WO2020116464A1 - 耐食性CuZn合金 - Google Patents

耐食性CuZn合金 Download PDF

Info

Publication number
WO2020116464A1
WO2020116464A1 PCT/JP2019/047271 JP2019047271W WO2020116464A1 WO 2020116464 A1 WO2020116464 A1 WO 2020116464A1 JP 2019047271 W JP2019047271 W JP 2019047271W WO 2020116464 A1 WO2020116464 A1 WO 2020116464A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
ppm
content
phase
sample
Prior art date
Application number
PCT/JP2019/047271
Other languages
English (en)
French (fr)
Inventor
雅博 高畑
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to JP2020559236A priority Critical patent/JP7273063B2/ja
Priority to CN201980075491.7A priority patent/CN113056570A/zh
Priority to EP19893908.4A priority patent/EP3892745A4/en
Priority to US17/288,398 priority patent/US11643707B2/en
Priority to KR1020217014266A priority patent/KR102578427B1/ko
Publication of WO2020116464A1 publication Critical patent/WO2020116464A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/02Alloys based on zinc with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the present invention relates to a corrosion resistant CuZn alloy that can be suitably used for an electrode used in an acidic atmosphere.
  • Pulsed laser light has been used for integrated circuit photolithography in recent years.
  • the pulsed laser light can be generated by giving a gas discharge between a pair of electrodes with a very short discharge and a very high voltage in a gas discharge medium.
  • a fluorine containing plasma is generated between the pair of electrodes during operation. Fluorine-containing plasma is very corrosive to metals.
  • the electrodes corrode over time during operation of the pulsed laser generator. Corrosion of the electrode forms a corrosion spot and causes arcing in the plasma, further accelerating the reduction in the life of the electrode.
  • a Cu-containing alloy is used as the electrode.
  • Patent Documents 1 and 2 As a technique for extending the life of the electrode, the main body of the discharge electrode made of a Cu-containing alloy is partially exposed for discharge (discharge receiving region), and the other part is covered with another alloy. By doing so, a technique for stably using the electrode for a long time has been developed (Patent Documents 1 and 2). On the other hand, in addition to such devising of the structure of the electrode, brass doped with phosphorus is used as the copper alloy used for the electrode to reduce the generation of micropores in the brass and prolong the life of the electrode. A technique is disclosed (Patent Document 3).
  • an object of the present invention is to provide a Cu-containing alloy having improved corrosion resistance.
  • the present inventor has found that by performing multi-step forging of a CuZn alloy having a composition described below, excellent corrosion resistance can be exhibited without adding other elements, and thus the present invention has been achieved.
  • the present invention includes the following (1).
  • Zn content is 36.8 to 56.5% by mass, the balance is Cu and unavoidable impurities, A corrosion resistant CuZn alloy having an area ratio of ⁇ phase of 99.9% or more.
  • a corrosion resistant CuZn alloy can be obtained.
  • the corrosion resistant CuZn alloy of the present invention can be suitably used for electrodes used in an acidic atmosphere, and is particularly suitable for electrodes of ArF laser system and KrF laser system.
  • the corrosion-resistant CuZn alloy of the present invention does not require addition of other elements at the time of production, and can be produced while avoiding the burden of increasing the number of steps due to these addition steps.
  • FIG. 1 is an explanatory diagram of the procedure of Production Example 1.
  • FIG. 2-1 shows the results of the corrosion resistance test of Samples 1 to 3 using nitric acid.
  • FIG. 2-2 shows the results of the corrosion resistance test of Samples 4 to 6 using nitric acid.
  • FIG. 3-1 shows the results of the corrosion resistance test of Samples 1 to 3 using the hydrofluoric nitric acid aqueous solution.
  • FIG. 3-2 shows the results of the corrosion resistance test for the samples 4 to 6 using the hydrofluoric nitric acid aqueous solution.
  • FIG. 4 is an optical micrograph showing an example of a cross section of Sample 1.
  • FIG. 5 is an optical micrograph showing an example of a cross section of Sample 3.
  • FIG. 6 is a graph of the particle size distribution of Sample 1 and Sample 3.
  • the corrosion resistant CuZn alloy according to the present invention has a Zn content of 36.8 to 56.5% by mass, and the balance of Cu and inevitable impurities.
  • the CuZn alloy has an area ratio of ⁇ phase of 99.9% or more. This CuZn alloy can be suitably used as an alloy for corrosion resistant electrodes.
  • the Zn content can be 36.8 to 56.5% by mass, for example, preferably 36.5 to 50.0% by mass, more preferably 36.5 to 46.0% by mass, or preferably The amount can be 36.8 to 50.0% by mass, more preferably 36.8 to 46.0% by mass, or 40.0 to 46.0% by mass.
  • the total of the Zn content and the Cu content can be 99.999 mass% or more, preferably 99.9999 mass% or more, and more preferably 99.99995 mass% or more.
  • the contents of the following respective elements can be set as the contents below.
  • Na content is less than 0.05 ppm, preferably less than 0.01 ppm (less than measurement limit)
  • Mg content is less than 0.01 ppm, preferably less than 0.001 ppm (less than the measurement limit)
  • Al content is less than 0.01 ppm, preferably less than 0.001 ppm (less than the measurement limit)
  • Si content is less than 0.5 ppm, preferably less than 0.005 ppm (less than measurement limit)
  • P content is less than 0.01 ppm, preferably less than 0.005 ppm (less than the measurement limit)
  • S content is 0.05 ppm or less, preferably less than 0.05 ppm (less than the measurement limit)
  • Cl content is less than 0.05 ppm, preferably less than 0.005 ppm (less than the measurement limit)
  • K content is 0.01 ppm or less, preferably less than 0.01 ppm or less, preferably less than 0.01
  • the content of the impurity element is set to be equal to or less than the content value of each element of Sample 1 described in Table 1 (Table 1-1, Table 1-2, Table 1-3) described later. For each element in sample 1 below the measurement limit value, it can be below the measurement limit value.
  • Metal elements can be analyzed by GD-MS (VG Scientific VG-9000), and gas components of oxygen (O), nitrogen (N) and hydrogen (H) are oxygen produced by LECO.
  • a nitrogen analyzer (model TCH-600) can be analyzed for carbon (C) and sulfur (S) using a carbon sulfur analyzer (model CS-444) manufactured by LECO.
