh) * 2017-11-10 2018-06-05 深圳市美誉镜界光电科技有限公司 用于ar眼镜的近眼显示光学模组及ar眼镜
CN110426853A (zh) * 2019-07-31 2019-11-08 华为技术有限公司 镜片和头戴式显示装置
CN210666202U (zh) * 2019-07-31 2020-06-02 华为技术有限公司 头戴式显示装置和设置于其的镜片

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2294476A1 (en) * 2008-06-13 2011-03-16 Gunnar Optiks, LLC Low-power eyewear for reducing symptoms of computer vision syndrome
US9625723B2 (en) * 2013-06-25 2017-04-18 Microsoft Technology Licensing, Llc Eye-tracking system using a freeform prism
CN203433192U (zh) * 2013-07-18 2014-02-12 成都理想境界科技有限公司 一种头戴显示装置hmd
CN110542938B (zh) * 2013-11-27 2023-04-18 奇跃公司 虚拟和增强现实***与方法
CA3027407A1 (en) * 2014-02-18 2015-08-27 Merge Labs, Inc. Head mounted display goggles for use with mobile computing devices
US10203762B2 (en) * 2014-03-11 2019-02-12 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
US10203489B2 (en) * 2016-08-02 2019-02-12 Apple Inc. Optical system for head-mounted display
CN106680994B (zh) * 2016-12-01 2019-04-19 青岛海尔空调器有限总公司 一种显示组件透光率控制方法
CN106842599B (zh) * 2017-03-31 2020-05-29 广州大西洲科技有限公司 一种3d视觉成像方法及实现3d视觉成像的眼镜
KR20200074172A (ko) * 2017-10-26 2020-06-24 매직 립, 인코포레이티드 액정 가변 초점 엘리먼트를 갖는 증강 현실 디스플레이 그리고 이를 형성하기 위한 롤투롤 방법 및 장치
CA3084546C (en) * 2017-12-03 2023-01-31 Frank Jones Enhancing the performance of near-to-eye vision systems
CN207780380U (zh) * 2018-02-02 2018-08-28 深圳惠牛科技有限公司 一种头戴显示光学***及头戴显示设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140098425A1 (en) * 2008-12-02 2014-04-10 Saab Ab Head-up display for night vision goggles
CN106164745A (zh) * 2014-04-09 2016-11-23 3M创新有限公司 头戴式显示器和低醒目性瞳孔照明器
CN108027507A (zh) * 2015-10-12 2018-05-11 英特尔公司 可调整瞳孔距离可穿戴显示器
CN207457609U (zh) * 2017-11-10 2018-06-05 深圳市美誉镜界光电科技有限公司 用于ar眼镜的近眼显示光学模组及ar眼镜
CN110426853A (zh) * 2019-07-31 2019-11-08 华为技术有限公司 镜片和头戴式显示装置
CN210666202U (zh) * 2019-07-31 2020-06-02 华为技术有限公司 头戴式显示装置和设置于其的镜片

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3985427A4

Also Published As

Publication number Publication date
CN110426853A (zh) 2019-11-08
EP3985427A4 (en) 2022-08-31
EP3985427A1 (en) 2022-04-20
US20220283437A1 (en) 2022-09-08
CN110426853B (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
WO2021017885A1 (zh) 镜片和头戴式显示装置
US10782532B2 (en) Compact head-mounted display system protected by a hyperfine structure
TWI712821B (zh) 光學系統、擴增實境系統、抬頭顯示系統、電子裝置以及光學模組
US9977245B2 (en) Augmented reality eyewear
US10488660B2 (en) Wearable optical display system for unobstructed viewing
US8384999B1 (en) Optical modules
CN110073272B (zh) 一种自由曲面棱镜组及使用其的近眼显示装置
US20080151379A1 (en) Substrate-Guide Optical Device Utilizing Polarization Beam Splitters
US20030030912A1 (en) Compact wide field of view imaging system
CN210835436U (zh) 基于Micro LED的AR投影组件
KR20170097661A (ko) 기판 유도식 광학 장치
EP3218760A1 (en) Thin curved eyepiece for see-through head wearable display
CN208367337U (zh) 一种ar显示设备
WO2019028970A1 (zh) 光学***、放大影像装置、虚拟现实眼镜及增强现实眼镜
CN210666202U (zh) 头戴式显示装置和设置于其的镜片
US20220128744A1 (en) Broadband reflector for waveguide assembly in a head-mounted display
US20230333382A1 (en) Optical assembly for a head-mount display (hmd) device
CN114563871B (zh) 眼动追踪装置及电子设备
CN113253558A (zh) 光源组件、成像装置和电子装置
US11256094B2 (en) Wearable optical display system for unobstructed viewing
WO2020119320A1 (zh) 显示光机及其方法和近眼显示设备
US20230324669A1 (en) Reflective hollow singlet folded optical lens structure
KR20220067667A (ko) 헤드 마운트 디스플레이장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020848240

Country of ref document: EP

Effective date: 20220113

NENP Non-entry into the national phase

Ref country code: DE