  • the corrosion-resistant CuZn alloy according to the present invention has an area ratio of ⁇ phase of, for example, 99.9% or more, preferably 99.99% or more, and more preferably 99.999% or more. is there. There is no upper limit on the area ratio of the ⁇ phase, but it may be 100% or less, for example.
  • the area ratio of the ⁇ phase can be calculated by the means described later in the examples.
  • the area ratio of ⁇ phase is in the above range, and as a result, the sum of the area ratio of ⁇ phase and the area ratio of ⁇ phase is, for example, 0. It can be 0.01% or less, preferably 0.001% or less, and more preferably 0.0001% or less. There is no particular lower limit to the total of the area ratio of the ⁇ phase and the area ratio of the ⁇ phase, but it may be, for example, 0% or more.
  • the corrosion-resistant CuZn alloy according to the present invention has an average crystal grain size D50 of, for example, 0.3 to 0.6 mm, preferably 0.4 to 0.6 mm, more preferably 0.45 to 0. It can be in the range of 0.55 mm, for example 0.3 to 0.7 mm, preferably 0.4 to 0.65 mm, more preferably 0.45 to 0.65 mm.
  • the corrosion-resistant CuZn alloy according to the present invention has an average crystal grain size D90 of, for example, 0.3 to 0.7 mm, preferably 0.5 to 0.7 mm, more preferably 0.55 to 0. It can be in the range of 0.65 mm, for example 0.3 to 0.8 mm, preferably 0.5 to 0.75 mm, and more preferably 0.55 to 0.75 mm.
  • the corrosion resistant CuZn alloy according to the present invention has excellent corrosion resistance in a fluorine-containing environment.
  • the corrosion resistance in the present invention can be tested under severe conditions by the hydrofluoric nitric acid test shown in the examples.
  • the corrosion resistant CuZn alloy of the present invention can be manufactured by the means and conditions disclosed in the examples described later. That is, in a preferred embodiment, a step of melting a Cu raw material and a Zn raw material in a vacuum and heating and holding them under an inert gas atmosphere to obtain a high-purity CuZn alloy, and a multistage process for the obtained high-purity CuZn alloy. It can be manufactured by a method including a step of forging and a step of forging the multi-step forged high-purity CuZn alloy into a predetermined shape.
  • Multi-step forging can be performed by the means and conditions disclosed in the examples described later. That is, in a preferred embodiment, for example, a columnar ingot having an aspect ratio of 1:1.22 is preheated at 550 to 680° C. for 3 hours or more, and a prism having an aspect ratio of 0.8:1.52, 0.88: It is deformed into a cylindrical shape of 1.6 and a cylindrical shape of 1.2:0.8, and is transformed into the original cylindrical shape with an aspect ratio of 1:1.22 and reheated at 550 to 680°C for 10 minutes or more. It can be performed by repeating step 3 or more times.
  • the corrosion resistant CuZn alloy according to the present invention Since the corrosion resistant CuZn alloy according to the present invention has excellent corrosion resistance in a fluorine-containing environment, it can be suitably used as a corrosion resistant alloy for electrodes.
  • the corrosion-resistant CuZn alloy according to the present invention is used as a high-purity electrode material because it exhibits excellent corrosion resistance while avoiding secondary contamination of impurities caused by the doping treatment for adding other elements. be able to. Then, the corrosion-resistant CuZn alloy according to the present invention can be used as an electrode having excellent corrosion resistance by using the well-known technology of improving the corrosion resistance by devising the electrode structure.
  • the present invention includes the following (1) embodiments.
  • (1) Zn content is 36.8 to 56.5% by mass, the balance is Cu and inevitable impurities,
  • Na content is less than 0.05 ppm
  • Mg content is less than 0.01 ppm
  • Al content is less than 0.01 ppm
  • Si content is less than 0.5 ppm
  • P content is less than 0.01 ppm
  • S content is 0.
  • Example: Sample 1 A CuZn alloy was manufactured as follows. The following Cu raw material and Zn raw material were prepared as raw materials. Cu raw material: high-purity metallic copper (6N) (purity 99.9999%) Zn raw material: high-purity metallic zinc (4N5) (purity 99.995%) 11.45 kg of the raw material Cu and 10.05 kg of the raw material Zn were vacuum-melted (conditions: vacuumed to 10 ⁇ 1 Pa and then placed in an Ar 400 torr atmosphere and kept at 1050° C. for 30 minutes) to obtain a high-purity CuZn alloy.
  • Cu raw material high-purity metallic copper (6N) (purity 99.9999%)
  • Zn raw material high-purity metallic zinc (4N5) (purity 99.995%) 11.45 kg of the raw material Cu and 10.05 kg of the raw material Zn were vacuum-melted (conditions: vacuumed to 10 ⁇ 1 Pa and then placed in an Ar 400 torr atmosphere and kept at 1050° C. for 30 minutes) to obtain a high-purity CuZn
  • the shrinkage cavity part of the upper part of the ingot was removed from the obtained CuZn alloy to obtain a columnar ingot having a diameter of 125 mm, a length of 152.5 mm and a weight of 15 kg (columnar ingot before multi-stage forging).
  • Multi-stage forging was performed on the obtained cylindrical ingot before multi-stage forging.
  • Forging was performed by preheating a cylindrical ingot with an aspect ratio of 1:1.22 at 550 to 680° C. for 3 hours or more, and a prismatic shape with an aspect ratio of 0.8:1.52, a cylindrical shape of 0.88:1.6, Deformation into a 1.2:0.8 columnar shape, deforming into the original 1:1.22 columnar shape, and reheating at 550 to 680° C. for 10 minutes or more are repeated three times. It was In this way, a cylindrical ingot having a diameter of 125 mm, a length of 152.5 mm, and a weight of 15 kg (a cylindrical ingot after multi-stage forging) was obtained.
  • FIG. 1 shows an explanatory diagram of the procedure of Production Example 1.
  • a cylindrical ingot having a diameter of 125 mm and a length of 152.5 mm is shown at the left end, and the length in FIG. 1 is shown by a relative value with 125 mm being 1 for comparison.
  • Example 4 (Example: Sample 4) Using the same raw material Cu and raw material Zn as those used in Production Example 1 with 10.80 kg of raw material Cu and 10.45 kg of raw material Zn, in the same manner as in Production Example 1, ⁇ 124 mm, length 150.0 mm, weight 15.15 kg. To obtain a columnar ingot (columnar ingot before multi-stage forging). Multi-stage forging was performed on the obtained cylindrical ingot before multi-stage forging in the same manner as in Production Example 1 to obtain a cylindrical ingot having a diameter of 124 mm, a length of 150 mm, and a weight of 15.15 kg (a post-multi-stage forged cylindrical ingot). The obtained multi-stage forged cylindrical ingot was forged to ⁇ 41 mm, and then cut into lengths of 650 mm to obtain two forged rods. The obtained forged rod was used as a sample 4 for the subsequent test.
  • Example 5 (Example: Sample 5) Using the same raw material Cu and raw material Zn as those used in Production Example 1 with 10.14 kg of raw material Cu and 10.85 kg of raw material Zn, in the same manner as in Production Example 1, ⁇ 124 mm, length 148.0 mm, and weight 14.9 kg. To obtain a columnar ingot (columnar ingot before multi-stage forging). Multi-step forging was performed on the obtained cylindrical ingot before multi-step forging in the same manner as in Production Example 1 to obtain a cylindrical ingot having a diameter of 124 mm, a length of 148.0 mm, and a weight of 14.9 kg (cylindrical ingot after multi-step forging). It was The obtained multi-stage forged cylindrical ingot was forged to ⁇ 41 mm, and then cut into lengths of 650 mm to obtain two forged rods. The obtained forged rod was used as Sample 5 and subjected to the subsequent test.
  • Example 6 (Example: Sample 6) The same raw material Cu and raw material Zn as those used in Production Example 1 were used for raw material Cu 156 kg and raw material Zn 137 kg, and in the same manner as in Production Example 1, a cylindrical ingot ( ⁇ 225 mm, length 870 mm, weight 292 kg (before multi-stage forging) A cylindrical ingot) was obtained. The composition of this raw material Zn was calculated to be 46.67% by weight.
  • This ingot was cut in half in the longitudinal direction to have a diameter of 225 mm and a length of 435 mm, and was forged by ordinary hot forging to a diameter of 124 mm and a length of 1432 mm. After that, the lengthwise direction was cut into 9 equal parts to obtain a multistage pre-forged ingot having a diameter of 125 mm and a length of 152 mm.
  • the multi-stage forging was performed on the obtained cylindrical ingot before multi-stage forging in the same manner as in Samples 1, 2, 4, 5, and 6. In this way, a cylindrical ingot having a diameter of 125 mm, a length of 152 mm, and a weight of 15.33 kg (a cylindrical ingot after multistage forging) was obtained.
  • the obtained multi-stage forged cylindrical ingot was forged to ⁇ 41 mm, and then cut into lengths of 650 mm to obtain two forged rods.
  • the obtained forged rod was used as a sample 6 for the subsequent test.
  • composition analysis The compositions of Samples 1 to 6 were analyzed by GD-MS (VG-9000 manufactured by VG Scientific Co.) for metallic elements, and oxygen (O), nitrogen (N) and hydrogen (H) as gas components were analyzed. , LECO oxygen nitrogen analyzer (model TCH-600) was analyzed for carbon (C) and sulfur (S) by LECO carbon-sulfur analyzer (model CS-444). The obtained results are shown in the following Table 1 (Table 1-1, Table 1-2, Table 1-3). The numerical value indicated by the inequality sign indicates that the value was less than the measurement limit. In Table 1 (Table 1-1, Table 1-2, Table 1-3), the unit of the numerical value with no particular description means wtppm (mass ppm).
  • FIG. 2 The results of the corrosion resistance test using this nitric acid are shown in FIG. 2 (FIG. 2-1 and FIG. 2-2).
  • the horizontal axis of FIG. 2 (FIGS. 2-1 and 2-2) represents the leaching time (min), and the vertical axis represents the dissolution amount (mg/cm 2 ).
  • FIG. 3 The results of the corrosion resistance test using this hydrofluoric nitric acid aqueous solution are shown in FIG. 3 (FIG. 3-1 and FIG. 3-2).
  • the horizontal axis of FIG. 3 (FIGS. 3-1 and 3-2) represents the leaching time (min), and the vertical axis represents the dissolution amount (mg/cm 2 ).
  • the threshold is 6 kinds of standard samples each having a Zn content of 35% by mass to 5% by mass up to 60% by mass, and five standard samples each are prepared, and X-ray diffraction is performed using a fully automatic multipurpose X-ray diffractometer SmartLab manufactured by Rigaku.
  • the phase at the measurement location was identified by the above, and determined from the color tone of the optical micrograph of the X-ray diffraction location.
  • Fig. 4 shows an example of a cross-sectional photograph of Sample 1.
  • An example of a cross-sectional photograph of Sample 3 is shown in FIG.
  • the field of view of the photographs in FIGS. 4 and 5 is 10 mm and the scale bar at the bottom right is 1000 ⁇ m.
  • Figure 6 shows the graph of particle size distribution.
  • the horizontal axis of the graph in FIG. 6 represents the particle size (mm), and the vertical axis represents the ratio (number%) of the corresponding particle size.
  • sample 1 had a smaller particle size and higher uniformity than sample 3.
  • Sample 2 the same tendency of distribution as that of Sample 3 was shown.
  • the average crystal grain size D50 calculated from the above measured values was 0.512 mm for Sample 1 and 1.764 mm for Sample 3.
  • the average crystal grain size D90 was 0.595 mm in Sample 1 and 2.068 mm in Sample 3.
  • the average crystal grain size D50 of the samples 2 and 4 to 6 was also determined in the same manner.
  • the sample 2 was 1.58 mm
  • the sample 4 was 0.554 mm
  • the sample 5 was 0.611 mm. Yes
  • Sample 6 was 0.508 mm.
  • the average crystal grain size D90 was 1.912 mm for Sample 2, 0.622 mm for Sample 4, 0.724 mm for Sample 5, and 0.565 mm for Sample 6.
  • the number of ⁇ phases per 5 mm ⁇ 5 mm surface was counted at 10 points, and the average value was calculated.
  • the counting the number of the two points for each sample was visually counted, and the binarization threshold value (65 of 256 levels) was determined from the result so as to agree with the visual counting, and the remaining eight points were counted.
  • ⁇ phase was counted by image processing based on the binarization threshold value.
  • the number of ⁇ phases per 5 mm ⁇ 5 mm was 100 or more, and the presence of large ⁇ phases with a diameter of 100 ⁇ m or more was observed.
  • the area ratio of the ⁇ phase was 14.9%.
  • the number of ⁇ phases per 5 mm ⁇ 5 mm was 100 or more, and the presence of large ⁇ phases with a diameter of 100 ⁇ m or more was observed.
  • the area ratio of the ⁇ phase was 13.1%.
  • the present invention provides a corrosion resistant CuZn alloy.
  • the present invention is an industrially useful invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Conductive Materials (AREA)
  • Forging (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

Zn含有量が36.8~56.5質量%であり、残余がCu及び不可避不純物であって、β相の面積率が99.9%以上である、耐食性CuZn合金を提供する。

Description

耐食性CuZn合金
 本発明は、酸性雰囲気で使用される電極用として好適に使用可能な耐食性CuZn合金に関する。
 パルスレーザー光が、近年、集積回路フォトリソグラフィに使用されるようになってきた。パルスレーザー光は、ガス放電媒体内で非常に短い放電かつ非常に高い電圧で1対の電極間にガス放電を与えて発生できる。例えばArFレーザーシステムにおいては、作動中に電極の対間にフッ素含有プラズマが発生する。フッ素含有プラズマは、金属に対する腐食性が非常に高い。その結果、電極は、パルスレーザーの発生装置の稼働中に時間と共に腐食する。電極の腐食は、腐食スポットを形成して、プラズマにアーキングを発生させ、電極の寿命の低下をさらに加速する。電極としては、例えばCu含有合金が使用される。
 電極の長寿命化のための技術として、Cu含有合金からなる放電用の電極の本体部分を、放電のために部分的に露出させて(放電受容領域)、その他の部分を他の合金で被覆することによって、電極として安定的に長期間使用する技術が開発されてきた(特許文献1、2)。一方、このような電極の構造の工夫に加えて、電極に使用する銅合金として、燐をドープした黄銅を使用して、黄銅中の微孔隙の発生を低減して、電極を長寿命化する技術が開示されている(特許文献3)。
特表2007-500942号公報 特表2007-510284号公報 特表2015-527726号公報
 電極の構造の工夫によって電極を長寿命化しようとする従来の技術においても、もし、Cu含有合金の耐食性が改善されれば、電極の長寿命化がさらに可能になる。また、燐をドープした黄銅を使用して長寿命化する技術においては、Cu含有合金に燐を目的濃度までドープする工程による工程数の増加負担が生じるが、このような負担は回避できることが望ましい。
 したがって、本発明の目的は、耐食性を向上させた、Cu含有合金を提供することにある。
 本発明者は、鋭意研究の結果、後述する組成のCuZn合金を多段鍛造することによって、他の元素を添加することなく優れた耐食性を発揮することを見いだして、本発明に到達した。
 したがって、本発明は、次の(1)を含む。
(1)
 Zn含有量が36.8~56.5質量%であり、残余がCu及び不可避不純物であって、
 β相の面積率が99.9%以上である、耐食性CuZn合金。
 本発明によれば、耐食性のCuZn合金が得られる。本発明の耐食性CuZn合金は、酸性雰囲気で使用される電極用として好適に使用でき、特にArFレーザーシステム、及びKrFレーザーシステムの電極用として好適である。本発明の耐食性CuZn合金は、製造時において他の元素の添加の必要がなく、これらの添加工程による工程数増加の負担を回避して、製造することができる。
図1は製造例1の手順の説明図である。 図2-1は試料1~3についての硝酸を使用した耐食性試験の結果である。 図2-2は試料4~6についての硝酸を使用した耐食性試験の結果である。 図3-1は試料1~3についてのフッ硝酸水溶液を使用した耐食性試験の結果である。 図3-2は試料4~6についてのフッ硝酸水溶液を使用した耐食性試験の結果である。 図4は試料1の断面の一例を示す光学顕微鏡写真である。 図5は試料3の断面の一例を示す光学顕微鏡写真である。 図6は試料1及び試料3の粒度分布のグラフである。
 以下に本発明を実施の態様をあげて詳細に説明する。本発明は以下にあげる具体的な実施の態様に限定されるものではない。
[耐食性CuZn合金]
 本発明に係る耐食性CuZn合金は、Zn含有量が36.8~56.5質量%であり、残余がCu及び不可避不純物であって、
 β相の面積率が99.9%以上である、CuZn合金にある。このCuZn合金は、耐食性電極用合金として好適に使用できる。
[Zn含有量とCu含有量]
 Zn含有量は、36.8~56.5質量%とすることができ、例えば、好ましくは36.5~50.0質量%、さらに好ましくは36.5~46.0質量%、あるいは好ましくは36.8~50.0質量%、さらに好ましくは36.8~46.0質量%、あるいは40.0~46.0質量%とすることができる。Zn含有量とCu含有量の合計は、99.999質量%以上とすることができ、好ましくは99.9999質量%以上、さらに好ましくは99.99995質量%以上とすることができる。
[不可避不純物]
 本発明において、CuZn合金の不可避不純物として、さらに以下の各元素の含有量をそれぞれ以下の通りの含有量とすることができる。
 Na含有量が0.05ppm未満、好ましくは0.01ppm未満(測定限界未満)、
 Mg含有量が0.01ppm未満、好ましくは0.001ppm未満(測定限界未満)、
 Al含有量が0.01ppm未満、好ましくは0.001ppm未満(測定限界未満)、
 Si含有量が0.5ppm未満、好ましくは0.005ppm未満(測定限界未満)、
 P含有量が0.01ppm未満、好ましくは0.005ppm未満(測定限界未満)、
 S含有量が0.05ppm以下、好ましくは0.05ppm未満(測定限界未満)、
 Cl含有量が0.05ppm未満、好ましくは0.005ppm未満(測定限界未満)、
 K含有量が0.01ppm以下、好ましくは0.01ppm未満(測定限界未満)、
 V含有量が0.1ppm未満、好ましくは0.001ppm未満(測定限界未満)、
 Cr含有量が1ppm未満、好ましくは0.09ppm以下、
 Mn含有量が0.5ppm未満、好ましくは0.3ppm以下、
 Fe含有量が1ppm未満、好ましくは0.8ppm以下、
 Ni含有量が5ppm未満、好ましくは0.2ppm以下、
 Ga含有量が0.1ppm未満、好ましくは0.05ppm未満(測定限界未満)、
 As含有量が0.05ppm未満、好ましくは0.005ppm未満(測定限界未満)、
 Se含有量が0.1ppm未満、好ましくは0.04ppm以下、
 Mo含有量が0.5ppm未満、好ましくは0.005ppm未満(測定限界未満)、
 Ag含有量が0.5ppm未満、好ましくは0.15ppm以下、
 Cd含有量が0.5ppm未満、好ましくは0.05ppm以下、
 Sn含有量が0.1ppm未満、好ましくは0.005ppm未満(測定限界未満)、
 Sb含有量が0.01ppm未満、好ましくは0.005ppm未満(測定限界未満)、
 Ba含有量が0.01ppm未満、好ましくは0.005ppm未満(測定限界未満)、
 Pb含有量が5ppm未満、好ましくは3ppm以下、
 Bi含有量が0.01ppm以下、0.01ppm未満、好ましくは0.001ppm未満(測定限界未満)、
 O含有量が10ppm未満、好ましくは1ppm未満(測定限界未満)とすることができる。
 好適な実施の態様において、不純物元素の含有量を、後述する表1(表1-1、表1-2、表1-3)に記載された試料1の各元素の含有量の値以下とすることができ、試料1において測定限界値未満の各元素についてはその測定限界値未満とすることができる。
 金属元素はGD-MS(V.G.Scientific社製 VG-9000)によって分析することができ、気体成分は酸素(O)、窒素(N)及び水素(H)については、LECO社製の酸素窒素分析装置(型式TCH-600)を、炭素(C)及び硫黄(S)についてはLECO社製の炭素硫黄分析装置(型式CS-444)を使用して分析することができる。
[β相の面積率]
 好適な実施の態様において、本発明に係る耐食性CuZn合金は、β相の面積率が例えば99.9%以上であり、好ましくは99.99%以上であり、さらに好ましくは99.999%以上である。β相の面積率について、特に上限の制約はないが、例えば100%以下とすることができる。
 β相の面積率は、実施例において後述する手段によって、算出することができる。
 CuZn合金においては、本発明において取り扱うZn含有量の範囲と温度では、α相、β相、γ相が表れることが知られている。好適な実施の態様において、本発明に係る耐食性CuZn合金は、β相の面積率が上述の範囲となっており、結果として、α相の面積率とγ相の面積率の合計が、例えば0.01%以下、好ましくは0.001%以下、さらに好ましくは0.0001%以下とすることができる。α相の面積率とγ相の面積率の合計について、特に下限の制約はないが、例えば0%以上とすることができる。
[平均結晶粒径]
 好適な実施の態様において、本発明に係る耐食性CuZn合金は、平均結晶粒径D50が、例えば0.3~0.6mm、好ましくは0.4~0.6mm、さらに好ましくは0.45~0.55mmの範囲、例えば0.3~0.7mm、好ましくは0.4~0.65mm、さらに好ましくは0.45~0.65mmの範囲とすることができる。好適な実施の態様において、本発明に係る耐食性CuZn合金は、平均結晶粒径D90が、例えば0.3~0.7mm、好ましくは0.5~0.7mm、さらに好ましくは0.55~0.65mmの範囲、例えば0.3~0.8mm、好ましくは0.5~0.75mm、さらに好ましくは0.55~0.75mmの範囲とすることができる。
[耐食性]
 本発明に係る耐食性CuZn合金は、フッ素含有環境中において、優れた耐食性を備えている。本発明における耐食性は、過酷な条件として、実施例に示したフッ硝酸試験によって、試験することができる。
[耐食性CuZn合金の製造]
 好適な実施の態様において、本発明の耐食性CuZn合金は、後述する実施例に開示された手段と条件によって、製造することができる。
 すなわち、好適な実施の態様において、Cu原料とZn原料を真空溶解して、不活性ガス雰囲気下で加熱保持して、高純度CuZn合金を得る工程、得られた高純度CuZn合金に対して多段鍛造を行う工程、多段鍛造された高純度CuZn合金を所定形状へと鍛造する工程、を含む方法によって製造することができる。
 多段鍛造は、後述する実施例に開示された手段と条件によって、行うことができる。すなわち、好適な実施の態様において、例えば縦横比1:1.22の円柱状インゴットを550~680℃で3時間以上予熱し、縦横比0.8:1.52の角柱状、0.88:1.6の円柱状、1.2:0.8の円柱状と変形させ、もとの縦横比1:1.22の円柱状に変形して、550~680℃で10分以上の再加熱を行うことを3回以上くり返すことによって、行うことができる。
[耐食性電極用合金]
 本発明に係る耐食性CuZn合金は、フッ素含有環境中において、優れた耐食性を備えているので、耐食性電極用合金として、好適に使用できる。本発明に係る耐食性CuZn合金は、他の元素を添加するためのドープ処理によって生じる二次的な不純物混入を回避しつつ、優れた耐食性を発揮しているので、高純度の電極材料として使用することができる。そして、本発明に係る耐食性CuZn合金は、公知技術である電極構造の工夫による耐食性の向上技術を併用して、耐食性に優れた電極とすることができる。
[好適な実施の態様]
 好適な実施の態様として、本発明は、次の(1)以下の実施の態様を含む。
(1)
 Zn含有量が36.8~56.5質量%であり、残余がCu及び不可避不純物であって、
 β相の面積率が99.9%以上である、耐食性CuZn合金。
(2)
 Zn含有量とCu含有量の合計が99.999質量%以上である、(1)に記載のCuZn合金。
(3)
 平均結晶粒径D50が、0.3~0.6mmの範囲にある、(1)~(2)のいずれかに記載のCuZn合金。
(4)
 α相の面積率とγ相の面積率の合計が、0.01%以下である、(1)~(3)のいずれかに記載のCuZn合金。
(5)
 耐食性電極用合金である、(1)~(4)のいずれかに記載のCuZn合金。
(6)
 Na含有量が0.05ppm未満、Mg含有量が0.01ppm未満、Al含有量が0.01ppm未満、Si含有量が0.5ppm未満、P含有量が0.01ppm未満、S含有量が0.05ppm未満、Cl含有量が0.05ppm未満、K含有量が0.01ppm未満、V含有量が0.1ppm未満、Cr含有量が1ppm未満、Mn含有量が0.5ppm未満、Fe含有量が1ppm未満、Ni含有量が5ppm未満、Ga含有量が0.1ppm未満、As含有量が0.05ppm未満、Se含有量が0.1ppm未満、Mo含有量が0.5ppm未満、Ag含有量が0.5ppm未満、Cd含有量が0.5ppm未満、Sn含有量が0.1ppm未満、Sb含有量が0.01ppm未満、Ba含有量が0.01ppm未満、Pb含有量が5ppm未満、Bi含有量が0.01ppm未満、O含有量が10ppm未満である、(1)~(5)のいずれかに記載のCuZn合金。
 以下に、実施例を用いて本発明を説明する。本発明は以下の実施例に限定されるものではない。本発明の技術思想の範囲内における、他の実施例及び変形は、本発明に含まれる。
[製造例1](実施例:試料1)
 以下のようにCuZn合金を製造した。
 原料として次のCu原料及びZn原料を用意した。
 Cu原料:高純度金属銅(6N)(純度99.9999%)
 Zn原料:高純度金属亜鉛(4N5)(純度99.995%)
 この原料Cu11.45kgと原料Zn10.05kgを真空溶解し(条件:10-1Paまで真空引き後Ar400torr雰囲気とし、1050℃で30分保持)、高純度CuZn合金を得た。得られたCuZn合金からインゴット上部の引け巣の部分を取り除き、φ125mm、長さ152.5mm、重量15kgの円柱状インゴット(多段鍛造前円柱状インゴット)を得た。
 上記得られた多段鍛造前円柱状インゴットに対して、多段鍛造を行なった。鍛造は、縦横比1:1.22の円柱状インゴットを550~680℃で3時間以上予熱し、縦横比0.8:1.52の角柱状、0.88:1.6の円柱状、1.2:0.8の円柱状と変形させ、もとの1:1.22の円柱状に変形して、550~680℃で10分以上の再加熱を行うことを3回繰り返して行った。このようにして、φ125mm、長さ152.5mm、重量15kgの円柱状インゴット(多段鍛造後円柱状インゴット)を得た。
 得られた多段鍛造後円柱状インゴットを、φ41mmまで鍛造したのち、長さ650mm毎に切断することで2本の鍛造棒を得た。
 得られた鍛造棒を試料1として、後の試験に供した。
 製造例1の手順の説明図を、図1に示す。図1において、左端にはφ125mm、長さ152.5mm の円柱状インゴットを記載しており、対比のために125mmを1とした相対値によって、図1中のそれぞれ長さを記載した。
[製造例2](比較例:試料2)
 製造例1と同様に、Cu原料及びZn原料を用意し、φ125mm、長さ152.5mm、重量15kgの円柱状インゴット(多段鍛造前円柱状インゴット)を得た。多段鍛造前円柱状インゴットに対して、製造例1の多段鍛造を行うことなく、φ41mmまで鍛造したのち、長さ650mm毎に切断することで2本の鍛造棒を得た。
 得られた鍛造棒を試料2として、後の試験に供した。
[製造例3](比較例:試料3)
 市販のCuZn合金(JX金属社製)を、製造例1の多段鍛造を行うことなく、そのままφ41mmまで鍛造したのち、長さ650mm毎に切断することで2本の鍛造棒を得た。
 得られた鍛造棒を試料3として、後の試験に供した。
[製造例4](実施例:試料4)
 製造例1で使用したものと同じ原料Cu及び原料Znを、原料Cu10.80kgと原料Zn10.45kgで使用して、製造例1と同様にして、φ124mm、長さ150.0mm、重量15.15kgの円柱状インゴット(多段鍛造前円柱状インゴット)を得た。
 得られた多段鍛造前円柱状インゴットに対して製造例1と同様に多段鍛造を行って、φ124mm、長さ150mm、重量15.15kgの円柱状インゴット(多段鍛造後円柱状インゴット)を得た。
 得られた多段鍛造後円柱状インゴットを、φ41mmまで鍛造したのち、長さ650mm毎に切断することで2本の鍛造棒を得た。
 得られた鍛造棒を試料4として、後の試験に供した。
[製造例5](実施例:試料5)
 製造例1で使用したものと同じ原料Cu及び原料Znを、原料Cu10.14kgと原料Zn10.85kgで使用して、製造例1と同様にして、φ124mm、長さ148.0mm、重量14.9kgの円柱状インゴット(多段鍛造前円柱状インゴット)を得た。
 得られた多段鍛造前円柱状インゴットに対して製造例1と同様に多段鍛造を行なって、φ124mm、長さ148.0mm、重量14.9kgの円柱状インゴット(多段鍛造後円柱状インゴット)を得た。
 得られた多段鍛造後円柱状インゴットを、φ41mmまで鍛造したのち、長さ650mm毎に切断することで2本の鍛造棒を得た。
 得られた鍛造棒を試料5として、後の試験に供した。
[製造例6](実施例:試料6)
 製造例1で使用したものと同じ原料Cu及び原料Znを、原料Cu156kgと原料Zn137kgで使用して、製造例1と同様にして、φ225mm、長さ870mm、重量292kgの円柱状インゴット(多段鍛造前円柱状インゴット)を得た。この原料Zn組成は、46.67重量%と算出される。このインゴットを長手方向に半分に切断し、φ225mm、長さ435mmとし、通常の熱間鍛造により、φ124mm、長さ1432mmまで鍛造した。その後、長さ方向を9等分に切断することで、φ125mm、長さ152mmの多段鍛造前インゴットとした。
 上記得られた多段鍛造前円柱状インゴットに対して、試料1、2、4、5、6と同様に多段鍛造を行なった。このようにして、φ125mm、長さ152mm、重量15.33kgの円柱状インゴット(多段鍛造後円柱状インゴット)を得た。
 得られた多段鍛造後円柱状インゴットを、φ41mmまで鍛造したのち、長さ650mm毎に切断することで2本の鍛造棒を得た。
 得られた鍛造棒を試料6として、後の試験に供した。
[組成分析]
 試料1~6までの組成を、金属元素はGD-MS(V.G.Scientific社製 VG-9000)によって分析し、気体成分は酸素(O)、窒素(N)及び水素(H)については、LECO社製の酸素窒素分析装置(型式TCH-600)を、炭素(C)及び硫黄(S)については、LECO社製の炭素硫黄分析装置(型式CS-444)によって分析した。得られた結果を、次の表1(表1-1、表1-2、表1-3)に示す。不等号で記載された数値は測定限界未満の値であったことを示す。表1(表1-1、表1-2、表1-3)において、特に単位の記載のない数値の単位は、wtppm(質量ppm)を意味する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[耐食性試験]
[硝酸試験]
 硝酸を使用した耐食性試験を、次の手順で行った。
 試料1~6を、それぞれ8.3g(大きさ10mm×10mm×10mm)用意した。硝酸(65%)80mlと純水420mlを混合して硝酸水溶液を調整した。試料1~6をそれぞれ500mlの硝酸水溶液中に投入して、25℃で撹拌しながら、投入後10分後、30分後、60分後の重量減少を測定することによって、それぞれの時間での溶解量(mg/cm2)を算出した。この硝酸を使用した耐食性試験の結果を、図2(図2-1及び図2-2)に示す。図2(図2-1及び図2-2)の横軸は、浸出時間(min)であり、縦軸は溶解量(mg/cm2)を表す。
[フッ硝酸試験]
 フッ硝酸を使用した耐食性試験を、次の手順で行った。
 試料1~6を、それぞれ8.3g(大きさ10mm×10mm×10mm)用意した。フッ酸(46%)20ml、硝酸(65%)60ml、及び純水420mlを混合してフッ硝酸水溶液を調整した。試料1~6をそれぞれ500mlのフッ硝酸水溶液中に投入して、25℃で撹拌しながら、投入後10分後、30分後、60分後の重量減少を測定することによって、それぞれの時間での溶解量(mg/cm2)を算出した。このフッ硝酸水溶液を使用した耐食性試験の結果を、図3(図3-1及び図3-2)に示す。図3(図3-1及び図3-2)の横軸は、浸出時間(min)であり、縦軸は溶解量(mg/cm2)を表す。
[組織の均一性の検討]
 組織の均一性を検討するために、試料1~6について、鍛造棒の断面の写真を、それぞれ約300枚撮影し、画像解析によって、粒度分布を求めて、うち、試料1および試料3についてグラフ化した。画像解析は、得られた写真の色調を256段階に区分けして閾値0~64までをα相、65~168までをβ相、168~255までがγ相であることをX線回折で明らかにして、統計処理した。これらの画像解析の処理は、自作のソフトウェアによって行った。尚、閾値はZn含有量35質量%から5質量%ごとに60質量%までの標準サンプル6種、各5個を作製し、Rigaku社の全自動多目的X線回折装置SmartLabを用いたX線回折により、測定箇所の相を同定し、X線回折箇所の光学顕微鏡写真の色調から決定した。
 試料1の断面写真の一例を図4に示す。試料3の断面写真の一例を図5に示す。図4及び図5の写真の視野は10mmであり、右下のスケールバーは1000μmである。
 粒度分布のグラフを図6に示す。図6のグラフの横軸は粒径(mm)を示し、縦軸は該当する粒径の割合(個数%)を示す。
 図6のグラフに示されるように、試料3と比較して、試料1では、粒径が小さく、均一性が高いものとなっていた。なお、試料2についても同様の測定を行ったところ、試料3と同様の分布の傾向を示した。
 上記測定値から算出した平均結晶粒径D50は、試料1が0.512mmであり、試料3が1.764mmであった。また、平均結晶粒径D90は、試料1が0.595mmであり、試料3が2.068mmであった。
 さらに、試料2及び4~6についても、同様にして、平均結晶粒径D50を求めたところ、試料2が1.58mmであり、試料4が0.554mmであり、試料5が0.611mmであり、試料6が0.508mmであった。また、平均結晶粒径D90は、試料2が1.912mmであり、試料4が0.622mmであり、試料5が0.724mmであり、試料6が0.565mmであった。
[β相の面積率]
 試料1~6に対して、光学顕微鏡観察を行った。観察は、研磨紙で#2000まで研磨後、バフ研磨を実施して、その後、光学顕微鏡(NikonECLIPSEMA)によって、200倍、100倍、400倍の倍率で観察した。顕微鏡観察から写真を撮影して、得られた写真の色調を256段階に区分けして、65~168までをβ相と判定した。
 顕微鏡観察に基づいて、5mm×5mmの面あたりのβ相の個数を、10箇所計数して、その平均値を算出した。計数は、各試料に付き2箇所については、目視によって個数を数え、その結果から目視の計数と一致するように二値化の閾値(256段階の65)を決定し、残りの8箇所については、その二値化の閾値に基づいて画像処理によりβ相を計数した。
 試料3では、5mm×5mmあたりのβ相の個数は、100個以上であり、径100μm以上の大きなβ相の存在が観察された。また、β相の面積率は14.9%であった。
 試料1では、5mm×5mmあたりのα相及びγ相の個数は、観察範囲においていずれも0個であった。そこで、α相の面積率は0%となり、γ相の面積率は0%となった。この場合の結果として、β相の面積率は100%と算出された。
 試料2では、5mm×5mmあたりのβ相の個数は、100個以上であり、径100μm以上の大きなβ相の存在が観察された。また、β相の面積率は13.1%であった。
 試料4では、5mm×5mmあたりのα相及びγ相の個数は、観察範囲においていずれも0個であった。そこで、α相の面積率は0%となり、γ相の面積率は0%となった。この場合の結果として、β相の面積率は100%と算出された。
 試料5では、5mm×5mmあたりのα相及びγ相の個数は、観察範囲においていずれも0個であった。そこで、α相の面積率は0%となり、γ相の面積率は0%となった。この場合の結果として、β相の面積率は100%と算出された。
 試料6では、5mm×5mmあたりのα相及びγ相の個数は、観察範囲においていずれも0個であった。そこで、α相の面積率は0%となり、γ相の面積率は0%となった。この場合の結果として、β相の面積率は100%と算出された。
 本発明は、耐食性CuZn合金を提供する。本発明は、産業上有用な発明である。

Claims (6)

  1.  Zn含有量が36.8~56.5質量%であり、残余がCu及び不可避不純物であって、
     β相の面積率が99.9%以上である、耐食性CuZn合金。
  2.  Zn含有量とCu含有量の合計が99.999質量%以上である、請求項1に記載のCuZn合金。
  3.  平均結晶粒径D50が、0.3~0.6mmの範囲にある、請求項1~2のいずれかに記載のCuZn合金。
  4.  α相の面積率とγ相の面積率の合計が、0.01%以下である、請求項1~3のいずれかに記載のCuZn合金。
  5.  耐食性電極用合金である、請求項1~4のいずれかに記載のCuZn合金。
  6.  Na含有量が0.05ppm未満、Mg含有量が0.01ppm未満、Al含有量が0.01ppm未満、Si含有量が0.5ppm未満、P含有量が0.01ppm未満、S含有量が0.05ppm未満、Cl含有量が0.05ppm未満、K含有量が0.01ppm未満、V含有量が0.1ppm未満、Cr含有量が1ppm未満、Mn含有量が0.5ppm未満、Fe含有量が1ppm未満、Ni含有量が5ppm未満、Ga含有量が0.1ppm未満、As含有量が0.05ppm未満、Se含有量が0.1ppm未満、Mo含有量が0.5ppm未満、Ag含有量が0.5ppm未満、Cd含有量が0.5ppm未満、Sn含有量が0.1ppm未満、Sb含有量が0.01ppm未満、Ba含有量が0.01ppm未満、Pb含有量が5ppm未満、Bi含有量が0.01ppm未満、O含有量が10ppm未満である、請求項1~5のいずれかに記載のCuZn合金。
PCT/JP2019/047271 2018-12-03 2019-12-03 耐食性CuZn合金 WO2020116464A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020559236A JP7273063B2 (ja) 2018-12-03 2019-12-03 耐食性CuZn合金
CN201980075491.7A CN113056570A (zh) 2018-12-03 2019-12-03 耐蚀性CuZn合金
EP19893908.4A EP3892745A4 (en) 2018-12-03 2019-12-03 CORROSION RESISTANT CUZN ALLOY
US17/288,398 US11643707B2 (en) 2018-12-03 2019-12-03 Corrosion-resistant CuZn alloy
KR1020217014266A KR102578427B1 (ko) 2018-12-03 2019-12-03 내식성 CuZn 합금

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-226858 2018-12-03
JP2018226858 2018-12-03

Publications (1)

Publication Number Publication Date
WO2020116464A1 true WO2020116464A1 (ja) 2020-06-11

Family

ID=70974671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047271 WO2020116464A1 (ja) 2018-12-03 2019-12-03 耐食性CuZn合金

Country Status (7)

Country Link
US (1) US11643707B2 (ja)
EP (1) EP3892745A4 (ja)
JP (1) JP7273063B2 (ja)
KR (1) KR102578427B1 (ja)
CN (1) CN113056570A (ja)
TW (1) TWI810414B (ja)
WO (1) WO2020116464A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021038451A (ja) * 2019-09-05 2021-03-11 Jx金属株式会社 易加工性耐食電極合金

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447823A (en) * 1977-09-17 1979-04-14 Diehl Brass material and method of making same
JPH07116925A (ja) * 1992-02-07 1995-05-09 Hitachi Alloy Kk 放電加工用電極線およびその製造方法
JP2000129376A (ja) * 1998-10-28 2000-05-09 Mitsui Mining & Smelting Co Ltd 強化黄銅及びその製造方法
JP2002363718A (ja) * 2001-06-08 2002-12-18 Sumitomo Light Metal Ind Ltd 微細組織を有するCu−Zn系合金押出材の製造方法および該製造方法により得られるCu−Zn系合金押出材
JP2003277856A (ja) * 2002-03-22 2003-10-02 Toto Ltd 形状記憶合金および形状記憶合金の製造方法
JP2007500942A (ja) 2003-07-29 2007-01-18 サイマー インコーポレイテッド ハロゲンガス放電レーザ電極
JP2007510284A (ja) 2003-07-29 2007-04-19 サイマー インコーポレイテッド フッ素ガス放電レーザのための電極
JP2013129876A (ja) * 2011-12-21 2013-07-04 Furukawa Electric Co Ltd:The 被削性に優れた銅合金材
JP2015527726A (ja) 2012-06-07 2015-09-17 サイマー リミテッド ライアビリティ カンパニー レーザチャンバのための耐食電極
WO2019097846A1 (ja) * 2017-11-15 2019-05-23 Jx金属株式会社 耐食性CuZn合金

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4339426C2 (de) 1993-11-18 1999-07-01 Diehl Stiftung & Co Kupfer-Zink-Legierung
JP4390581B2 (ja) * 2004-02-16 2009-12-24 サンエツ金属株式会社 ワイヤ放電加工用電極線
JP5447823B2 (ja) 2009-10-28 2014-03-19 セイコーエプソン株式会社 画像処理装置、集積回路装置、電子機器
EP2592163B1 (en) 2010-07-05 2017-09-13 YKK Corporation Copper-zinc alloy product and process for producing copper-zinc alloy product
JP5830234B2 (ja) 2010-09-17 2015-12-09 古河電気工業株式会社 Cu−Zn系銅合金板材
JP5889698B2 (ja) 2012-03-30 2016-03-22 株式会社神戸製鋼所 耐応力緩和特性に優れるCu−Zn合金板及びその製造方法
TW201545828A (zh) 2014-06-10 2015-12-16 Ya-Yang Yan 一種放電加工切割線及該放電加工切割線之製造方法
TW201611990A (en) * 2014-09-30 2016-04-01 Olive Trading Co Ltd Method of manufacturing plastic card capable forming surface embossment
DE102015004221A1 (de) 2015-03-31 2016-10-06 Wieland-Werke Ag Kupfer-Zink-Legierung, bandförmiger Werkstoff daraus, Verfahren zur Herstellung eines Halbzeugs aus einer Kupfer-Zink-Legierung und Gleitelemente aus einer Kupfer-Zink-Legierung
CN106191724A (zh) 2015-06-01 2016-12-07 元祥金属工业股份有限公司 用于电火花加工的金属合金线制造方法
US20170014928A1 (en) * 2015-07-14 2017-01-19 Yuang Hsian Metal Industrial Corp. Electrode Wire for Electric Discharge Machining and Method for Manufacturing the Electrode Wire

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447823A (en) * 1977-09-17 1979-04-14 Diehl Brass material and method of making same
JPH07116925A (ja) * 1992-02-07 1995-05-09 Hitachi Alloy Kk 放電加工用電極線およびその製造方法
JP2000129376A (ja) * 1998-10-28 2000-05-09 Mitsui Mining & Smelting Co Ltd 強化黄銅及びその製造方法
JP2002363718A (ja) * 2001-06-08 2002-12-18 Sumitomo Light Metal Ind Ltd 微細組織を有するCu−Zn系合金押出材の製造方法および該製造方法により得られるCu−Zn系合金押出材
JP2003277856A (ja) * 2002-03-22 2003-10-02 Toto Ltd 形状記憶合金および形状記憶合金の製造方法
JP2007500942A (ja) 2003-07-29 2007-01-18 サイマー インコーポレイテッド ハロゲンガス放電レーザ電極
JP2007510284A (ja) 2003-07-29 2007-04-19 サイマー インコーポレイテッド フッ素ガス放電レーザのための電極
JP2013129876A (ja) * 2011-12-21 2013-07-04 Furukawa Electric Co Ltd:The 被削性に優れた銅合金材
JP2015527726A (ja) 2012-06-07 2015-09-17 サイマー リミテッド ライアビリティ カンパニー レーザチャンバのための耐食電極
WO2019097846A1 (ja) * 2017-11-15 2019-05-23 Jx金属株式会社 耐食性CuZn合金

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021038451A (ja) * 2019-09-05 2021-03-11 Jx金属株式会社 易加工性耐食電極合金
JP7370197B2 (ja) 2019-09-05 2023-10-27 Jx金属株式会社 易加工性耐食電極合金

Also Published As

Publication number Publication date
US20210355563A1 (en) 2021-11-18
EP3892745A1 (en) 2021-10-13
JP7273063B2 (ja) 2023-05-12
TWI810414B (zh) 2023-08-01
KR20210076943A (ko) 2021-06-24
JPWO2020116464A1 (ja) 2021-12-09
EP3892745A4 (en) 2021-11-24
US11643707B2 (en) 2023-05-09
KR102578427B1 (ko) 2023-09-14
CN113056570A (zh) 2021-06-29
TW202028486A (zh) 2020-08-01

Similar Documents

Publication Publication Date Title
KR102218815B1 (ko) 내식성 CuZn 합금
TWI518191B (zh) Titanium parts for electronic parts
CN113165032B (zh) 钛合金板、钛合金板的制造方法、铜箔制造滚筒以及铜箔制造滚筒的制造方法
JP5417366B2 (ja) 曲げ加工性に優れたCu−Ni−Si系合金
KR20160096696A (ko) 전자 부품용 티탄구리
JP5539932B2 (ja) 曲げ加工性に優れたCu−Co−Si系合金
WO2020116464A1 (ja) 耐食性CuZn合金
JP2019157261A (ja) 耐食性CuCo合金
JP7370197B2 (ja) 易加工性耐食電極合金
RU2228382C2 (ru) Тантал-кремниевый сплав, изделия, содержащие их, и способ получения сплавов
CN113056569B (zh) 铜电极材料
KR101119809B1 (ko) 화학 플랜트용 니켈재
JP2007238994A (ja) 電解コンデンサ電極用アルミニウム箔
RU2795584C2 (ru) Титаново-медный материал, способ производства титаново-медного материала и электронный компонент
JP6310131B1 (ja) 電子部品用チタン銅
KR20210111671A (ko) 스퍼터링 타깃재
JPH0543928A (ja) 超高清浄度鋼の製造方法
MXPA00011487A (en) Tantalum-silicon alloys and products containing the same and processes of making the same

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559236

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217014266

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019893908

Country of ref document: EP

Effective date: 20210705